, Im(k), p.1

, Re(k), p.1

, Im(k), p.1

, Re(k), p.1

, Im(k), p.1

A. F. Koenderink, A. Alù, and A. Polman, Nanophotonics: Shrinking lightbased technology, Science, vol.348, p.9, 2015.

J. N. Joannopoulos, J. D. Johnson, S. G. Winn, and M. R. , Photonic Crystals: Molding the Flow of light, Second, vol.11, p.9, 2008.

E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters, vol.58, p.9, 1987.

S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, vol.58, p.9, 1987.

D. Sievenpiper, L. Zhang, R. F. Jimenez-broas, N. G. Alexöpolous, and E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Transactions on Microwave Theory and Techniques, 1999.

T. J. Yablonovitch, K. M. Gmitter, and . Leung, Photonic band structure: The face-centered-cubic case employing nonspherical atoms, Physical Review Letters, vol.67, p.9, 1991.

E. Yablonovitch, Photonic band-gap structures, Journal of the Optical Society of America B, vol.10, p.9, 1993.

S. F. Joannopoulos, J. D. , and P. R. Villeneuve, Photonic crystals:putting a new twist on light, vol.386, p.9, 1997.

H. Raether, Surface plasmons on smooth surfaces, Surface plasmons on smooth and rough surfaces and on gratings, p.9, 1988.

T. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature, vol.86, p.9, 1998.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-nasser, and S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity, Physical Review Letters, vol.84, p.9, 2000.

R. A. Shelby, D. R. Smith, and S. Schultz, Experimental Verification of a Negative Index of Refraction, Science, vol.292, p.12, 2001.

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Physical Review Letters, vol.85, p.9, 2000.

M. Notomi, Manipulating light with strongly modulated photonic crystals, Reports on Progress in Physics, vol.73, p.12, 2010.

E. Kuramochi, Manipulating and trapping light with photonic crystals from fundamental studies to practical applications, J. Mater. Chem. C, vol.4, p.12, 2016.

R. Baets, B. Demeulenaere, B. Dhoedt, and S. Goeman, Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity, US Patent, vol.6, p.12, 2001.

X. Letartre, J. L. Mouette, P. R. Leclercq, . Romeo, P. Seassal et al., Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures, Journal of Lightwave Technology, vol.21, p.12, 2003.

C. F. Mateus, M. C. Huang, L. Chen, C. J. Chang-hasnain, and Y. Suzuki, Broad-band mirror (1.12-1.62 m) using a subwavelength grating, IEEE Photonics Technology Letters, vol.16, p.12, 2004.

Y. Ding and . Magnusson, Resonant leaky-mode spectral-band engineering and device applications, Optics Express, vol.12, p.12, 2004.

S. Hernandez, A. Gauthier-lafaye, . Fehrembach, P. Bonnefont, . Arguel et al., High performance bi-dimensional resonant grating filter at 850nm under high oblique incidence of?60 o, Applied Physics Letters, vol.92, p.12, 2008.

M. C. Huang, Y. Zhou, and C. J. Chang-hasnain, A surface-emitting laser incorporating a high-index-contrast subwavelength grating, Nature Photonics, vol.1, p.12, 2007.

Y. Laaroussi, C. Chevallier, F. Genty, N. Fressengeas, L. Cerutti et al., Oxide confinement and high contrast grating mirrors for Mid-infrared VCSELs, Optical Materials Express, vol.3, p.12, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01108786

B. B. Sciancalepore, . Bakir, . Menezo, . Letartre, P. Bordel et al., III-V-on-Si Photonic Crystal Vertical-Cavity Surface-Emitting Laser Arrays for Wavelength Division Multiplexing, IEEE Photonics Technology Letters, vol.25, p.12, 2013.

Y. Park, E. Drouard, O. E. Daif, X. Letartre, P. Viktorovitch et al., Absorption enhancement using photonic crystals for silicon thin film solar cells, Optics Express, vol.17, p.12, 2009.

M. L. Brongersma, Y. Cui, and S. Fan, Light management for photovoltaics using high-index nanostructures, Nature Materials, vol.13, p.12, 2014.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, Realization of dynamic thermal emission control, Nature Materials, vol.13, p.12, 2014.

Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos et al., Structural Colors from Fano Resonances, ACS Photonics, vol.2, p.12, 2015.

