S. Mitra, A. Rodríguez-de-castro, E. Mansori, and M. , The effect of ageing process on threepoint bending strength and permeability of 3D printed sand molds, Int J Adv Manuf Technol, vol.97, pp.1241-51, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02317686

S. Mitra, A. Rodríguez-de-castro, E. Mansori, and M. , On the rapid manufacturing process of functional 3D printed sand molds, J Manuf Process, vol.42, pp.202-214, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02279236

S. Mitra, M. El-mansori, R. De-castro, A. Costin, and M. , Study of the evolution of transport properties induced by additive processing sand mold using X-ray computed tomography, J Mater Process Technol, vol.277, p.116495, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02353628

T. Gutowski, Casting 2.810 n.d

E. M. Sachs, S. Haggerty, J. Michael, and P. A. Williams, Three-Dimensional Printing Techniques, 1993.

E. Sachs, M. Cima, C. J. Brancazio, D. Bredt, J. Curodeau et al., Three-Dimensional Printing: The Physics and Implications of Additive Manufacturing, CIRP Ann -Manuf Technol, vol.42, pp.257-60, 1993.

J. F. Bredt and T. Anderson, Method of three dimensional printing, 1999.

E. Sachs, M. Cima, and C. J. , Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model, CIRP Ann, vol.39, p.61035, 1990.

E. Sachs, M. Cima, and C. J. , Three-dimensional printing: rapid tooling and prototypes directly form a CAD model, CIRP Ann -Manuf Technol, vol.39, pp.201-205, 1990.

E. M. Sachs, J. S. Haggerty, M. J. Cima, and P. A. Williams, Three-dimensional printing techniques, 1993.

U. S. Patent, S. Haggerty, J. Michael, and P. A. Williams, Three-Dimensional Printing Techniques-United States Patent, 1993.

C. B. Williams, Design and development of layer-based additive manufacturing process for realization of metal parts of designed mesostructure, p.421, 2008.

E. S. Almaghariz, B. P. Conner, L. Lenner, R. Gullapalli, G. P. Manogharan et al., Quantifying the role of part design complexity in using 3d sand printing for molds and cores, Int J Met, vol.10, pp.240-52, 2016.

E. S. Almaghariz, Determining When to Use 3D Sand Printing : Quantifying the Role of Complexity By Eyad S . Almaghariz A thesis, 2015.

B. P. Conner, G. P. Manogharan, A. N. Martof, L. M. Rodomsky, C. M. Rodomsky et al., Making sense of 3-D printing: Creating a map of additive manufacturing products and services, Addit Manuf, vol.1, pp.64-76, 2014.

Z. X. Low, Y. T. Chua, B. M. Ray, D. Mattia, I. S. Metcalfe et al., Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, J Memb Sci, vol.523, pp.596-613, 2017.

J. Shepler and S. Chapman, ExOne -A Case Study in Optimizing Casting Design Using 3 D Printing, 2017.

Y. Motoyama, Y. Inoue, G. Saito, and M. Yoshida, A verification of the thermal stress analysis, including the furan sand mold, used to predict the thermal stress in castings, J Mater Process Technol, vol.213, pp.2270-2277, 2013.

N. Marumoto, H. Kashimura, K. Yoshida, T. Toyoda, T. Okane et al., Dynamic measurements of the load on gray cast iron castings and contraction of castings during cooling in furan sand molds, J Mater Process Technol, vol.237, pp.48-54, 2016.

L. Nastac, S. Jia, M. N. Nastac, and R. Wood, Numerical modeling of the gas evolution in furan binder-silica sand mold castings, Int J Cast Met Res, vol.29, pp.194-201, 2016.

N. Tiedje, R. Crepaz, T. Eggert, and N. Bey, , p.154

, core binders used for casting iron, aluminium and bronze in sand moulds, J Environ Sci Health A Tox Hazard Subst Environ Eng, vol.45, pp.1866-76, 2010.

S. S. Bobby, A Preliminary Investigation of Gypsum Bonded Moulds By Three Dimensional Printing, IJRET Int J Res Eng Technol, vol.03, pp.501-508, 2014.

