T. Wohlers, Wohlers Report 2018. 3D Printing and Additive Manufacturing State of the Industry, 2018.

G. J. Peacock, Method of making composition horseshoes, vol.746143, 1903.

H. Kodama, Automatic method for fabricating a three-dimensional plastic model with photohardening polymer, Rev. Sci. Instrum, vol.52, pp.1770-1773, 1981.

J. André, A. L. Mehauté, and O. D. Witte, Dispositif pour réaliser un modèle de pièce industrielle, p.2567668, 1984.

C. W. Hull, Apparatus for production of three-dimensional objects by stereolithography, vol.4575330, 1984.

E. Eos and . History, , 2019.

O. Optomec and . Overview, , 2019.

. Arcam, Arcam history, 2019.

I. and /. A. , 52900-15, Standard Terminology for Additive Manufacturing -General Principles -Terminology, 2015.

M. Suard, P. Lhuissier, R. Dendievel, J. Blandin, F. Vignat et al., Towards stiffness prediction of cellular structures made by electron beam melting (EBM), Powder Metall, vol.57, pp.190-195, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00997282

F. Chalon, R. Leroy, A. Morandeau, S. Milton, and A. , Thermal study during milling of Ti6Al4V produced by Electron Beam Melting (EBM) process, J. Manuf. Process, vol.38, pp.256-265, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02019253

O. O. Salman, C. Gammer, A. K. Chaubey, S. Eckert, and J. Scudino, Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting, Mater. Sci. Eng. A, vol.748, pp.205-212, 2019.

I. Laser and R. Laser, , 2019.

T. Gualtieri and A. Bandyopadhyay, Additive manufacturing of compositionally gradient metalceramic structures: Stainless steel to vanadium carbide, Mater. Des, vol.139, pp.419-428, 2018.

K. Singh, G. Singh, and H. Singh, Review on friction stir welding of magnesium alloys, J. Magnes. Alloy, vol.6, pp.399-416, 2018.

A. Bournias-varotsis, R. J. Friel, R. A. Harris, and D. S. Engstrøm, Ultrasonic Additive Manufacturing as a form-then-bond process for embedding electronic circuitry into a metal matrix, J. Manuf. Process, vol.32, pp.664-675, 2018.

I. Tabernero, A. Paskual, P. Álvarez, and A. Suárez, Study on Arc Welding Processes for High Deposition Rate Additive Manufacturing, Procedia CIRP, vol.68, pp.358-362, 2018.

V. Gunenthiram, Analyse expérimentale de l ' interaction laser -lit de poudre -bain liquide, École Nationale Supérieure des Arts et Métiers, 2018.

M. Yan and P. Yu, An Overview of Densification, Microstructure andMechanical Property of Additively Manufactured Ti-6Al-4V -Comparison among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder, Sinter. Tech. Mater, 2015.

X. Ding, Y. Koizumi, D. Wei, and A. Chiba, Effect of process parameters on melt pool geometry and microstructure development for electron beam melting of IN718: a systematic single bead analysis study, Addit. Manuf, vol.26, pp.215-226, 2018.

M. Gharbi, Etats de surface de pièces métalliques obtenues en Fabrication Directe par Projection Laser (FDPL) : compréhension physique et voies d'amélioration, École Nationale Supérieure d'Arts et Métiers, 2013.

I. Koutiri, E. Pessard, P. Peyre, O. Amlou, and T. D. Terris, Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts, J. Mater. Process. Tech, vol.255, pp.536-546, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01826611

C. Elangeswaran, A. Cutolo, G. K. Muralidharan, F. Berto, B. Van-hooreweder et al., Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion, Int. J. Fatigue, vol.123, pp.31-39, 2019.

K. S. Chan, M. Koike, R. L. Mason, and T. Okabe, Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.44, pp.1010-1022, 2013.

V. Chastand, P. Quaegebeur, W. Maia, and E. Charkaluk, Comparative study of fatigue properties of Ti-6Al-4V specimens built by electron beam melting (EBM) and selective laser melting (SLM), Mater. Charact, vol.143, pp.76-81, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01828928

E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel, J. Mater. Process. Technol, vol.249, pp.255-263, 2017.

T. Morita, C. Tsuda, and T. Nakano, Influences of scanning speed and short-time heat treatment on fundamental properties of Ti-6Al-4V alloy produced by EBM method, Mater. Sci. Eng. A, vol.704, pp.246-251, 2017.

B. E. Carroll, T. A. Palmer, and A. M. Beese, Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing, Acta Mater, vol.87, pp.309-320, 2015.

J. Ge, Y. Lei, T. Jin, Y. Chen, T. Ma et al., Wire-arc additive manufacturing H13 part: 3D pore distribution, microstructural evolution, and mechanical performances, J. Alloys Compd, vol.783, pp.145-155, 2018.

. Optomec, LENS, vol.860, 2019.

. Sciaky, Electron Beam Additive Manufacturing, 2019.

R. Rashid, S. H. Masood, D. Ruan, S. Palanisamy, R. A. Rahman-rashid et al., Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy, Addit. Manuf, vol.22, pp.426-439, 2018.

H. Rao, S. Giet, K. Yang, X. Wu, and C. H. Davies, The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting, Mater. Des, vol.109, pp.334-346, 2016.

M. Zhang, C. Sun, X. Zhang, J. Wei, D. Hardacre et al., High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L : Fracture behaviour and stress-based modelling, Int. J. Fatigue, vol.121, pp.252-264, 2019.

H. W. Lee, K. H. Jung, S. K. Hwang, S. H. Kang, and D. K. Kim, Microstructure and mechanical anisotropy of CoCrW alloy processed by selective laser melting, Mater. Sci. Eng. A, vol.749, pp.65-73, 2019.

J. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs et al., Part and material properties in selective laser melting of metals, Int. Symp. Electromachining, pp.1-12, 2010.

M. Rombouts, Selective laser sintering/melting of iron-based powders, 2006.

A. Boschetto, L. Bottini, and F. Veniali, Roughness modeling of AlSi10Mg parts fabricated by selective laser melting, J. Mater. Process. Technol, pp.154-163, 2017.

K. L. Terrassa, J. C. Haley, B. E. Macdonald, and J. M. Schoenung, Reuse of powder feedstock for directed energy deposition, Powder Technol, vol.338, pp.819-829, 2018.

H. P. Tang, M. Qian, N. Liu, X. Z. Zhang, G. Y. Yang et al., Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting, Jom, vol.67, pp.555-563, 2015.

M. J. Heiden, L. A. Deibler, J. M. Rodelas, J. R. Koepke, D. J. Tung et al., Evolution of 316L stainless steel feedstock due to laser powder bed fusion process, Addit. Manuf, vol.25, pp.84-103, 2019.

