, Déclaration finale de la Conférence des Nations Unies sur l'environnement, UNEP, 1972.

, Rapport du GIEC 2013 -Changements climatiques -les éléments scientifiques -Résumé à l'intention des décideurs, Résumé techique et Foire aux questions, GIEC, issue.5, 2013.

, Summary for policymakers, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014.

B. P. Global, BP statistical review of world energy 2017, 2017.

, Climate Change 2014 -Synthesis Report -Summary for Policymakers, GIEC, 2014.

, Adoption de l, Conférence des Parties, 2015.

, World energy outlook, International Energy Agency, 2007.

P. Nossin, White biotechnology: replacing black gold?, " presented at the Fifth international conference on renewable resources and biorefineries, 2009.

R. Gicquel and M. Gicquel, Introduction aux problèmes énergétiques globaux, Presses des Mines, 2016.

F. Cherubini, The biorefinery concept: Using biomass instead of oil for producing energy and chemicals, Energy Convers. Manag, vol.51, issue.7, pp.1412-1421, 2010.

A. Departe, Marchés actuels des produits biosourcés et évolutions à horizons 2020 et 2030," ADEME, synthèse publique, 2015.

F. Moisan and A. Chêne, Soutenir le développement des produits biosourcés, ADEME -Lett. Strat, vol.47, 2016.

F. Broust, P. Girard, and L. Van-de-steene, Biocarburants de 2nd génération, vol.10, 2008.

A. Bolis, Les biocarburants émettent plus de CO2 que l'essence et le diesel, Le Monde.fr, vol.28, 2016.

B. Kamm, P. R. Gruber, and M. Kamm, Biorefineries -Industrial Processes and Products," in Ullmann's Encyclopedia of Industrial Chemistry, 2007.

, The land use chage impact of biofuels consumed in the EU, GLOBIOM, 2015.

E. D. Larson, A review of life-cycle analysis studies on liquid biofuel systems for the transport sector, Energy Sustain. Dev, vol.10, issue.2, pp.109-126, 2006.

A. Bouter, Tour d'horizon des filières biocarburants dans le monde, 2014.

F. Broust, P. Girard, and L. Van-de-steene, Biocarburants de seconde génération et bioraffinerie, Innov. Innov. Technol, 2013.

D. Bacovsky, N. Ludwiczek, M. Ognissanto, and M. Wörgetter, Status of advanced biofuels demonstration facilities in 2012, Rep. IEA Bioenergy Task, vol.39, pp.1-209, 2013.

A. Bouter and D. Lorne, Tableau de bord des biocarburants 2017, 2017.

, IEA Bioenergy Annual Report, p.126, 2016.

W. M. Budzianowski, High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries, Renew. Sustain. Energy Rev, vol.70, pp.793-804, 2017.

J. J. Bozell and G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's 'Top 10' revisited, Green Chem, vol.12, issue.4, pp.539-554, 2010.

M. Patel, Medium and Long-Term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources-The BREW Project, 2006.

D. Fengel and G. Wegener, Wood: chemistry, ultrastructure, reactions, 1983.

S. Wang, G. Dai, Y. Haiping, and Z. Luo, Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review, Prog. Energy Combust. Sci, vol.62, pp.33-86, 2017.

X. Deglise and A. Donnot, Techniques de l'ingénieur, LERMAB -Faculté des Sciences de Nancy, TEchnique de l'ingénieur BE 8535, 2008.

D. Ballerini and L. Biocarburants, Etats des lieux, perspectives et enjeux du développement. Editions TECHNIP, 2006.

C. Mao, Y. Feng, X. Wang, and G. Ren, Review on research achievements of biogas from anaerobic digestion, Renew. Sustain. Energy Rev, vol.45, pp.540-555, 2015.

M. J. O'donohue, La production de carburants à partir de biomasse lignocellulosique par voie biologique : état de l'art et perspectives, Ol. Corps Gras Lipides, vol.15, issue.3, pp.172-177, 2008.

J. C. Ogier, J. P. Leygue, D. Ballerini, J. Pourquie, and L. Rigal, Production d'éthanol a partir de biomasse lignocellulosique, Oil Gas Sci. Technol, vol.54, issue.1, pp.67-94, 1999.

