Skip to Main content Skip to Navigation

Modeling of resonant optical nanostructures with semi-analytical methods based on the object eigenmodes

Anton Ovcharenko 1 
1 Laboratoire Charles Fabry / Nanophotonique
LCF - Laboratoire Charles Fabry
Abstract : The presented thesis is dedicated to the development of semi-analytical accurate models for the numerical calculation of resonant nanophotonic devices. In particular, it concerns photonic crystal slabs, which can support resonances with high quality factors, and ensembles composed of several plasmonic nanoantennas, which exhibit resonances with low quality factors. The structure of the thesis is two-fold. In the first part, a semi-analytical model for the calculation of the modes supported by photonic crystal slabs (their dispersion and quality factors) is presented. Leaky modes supported by photonic crystal slabs are modeled as a transverse Fabry-Perot resonance composed of a few propagative Bloch waves bouncing back and forth vertically inside the slab. This model is applied to the study of bound states in the continuum (BICs). We show that the multimode Fabry-Perot model is perfectly suitable to predict the existence of BICs as well as their precise positions in the parameter space. We show that, regardless of the slab thickness, BICs cannot exist below a cut-off frequency, which is related to the existence of the second-order Bloch wave in the photonic crystal. Thanks to the semi-analyticity of the model, we investigate the dynamics of BICs with the slab thickness in symmetric and asymmetric photonic crystal slab. In the latter case, we investigate structures with either a broken horizontal symmetry or a broken vertical symmetry (addition of a substrate). As a result, we obtain some important insights into the nature and behavior of BICs. We evidence that, as the horizontal mirror symmetry is broken, the symmetry-protected BICs that exist in symmetric structures at the Gamma-point of the dispersion diagram are still BICs despite the absence of symmetry but change their nature. They become resonance-trapped BICs, but only for specific values of the slab thickness.The second part of the thesis is dedicated to the development of an original modal theory to model light scattering by complex structures composed of a small ensemble of plasmonic nanoantennas. The objective is to be able to model light scattering by metasurfaces from the sole knowledge of the eigenmodes of their individual constituents. For that purpose, we combine a quasi-normal mode (QNM) formalism with the multipole multiple-scattering theory based on the calculation of the so-called transition matrix (T-matrix) of a single scatterer. The T-matrix provides the relation between the incident and scattered fields in the vectorial spherical harmonics basis. It captures all the intrinsic scattering properties of the object that are due to its shape and refractive index distribution. Computation of the T-matrix is a heavy numerical burden since it requires numerous rigorous calculations of the scattered field— one for each harmonic in the basis. Using a modal expansion of the scattered field with QNMs allows us to bring both analyticity and physical understanding into the calculation. We derive a modal expansion of the T-matrix and test its accuracy on the reference case of a metallic nanosphere.Finally, we apply the modal expansion of the T-matrix to practical cases of interest in nanophotonics. From the sole knowledge of a few modes of a single plasmonic nanorod, we calculate analytically multiple light scattering by a dimer and a Yagi-Uda antenna composed of these nanorods. We apply also the modal approach to a periodic two-dimensional array of nanorods. Comparison with the results of a rigorous Maxwell’s equations solver demonstrates a good agreement with the QNM-based calculation. Compared to fully rigorous calculations, the QNM expansion of the T-matrix allows for a significant reduction of the computation time. Since the calculations are analytical once the modes have been calculated, the QNM approach is extremely useful for optimization problems.
Document type :
Complete list of metadata

Cited literature [236 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Thursday, January 30, 2020 - 2:36:12 PM
Last modification on : Sunday, June 26, 2022 - 2:46:32 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02461120, version 1


Anton Ovcharenko. Modeling of resonant optical nanostructures with semi-analytical methods based on the object eigenmodes. Optics [physics.optics]. Université Paris Saclay (COmUE), 2019. English. ⟨NNT : 2019SACLO019⟩. ⟨tel-02461120⟩



Record views


Files downloads