, Bibliographie du Chapitre, vol.1

R. C. Reed, The Superalloys: Fundamentals and Applications, 2006.

M. Durand-charre, The Microstructure of Superalloys, 1997.

M. J. Donachie, S. J. Donachie, and . Superalloys, , 2002.

M. Revaud, « Optimisation métallurgique du superalliage à base de Nickel 718Plus, 2013.

F. I. Versnyder and R. W. Guard, Directional grain structure for high temperature strength, vol.52, 1960.

R. E. Schafrik, D. D. Ward, and J. R. Groh, Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years, pp.1-11, 2001.

I. Augustins-lecallier, Conception de nouveaux superalliages MdP base nickel pour disques de turbines, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00710579

M. Chieux, Vieillissement des systèmes barrière thermique : transformation de phases, oxydation et effet du soufre sur l'adhérence, 2010.

P. Y. Thery, Adhérence de barrières thermiques pour aube de turbine avec couche de liaison ?-(Ni,Pt)Al ou ?-NiAl(Zr), 2007.

J. B. Wahl, K. Harris, and C. Corporation, Advances in Single Crystal Superalloys -Control of Critical Elements

S. Hamadi, Etude du comportement en oxydation de nouveaux revêtements en aluminiure de nickel dopé au zirconium. Application aux barrières thermiques, 2009.

A. Sato, H. Harada, A. Yeh, K. Kawagishi, T. Kobayashi et al., A 5th Generation SC Superalloy with Balanced High Temperature Properties and Processability, pp.131-138, 2008.

K. Kawagishi, A. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi et al., « Development of an Oxidation-resistant High-strength Sixth-generation Single-crystal Superalloy TMS-238, pp.189-195, 2012.

P. Caron and T. Khan, « Evolution of Ni-based superalloys for single crystal gas turbine blade applications, Aerospace Science and Technology, vol.3, pp.513-523, 1999.

C. M. Rae and R. C. Reed, « The precipitation of topologically close-packed phases in rhenium-containing superalloys, Acta Materialia, vol.49, pp.4113-4125, 2001.

C. B. Carter and S. M. Holmes, The Stacking-Faut Energy of Nickel, vol.35, pp.1161-1172, 1977.

P. Caron, Y. Ohta, Y. G. Nakagawa, and T. Khan, Creep Deformation Anisotropy in Single Crystal Superalloys, pp.215-224, 1988.

B. C. Wilson and G. E. Fuchs, The Effect of Secondary Gamma-Prime on the Primary Creep Behavior of Single-Crystal Nickel-Base Superalloys, vol.41, pp.1235-1245, 2010.

T. Murakumo, T. Kobayashi, Y. Koizumi, and H. Harada, « Creep behaviour of Ni-base single-crystal superalloys with various ?? volume fraction, Acta Materialia, vol.52, pp.3737-3744, 2004.

P. Beardmore, R. G. Davies, and T. L. Johnston, On the temperature dependence of the flow stress of nickel-base alloys, vol.245, pp.1537-1545, 1969.

L. Müller, T. Link, and M. Feller-kniepmeier, « Temperature dependence of the thermal lattice mismatch in a single crystal nickel-base superalloy measured by neutron diffraction, Scripta Metallurgica et Materialia, vol.26, pp.1297-1302, 1992.

M. V. Nathal, R. A. Mackay, and R. G. Garlick, « Temperature dependence of ???' lattice mismatch in nickel-base superalloys, Materials Science and Engineering, vol.75, pp.195-205, 1985.

L. Dirand, « Fluage à haute température d'un superalliage monocristallin expérimentation in situ en rayonnement synchrotron, 2011.

M. Arnoux, Engineering science, Etude du comportement en fluage à haute température du superalliage monocristallin à base de nickel MCNG : Effet d'une surchauffe, 2009.

J. Doriath and S. Pringent, « Fonderie de précision à modèle perdu -Application aux superalliages », Technique de l'Ingénieur Réf : M3580 v1, 2007.

G. Matache, D. M. Stefanescu, C. Puscasu, and E. , Alexandrescu, « Dendritic segregation and arm spacing in directionally solidified CMSX-4 superalloy, International Journal of Cast Metals Research, vol.29, issue.5, pp.303-316, 2016.

U. Brückner, A. Epishin, T. Link, and K. Dressel, The influence of the dendritic structure of the ?-?' lattice misfit in the single CMSX-4 », vol.247, pp.23-31, 1998.

U. Brückner, A. Epishin, and T. Link, « Local X-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys, Acta Materialia, vol.45, pp.5223-5231, 1997.

A. Epishin, T. Link, U. Brückner, and P. D. Portella, « Investigation of porosity in singlecrystal nickel-base superalloy ». 7th Liège conference on materials for advanced power engineering, pp.710-714, 2002.

B. S. Bokstein, V. Esin, A. Rodin, and I. L. Svetlov, Models for the Porosity Growth and Dissolution in Single-Crystal Nickel-Base Superalloys », Defect and Diffusion Forum, pp.187-192, 2010.

B. S. Bokstein, A. I. Epishin, T. Link, V. A. Esin, A. O. Rodin et al., « Model for the porosity growth in single-crystal nickel-base superalloys during homogenization, Scripta Materialia, vol.57, issue.9, pp.801-804, 2007.

R. C. Reed, D. C. Cox, and C. M. Rae, « Damage accumulation during creep deformation of a single crystal superalloy at 1150 °C », Materials Science and Engineering: A, vol.448, pp.88-96, 2007.

A. Heckl, R. Rettig, S. Cenanovic, M. Göken, and R. F. Singer, « Investigation of the final stages of solidification and eutectic phase formation in Re and Ru containing nickel-base superalloys », Journal of Crystal Growth, vol.312, pp.2137-2144, 2010.

S. M. Seo, J. H. Lee, Y. S. Yoo, C. Y. Jo, H. Miyahara et al., Comparative Study of the ?/?? Eutectic Evolution During the Solidification of Ni-Base Superalloys, Metallurgical and Materials Transactions A, vol.42, issue.10, pp.3150-3159, 2011.

H. T. Pang, L. Zhang, R. A. Hobbs, H. J. Stone, and C. M. Rae, « Solution Heat Treatment Optimization of Fourth-Generation Single-Crystal Nickel-Base Superalloys, Metallurgical and Materials Transactions A, vol.43, issue.9, pp.3264-3282, 2012.

Y. Zhang, L. Liu, T. Huang, Y. Li, Z. Jie et al., « Investigation on remelting solution heat treatment for nickel-based single crystal superalloys, Scripta Materialia, vol.136, pp.74-77, 2017.

R. Tréhorel, « Comportement mécanique haute température du superalliage monocristallin AM1 : Etude in situ par une nouvelle technique de diffraction en rayonnement synchrotron, 2018.

T. Grosdidier, A. Hazotte, and A. Simon, « Precipitation and dissolution processes in ?/?' single crystal nickel-based superalloys, Materials Science and Engineering A, vol.256, pp.183-196, 1998.