M. Deniel, Etude de la production de bio-huile par liquéfaction hydrothermale de résidus agroalimentaires et de leurs molécules modèles, Doctorat, Ecole Nationale Supérieure des Mines d'Albi-Carmaux, 2016.

A. V. Bridgwater, D. Meier, and D. Radlein, An overview of fast pyrolysis of biomass, Org. Geochem, vol.30, issue.12, pp.1479-1493, 1999.

G. Gauthier, Synthèse de biocarburant de 2ème génération étude de la pyrolyse à haute température de bois centimétrique, 2013.

A. Bridgwater, Progress in Thermochemical Biomass Conversion, 2008.

J. Leppävuori and P. Koukkari, BIOSCEN -Modeling Biorefinery Scenarios, 2012.

C. Couhert, Pyrolyse flash à haute température de la biomasse lignocellulosique et de ses composés : production de gaz de synthèse, 2007.

A. V. Bridgwater, D. Meier, and D. Radlein, An overview of fast pyrolysis of biomass, Org. Geochem, vol.30, issue.12, pp.1479-1493, 1999.

H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee et al., In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin, Energy Fuels, vol.20, issue.1, pp.388-393, 2006.

J. J. Orfão, F. J. Antunes, and J. L. Figueiredo, Pyrolysis kinetics of lignocellulosic materials-three independent reactions model, Fuel, vol.78, issue.3, pp.349-358, 1999.

P. D. Wild, Biomass pyrolysis for chemicals, 2011.

J. Scheirs, G. Camino, and W. Tumiatti, Overview of water evolution during the thermal degradation of cellulose, Eur. Polym. J, vol.37, issue.5, pp.933-942, 2001.

D. Shen, R. Xiao, S. Gu, and K. Luo, The pyrolytic behavior of cellulose in lignocellulosic biomass: a review, RSC Adv, vol.1, issue.9, pp.1641-1660, 2011.

C. Coquelet and R. Lugo, ANR MEMOBIOL -Etude Bibliographique, 2010.

D. K. Shen, S. Gu, K. H. Luo, S. R. Wang, and M. X. Fang, The pyrolytic degradation of woodderived lignin from pulping process, Bioresour. Technol, vol.101, issue.15, pp.6136-6146, 2010.

M. F. Nonier, N. Vivas, N. Vivas-de-gaulejac, C. Absalon, P. Soulié et al., Pyrolysisgas chromatography/mass spectrometry of Quercus sp. wood: Application to structural elucidation of macromolecules and aromatic profiles of different species, J. Anal. Appl. Pyrolysis, vol.75, issue.2, pp.181-193, 2006.

X. Deglise and A. Donnot, Techniques de l'ingénieur, LERMAB -Faculté des Sciences de Nancy, TEchnique de l'ingénieur BE 8535, 2008.

A. V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass Bioenergy, vol.38, pp.68-94, 2012.

S. Li, S. Xu, S. Liu, C. Yang, and Q. Lu, Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas, Fuel Process. Technol, vol.85, issue.8, pp.1201-1211, 2004.

R. Zanzi, K. Sjöström, and E. Björnbom, Rapid pyrolysis of agricultural residues at high temperature, Biomass Bioenergy, vol.23, issue.5, pp.357-366, 2002.

H. S. Heo, Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens, Bioresour. Technol, vol.101, issue.10, pp.3672-3677, 2010.

H. S. Choi, Y. S. Choi, and H. C. Park, Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions, Renew. Energy, vol.42, pp.131-135, 2012.

A. Bridgwater, Progress in Thermochemical Biomass Conversion, 2008.

G. Antonini and M. Hazi, PYROLYSE -GAZEIFICATION DE DECHETS SOLIDES Partie 1 : Etat de l'art des procédés existants -Faisabilité de traitement d'un déchet par Pyrolyse ou Gazéification, 2004.

Y. Feng and D. Meier, Extraction of value-added chemicals from pyrolysis liquids with supercritical carbon dioxide, J. Anal. Appl. Pyrolysis, vol.113, pp.174-185, 2015.

