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Thèse de doctorat de l’Université Paris-Saclay
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A B S T R A C T

Video recording devices are often equipped with sensors (smartpho-
nes for example, with GPS receiver, gyroscope etc.), or used in set-
tings where sensors are present (e.g. monitor cameras, in areas with
temperature and/or humidity sensors). As a result, many systems
process and distribute video together with timed metadata streams,
often sourced as User-Generated Content. Video delivery has been
thoroughly studied, however timed metadata streams have varying
characteristics and forms, thus a consistent and effective way to han-
dle them in conjunction with the video streams does not exist.

In this Thesis we study ways to enhance video applications through
timed metadata. We define as timed metadata all the non-audiovisual
data recorded or produced, that are relevant to a specific time on the
media timeline.

"Enhancing" video applications has a double meaning, and this
work consists of two respective parts. First, using the timed metadata
to extend the capabilities of multimedia applications, by introducing
novel functionalities. Second, using the timed metadata to improve
the content delivery for such applications.

To extend multimedia applications, we have taken an exploratory
approach, and we demonstrate two use cases with application exam-
ples. In the first case, timed metadata is used as input for generating
content, and in the second, it is used to extend the navigational ca-
pabilities for the underlying multimedia content. By designing and
implementing two different application scenarios we were able to
identify the potential and limitations of video systems with timed
metadata.

We use the findings from the first part, to work from the perspec-
tive of enhancing video applications, by using the timed metadata
to improve delivery of the content. More specifically, we study the
use of timed metadata for multi-variable adaptation in multi-view
video delivery - and we test our proposals on one of the platforms
developed previously. Our final contribution is a buffering scheme
for synchronous and low-latency playback in live streaming systems.
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R E S U M É

Les dispositifs d’enregistrement vidéo sont souvent équipés de cap-
teurs (smartphones par exemple, avec récepteur GPS, gyroscope, etc.)
ou utilisés dans des systèmes où des capteurs sont présents (par ex-
emple, caméras de surveillance, zones avec capteurs de température
et/ou d’humidité). Par conséquent, de nombreux systèmes traitent et
distribuent la vidéo avec des flux de métadonnées temporels, souvent
sous forme de contenu généré par l’utilisateur (UGC). La diffusion
vidéo a fait l’objet d’études approfondies, mais les flux de métadon-
nées ont des caractéristiques et des formes différentes, et il n’existe
en pratique pas de méthode cohérente et efficace pour les traiter con-
jointement avec les flux vidéo.

Dans cette thèse, nous étudions les moyens d’améliorer les applica-
tions vidéo grâce aux métadonnées temporelles. Nous définissons
comme métadonnées temporelles toutes les données non audiovi-
suelles enregistrées ou produites, qui sont pertinentes à un moment
précis sur la ligne de temps du média.

"L’amélioration" des applications vidéo a une double signification,
et ce travail se compose de deux parties respectives. Premièrement,
utiliser les métadonnées temporelles pour étendre les capacités des
applications multimédias, en introduisant de nouvelles fonctionnal-
ités. Deuxièmement, utiliser les métadonnées chronométrées pour
améliorer la distribution de contenu pour de telles applications.

Pour l’extension d’applications multimédias, nous avons adopté
une approche exploratoire et nous présentons deux cas d’utilisation
avec des exemples d’application. Dans le premier cas, les métadon-
nées temporelles sont utilisées comme données d’entrée pour générer
du contenu, et dans le second, elles sont utilisées pour étendre les ca-
pacités de navigation pour le contenu multimédia sous-jacent. En con-
cevant et en mettant en œuvre deux scénarios d’application différents,
nous avons pu identifier le potentiel et les limites des systèmes vidéo
avec métadonnées temporelles.

Nous utilisons les résultats de la première partie afin d’améliorer
les applications vidéo, en utilisant les métadonnées temporelles pour
optimiser la diffusion du contenu. Plus précisément, nous étudions
l’utilisation de métadonnées temporelles pour l’adaptation multi-variables
dans la diffusion vidéo multi-vues et nous testons nos propositions
sur une des plateformes développées précédemment. Notre dernière
contribution est un système de buffering pour la lecture synchrone et
à faible latence dans les systèmes de streaming en direct.
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Part I

T I M E D M E TA D ATA & V I D E O A P P L I C AT I O N S

This part is an introduction to video applications and timed
metadata. We introduce the concept of Extended Audiovi-
sual Streams. We also define the challenges of such systems
and overview which of these challenges we address. Then,
we present our first contributions, that are a classification
method and an architecture for these systems. Part I ends
with a review of the most important elements in the cur-
rent State of The Art.





1
I N T R O D U C T I O N

This Thesis studies how video applications can be enhanced by us-
ing accompanying timed metadata. In this context, "Enhancing" can
signify either extending video applications or improving video delivery. In
the first case the timed metadata is used to add novel functionalities
to media-centric applications, and in the latter to increase the perfor-
mance of existing functionalities.

We define timed metadata as any non-audiovisual data recorded
and/or produced that contains information concerning a specific point
(or duration) in the media timeline. Timed metadata are also referred
to as extra-data, or timed data (non-audiovisual) – or sensor data, if
they are recorded (or generated from) information coming from sen-
sors. The streams that contain video (with audio) and timed metadata
are called extended audiovisual (AV) streams.

A main motivation for this Thesis is to examine the feasibility of
distributing all types of timed metadata in everyday applications and
their potential usefulness. Therefore we are looking to answer ques-
tions like the following:

• What kind of added value does the timed metadata offer to AV
applications?

• Where and how should the timed metadata be processed?

• Are there common building blocks / techniques that can be
studied and then applied to different application scenaria?

In order to enhance video applications, we begin by examining
the characteristics and studying the challenges for diffusion and effi-
cient synchronized treatment of multimedia systems that use timed
metadata – i.e. Extended Audiovisual Systems. We consider differ-
ent delivery technologies (broadcast, broadband, IP video, adaptive
streaming), as well as different recording/processing platforms (em-
bedded, mobile, web). Then, we propose a multimedia architecture,
that can be adapted to facilitate delivery of different extended AV
streams. We conclude the first part of the manuscript with a review
of the state of the art for the elements that are essential for the body
of our work – with the rest of the state of the art being reviewed at
the respective chapter where relevant.

Then, for Part II of the Thesis, using as basis the above architecture,
we examine ways to extend the functionalities of video applications
through the use of timed metadata. We demonstrate two multimedia
applications built with their main features enabled by using the timed
metadata.
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For the third part of the Thesis, we introduce methods that improve
the performance of extended AV applications. We examine how extra-
data collected and generated can help optimize existing applications
like multi-view video and then, how to improve delivery of extended
AV streams. The manuscript closes with the final conclusions and list
of deliverables from this Thesis.

The overview of extended AV systems and the relevant delivery
challenges are examined further in this chapter. Then, in order to
facilitate the relevant system requirements and specifications, we pro-
pose a classification method for applications utilizing timed metadata,
which is detailed prior to presenting our architecture design for such
applications further in this chapter. Following in Part I - Chapter 2 is
a platform and literature overview of the state of the art, to compare
with the approaches and tools that we use; the specific state of the art
for each aspect is examined in the respective chapters.

In Part II - Chapter 3, we examine the scenario of extending the
capabilities of interactive multimedia applications by using the timed
metadata for input and control, with an accompanying example ap-
plication. Afterwards, in Part II - Chapter 4, we examine using the
available metadata as navigational modalities - as opposed to control
parameters of the previous chapter.

From the experiences obtained, we developed methods to use sen-
sor data (recorded timed metadata) and stream information (gener-
ated timed metadata) for facilitating delivery of the extended AV
streams by adapting to the underlying data and recording informa-
tion, in Chapter 5 of Part III. We also propose buffering techniques
and synchronization policies, that can be applied to real-life applica-
tions (Part III - Chapter 6).

Finally, we conclude this work by reflecting on the conclusions
drawn from our work, discussing on the potential impact of our pro-
posals and presenting our plans for future work (Chapter 7). The
manuscript closes with a final overview of the deliverables from this
Thesis (Chapter 8), the bibliography used for this work and an ap-
pendix containing accompanying material.

1.1 video streams with timed metadata

Over the past years, there has been a decrease in cost and size of
digital cameras, while at the same time the image and audio quality
of the captured videos has increased. These evolutions had a direct
effect in two directions. First, their embedding in various "objects" -
from mobile phones and tablets, to drones and cars - that carry sev-
eral other sensors (GPS Receiver, Motion Sensors, Light Sensors etc).
Due to the ubiquity of such devices, there is also an increasing in-
terest in platforms collecting, processing, distributing and rendering
User-Generated Content (UGC). Secondly, devices using novel types
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of sensors (Kinect, MindWave, Leap Motion, etc.) were introduced to
the commercial market, that either feature a camera, or are frequently
used jointly with one.

Additionally to the introduction of new data types and the em-
bedding of sensors on more types of devices, the approach of han-
dling these metadata has evolved. For example, the Exchangeable
Image File Format (EXIF) introduced capabilities to accompany im-
ages (JPEG or TIFF) or audio (WAV) with location information since
the 1990s. However, this geospatial information was often manually
added in a later stage or omitted altogether. Allowing automated
and continuous logging of geospatial data in photos and videos is a
relatively new practice. We observe a paradigm shift from the spo-
radic use of minimal, loosely timed and of dubious accuracy meta-
data samples, to ubiquitous, automated, accurate and synchronous
production/consumption schemes for metadata streams.

Smartphone
Action Camera

+
Sport Bracelet

MS KinectWebcam + BCI

AV + EEG

Serious Gaming, Health care, 
Rehabilitation ...

AV + Joint Coordinates + Point Cloud

Rehabilitation, AR Gaming, Interactive 
Performances ...

AV + Heart rate + Altitude + ...

Performance Monitoring, Social 
Workout ...

AV + Location + Orientation

Crowd Journalism, Social Gaming, 
Collaborative Storytelling ...

Figure 1: Examples of extended AV streams systems

We focus on these systems, based on the aforementioned devices,
that produce extended AV streams, where the AV content is accompa-
nied by timed metadata. In this work, as extra-data, we define every
non-Audiovisual timed data recorded/processed. Since all the systems we
study are video-based, we refer to an elementary timed element of
a stream (either AV or extra-data) as "Frame" or "Sample" 1. Some
examples of systems that produce extended AV streams (as shown in
Figure 1) are:

• Kinect (AV + Depth): Kinect is a device that is able to record
audio, video and depth information (Point Cloud) of the scene
and track the spatial coordinates of the user.

• Smartphone (AV + Location + Orientation): Most smartphones
are equipped with a camera/microphone combo for recording
AV, as well as GPS (for location) and magnetic field / accelera-
tion sensors (for orientation).

1 Also mentioned in literature as Media Data Units (MDUs), Access Units, Information
Units, Stream Granules et.al.
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• Brain-Computer Interfaces (BCI) (AV + Brainwaves), Sport Sen-
sors (AV + Altitude + Speed + ...), etc.

1.2 characteristics and challenges

Each system (as in Figure 1) poses different aspects of similar prob-
lems. For example, the timing information between the AV and extra-
data frames in the Kinect scenario is handled by the device, while on
the BCI it might have to be a product of post-processing. In this case,
even though we do not study how the timing information between
the streams is achieved (e.g. for a setup of BCI for emotion recogni-
tion [102] it is achieved by using camera and sensor triggers [64]), we
do study how it is preserved and utilized during distribution and at
the receiving end.