A. F. Giamei and D. L. Anton, « Rhenium additions to a Ni-base superalloy: Effects on microstructure, Metallurgical Transactions A, vol.16, issue.11, 1985.

K. Matuszewski, R. Rettig, H. Matysiak, Z. Peng, I. Povstugar et al., Effect of ruthenium on the precipitation of topologically close packed phases in Ni-based superalloys of 3rd and 4th generation, Acta Materialia, vol.95, pp.274-283, 2015.

M. Pessah-simonetti, Effets des instabilités structurales sur les propriétés mécaniques du superalliage monocristallin MC2, 1994.

C. T. Sims, N. S. Stoloff, W. C. Hagel, and . Superalloys, , p.615, 1987.

A. K. Jena and M. C. Chaturvedi, « The role of alloying elements in the design of nickelbase superalloys », Journal of Materials Science, vol.19, pp.3121-3139, 1984.

K. Y. Cheng, C. Y. Jo, T. Jin, and Z. Q. Hu, « Precipitation behavior of ? phase and creep rupture in single crystal superalloy CMSX-4, J. of Alloys & Comp, vol.509, pp.7078-7086, 2011.

K. Matuszewski, A. Müller, N. Ritter, R. Rettig, K. J. Kurzyd?owski et al., On the Thermodynamics and Kinetics of TCP Phase Precipitation in Re-and Ru-Containing Ni-base Superalloys, vol.17, pp.1127-1133, 2015.

F. Saint-antonin, Essais de fluage, Techniques de l'ingénieur Essais mécaniques sur les métaux et alliages, 1995.

B. H. Kear and H. G. Wilsdorf, Dislocation configurations in plastically deformed Cu3Au alloys, vol.224, pp.382-386, 1962.

N. Matan, D. C. Cox, P. Carter, M. A. Rist, C. M. Rae et al., Creep of CMSX-4 superalloy single crystals: effects of misorientation and temperature, vol.47, pp.1549-1563, 1999.

M. V. Nathal, R. A. Mackay, and R. V. Miner, « Influence of precipitate morphology on intermediate temperature creep properties of a nickel-base superalloy single crystal, Metallurgical Transactions A, vol.20, issue.1, pp.133-141, 1989.

F. Diologent, Comportement en fluage et en traction de superalliages monocristallins à base de nickel, 2002.

A. Epishin and T. Link, « Mechanisms of High Temperature Creep of Nickel-Base Superalloys Under Low Applied Stress », in Superalloys, Tenth International Symposium), pp.137-143, 2004.

F. Louchet, M. Veron, Y. Brechet, A. Hazotte, J. Buffiere et al., New trends in directionnal coarsening of superalloys under stress, pp.1482-1490, 1998.

F. Diologent and P. Caron, On the creep behavior at 1033K of new generation singlecrystal superalloys, Materials Science and Engineering: A, vol.385, issue.2, pp.245-257, 2004.

M. Probst-hein, A. Dlouhy, and G. Eggeler, « Interface dislocations in superalloy single crystal, Acta Mater, vol.47, issue.8, pp.2497-2510, 1999.

B. , « Étude de la plasticité et application aux métaux, Presses des Mines, 2008.

E. Schmid and W. , Boas, « plasticity of crystals with special reference to metals, 1950.

V. Mohles, D. Rönnpagel, and E. Nembach, « Simulation of dislocation glide in precipitation hardened materials, Comp. Mater. Sci, vol.16, pp.144-150, 1999.

M. V. , Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys, Metallurgical Transactions A, vol.18, issue.11, pp.1961-1970, 1987.

P. Caron and T. Khan, « Improvement of Creep strength in a nickel-base single-crystal superalloy by heat treatment, Materials Science and Engineering, vol.61, issue.2, pp.173-184, 1983.

J. Müller, G. Eggeler, E. Spiecker, and «. , On the identification of superdislocations in the ??-phase of single-crystal Ni-base superalloys -An application of the LACBED method to complex microstructures, Acta Materialia, vol.87, pp.34-44, 2014.

W. Huther and B. Reppich, « Interaction of dislocations with coherent, stress-free, vol.69, pp.628-634, 1978.

B. Reppich, « Some new aspects concerning particle hardening mechanisms in ?' precipitating Ni-base alloys, Theoretical concept, Acta Metallurgica, vol.30, issue.1, pp.87-94, 1982.

G. Leverant and B. Kear, « The mechanism of creep in gamma' precipitation-hardened nickel-base alloys at intermediate temperatures, Mater. Trans. B, vol.1, pp.491-498, 1970.

C. M. Rae, N. Matan, and R. C. Reed, « The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750°C and 750 MPa, Materials Science and Engineering: A, vol.300, issue.2, pp.125-134, 2001.

C. M. Rae and R. C. Reed, « Primary creep in single crystal superalloys: Origins, mechanisms and effects, Acta Materialia, vol.55, issue.3, pp.1067-1081, 2007.

C. Rae, V. Vorontsov, L. Kovarik, and M. Mills, Dislocations in a Ni-based superalloy during low temperature creep, vol.14, p.1006, 2014.

P. Caron, C. Ramusat, and F. Diologent, « Influence of the ?' fraction on the topological inversion during high temperature creep of single crystal superalloys, pp.159-167, 2008.

T. Link, A. Epishin, and B. Fedelich, « Inhomogeneity of misfit stresses in nickel-base superalloys: Effect on propagation of matrix dislocation loops, Philosophical Magazine, vol.89, issue.13, pp.1141-1159, 2009.

W. Chen and J. Immarigeon, « Thickening behavior of rafting », vol.39, 1998.

R. C. Reed, D. C. Cox, and C. M. Rae, Kinetics of rafting in a single crystal superalloy: effects of residual microsegregation, vol.23, pp.893-902, 2007.

F. Pyczak, B. Devrient, F. C. Neuner, and H. Mughrabi, « The influence of different alloying elements on the development of the ?/?? microstructure of nickel-base superalloys during high-temperature annealing and deformation, Acta Materialia, vol.53, pp.3879-3891, 2005.

A. Epishin, T. Link, U. Bruckner, B. Fedelich, and P. Portella, Effects of Segregation in Nickel-Base Superalloys: Dendritic Stresses, pp.537-543, 2004.

A. Fredholm, « Monocristaux d'alliages base nickel : relation entre composition, microstructure et comportement en fluage à haute température, 1987.

J. X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, and T. Kobayashi, Creep Deformation Mechanisms in Some Modern Single-Crystal Superalloys, pp.189-195, 2004.

R. D. Field, T. M. Pollock, and W. H. Murphy, « The development of ?/?' interfacial dislocation networks during creep in Ni-base superalloys, pp.557-566, 1992.

M. Hantcherli, F. Pettinari-sturmel, B. Viguier, J. Douin, and A. Coujou, « Evolution of interfacial dislocation network during anisothermal high-temperature creep of a nickel-based superalloy, Scripta Materialia, vol.66, pp.143-146, 2012.

J. Cormier, « Comportement en fluage anisotherme à haute et très haute température du superalliage monocristallin MC2, 2006.