M. Garcia-perez, J. Shen, X. S. Wang, and C. Li, Production and fuel properties of fast pyrolysis oil/bio-diesel blends, Fuel Process. Technol, vol.91, issue.3, pp.296-305, 2010.

A. Oasmaa and D. Meier, Norms and standards for fast pyrolysis liquids: 1. Round robin test, J. Anal. Appl. Pyrolysis, vol.73, issue.2, pp.323-334, 2005.

B. Scholze and D. Meier, Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups, J. Anal. Appl. Pyrolysis, vol.60, issue.1, pp.41-54, 2001.

J. Piskorz, P. Majerski, D. Radlein, A. Vladars-usas, and D. S. Scott, Flash pyrolysis of cellulose for production of anhydro-oligomers, J. Anal. Appl. Pyrolysis, vol.56, issue.2, pp.145-166, 2000.

R. Bayerbach and D. Meier, Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV: Structure elucidation of oligomeric molecules, J. Anal. Appl. Pyrolysis, vol.85, issue.1, pp.98-107, 2009.

, Developments in Thermochemical Biomass Conversion, vol.1, 1997.

D. C. Elliott, Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust, Energy Fuels, vol.26, issue.6, pp.3891-3896, 2012.

P. M. Mortensen, J. Grunwaldt, P. A. Jensen, K. G. Knudsen, and A. D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels, Appl. Catal. Gen, vol.407, issue.1, pp.1-19, 2011.

S. Eibner, Pyrolyse flash de biomasse lignocellulosique : comment catalyser la désoxygénation au cours des mécanismes primaires et secondaires ?, Doctorat, 2015.

J. Leppävuori and P. Koukkari, BIOSCEN -Modeling Biorefinery Scenarios, 2012.

M. Detcheberry, Valorisation chimique des condensats issus de la torréfaction du bois : Modélisation thermodynamique, conception et analyse de procédé, INP Toulouse, 2015.

C. R. Vitasari, G. W. Meindersma, and A. B. De-haan, Conceptual process design of an integrated bio-based acetic acid, glycolaldehyde, and acetol production in a pyrolysis oil-based biorefinery, Chem. Eng. Res. Des, vol.95, pp.133-143, 2015.

V. Chiodo, G. Zafarana, S. Maisano, S. Freni, and F. Urbani, Pyrolysis of different biomass: Direct comparison among Posidonia Oceanica, Lacustrine Alga and White-Pine, Fuel, vol.164, pp.220-227, 2016.

F. Y. Choi, P. A. Johnston, R. C. Brown, B. H. Shanks, K. Lee et al., Erratum to 'Detailed characterization of red oak-derived pyrolysis oil: Integrated use of, J. Anal. Appl. Pyrolysis, vol.110, pp.401-402, 2014.

X. Guo, S. Wang, Z. Guo, Q. Liu, Z. Luo et al., Pyrolysis characteristics of bio-oil fractions separated by molecular distillation, Appl. Energy, vol.87, issue.9, pp.2892-2898, 2010.

K. H. Kim, X. Bai, M. Rover, and R. C. Brown, The effect of low-concentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor, Fuel, vol.124, pp.49-56, 2014.

G. Ningbo, L. Baoling, L. Aimin, and L. Juanjuan, Continuous pyrolysis of pine sawdust at different pyrolysis temperatures and solid residence times, J. Anal. Appl. Pyrolysis, vol.114, pp.155-162, 2015.

H. J. Park, Y. Park, and J. S. Kim, Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis, Fuel Process. Technol, vol.89, issue.8, pp.797-802, 2008.

D. Hudebine and J. Joly, Modélisation cinétique des procédés de raffinage, Oil Gas Sci. Technol. -IFP Energ. Nouv, vol.66, issue.3, pp.339-342, 2011.

, Sample Chemical Market Reports -Global Chemical Price, p.7, 2018.

M. H. Mohamad, R. Awang, W. M. Yunus, M. H. Mohamad, R. Awang et al., A Review of Acetol: Application and Production, Am. J. Appl. Sci, vol.8, issue.11, pp.1135-1139, 2011.

S. Kumar, Furfural Market Size, Growth To 2020, 2015.

J. A. Maga and I. Katz, Simple phenol and phenolic compounds in food flavor, C R C Crit. Rev. Food Sci. Nutr, vol.10, issue.4, pp.323-372, 1978.