To generalize, the extended AV streams, due to their diverse modal-
ities, may differ from the standard AV streams in several character-
istics, notably: Number of Streams, Frame Rate, Frame Rate Be-
haviour and Frame Size. For instance, in most of the cases of typical
AV stream delivery, it concerns one audio stream, one video stream
and maybe one timed-text stream (subtitles). Even if there are several
audio streams available (e.g. multiple audio languages) and several
video streams, only one of each is consumed at a time. A second
video stream might be present in a Picture-in-Picture setup, but it is
usually2 irrelevant (in terms of content and requirements) from the
others. So, for the characteristics mentioned, we have a fixed number
of streams consumed (audio, video, subtitles), at a fixed frame rate
(specified by the audio and video encoder - for video typically from
25 to 60 fps), that has a predictable behaviour (the frame rate in most
cases is constant) and a bounded frame size (average bitrate is set up
during the encoder initialization process).

On the other hand, when studying extended AV streams, all of
the aforementioned characteristics might vary significantly between
different scenarios. Just for the example of Body Sensor Networks
(BSNs) [22], dozens of streams might be present, with sampling rates
varying from a few samples per hour to several samples per second,
of frame sizes spanning orders of magnitude, and stream throughput
varying from 38 kbps to 720 kbps. Because of this uncertainty, our
first contributions is to list the main challenges posed from extended
AV streams systems, and later (in Section 1.3) to propose a classifi-
cation method for such systems. The identification of the challenges
and the classification of the streams is essential, in order to map our
further contributions to the respective systems they address. To facil-
itate the organization of the identified challenges, we separate them
in two categories: Streaming and Presentation challenges.

2 Unless the rendered accompanying video stream is a preview of an alternative view
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1.2.1 Streaming Challenges

The Streaming part of a system, refers to the process right after the
recording of each frame and includes the steps until that frame (or
its product) is ready for consumption on the client (i.e. after it is
decoded). More specifically, we consider streaming challenges on
the domains of: Synchronization, Delays, Communication Channels and
Protocols, Packaging and Number of Sources/Producers.

Synchronization (producer-side) deals with the common notion
of time attached to each stream. In order to achieve synchroniza-
tion, each frame is assigned a timestamp - indicating the time it was
recorded, and/or a frame-number - indicating the order in which it
was recorded, in respect to the other frames of the same stream. Even
though the specifics of generating the synchronization information on
the production-end are not part of this Thesis, how synchronization
is achieved on playback and how the relevant information is used on
the client side is an essential aspect of our work.

Delay refers to the time each frame takes from recording, until it
reaches the client. The most obvious source of delay is the transmis-
sion time from the source to destination, however it is not the only
one, since significant delay can be caused either from application-
level design (e.g. normalizing values over time, prior to emission),
or medium access protocol selection (e.g. IEEE 802.15.4 slotted low-
energy wireless [93]), or bad network conditions (forcing retransmis-
sions). Regarding the delay, in this work our main contributions are
proposals on how to deal with large or fluctuating delays, especially
in live, or real-time scenarios.

Communication Channel(s), Protocols and Standards selection is
another paramount design decision in such systems. The designs we
propose are protocol-agnostic, but there are cases for which our pro-
posals apply to specific protocols/standards, or that selecting the ap-
propriate protocol/standard improves performance; in such cases we
make clear recommendations. For example, in on-demand and live
AV content transportation, a predominant delivery method, used by
popular content providers, such as YouTube and Netflix is adaptive
streaming over HTTP on TCP (e.g. MPEG-DASH [101]). However,
for low-latency live systems Real-time Transport Protocol (RTP) on
UDP [97] is commonly used. While both methods offer Quality of
Service (QoS) features (i.e. timestamps and sequence numbers, for
application-level QoS provisions), only the former offers QoS guaran-
tees (e.g. no packet losses, in-order delivery etc.), at least until the
application level (there the client can make decisions that affect these
guarantees, by emptying its buffers for example).

Number of Producers is a scalability concern that should be taken
in consideration when addressing all of the aforementioned chal-
lenges. For example, on the synchronization aspects of the system, if
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a single producer is the source of the extended AV stream, studying
synchronization between frames (intra-stream) and between streams
(inter-stream) will suffice. If however, multiple users provide content,
synchronization between the different sources (inter-bundle synchro-
nization), might be required. The sources might have synchronized
clocks (e.g. by using NTP [74]), otherwise, if the inter-bundle syn-
chronization occurs on the server without any accurate timing infor-
mation, content-based techniques must be used and the introduced
delay can be in the order of minutes [20]. This is a grave scalability
concern, especially in User-Generated Content (UGC) systems, for
which multiple users provide content at overlapping timelines.

(a) Low-latency playback (b) Synchronous playback

Figure 2: Illustration of different content
consumption approaches

1.2.2 Presentation Challenges

The presentation part of the system refers to the treatment of the
frames after they are available at the client, until they are used to
render the output. This area is close to the User Experience (UX)
aspects of each respective application, since it facilitates novel render-
ing possibilities (i.e. more options on consuming the content). On
this end, we are focusing on two areas: Presentation Timing and Pre-
sentation Medium.

Presentation timing (a.k.a. client-side synchronization) concerns
the way the frames of a stream are consumed in a timely manner.
Maintaining the temporal relationship between the frames of one
stream is called intra-stream synchronization, while maintaining the
temporal relationship between the streams is called inter-stream syn-
chronization [16]. Assuming a wildlife monitoring example, where
the cameras are on a central server (or directly connected to it) and
temperature sensors are deployed throughout a forest, connected in a
low-power wireless network with energy harvesting nodes, the tem-
perature data might arrive several minutes late [110]. In case an event
occurs (e.g. a fire), the consumer should be able to see it on the video
output as soon as possible, without waiting for the temperature data
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to arrive. However, when having on-demand or time-shifted play-
back (e.g. to investigate the spread of the fire), the client must render
the video streams synchronized with the temperature measurement
streams. Figure 2 illustrates such an example, with two sources (A
and B) that produce frames (F and F‘ respectively). For the sake of
simplicity, we assume both sources have the same fixed frame dura-
tion (T ) and frame generation rate ( 1T ). Source A sends the frames
to the client via Link A, and the delay from production of the frame
until arrival is the same as the duration of a frame. Source B sends
the frames to the client via Link B, that has double that delay – i.e.
twice the duration of a frame. Thus, at time Tn, Source A just pro-
duced frame FTn and Source B just produced frame F‘Tn. Meanwhile,
the client is receiving frame FTn−1 from Source A and F‘Tn−2 from
Source B. In the low-latency playback mode (illustrated in Figure 2a),
that frames are rendered as they arrive, the client will be rendering
FTn−2 and F‘Tn−3, while in the synchronous playback mode (illus-
trated in Figure 2b) FTn−3 and F‘Tn−3. The problem in such scenarios
is to be able to easily switch from the low-latency, to the synchronized
mode, and limit the asynchronies in the latter.

Presentation medium is relevant to the possible data processing
required to fit the rendering environment. In our work, we are fo-
cusing on technologies applicable to browsers, that should be OS and
apparatus independent. We try to achieve that by adhering to the
standards produced by the W3C consortium3, however each vendor
has different levels of conformity to these standards, despite the fact
that all major vendors are involved in the standardization process.

1.2.3 Approach on The Challenges

To sum up, our study is influenced by current and future use-cases
for systems based on extended AV streams, like UGC-based Crowd
Journalism for example. Many of these systems have evolved from ex-
isting purely video-centric designs, that had limited variety and num-
ber of timed meta-data streams (e.g. subtitles); in contrast, their new
incarnations, introduce several streams and modalities. Also, the ac-
companying data are often user (e.g. via crowd-sourcing platforms),
or automatically (e.g. via on-field sensor deployment) generated, thus
provided in unpredictable and/or bursty manner.

We are considering the challenges rising from the aforementioned
evolutions, and we use the timed metadata to enhance relevant appli-
cations. Our work should be able to integrate to the current ecosys-
tem, so we will not develop new approaches on problems that al-
ready have established solutions. Instead, after evaluating industry
and academia methods, we will select the most suitable and use it on
our designs. For example, we have studied the impact of end-to-end

3 https://www.w3.org/Consortium/
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delays, on the client (Chapter 6); in order to run relevant experiments,
a system requirement is the synchronization between the server and
the client clock. For the purpose of clock synchronization, we can
use Network Time Protocol (NTP) [74] that is already widely used
for such purposes.

1.3 classification of extended av streams systems

To categorize the different possible scenarios we created a classifica-
tion method for applications handling extended AV streams. This
classification is based on the requirements and the underlying appa-
ratus of the targeting systems. It can be used to describe systems
on which our contributions (or other contributions on extended AV
streams) can be applied. The classification uses the criteria of Device
Type, Content Availability and Synchronization Level, as following:

• Device Type: Common, Specialized, Network

• Content Availability: On-demand, Live, Real-Time

• Synchronization Level: Loose, Strict, Critical

First, according to the Device Type, we can have common video-recording
devices (such as cameras and mobile phones) that also support other
data; specialized (such as depth cameras and BCIs) that support video-
recording or are used in conjunction with cameras; or several con-
nected devices forming a network - usually supporting multiple modal-
ities (Body Sensor Networks, or e-Health Points for example). The
technical incentive for these classes occurs from the number of po-
tential different streams per class, as well as differences in modalities
and their data rates.

Common devices typically have a limited number of accompanying
sensors (e.g. geospatial, luminosity etc.), that provide small size extra-
data (usually < 1 kB per frame) at relatively low (1 to 20 Hz) sampling
rates [94].

Specialized devices have a varying number of sensors (e.g. 1 IR
receiver for depth-sensing in Kinect, 16-32 electrodes for a typical
EEG cap used for BCI), with a device-specific frame size (∼ 300 kB
for a depth frame, 2 B per electrode per measurement), at diverse
sampling rates (∼ 30 Hz for Kinect, 256− 512 Hz for a basic EEG cap).
However, even the aforementioned examples are indicative, because
specialized device specifications vary significantly according to the
intended application, e.g. a professional depth sensor (like Eva by
Artec [9], used for 3D scanning) can have frame size of 3 − 4 MB,
that is ×10 the size of Kinect-produced frames [72]. Similarly, in
the BCI case, the number of sensors can reach up to 128 electrodes,
at a sampling rate of 20 kHz for clinical research equipment [109].
The variance of characteristics according to the device type and the
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targeting application is the reason that we consider these devices as
a separate class.

The Network category differs from the Common and Specialized,
because as the number of devices grows in the network case, so
does the provision required for inter and intra stream synchroniza-
tion, which are usually handled in firmware or middleware on the
single-device cases. This scalability synchronization issue occurs be-
cause various synchronization algorithms rely on bounded delays -
that change as streams and network overhead is added, or global
clocks that have to be in sync [56]. For example, most low-energy
wireless sensor networks (WSNs), utilize allocation of discrete time
windows when data exchange occurs; as such, the frames arrive in
bursts at the servers, and even within the same network, frames from
different sensors can have varying delays, that can vary from tens of
milliseconds, to a few minutes, according to the maximum number of
hops (a.k.a. depth, or node level) of the network [110]. For the same
reasons, when a device joins or leaves the network, the event might
affect significantly the network characteristics either in the long term
(e.g. if it changes the depth of the network), or the short-term (until
the communication protocol reconfigures) [93].

Regarding the Content Availability delay requirements, we consider
on-demand delivery, where the content is available after the record-
ing is concluded, live scenarios when the content is being transmit-
ted during the recording process, and a real-time case in which the
recording-to-display delay is as short as possible.