J. Frascati, Effects of Position, Orientation, and Infiltrating Material on Three Dimensional Printing Models, Dep Mech Mater Aerosp Eng, 2007.

N. Mckenna, S. Singamneni, O. Diegel, D. Singh, T. Neitzert et al., Direct Metal casting through 3D printing : A critical analysis of the mould characteristics

, Glob Congr Manuf Manag, pp.12-16, 2008.

D. Snelling, C. B. Williams, and A. P. Druschitz, A Comparison of Binder Burnout and Mechanical Characteristics of Printed and Chemically Bonded Sand Molds, SFF Symp, pp.197-209, 2014.

H. Khandelwal and B. Ravi, Effect of Binder Composition on the Shrinkage of Chemically Bonded Sand Cores, Mater Manuf Process, vol.30, pp.1465-70, 2015.

H. Khandelwal and B. Ravi, Effect of molding parameters on chemically bonded sand mold properties, J Manuf Process, vol.22, pp.127-160, 2016.

. Meisel, C. B. Williams, and A. Druschitz, Lightweight Metal Cellular Structures via Indirect 3D Printing and Casting, Solid Free Fabr Symp, vol.2012, pp.162-76

H. Renhe, G. Hongmei, T. Yaoji, and L. Qingyun, Curing mechanism of furan resin modified with different agents and their thermal strength, China Foundry, vol.8, pp.161-166, 2011.

S. S. Gill and M. Kaplas, Efficacy of powder-based three-dimensional printing (3DP) technologies for rapid casting of light alloys, Int J Adv Manuf Technol, vol.52, pp.53-64, 2011.

D. Günther and F. Mögele, Additive Manufacturing of Casting Tools Using Powder-Binder-Jetting Technology, New Trends 3D Print, 2016.

K. Zeitsch, The Chemistry and Technology of Furfural and its Many By Products, vol.13, 2001.

. Nassar-a.-r and E. W. Reutzel, A proposed digital thread for additive manufacturing, Solid Free Fabr, pp.19-43, 2013.

M. J. Pratt, Introduction to {ISO} 10303-the {STEP} {Standard} for {Product} {Data} {Exchange}, J Comput Inf Sci Eng, vol.1, pp.102-105, 2001.


V. Kumar and D. Dutta, An assessment of data formats for layered manufacturing, Adv Eng Softw, vol.28, pp.151-64, 1997.

A. Marsan, V. Kumar, D. Dutta, and M. Pratt, An assessment of data requirements and data transfer formats for layered manufacturing, 1998.

E. M. Sachs, M. J. Cima, M. A. Caradonna, J. Grau, J. G. Serdy et al., Jetting layers of powder and the formation of fine powder beds thereby, 2003.

S. B. Fuller, E. J. Wilhelm, and J. M. Jacobson, Ink-jet printed nanoparticle microelectromechanical systems, J Microelectromechanical Syst, vol.11, pp.54-60, 2002.

J. Heinzl and C. H. Hertz, Ink-Jet Printing, Adv Electron Electron Phys, vol.65, pp.91-171, 1985.

H. P. Le, Progress and trends in ink-jet printing technology, J Imaging Sci Technol, vol.42, pp.49-62, 1998.

E. M. Sachs, Powder dispensing apparatus using vibration, 2000.

C. F. Harwood, Powder segregation due to vibration, Powder Technol, vol.16, pp.51-58, 1977.

D. Cumberland and R. J. Crawford, The packing of particle, 1987.

A. Kwan and W. Fung, Packing density measurement and modelling of fine aggregate and mortar, Cem Concr Compos, vol.31, pp.349-57, 2009.

T. Stovall, F. De-larrard, and M. Buil, Linear packing density model of grain mixtures, Powder Technol, vol.48, issue.86, pp.80058-80062, 1986.

C. C. Mounfield and S. F. Edwards, A model for the packing of irregularly shaped grains

, Phys A Stat Mech Its Appl, vol.210, pp.301-317, 1994.