W. Steen and J. Mazumder, Laser material processing, 2010.

J. C. Ion, Laser Processing of Engineering Materials, 2005

S. Katayama, Handbook of Laser Welding Technologies, 2013.

R. Fabbro, Melt pool and keyhole behaviour analysis for deep penetration laser welding, J. Phys. D. Appl. Phys, vol.43, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569740

D. Bäuerle, Laser Processing and Chemistry, 2011.

J. Metelkova, Y. Kinds, K. Kempen, C. De-formanoir, and A. Witvrouw, On the in fl uence of laser defocusing in Selective Laser Melting of 316L, Addit. Manuf, vol.23, pp.161-169, 2018.

R. Fabbro, P. Peyre, C. Frederic, and M. Schneider, Analysis and possible estimation of keyhole depths evolution using laser parameters and material properties, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01824471

T. ,

D. L. Chawla, R. C. Graff, G. L. Borg, D. P. Bordner, D. Weber et al., THERMOPHYSICAL PROPERTIES OF MIXED OXIDE FUEL AND STAINLESS STEEL, Nucl. Eng. Des, vol.67, pp.57-74, 1981.

W. E. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. W. Gibbs et al., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol, vol.214, pp.2915-2925, 2014.

D. B. Hann, J. Iammi, and J. Folkes, A simple methodology for predicting laser-weld properties from material and laser parameters, J. Phys. D. Appl. Phys, vol.44, 2011.

S. Katayama, N. Seto, J. Kim, and A. Matsunawa, Formation Mechanism and Reduction Method of Porosity in Laser Welding of Stainless Steel, ICALEO® '97 Proc. Laser Mater. Process. Conf, pp.83-92, 1997.

A. A. Martin, N. P. Calta, J. A. Hammons, S. A. Khairallah, M. H. Nielsen et al., Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging, Mater. Today Adv, vol.1, p.100002, 2019.

S. Lu, H. Fujii, and K. Nogi, Marangoni convection and weld shape variations in Ar-O2 and Ar-CO2 shielded GTA welding, Mater. Sci. Eng. A, vol.380, pp.290-297, 2004.

W. Pitscheneder, T. Debroy, R. Mundra, and R. Ebner, Role of Sulfur and Processing Variables on the Temporal Evolution of Weld Pool Geometry during Multikilowatt Laser Beam Welding of Steels ~ L a ' s / o r B ~ Conducti Mode on, Weld. J, 1996.

Z. Li, K. Mukai, M. Zeze, and K. C. Mills, Determination of the surface tension of liquid stainless steel, J. Mater. Sci, vol.40, pp.2191-2195, 2005.

K. C. Mills, Measurement and estimation of physical properties of metals at high temperatures, Fundam. Metall, pp.109-177, 2005.

J. Chapuis, Une approche pour l'optimisation des opérations de soudage à l'arc, 2011.

S. R. Lord-rayleigh, On the Instability of a Cylinder of Viscous Liquid under Capillary Force, Philos. Mag, vol.34, pp.145-154, 1892.

P. S. Wei, The Physics of Weld Bead Defects, 2012.

R. Fabbro, S. Slimani, F. Coste, and F. Briand, Study of keyhole behaviour for full penetration Nd-Yag CW laser welding, J. Phys. D. Appl. Phys, vol.38, pp.1881-1887, 2005.

A. Haboudou, Caractérisation, modélisation et maîtrise des porosités créées lors du soudage laser Nd-YAG d'alliages d'aluminium, 2003.

A. V. Gusarov and I. Smurov, Modeling the interaction of laser radiation with powder bed at selective laser melting, Phys. Procedia, vol.5, pp.381-394, 2010.

S. A. Khairallah and A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol, vol.214, pp.2627-2636, 2014.

V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, F. Coste et al., Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel, J. Laser Appl, vol.29, p.22303, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01664637

P. Bidare, I. Bitharas, R. M. Ward, M. M. Attallah, and A. J. Moore, Fluid and particle dynamics in laser powder bed fusion, Acta Mater, vol.142, pp.107-120, 2018.

M. J. Matthews, G. Guss, S. A. Khairallah, A. M. Rubenchik, P. J. Depond et al., Denudation of metal powder layers in laser powder bed fusion processes, Acta Mater, vol.114, pp.33-42, 2016.

U. Bertoli, G. Guss, S. Wu, M. J. Matthews, and J. M. Schoenung, In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing, Mater. Des, vol.135, pp.385-396, 2017.

V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, F. Coste et al., Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process, J. Mater. Process. Technol, vol.251, pp.376-386, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01825515

D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang et al., Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties, Mater. Des, vol.117, pp.121-130, 2017.

A. Laohaprapanon, P. Jeamwatthanachai, M. Wongcumchang, N. Chantarapanich, S. Chantaweroad et al., Optimal Scanning Condition of Selective Laser Melting Processing with Stainless Steel 316L Powder, Adv. Mater. Res, pp.816-820, 2011.

I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov, Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder, J. Mater. Process. Technol, vol.213, pp.606-613, 2013.

C. Li, Y. B. Guo, and J. B. Zhao, Interfacial phenomena and characteristics between the deposited material and substrate in selective laser melting Inconel 625, J. Mater. Process. Technol, vol.243, pp.269-281, 2017.

N. K. Tolochko, S. E. Mozzharov, I. A. Yadroitsev, T. Laoui, L. Froyen et al., Balling processes during selective laser treatment of powders, Rapid Prototyp. J, vol.10, pp.78-87, 2004.

R. Fabbro, M. Dal, P. Peyre, F. Coste, M. Schneider et al., Gunenthiram, parameters and material properties Analysis and possible estimation of keyhole depths evolution , using laser operating parameters and material properties, p.32410, 2018.

W. Shi, Y. Liu, X. Shi, Y. Hou, P. Wang et al., Beam diameter dependence of performance in thick-layer and high-power selective laser melting of Ti-6Al-4V, Materials (Basel), vol.11, 2018.

L. E. Criales, Y. M. Ar?soy, A. Donmez, T. Özel, B. Lane et al., Laser powder bed fusion of nickel alloy 625: Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis, Int. J. Mach. Tools Manuf, vol.121, pp.22-36, 2017.

N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, and C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manuf, vol.1, pp.77-86, 2014.

Z. Dong, Y. Liu, W. Wen, J. Ge, and J. Liang, Effect of Hatch Spacing on Melt Pool and As-built Quality During Selective Laser Melting of Stainless Steel: Modeling and Experimental Approaches, vol.12, p.50, 2018.

W. Di, Y. Yongqiang, S. Xubin, and C. Yonghua, Study on energy input and its influences on singletrack,multi-track, and multi-layer in SLM, Int. J. Adv. Manuf. Technol, vol.58, pp.1189-1199, 2012.

C. Qiu, C. Panwisawas, M. Ward, H. C. Basoalto, J. W. Brooks et al., On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Mater, vol.96, pp.72-79, 2015.

B. Vandenbroucke and J. P. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyp, J, vol.13, pp.196-203, 2007.

J. Choi, G. Shin, M. Brochu, K. Kim, C. Lee et al., Densification Behavior of 316L Stainless Steel Parts Fabricated by Selective Laser Melting by Variation in Laser Energy Density, Mater. Trans, vol.57, pp.1952-1959, 2016.