, Vanillin Pharmaceutical, Chem. Eng. News Arch, vol.34, issue.40, p.4778, 1956.

J. E. Holladay, J. F. White, J. J. Bozell, and D. Johnson, Top Value-Added Chemicals from Biomass -Volume II-Results of Screening for Potential Candidates from Biorefinery Lignin, Pacific Northwest National Lab. (PNNL), p.16983, 2007.

A. Effendi, H. Gerhauser, and A. V. Bridgwater, Production of renewable phenolic resins by thermochemical conversion of biomass: A review, Renew. Sustain. Energy Rev, vol.12, issue.8, pp.2092-2116, 2008.

E. E. Anthonia and H. S. Philip, An overview of the applications of furfural and its derivatives, Int. J. Adv. Chem, vol.3, issue.2, pp.42-47, 2015.

C. R. Vitasari, G. W. Meindersma, and A. B. De-haan, Water extraction of pyrolysis oil: The first step for the recovery of renewable chemicals, Bioresour. Technol, vol.102, issue.14, pp.7204-7210, 2011.

A. S. Foust, Principles of Unit Operations, 1960.

R. Perry and D. Green, Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Education, 2008.

X. Zhang, G. Yang, H. Jiang, W. Liu, and H. Ding, Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis, Sci. Rep, vol.3, 2013.

W. L. Mccabe, J. C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, 2005.

. Kaur, Adsorption isotherms, 2017.

T. Clifford, Fundamentals of Supercritical Fluids, 1989.

G. Lumia, Utilisation du CO2 supercritique comme solvant de substitution | Techniques de l'Ingénieur, p.30, 2002.

J. L. Martinez, Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds, 2007.

J. F. Brennecke and C. A. Eckert, Phase equilibria for supercritical fluid process design, AIChE J, vol.35, issue.9, pp.1409-1427, 1989.

Y. Feng and D. Meier, Extraction of value-added chemicals from pyrolysis liquids with supercritical carbon dioxide, J. Anal. Appl. Pyrolysis, vol.113, pp.174-185, 2015.

W. Jinghua, Separation of Biomass Pyrolysis Oil by Supercritical CO2 Extraction, Smart Grid Renew. Energy, vol.2010, 2010.

S. Naik, V. V. Goud, P. K. Rout, and A. K. Dalai, Supercritical CO2 fractionation of bio-oil produced from wheat-hemlock biomass, Bioresour. Technol, vol.101, issue.19, pp.7605-7613, 2010.

A. Boudehen-boiveaut, Extraction par solvant de l'acide acétique et d'autres solutés du pyroligneux issu de la carbonisation du bois, Génie Chimique, Mines ParisTech, 1983.

M. Detcheberry, Valorisation chimique des condensats issus de la torréfaction du bois : Modélisation thermodynamique, conception et analyse de procédé, INP Toulouse, 2015.

X. Li, Ionic liquids in separations: applications for pyrolysis oil and emulsion systems, 2017.

C. R. Vitasari, G. W. Meindersma, and A. B. De-haan, Conceptual process design of an integrated bio-based acetic acid, glycolaldehyde, and acetol production in a pyrolysis oil-based biorefinery, Chem. Eng. Res. Des, vol.95, pp.133-143, 2015.

D. Mohan, P. Charles, U. , and P. H. Steele, Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review, Energy Fuels, vol.20, issue.3, pp.848-889, 2006.

C. R. Vitasari, G. W. Meindersma, and A. B. De-haan, Water extraction of pyrolysis oil: The first step for the recovery of renewable chemicals, Bioresour. Technol, vol.102, issue.14, pp.7204-7210, 2011.

C. R. Vitasari, G. W. Meindersma, and A. B. De-haan, Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock, Green Chem, vol.14, issue.2, pp.321-325, 2012.

C. R. Vitasari, G. W. Meindersma, and A. B. De-haan, Glycolaldehyde co-extraction during the reactive extraction of acetic acid with tri-n-octylamine/2-ethyl-1-hexanol from a wood-based pyrolysis oil-derived aqueous phase, Sep. Purif. Technol, vol.95, pp.39-43, 2012.