Finally, on Synchronization, we do not differentiate inter-media syn-
chronization, which is the synchronization of streams of different
modalities, from inter-stream synchronization, which is between AV
and the different streams. We identify loose (asynchronies over 500 ms),
strict (asynchronies between 500 ms and 100 ms) and critical (asyn-
chronies below 100 ms) classes. The classification system for the
synchronization requirements is based on a combination of system
requirements and human perception. The loose class is created with
the main purpose of accommodating low-latency scenarios, that the
imminent rendering of the frames precedes in priority the synchro-
nization accuracy (e.g. environmental monitoring). Strict is a synchro-
nization class that most state of the art synchronization techniques
can support [50] and aligns with the "medium" synchronization cat-
egory in literature [76] [28]. This synchronization level is acceptable
when different streams are rendered in different devices (accompa-
nying screens, smartwatches etc.) [34], and/or have secondary roles
(e.g notifications, actuators) [42]. However, for the cases that all of
the rendered streams are essential (e.g. game control, avatar overlays,
virtual instruments), critical synchronization is required, in order for
the QoE not to be affected by asynchronies [14].
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1.4 architectures for delivery of extended av streams

In this section we present the architecture outline proposed for stream-
ing and presentation of video systems with timed metadata. This ar-
chitecture serves the purpose of a general guideline to identify the
distinct parts of a system that form the delivery chain. It can (and
should) be modified according to the specifications of the respective
scenario, however the modifications and the tasks assigned to each
building block must be thoroughly specified.

To begin discussing architectures for video streams with timed
metadata, first we have to overview architectures for typical audio-
visual systems. In Figure 3 we can see the basic components of an
example system. First, the video is captured and encoded on the
device, then it is transmitted to the server (over a local or remote net-
work connection, depending on the scenario). Then, on the server
side, it might be transcoded and re-packaged, before being transmit-
ted to the client, where it is decoded and rendered.

Figure 3: Outline of AV system architecture

In the simplest case of that example (e.g. security camera), all of
the connections are over a local network and there is no transcod-
ing on the server side. In a more complex scenario (e.g. using an
online streaming platform, like Vimeo4), all of the connections are ei-
ther broadband or mobile and transcoding is performed on the server
(potentially several times, with different configurations).

In contrast, when timed metadata are introduced, the complexity
and the possible configurations of the system increase. To demon-
strate, we illustrate an architecture of a system for delivering ex-
tended AV streams in Figure 4.

On the producer end, where the data capturing occurs, there is an
example for each of the three aforementioned device types. The syn-
chronization information (timestamps and/or frame sequence num-
bers), which is used for intra-stream synchronization, should be at-
tached there. This decision is based on the fact, that even though
every device type differs in terms of data rates, number of streams,
etc. the timing information should be present, to be used in local
applications. For example, in a sensor network, timing information
is essential for the packets exchange mechanism, because the nodes
in the network should have a common notion of time in order to syn-
chronize their packet exchange timeslots [93] [38]. The Recorder/Pre-

4 https://vimeo.com
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Figure 4: Outline of extended AV system architecture

processor step, if needed, can either be on the device or directly on
the server, and handles any data formatting required.

The server part is responsible for gathering the recorded video and
extra-data frames, applying any processing, if needed, and sending
them to the client, which in turn is responsible for the playback of the
incoming streams (or their processing result). An example outline of
a server, with its distinct parts visible, as described in our architecture,
is shown in Figure 5.

Figure 5: Schema of extended AV server

In the illustrated example we consider a single capture device (e.g.
Kinect) and a single producer, thus we utilize the synchronization in-
formation from the middleware to handle inter-stream synchroniza-
tion. In the case of multiple sources, an extra server-side synchro-
nization layer is required, responsible for inter-bundle synchroniza-
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tion between the bundles received from the producers. Then, the
captured video frames are encoded, while the timed metadata might
be subject to a similar processing. Afterwards, they are prepared for
distribution; in the illustrated case, for HTTP streaming, by referenc-
ing the encoded video frames, the metadata frames and the processed
metadata values inside a playlist, (and) transmitted to the client. On
the client side, the received streams are decoded and because of the
synchronization information provided, we can achieve coordination
between the resulting AV and metadata frames during playback.

Depending on the underlying hardware and targeted application,
different server modules must be added or altered. As example,
when the distributed content is UGC, buffers must be added in or-
der to maintain synchronization, and as a direct result, the buffer
size affects the overall end-to-end delay of the system. Such an ex-
ample is detailed in Chapter 5. Similarly throughout the manuscript
we demonstrate the changes of the basic architecture according to the
respective scenario.
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2
E S S E N T I A L E L E M E N T S O F T H E S TAT E O F T H E A RT

In this chapter we do a brief review of the current State of The Art
relevant to recording, processing and distribution of timed metadata
for video-centric applications. Most of the literature review is refer-
enced in the respective chapters of the manuscript where it is most
relevant. In this chapter, essential elements are gathered that are com-
mon throughout the Thesis, or works that due to the scope or time
limitations of the Thesis we did not actively contribute to.

Regarding the devices that provide the timed metadata, we have
use cases studied and example systems implemented for the Special-
ized (Kinect) and Common (Smartphone) categories. However, we have
not implemented an application that uses a Network of sensors. Even
though we did not create a system to test, when designing the ar-
chitecture, and exposing techniques (e.g. the buffering scheme in
Chapter 6), we took in consideration characteristics (e.g. data format,
delays etc.) of different such networks, like Wireless Sensor Networks
(WSNs) for Smart Cities [123], or Body Sensor Networks (BSNs) for
rehabilitation [45], etc.

Particularly, with regards to the diversity of sensor networks, we
can have varying characteristics, depending on the targeting applica-
tions and underlying infrastructure. Table 1 shows the characteristics
of some indicative sensors, used jointly with cameras in rehabilita-
tion applications [45]. We can observe that such sensors have pre-
dominately high data rates, that can be supported only because in
most cases these sensors are directly connected to the gateway/base-
station (in which case we classify them as Specialized devices), or
because they are interconnected via a local area network - using high-
throughput / low-latency connection protocols like the IEEE 802.11

suite [12].

Sensor Type Data rate Bandwidth Sampling Data

Temperature Very Low 120 bps 0 - 1 Hz 8 bits

Acc High 35 kbps 0 - 500 Hz 12 bits

Gyro High 35 kbps 0 - 500 Hz 12 bits

ECG (12 leads) High 288 kbps 100 - 1000 Hz 12 bits

ECG (6 leads) High 71 kbps 100 - 500 Hz 12 bits

EEG (12 leads) High 43 kbps 0 - 150 Hz 12 bits

EMG Very High 320 kbps 0 - 10000 Hz 16 bits

Table 1: Sensors commonly employed in rehabilitation
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Figure 6: Services specification for the Padova Smart City project [123]

These capabilities are permitted due to the close proximity of the
sensors to the gateway. Figure 6 shows the characteristics of sensors
used for smart cities monitoring [123]. We can observe orders of
magnitude lower data and sample rates, comparing to the BSNs. The
reason for this is that the city-wide distribution of the sensors renders
the maintenance (e.g. changing batteries, or updating firmware) dif-
ficult, therefore most implementations use low-energy protocols (like
ZigBee / IEEE 802.15.4 [93]), that switch off the radio when inac-
tive and are suitable for autonomous energy harvesting nodes [110].
Because the transmitter/receiver is most of the time "sleeping", these
protocols have very high latency (from hundreds of milliseconds up
to several minutes) and low throughput.

Figure 7: Comparison between visual motion tracking and WSN based
solution for rehabilitation supervision

Nonetheless, timed metadata sensor networks are often used with
cameras, e.g. for traffic monitoring in smart cities, or motion tracking
in BSNs for rehabilitation. Regarding the latter example, sensors offer
different advantages over cameras, as shown in Figure 7. Our relevant
contributions on the domain can be applied to build hybrid systems
that include both sensors and cameras.
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Similarly, for the Common devices category, we studied UGC sce-
narios with mobile phones, that have a camera and geospatial sensors
(GPS, accelerometer etc.). In the studied cases, it is a requirement to
be aware of several parameters, that we assume are known or calcu-
lated. When several users are filming, the sensors of their smartphone
can be used to identify Region of Interest (RoI) [31]. This work pro-
poses a consensus system, based on the orientation of the devices and
an assumed viewing angle (of 90 degrees). In the same paper, the au-
thors propose monitoring changes in the behaviour of the users (i.e.
panning or zooming to a subregion the RoI) to identify specific events
- e.g. a guitar solo at some point during a concert.

To increase precision, if the characteristics of the camera are avail-
able, the camera Field-of-View can be estimated (i.e. Viewable Scene
Modeling) [10], instead of approximated (as in the aforementioned
method). If that is the case, indexing and querying geo-tagged videos
are enabled [67].

We also had to review the literature on topics that are not directly
connected to this Thesis, but were required in order for our research
to be thorough. Such an example is Video Quality Assessment (VQA)
algorithms, that are used in the system described in Chapter 7. VQA
algorithms, fall under two categories; the reference-based, that com-
pare the image sample with a "ideal" or highest-quality version of it
and the Non-Reference (NR) algorithms that rely only on the infor-
mation contained within the described sample.

MSE [113] is a widespread, though disputably outdated, technique
and VMAF [63] is a relatively new, yet promising solution. However,
both of the algorithms are reference-based and in our UGC scenarios
we do not have any higher quality recordings of videos to use as
reference (the highest quality is the one transmitted), therefore we
focused on using NR algorithms.

In our implementation we opted for applying edge detection to
sampled frames in order to measure blurriness [5]. We chose this
method because it is one of the most lightweight NR techniques, thus
is suitable to run on mobile devices, yet it performs adequately to
indicate the relative image quality of the image. Among the other
alternatives, BRISQUE [75] is an algorithm based on identifying "un-
natural" distortions by using luminance coefficients. We did not se-
lect BRISQUE, because even though it has lower computational com-
plexity comparing to other algorithms with similar performance, like
BLINDS-II [95], it is still significantly more demanding than our choice.
Also, the performance of BRISQUE is related to the training set pro-
vided, and we could not find a suitable set to our use case in order to
fine-tune the algorithm.

Similar methodology was applied when addressing Synchroniza-
tion challenges as identified in Section 1.2. We assume that basic
source control techniques are present in all systems [16] - i.e. all
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of the produced streams have attached synchronization information
(source identifiers, timestamps and/or frame numbers etc.). We are
using this information in the systems described in Chapters 4, 5 and
to achieve inter-stream synchronization [50]. In Chapter 6 the same
information is utilized for preventive and reactive receiver control.

In all of the studied aspects concerning synchronization of multi-
ple streams, as well as those presented in the following section, a
common notion of time between the actors is always useful, to some-
times essential (e.g. in companion devices). This clock synchroniza-
tion is commonly achieved by the parties exchanging messages with
a timekeeping server (for global synchronization), or between them
(for local synchronization). Historically, the Network Time Protocol
(NTP) [74] (maintained by IETF), was used for such applications and
is still widespread due to its simplicity and the availability of NTP
servers. It offers accuracy of a few milliseconds, for locally connected
devices, to ≈ 100 ms for devices connected over the internet. The
Precision Time Protocol (PTP) [37] (by IEEE), offers capabilities for
hardware implementation, and can achieve sub-millisecond delta for
devices connected over a local network.

When clock synchronization is not present during the recording,
either because the recorders are connected to different networks, or
because the inter-stream synchronization is required after the record-
ing ends, content-based synchronization methods must be applied.
Because we are focusing in sensor-enabled systems, one of the modal-
ities can be used to transfer synchronization trigger signals (in this
example, a video source [64]). However, even though this solution
is lightweight and can achieve synchronization granularity starting
from approximately 30 ms (depending on the number of sources), it
does not scale efficiently and the authors tested it in a local setup.
For a distributed setup, it would require a global synchronization
system in place, at least for the initialization step, therefore it can be
replaced by NTP/PTP altogether. Also, it might interfere with the ac-
tual content of the modality – e.g. by inserting artificial cues during
recording.