A. M. Rubenchik, W. E. King, and S. S. Wu, Scaling laws for the additive manufacturing, J. Mater. Process. Technol, vol.257, pp.234-243, 2018.

U. Bertoli, A. J. Wolfer, M. J. Matthews, J. P. Delplanque, and J. M. Schoenung, On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting, Mater. Des, vol.113, pp.331-340, 2017.

A. B. Spierings and G. Levy, Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades, Solid Free, Fabr. Proc, pp.342-353, 2009.

M. Tang, P. C. Pistorius, and J. L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Addit. Manuf, vol.14, pp.39-48, 2017.

A. Kudzal, B. Mcwilliams, C. Hofmeister, F. Kellogg, J. Yu et al., Effect of scan pattern on the microstructure and mechanical properties of Powder Bed Fusion additive manufactured 17-4 stainless steel, Mater. Des, vol.133, pp.205-215, 2017.

J. Song, W. Wu, L. Zhang, B. He, L. Lu et al., Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting, Optik (Stuttg), vol.170, pp.342-352, 2018.

M. F. Zaeh and G. Branner, Investigations on residual stresses and deformations in selective laser melting, Prod. Eng, vol.4, pp.35-45, 2010.

W. Woo, D. K. Kim, E. J. Kingston, V. Luzin, F. Salvemini et al., Effect of interlayers and scanning strategies on through-thickness residual stress distributions in additive manufactured ferritic-austenitic steel structure, Mater. Sci. Eng. A, vol.744, pp.618-629, 2019.

B. Mcwilliams, B. Pramanik, A. Kudzal, and J. Taggart-scarff, High strain rate compressive deformation behavior of an additively manufactured stainless steel, Addit. Manuf, vol.24, pp.432-439, 2018.

S. Catchpole-smith, N. Aboulkhair, L. Parry, C. Tuck, I. A. Ashcroft et al., Fractal scan strategies for selective laser melting of 'unweldable' nickel superalloys, Addit. Manuf, vol.15, pp.113-122, 2017.

M. Pothen, K. Winands, and F. Klocke, Compensation of scanner based inertia for laser structuring processes, vol.29, pp.1-8, 2017.

A. M. Mancisidor, F. Garciandia, M. Sebastian, P. Alvarez, J. Diaz et al., Reduction of the residual porosity in parts manufactured by selective laser melting using skywriting and high focus offset strategies, Phys. Procedia, vol.83, pp.864-873, 2016.

L. N. Carter, C. Martin, P. J. Withers, and M. M. Attallah, The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy, J. Alloys Compd, vol.615, pp.338-347, 2014.

C. M. Allen, B. Boardman, and . Handbook, Properties and Selection : Irons , Steels , and High Performance Alloys Section : Publication Information and Contributors Publication Information and Contributors, vol.1, 2005.

. Iso/astm, Stainless steels --Chemical composition, p.61, 2014.

A. L. Schaeffler, Constitution diagram for stainless steel weld metal, Met. Prog, vol.11, p.680, 1949.

W. T. Delong, A modified phase diagram for stainless steel weld metals, Met. Prog, vol.77, pp.99-100, 1960.

W. Meiners, C. Over, K. Wissenbach, and R. Poprawe, Direct Generation of Metal Parts and Tools by Selective Laser Powder Remelting ( SLPR ), Proc. Solid Free. Fabr. Symp, pp.655-661, 1999.

R. Morgan, C. J. Sutcliffe, and W. O'neill, Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives, J. Mater. Process. Technol, vol.149, pp.616-622, 2004.

M. Wehmöller, P. H. Warnke, C. Zilian, and H. Eufinger, Implant design and production-a new approach by selective laser melting, Int. Congr. Ser, vol.1281, pp.690-695, 2005.

J. Kruth, B. Vandenbroucke, J. Van-vaerenbergh, and I. Naert, Rapid Manufacturing of Dental Prostheses by means of Selective Laser Sintering / Melting, J. Dent. Technol, pp.24-32, 2007.

L. Hao, S. Dadbakhsh, O. Seaman, and M. Felstead, Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development, J. Mater. Process. Technol, vol.209, pp.5793-5801, 2009.

J. P. Kruth, L. Froyen, J. Van-vaerenbergh, P. Mercelis, M. Rombouts et al., Selective laser melting of iron-based powder, J. Mater. Process. Technol, pp.616-622, 2004.

H. Alsalla, L. Hao, and C. Smith, Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique, Mater. Sci. Eng. A, vol.669, pp.1-6, 2016.

Z. Xiao, Y. Yang, R. Xiao, Y. Bai, C. Song et al., Evaluation of topology-optimized lattice structures manufactured via selective laser melting, Mater. Des, vol.143, pp.27-37, 2018.

P. , Pole I. de P. et d'Anticipation des M. Économiques), Études Économiques Prospective De La Fabrication Additive, 2017.

Z. Sun, X. Tan, S. B. Tor, and W. Y. Yeong, Selective laser melting of stainless steel 316L with low porosity and high build rates, Mater. Des, vol.104, pp.197-204, 2016.

C. Kamath, B. El-dasher, G. F. Gallegos, W. E. King, and A. Sisto, Density of additivelymanufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W, Int. J. Adv. Manuf. Technol, vol.74, pp.65-78, 2014.

M. L. Montero-sistiaga, M. Godino-martinez, K. Boschmans, J. P. Kruth, J. Van-humbeeck et al., Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting), Addit. Manuf, vol.23, pp.402-410, 2018.

, SLM Solutions, p.800, 2019.

F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho et al., 316L stainless steel mechanical and tribological behavior -A comparison between selective laser melting , hot pressing and conventional casting, Addit. Manuf, vol.16, pp.81-89, 2017.

R. Casati, J. Lemke, and M. Vedani, Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting, J. Mater. Sci. Technol, vol.32, pp.738-744, 2016.

P. Eriksson, Evaluation of mechanical and microstructural properties for laser powder-bed fusion 316L, 2018.

A. Röttger, K. Geenen, M. Windmann, F. Binner, and W. Theisen, Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hotisostatic pressed and cast material, Mater. Sci. Eng. A, vol.678, pp.365-376, 2016.

S. Leuders, T. Lieneke, S. Lammers, T. Tröster, and T. Niendorf, On the fatigue properties of metals manufactured by selective laser melting -The role of ductility, J. Mater. Res, vol.29, pp.1911-1919, 2014.

A. Mertens, S. Reginster, Q. Contrepois, T. Dormal, O. Lemaire et al., Lecomte-Beckers, Microstructures and Mechanical Properties of Stainless Steel AISI 316L Processed by Selective Laser Melting, Mater. Sci. Forum, pp.898-903, 2014.

M. S. Pham, B. Dovgyy, and P. A. Hooper, Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing, Mater. Sci. Eng. A, vol.704, pp.102-111, 2017.

K. Saeidi, X. Gao, F. Lofaj, L. Kvetková, and Z. J. Shen, Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting, J. Alloys Compd, vol.633, pp.463-469, 2015.