E. Popov, D. Mashev, and . Maystre, Theoretical Study of the Anomalies of Coated Dielectric Gratings, Optica Acta: International Journal of Optics, vol.33, p.12, 1986.

J. M. Pottage, P. S. Silvestre, and . Russell, Vertical-cavity surface-emitting resonances in photonic crystal films, Journal of the Optical Society of America A, vol.18, p.12, 2001.

S. Fan, W. Suh, and J. D. Joannopoulos, Temporal coupled-mode theory for the Fano resonance in optical resonators, Journal of the Optical Society of America A, vol.20, p.12, 2003.

A. Fehrembach, D. Maystre, and A. Sentenac, Phenomenological theory of filtering by resonant dielectric gratings, Journal of the Optical Society of America A, vol.19, p.12, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00081509

A. Fehrembach and A. Sentenac, Study of waveguide grating eigenmodes for unpolarized filtering applications, Journal of the Optical Society of America A, vol.20, p.12, 2003.

P. Lalanne, J. P. Hugonin, and P. Chavel, Optical properties of deep lamellar gratings: A coupled bloch-mode insight, Journal of Lightwave Technology, vol.24, pp.2442-2449, 2006.

S. Rytov, Electromagnetic properties of a finely stratified medium, Soviet Physics JEPT, vol.2, p.12, 1956.

A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, vol.374, p.12, 2011.

L. Solymar and E. Shamonina, Waves in metamaterials, p.12, 2009.

M. Wegener and S. Linden, Shaping optical space with metamaterials, Phys. Today, vol.63, p.12, 2010.

M. Kadic, G. W. Milton, M. Van-hecke, and M. Wegener, 3D metamaterials, Nature Reviews Physics, vol.1, p.12, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02366605

V. G. Veselago, Electrodinamics of materials both permittivity and permeability being negative, vol.92, p.12, 1967.

M. A. Dupertuis, M. Proctor, and B. Acklin, Generalization of complex Snell-Descartes and Fresnel laws, Journal of the Optical Society of America A, vol.11, p.12, 1994.

N. Katsarakis, . Konstantinidis, R. S. Kostopoulos, T. F. Penciu, . Gundogdu et al., Magnetic response of split-ring resonators in the far-infrared frequency regime, Optics Letters, vol.30, p.13, 2005.

E. Plum, V. A. Fedotov, and N. I. Zheludev, Planar metamaterial with transmission and reflection that depend on the direction of incidence, Applied Physics Letters, vol.94, p.13, 2007.

C. M. Soukoulis and M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nature Photonics, vol.5, p.12, 2011.

Y. Xu, Y. Fu, and H. Chen, Planar gradient metamaterials, Nature Reviews Materials, vol.1, p.12, 2016.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Hyperbolic metamaterials, Nature Photonics, vol.7, p.12, 2013.

E. E. Narimanov, Photonic Hypercrystals, Physical Review X, vol.4, p.12, 2014.

I. Staude and J. Schilling, Metamaterial-inspired silicon nanophotonics, Nature Photonics, vol.11, p.13, 2017.

J. S. Gomez-diaz, M. Tymchenko, and A. Alù, Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips, Optical Materials Express, vol.5, p.13, 2015.

O. Y. Yermakov, A. I. Ovcharenko, A. A. Song, I. V. Bogdanov, Y. S. Iorsh et al., Hybrid waves localized at hyperbolic metasurfaces, Physical Review B, vol.91, p.13, 2015.

A. Nemilentsau, T. Low, and G. Hanson, Anisotropic 2D materials for tunable hyperbolic plasmonics, Physical Review Letters, vol.116, p.13, 2015.

J. Gomis-bresco, D. Artigas, and L. Torner, Anisotropy-induced photonic bound states in the continuum, Nature Photonics, vol.11, p.13, 2017.

T. Koschny, E. N. Marko?, D. R. Economou, D. C. Smith, C. M. Vier et al., Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials, Physical Review B, vol.71, p.13, 2005.

D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and A. Tarot, Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity, Journal of Applied Physics, vol.98, p.13, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00549262

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov et al., Validity of effective material parameters for optical fishnet metamaterials, Physical Review B, vol.81, p.13, 2010.

N. Yu and F. Capasso, Flat optics with designer metasurfaces, Nat Mater, vol.13, p.14, 2014.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Planar Photonics with Metasurfaces, Science, vol.339, p.14, 2013.