For these reasons, often video and/or audio [20] [104] events extrac-
tion is used. With this approach, instead of inserting artificial cues,
algorithms scan the recordings for parts with distinctive features (fin-
gerprints) and use those features as cues. This approach can offer
similar synchronization level, but it is computationally expensive to
an extent that is excluded for any real-time or low-latency live stream-
ing applications. If such content-based synchronization method must
be used, it has to be carefully selected because video-only solutions
might suffer if camera(s) are filming from "outlier" viewing angles
(e.g. drone or backstage cameras); and audio-based methods can
skew the synchronization level if the microphones are sparsely po-
sitioned and the sound from the source arrives with different delays
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to each of them. This phenomenon is exaggerated if the sound source
is also mobile, thus the delta between the sources is changing - for ex-
ample, recording a tennis game with cameras in opposite sides of the
court.

2.1 standardization efforts

As mentioned previously, we take in account standards that apply to
our domain. The standardization consortia that are most relevant to
our work include MPEG, W3C, IETF, DVB, 3GPP, IEEE and HbbTV
(among others).

Because all of our implementations target browser-based clients,
elements from the suite of standards by the W3C were paramount
to our work. All of our applications use the video element (and
its respective APIs), which is defined by the HTML W3C standard
[39]. We use the W3C Extensible Markup Language (XML) [18] for
several types of metadata and it is also used by MPEG-DASH for its
descriptor files. Another format that is utilized for timed metadata in
our work is JSON [17], which is a standard maintained by IETF.

Other standards can facilitate functions like synchronization be-
tween different streams and/or multiple screens [34]. Synchronized
Multimedia Integration Language (SMIL) is a standard maintained
by W3C and defines a XML-based format for expressing multime-
dia presentations [106]. It includes specifications for temporal and
spatial relationships between the media elements and actions (e.g.
transitions, control etc.). With these capabilities enabled, SMIL can
facilitate synchronized rendering of multi-modal media, companion
screen applications etc. Specifically for companion screens, DVB has
developed the Companion Screens and Streams (DVB-CSS) standard,
that targets secondary devices in a interconnected TV-centric setup
[33].

Because our work is focused on video platforms, we have strong
interest in such standards. The preferred method used for deliver-
ing the video over the internet is HTTP Adaptive Streaming (HAS).
The principle of HAS is that each video is segmented to shorter clips,
that are transcoded to several bitrates which are made available at the
server and the client requests the bitrate (of each segment) that better
suits its available bandwidth. We are using MPEG-DASH (Dynamic
Adaptive Streaming over HTTP) [101] as reference, mainly due to its
popularity, active community, extensibility and because it is an inter-
national standard (as opposed to the other alternatives, such as: HLS
by Apple [7], HDS by Adobe [54] and SmoothStreaming by Microsoft
[122]).

In low-latency streaming scenarios, we use the Real-time Transport
Protocol (RTP) over UDP [97]. It offers capabilities that minimize
the end-to-end delay, with the trade-off that it does not offer QoS
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guarantees. As a result, packets might be dropped or arrive in the
wrong order. In Chapter 6, we demonstrate a technique to deal with
such issues.

When packaging of the video is required, we prefer to use the ISO
BMFF format [52] in mp4 containers, also standardized by MPEG [53]
and, most importantly, able to carry timed metadata with their asso-
ciated timing information [26].

For the rest of the manuscript whenever the choice of a specific
standard/protocol is essential, we mention it and justify its use, oth-
erwise it is safe to assume that one of the aforementioned standards
was selected, or that any substitute can be used instead.

2.2 delivery of video with timed metadata

As mentioned in the previous section, we commonly use MPEG-
DASH for video streaming. The reasoning behind this choice is that
the standard has capabilities of extending the delivery of other media
on top of audio and video [25]. Also, it is interoperable with other
standards of MPEG, like MPEG-V that is designed to handle timed
metadata (sensor and actuator information/commands) and its appli-
cations vary from Internet-of-Things enabled systems [61] to building
interfaces for virtual worlds [108].

Figure 8: Concept of MPEG-V sensory effects (from [111])

We can get insights from works on sensory information (at the time
focused on MPEG-V), from the perspective of both the capabilities as
output accompanying video (as shown in Figure 8) and the enabled
architectures. As an example of architectures for video systems with
MPEG-V capabilities, Figure 9 shows the architecture of SEVino tool
[111], that allows authoring of sensor effects as timed metadata.

MPEG is also working towards a way to achieve "Media Orchestra-
tion" that they define as the process of coordinating devices, media
streams and resources to achieve a unified immersive experience 1.
MPEG MORE [35] is a standard developed with this goal of media
orchestration. It is reusing some elements from DVB-CSS, like the

1 Definition taken from Chapter 1. of W16133 "Call for Proposals on Media Orchestra-
tion Technologies": https://mpeg.chiariglione.org/standards/exploration/media-
orchestration/call-proposals-media-orchestration-technologies
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Figure 9: Architecture of the SEVino tool (from [111])

Wall Clock and Time Synchronization parts. However, it differs from
DVB-CSS in two main aspects: it facilitates orchestration for non TV-
centric systems, and has provision for synchronizing multiple sources
(on top of the DVB CSS capabilities for multiple receiver devices).

On systems that capture and distribute videos with timed meta-
data, there is a debate concerning the pre-processing of the captured
content. This pre-processing step can include cleaning, formatting,
extracting other metadata etc. One approach is the metadata (and
occasionally the AV content) to be processed locally, on the captur-
ing device, as in Figure 10a [115], and the other is to process it re-
motely, at the server, as in Figure 10b [30]. The main advantage for
the on-device pre-processing is that the server receives the data ready
for application-specific processing and distribution, thus it has lower
resource requirements for scaling the system. Otherwise, when all
of the processing happens on the server, typically more processing
power is available, thus more elaborate techniques can be applied.
Additionally, on the server side there is a global view of the connected
content producers and consumers thus allowing functions (e.g. com-
parative metrics between the sources) that can not be achieved with-
out peer-to-peer communication which is throughput demanding.

A "golden rule" does not exist to guide development of applications
on whether server-side or source-side processing should be used. The
decision should be taken considering several factors, like the underly-
ing hardware, targeting application and expected number of devices.
For our implementations we prefer to perform computationally inex-
pensive processing on the source (e.g. data formatting) and mitigate
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(a) Producer-end Processing (from [115])

(b) Server-side Processing (from [30])

Figure 10: Overview of data processing paradigms in literature

to the server functions that require extensive processing power, or
global view of the systems (e.g. feature extraction). Throughout the
manuscript, on the application examples, we mention recommenda-
tions concerning the processing approach, when necessary.
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Part II

E X T E N D I N G V I D E O A P P L I C AT I O N S

The second part of this manuscript focuses on applying
the timed metadata in order to extend multimedia appli-
cations by introducing novel functionalities. We demon-
strate two use cases with respective application examples;
first, timed metadata as input for generating content, and
second, to extend the navigational capabilities for the un-
derlying multimedia content.





3
T I M E D M E TA D ATA F O R C O N T R O L O F
I N T E R A C T I V E M U LT I M E D I A A P P L I C AT I O N S

In this chapter we examine the first scenario of extending video ap-
plications, by using timed metadata for control of interactive applica-
tions. "Control" in this context is creating or modifying content (not
to be confused with playback control). More specifically, we chose
distributed multimedia synthesis control, by using Kinect as an in-
put device. The content producer uses the Kinect device to generate or live
edit an audio signal and (using the same input) to produce relevant visual-
izations. We chose the scenario of multimedia synthesis, so we can
study the Specialized device case and, most importantly, because mul-
timedia content authoring can be a process that yields a rigid output
(as explained in the following paragraph). We use timed metadata to
extend the production of audio and video by adding flexibility over the final
output. As all of our implemented systems, the platform is designed
to run in the browser.

Figure 11: Producer outline for audio (a) synthesis (b) editing

For audio synthesis (Figure 11 (a)), the producer uses a controller
that sends the input (as MIDI, OSC etc.) to the Digital Audio Work-
station (DAW), which typically is a PC with an adequate audio in-
terface. The DAW in order to be initialized has registered a set of
"instructions" for the input. As example instructions, turning knob A
at the controller alters the soundwave frequency, while turning knob
B alters the amplitute etc. Then, the synthesis engine of the DAW,
uses these "instructions" to transform the signals from the controller,
to signals for the synthesis engine. The synthesis engine in turn cre-
ates an audio file, that is transmitted to the network and/or saved for
later use. At the same time, it sends the output to a local output de-
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vice (i.e. speakers or headphones), that the producer uses to monitor
her performance.

For audio editing (Figure 11 (b)), again the producer uses a control
device that sends the input to the DAW, which also takes as input
an external audio source that can be coming from a physical device
(microphone, or musical instrument), or an external source (live or
pre-recorded audio track). The triggered commands from the con-
troller are used to modify the audio from the audio source. Again,
the output is rendered locally for monitoring purposes and exported
as a digital audio file for distribution or later use.

Figure 12: Audio output based producer-consumer chain

On the client, the content consumer receives the audio stream of the
performance and directly renders the output. This is a rigid setup be-
cause once the original content is authored and transmitted, on the
client side, there is minimal control over the final audible output. If
any modification is required, computationally expensive Digital Sig-
nal Processing (DSP) techniques have to be applied to the audio signal
(e.g. Fourier Transformations) as in Figure 12. Also, if audio filters
have been applied on the producer side (e.g. band-pass frequency
filter, or reverb effect) their result can not be reversed or modified on
the consumer side, even with DSP.

Figure 13: Controller output based producer-consumer chain

Alternatively, if modifying the output on the client side is essential,
instead of transmitting the audio file, the producer can transmit the
inputs (as timed metadata) to the client and generate the final out-
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put there, as in Figure 13. This way, all the control parameters are
exposed and the user can modify them at will. This approach how-
ever gives absolute control to the client, and can completely alter the
result, to an extend that does not resemble the original works.

The same principles apply to accompanying visualization of the
performance. The visuals can be a product of audio processing, video
recording, input-triggered, or a combination of them. Typically they
are produced on the content producer end and they are transmitted
as regular video to the client - that again does not allow significant
modifications without heavy processing.

Figure 14: Controller output based producer-consumer Chain

To achieve flexibility over the final output on the receiving end,
while the producer maintains the artistic control, we propose a mod-
ular architecture, with symmetric clients on both the producer and
the consumer side, as in Figure 14. The direct outputs from the con-
troller are both sent to the client and processed locally. Additionally,
the output of the controller processing unit is used locally as input for
the synthesis engine to produce the audio used for monitoring, and is
also sent to the client as timed metadata (alongside the raw controller
outputs), to be used for rendering the original unmodified output. At
the initialization stage the content consumer has received a redacted
"instruction" set from the producer. This way the content consumer
is able to modify the parameters listed on the instruction set by re-
assigning their functionalities, while the missing parameters have to
be rendered by the received timed metadata. Because the producer
decides on which parameters are included in the instruction set, the
creative part remains on the content creator, while at the same time,
other parameters can be altered according to the preference of the
content consumer, thus enhancing the overall experience.

We analyse our proposed solution by going through the design
and development of an example audio application controlled with
Microsoft Kinect. We chose Kinect over audio application-specific
controllers, because it is a multi-modal input device, therefore permit-
ting to demonstrate a broader spectrum of possible implementations.