J. Suryawanshi, K. G. Prashanth, and U. Ramamurty, Mechanical behavior of selective laser melted 316L stainless steel, Mater. Sci. Eng. A, vol.696, pp.113-121, 2017.

I. Tolosa, F. Garciandía, F. Zubiri, F. Zapirain, and A. Esnaola, Study of mechanical properties of AISI 316 stainless steel processed by "selective laser melting", following different manufacturing strategies, Int. J. Adv. Manuf. Technol, vol.51, pp.639-647, 2010.

Y. M. Wang, T. Voisin, J. T. Mckeown, J. Ye, N. P. Calta et al., Additively manufactured hierarchical stainless steels with high strength and ductility, vol.17, pp.63-70, 2018.

Y. M. Wang, T. Voisin, J. T. Mckeown, J. Ye, N. P. Calta et al., Additively manufactured hierarchical stainless steels with high strength and ductilitysupplementary information, Nat. Mater, vol.17, pp.63-70, 2018.

M. Yakout, M. A. Elbestawi, and S. C. Veldhuis, Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L, J. Mater. Process. Technol, vol.266, pp.397-420, 2019.

Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen, Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting, J. Nucl. Mater, vol.470, pp.170-178, 2016.

I. Yadroitsev and I. Smurov, Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape, Phys. Procedia, vol.5, pp.551-560, 2010.

X. Deng, G. Piotrowski, and N. Chawla, Effect of Pore Clustering on the Mechanical Behavior of Powder Metallurgy ( P / M ) Steels, pp.4-10, 2004.

X. Deng, G. B. Piotrowski, J. J. Williams, and N. Chawla, Effect of porosity and tension-compression asymmetry on the Bauschinger effect in porous sintered steels, Int. J. Fatigue, vol.27, pp.1233-1243, 2005.

B. Zhang, L. Dembinski, and C. Coddet, The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder, Mater. Sci. Eng. A, vol.584, pp.21-31, 2013.

J. C. Wang, Young's modulus of porous materials -Part 1 Theoretical derivation of modulusporosity correlation, J. Mater. Sci, vol.19, pp.801-808, 1984.

C. Qiu, M. Kindi, A. S. Aladawi, and I. Hatmi, A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel, Sci. Rep, vol.8, pp.1-16, 2018.

. Bs-en, Seamless steel tubes for pressure purposes, Stainless steel tubes, 2013.

, BS EN 10083-1, Steels for quenching and tempering, 2006.

T. M. Mower and M. J. Long, Mechanical behavior of additive manufactured, powder-bed laser-fused materials, Mater. Sci. Eng. A, vol.651, pp.198-213, 2016.

P. Krakhmalev, I. Yadroitsava, G. Fredriksson, and I. Yadroitsev, Microstructural and Thermal Stability of Selective Laser Melted 316L Stainless Steel Single Tracks, South African J. Ind. Eng, vol.28, pp.12-19, 2017.

D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao et al., Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes, J. Mater. Sci. Technol, vol.35, pp.1499-1507, 2019.

H. Sassoulas, Traitements thermiques des aciers inoxydables, pp.1-22, 1997.

N. P. Lavery, J. Cherry, S. Mehmood, H. Davies, B. Girling et al., Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion, Mater. Sci. Eng. A, vol.693, pp.186-213, 2017.

D. Wang, C. Song, Y. Yang, and Y. Bai, Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts, Mater. Des, vol.100, pp.291-299, 2016.

M. Zhang, C. N. Sun, X. Zhang, P. C. Goh, J. Wei et al., Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters, Mater. Sci. Eng. A, vol.703, pp.251-261, 2017.

L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu et al., Dislocation network in additive manufactured steel breaks strength-ductility trade-off, Mater. Today, vol.21, pp.354-361, 2018.

A. A. Deev, P. A. Kuznetcov, and S. N. Petrov, Anisotropy of mechanical properties and its correlation with the structure of the stainless steel 316L produced by the SLM method, Phys. Procedia, vol.83, pp.789-796, 2016.

T. Niendorf, S. Leuders, A. Riemer, H. A. Richard, T. Tröster et al., Highly anisotropic steel processed by selective laser melting, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci, vol.44, pp.794-796, 2013.

O. Andreau, I. Koutiri, P. Peyre, J. Penot, N. Saintier et al., Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting, J. Mater. Process. Technol, vol.264, pp.21-31, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02064113

M. F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag, vol.21, pp.37-41, 1970.

C. S. Kim, Thermophysical properties of stainless steel, 1975.

M. Shamsujjoha, S. R. Agnew, J. M. Fitz-gerald, W. R. Moore, and T. A. Newman, High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.49, pp.3011-3027, 2018.

S. Kou, W. Metallurgy, N. J. Hoboken, and . Wiley-interscience, , 2002.

U. Bertoli, B. E. Macdonald, and J. M. Schoenung, Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel, Mater. Sci. Eng. A, vol.739, pp.109-117, 2019.

K. Saeidi, X. Gao, Y. Zhong, and Z. J. Shen, Hardened austenite steel with columnar sub-grain structure formed by laser melting, Mater. Sci. Eng. A, vol.625, pp.221-229, 2015.

Y. Yang, Y. Zhu, M. M. Khonsari, and H. Yang, Wear anisotropy of selective laser melted 316L stainless steel, Wear, 2019.

M. Zi?tala, T. Durejko, M. Pola?ski, I. Kunce, T. P?oci?ski et al., The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping, Mater. Sci. Eng. A, vol.677, pp.1-10, 2016.

Z. Sun, X. Tan, S. B. Tor, and C. K. Chua, Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting, NPG Asia Mater, vol.10, pp.127-136, 2018.

, ASTM E1823-13 Standard Terminology Relating to Fatigue and Fracture Testing, pp.1-22, 2013.

I. Koutiri, Effet des fortes contraintes hydrostatiques sur la tenue en fatigue des matériaux métalliques, École Nationale Supérieure d ' Arts et Métiers, 2011.

K. A. Mohammad, E. S. Zainudin, S. M. Sapuan, N. I. Zahari, and A. Aidy, Fatigue Life for Type 316L Stainless Steel under Cyclic Loading, Adv. Mater. Res, vol.701, pp.77-81, 2013.

S. Nishijima and K. Kanazawa, Stepwise S-N curve and fish-eye failure in gigacycle fatigue, Fatigue Fract. Eng. Mater. Struct, vol.22, pp.601-607, 1999.

B. Pyttel, D. Schwerdt, and C. Berger, Very high cycle fatigue -Is there a fatigue limit?, Int. J. Fatigue, vol.33, pp.49-58, 2011.

Y. Murakami, T. Nomoto, and T. Ueda, Factors influencing the mechanism of superlong fatigue failure in steels, Fatigue Fract. Eng. Mater. Struct, vol.22, pp.581-590, 1999.

J. A. Bannatine, J. J. Comer, L. Handrock, and J. , Fundamentals of Metal Fatigue Analysis, 1990.

M. Mineur, Conditions locales d'amorçage des fissures de fatigue dans un acier inoxydable de type 316L : aspects cristallographiques (EBSD), 2000.