S. J. Park, S. M. Seo, Y. S. Yoo, H. W. Jeong, and H. Jang, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, vol.90, pp.305-312, 2015.

M. C. Hardy, B. Zirbel, G. Shen, and R. Shankar, « Developing damage tolerance and creep resistance in a high strength nickel alloy for disc applications », Superalloys, pp.83-90, 2004.

C. L. Brundidge, « Development of a processing-structure-fatigue property model for single crystal superalloys, 2011.

M. V. Nathal and L. J. Ebert, « The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys, Metallurgical Transactions A, vol.16, pp.1849-1862, 1985.

H. Murakami, T. Yamagata, H. Harada, and M. Yamazaki, « The influence of Co on creep deformation anisotropy in Ni-base single crystal superalloys at intermediate temperatures, Materials Science and Engineering: A, vol.223, pp.54-58, 1997.

C. M. Rae, N. Matan, and R. C. Reed, « On the role of stacking fault shear during the primary creep of CMSX-4 superalloy single crystals, Materials Science and Engineering, vol.300, pp.127-135, 2001.

G. L. Drew, R. C. Reed, K. Kakehi, and C. M. Rae, Single crystal superalloys: the transition from primary to secondary creep, The Minerals, Metals and Materials Society (TMS), pp.127-136, 2004.

J. X. Chang, D. Wang, T. Liu, G. Zhang, L. H. Lou et al., « Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy, Corrosion Science, vol.98, pp.585-591, 2015.

J. X. Chang, D. Wang, G. Zhang, L. H. Lou, J. Zhang et al., « Effect of Re and Ta on Hot Corrosion Resistance of Nickel-base Single Crystal Superalloys, pp.177-185, 2016.

B. Paintendre, « Influence de la composition sur la constitution et les propriétés mécaniques de superalliages base nickel produits par la métallurgie des poudres, 1986.

D. Lestrat, Etude microstructurale et mécanique d'un superalliage base nickel. Contribution de l'endommagement par fluage, vol.2, 1989.

M. Marty, A. Walder, and C. Diot, Influence of solid solution strengthening elements on the properties of PM nickel base alloys », PM Aerospace Materials, vol.1, p.10, 1987.

R. M. Pelloux and N. J. Grant, « Solid solution and second phase strengthening of nickel alloys at high and low temperatures, Transactions of the Metallurgical Society of Aime, vol.218, pp.232-237, 1960.

B. E. Beeston and L. K. France, « The stacking-fault energies of some binary nickel alloys fundamental to the Nimonic series, Journal of the Institute of Metals, vol.96, pp.105-107, 1968.

Z. Shi, S. Liu, X. Wang, and J. Li, « Effects of Cr content on microstructure and mechanical properties of single crystal superalloy, Transactions of Nonferrous Metals Society of China, vol.25, pp.776-782, 2015.

A. S. Audion, C. Hocquard, and J. F. Labbé, Panorama 2013 du marché du cobalt, 2014.

W. Z. Wang, T. Jin, J. H. Jia, J. L. Liu, and Z. Q. Hu, Effects of cobalt on creep rupture properties and dislocation structures in nickel base superalloys, vol.624, pp.220-228, 2015.

R. N. Jarret, J. P. Collier, and J. K. Tien, Effects of cobalt on the hot workability of nickel-base superalloys, 1984.

M. S. Karunaratne and R. C. Reed, « Interdiffusion of the platinum group metals in nickel at elevated temperatures, Acta Materialia, vol.51, pp.2905-2919, 2003.

E. Fleischmann, M. K. Miller, E. Affeldt, and U. Glatzel, « Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys, Acta Materialia, vol.87, pp.350-356, 2015.

Y. Liang, S. Li, C. Ai, Y. Han, and S. Gong, « Effect of Mo content on microstructure and stress-rupture properties of a Ni-base single crystal superalloy », Progress in Natural Science: Materials International, vol.26, issue.1, pp.112-116, 2016.

W. T. Loomis, J. W. Freeman, and D. L. Sponseller, The Influence of Molybdenum on the Phase in Experimental Nickel-Base Superalloys, vol.3, 1972.

T. Sugui, W. Minggang, L. Tang, Q. Benjiang, and X. , « Influence of TCP phase and its morphology on creep properties of single crystal nickel-based superalloys, Materials Science and Engineering: A, vol.527, pp.5444-5451, 2010.

A. S. Audion and B. Martel-jantin, Panorama 2010 du marché du rhénium », BRGM/ RP-60205-FR, 2011.

A. S. Audion and B. , Martel-Jantin, « Fiches de synthèse sur la criticité des métaux -le rhénium, BRGM/ RP-60205-FR, 2016.

R. Smashey, , vol.904, p.402, 1975.

M. Huang and J. Zhu, « An overview of rhenium effect in single-crystal superalloys, Rare Metals, vol.35, issue.2, pp.127-139, 2016.

A. Mottura and R. C. Reed, What is the role of rhenium in single crystal superalloys? », Matec Web of Conferences, vol.14, p.1001, 2014.

A. F. Giamei, , 1978.

A. Heckl, R. Rettig, and R. F. Singer, Solidification Characteristics and Segregation Behavior of Nickel-Base Superalloys in Dependence on Different Rhenium and Ruthenium Contents, vol.41, pp.202-211, 2010.

D. Blavette, P. Caron, and T. Khan, « An atom probe investigation of the role of rhenium additions in improving creep resistance of Ni-base superalloys, Scripta Metallurgica, vol.20, pp.1395-1400, 1986.

N. Wanderka and U. Glatzel, « Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy, Materials Science and Engineering: A, vol.203, 1995.

J. Rusing, J. , N. Wanderka, U. Czubayko, V. Naundorf et al., « Rhenium distribution in the matrix and near the particle-matrix interface in a model Ni-Al-Ta-Re superalloy, Scripta Materialia, vol.46, issue.3, 2002.

T. Zhu, C. Y. Wang, and Y. Gan, « Effect of Re in ? phase, ?' phase and ?/?' interface of Ni-based single-crystal superalloys, Acta Materialia, vol.58, issue.6, 2010.

A. Mottura, M. K. Miller, and R. C. Reed, « Atom probe tomography analysis of possible rhenium clustering in nickel-based superalloys, The 11th International Symposium on Superalloys-Superalloys, 2008.

A. Mottura, R. T. Wu, M. W. Finnis, and R. C. Reed, « A critique of rhenium clustering in Ni-Re alloys using extended X-ray absorption spectroscopy, Acta Materialia, vol.56, issue.11, pp.2669-2675, 2008.

A. Mottura, A. , N. Warnken, M. K. Miller, M. W. Finnis et al., Atom probe tomography analysis of the distribution of rhenium in nickel alloys, Acta Materialia, vol.58, issue.3, pp.931-942, 2010.

A. Mottura, M. W. Finnis, and R. Reed, On the possibility of rhenium clustering in nickel-based superalloys, vol.60, p.2866, 2012.

J. Smith, « Effects of Cr and Re additions upon coarsening and deformation behavior of single-crystal Ni-base model superalloys, 1978.