In the following section we elaborate on the use cases we consider
for our solution. Then, in Section 3.2 we present the state of the art
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on relevant technologies for distributed audio applications, followed
by the design of the application built with our solution in Section
3.3. Finally, in Section 3.4 we conclude the chapter by discussing
current and future perspectives of similar multimedia applications
using timed metadata.

3.1 scenario description

The setup we study consists of a content producer on the server side
and an interactive content consumer on the client. The main content
is an audio performance, while we also consider dynamic content-
based accompanying visuals, as it is common in such cases. The
creator uses some controller (in our example the Kinect) to produce
the content, while the consumer receives it and has the ability to
modify the parameters of the final output as allowed by the content
producer.

For example, the pitch and the rhythm of a music piece should not
be altered, but the creator might permit the user to modify the level
of an effect (e.g. reverb).

On the technical challenges, the content produced by the content-
author should be identical as received by each client, even if the final
output is subject to the parameters set by the respective user. That
means, that if the client does not alter any parameters, the final result
should be the same as the one that the producer renders on her mon-
itors. Also, since there are several resources transmitted (instead of
a single audio file), there are extremely tight timing restrictions, thus
synchronization must be retained.

3.2 state of the art

The paradigm for controlling audio using Kinect is already examined
in the literature, and the approaches can be categorized in those that
perform direct mapping of inputs [86], and those that are based on
mapping of actions (i.e. using gesture recognition) [41] [24] [79]. We
excluded those based on gesture recognition because the synthesis
engine must be separately trained for each user and each application.
Also, some of these approaches are application-specific [24], or have
latency issues [79]. Therefore, we resolved to use the direct mapping
of inputs approach [86], that can be extended to also support gestures
if needed.

With direct mapping, the user input values are assigned to the pa-
rameter they control in the audio or visuals synthesis pipeline. We
extended this practice by adding a distributed processing feature that
is based on cloning the synthesis engine to the client, thus allowing
the receiving user to obtain more flexibility on the final output by
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modifying the unlocked parameters. The whole process is detailed in
Section 3.3.1.

Even though our work is different, the distributed processing as-
pect is influenced by a symmetrical paradigm used for graphics in
mobile gaming applications [32] and generic remote-rendering plat-
forms1, to reduce the GPU workload for resource or power constrained
devices. In these platforms, inputs from the user are transmitted
alongside the current state of the application to a server, where the
engine renders the output and sends it to the client. Our goal is flex-
ibility, instead of power/processing constraints; thus our approach
differs because the rendering happens on the client side too (on the
server it is used for monitoring), but it is similar because we are
also sending the inputs (and the mapping parameters) to the clients.
Such frameworks are application-specific, while we propose a generic
browser application architecture, in order to provide flexibility on the
user end.

A relevant field to this work is Collaborative Music Creation, where
various approaches [3] and platforms [44] exist. However, they are
not suitable for unidirectional music performance, because they ei-
ther allow full control over the final output, as every user is a poten-
tial artist, or they produce a single audio file.

On modular in-browser audio synthesis, Gibber [92] is an online
platform that offers composition via coding. Even though Gibber,
as a programming environment, offers great flexibility (that also ex-
tends to visual arts), it exposes the full code complexity to the user,
hence requiring music and programming experience, for any mod-
ifications. Regarding live performances, its usability is limited, be-
cause the sound is produced by typing code; furthermore, its only
streaming support is a collaborative mode that suffers from the same
drawbacks mentioned in the previous paragraph.

Also, all collaborative platforms expose the full production system
to the clients, therefore it is very difficult to reserve the rights for
parts of the composition. However such platforms can be useful in
cases that the artist encourages adaptation of their works (e.g. Nine
Inch Nails remix project [78] and Radiohead’s Reckoner/Nude mixes
2). With our proposal we are providing the producer with the liberty
of exposing only the desired parts of a project to the clients.

Regarding the AV delivery, as we mentioned in Section 2.1, HTTP
Adaptive Streaming (HAS) is common for such applications. In the
typical approach where the output consists of a visualizations video
file with audio, this delivery method can lead to a loss of quality in
constrained networks. However, in our architecture the audio and

1 VirtualGL: 3D Without Boundaries - http://www.virtualgl.org
2 https://web.archive.org/web/20120218161743/http://www.radioheadremix.com/

information/
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parts of the visuals are generated on the client, thus avoiding any
degradation due to networking limitations.

Because in our scenario we are transmitting the raw video record-
ing (alongside the generated visualizations), we use HAS only for
that purpose. We designed our solution to be DASH-compatible,
since DASH streams can also carry other data alongside the audio
and video, in a synchronous manner [25].

3.3 audio synthesis application example

To elaborate on our paradigm, we designed a server-client applica-
tion, that implements basic audio synthesis functionalities with the
following specifications:

• Monophonic synthesis engine.

• Support for Stereo Panning, Some Effect (Reverb), and Wave-
form type.

• Record video of the performance and provide input-based visu-
alizations.

With the aforementioned specifications, the application must com-
ply with the following requirements:

• Provide auditory feedback of the output to the producer.

• Elementary sonic characteristics (rhythm and tonality3) should
be locked (i.e. controlled solely by the producer).

• Control over the effects by the consumer.

• Control over the visualizations by the consumer.

The producer uses Kinect as input to set the sound frequency and
effect parameters. Kinect (via its middleware and accompanying
SDK4), tracks the position of the user and provides a set of spatial
coordinates for predefined body points of interest - that, in this sce-
nario, are part of the timed metadata utilized. The set of the spatial
coordinates is called a "Skeleton" and the individual points are called
Joints and their naming is according to their respective body part
(LHand, RShoulder, Head etc.). For monitoring the output, real-time
auditory feedback is provided to the content author. On the client
side, the user receives the performance from within his browser, and
has control over the effects and rendered visualizations. The funda-
mental elements of the performance, like the sound frequency, are
not subject to change by the consumer.

3 the term tonality refers to the soundwave frequency, since the presence of effects
affects the auditory perception of the pitch [83]

4 https://dev.windows.com/kinect
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Parameter Min. Value Max. Value Locked

Frequency 0 (Hz) 22000 (Hz) YES

Volume 0 % 100 % YES

Panning -100 % 100 % NO

Reverb 0 % 100 % NO

Active OFF ON YES

WaveForm Sine Shaw NO

Table 2: Parameter List

Parameter Joint Min. (mm) Max. (mm)

Frequency RHand Y Torso Y Head Y

Volume RHand X RS X4 - 300 RS X + 1000

Panning Spine X -1500 +1500

Reverb LHand Y Torso Y Head Y

Active RHand Z Head Z - 20

Table 3: Parameter Map

4Right Shoulder X

3.3.1 Audio Synthesis

For the Synthesis Engine input, we are performing direct mapping
of the Kinect data, instead of gesture recognition, in order to obtain
low-latency accurate control [86]. To achieve this, a Parameter Set is
required, that consists of a Parameter List and a Parameter Map. The
Parameter List, contains all the parameters of the Mapping Engine,
with their respective value ranges. The Parameter List we are using
for the demo application is shown in Table 2. We modified it and
added a "Locked" field, which indicates whether the specific param-
eter, is subject to be changed by the user, or if it is considered to be
essential for the performance hence used as-is.

The Parameter Map we are using for the aforementioned Parame-
ter List is shown in Table 3, and a visualization of a skeleton with the
Joints included in the Map highlighted, in Figure 15. The Parameter
Map contains the Joint Coordinate we are using for each parameter
of the Parameter List and its respective range. Since the Join Coordi-
nates are in space, we can use as reference other Joints, or distance
(in mm) from the Kinect.

A Parameter Set P is used to initialize the Mapping Engine on the
server side, and the client uses a P ′ subset of P (i.e. P ′ ⊆ P), con-
taining a Parameter Map with the parameters defined as "locked"
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Figure 15: Skeleton with the Joints used in the application highlighted

removed. After initialization, at time t, the Mapping Engine uses
Joint Coordinates Kt, with P, to provide the Parameter Value set Et
that the Synthesis Engine uses to generate auditory feedback to the
producer; Figure 16 shows an overview of the process. The timed
metadata consist of the coordinates Kt, along with the values Et, and
they are delivered to the client, to reproduce the sonic result and cre-
ate visualizations.

KinectJDeviceJDrivers

Middleware

MappingJEngine

Parameter
SetJ(P)

Mapping
Algorithms

Parameter
ValuesJ(E)

Web Audio

<audio>

Audio
Output

SynthesisJEngine

Joint
CoordinatesJ(K)

Producer
Input

Figure 16: Audio Engine architecture

Because the server and the client use the same Web Audio based
Synthesis Engine, the audible output is identical at both ends, al-
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though if the user wants to change any of the unlocked values, P ′

can be used. The modification can be on the value mapping (e.g. by
setting a different Min/Max), or by setting her own input (e.g. by
using a controller via the Web MIDI API). At the same time, since P ′

does not contain the Parameter Map for the locked Parameters (e.g.
Frequency), the client is oblivious to how the specific value from Et
is produced, hence unable to modify it.

Figure 17: Configuration panel of the Unveil reverb-removal tool

The flexibility of changing the Reverb depth, even during runtime,
is a strong example of functionalities that would be computationally
expensive to perform from the browser, if the client received directly
the audio stream [59]. Even in a standalone DAW setup (that has
sufficient processing power), to use a tool removing the reverb, as the
one5 shown in Figure 17, would require excessive technical knowl-
edge and experimental configuration.

Regarding the technical aspects of our implementation, we are us-
ing functionalities of the Web Audio W3C specification [2], that is na-
tively supported by all the major browsers. In order to achieve op-
timal performance for the audio synthesis, the Web Audio specifica-
tion defines an audio routing graph, that is processed by optimized
low-level code of the browser engine. We achieve further perfor-
mance improvement by using the Web Worker API to run parts of
the application in separate threads, a process described in Section
3.3.2. The specification defines the AudioWorklet interface and its
AudioWorkletNode6, for dedicated audio threads, but it is not final-
ized yet (nor implemented by any browser)7, so we are not able to
thoroughly test a multi-threaded audio engine.

5 UNVEIL, by Zynaptic – http://www.zynaptiq.com/unveil/
6 originally in the specification they were designed as AudioWorker and AudioWork-

erNode respectively
7 as of the time that the platform was designed and implemented. Currently, only

Firefox supports some experimental features
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Figure 18: Application data handling during runtime

3.3.2 Data Exchange

Regarding the data exchange process, the only reference point re-
quired by the client application during setup, is a playlist file main-
tained on the server. The playlist starts with the locations of the appli-
cation Parameter List and Parameter Map, that are used to initialize
the Audio and Synthesis Engines. It also contains the location of the
file with the initialization information regarding the codec used for
the video stream from the Kinect.

The server is responsible for updating the playlist by adding the
Joint Coordinates (Kt) and Parameter Values (Et) whenever the Map-
ping Engine provides new output (at approx. 30 Hz). To achieve
synchronization, the timestamp of the Coordinates provided by the
Kinect middleware is preserved, as is the case with the video frames
timing. Note that the Coordinate frames and the video frames are
not aligned (details on Section 3.4), but preserving source timing in-
formation is essential to implement techniques for counter-balancing
the mis-alignment, or add filtering etc.

The recorded video is encoded in fragmented H.264 (MPEG-4 AVC)
[51] and the playlist references to the resulting segments. To balance
between file size and latency, we chose a segment duration of 1 s, thus
a new location is added on the playlist at 1 Hz rate. Figure 18 shows
an overview of the server data update mechanism. On the client side,
both the playlist and the video segments are fetched from within the
browser using the XMLHttpRequest API (AJAX).