R. D. Barksdale, M. A. Kemp, W. J. Sheffield, and J. L. Hubbard, Measurement of aggregate shape, surface area, and roughness, Transp Res Rec, pp.107-106, 1991.

B. Y. Tay, J. Evans, and M. J. Edirisinghe, Solid freeform fabrication of ceramics, Int Mater Rev, vol.48, pp.341-70, 2003.

I. Ederer and D. Günther, Device and method for 3d printing methods, with accelerated execution, 2015.

A. Yao and Y. C. Tseng, A robust process optimization for a powder type rapid prototyper, Rapid Prototyp J, vol.8, pp.180-189, 2002.

A. Gardziella, L. A. Pilato, and A. Knop, Phenolic resins: chemistry, applications, standardization, safety and ecology, 2013.

N. Hussein, M. N. Ayof, and N. Sokri, Mechanical Properties and Loss on Ignition of Phenolic and Furan Resin Bonded Sand Casting, Int J Mining, Metall Mech Eng, vol.1, pp.223-230, 2013.

T. Quaker and O. Company, Catalyst composition and method for curing furan-based foundry binders-US 4451577 A, 1984.

M. Holtzer and R. Da?ko, Molds and Cores Systems in Foundry, pp.27-43, 2015.

J. József-tamás-svidró, A. Tóth, D. Diószegi, and . Stevenson, Heat absorption capacity and binder degradation characteristics of 3D printed cores investigated by inverse fourier thermal analysis, Int J Met, vol.10, pp.276-88, 2016.

D. Hoyt, Learning from the Past can help Insure Success in the Future, AFS Sand Cast. Conf, p.2012

F. P. Schleg, Technology of Metalcasting, 2003.

G. Kaddhour, E. Ando, S. Salager, and P. Bésuelle, Application of X-ray Tomography to the Characterisation of Grain-Scale Mechanisms, pp.195-200, 2013.

M. B. Cil, K. Alshibli, P. Kenesei, and U. Lienert, Combined high-energy synchrotron X-ray diffraction and computed tomography to characterize constitutive behavior of silica sand, Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.324, pp.11-17, 2014.

T. Mukunoki, Y. Miyata, K. Mikami, and E. Shiota, X-ray CT analysis of pore structure in sand, Solid Earth, vol.7, pp.929-971, 2016.

M. Aloe, D. Lefebvre, and A. Sholapurwalla, Advanced casting simulations. Simulation n.d, pp.1-14

S. V. Shepel and S. Paolucci, Numerical simulation of filling and solidification of permanent mold castings, Appl Therm Eng, vol.22, pp.68-68, 2002.

M. R. Jolly, H. Lo, M. Turan, and J. Campbell, Use of simulation tools in the practical development of a method for manufacture of cast iron camshafts. Model Cast Weld Adv Solidif Process, MCWASP IX), pp.311-319, 2000.

, Simulation-of-Flow-Pattern-and-Temperature-Profile-in-the-Shot-Sleeve-of-a-High-Pressure-Die-Casting-Process

F. Liu, L. Yang, Y. Huang, P. Jiang, G. Li et al., Performance of resin bonded sand for magnesium alloy casting, J Manuf Process, vol.30, pp.313-322, 2017.

T. Sivarupan, M. Elmansori, and N. Coniglio, 3D Printing Process Parameters and Properties of Additively Manufactured Sand Mold for Rapid Casting : Strength and Permeability

, Addit Manuf, 2017.

. Exone and . Exone, Digital Part Materialization, 2017.

, Dassault Systèmes. Catia V5, 2017.

. Exone, T. M. S-print, and . Furan, , 2014.

N. Coniglio, T. Sivarupan, E. Mansori, and M. , Investigation of process parameter effect on anisotropic properties of 3D printed sand molds, Int J Adv Manuf Technol, vol.2017, pp.1-11
URL : https://hal.archives-ouvertes.fr/hal-01693704

J. J. Lee, E. Sachs, and M. Cima, Layer position accuracy in powder based rapid prototyping, Rapid Prototyp J, vol.1, pp.24-37, 1995.