S. Tretyakov, Analytical modeling in applied electromagnetics, p.14, 2003.

E. F. Kuester, M. A. Mohamed, C. L. Piket-may, and . Holloway, Averaged transition conditions for electromagnetic fields at a metafilm, IEEE Transactions on Antennas and Propagation, vol.51, p.14, 2003.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O'hara, A. K. Azad et al., A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials, Metamaterials, vol.3, p.14, 2009.

C. L. Holloway, E. F. Kuester, and D. Novotny, Waveguides Composed of Metafilms/Metasurfaces: The Two-Dimensional Equivalent of Metamaterials, IEEE Antennas and Wireless Propagation Letters, vol.8, p.14, 2009.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles, IEEE Transactions on Electromagnetic Compatibility, vol.47, p.14, 2005.

C. L. Holloway, E. F. Kuester, and A. Dienstfrey, Characterizing Metasurfaces/Metafilms: The Connection Between Surface Susceptibilities and Effective Material Properties, IEEE Antennas and Wireless Propagation Letters, vol.10, p.14, 2011.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, Ultra-thin, planar, Babinetinverted plasmonic metalenses, Light: Science & Applications, vol.2, p.14, 2013.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu et al., Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging, Science, vol.352, p.14, 2016.

H. Zuo, D. Choi, X. Gai, P. Ma, L. Xu et al., High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging, Advanced Optical Materials, vol.5, p.14, 2017.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev et al., Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion, Nano Letters, vol.17, p.14, 2017.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi et al., A broadband achromatic metalens for focusing and imaging in the visible, Nature nanotechnology, vol.13, p.14, 2018.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift, Science Advances, vol.4, p.14, 2018.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne et al., Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science, vol.334, pp.333-337, 2011.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science, vol.345, p.14, 2014.

M. Chen, M. Kim, A. M. Wong, and G. V. Eleftheriades, Huygens' metasurfaces from microwaves to optics: a review, Nanophotonics, vol.7, p.14, 2018.

A. Arbabi and A. Faraon, Fundamental limits of ultrathin metasurfaces, Scientific Reports, vol.7, p.14, 2017.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk'yanchuk, Optically resonant dielectric nanostructures, Science, vol.354, p.14, 2016.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, Metasurfaces: From microwaves to visible, Physics Reports, vol.634, p.14, 2016.

P. Lalanne and P. Chavel, Metalenses at visible wavelengths: past, present, perspectives, Laser & Photonics Reviews, vol.11, p.14, 2017.

A. Alù and N. Engheta, Enabling a new degree of wave control with metamaterials: a personal perspective, Journal of Optics, vol.19, p.14, 2017.

F. Capasso, The future and promise of flat optics: a personal perspective, p.14, 2018.

N. Meinzer, W. L. Barnes, and I. R. Hooper, Plasmonic meta-atoms and metasurfaces, Nat Photon, vol.8, p.14, 2014.

S. Jahani and Z. Jacob, All-dielectric metamaterials, Nature Nanotechnology, vol.11, p.14, 2016.

W. Liu and A. E. Miroshnichenko, Beam Steering with Dielectric Metalattices, ACS Photonics, vol.5, p.14, 2018.

D. Sell, J. Yang, E. W. Wang, T. Phan, S. Doshay et al., Ultra-High-Efficiency Anomalous Refraction with Dielectric Metasurfaces, ACS Photonics, vol.5, p.14, 2018.

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, Highly tunable elastic dielectric metasurface lenses, Laser & Photonics Reviews, vol.10, p.14, 2016.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl et al., Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces, Nature Photonics, vol.13, 2019.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures, Advanced Optical Materials, vol.6, pp.14-16, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01765683

B. Wang, F. Dong, Q. Li, D. Yang, C. Sun et al., Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms, Nano Letters, vol.16, p.14, 2016.

Y. F. Yu, A. Y. Zhu, R. Paniagua-domínguez, Y. H. Fu, B. Luk'yanchuk et al., High-transmission dielectric metasurface with 2 phase control at visible wavelengths, Laser & Photonics Reviews, vol.9, pp.412-418, 2015.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu et al., A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies, Small, vol.7, p.15, 2011.