L. Cesari, Extraction de composés phénoliques à partir d'une bio-huile de lignine, 2017.

T. Ba, A. Chaala, M. Garcia-perez, D. Rodrigue, and C. Roy, Colloidal Properties of Bio-oils Obtained by Vacuum Pyrolysis of Softwood Bark. Characterization of Water-Soluble and Water-Insoluble Fractions, Energy Fuels, vol.18, issue.3, pp.704-712, 2004.

J. N. Murwanashyaka, H. Pakdel, and C. Roy, Seperation of syringol from birch wood-derived vacuum pyrolysis oil, Sep. Purif. Technol, vol.24, issue.1-2, pp.155-165, 2001.

H. Solar and E. R. Chum, Biomass pyrolysis oil feedstocks for phenolic adhesives, ACS Symp. Ser. -Am. Chem. Soc. USA, 1989.

K. Sipilä, E. Kuoppala, L. Fagernäs, and A. Oasmaa, Characterization of biomass-based flash pyrolysis oils, Biomass Bioenergy, vol.14, issue.2, pp.103-113, 1998.

S. Conrad, T. Schulzke, and J. Westermeyer, IMPROVEMENT OF PYROLYSIS LIQUID USABILITY BY STAGED CONDENSATION OF PYROLYSIS VAPOURS FROM ABLATIVE FLASH PYROLYSIS OF BARLEY STRAW, 2015.

R. J. Westerhof, Fractional Condensation of Biomass Pyrolysis Vapors, Energy Fuels, vol.25, issue.4, pp.1817-1829, 2011.

R. Turton, R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, Analysis, Synthesis, and Design of Chemichal Processes -Second Edition, 2003.

, GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS (GHS) -4th revised edition, United Nations, 2011.

&. Sigma and -. France, Sigma-Aldrich

A. Klamt and . Cosmo-rs, From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, 2005.

J. Li and P. Paricaud, Application of the Conduct-like Screening Models for Real Solvent and Segment Activity Coefficient for the Predictions of Partition Coefficients and Vapor-Liquid and Liquid-Liquid Equilibria of Bio-oil-Related Mixtures, Energy Fuels, vol.26, issue.6, pp.3756-3768, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01153351

M. Yiannourakou, P. Ungerer, B. Leblanc, and P. Saxe, Monte Carlo Simulation of Fluid Phase Equilibria and of Adsorption In Microporous Materials : Investigation of Binary and Multicomponent Systems of Industrial Interest, 2011.

C. M. Hansen, Hansen Solubility Parameters: A User's Handbook, Second Edition, 2007.

A. Fredenslund, R. L. Jones, and J. M. Prausnitz, Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE J, vol.21, issue.6, pp.1086-1099

J. Gmehling, J. Li, and M. Schiller, A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties, vol.32, 1993.

T. Magnussen, P. Rasmussen, and A. Fredenslund, UNIFAC parameter table for prediction of liquid-liquid equilibriums, Ind. Eng. Chem. Process Des. Dev, vol.20, issue.2, pp.331-339, 1981.

E. Ince and S. I. Kirbaslar, Liquid-Liquid equilibria of the water-acetic acid-butyl acetate system, Braz. J. Chem. Eng, vol.19, issue.2, pp.243-254, 2002.

A. S. Aljimaz, M. S. Fandary, J. A. Alkandary, and M. A. Fahim, Liquid?Liquid Equilibria of the Ternary System Water + Acetic Acid + 1-Heptanol, J. Chem. Eng. Data, vol.45, issue.2, pp.301-303, 2000.

U. Dramur and B. Tatli, Liquid-liquid equilibria of water + acetic acid + phthalic esters (dimethyl phthalate and diethyl phthalate) ternaries, J. Chem. Eng. Data, vol.38, issue.1, pp.23-25, 1993.

A. Colombo, P. Battilana, V. Ragaini, C. L. Bianchi, and G. Carvoli, Liquid?Liquid Equilibria of the Ternary Systems Water + Acetic Acid + Ethyl Acetate and Water + Acetic Acid + Isophorone (3,5,5-Trimethyl-2-cyclohexen-1-one), J. Chem. Eng. Data, vol.44, issue.1, pp.35-39, 1999.