D. Dimitrov and N. Beer, Developing capability profile for the three dimensional printing process. R D, J, vol.22, pp.17-25, 2006.

D. M. Dimitrov and N. Beer, IMPROVEMENTS IN THE CAPABILITY PROFILE OF 3-D PRINTING: AN UPDATE, South African J Ind Eng, vol.25, pp.1-12, 2014.

C. O. , Willits's. Methods for Determination of Moisture-Oven Drying, Anal Chem, pp.1058-1062, 1951.

, Simpson Technologies Corporation. SIMPSON Sand Testing machines for Molding and Core Sands DESIGNED, 2008.

. Simpson and . Simpson, Universal Strength Machine PFG, vol.41, 2008.

. Simpson, Simpson Permeability Meter PDU-D, vol.41, 2002.

A. G. Disa-industrie, Testing instruments and accessories to determine the permeability of moulding and core sands, 2017.

, Georges Fischer société anonyme. Permeametre type PDU, 2017.

A. Bobrowski and B. Grabowska, The impact of temperature on furan resin and binder structure, Metall Foundry Eng, vol.38, pp.73-80, 2012.

K. Lowe and R. Showman, Dimensional Changes in Chemically Bonded Molds and Cores, Trans Am Foundry Soc, vol.119, pp.251-60, 2011.

H. Miyanaji, N. Momenzadeh, and L. Yang, Effect of printing speed on quality of printed parts in Binder Jetting Process, Addit Manuf, vol.20, pp.1-10, 2018.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., An open-source platform for biological-image analysis, Nat Methods, vol.9, pp.676-82, 2012.

Z. Zeng and R. Grigg, A Criterion for Non-Darcy Flow in Porous Media, Transp Porous Media, vol.63, pp.57-69, 2006.

, Vinci Technologies

. Feldkamp-l-a, L. C. Davis, and J. W. Kress, Practical cone-beam algorithm, J Opt Soc Am A, vol.1, p.612, 1984.

N. Hawaldar and J. Zhang, A comparative study of fabrication of sand casting mold using additive manufacturing and conventional process, Int J Adv Manuf Technol, vol.97, pp.1037-1082, 2018.

R. Dana, H. , E. Mansori, and M. , Etude du comportement mécanique d'une structure poreuse obtenue par impression 3D au sable, 2019.

Q. Xiong, T. G. Baychev, and A. P. Jivkov, Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport, J Contam Hydrol, vol.192, pp.101-118, 2016.

X. Huang, Y. He, W. Zhou, D. Deng, and Y. Zhao, Pore network modeling of fibrous porous media of uniform and gradient porosity, Powder Technol, vol.343, pp.350-61, 2019.

W. Degruyter, O. Bachmann, and A. Burgisser, Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc), Bull Volcanol, vol.72, pp.63-74, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00409820

W. Degruyter, A. Burgisser, O. Bachmann, and O. Malaspinas, Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices, Geosphere, vol.6, pp.470-81, 2010.
URL : https://hal.archives-ouvertes.fr/insu-00488535

H. Giesche, Mercury porosimetry: A general (practical) overview, Part Part Syst Charact, vol.23, pp.9-19, 2006.

D. Flannery-bp, R. Hw, D. Wg, and . Kl, Three-Dimensional X-ray Microtomography, Science, vol.237, pp.1439-1483, 1987.

L. De-chiffre, S. Carmignato, J. P. Kruth, R. Schmitt, and A. Weckenmann, Industrial applications of computed tomography, CIRP Ann -Manuf Technol, vol.63, pp.655-77, 2014.

R. D. Hazlett, Simulation of capillary-dominated displacements in microtomographic images of reservoir rocks, Transp Porous Media, vol.20, pp.21-35, 1995.

A. Rodríguez-de-castro and G. Radilla, Non-Darcian flow of shear-thinning fluids through packed beads: Experiments and predictions using Forchheimer's law and Ergun's equation, Adv Water Resour, vol.100, pp.35-47, 2017.