W. Li and J. G. Valentine, Harvesting the loss: surface plasmon-based hot electron photodetection, Nanophotonics, vol.6, p.15, 2017.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong et al., Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities, Advances in Optics and Photonics, vol.9, p.15, 2017.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, Mie resonance-based dielectric metamaterials, Materials Today, vol.12, p.16, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00471883

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk'yanchuk, Magnetic light, Scientific reports, vol.2, p.16, 2012.

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou et al., Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules, Optics Express, vol.19, p.16, 2011.

G. Dolling, . Enkrich, J. F. Wegener, C. M. Zhou, S. Soukoulis et al., Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials, Optics Letters, vol.30, p.16, 2005.

V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev et al., Negative index of refraction in optical metamaterials, Optics Letters, vol.30, p.16, 2005.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang et al., Controlled-reflectance surfaces with film-coupled colloidal nanoantennas, Nature, vol.492, p.16, 2012.

A. Devilez, X. Zambrana-puyalto, B. Stout, and N. Bonod, Mimicking localized surface plasmons with dielectric particles, Physical Review B -Condensed Matter and Materials Physics, vol.92, p.16, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01281244

S. D. Isro, A. A. Iskandar, Y. S. Kivshar, and I. V. Shadrivov, Engineering scattering patterns with asymmetric dielectric nanorods, Optics Express, vol.26, p.16, 2018.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. D. Martino et al., Unidirectional Side Scattering of Light by a Single-Element Nanoantenna, Nano Letters, vol.13, p.16, 2013.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, Broadband Unidirectional Scattering by Magneto-Electric Core-Shell Nanoparticles, ACS Nano, vol.6, p.16, 2012.

R. Paniagua-dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu et al., Generalized Brewster effect in dielectric metasurfaces, Nat Commun, vol.7, p.16, 2016.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk'yanchuk, Directional visible light scattering by silicon nanoparticles, Nature Communications, vol.4, p.16, 2013.

A. E. Miroshnichenko, B. Luk'yanchuk, S. A. Maier, and Y. S. Kivshar, Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials, ACS Nano, vol.6, p.16, 2012.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, Nonradiating photonics with resonant dielectric nanostructures, vol.24, p.16, 2019.

C. W. Hsu, B. Zhen, J. Lee, S. Chua, S. G. Johnson et al., Observation of trapped light within the radiation continuum, Nature, vol.499, pp.188-191, 2013.

K. V. Baryshnikova, D. A. Smirnova, B. S. Luk'yanchuk, and Y. S. Kivshar, Optical Anapoles: Concepts and Applications, p.16, 2019.

F. Monticone, D. Sounas, A. Krasnok, and A. Alù, Can a nonradiating mode be externally excited? Nonscattering states vs, p.16, 2019.

G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik, vol.330, p.17, 1908.

G. Gouesbet, Generalized lorenz-mie theory and applications, Particle & Particle Systems Characterization, vol.11, p.17, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01596767

G. Gouesbet and . Mees, Generalized Lorenz-Mie theory for infinitely long elliptical cylinders, JOSA A, vol.16, p.17, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01596823

K. F. Ren, G. Gréhan, and . Gouesbet, Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory: formulation and numerical results, Journal of the Optical Society of America A, vol.14, p.17, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01596849

F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid, Journal of the Optical Society of America A, vol.24, p.17, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01596773

J. Auger and B. Stout, A recursive centered T-matrix algorithm to solve the multiple scattering equation: numerical validation, Journal of Quantitative Spectroscopy and Radiative Transfer 79-80, pp.533-547, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00082879

B. Stout, A. Devilez, B. Rolly, and N. Bonod, Multipole methods for nanoantennas design: applications to Yagi-Uda configurations, Journal of the Optical Society of America B, vol.28, p.1213, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01228463

B. Stout, J. Auger, and J. Lafait, A transfer matrix approach to local field calculations in multiple-scattering problems, Journal of Modern Optics, vol.49, pp.2129-2152, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00082882

A. Egel and U. Lemmer, Dipole emission in stratified media with multiple spherical scatterers: Enhanced outcoupling from OLEDs, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.148, p.61, 2014.

J. Zhao, A. O. Pinchuk, J. M. Mcmahon, S. Li, L. K. Ausman et al., Methods for describing the electromagnetic properties of silver and gold nanoparticles, Accounts of Chemical Research, vol.41, pp.1710-1720, 2008.

A. Taflove and S. C. Hagness, Computational electrodynamics: the finitedifference time-domain method (Artech house, vol.18, 2005.