, Fatigue and Fracture, ASM International, vol.19, 1996.

B. Crossland, Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel, Proc. Int. Conf. Fatigue Met., Institution of Mechanical Engineers, 1956.

K. Van, B. Griveau, and O. Message, On a New multiaxial fatigue limit criterion : Theory and application, Biaxial and Multiaxial Fatigue, Mechanical, pp.479-496, 1989.

A. Falkowska, A. Seweryn, and A. Tomczyk, Fatigue life and strength of 316L sintered steel of varying porosity, Int. J. Fatigue, vol.111, pp.161-176, 2018.

P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic Eng, vol.85, pp.528-533, 1963.

K. Tanaka, Mechanics and Micromechanics of Fatigue Crack Propagation, Fract. Mech. Perspect. Dir, pp.151-151, 2008.

H. Kitagawa and S. Takahashi, Applicability of fracture mechanics to very small cracks or the cracks in the early stage, Proc. 2nd Int. Conf. Mech. Behav. Mater -ICM2, pp.627-631, 1976.

Y. Murakami, Metal Fatigue : Effect of Small Defects and Nonmetallic Inclusions, 2002.

P. ,

L. Luká? and . Kunz, Effect of Mean Stress on Short Crack Threshold, ESIS, Mech. Eng. Publ. Ltd, vol.13, pp.265-275, 1992.

R. Guerchais, F. Morel, and N. Saintier, The effect of the microstructure and defects on crack initiation in 316L stainless steel under multiaxial high cycle fatigue, Adv. Mater. Res, pp.815-820, 2014.

A. B. Spierings, T. L. Starr, and I. Ag, Fatigue performance of additive manufactured metallic parts, vol.2, pp.88-94, 2013.

M. R. Bayoum and A. K. Abdellatif, EFFECT OF SURFACE FINISH ON FATIGUE STRENGTH, vol.51, pp.861-870, 1995.

J. H. Rao, Y. Zhang, A. Huang, X. Wu, and K. Zhang, Improving fatigue performances of selective laser melted Al-7Si-0.6Mg alloy via defects control, Int. J. Fatigue, vol.129, p.105215, 2019.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster et al., On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue, vol.48, pp.300-307, 2013.

L. R. Saitova, H. W. Höppel, M. Göken, I. P. Semenova, and R. Z. Valiev, Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use, Int. J. Fatigue, vol.31, pp.322-331, 2009.

A. Riemer, S. Leuders, M. Thöne, H. A. Richard, T. Tröster et al., On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting, Eng. Fract. Mech, vol.120, pp.15-25, 2014.

R. Shrestha, J. Simsiriwong, and N. Shamsaei, Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness, Addit. Manuf, vol.28, pp.23-38, 2019.

I. E. Anderson, E. M. White, and R. Dehoff, Feedstock powder processing research needs for additive manufacturing development, Curr. Opin. Solid State Mater. Sci, vol.22, pp.8-15, 2018.

E. Chauvet, P. Kontis, E. A. Jägle, B. Gault, D. Raabe et al., Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting, Acta Mater, vol.142, pp.82-94, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01957166

Y. Li and D. Gu, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Mater. Des, vol.63, pp.856-867, 2014.

V. Shankar, T. P. Gill, S. L. Mannan, and S. Sundarlsan, Solidification cracking in austenitic stainless steel welds, Sadhana -Acad, Proc. Eng. Sci, vol.28, pp.359-382, 2003.

A. Y. Jang, D. J. Lee, S. H. Lee, J. H. Shim, S. W. Kang et al., Effect of Cr/Ni equivalent ratio on ductility-dip cracking in AISI 316L weld metals, Mater. Des, vol.32, pp.371-376, 2011.

G. Kasperovich, J. Haubrich, J. Gussone, and G. Requena, Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting, Mater. Des, vol.105, pp.160-170, 2016.

K. Darvish, Z. W. Chen, and T. Pasang, Reducing lack of fusion during selective laser melting of CoCrMo alloy: Effect of laser power on geometrical features of tracks, Mater. Des, vol.112, pp.357-366, 2016.

V. H. Lysne, Microstructural and physical investigation on the effect of process parameters on stainless steel 316L prepared by Selective Laser Melting, 2016.

. Student, The Probabe Error of a Mean, Biometrika, pp.1-25, 1908.

M. A. Groeber, T. Butler, K. Chaput, E. Schwalbach, S. Donegan et al., Application of characterization, modelling, and analytics towards understanding process-structure linkages in metallic 3D printing, IOP Conf. Ser. Mater. Sci. Eng, vol.219, p.12002, 2017.

S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater, vol.108, pp.36-45, 2016.

A. A. Martin, N. P. Calta, S. A. Khairallah, J. Wang, P. J. Depond et al.,

G. M. Thampy, A. M. Guss, K. H. Kiss, C. J. Stone, J. N. Tassone et al., Dynamics of pore formation during laser powder bed fusion additive manufacturing, Nat. Commun. (n.d.) 1, p.10

R. D. Engquist, E. Of, . On, and . Of-materials, Fract. Met, pp.399-424, 1969.

L. Thijs, K. Kempen, J. P. Kruth, and J. Van-humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Mater, vol.61, pp.1809-1819, 2013.

J. Liu and A. C. To, Quantitative texture prediction of epitaxial columnar grains in additive manufacturing using selective laser melting, Addit. Manuf, vol.16, pp.58-64, 2017.

N. Nadammal, S. Cabeza, T. Mishurova, T. Thiede, A. Kromm et al., Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718, Mater. Des, vol.134, pp.139-150, 2017.

H. Y. Wan, Z. J. Zhou, C. P. Li, G. F. Chen, and G. P. Zhang, Effect of scanning strategy on grain structure and crystallographictexture of Inconel 718 processed by selective laser melting, J. Mater. Sci. Technol, 2018.

S. H. Sun, K. Hagihara, and T. Nakano, Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting, Mater. Des, vol.140, pp.307-316, 2018.

R. Fabbro, Dynamic approach of the keyhole and melt pool behavior for deep penetration Nd-Yag laser welding, AIP Conf. Proc, vol.1047, pp.18-24, 2008.

C. Moussa, M. Bernacki, R. Besnard, and N. Bozzolo, Statistical analysis of dislocations and dislocation boundaries from EBSD data, Ultramicroscopy, vol.179, pp.63-72, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01509485

X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma et al., Textures formed in a CoCrMo alloy by selective laser melting, J. Alloys Compd, vol.631, pp.153-164, 2015.

Y. Arata, F. Matsuda, and A. Matsui, Effect of Welding Condition on Solidification Structure in Weld Metal of Aluminum Alloy Sheets, Trans. J. Weld. Res. Insitute, vol.3, pp.89-97, 1974.

A. Hellawell and P. M. Herbert, The development of preferred orientations during the freezing of metals and alloys, Proc. R. Soc. London. Ser. A. Math. Phys. Sci, vol.269, pp.560-573, 1962.

G. J. Davies and J. G. Garland, Solidification Structures and Properties of Fusion Welds, Int. Metall. Rev, vol.20, pp.83-108, 1975.

