4D seismic data analysis and processing for underground monitoring : time-lapse, continuous-time and real-time - PASTEL - Thèses en ligne de ParisTech Accéder directement au contenu
Thèse Année : 2019

4D seismic data analysis and processing for underground monitoring : time-lapse, continuous-time and real-time

Analyse et traitement de données sismiques 4D en continu et en temps réel pour la surveillance du sous-sol

Résumé

3D seismic reflection is widely used in the oil industry. This standard subsoil auscultation method provides information on geological structures and can be used to build reservoir models. However, the properties derived from3D (and 2D) seismic data are only static: 3D does not allow to evaluate the changes with calendar time. The addition of a temporal dimension to 3D data is obtained by repeating the measurements at several dates separated by several months or even several years. Thus, 4D seismic (time-lapse) makes it possible to measure and to analyze the changes of the subsoil in the long term. Since the 90s, this method is used worldwide at sea and on land. To carry out a much more frequent monitoring (daily), even continuous (a few hours) of the subsoil, CGG developed, in collaboration with Gazde France (now ENGIE) and Institut Français du Pétrole (now IFPEN), a solution based on buried sources and receptors: SeisMovie. SeisMovie was originally designed to monitor and map the gas front in real time during geological disposal operations. It is also used to observe the steam injection required for heavy oil production. In this thesis, we bring contributions to three challenges arising in the processing of seismic data from this system. The first one concerns the attenuation of near-surface variations caused by "ghost" waves that interfere with primary waves. The second one concerns the quantification of subsurface changes in terms of propagation velocity variation and acoustic impedance.The third one concerns real-time: the data processing must be at least as fast as the acquisition cycle (a few hours). Infact, the analysis of the data must enable the reservoir engineers to make quick decisions (stop of the injection, decreaseof the production). In a more general context, there are conceptual similarities between 3D and 4D. In 4D, the repeated acquisitions are compared with each other (or with a reference). In 3D, during acquisition, field geophysicists compare unitary shot points with each other to assess the quality of the data for decision-making (reshooting, skipping orcontinuing). Therefore, some 4D real-time tools developed during this thesis can be applied. A new approach called TeraMig for automated quality control in the field will also be presented.
La sismique réflexion 3D est largement utilisée dans l'industrie pétrolière. Cette méthode d’auscultation du sous-sol fournit des informations sur les structures géologiques et peut être utilisée pour construire des modèles de réservoir. Cependant, les propriétés dérivées des données sismiques 3D (et 2D) ne sont que statiques: elles ne permettent pas d’évaluer ce qui change avec le temps. L'ajout d'une dimension temporelle aux données 3D est obtenue par la répétition des mesures à plusieurs dates séparées de plusieurs mois voire même de plusieurs années. Ainsi, la sismique4D (time-lapse) permet d’appréhender les modifications du sous-sol sur le long terme. Depuis les années 90, cette méthode est utilisée dans le monde entier en mer et à terre. Pour réaliser une surveillance beaucoup plus fréquente (quotidienne), voire continue (quelques heures) du sous-sol, CGG a développé, en collaboration avec Gaz de France (désormais ENGIE) et l’Institut Français du Pétrole (maintenant IFPEN), une solution basée sur des sources et des récepteurs enterrés: SeisMovie. SeisMovie a été initialement conçu pour suivre et cartographier en temps-réel le front de gaz lors des opérations de stockage en couche géologique. Il est aussi utilisé pour observer l’injection de vapeur nécessaire à la production d’huile lourde. Dans cette thèse, nous apportons des contributions à trois défis qui apparaissent lors du traitement des données sismiques issues de ce système. Le premier concerne l'atténuation des variations de proche surface causées par les ondes « fantômes » qui interfèrent avec les ondes primaires. Le second concerne la quantification des modifications du sous-sol en termes de variation de vitesse de propagation et d’impédance acoustique.Le troisième concerne le temps-réel : le traitement doit être au moins aussi rapide que le cycle d’acquisition (quelques heures). En effet l’analyse des données doit permettre aux ingénieurs réservoirs de prendre rapidement des décisions (arrêt de l’injection, diminution de la production). Dans un cadre plus général, il existe des similitudes conceptuelles entre la 3D et la 4D. En 4D, ce sont les acquisitions répétées qui sont comparées entre elles (ou avec une référence). En3D, pendant l’acquisition, les géophysiciens de terrain comparent les points de tir unitaires entre eux afin d’évaluer la qualité des données pour prendre des décisions (reprendre le point de tir, continuer). Dès lors, certains outils 4D temps réel développés pendant cette thèse peuvent être appliqués. Ainsi une toute nouvelle approche appelée TeraMig pour le contrôle qualité automatisé sur le terrain sera également présentée.
Fichier principal
Vignette du fichier
2019PSLEM023_archivage.pdf (73.9 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02466422 , version 1 (04-02-2020)

Identifiants

  • HAL Id : tel-02466422 , version 1

Citer

Julien Cotton. 4D seismic data analysis and processing for underground monitoring : time-lapse, continuous-time and real-time. Environmental Engineering. Université Paris sciences et lettres, 2019. English. ⟨NNT : 2019PSLEM023⟩. ⟨tel-02466422⟩
354 Consultations
73 Téléchargements

Partager

Gmail Facebook X LinkedIn More