K. Yee, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, p.18, 1966.

J. Jin, The finite element method in electromagnetics, vol.18, 2015.

M. Yurkin and A. Hoekstra, The discrete dipole approximation: An overview and recent developments, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.106, p.18, 2007.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation, Physical Review B, vol.84, p.18, 2011.

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach, Journal of the Optical Society of America A, vol.12, pp.1077-1086, 1995.

M. G. Moharam, E. B. Grann, D. Pommet, and T. K. Gaylord, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, Journal of the Optical Society of America A, vol.12, p.33, 1995.

P. Lalanne and G. M. Morris, Highly improved convergence of the coupledwave method for TM polarization, Journal of the Optical Society of America A, vol.13, p.19, 1996.

S. Peng and G. M. Morris, Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings, Journal of the Optical Society of America A, vol.12, pp.1087-1096, 1995.

L. Li, Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings, Journal of the Optical Society of America A, vol.13, p.19, 1996.

G. Granet, Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization, Journal of the Optical Society of America A, vol.13, p.19, 1996.

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, Use of grating theories in integrated optics, Journal of the Optical Society of America. A, Optics, image science, and vision, vol.18, p.19, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00867923

J. P. Hugonin and P. Lalanne, Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization, Journal of the Optical Society of America A, vol.22, p.19, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00869730

L. Novotny and B. Hecht, Principles of Nano-Optics, p.19, 2012.

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory, Physical Review E, vol.76, p.19, 2007.

C. Blanchard, P. Viktorovitch, and X. Letartre, Perturbation approach for the control of the quality factor in photonic crystal membranes: Application to selective absorbers, Physical Review A, vol.90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01489891

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Solja?i?, Bound states in the continuum, Nature Reviews Materials, vol.1, p.16048, 2016.

F. Monticone and A. Alù, Embedded Photonic Eigenvalues in 3D Nanostructures, Physical Review Letters, vol.112, p.24, 2014.

E. J-von-neuman and . Wigner, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen, Physikalische Zeitschrift, vol.30, p.24, 1929.

H. Friedrich and D. Wintgen, Interfering resonances and bound states in the continuum, Physical Review A, vol.32, p.24, 1985.

J. W. Yoon, S. H. Song, and R. Magnusson, Critical field enhancement of asymptotic optical bound states in the continuum, Scientific Reports, vol.5, p.24, 2015.

C. Blanchard, J. Hugonin, and C. Sauvan, Fano resonances in photonic crystal slabs near optical bound states in the continuum, Physical Review B, vol.94, p.155303, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01710945

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh et al., Transition from Optical Bound States in the Continuum to Leaky Resonances: Role of Substrate and Roughness, ACS Photonics, vol.4, pp.723-727, 2017.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman et al., Lasing action from photonic bound states in continuum, Nature, vol.541, pp.196-199, 2017.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker et al., Directional lasing in resonant semiconductor nanoantenna arrays, Nature Nanotechnology, vol.13, p.24, 2018.

Y. Liu, W. Zhou, and Y. Sun, Optical Refractive Index Sensing Based on High-Q Bound States in the Continuum in Free-Space Coupled Photonic Crystal Slabs, Sensors, vol.17, p.24, 2017.

S. Romano, G. Zito, S. Torino, G. Calafiore, E. Penzo et al., Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum, Photonics Research, vol.6, p.24, 2018.

L. Li and H. Yin, Bound States in the Continuum in double layer structures, Scientific Reports, vol.6, p.25, 2016.

Y. Wang, J. Song, L. Dong, and M. Lu, Optical bound states in slotted highcontrast gratings, Journal of the Optical Society of America B, vol.33, pp.2472-2479, 2016.

X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos et al., Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs, Scientific Reports, vol.6, p.31908, 2016.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems, Physical Review Letters, vol.121, p.25, 2018.

E. N. Bulgakov, D. N. Maksimov, P. N. Semina, and S. A. Skorobogatov, Propagating bound states in the continuum in dielectric gratings, Journal of the Optical Society of America B, vol.35, pp.1218-1222, 2018.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs, Physical Review Letters, vol.113, p.25, 2014.

Z. Wang, H. Zhang, L. Ni, W. Hu, and C. Peng, Analytical Perspective of Interfering Resonances in High-Index-Contrast Periodic Photonic Structures, IEEE Journal of Quantum Electronics, vol.52, p.25, 2016.