V. Ocelík, I. Furár, and J. T. De-hosson, Microstructure and properties of laser clad coatings studied by orientation imaging microscopy, Acta Mater, vol.58, pp.6763-6772, 2010.

G. P. Dinda, A. K. Dasgupta, and J. Mazumder, Texture control during laser deposition of nickelbased superalloy, Scr. Mater, vol.67, pp.503-506, 2012.

B. Dovgyy and M. S. Pham, Epitaxial growth in 316L steel and CoCrFeMnNi high entropy alloy made by powder-bed laser melting, AIP Conf. Proc, vol.1960, 2018.

J. Campbell, Controlled Solidification Techniques, Complet. Cast. Handb, pp.883-891, 2015.

A. Anwar and Q. C. Pham, Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength, J. Mater. Process. Technol, vol.240, pp.388-396, 2017.

T. Scholz, K. Dickmann, A. Ostendorf, H. Uphoff, and M. Michalewicz, Effect of process parameters on the formation of laser-induced nanoparticles during material processing with continuous solid-state lasers, J. Laser Appl, vol.27, p.32001, 2015.

K. W. Park and S. J. Na, Theoretical investigations on multiple-reflection and Rayleigh absorptionemission-scattering effects in laser drilling, Appl. Surf. Sci, vol.256, pp.2392-2399, 2010.

J. L. Bartlett, F. M. Heim, Y. V. Murty, and X. Li, In situ defect detection in selective laser melting via full-field infrared thermography, Addit. Manuf, vol.24, pp.595-605, 2018.

R. J. Smith, M. Hirsch, R. Patel, W. Li, A. T. Clare et al., Spatially resolved acoustic spectroscopy for selective laser melting, J. Mater. Process. Technol, vol.236, pp.93-102, 2016.

S. Tammas-williams, H. Zhao, F. Léonard, F. Derguti, I. Todd et al., XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting, Mater. Charact, vol.102, pp.47-61, 2015.

T. Sol, S. Hayun, D. Noiman, E. Tiferet, O. Yeheskel et al., Nondestructive ultrasonic evaluation of additively manufactured AlSi10Mg samples, Addit. Manuf, vol.22, pp.700-707, 2018.

P. A. Rometsch, D. Pelliccia, D. Tomus, and X. Wu, Evaluation of polychromatic X-ray radiography defect detection limits in a sample fabricated from Hastelloy X by selective laser melting, NDT E Int, vol.62, pp.184-192, 2014.

Y. J. Liu, S. J. Li, H. L. Wang, W. T. Hou, Y. L. Hao et al., Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Mater, vol.113, pp.56-67, 2016.

T. Voisin, N. P. Calta, S. A. Khairallah, J. B. Forien, L. Balogh et al., Defects-dictated tensile properties of selective laser melted Ti-6Al-4V, Mater. Des, vol.158, pp.113-126, 2018.

T. Voisin, N. P. Calta, S. A. Khairallah, J. B. Forien, L. Balogh et al., Defects-dictated tensile properties of selective laser melted Ti-6Al-4V, Mater. Des, vol.158, pp.113-126, 2018.

C. Millon, Contribution à l ' inspection d ' échantillons de fabrication additive métallique par ondes de Rayleigh au moyen d ' une méthode ultrasons-laser, Conservatoire National des Arts et Métiers, 2018.

P. Li, D. H. Warner, A. Fatemi, and N. Phan, Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research, Int. J. Fatigue, vol.85, pp.130-143, 2016.

A. Yadollahi and N. Shamsaei, Additive manufacturing of fatigue resistant materials: Challenges and opportunities, Int. J. Fatigue, vol.98, pp.14-31, 2017.

S. Siddique, M. Imran, M. Rauer, M. Kaloudis, E. Wycisk et al., Materials & Design Computed tomography for characterization of fatigue performance of selective laser melted parts, Mater. Des, vol.83, pp.661-669, 2015.

G. Nicoletto, G. Anzelotti, and R. Kone?ná, X-ray computed tomography vs. metallography for pore sizing and fatigue of cast Al-alloys, Procedia Eng, vol.2, pp.547-554, 2010.

V. D. Le, Étude de l'influence des hétérogénéités microstructurales sur la tenue en fatigue à grand nombre de cycles des alliages d'aluminium de fonderie, École Nationale Supérieure des Arts et Métiers, 2016.

Y. Murakami and S. Beretta, Small Defects and Inhomogeneities in Fatigue Strength: Experiments , Models and Statistical Implications, vol.2, pp.123-147, 1999.

Y. Murakami, . Standard-for-additively-manufactured, . Spaceflight, . By-laser-powder, . Bed et al., , 1994.

, Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features, ASTM E2283 -08, 2014.

S. Romano, A. Brandão, J. Gumpinger, M. Gschweitl, and S. Beretta, Materials & Design Quali fi cation of AM parts : Extreme value statistics applied to tomographic measurements, vol.131, pp.32-48, 2017.

V. Le, E. Pessard, F. Morel, F. Edy, and I. R. Verne, Influence of porosity on the fatigue behaviour of additively fabricated TA6V alloys, pp.1-9, 2018.

G. Center, Standard Specification for Control and Qualification of Laser Powder Bed Fusion, 2017.

Y. Murakami and M. Endo, A Geometrical Parameter for the Quantitative Estimation of the Effects of Small Defects on Fatigue Strength of Metals, Trans. Japan Soc. Mech. Eng, vol.49, pp.127-136, 1983.

Y. Yamashita, T. Murakami, R. Mihara, M. Okada, and Y. Murakami, Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by selective laser melting, Int. J. Fatigue, vol.117, pp.485-495, 2018.

S. Romano, A. Brückner-foit, A. Brandão, J. Gumpinger, T. Ghidini et al., Fatigue properties of AlSi10Mg obtained by additive manufacturing : Defect-based modelling and prediction of fatigue strength, Eng. Fract. Mech, vol.187, pp.165-189, 2018.

E. J. Gumbel, The Return Period of Flood Flows, Ann. Math. Stat, vol.12, pp.163-190, 1941.

E. Pessard, B. Abrivard, F. Morel, F. Abroug, and P. Delhaye, The effect of quenching and defects size on the HCF behaviour of Boron steel, Int. J. Fatigue, vol.68, pp.80-89, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01061163

J. Rawers, F. Croydon, R. Krabbe, and N. Duttlinger, Tensile Characteristics of Nitrogen Enhanced Powder Injection Moulded 316L Stainless Steel, Powder Metall, vol.39, pp.125-129, 1996.

M. S. Pham, S. R. Holdsworth, K. G. Janssens, and E. Mazza, Cyclic deformation response of AISI 316L at room temperature: Mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling, Int. J. Plast, vol.47, pp.143-164, 2013.

J. Zhou, Z. Sun, P. Kanouté, and D. Retraint, Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime, Int. J. Plast, vol.107, pp.54-78, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02277225

M. S. Pham, S. R. Holdsworth, K. G. Janssens, and E. Mazza, Cyclic deformation response of AISI 316L at room temperature: Mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling, Int. J. Plast, vol.47, pp.143-164, 2013.