J. Y. Chen, Q. Feng, L. Cao, and Z. Q. Sun, « Improvement of stress-rupture property by Cr addition in Ni-based single crystal superalloys, Materials Science Engineering: A, pp.528-3791, 2010.

P. J. Warren, A. Cerezo, and G. D. Smith, « An atom probe study of the distribution of rhenium in a nickel-based superalloy, Materials Science Enginerring: A, vol.250, issue.1, p.88, 1998.

K. E. Yoon, D. Isheim, R. D. Noebe, and D. N. Seidman, « Nanoscale studies of the chemistry of a René N6 superalloy, Interface Sci, vol.9, p.249, 2001.

Q. Ding, S. Li, L. Q. Chen, X. Han, Z. Zhang et al., « Re segregation at interfacial dislocation network in a nickel-based superalloy, Acta Materialia, vol.154, pp.137-146, 2018.

M. Huang, Z. Y. Cheng, J. C. , J. R. Li, J. Q. Hu et al., « Coupling between Re segregation and ?/?' interfacial dislocations during high-temperature, low-stress creep of a nickel-based single-crystal superalloy, Acta Materialia, vol.76, 2014.

A. Heckl, S. Neumeier, S. Cenanovic, M. Göken, and R. F. Singer, « Reasons for the enhanced phase stability of Ru-containing nickel-based superalloys, Acta Materialia, vol.59, pp.6563-6573, 2011.

A. Heckl, S. Neumeier, M. Göken, and R. F. Singer, « The effect of Re and Ru on ?/?' microstructure, ?-solid solution strengthening and creep strength in nickel-base superalloys, Materials Science and Engineering A, vol.528, pp.3435-3444, 2011.

S. Tian, B. Zhang, D. Shu, J. Wu, Q. Li et al., Creep properties and deformation mechanism of, vol.643, pp.119-126, 2015.

R. Reed, A. Yeh, S. Tin, S. S. Babu, and M. K. Miller, « Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography, Scripta Materialia, vol.51, issue.4, p.327, 2004.

A. Sato, A. , H. Harada, T. Yokokawa, T. Murakumo et al., The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys », vol.54, p.1679, 2006.

T. Yokokawa, M. Osawa, K. Nishida, T. Kobayashi, Y. Koizumi et al., « Partitioning behavior of platinum group metals on the ? and ?' phases of Ni-base superalloys at high temperatures, vol.49, p.1041, 2003.

R. A. Hobbs, L. Zhang, C. M. Rae, and S. Tin, « TCP suppression in a rutheniumbearing single-crystal nickel-based superalloy, JOM Us, vol.60, issue.7, p.37, 2008.

R. A. Hobbs, L. Zhang, C. M. Rae, and S. Tin, « Mechanisms of topologically closepacked phase suppression in an experimental ruthenium-bearing single-crystal nickel-base superalloy at 1100 °C, Metallurgical and Materials Transactions: A, vol.39, issue.5, p.1014, 2008.

Z. Shi, J. Li, and E. S. Liu, « Effect of Hf on Stress Rupture Properties of DD6 Single Crystal Superalloy After Long Term Aging, Journal of Iron and Steel Research International, vol.19, pp.66-70

L. Wang, « Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy, Materials Characterization, vol.104, pp.81-85, 2015.

L. Wang, D. Wang, T. Liu, X. W. Li, W. G. Jiang et al., Effect of carbon addition on the creep properties in a Ni-based single crystal superalloy, Materials Science and Engineering: A, vol.385, issue.2, pp.105-112, 2004.

X. W. Li, T. Liu, L. Wang, X. G. Liu, L. H. Lou et al., « Effect of carbon content on the microstructure and creep properties of a 3rd generation single crystal nickel-base superalloy, Materials Science and Engineering: A, vol.639, pp.732-738, 2015.

R. C. Reed, The Superalloys: Fundamentals and Applications, 2006.

L. Dirand, « Fluage à haute température d'un superalliage monocristallin expérimentation in situ en rayonnement synchrotron, 2011.

K. Harris and J. B. Wahl, Low Sulfur Nickel-base Single Crystal Superalloy with ppm Additions of Lanthanum and Yttrium », Patern US 9, vol.150, p.944, 2015.

K. Harris and J. B. Wahl, Improved Single Crystal Superalloys, pp.45-52, 2004.

K. Harris and J. B. Wahl, High Strength Single Crystal Nickel-Based Superalloy, vol.942, pp.411-412, 2014.

J. B. Wahl, K. Harris, ;. Hardy, E. Huron, U. Glatzel et al., « CMSX-4 ® Plus Single Crystal Alloy Development, Characterization and Application Development, pp.25-33, 2016.

G. L. Erickson, The Development and Application of CMSX-10 », in Superalloys, Eighth International Symposium, pp.35-44, 1996.

J. Cormier, ;. Hardy, E. Huron, U. Glatzel, B. Griffin et al., Thermal Cycling Creep Resistance of Ni-Based Single Crystal Superalloys », in Superalloys, pp.383-394, 2016.

F. Diologent, Comportement en fluage et en traction de superalliages monocristallins à base de nickel, 2002.

J. B. Wahl and K. Harris, Advances in Single Crystal Superalloys -Control of Critical Elements

B. D. Cullity, Addison-Wesley Series in Metallurgy and Materials, 1967.

T. Herbland, Formation théorique en radiocristallographie (RXO) », Note interne Safran Snecma, 2011.

M. Arnoux, Engineering science, Etude du comportement en fluage à haute température du superalliage monocristallin à base de nickel MCNG : Effet d'une surchauffe, 2009.

G. Matache, D. M. Stefanescu, C. Puscasu, and E. , Alexandrescu, « Dendritic segregation and arm spacing in directionally solidified CMSX-4 superalloy, International Journal of Cast Metals Research, vol.29, issue.5, pp.303-316, 2016.

T. M. Pollock, W. H. Murphy, E. H. Goldman, D. L. Uram, and J. S. Tu, « Grain Defect Formation During Directional Solidification of Nickel Base Single Crystals », in Superalloys, Seventh International Symposium, pp.125-134, 1992.

A. Heckl, S. Neumeier, M. Göken, and R. F. Singer, « The effect of Re and Ru on ? and ?' Microstructure, ?-solid Solution Strengthening and Creep Strength in Nickel-Base Superalloys, Materials Science and Engineering A, vol.528, pp.3435-3444, 2011.

C. Esnouf, Caractérisation microstructurale des matériaux : Analyse par les rayonnements X et électronique », Lausanne : Presses polytechniques et universitaires romandes, 2011.

R. Thehorel, « Comportement mécanique haute température du superalliage monocristallin AM1 : étude in situ par une nouvelle technique de diffraction en rayonnement synchrotron, 2018.

A. Fredholm, « Monocristaux d'alliages base nickel : relation entre composition, microstructure et comportement en fluage à haute température, 1987.

R. A. Mackay and M. V. Nathal, coarsening in high volume fraction nickel-base alloys, Acta Metallurgica Materialia, vol.38, issue.6, pp.993-1005, 1990.