L. Ni, Z. Wang, C. Peng, and Z. Li, Tunable optical bound states in the continuum beyond in-plane symmetry protection, Physical Review B, vol.94, p.25, 2016.

E. N. Bulgakov and D. N. Maksimov, Avoided crossings and bound states in the continuum in low-contrast dielectric gratings, Physical Review A, vol.98, p.25, 2018.

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-hasnain, Theoretical analysis of subwavelength high contrast grating reflectors, Optics Express, vol.18, pp.16973-16988, 2010.

V. Karagodsky, C. Chase, and C. J. Chang-hasnain, Matrix Fabry-Perot resonance mechanism in high-contrast gratings, Optics Letters, vol.36, pp.1704-1706, 2011.

V. Karagodsky and C. J. Chang-hasnain, Physics of near-wavelength high contrast gratings, Optics Express, vol.20, pp.10888-10895, 2012.

Q. Bai, M. Perrin, C. Sauvan, J. Hugonin, and P. Lalanne, Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure, Optics Express, vol.21, p.27371, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00917914

P. Lalanne, . Yan, . Gras, J. Sauvan, . Hugonin et al., Quasinormal mode solvers for resonators with dispersive materials, Journal of the Optical Society of America A, vol.36, pp.686-704, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02348417

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff, Journal of the Optical Society of America A, vol.16, p.31, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00877423

G. Lecamp, P. Lalanne, J. P. Hugonin, and J. M. Gérard, Energy transfer through laterally confined Bragg mirrors and its impact on pillar microcavities, IEEE Journal of Quantum Electronics, vol.41, pp.1323-1329, 2005.

H. A. Haus, Waves and fields in optoelectronics, p.35, 1984.

P. Lalanne, J. P. Sauvan, and . Hugonin, Photon confinement in photonic crystal nanocavities, Laser & Photonics Reviews, vol.2, p.35, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00566678

C. Sauvan, J. P. Lalanne, and . Hugonin, Slow-wave effect and mode-profile matching in photonic crystal microcavities, Physical Review B, vol.71, p.35, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00113011

A. Taghizadeh, J. Mørk, and I. Chung, Ultracompact resonator with high quality-factor based on a hybrid grating structure, Optics Express, vol.23, p.51, 2015.

F. Dubois, Etude des propriétés spectro-spatiales des cristaux photoniques membranairesà symétrie brisée, p.52, 2018.

P. C. Waterman, Matrix formulation of electromagnetic scattering, Proceedings of the IEEE 53, pp.805-812, 1965.

L. Tsang, J. A. Kong, and K. Ding, Scattering of Electromagnetic Waves: Theories and Applications, 2000.

B. Peterson and S. Ström, T Matrix for Electromagnetic Scattering from an Arbitrary Number of Scatterers and Representations of E(3), Physical Review D, vol.8, p.55, 1973.

A. Doicu, T. Wriedt, and Y. A. Eremin, Light scattering by systems of particles: null-field method with discrete sources: theory and programs, 2006.

M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, T-matrix theory of electromagnetic scattering by particles and its applications: A comprehensive reference database, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.55, 2004.

A. Doicu and T. Wriedt, Calculation of the T matrix in the null-field method with discrete sources, Journal of the Optical Society of America A, vol.16, pp.2539-2544, 1999.

G. Demésy, J. Auger, and B. Stout, Scattering matrix of arbitrarily shaped objects: combining finite elements and vector partial waves, Journal of the Optical Society of America A, vol.35, p.1401, 2018.

X. G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-corbaton et al., Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes, Physical Review B, vol.99, pp.1-7, 2019.

P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J. Hugonin, Light Interaction with Photonic and Plasmonic Resonances, Laser & Photonics Reviews, vol.12, p.1700113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01772412

F. Alpeggiani, N. Parappurath, E. Verhagen, and L. Kuipers, Quasinormal-Mode Expansion of the Scattering Matrix, Physical Review X, vol.7, p.56, 2017.

W. Yan, R. Faggiani, and P. Lalanne, Rigorous modal analysis of plasmonic nanoresonators, Physical Review B, vol.97, pp.74-76, 2018.

T. Weiss and E. A. Muljarov, How to calculate the pole expansion of the optical scattering matrix from the resonant states, Physical Review B, vol.98, p.56, 2018.