X. F. Xie, W. Jiang, J. Chen, X. Zhang, and S. T. Tu, Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: Experimental and damage-coupled constitutive modeling, Int. J. Plast, vol.114, pp.196-214, 2019.

J. Zhou, Z. Sun, P. Kanouté, and D. Retraint, Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime, Int. J. Plast, vol.107, pp.54-78, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02277225

D. C. Maxwell and T. Nicholas, A rapid method for generation of a Haigh Diagram for high cycle fatigue, Fatigue an, vol.29, pp.626-641, 1999.

T. Nicholas, Step loading for very high cycle fatigue, Fatigue Fract. Eng. Mater. Struct, vol.25, pp.861-869, 2002.

D. Davidson, K. Chan, R. Mcclung, and S. Hudak, 05 -Small Fatigue Cracks, vol.4, 2007.

R. Guerchais, Influence d'accidents géométriques et du mode de chargement sur le comportement en fatigue à grand nombre de cycles d'un acier inoxydable austénitique 316L, l'École Nationale Supérieure d'Arts et Métiers, 2014.

L. Makkonen, R. Rabb, and M. Tikanmäki, Size effect in fatigue based on the extreme value distribution of defects, Mater. Sci. Eng. A, vol.594, pp.68-71, 2014.

P. Osmond, V. D. Le, F. Morel, D. Bellett, and N. Saintier, Effect of porosity on the fatigue strength of cast aluminium alloys: From the specimen to the structure, Procedia Eng, vol.213, pp.630-643, 2018.

Y. Uemura and Y. Murakami, A numerical simulation of evaluating the maximum size of inclusions to examine the validity of the metallographic determination of the maximum size of inclusions, Trans. Japan Soc. Mech. Eng. Ser. A, vol.56, pp.162-167, 1990.

S. Romano, A. Abel, J. Gumpinger, A. D. Brandão, and S. Beretta, Quality control of AlSi10Mg produced by SLM: metallography versus CT scans for critical defect size assessment, Addit. Manuf, 2019.

K. S. Chan, Roles of microstructure in fatigue crack initiation, Int. J. Fatigue, vol.32, pp.1428-1447, 2010.

A. Rotella, Y. Nadot, M. Piellard, R. Augustin, and M. Fleuriot, Fatigue limit of a cast Al-Si-Mg alloy (A357-T6) with natural casting shrinkages using ASTM standard X-ray inspection, Int. J. Fatigue, vol.114, pp.177-188, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02310957

I. Serrano and . Munoz, Influence of casting defects on fatigue behaviour of A356 aluminium alloy, 2014.

J. Petit, J. Fouquet, and G. Henaff, Influence of ambient atmosphere on fatigue crack growth behaviour of metals, Handb. Fatigue Crack Propag, pp.1159-1203, 2012.

I. Maskery, N. T. Aboulkhair, M. R. Cor, C. Tuck, A. T. Clare et al., Materials Characterization Quanti fi cation and characterisation of porosity in selectively laser melted Al -Si10 -Mg using X-ray computed tomography, vol.111, pp.193-204, 2016.

S. Beretta and S. Romano, A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes, Int. J. Fatigue, vol.94, pp.178-191, 2017.

V. D. Le, E. Pessard, F. Morel, and F. Edy, Interpretation of the fatigue anisotropy of additively manufactured TA6V alloys via a fracture mechanics approach, Eng. Fract. Mech, vol.214, pp.410-426, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02282832

H. Gong, Generation An Detection Of Defects In Metallic Parts Fabricated By Selective Laser Melting And Electron Beam Melting And Their Effects On Mechanical Properties, Univ. Louisv, 2013.

F. Esposito, A. Gatto, E. Bassoli, and L. Denti, A Study on the Use of XCT and FEA to Predict the Elastic Behavior of Additively Manufactured Parts of Cylindrical Geometry, J. Nondestruct. Eval, vol.37, 2018.

R. Fadida, D. Rittel, and A. Shirizly, Dynamic Mechanical Behavior of Additively Manufactured Ti6Al4V With Controlled Voids, J. Appl. Mech, vol.82, p.41004, 2015.

R. Fadida, A. Shirizly, and D. Rittel, Dynamic Tensile Response of Additively Manufactured Ti6Al4V With Embedded Spherical Pores, J. Appl. Mech, vol.85, p.41004, 2018.

R. Fadida, A. Shirizly, and D. Rittel, The static and dynamic shear-tension mechanical response of AM Ti6Al4V containing spherical and prolate voids, Int. J. Eng. Sci, vol.141, pp.1-15, 2019.

A. Junet, A. Messager, X. Boulnat, A. Weck, E. Boller et al., Fabrication of artificial defects to study internal fatigue crack propagation in metals, Scr. Mater, vol.171, pp.87-91, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02405423

J. C. Fox, S. P. Moylan, and B. M. Lane, Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing, Procedia CIRP, pp.131-134, 2016.

D. Wang, S. Mai, D. Xiao, and Y. Yang, Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM, Int. J. Adv. Manuf. Technol, vol.86, pp.781-792, 2016.

A. M. Kamat and Y. Pei, An analytical method to predict and compensate for residual stress-induced deformation in overhanging regions of internal channels fabricated using powder bed fusion, Addit. Manuf, vol.29, p.100796, 2019.

J. Kruth, P. Mercelis, J. Van-vaerenbergh, and T. Craeghs, Proc. 3rd Int. Conf. Adv. Res. Virtual Rapid Prototyp, pp.1-7, 2007.

T. Craeghs, S. Clijsters, E. Yasa, and J. Kruth, Online quality control of selective laser melting, Solid Free, Fabr. Proc, pp.212-226, 2011.

T. Craeghs, S. Clijsters, E. Yasa, F. Bechmann, S. Berumen et al., Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring, Opt. Lasers Eng, vol.49, pp.1440-1446, 2011.

H. Chen, D. Gu, J. Xiong, and M. Xia, Improving additive manufacturing processability of hard-toprocess overhanging structure by selective laser melting, J. Mater. Process. Technol, vol.250, pp.99-108, 2017.

I. Serrano-munoz, J. Y. Buffiere, and C. Verdu, Casting defects in structural components: Are they all dangerous? A 3D study, Int. J. Fatigue, vol.117, pp.471-484, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01916293

I. Serrano-munoz, J. Y. Buffiere, R. Mokso, C. Verdu, and Y. Nadot, Location, location &size: Defects close to surfaces dominate fatigue crack initiation, Sci. Rep, vol.7, pp.1-9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01669925

H. J. Gough and D. G. Sopwith, Some further experiments on atmospheric action in fatigue, J. Institude Met, vol.56, pp.477-506, 1935.

J. Günther, D. Krewerth, T. Lippmann, S. Leuders, T. Tröster et al., Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime, Int. J. Fatigue, vol.94, pp.236-245, 2017.

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Trans. Syst. Man. Cybern, vol.9, pp.62-66, 1979.