M. V. Nathal, R. A. Mackay, and R. G. Garlick, « Temperature dependence of ???' lattice mismatch in nickel-base superalloys, Materials Science and Engineering, vol.75, pp.195-205, 1985.

, Bibliographie du Chapitre, vol.3

J. B. Wahl, K. Harris, and C. , Advances in Single Crystal Superalloys -Control of Critical Elements, p.11

K. Harris and J. B. Wahl, Improved Single Crystal Superalloys, pp.45-52, 2004.

J. Cormier, ;. Hardy, E. Huron, U. Glatzel, B. Griffin et al., Thermal Cycling Creep Resistance of Ni-Based Single Crystal Superalloys », in Superalloys, pp.383-394, 2016.

J. B. Wahl, K. Harris, «. Cmsx-4®-;-m, E. Hardy, U. Huron et al., Plus Single Crystal Alloy Development, Characterization and Application Development, pp.25-33, 2016.

K. Harris and J. Wahl, Low Sulfur Nickel-base Single Crystal Superalloy with ppm Additions of Lanthanum and Yttrium », Patern US 9, vol.150, 2015.

W. Z. Wang, T. Jin, J. H. Jia, J. L. Liu, and Z. Q. Hu, Effects of cobalt on creep rupture properties and dislocation structures in nickel base superalloys, vol.624, pp.220-228, 2015.

W. Z. Wang, T. Jin, J. L. Liu, X. F. Sun, H. R. Guan et al., « Role of Re and Co on microstructures and ?? coarsening in single crystal superalloys, Materials Science and Engineering: A, vol.479, pp.148-156, 2008.

R. C. Reed, The Superalloys: Fundamentals and Applications, 2006.

X. Tan, J. Liu, T. Jin, X. Sun, and Z. Hu, « Influence of Cr addition on microstructure of a 5% Re-containing single crystal nickel-based superalloy, Transactions of Nonferrous Metals Society of China, vol.21, issue.5, pp.1004-1008, 2011.

E. Fleischmann, M. K. Miller, E. Affeldt, and U. Glatzel, « Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys, Acta Materialia, vol.87, pp.350-356, 2015.

S. Park, S. Seo, Y. Yoo, H. Jeong, and H. Jang, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, vol.90, pp.305-312, 2015.

N. El-bagoury and «. Ni, Based Superalloy: Casting Technology, Metallurgy, Development, Properties and Applications, International Journal of Engineering Sciences & Research Technology, pp.108-152, 2016.

J. Belan, «. Gcp, and T. Phases, Nickel-base Superalloys », Materials Today: Proceedings, vol.3, pp.936-941, 2016.

X. W. Li, T. Liu, L. Wang, X. G. Liu, L. H. Lou et al., « Effect of carbon content on the microstructure and creep properties of a 3rd generation single crystal nickel-base superalloy, Materials Science and Engineering: A, vol.639, pp.732-738, 2015.

L. Wang, D. Wang, T. Liu, X. W. Li, W. G. Jiang et al., Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickelbased superalloy, Materials Characterization, vol.104, pp.81-85, 2015.

B. C. Wilson, E. R. Cutler, and G. E. Fuchs, Effect of solidification parameters on the microstructures and properties of CMSX-10 », vol.479, pp.356-364, 2008.

A. Heckl, R. Rettig, and R. F. Singer, Solidification Characteristics and Segregation Behavior of Nickel-Base Superalloys in Dependence on Different Rhenium and Ruthenium Contents, vol.41, pp.202-211, 2010.

G. Liu, L. Liu, X. Zhao, B. Ge, J. Zhang et al., Effects of Re and Ru on the Solidification Characteristics of Nickel-Base Single-Crystal Superalloys, vol.42, pp.2733-2741, 2011.

B. S. Bokstein, A. I. Epishin, T. Link, V. A. Esin, A. O. Rodin et al., « Model for the porosity growth in single-crystal nickel-base superalloys during homogenization, Scripta Materialia, vol.57, issue.9, pp.801-804, 2007.

B. C. Wilson, J. A. Hickman, and G. E. Fuchs, « The effect of solution heat treatment on a single-crystal Ni-based superalloy, JOM, vol.55, pp.35-40, 2003.

Y. Zhang, L. Liu, T. Huang, Y. Li, Z. Jie et al., « Investigation on remelting solution heat treatment for nickel-based single crystal superalloys, Scripta Materialia, vol.136, pp.74-77, 2017.

S. M. Seo, J. H. Lee, Y. S. Yoo, C. Y. Jo, H. Miyahara et al., A Comparative Study of the ?/?' Eutectic Evolution During the Solidification of Ni-Base Superalloys, Metallurgical and Materials Transactions A, vol.3150, 2011.

T. Murakumo, T. Kobayashi, Y. Koizumi, and H. Harada, Creep behaviour of Ni-base single-crystal superalloys with various ?? volume fraction, vol.52, pp.3737-3744, 2004.

A. Heckl, R. Rettig, S. Cenanovic, M. Göken, and R. F. Singer, « Investigation of the final stages of solidification and eutectic phase formation in Re and Ru containing nickel-base superalloys », Journal of Crystal Growth, vol.312, pp.2137-2144, 2010.

A. Fredholm, « Monocristaux d'alliages base Nickel : relation entre composition, microstructure et comportement en fluage à haute température, 1987.

F. Diologent, Comportement en fluage et en traction de superalliages monocristallins à base de nickel, 2002.

A. Epishin, U. Brückner, P. D. Portella, and T. Link, « Influence of small rhenium additions on the lattice spacing of nickel solid solution, Scripta Materialia, vol.48, pp.455-459, 2003.

U. Brückner, A. Epishin, and T. Link, « Local X-ray diffraction analysis of the structure of dendrites in single crystal nickel-base superalloys, Acta Materialia, vol.45, pp.5223-5231, 1997.

P. Caron, High Gamma Prime Solvus New Generation Nickel-Based Superalloys for Single Crystal Turbine Blade Applications, pp.737-346, 2000.

R. Watanabe and T. Kuno, « Alloy Design of Nickel-Base Precipitation Hardened Superalloys, Trans. ISIJ, vol.16, pp.437-446, 1976.

C. Schulze and M. Feller-kniepmeier, « Transmission electron microscopy of phase composition and lattice misfit in the Re-containing Ni-base superalloy CMSX-10 », Materials Science and Engineering, vol.281, pp.204-212, 2000.

M. Arnoux, Engineering science, Etude du comportement en fluage à haute température du superalliage monocristallin à base de nickel MCNG : Effet d'une surchauffe, 2009.

F. Louchet, M. Veron, Y. Brechet, A. Hazotte, J. Buffiere et al., New trends in directionnal coarsening of superalloys under stress, pp.1482-1490, 1998.

L. A. Chapman, « Application of high temperature DSC technique to nickel based superalloys, Journal of Materials Science, vol.39, pp.7229-7236, 2004.