R. Colom, R. Mcphedran, B. Stout, and N. Bonod, Modal expansion of the scattered field: Causality, nondivergence, and nonresonant contribution, Physical Review B, vol.98, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01858556

P. C. Waterman, Symmetry, Unitarity, and Geometry in Electromagnetic Scattering, Physical Review D, vol.3, p.57, 1971.

P. Barber and . Yeh, Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies, Applied Optics, vol.14, p.57, 1975.

M. I. Mishchenko, Light scattering by randomly oriented axially symmetric particles, Journal of the Optical Society of America A, vol.8, p.57, 1991.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, T-matrix method and its applications to electromagnetic scattering by particles: A current perspective, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.111, p.57, 2010.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, 2002.

P. Grahn, A. Shevchenko, and M. Kaivola, Electromagnetic multipole theory for optical nanomaterials, New Journal of Physics, vol.14, p.63, 2012.

R. Alaee, C. Rockstuhl, and I. Fernandez-corbaton, An electromagnetic multipole expansion beyond the long-wavelength approximation, Optics Communications, vol.407, p.63, 2018.

P. T. Kristensen and S. Hughes, Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators, ACS Photonics, vol.1, p.66, 2014.

P. T. Leung, S. Y. Liu, and K. Young, Completeness and orthogonality of quasinormal modes in leaky optical cavities, Physical Review A, vol.49, p.66, 1994.

R. K. Chang and A. J. Campillo, Optical processes in microcavities, vol.3, p.66, 1996.

A. W. Snyder and J. D. Love, Optical Waveguide Theory Chapman and Hall, p.66, 1983.

R. M. More, Theory of Decaying States, Physical Review A, vol.4, p.66, 1971.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators, Physical Review Letters, vol.110, pp.1-5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850459

J. Zimmerling, L. Wei, P. Urbach, and R. Remis, Efficient computation of the spontaneous decay rate of arbitrarily shaped 3D nanosized resonators: a Krylov model-order reduction approach, Applied Physics A, vol.122, 2016.

L. Zschiedrich, F. Binkowski, N. Nikolay, O. Benson, G. Kewes et al., Riesz-projection-based theory of light-matter interaction in dispersive nanoresonators, Physical Review A, vol.98, p.66, 2018.

F. Zolla, A. Nicolet, and G. Demésy, Photonics in highly dispersive media: the exact modal expansion, Optics Letters, vol.43, p.66, 2018.

S. Franke, S. Hughes, M. K. Dezfouli, P. T. Kristensen, K. Busch et al., Quantization of Quasinormal Modes for Open Cavities and Plasmonic Cavity Quantum Electrodynamics, Physical Review Letters, vol.122, p.66, 2019.

M. Garcia-vergara, G. Demésy, and F. Zolla, Extracting an accurate model for permittivity from experimental data: hunting complex poles from the real line, Optics Letters, vol.42, p.67, 2017.

A. Raman and S. Fan, Photonic band structure of dispersive metamaterials formulated as a Hermitian eigenvalue problem, Physical Review Letters, vol.104, p.68, 2010.

Y. Brûlé, B. Gralak, and G. Demésy, Calculation and analysis of the complex band structure of dispersive and dissipative two-dimensional photonic crystals, Journal of the Optical Society of America B, vol.33, p.69, 2016.

M. B. Doost, W. Langbein, and E. A. Muljarov, Resonant-state expansion applied to three-dimensional open optical systems, Physical Review A, vol.90, p.70, 2014.

C. Sauvan, J. Hugonin, and P. Lalanne, Photonic and plasmonic nanoresonators: a modal approach, Active photonic materials vii, vol.9546, p.70, 2015.

B. Stout and R. Mcphedran, Egocentric physics: Just about Mie, EPL (Europhysics Letters), vol.119, p.76, 2017.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, vol.80, p.78, 2008.

J. Bar-david, N. Mazurski, and U. Levy, In-Situ planarization of Huygens metasurfaces by nanoscale local oxidation of silicon, ACS Photonics, vol.87, 2017.

R. Verre, D. G. Baranov, B. Munkhbat, J. Cuadra, M. Käll et al., Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators, Nature Nanotechnology, vol.14, pp.679-683, 2019.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez et al., Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens' Metasurfaces Based on Dielectric Resonant Meta-atoms, ACS Photonics, vol.3, pp.514-519, 2016.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt et al., Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances, Scientific Reports, vol.4, 2014.