The video segments and the timed metadata can be packaged in
mp4 containers, for later offline distribution. With the timing capa-
bilities of the mp4 file format, we are able to achieve frame-accurate
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synchronization, while using a widely supported format. For con-
suming mp4 files from the browser, libraries that analyze and extract
data such as mp4box.js8 can be utilized.

3.3.3 Using Timed Metadata to Generate Visualizations

(a) canvas

(b) video

(c) mixed

Figure 19: Visualization examples

For rendering input-based visualizations, the application uses the
<canvas> element. Vector graphics are rendered on the canvas by
using its CanvasRenderingContext2D API. Figure 19a shows an ex-
ample content-based visualization, with gradient based on the cur-
rent Stereo Panning, pointers on the projected coordinates of the per-
former’s hands and dynamically generated sprites according to the
sound frequency. More specifically, we create a canvas-wide black-
to-white gradient; then, the Audio Panning min/max values [-100%,
100%] are mapped to a blue gradient "stop", with possible values [0,
canvas.width], in the illustrated example the Audio Panning value
is close to 0% - i.e. we have Stereo: left and right audio output has
similar volume - which reflects to the blue gradient being centered
to the canvas. Similarly, the current Audio Frequency [0, 22 kHz] is
mapped to the sprite generation frequency [10, 30 Hz].

Alternatively, for rendering the video of the performance, the <video>
element is used instead. Since we have a continuous video stream,
the frames are buffered and loaded using the MediaSource API. Fig-
ure 19b shows an application screenshot displaying the performance
video, at the same time as the previous figure.

8 https://github.com/gpac/mp4box.js/
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Finally, since the timed metadata stream is synchronized with the
video stream, it is possible to combine the <canvas> and <video> ele-
ments to create composite customizable visualizations, as the one in
Figure 19c. We mention more details on the synchronization level in
the following section.

3.4 system performance

When we designed the platform we were aware from various stud-
ies [114] [112] that there is a latency between the video frames and
the corresponding joint coordinates. The source of this delta is the
processing time of the point cloud and video frames, required by
the middleware, to calculate the joint coordinates. Depending on the
study, the average measured latency for tracking one skeleton is in the
region of 30 to 106 ms, with observed maximum at 156 ms (which can
reach up to 490 ms when tracking two skeletons) [65].

Also, the average skeleton data acquisition frequency varies in the
range of 18 Hz, for two skeletons from three tracked users, to 30 Hz
for one skeleton from one immobile user tracking. Because the values
are application and hardware-dependent we did an evaluation for
ourselves.

Using a first generation Kinect connected to a PC with 4-core CPU
at 3.60 GHz and 16 GB of RAM, we measured the average acquisition
rate to be at 27 Hz, and the lowest observed at 22 Hz. Note that these
values exclude the first and last few seconds of capturing, where there
is very abrupt behaviour on the data due to sensor calibration.

The latency mentioned in the single skeleton scenario is borderline
acceptable for live applications, but to compensate for spatial jitter
and increase precision of the coordinates, a filter might be needed.
Adding a filter for higher accuracy on the joint coordinates would
add an extra latency of about 2 frames [36]. Considering that those 2

frames, for a capture rate of 25 Hz would add an extra 80 ms, would
disqualify Kinect for live audiovisual control.

For our application, we propose using unfiltered values on the pro-
duction end to keep the latency within acceptable limits for control
applications [59] [14] (i.e. classified as "Critical"), and using the filter-
ing on the values sent to the consumers (i.e. "Strict" synchronization)
where we can compensate for the difference, as detailed later in Chap-
ter 6.

On the client, originally we tested adding the Joint Coordinates and
Parameter Values as WebVTT cues and processing them in a timely
fashion using the oncuechange event of the textTrack element. How-
ever the delay between the timestamp of the cue and the time it is
actually fired can reach up to 250 ms. Thus, we utilize the Web Worker

API, to run a background thread, dedicated to fetching and parsing
the Joint Coordinates and Parameter Values.

36



Concerning bandwidth requirements of our implementation, the
transmitted data for a minute of audio content is less than 200 kB in
size, while an audio file of the same duration, even in a lossy format
such as the mp3 can be more than 2 MB (for a bitrate of 320 kbps).

Similarly, for the visualizations, we transmit only the timed meta-
data and the video recording, that is approximately 35 MB per minute.
In the typical distribution chain, to support all three visualization
paradigms mentioned, three video streams should be produced (i.e.
∼ 105 MB per minute), and that is without support for any modifica-
tions to the output.

3.5 discussion

In this chapter we studied using the values from a specialized device
(the Joint Coordinates from the Kinect) alongside with the processed
values (the Parameter Values from the Mapping Engine) as timed
metadata, to extend the capabilities of an audiovisual application. We
presented how timed metadata can increase flexibility in audiovisual
synthesis, reduce overall bandwidth consumption and reduce client-
side computation complexity. We proposed an initial architecture for
developing interactive distributed audiovisual control applications,
applied to a Kinect-based scenario, as presented in the ACM Audio

Mostly international conference [87]. Instead of the server directly
sending the output to the client, it sends the mapped input values,
alongside the application parameters, in a timely manner. This way,
the data processing overhead is divided between the server and the
client, and the content consumer is able to customize the final output.

From a communications perspective, our approach is bandwidth
efficient, comparing to traditional sound synthesis applications. This
is a direct result of the minimal size that the input and parameter
sets have, as opposed to the larger audio files that are transmitted
otherwise. For sound editing, or hybrid editing and synthesis, in
order to maintain flexibility, we might introduce an overhead because
both the audio source and the parameters are transmitted, but it is
less than 10% of the total file size.

The only scenario that our proposal offers significant disadvantages
would be if applied to live mixing, because all audio sources should
be transmitted (and their number might vary a lot). However, even
in that case, the master-track effects can be distributed as timed meta-
data, while the per-track effects and mixes already applied to the out-
put audio file. This is a reasonable compromise, because the actual
creative product in this case is the way the entanglement of the audio
sources is performed, thus there is no need to expose it to possible
modifications.

For the experimental part, we used segment duration of 1 s, target-
ing a balance between introduced delay and required throughput sav-
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ings. The associated metadata produced until each segment is ready
are transmitted alongside the respective segment. However, for low-
latency scenarios, shorter segments might be used in combination
with a low-latency protocol. This approach however might introduce
out-of-order delivery of frames and (new) asynchronies between the
timed metadata and the AV frames, in addition to the pre-existing
coming from the middleware processing. To overcome synchroniza-
tion issues of this nature we propose a client-side buffer-based solu-
tion in Chapter 6.

We have also studied if the architecture can be extended to accom-
modate more demanding immersive scenarios covering applications
with server-side generated 3D visualizations and/or real-time audio
input. Some of the challenges rising from such use cases include
supporting audio editing capabilities synchronized with the audio
synthesis and scene navigation with dynamic 3D Sound generation.

In order to support these complex scenarios, we propose packaging
all required data (3D Scenes, audio input/output, video input/out-
put, Joint Coordinates and Parameter Set) in mp4 containers. This
packaging solution can also be used with DASH and it is suitable
for both simple data, such a XML-based Parameter Set [27] and more
exotic, such as 3D-based visualizations [26].
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4
S PAT I O T E M P O R A L N AV I G AT I O N F O R E X T E N D E D
V I D E O S T R E A M S

We demonstrated in the previous chapter how we can extend mul-
timedia content creation with specialized devices, by transmitting the
device input and the partially processed values, instead of the final
output. In this chapter we study extending systems using timed
metadata from common devices. More specifically, we will examine
how we can extend the navigational capabilities of a video collec-
tion, by adding spatial and temporal seeking functionalities. Also,
this scenario is applicable to User-Generated Content (UGC) systems,
where the audiovisual content can be provided by several different
sources/users.

Through the past years, there is a surge in platforms that gather
and distribute UGC. This multimedia (video, audio, text) UGC con-
tent is often challenging to classify and index. The predominant way
to achieve this is by attaching tags and descriptions of the recordings.
This information can be used to search for relevant recordings, as well
as summarize and describe the contents of the UGC.

Several platforms (like flickr [40] and Instagram [55] - among oth-
ers), allow the user to attach a location (on top of the textual de-
scription and tags) to the corresponding recording. Thus, when the
user is consuming the multimedia content, she can be aware of the
premises and/or the central location of the recording. Additionally,
this location can be used to perform a coarse landmark based search.
However, in such platforms, this information is without any timing
data, used only to give an approximation of the location and it is
often missing altogether.

Other platforms, like Google Maps [43], use an actual map to dis-
play the available media. Again, the location can be registered by
the user thus inheriting some of the drawbacks mentioned in the
previous paragraph or captured from the GPS sensor of the device.
Regarding the retrieval of the recordings, the user typically navigates
to the location on the map and then can browse through the available
content.

In this work we merge the two approaches to propose a new para-
digm that combines the two main properties:

• provide the user with location awareness during playback

• use map-based visualization for selecting location-relevant con-
tent

We elaborate by demonstrating two new paradigms for navigat-
ing through video collections and implementing two respective plat-
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forms. The first (Spatiotemporal Video Navigation - Section 4.2), suit-
able for on-demand delivery, provides a new feature that is to navigate
to a specific point in the timeline of a video, based on the location and
orientation of the camera. By navigating in time we are able to allow
the user to skip directly to the relevant part of the recording, thus
enabling long duration mobile videos to be usable in scenarios where
the user is interested in a portion of the available recording.

With the second platform (SWAPUGC - Section 4.3), we show that spa-
tiotemporal navigation can also be applied in cases where the content
consumer follows a specific event (i.e. a specific region at a specific
timeframe) via multiple recordings. This approach can be applied to
both on-demand and live scenarios.

In order to achieve the aforementioned capabilities, we use timed
metadata gathered during the recording, i.e. the location and orienta-
tion data of the device, and instead of placing pointers ("pins") on the
map, we place oriented indicative markers. The markers are repre-
sentative to a corresponding time in the video file and permit robust
navigation. Also, the map view is updated during video playback to
include the vicinity of the currently displayed location.

4.1 state of the art

In this Section we overview some existing platforms for sharing geo-
tagged multimedia content. We selected three cases to demonstrate,
according to relevance and popularity criteria. First, the Instagram
sharing platform, which is a popular application and website for
sharing UGC photographs and videos. Second, Google Maps that
is a map service that also offers the capability to browse through
user-submitted photographs according to the target location. Then,
GeoUGV platform that is the result of a research project and enables
recording sensor-enriched UGC videos and navigating through the
collection using a map interface. Finally, before we present our con-
tribution, we overview some other useful tools and techniques that
can have auxiliary uses in such applications.

4.1.1 Instagram and Google Maps

One of the most widespread platforms for sharing geotagged multi-
media content is Instagram. Instagram is a mobile application and
website that allows the user to share multimedia content. Origi-
nally created for sharing photographs, it was extended to accommo-
date video-sharing functionalities. Even though it is mainly used for
searching with tags, one of the features of the platform, is to search
according to location. We performed a sample query for media rel-
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Figure 20: Instagram screenshot of "Bridge Dom Luis" results

evant to the bridge "Dom Luis", located in Porto, Portugal, and the
results1 are shown in Figure 20.

All of the "Top Results" of the query are photographs - correspond-
ing to the main target medium of the platform, and all of the images
are shot from the top of the bridge (i.e. the bridge itself is not visible).

Similarly, we performed the same query on Google Maps, with the
results shown2 in Figure 21. We can observe that for Google Maps,
from the first ten results, in two of them (green highlight on Figure
21) the bridge is barely visible due to large distance; and in three
of them (red highlight on Figure 21) the bridge is not visible at all -
possibly due to camera facing, or wrong location data.