D. Legland, I. Arganda-carreras, and P. Andrey, MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ, Bioinformatics, pp.3532-3534, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438611

T. D. Terris, Fabrication additive par fusion laser sélective (SLM) d'un superalliage base nickel : relations procédé, microstructures, propriétés mécaniques, École Nationale Supérieure des Arts et Métiers, 2019.

F. Abroug, E. Pessard, G. Germain, and F. Morel, HCF of AA7050 alloy containing surface defects: Study of the statistical size effect, Int. J. Fatigue, vol.110, pp.81-94, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02282721

C. Bathias, P. C. Paris, and Z. Huang, Subsurface crack initiation and propagation mechanisms in gigacycle fatigue, vol.58, pp.6046-6054, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01686354

T. Sakai, H. Harada, and N. Oguma, Crack Initiation Mechanism of Bearing Steel in High Cycle Fatigue, in: Fract, Nano Eng. Mater. Struct, pp.1129-1130, 2008.

K. Tanaka and Y. Akiniwa, Fatigue crack propagation behaviour derived from S-N data in very high cycle regime, Fatigue Fract. Eng. Mater. Struct, vol.25, pp.775-784, 2002.

S. Stanzl-tschegg and B. Schönbauer, Near-threshold fatigue crack propagation and internal cracks in steel, Procedia Eng, vol.2, pp.1547-1555, 2010.

K. Tanaka and Y. Akiniwa, Fatigue crack propagation behaviour derived from S-N data in very high cycle regime, Fatigue Fract. Eng. Mater. Struct, vol.25, pp.775-784, 2002.

S. Stanzl-tschegg and B. Schönbauer, Near-threshold fatigue crack propagation and internal cracks in steel, Procedia Eng, vol.2, pp.1547-1555, 2010.

W. R. , Fractography of Fatigue Crack Propagation in 2024-T3 and 7075-T6 Aluminum Alloys in Air and Vacuum, Metall. Trans. A, vol.6, pp.1587-1596, 1975.

N. Grindberg, The effect of vacuum on fatigue crack growth, Int. J. Fatigue, pp.83-95, 1982.

A. J. Mcevily, J. L. Gonzalez, and . Velazquez, Fatigue crack tip deformation, Metall. Trans. A, vol.23, pp.2211-2221, 1992.

D. Duquette and M. Gell, The effect of environment on the mechanism of stage 1 fatigue fracture, Metall. Trans, vol.2, issue.5, pp.1325-1331, 1971.

T. Kanezaki, C. Narazaki, Y. Mine, S. Matsuoka, and Y. Murakami, Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels, Int. J. Hydrogen Energy, vol.33, pp.2604-2619, 2008.

A. J. Mcevily and H. Matsunaga, On Fatigue Striations, Sci. Iran, vol.17, 2010.

H. J. Roven and E. Nes, Deformation of Ferritic Steel -Stage II crack propagation, Acta Metall. Mater, vol.39, 1991.

F. Ellyin and B. Li, Crack initiation and fatigue lives in air and vacuum environments, Mater. Sci. Eng. A, vol.171, pp.105-113, 1993.

O. O. Salman, F. Brenne, T. Niendorf, J. Eckert, K. G. Prashanth et al., Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting, J. Manuf. Process, vol.45, pp.255-261, 2019.

F. Morel and N. Huyen, Plasticity and damage heterogeneity in fatigue, Theor. Appl. Fract. Mech, vol.49, pp.98-127, 2008.

E. R. De-los-rios, Z. Tang, and K. J. Miller, Short Crack Fatigue Behaviour in a Medium Carbon Steel, Fatigue Fract. Eng. Mater. Struct, vol.7, pp.97-108, 1984.

E. R. De-los-rios, H. J. Mohamed, and K. J. Miller, Micro-Mechanics Analysis for Short Fatigue Crack Growth, Fatigue Fract. Eng. Mater. Struct, vol.8, pp.49-63, 1985.

G. Bertolino, V. Doquet, and M. Sauzay, Modelling of the scatter in short fatigue cracks growth kinetics in relation with the polycrystalline microstructure, Int. J. Fatigue, vol.27, pp.471-480, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01820130

V. , Caustique du laser

, Philips XL 40 et logiciels d'acquisition EBSD

, Pa), avec un filament tungstène réglé à 25 kV et 60 µA. Les cartographies EBSD ont été acquises à l'aide d'une caméra NORDIF UF-1000 EBSD de 4 ème génération. L'acquisition l'indexation, et le post-traitement des données EBSD ont été effectués en utilisant les logiciels NORDIF, L'analyse microstructurale a été réalisée sur un MEB Philips XL 40 (Figure V-8 b)), opérant à haut niveau de vide, pp.10-15

?. O. Andreau, I. Koutiri, P. Peyre, J. Penot, N. Saintier et al., Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting, J. Mater. Process. Technol, vol.264, pp.21-31, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02064113

?. O. Andreau, E. Pessard, I. Koutiri, J. Penot, C. Dupuy et al., A competition between the contour and hatching zones on the high cycle fatigue behaviour of 316L stainless steel : Analyzed using X-ray computed tomography, Mat. Science. Eng. A, vol.757, pp.146-159, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02391334

O. Proceeding-?-andreau, P. Peyre, J. D. Penot, I. Koutiri, C. Dupuy et al., Deterministic defect generation in selective laser melting : parametric optimization and control. Lasers Manuf, pp.1-11, 2017.

O. Andreau, P. Peyre, I. Koutiri, N. Saintier, J. D. Penot et al., Communications Orales ? Nocivité en fatigue et contrôle de défauts produits par fabrication additive

S. O. ?-génération-de-défauts-déterministes-en, P. Andreau, I. Peyre, N. Koutiri, J. D. Saintier et al., Réseau National de Connaissance Fabrication Additive à Angers

O. Andreau, P. Peyre, I. Koutiri, N. Saintier, J. D. Penot et al., Deterministic Defect Generation in Selective Laser Melting: Parametric optimization and control, Conférence internationale Lasers in Manufacturing (WLT)

O. Andreau, P. Peyre, I. Koutiri, N. Saintier, J. D. Penot et al., Nocivité en fatigue et contrôle de défauts produits par fabrication additive

S. O. ?-texture-induite-par-fabrication, P. Andreau, I. Peyre, N. Koutiri, J. D. Saintier et al., Réseau National de Connaissance Fabrication

O. Andreau, P. Peyre, I. Koutiri, N. Saintier, J. D. Penot et al., Nocivité en fatigue et contrôle de défauts produits par fabrication additive, 2018.

?. Microstructure, ;. O. Andreau, P. Peyre, I. Koutiri, N. Saintier et al., Texture Control of 316L Stainless Steel parts

O. Andreau, P. Peyre, I. Koutiri, N. Saintier, J. D. Penot et al., Nocivité en fatigue et contrôle de défauts produits par fabrication additive

O. Andreau, P. Peyre, I. Koutiri, N. Saintier, J. D. Penot et al., ? Influence of contour and hatching areas on the high cycle fatigue endurance of 316L LPBF parts, Conférence internationale ICWAM