K. Hlavatý and J. Linek, Liquid-liquid equilibria in four ternary acetic acid-organic solvent-water systems at 24.6 o C, Collect. Czechoslov. Chem. Commun, vol.38, issue.2, pp.374-378, 1973.

A. A. Sayar, B. Tatli, and U. Dramur, Liquid-liquid equilibria of the water + acetic acid + cyclohexyl acetate ternary, J. Chem. Eng. Data, vol.36, issue.4, pp.378-382, 1991.

M. A. Fahim, S. A. Al-muhtaseb, and I. M. Al-nashef, Phase Equilibria of the Ternary System Water + Acetic Acid + 1-Pentanol, J. Chem. Eng. Data, vol.41, issue.3, pp.562-565, 1996.

S. A. Al-muhtaseb and M. A. Fahim, Phase equilibria of the ternary system water/acetic acid/2-pentanol, Fluid Phase Equilibria, vol.123, issue.1, pp.189-203, 1996.

J. R. Gonzalez, E. A. Macedo, M. E. Soares, and A. G. Medina, Liquid-liquid equilibria for ternary systems of water-phenol and solvents: data and representation with models, Fluid Phase Equilibria, vol.26, issue.3, pp.289-302, 1986.

S. Takahashi, K. Otake, T. Takahashi, and A. Iguchi, Liquid-liquid equilibria of phenol-watersolvent system, KAGAKU KOGAKU RONBUNSHU, vol.14, pp.531-535, 1988.

E. Auger, C. Coquelet, A. Valtz, M. Nala, P. Naidoo et al., Equilibrium data and GC-PC SAFT predictions for furanic extraction, Fluid Phase Equilibria, vol.430, pp.57-66, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371510

I. Lai, S. Hung, W. Hung, C. Yu, M. Lee et al., Design and control of reactive distillation for ethyl and isopropyl acetates production with azeotropic feeds, Chem. Eng. Sci, vol.62, issue.3, pp.878-898, 2007.

T. Jeli?ski and P. Cysewski, Application of a computational model of natural deep eutectic solvents utilizing the COSMO-RS approach for screening of solvents with high solubility of rutin, J. Mol. Model, vol.24, issue.7, p.180, 2018.

H. Cheng, C. Liu, J. Zhang, L. Chen, B. Zhang et al., Screening deep eutectic solvents for extractive desulfurization of fuel based on COSMO-RS model, Chem. Eng. Process. -Process Intensif, vol.125, pp.246-252, 2018.

R. Gani, C. Jiménez-gonzález, and D. J. Constable, Method for selection of solvents for promotion of organic reactions, Comput. Chem. Eng, vol.29, issue.7, pp.1661-1676, 2005.

R. H. Perry, Perry's Chemical Engineers' Handbook 7Th Edition, Mcgraw Hill, 1999.

D. F. Othmer and P. E. Tobias, Liquid -Liquid Extraction Data -Toluene and Acetaldehyde Systems, Ind. Eng. Chem, vol.34, issue.6, pp.690-692, 1942.

C. Stephan, M. Dicko, P. Stringari, and C. Coquelet, Liquid-liquid equilibria of water + solutes (acetic acid/ acetol/furfural/guaiacol/methanol/phenol/propanal) + solvents (isopropyl acetate/toluene) ternary systems for pyrolysis oil fractionation, Fluid Phase Equilibria, vol.468, pp.49-57, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01797952

L. Cesari, S. Namysl, L. Canabady-rochelle, and F. Mutelet, Phase equilibria of phenolic compounds in water or ethanol, Fluid Phase Equilibria, vol.453, pp.58-66, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01934441

H. C. Ness, S. M. Byer, and R. E. Gibbs, Vapor-Liquid equilibrium: Part I. An appraisal of data reduction methods, AIChE J, vol.19, issue.2, pp.238-244

G. M. Herington, Tests for Consistency of Experimental Isobaric Vapour-Liquid Equilibrium Data, J Inst Pet, vol.37, pp.457-470, 1951.