Both approaches lack a mechanism to identify whether the loca-
tion accompanying the recordings is accurate, thus are able to pro-
vide only coarse localization capabilities in browsing. Even if the
location is accurate, the lack of camera facing information does not
permit to filter results with criteria like "Media containing the bridge
in the image" or "Photographs taken from the top of the bridge". The
GeoUGV platform was designed to address the two aforementioned
shortcoming, while functioning as a prototype to facilitate moving
from image-centered hosting platforms, to video distribution.

1 as appeared in April 2018 that the screenshot was taken
2 as appeared in April 2018 that the screenshot was taken
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Figure 21: Google Maps screenshot of "Bridge Dom Luis" results

4.1.2 GeoUGV

GeoUGV [66] was3 a platform that aimed at providing to users the
capability to navigate through a collection of videos using maps. It
consists of a smartphone application that records the videos and the
corresponding location/orientation data, and a browser-based client
for browsing the collection of recordings. The user is able to find
videos according to their location — indicated by pointers on a map,
as shown in Figure 22a. The pointer location on the map is set by
using the first location sample recorded with the video.

After the user selects the video (by clicking on it), the video play-
back starts in a window (annotated as [a.] in Figure 22b), and the
geospatial trace of the recording is displayed on the map by a red-
colored line (starting at point annotated as [b.] in Figure 22b). There
is also a pointer indicating the current location of the camera (visible
as a dot on the trace - located at [c.] in Figure 22b) and an estimated
Field-of-View (FoV) [10], indicated by a blue-colored overlay starting
at the pointer position (annotated as area [D.] in Figure 22b). As the
location updates so does the pointer position and respectively the
FoV with the matching orientation values.

3 Since March 2018 and as of the time of writing of this manuscript (February 2019)
the GeoUGV platform is offline ( http://api.geovid.org/v1.0/web/viewer )
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(a) Video listing on the map (b) Video playback interface

Figure 22: GeoUGV captures

This platform, even though developed in an academic environment
and not as a consumer product, introduced several novel contribu-
tions on the field of geospatial navigation of videos. It is the only one
that supports functionalities enabling to follow the spatial progress of
the video in time. Also, it introduced querying of videos according to
their FoV coverage of a Point of Interest (PoI). Finally, the geospatial
timed metadata were captured and uploaded in an automated way di-
rectly from the sensors by the recorder application, thus eliminating
fraudulent or mistaken entries.

However, there are downsides in the approach, that we are trying
to address with our proposal. First, even though the FoV can be
used for indexing and searching for relevant videos in databases, the
visualization is not always accurate — as in the screenshot where the
FoV visualization shows the video capture covering a "green" area of
almost two building blocks (blue-colored area [D.] in Figure 22b), but
the view is actually obstructed by a nearby building (as seen in the
preview window [a.]). Secondly, the map visualization is updated
during playback, but the user cannot navigate in the video by using
the map interface (e.g. by clicking on a specific point on the trace).
Finally, before starting playback, the consumer has no indication on
the duration of the video, the course followed during the recording,
or the facing of the camera. As an example, a user might be standing
close to the desired PoI on its East side and quickly moving away
for it, or continue recording with the camera facing on the East thus
never recording the desired scene. Therefore, the content consumer
is not able to identify the video as irrelevant prior to watching (part
of) it.

4.1.3 Other Tools and Techniques

Concerning other approaches on browsing UGC video collections,
there has been studies on the domain of multi-view video [6], that
target concurrent recordings with the motivation of following a mov-
ing object (person). The four proposed interfaces are "Swap " (ges-
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(a) Swap gesture (b) Map overlay

(c) Marker overlay (d) Carousel preview

Figure 23: Interfaces of multi-view video navigation (from [6])

ture based), "Map " (overlay), "Marker " (overlay) and "Carousel "
(preview); screenshots of these approaches are shown in Figure 23.

The authors were focused on interaction techniques, thus we do
not have any interesting architecture designs or system performance
and scalability considerations mentioned. However, they conducted a
user study which indicates that the Marker technique scores highest
according to the "Overall QoE" criterion, followed by Map and Swap.
On comments by the users, Swap is considered unhelpful since it
does not have any spatial information, and similarly for Carousel,
users comment that they just scroll through the videos until they find
one that they like, without considering the camera positioning.

With regards to the criteria that measure spatial awareness of the
user (i.e. "Distance perception", "Direction perception", "Learnabil-
ity") Map and Marker rank high, with users commenting that both
can be improved (e.g. by choosing more indicative shapes for the
markers/pointers). Since our approach is close to those two para-
digms, we have considered this input thoroughly, to make an inter-
face that is easy to navigate, yet providing intuitive markers with
clear spatial indications.

A feature that can be essential in some use cases of automated navi-
gation is automatically identifying relevant recordings. GeoUGV uses
FoV estimation [10], that is computationally inexpensive, but it can
suffer from view-blocking (as mentioned in the previous section). A
different approach is using image features [19], but due to its process-
ing requirements it is not scalable nor supports low-latency scenarios.
A solution that balances precision with complexity would be to fuse
the two approaches by using FoV estimation for coarse location calcu-

44



lation, and then apply image features extraction, on sampled frames,
for validation of the results.

In addition to identifying spatially-relevant recordings, the quality
of the temporal information of the streams must be verified. This can
be done during the recording, if the devices are interconnected, and
a clock synchronization protocol (like NTP) is used. Alternatively,
an extra processing step correcting potential misalignment of the tim-
ing information is required. For example, in the multi-view video
study presented in this section, the authors use the ConCor+ algo-
rithm [4], but other techniques that use audio/video features can be
applied instead [20]. These approaches are computationally expen-
sive but can be used to synchronize, with sufficient accuracy, streams
from any device. The accuracy of the attached timing information
is especially important in the scenario where the user is following a
specific event, to avoid unexpected temporal "jumps" when switching
between views.

Typically the actual video content upload is trivial, because we are
are discussing on-demand scenarios. Specific provisions can be taken
for outlier use cases. For example, in constrained environments, tech-
niques like NEWSMAN [98] can be applied. Originally designed for
uploading regular and breaking news, NEWSMAN can provide in-
centives on using middlewares for scheduling and transcoding of
outgoing streams. The main principle is to implement schedulers
in the middleboxes to facilitate uploading of recordings. The outline
of the proposed scheduler is illustrated in Figure 24. First, the record-
ings are prioritized according to annotated "importance" level and
subsequently ranked in the queue according to the assigned priority.
Then, the network is evaluated in order to generate relative bitrates
for the queued recordings. Finally, the generated prioritised bitrates
(referred to as "jobs") are scheduled for upload.

Figure 24: NEWSMAN Middlebox scheduler architecture overview (from
[98])
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4.2 spatiotemporal video navigation

We implemented our own platform for playback of spatially anno-
tated videos with orientation information. Our platform consists of a
smartphone recorder application for the Android OS 4 and a browser-
based client for navigating through the recordings 5. The novelty of
our implementation comparing to the previous approaches is that
instead of placing a single generic pointer on the map to indicate
a recording location, we use the accompanying location/orientation
samples to visualize several keypoints with oriented markers.

The previous approaches were based on the assumption that the
recording devices have a fixed location, which might not suffice to
identify relevant recordings when the cameras are mobile. Even Geo-
UGV which can be used to virtually follow the spatial trace of the
recording on a map does not differ in indicating the video locations.
Therefore we show the keypoints (as recorded by the GPS sensor) on
the map, even if the video is not selected, as shown in the screenshot
in Figure 25.

Figure 25: Screenshot of Spatiotemporal Video Navigation

By using one marker per sample, instead of a continuous trail, the
user is able to identify the location (from the marker placement), and
infer the velocity of the producer (from the concentration of the mark-

4 https://git.io/SNR
5 https://github.com/emmanouil/Spatiotemporal-Navigation
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ers), at any given point. During playback the map centering is up-
dated to match the location of the current video content and the ex-
act location is indicated by highlighting (in red at the screenshot) the
currently active token.

Also, instead of trying to calculate the FoV and display it, we just
indicate the direction (facing) of the camera, by using the data from
the orientation sensors. This is visualized by shaping the marker as
a triangle (to imitate the camera view cone) starting from where the
camera is located during the recording. This way, the user can have
an incentive on the direction of the camera at any given moment (as
opposed to previous work that it is only for the current frame), which
is essential when searching for a video recording a specific area. Also,
we avoid misleading calculations of FoV, as in Figure 22b, where we
have on the map a broad field of view, while in the video the view is
obstructed by a building.

With the discrete markers, we were also able to implement tempo-
ral navigation functionalities. The user, by clicking on a map maker,
not only selects a spatially relevant video, but at the same time he
skips to the temporally relevant part of the video. So, we also add a
time dimension to the video navigation.

Finally, by having the points visible at all times, as opposed to
display the trace of a video after clicking on a single point, the user
has a more representative view of the video content and timeline,
before the selection of it. At the same time, the density of the tokens
indicates if the producer emphasized at a specific location during
the recording (dense markers), or if she is just "passing by" that area
(sparse markers).

However, there are some downsides to our proposal. More specif-
ically, in case that there are multiple recordings in a geographically
limited area, the resulting congestion of markers on the map might
be confusing to the content consumer. Even when we remove some
markers from the view, as the user zooms out on the map, the prob-
lem persists when the number of available recordings is significant.
The negative effects can be eased by using per-video color-coded
marks, but this approach also has scaling limitations.

4.2.1 Architecture and Implementation

In order to examine the capabilities of timed metadata for spatiotem-
poral navigation of video streams, from common devices in on-demand
scenarios, that we demonstrated in this chapter, we developed a soft-
ware suite dubbed "Spatiotemporal Video Navigation", comprising of
two parts:
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• Spatiotemporal Navigation Client 6: browser-based client ca-
pable of displaying videos with spatiotemporal navigation ca-
pabilities. Also, the client repository contains a python module
for processing and formatting the recorded streams (SN-Parser).

• SN-Recorder 7: android application for recording videos with
sensor data.

The input of the client for each recording (bundle) consists of the
following files:

• Descriptor, with the required synchronization information, the
location of the other files and other optional information (such
as recorder ID, recording device type ...).

• Playlist of the video segments for the video stream.

• Location File with timestamped Latitude/Longitude pairs.

• Orientation File with timestamped Yaw/Pitch/Roll triplets.

From a system design aspect, the implementation is based on the
original architecture we presented in Chapter 1. We can see the out-
line of the architecture for Spatiotemporal Video Navigation in Figure
26a. For comparison, we show the architecture for the Kinect-based
Synthesis platform (studied in Chapter 3) in Figure 26b. Both sys-
tems use different types of metadata, to extend in different ways the
corresponding systems, but they share similarities, e.g. in their syn-
chronization engines that both use timestamps and frame numbers to
achieve inter-stream synchronization.

Regarding the differences between the two platforms, the Mapping
Engine of the Kinect system (previously detailed in Section 3.3) is
replaced by a Spatial Analysis Engine that is responsible for format-
ting the recorded spatial data and extracting information based on
the Location/Orientation data (accuracy, bearing etc.). Because both
the Mapping and the Spatial Analysis engines input the sensor timed
metadata and output the transformed timed metadata, they can be
macroscopically seen as different engine "modules" of the same archi-
tecture.

On the client side, again we use the video HTML element to render
the captured video and a canvas element for the map, markers, icons
and map overlays. Because we are using external APIs (in this case
the Google Maps API), the graphics engine, during the initialization
stage, works by sending synchronous requests at the remote service.
After the initialization, the platform can be robust and lightweight,
because we are using only native HTML elements and APIs without
any custom plugins.