H. T. Pang, L. Zhang, R. A. Hobbs, H. J. Stone, and C. M. Rae, « Solution Heat Treatment Optimization of Fourth-Generation Single-Crystal Nickel-Base Superalloys, Metallurgical and Materials Transactions A, vol.43, pp.3264-3282, 2012.

K. Harris and J. Wahl, Low Sulfur Nickel-base Single Crystal Superalloy with ppm Additions of Lanthanum and Yttrium », Patern US 9, vol.150, 2015.

J. B. Wahl, K. Harris, «. Cmsx-4®-;-m, E. Hardy, U. Huron et al., Plus Single Crystal Alloy Development, Characterization and Application Development, pp.25-33, 2016.

T. Grosdidier, A. Hazotte, and A. Simon, « Precipitation and dissolution processes in ?/?' single crystal nickel-based superalloys, vol.256, pp.183-196, 1998.

T. Murakumo, T. Kobayashi, Y. Koizumi, and H. Harada, Creep behaviour of Ni-base single-crystal superalloys with various ?? volume fraction, vol.52, pp.3737-3744, 2004.

M. V. , Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys, Metallurgical Transactions A, vol.18, issue.11, pp.1961-1970, 1987.

R. C. Reed, The Superalloys: Fundamentals and Applications, 2006.

B. S. Bokstein, V. Esin, A. Rodin, and I. L. Svetlov, Models for the Porosity Growth and Dissolution in Single-Crystal Nickel-Base Superalloys », Defect and Diffusion Forum, pp.187-192, 2010.

N. S. Husseini, D. P. Kumah, J. Z. Yi, C. J. Torbet, D. A. Arms et al.,

M. Pollock, J. W. Jones, and R. Clarke, « Mapping single-crystal dendritic microstructure and defects in nickel-base superalloys with synchrotron radiation, Acta Materialia, vol.56, pp.4715-4723, 2008.

A. Heckl, R. Rettig, and R. F. Singer, Solidification Characteristics and Segregation Behavior of Nickel-Base Superalloys in Dependence on Different Rhenium and Ruthenium Contents, vol.41, pp.202-211, 2010.

A. Epishin, T. Link, U. Bruckner, B. Fedelich, and P. Portella, Effects of Segregation in Nickel-Base Superalloys: Dendritic Stresses, pp.537-543, 2004.

G. E. Fuchs, « Solution heat treatment response of a third-generation single crystal Nibase superalloy, Materials Science and Engineering: A, vol.300, pp.52-60, 2001.

C. Rae, V. Vorontsov, L. Kovarik, and M. Mills, Dislocations in a Ni-based superalloy during low temperature creep, vol.14, p.1006, 2014.

X. Wu, A. Dlouhy, Y. M. Eggeler, E. Spiecker, A. Kostka et al., « On the nucleation of planar faults during low temperature and high stress creep of single crystal Ni-base superalloys, Acta Materialia, vol.144, pp.642-655, 2018.

S. Tian, X. Ding, Z. Guo, J. Xie, Y. Xue et al., « Damage and fracture mechanism of a nickel-based single crystal superalloy during creep at moderate temperature, Materials Science and Engineering: A, vol.594, pp.7-16, 2014.

M. V. Nathal and L. J. Ebert, « Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100, Metallurgical Transactions A, vol.16, pp.427-439, 1985.

P. Caron and T. Khan, « Improvement of Creep strength in a nickel-base single-crystal superalloy by heat treatment, Materials Science and Engineering, vol.61, issue.2, pp.173-184, 1983.

K. Kakehi, Effect of primary and secondary precipitates on creep strength of Ni-base superalloy single crystals, Materials Science and Engineering: A, vol.278, pp.135-141, 2000.

N. Matan, D. C. Cox, P. Carter, M. A. Rist, C. M. Rae et al., Creep of CMSX-4 superalloy single crystals: effects of misorientation and temperature, vol.47, pp.1549-1563, 1999.

R. C. Reed, D. C. Cox, and C. M. Rae, « Damage accumulation during creep deformation of a single crystal superalloy at 1150°C », Materials Science and Engineering: A, vol.448, pp.88-96, 2007.

S. H. Ai, V. Lupine, and M. Maldini, Creep fracture mechanisms in single crystal superalloys, vol.26, p.6, 1991.

M. Simonetti and P. Caron, Role and behaviour of v phase during deformation of a nickel-based single crystal superalloy, Materials Science and Engineering A, p.12, 1998.

M. Acharya and G. Fuchs, « The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys, Materials Science and Engineering: A, vol.381, pp.143-153, 2004.

M. Pessah-simonetti, Effets des instabilités structurales sur les propriétés mécaniques du superalliage monocristallin MC2, 1994.

S. Dryepondt, « Comportement et endommagement en fluage à haute température de parois minces en superalliage monocristallin MC2 : effets de l'oxydation et de l'application d'un revêtement MCrAlY, 2004.

A. Epishin, T. Link, and G. Nolze, « SEM investigation of interfacial dislocations in nickel-base superalloys, Journal of Microscopy, vol.228, issue.2, pp.110-117, 2007.

A. Epishin and T. Link, « Mechanisms of High Temperature Creep of Nickel-Base Superalloys Under Low Applied Stress », in Superalloys, Tenth International Symposium), pp.137-143, 2004.

J. X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, and T. Kobayashi, Creep Deformation Mechanisms in Some Modern Single-Crystal Superalloys, pp.189-195, 2004.

K. Y. Cheng, C. Y. Jo, D. H. Kim, T. Jin, and Z. Q. Hu, « Influence of local chemical segregation on the ?? directional coarsening behavior in single crystal superalloy CMSX-4, Materials Characterization, vol.60, pp.210-218, 2009.

R. C. Reed, D. C. Cox, and C. M. Rae, Kinetics of rafting in a single crystal superalloy: effects of residual microsegregation, vol.23, pp.893-902, 2007.

M. V. Nathal, R. A. Mackay, and R. V. Miner, « Influence of precipitate morphology on intermediate temperature creep properties of a nickel-base superalloy single crystal, Metallurgical Transactions A, vol.20, issue.1, pp.133-141, 1989.

A. Hazotte and J. Lacaze, , vol.23, p.6, 1989.

T. Hammerschmidt, J. Kobmann, C. H. Zenk, S. Neumeier, M. Göken et al., « The Role of Local Chemical Composition for TCP Phase Precipitation in Ni-Base and Co-Base Superalloys, pp.89-96, 2016.

A. Epishin, T. Link, U. Brückner, and P. D. Portella, « Investigation of porosity in singlecrystal nickel-base superalloy », 7th Liège conference on materials for advanced power engineering, pp.710-714, 2002.

F. Wang, D. Ma, J. Zhang, L. Liu, S. Bogner et al., Bührig-Polaczek, « Effect of solidification parameters on the microstructures of superalloy CMSX-6 formed during the downward directional solidification process », Journal of Crystal Growth, vol.389, pp.47-54, 2014.

H. Li, L. Zheng, H. Zhang, S. Li, H. Zhang et al., « Effects of solidification parameters on microstructures of Ni3Al based single crystal, Procedia Engineering, vol.27, pp.1187-1192, 2012.