J. D. and A. L. Mühlbauer, Phase Equilibria: Measurement and Computation, 1998.

A. Kiss, Distillation | Azeotropic Distillation, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2013.

R. H. Perry, Perry's Chemical Engineers' Handbook 7Th Edition, Mcgraw Hill, 1999.

C. Coquelet and D. Ramjugernath, Phase Diagrams in Chemical Engineering: Application to Distillation and Solvent Extraction, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00877007

G. M. Wilson, Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing, J. Am. Chem. Soc, vol.86, issue.2, pp.127-130, 1964.

H. Renon and J. M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J, vol.14, issue.1, pp.135-144, 1968.

D. S. Abrams and J. M. Prausnitz, Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J, vol.21, issue.1, pp.116-128, 1975.

A. Fredenslund, R. L. Jones, and J. M. Prausnitz, Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE J, vol.21, issue.6, pp.1086-1099

J. Gmehling, J. Li, and M. Schiller, A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties, vol.32, 1993.

C. Black, Vapor Phase Imperfections in Vapor-Liquid Equilibria. Semiempirical Equation, Ind. Eng. Chem, vol.50, issue.3, pp.391-402, 1958.

J. P. O'connell and J. M. Prausnitz, Empirical Correlation of Second Virial Coefficients for Vapor-Liquid Equilibrium Calculations, Ind. Eng. Chem. Process Des. Dev, vol.6, issue.2, pp.245-250, 1967.

K. Nothnagel, D. S. Abrams, and J. M. Prausnitz, Generalized Correlation for Fugacity Coefficients in Mixtures at Moderate Pressures. Application of Chemical Theory of Vapor Imperfections, Ind. Eng. Chem. Process Des. Dev, vol.12, issue.1, pp.25-35, 1973.

C. Tsonopoulos, An empirical correlation of second virial coefficients, AIChE J, vol.20, issue.2, pp.263-272, 1974.

J. G. Hayden and J. P. O'connell, A Generalized Method for Predicting Second Virial Coefficients, Ind. Eng. Chem. Process Des. Dev, vol.14, issue.3, pp.209-216, 1975.

R. M. Stephenson and J. Stuart, Mutual binary solubilities: water-alcohols and water-esters, J. Chem. Eng. Data, vol.31, p.56, 1986.

K. Hlavatý and J. Linek, Liquid-liquid equilibria in four ternary acetic acid-organic solvent-water systems at 24.6 o C, Collect. Czechoslov. Chem. Commun, vol.38, issue.2, pp.374-378, 1973.

R. M. Stephenson, Mutual solubility of water and aldehydes, J. Chem. Eng. Data, vol.38, pp.630-633, 1993.

L. Cesari, S. Namysl, L. Canabady-rochelle, and F. Mutelet, Phase equilibria of phenolic compounds in water or ethanol, Fluid Phase Equilibria, vol.453, pp.58-66, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01934441

L. V. Erichsen and E. Dobbert, The reciprocal relation of solubility of alkylphenols and water, Brennst Chem, vol.36, pp.338-345, 1955.

J. R. Gonzalez, E. A. Macedo, M. E. Soares, and A. G. Medina, Liquid-liquid equilibria for ternary systems of water-phenol and solvents: data and representation with models, Fluid Phase Equilibria, vol.26, issue.3, pp.289-302, 1986.

R. M. Stephenson, Mutual solubilities: water-ketones, water-ethers, and water-gasolinealcohols, J. Chem. Eng. Data, vol.37, pp.80-95, 1992.

J. Saien, M. Mozafarvandi, S. Daliri, and M. Norouzi, Liquid + liquid) equilibria for the ternary (water + acetic acid + toluene) system at different temperatures: Experimental data and correlation, J. Chem. Thermodyn, vol.57, pp.76-81, 2013.

J. R. Croker and R. G. Bowrey, Liquid extraction of furfural from aqueous solution, Ind. Eng. Chem. Fundam, vol.23, issue.4, pp.480-484, 1984.

K. Tamura, Y. Chen, and T. Yamada, Ternary and Quaternary Liquid?Liquid Equilibria for Fuel Additives of the Water + Methanol + Toluene and Water + Methanol + Toluene + Methyl tert-Butyl Ether or tert-Amyl Methyl Ether Systems at 298.15 K, J. Chem. Eng. Data, vol.46, issue.6, pp.1381-1386, 2001.