V. Flauraud, M. Reyes, R. Paniagua-domínguez, A. I. Kuznetsov, and J. Brugger, Silicon Nanostructures for Bright Field Full Color Prints, ACS Photonics, vol.4, 1913.

P. Moitra, B. A. Slovick, Z. Yu, S. Krishnamurthy, and J. Valentine, Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector, Applied Physics Letters, vol.104, pp.10-15, 2014.

A. K. Ospanova, G. Labate, L. Matekovits, and A. A. Basharin, Multipolar passive cloaking by nonradiating anapole excitation, Scientific Reports, vol.8, p.12514, 2018.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang et al., Full Color Generation Using Silver Tandem Nanodisks, ACS Nano, vol.11, pp.4419-4427, 2017.

I. Staude, T. Pertsch, and Y. S. Kivshar, All-Dielectric Resonant Meta-Optics Lightens up, ACS Photonics, vol.6, pp.802-814, 2019.

S. Kruk and Y. Kivshar, Functional Meta-Optics and Nanophotonics Govern by Mie Resonances, ACS Photonics, vol.4, pp.2638-2649, 2017.

L. Novotny and N. Van-hulst, Antennas for light, Nature Photonics, vol.5, pp.83-90, 2011.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, Optical Yagi-Uda nanoantennas, Nanophotonics, vol.1, p.96, 2012.

F. Bigourdan, J. Hugonin, and P. Lalanne, Aperiodic-Fourier modal method for analysis of body-of-revolution photonic structures, Journal of the Optical Society of America A, vol.31, pp.1303-1311, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00994665

J. P. Hugonin and P. Lalanne, Reticolo software for grating analysis, vol.117, 2005.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant et al., Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna, Science, vol.329, p.96, 2010.

T. H. Taminiau, F. D. Stefani, and N. F. Van-hulst, Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna, Optics Express, vol.16, p.96, 2008.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Directional control of light by a nano-optical Yagi -Uda antenna, Nature Photonics, vol.4, p.96, 2010.

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-dominguez, E. H. Koay et al., Highly Directive Hybrid Metal-Dielectric Yagi-Uda Nanoantennas, ACS Nano, vol.12, p.96, 2018.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, Alldielectric optical nanoantennas, Optics Express, vol.20, p.96, 2012.

K. R. Mahmoud, M. Hussein, M. F. Hameed, and S. S. Obayya, Super directive Yagi-Uda nanoantennas with an ellipsoid reflector for optimal radiation emission, Journal of the Optical Society of America B, vol.34, p.96, 2017.

Y. G. Liu, W. C. Choy, W. E. Sha, and W. Chew, Unidirectional and wavelength-selective photonic sphere-array nanoantennas, Optics Letters, vol.37, p.96, 2012.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov et al., An arrayed nanoantenna for broadband light emission and detection, Physica Status Solidi RRL, vol.5, p.96, 2011.

I. S. Maksymov, A. R. Davoyan, and Y. S. Kivshar, Enhanced emission and light control with tapered plasmonic nanoantennas, Applied Physics Letters, vol.99, p.96, 2011.

I. S. Maksymov, A. R. Davoyan, A. E. Miroshnichenko, C. Simovski, P. Belov et al., Multifrequency tapered plasmonic nanoantennas, Optics Communications, vol.285, p.96, 2012.

T. Pakizeh and M. Käll, Unidirectional Ultracompact Optical Nanoantennas, Nano Letters, vol.9, p.97, 2009.

A. F. Koenderink, Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources, Nano Letters, vol.9, p.98, 2009.

O. L. Muskens, J. A. Giannini, J. Sánchez-gil, and . Rivas, Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas, Nano Letters, vol.7, p.98, 2007.

K. B. Crozier, . Zhu, . Wang, M. D. Lin, J. P. Best et al., Plasmonics for Surface Enhanced Raman Scattering: Nanoantennas for Single Molecules, IEEE Journal of Selected Topics in Quantum Electronics, vol.20, p.98, 2014.

E. M. Purcell, Spontaneous Emission Probabliities at Radio Frquencies, Physical Review, vol.69, p.98, 1946.

J. Yang, J. Hugonin, and P. Lalanne, Near-to-Far Field Transformations for Radiative and Guided Waves, ACS Photonics, vol.3, p.102, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01381759