B. C. Wilson, E. R. Cutler, and G. E. Fuchs, Effect of solidification parameters on the microstructures and properties of CMSX-10 », vol.479, pp.356-364, 2008.

J. Zhang, J. Li, T. Jin, X. Sun, and Z. Hu, Effect of Solidification Parameters on the Microstructure and Creep Property of a Single Crystal Ni-base Superalloy », Journal of Materials Science & Technology, vol.26, pp.889-894, 2010.

A. Volek and R. F. Singer, « Influence of Solidification Conditions on TCP Phase Formation, Casting Porosity and High Temperature Mechanical Properties in a Re-Containing Nickel-Base Superalloy with Columnar Grain Structure », in Superalloys, Tenth International Symposium, pp.713-718, 2004.

M. Benider, V. Esin, and V. Maurel, « Zones de réaction secondaire (SRZ) dans le revêtement ?-(Ni, Pt)Al déposé sur le superalliage CMSX-4 Plus, 2017.

M. S. Chiou, A. C. Yeh, S. R. Jian, and C. M. Kuo, Effects of Cooling Rates after Solution Heat Treatment on the Creep Behavior of Directionally Solidified CM-247LC

. Superalloy, Materials Science Forum, vol.788, pp.549-553, 2014.

R. A. Ricks, A. J. Porter, and R. C. Ecob, « The growth of gamma prime precipitates in nickel-base superalloys, Acta Metallurgica, pp.43-53, 1983.

D. Mclean, Predicting growth of ?? in nickel alloys, Metal Science, vol.18, issue.5, pp.249-256, 1984.

C. Papadaki, W. Li, and A. Korsunsky, « On the Dependence of ?? Precipitate Size in a Nickel-Based Superalloy on the Cooling Rate from Super-Solvus Temperature Heat Treatment, vol.11, p.1528, 2018.

V. Mohles, D. Rönnpagel, and E. Nembach, « Simulation of dislocation glide in precipitation hardened materials, Computational Materials Science, vol.16, pp.144-150, 1999.

P. Caron, Y. Ohta, Y. G. Nakagawa, and T. Khan, Creep Deformation Anisotropy in Single Crystal Superalloys, pp.215-224, 1988.

, Bibliographie du Chapitre, vol.5

N. Matan, D. C. Cox, P. Carter, M. A. Rist, C. M. Rae et al., Creep of CMSX-4 superalloy single crystals: effects of misorientation and temperature, vol.47, pp.1549-1563, 1999.

C. M. Rae and R. C. Reed, « Primary creep in single crystal superalloys: Origins, mechanisms and effects, Acta Materialia, vol.55, pp.1067-1081, 2007.

R. A. Mackay and R. D. Maier, « The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals, Metallurgical Transactions, vol.13, pp.1747-1754, 1982.

S. H. Ai, V. Lupine, and M. Maldini, Creep Fracture Mechanisms in Single Crystal Superalloys, vol.26, p.6, 1991.

C. M. Rae and L. Zhang, « Primary creep in single crystal superalloys: some comments on effects of composition and microstructure, Materials Science and Technology, vol.25, issue.2, pp.228-235, 2009.

C. Rae, V. Vorontsov, L. Kovarik, and M. Mills, Dislocations in a Ni-based superalloy during low temperature creep, vol.14, p.1006, 2014.

G. L. Drew, R. C. Reed, K. Kakehi, and C. M. Rae, Single Crystal Superalloys: The Transition from Primary to Secondary Creep », in Superalloys, Tenth International Symposium, pp.127-136, 2004.

B. H. Kear and J. M. Oblak, « Deformation modes ?' precipitation hardened nickel-base alloys, J. Phys. Colloques, vol.35, pp.35-45, 1974.

G. Leverant and B. Kear, «The mechanism of creep in ?' precipitation-hardened nickelbase alloys at intermediate temperatures, Metall. & Mater. Trans. B, vol.1, pp.491-498, 1970.

X. Wu, A. Dlouhy, Y. M. Eggeler, E. Spiecker, A. Kostka et al., « On the nucleation of planar faults during low temperature and high stress creep of single crystal Ni-base superalloys, Acta Materialia, vol.144, pp.642-655, 2018.

C. M. Rae, N. Matan, and R. C. Reed, « The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750 °C and 750 MPa, Materials Science and Engineering: A, vol.300, pp.125-134, 2001.

T. M. Pollock and A. S. Argon, « Creep resistance of CMSX-3 nickel base superalloy single crystals, Acta Metallurgica et Materialia, vol.40, issue.1, pp.1-30, 1992.

J. W. Aveson, G. Reinhart, H. Nguyen-thi, N. Mangelinck-noël, N. Souza et al., « Origins of misorientation defects in single crystal castings: A time resolved in situ synchrotron X-ray radiography study, MATEC Web of Conferences, vol.14, p.5003, 2014.

A. Defresnes, « Endommagement en fatigue oligocyclique à 650 °C de superalliages monocristallins à base de nickel : influence de l'orientation cristallographique et d'une concentration de contrainte, 1989.

T. Grosdidier, A. Hazotte, and A. Simon, « Precipitation and dissolution processes in ?/?' single crystal nickel-based superalloys, Materials Science and Engineering A, vol.256, pp.183-196, 1998.

H. Murakami, T. Yamagata, H. Harada, and M. Yamazaki, « The influence of Co on creep deformation anisotropy in Ni-base single crystal superalloys at intermediate temperatures, Materials Science and Engineering: A, vol.223, pp.54-58, 1997.

R. C. Reed, The Superalloys: Fundamentals and Applications, vol.6, 2006.

F. R. Larson and J. Miller, « A time-temperature relationship for rupture and creep stresses, Transactions of the ASME, vol.174, pp.765-775, 1954.

J. B. Wahl, K. Harris, «. Cmsx-4, ;. M. Hardy, E. Huron et al., Plus Single Crystal Alloy Development, Characterization and Application Development, pp.25-33, 2016.

R. C. Reed, The Superalloys: Fundamentals and Applications, 2006.

S. H. Ai, V. Lupine, and M. Maldini, Creep Fracture Mechanisms in Single Crystal Superalloys, vol.26, p.6, 1991.

A. Epishin and T. Link, « Mechanisms of High Temperature Creep of Nickel-Base Superalloys Under Low Applied Stress », in Superalloys, Tenth International Symposium), pp.137-143, 2004.

M. Probst-hein, A. Dlouhy, and G. Eggeler, « Interface dislocations in superalloy single crystal, Acta Mater, vol.47, issue.8, pp.2497-2510, 1999.

R. C. Reed, D. C. Cox, and C. M. Rae, « Damage accumulation during creep deformation of a single crystal superalloy at 1150°C », Materials Science and Engineering: A, vol.448, pp.88-96, 2007.

J. Le-graverend, J. Cormier, S. Kruch, F. Gallerneau, and J. Mendez, « Microstructural parameters controlling high-temperature creep life of the Nickel-base single-crystal superalloy MC2, Metall. & Mater. Trans. A, vol.43, pp.3988-3997, 2012.