W. T. Ding and W. J. Xu, Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method, Powder Technol, vol.335, pp.301-315, 2018.

S. Jaganathan, H. Vahedi-tafreshi, and B. Pourdeyhimi, A realistic approach for modeling permeability of fibrous media: 3-D imaging coupled with CFD simulation, Chem Eng Sci, vol.63, pp.244-52, 2008.

C. Soulaine, Direct numerical simulation in fully saturated porous media, pp.1-27, 2015.

A. Thabet and A. G. Straatman, The development and numerical modelling of a Representative Elemental Volume for packed sand, Chem Eng Sci, vol.187, pp.117-143, 2018.

E. S. Boek and M. Venturoli, Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries, Comput Math with Appl, vol.59, pp.2305-2319, 2010.

O. Malaspinas, N. Fiétier, and M. Deville, Lattice Boltzmann method for the simulation of viscoelastic fluid flows, J Nonnewton Fluid Mech, vol.165, pp.1637-53, 2010.

A. Kadauw, Characterization of the parameters of sand moulds in compaction process by use of the industrial computer tomography (ICT), Arch Metall Mater, vol.59, pp.1097-101, 2014.

T. Sivarupan, M. El-mansori, K. Daly, M. N. Mavrogordato, and F. Pierron, Characterisation of 3D printed sand moulds using micro-focus X-ray computed tomography, Rapid Prototyp J, 2018.

S. Anbar, K. E. Thompson, and M. Tyagi, The Impact of Compaction and Sand Migration on Permeability and Non-Darcy Coefficient from Pore-Scale Simulations, Transp Porous Media, vol.127, pp.247-67, 2019.

D. Legland, I. Arganda-carreras, and A. P. , MorphoLibJ: Integrated library and plugins for mathematical morphology with ImageJ, Bioinformatics, vol.32, pp.3532-3536, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438611

V. Boulos, V. Fristot, D. Houzet, L. Salvo, and P. Lhuissier, Investigating performance variations of an optimized GPU-ported granulometry algorithm To cite this version : Investigating performance variations of an optimized GPU-ported granulometry algorithm. Des Archit Signal Image Process (DASIP), Conf on, pp.1-6, 2012.

I. Arganda-carreras, R. Fernandez-gonzalez, A. Munoz-barrutia, and C. Ortiz-de-solorzano, 3D reconstruction of histological sections: Application to mammary gland tissue, Microsc Res Tech, vol.73, pp.1019-1048, 2010.

K. Hormann, V. Baranau, D. Hlushkou, A. Höltzel, and U. Tallarek, , p.162

, disordered porous media: Determination of pore connectivity, pore coordination, and geometric tortuosity in physically reconstructed silica monoliths, New J Chem, vol.40, pp.4187-99, 2016.

. Comsol, Multiphysics Cyclopedia-Navier-Stokes Equations n.d

, July, vol.10, 2019.

R. Mandzhieva, Introduction to digital core analysis : 3D reconstruction , numerical flow simulations and pore network modeling, p.138, 2017.

F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Epl, vol.9, pp.345-354, 1989.

M. C. Sukop and D. T. Thorne, Lattice Boltzmann Modeling, 2006.

P. Meakin and A. M. Tartakovsky, Modeling and Simulation of Pore-Scale Multiphase Fluid Flow and Reactive, Transport, vol.47, pp.1-47, 2009.

T. Ramstad, P. Øren, and S. Bakke, Simulation of Two-Phase Flow in Reservoir Rocks Using a Lattice Boltzmann Method, SPE J, vol.15, pp.917-944, 2010.

L. Talon, D. Bauer, N. Gland, S. Youssef, H. Auradou et al., Assessment of the two relaxation time Lattice-Boltzmann scheme to simulate Stokes flow in porous media, Water Resour Res, vol.48, pp.1-13, 2012.

, Thijssen J. Computational Physics, 2007.

B. Chopard, A. Dupuis, A. Masselot, and P. Luthi, Cellular Automata and Lattice Boltzmann techniques: an approach to model and simulate complex systems, Adv Complex Syst, vol.05, pp.101-103, 2002.