K. Tochigi, T. Gotou, K. Akimoto, and K. Kojima, Measurement of Liquid-Liquid Equilibria for Phenol+Water+Toluene System, Kagaku Kogaku Ronbunshu, vol.25, issue.2, pp.338-342, 1999.

W. V. Wilding, R. Rowley, and J. Oscarson, DIPPR (R) Project 801 evaluated process design data, Fluid Phase Equilibria, pp.413-420, 1998.

M. Petitjean, E. Reyès-pérez, D. Pérez, P. Mirabel, and S. L. Calvé, Vapor Pressure Measurements of Hydroxyacetaldehyde and Hydroxyacetone in the Temperature Range (273 to 356) K, J. Chem. Eng. Data, vol.55, issue.2, pp.852-855, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02308893

, Evaluated process design data, public release documentation, 2015.

R. Haase and M. Pehlke, Thermodynamic Excess Functions for the Liquid System W ater + Acetic Acid from Calorimetric Data, Z. Für Naturforschung A, vol.32, issue.5, pp.507-510, 2014.

B. Nienhaus, U. Limbeck, R. Bölts, A. B. De-haan, S. H. Niemann et al., Vapor?Liquid Equilibria at 413.65 K and Excess Enthalpies at 323.15, 363.15, and 413.15 K for Mixtures of Benzene, Toluene, Phenol, and Benzaldehyde, J. Chem. Eng. Data, vol.43, issue.6, pp.941-948, 1998.

B. Coto, A. Cabañas, C. Pando, C. Menduiña, R. G. Rubio et al., Bulk and surface properties of the highly non-ideal associated mixtures formed by methanol and propanal, J. Chem. Soc. Faraday Trans, vol.91, issue.17, pp.2779-2787, 1995.

W. Chang, G. Guan, X. Li, and H. Yao, Isobaric Vapor?Liquid Equilibria for Water + Acetic Acid + (n-Pentyl Acetate or Isopropyl Acetate), J. Chem. Eng. Data, vol.50, issue.4, pp.1129-1133, 2005.

H. Sawistowski and P. A. Pilavakis, Vapor-liquid equilibrium with association in both phases. Multicomponent systems containing acetic acid, J. Chem. Eng. Data, vol.27, issue.1, pp.64-71, 1982.

. Références,

O. Lydia, Etude territoriale BIOVALUE 2013.pdf, 2013.

A. Tech, Aspen Icarus Reference Guide, version V9, Icarus Evaluation Engine (IEE), Aspen Technology, 2016.

H. Renon and J. M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J, vol.14, issue.1, pp.135-144, 1968.

J. G. Hayden and J. P. O'connell, A Generalized Method for Predicting Second Virial Coefficients, Ind. Eng. Chem. Process Des. Dev, vol.14, issue.3, pp.209-216, 1975.

W. V. Wilding, R. Rowley, and J. Oscarson, DIPPR (R) Project 801 evaluated process design data, Fluid Phase Equilibria, pp.413-420, 1998.

J. Gmehling, J. Li, and M. Schiller, A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties, vol.32, 1993.

F. W. Winn, New relative volatility method for distillation calculations, Pet. Refin, vol.37, issue.5, pp.216-218, 1958.

A. J. Underwood, Fractional Distillation of Multicomponent Mixtures, Ind. Eng. Chem, vol.41, issue.12, pp.2844-2847, 1949.

E. R. Gilliland, MULTICOMPONENT RECTIFICATION, Ind. Eng. Chem, vol.32, issue.8, pp.1101-1106, 1940.

E. Annexe, Conditions chromatographiques

, Cette annexe présente les conditions du GC-MS utilisées pour les mesures de coefficients de partage, Equipement GC-MS Shimadzu

, Colonne Colonne capillaire Colonne semi-polaire : ZB-1701, phenomenex Dimensions : 30m x 0, p.25

I. Split, , p.20

, Température : 280°C Gaz vecteur Hélium Pression : 99,9 kPa Débit total : 41,4 mL/min Débit : 1,5 mL/min

, Solvant Acétone

, La figure ci-dessous est issue du logiciel d'utilisation du GC-MS Shimadzu et présente le profil de température utilisé pour les analyses