K. Matuszewski, A. Müller, N. Ritter, R. Rettig, K. J. Kurzyd?owski et al., On the Thermodynamics and Kinetics of TCP Phase Precipitation in Re-and Ru-Containing Ni-base Superalloys, vol.17, pp.1127-1133, 2015.

D. Ayrault, « Fluage à haute température de superalliage base nickel monocristallins, 1989.

L. Dirand, « Fluage à haute température d'un superalliage monocristallin expérimentation in situ en rayonnement synchrotron, 2011.

R. C. Reed, D. C. Cox, and C. M. Rae, Kinetics of rafting in a single crystal superalloy: effects of residual microsegregation, vol.23, pp.893-902, 2007.

A. Epishin, T. Link, U. Brükner, and P. D. Portella, « Kinetics of the Topological Inversion of the ?/?'-microstructure during creep of a nickel-based superalloy, Acta mater, vol.49, pp.4017-4023, 2001.

P. Caron, C. Ramusat, and F. Diologent, « Influence of the ?' fraction on the topological inversion during high temperature creep of single crystal superalloys, pp.159-167, 2008.

M. V. , Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys, Metallurgical Transactions A, vol.18, issue.11, pp.1961-1970, 1987.

A. Fredholm, « Monocristaux d'alliages base Nickel : relation entre composition, microstructure et comportement en fluage à haute température, 1987.

R. D. Field, T. M. Pollock, and W. H. Murphy, « The development of ?/?' interfacial dislocation networks during creep in Ni-base superalloys, pp.557-566, 1992.

T. M. Pollock and A. S. Argon, « Creep resistance of CMSX-3 nickel base superalloy single crystals, Acta Metallurgica et Materialia, vol.40, issue.1, pp.1-30, 1992.

R. C. Reed, N. Matan, D. C. Cox, M. A. Rist, and C. M. Rae, Creep of CMSX-4 superalloy single crystals: effects of rafting at high temperature, vol.47, pp.3367-3381, 1999.

R. Reed, Z. Zhu, and D. Credden, « A Nickel-Based Alloy Pattern », Patent Application Publication US 2018/0216212 A1, Oxford University Innovation limited, 2018.

F. Diologent, Comportement en fluage et en traction de superalliages monocristallins à base de nickel, 2002.

J. X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, and T. Kobayashi, Creep Deformation Mechanisms in Some Modern Single », in Superalloys, pp.137-143, 2004.

J. X. Zhang, T. Murakumo, Y. Koizumi, and H. Harada, « The influence of interfacial dislocation arrangements in a fourth-generation single crystal TMS-138 superalloy on creep properties, Journal of Materials Science, vol.38, pp.4883-4888, 2003.

Q. Ding, S. Li, L. Q. Chen, X. Han, Z. Zhang et al., « Re segregation at interfacial dislocation network in a nickel-based superalloy, Acta Materialia, vol.154, pp.137-146, 2018.

P. Kontis, Z. Li, D. M. Collins, J. Cormier, D. Raabe et al., « The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys, Scripta Materialia, vol.145, pp.76-80, 2018.

P. Caron, High Gamma Prime Solvus New Generation Nickel-Based Superalloys for Single Crystal Turbine Blade Applications, pp.737-346, 2000.

A. Lasalmonie and J. L. Strudel, Interfacial dislocation networks around ?' precipitates in nickel-base alloys. », vol.32, pp.937-949, 1975.

T. Link, A. Epishin, M. Paulisch, and T. , « Topography of semicoherent ?/?'-interfaces in superalloys: Investigation of the formation mechanism, Materials Science and Engineering, vol.528, issue.19-20, pp.6225-6234, 2011.

M. Arnoux, Engineering science, Etude du comportement en fluage à haute température du superalliage monocristallin à base de nickel MCNG : Effet d'une surchauffe, 2009.

R. Reed, Z. Zhu, and D. Credden, « A Nickel-Based Alloy Pattern », Patent Application Publication US 2018/0216212 A1, Oxford University Innovation limited, 2018.

R. C. Reed, The Superalloys: Fundamentals and Applications, vol.2, 2006.

N. Schell, A. King, F. Beckmann, T. Fischer, M. Müller et al., The High Energy Materials Science Beamline (HEMS) at PETRA III », vol.772, pp.57-61, 2014.

L. Dirand, « Fluage à haute température d'un superalliage monocristallin expérimentation in situ en rayonnement synchrotron, 2011.

R. Thehorel, « Comportement mécanique haute température du superalliage monocristallin AM1 : étude in situ par une nouvelle technique de diffraction en rayonnement synchrotron, 2018.

W. Cartographies,

, Ni) et de la ségrégation chimique dans les dendrites (W, Re majoritairement) (Figure A3.1). De même, on peut déterminer les éléments chimiques, La Figure A3.1 et la Figure A3.2 présentent des cartographies WDS des éléments présents dans le CMSX-4 Plus et dans le René N5. En particulier, on peut aisément se rendre compte des éléments constituants les agrégats eutectiques

, Figure A3.1 -Cartographie WDS en niveau de gris sur du CMSX-4 Plus (état initial) pour les différents éléments (l'image pour le Mo est manquante) où les ségrégations chimiques dans les dendrites et les agrégats eutectiques sont visibles

A. Figure, 2 -Cartographie WDS en niveau de gris sur du René N5 (état initial) pour les différents éléments où des carbures sont visibles

, La Figure A4.1 présente la distribution de taille des précipités ?' pour le CMSX-4 et le CMSX-4 Plus déterminée par analyse d'image, avec un fit par une loi normale, La Figure A4.1 superpose les distributions pour l'état initial et l'état optimisé

, La taille moyenne des précipités ?' après le traitement optimisé devient presque identique si comparée entre les coeurs dendrites et les espaces interdendritiques respectivement pour chaque alliage. On peut aussi remarquer une diminution de la taille moyenne et une diminution de la largeur de la distribution des précipités ?' entre l'état initial et l'état optimisé. On peut donc confirmer que l'état optimisé présente une distribution plus homogène, Une grande disparité de taille des précipités ?' entre les coeurs de dendrites et les espaces interdendritiques pour les deux alliages dans l'état initial est observée

A. Figure, 1 -Distributions de la taille des précipités ?' avec un fit par une loi normale dans les coeurs de dendrites (D, trait plein) et dans les espaces interdendritique (EI, trait en pointillés) pour les états de traitement thermique initial (ini) et optimisé (opti) pour : (a) le CMSX-4

, Cas du CMSX-4 Plus par deux fondeurs différents

, On peut cependant noter, que la taille moyenne des précipités ?' dans l'alliage élaboré par le fondeur A est légèrement supérieure à la taille moyenne des précipités dans l'alliage élaboré par le fondeur B, dans les coeurs dendrites et dans les espaces interdendritiques. De même, La Figure A4.2 présente la distribution de taille des précipités ?' déterminée par analyse d'image

, Annexes