A. Heijs and C. P. Lowe, Numerical evaluation of the permeability and the Kozeny constant for two types of porous media, Phys Rev E, vol.51, pp.4346-52, 1995.

B. Ferrol and D. H. Rothman, Lattice-Boltzmann simulations of flow through Fontainebleau sandstone, Transp Porous Media, vol.20, pp.3-20, 1995.

E. W. Llewellin, LBflow: An extensible lattice Boltzmann framework for the simulation of geophysical flows. Part I: theory and implementation, Comput Geosci, vol.36, pp.115-137, 2010.

F. M. Auzerais, J. Dunsmuir, B. B. Ferréol, N. Martys, J. Olson et al., Transport in sandstone: A study based on three dimensional microtomography

, Geophys Res Lett, vol.23, pp.705-713, 1996.

M. Hecht and J. Harting, Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann, pp.1-14, 2008.

M. J. Blunt, M. D. Jackson, M. Piri, and P. H. Valvatne, Detailed physics , predictive capabilities and upscaling for pore-scale models of multiphase flow, vol.25, pp.1069-89, 2001.

M. J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer et al., Pore-scale imaging and modelling, Adv Water Resour, vol.51, pp.197-216, 2013.

G. Luo, Y. Ji, C. Y. Wang, and P. K. Sinha, Modeling liquid water transport in gas diffusion layers by topologically equivalent pore network, Electrochim Acta, vol.55, pp.5332-5373, 2010.

T. Bultreys, D. Boever, W. Cnudde, and V. , Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art, Earth-Science Rev, vol.155, pp.93-128, 2016.

H. Dong and . Micro-ct, Imaging and Pore Network Extraction a Dissertation Submitted To the Department of Earth Science and Engineering of Imperial College Lodon in Partial Fulfilment of the Requirements for the Degree of, pp.1-213, 2007.

J. T. Gostick, Versatile and efficient pore network extraction method using marker-based watershed segmentation, Phys Rev E, vol.96, pp.1-15, 2017.

A. Rodríguez-de-castro and M. Agnaou, Numerical Investigation of the Apparent Viscosity Dependence on Darcy Velocity During the Flow of Shear-Thinning Fluids in Porous 164

, Media. Transp Porous Media, 2019.

J. P. Bonnet, F. Topin, and L. Tadrist, Flow laws in metal foams: Compressibility and pore size effects, Transp Porous Media, vol.73, pp.233-54, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00343847

P. Glover and E. Walker, Grain-size to effective pore-size transformation derived from electrokinetic theory, Geophysics, vol.74, 2009.

G. Chauveteau, L. Nabzar, Y. El-attar, and C. Jacquin, Pore Structure and Hydrodynamics. SCA Conf. Pap. Number 9607, 1996.

J. Mocek, J. Zych, A. Chojecki, R. Antonio, and . De-castro-co-encadrement-de-la-thèse, Directeur de thèse : Mohamed EL MANSORI Co-encadrement de la thèse, Marius COSTIN Jury M. Michel BELLET, Professeur des Universités, CEMEF, Mines ParisTech Président M. Liam BLUNT, Professeur des Universités, vol.17, pp.47-50, 2004.

E. L. Mohamed and . Mansori, Arts et Métiers ParisTech Examinateur M. Antonio RODRÍGUEZ DE CASTRO, Maître de Conférences, Arts et Métiers ParisTech Examinateur M. Marius COSTIN, Researcher in NDT

, Le sable est répandu sur la plate-forme de construction à l'aide d

, Le lit de sable est ensuite appliqué avec une force de compactage à l'aide du « recoater

, La buse d'impression injecte l'adhésif liant les liquides au sommet du lit de sable, dans la direction X et Y

, Liaison des grains de sable en assurant la cohésion lors du séchage et du vieillissement

, La plate-forme de construction est abaissée en fonction de l'épaisseur de couche requise dans la direction Z

, Le sable non lié reste dans une position entourant l'objet imprimé

, L'ensemble du processus est répété jusqu'à ce que l'objet requis soit imprimé