6 https://github.com/emmanouil/Spatiotemporal-Navigation
7 https://github.com/emmanouil/Spatiotemporal-Navigation-Recorder
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(a) Spatiotemporal Video Navigation
Architecture

(b) Kinect-based Control
Architecture

Figure 26: Outlines of implemented architectures

Our platform can be easily modified to accommodate visualization
modifications. As an example, we are currently rendering all the
available GPS points (an average of one sample per 1-2 s), however
it can be modified to display markers only on location changes, or
at specific time intervals. Another extension is the interpolation of
samples (according to time or distance criteria), when the GPS trace
is sparse due to signal loss, since the orientation is sampled at a fixed
rate.

Spatiotemporal Video Navigation is an experimental platform that
we built - based on GeoUGV, as a mean to examine the flexibility
and feasibility of our proposed architecture. Its goal was to give us
more insights on the characteristics, requirements and behaviour of
the common devices class applications and explore the possibilities of
AV systems with spatial awareness. Due to the time limitations of
the Thesis, we did not perform evaluation tests on this incarnation,
but we did evaluate the SWAPUGC platform, that is the evolutionary
offspring of Spatiotemporal Navigation.

4.3 software for adaptive playback of user-generated

content (swapugc)

In the previous section we demonstrated how a user can navigate
through videos in the spatial and temporal domain. Here, we ex-
amine a different paradigm which is navigating through the different
views of simultaneous recordings. Several views overlapping in time
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and space are available and the client can switch between them, ei-
ther on command of the user or in an automated way.

Again the client should be aware of the spatial characteristics of
each view, in order to be able to synthesize a representation of the
available recordings. However, in this case, the inter-bundle synchro-
nization requirements are more demanding. In Spatiotemporal Video
Navigation switching between views with misaligned timing informa-
tion (i.e. the reference clocks defer by several seconds) would not pe-
nalize the QoE - therefore we had loose synchronization requirements.
However, in this case, switching from a view to another, while fol-
lowing the same space on a common timeline, would gravely disrupt
the experience (as examined in the following Chapter 5). Thus, we
specify the synchronization level to critical.

As mentioned earlier in this chapter, if the common timing refer-
ence is not inherently present, it can be obtained by means like fea-
ture extraction and matching. This common timing reference is used
to identify and synchronize relevant streams.

Starting from Spatiotemporal Navigation Client we developed SWA-
PUGC 8 9 as a tool to experiment on consumption scenarios for mul-
tiple recordings [85]. Both of the platforms take the same input, how-
ever SWAPUGC, when the strict synchronization requirements are
met, is able to support live scenarios with multiple recordings and
multiple video bitrates per recording (i.e. "representations" in adap-
tive streaming systems).

4.3.1 Technical Description

First, during the initialization phase, SWAPUGC fetches and parses
the JSON descriptor file for each bundle. It contains synchronization
information that is a required reference point in time, typically indi-
cating the start of the recording. Also, the descriptor contains ref-
erence to the other files required, for retrieving the video, location
and orientation. An example of other application-specific informa-
tion that can be inside the descriptor file is the lens characteristics,
used for applications estimating the Field-of-View [10]. After the tim-
ing information for each bundle is parsed, the earliest recording is
identified and its timeline is used as a reference during the simula-
tion.

Then, the playlist of each recording is fetched. The playlist contains
the available video representations (i.e. the available qualities), and
references to the byte-ranges or files of the representation segments.
The justification of the architectural design choice to support multi-
ple representations and segmented video files is to simulate a realistic
distribution scenario like Adaptive Streaming over HTTP (e.g. DASH,

8 ACM MMSys archived version: https://github.com/acmmmsys/2018-SWAPUGC
9 active development repository: https://github.com/emmanouil/swapugc
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HLS). Then, from the extracted information the video player is initial-
ized, which, since our platform is browser-based, is a video HTML
element. During playback we update the video, by feeding its buffer,
using the Media Source Extensions (MSE) API.

After the setup of the video player, the Location and Orientation
data are fetched, to be used during playback. When the initialization
phase is completed, the earliest starting recording is selected as a ref-
erence, meaning that it is the initial view, and consecutive events are
fired on its timeline. The interface outline depends on the implemen-
tation, but for the purpose of this example we consider a default setup
with a map having markers indicating the location of the recordings
and a video showing the currently active view, as shown in Figure 27

and explained in the following Section 4.3.2.
When playback starts, the default view is displayed and the respec-

tive location/orientation is updated according to the timestamped
sensor measurements. As a recording (with the accompanying spa-
tial information) becomes available the user can switch to it. Alterna-
tively, the switching can occur via automated view selection policies
- such as going through the available views at fixed intervals (round-
robin).The selection policy can take into account the available spatial
information to decide when to switch (e.g. when the camera moves
close enough to the subject). The throughput between the server and
the client can be throttled to emulate different network conditions,
and by designing our platform to support representations of mul-
tiple video qualities, quality-adaptation algorithms can be applied.
This way the stream selection algorithm can consider both network-
ing metrics and spatial information to decide on the most suitable
recording and quality. To the best of our knowledge, SWAPUGC is
the first open source player allowing for dynamic view switches in a
DASH context. In the following section, we describe the implementa-
tion of the SWAPUGC client application.

4.3.2 Example Implemented Application

We created the SWAPUGC client in order to test the scenario of simul-
taneous recordings consumption. Our application supports a manual
switching functionality, in which the user clicks on a marker and the
main view switches to the recording from that camera. Also, we
created a naive view selection policy, in which a 10 s round-robin
algorithm switches between views.

The interface of the application consists of a map and a video ele-
ment. After loading the timing characteristics, SWAPUGC parses the
location measurements and the initial markers are placed on the map
indicating the recording location corresponding to the beginning of
each -currently available- video. Also, the respective orientation value
is parsed, in order to rotate the marker, to emulate the facing of the
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Figure 27: Screenshot of the SWAPUGC implemented application

recording device, as shown in Figure 27. Thus the markers indicate the
field of view (they are not simulating it), and it is the same technique
as previously shown in Figure 25, with the difference that instead of
having one marker for a specific timestamp, we have one marker for
a specific recording.

When the playback starts, the placed markers are updated, as new
orientation / location measurements are parsed, corresponding to
the timeline. If a recording becomes available at any time during
playback a new marker is placed on the map, or removed if it becomes
unavailable. When the user clicks on a marker, the video switches to
the selected view.

On top of the click-to-activate view, which is based on the user, the
platform can operate in an automated fashion. Since all the charac-
teristics of the recordings are available, a view selection policy can be
defined that will switch to the better matching view. Events can be
fired to indicate when a view has become available/unavailable.
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To test this application, we used a dataset provided by the ICoSOLE
project[11], containing studio recordings of the BBC philharmonic10.
More specifically, we used 4 recordings in total (from "Take #5"):

• A002C001_140325E3 fixed studio camera - no sensor data

• 20140325_121238 roaming handheld camera - sparse orienta-
tion data

• 20140325_131253 roaming handheld camera - sparse orienta-
tion data

• Take5_Nexus5 roaming handheld camera - orientation data

Because the recording session was indoors, the location data was
severely inaccurate and we did manual annotation. Also, the record-
ings with id 20140325_121238 and 20140325_131253 had very coarse
and sparse orientation data, thus were recreated, using the open-
source Spatiotemporal Video Navigation Recorder11. A screenshot of
the application running with the three recordings is shown in Figure
27.

We used GPAC [62], to create segmented video files so they can be
distributed in a manner that would resemble a live scenario (poten-
tially with multiple qualities for adaptive streaming). The segment
playlist is in mpd format, which is natively supported by SWAPUGC,
in order to be compatible with the MPEG-DASH standard. All of the
aforementioned files and the source code are available in the archived
SWAPUGC repository, under a Creative Commons Attribution Non-
Commercial Share Alike license (CC BY-NC-SA 4.0). Also, a website
hosting a demo of the application is available online12.

4.4 discussion

In this chapter we demonstrated another way to extend the capabil-
ities of a multimedia system, this time by using the timed metadata
to achieve a novel approach to spatiotemporal video navigation. This
video navigation paradigm is feasible due to the recording and distri-
bution of the timed location and orientation metadata. We examined
two different approaches, one for each of the two different paradigms
for spatiotemporal navigation, the first for navigating (in time and
space) through videos, and the second for following a specific event.
We provided the implemented platforms (Spatiotemporal Video Nav-
igation and SWAPUGC) as open-source projects, suitable for research
purposes.

10 Available on the SWAPUGC repository is also the parser used to extract timing
information and format the XML-based data of the dataset, to the SWAPUGC JSON-
based format.

11 https://git.io/SNR
12 https://acmmmsys.github.io/2018-SWAPUGC/
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For the first approach, where the paramount goal is to allow the
user to navigate in the time of the video that is of spatial interest, by
displaying discrete oriented markers on a map for the duration of a
video recording, we are able to offer the user the ability to select the
relevant video and timeshift to the respective point in time, thus in
practice navigating to the specific frame of interest. This approach
can be useful in cases where the producer of the content is not static
at a fixed location, because the consumer will be able to preview the
movement trail and camera orientation at all times. On the downside,
this can lead to map overloading with markers that can obscure the
map overview and overwhelm the user with available keypoints.

For the second scenario, where the target is to offer flexibility to
the user when following a specific area at a specific time (i.e. an
event), we use the same principle of rendering oriented markers, in-
stead that for this case, there is only one marker per camera and
the location/orientation is used to update its characteristics. This ap-
proach is focused in navigating through the views, to find the most
suitable one (either manually or automatically).

In the following chapter we studied different adaptation policies
that we tested using SWAPUGC. We also address UX issues we en-
countered during the development of Spatiotemporal Video Naviga-
tion and SWAPUGC, like video source selection etc.
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Part III

I M P R O V I N G V I D E O D E L I V E RY

For the final part of this manuscript we enhance video
applications by using the timed metadata to improve de-
livery of the content. We are mostly focusing on User-
Generated Content, though the techniques demonstrated
can be applied to other sources too. First, we study us-
ing timed metadata for multi-variable adaptation in multi-
view video delivery, and then, we present a buffering scheme
for synchronous and low-latency playback.





5
T I M E D M E TA D ATA - B A S E D A D A P TAT I O N O F
S E N S O R - E N R I C H E D V I D E O S T R E A M S

In the previous Chapter, we studied how timed metadata from com-
mon devices can be used to extend the navigation capabilities of a
video collection. Due to the popularity of mobile phones and cam-
eras with embedded geospatial sensors, in events that attract masses,
like concerts, plays, performances etc. several users might use their
devices to record that event simultaneously. Social networks like Face-
book and YouTube have provided the users with capabilities of live
streaming these events. However, with the aforementioned platforms,
viewers cannot select the streams with regards to the event, but with
regards to the user that records it.

This approach seems to be evolving, since often the recordings
come from cameras and/or smartphones capable of recording spa-
tial information (location and orientation), which is used to identify
recordings relevant in space and time (i.e. from the same event) [31].
Also, we saw in the previous chapter, that new platforms emerge (like
Spatiotemporal Video Navigation and GeoUGV) that facilitate brows-
ing through the selected relevant recordings. After identifying the
relevant recordings, selecting the most "suitable" view during play-
back is a separate task. There has already been some work on the
stream selection front, with approaches that evaluate the video qual-
ity according to the content, or the spatial sensor measurements [30],
reviewed in the following section.

Since there are works on identifying the recordings and automating
the view selection process, the final frontier towards a live distribu-
tion scenario is the actual streams delivery. As mentioned previously,
for video delivery over the internet, it is common practice to apply
HTTP Adaptive Streaming (HAS). Therefore, in a realistic live distribu-
tion scenario of multi-stream UGC video, the client has to select the most
suitable recording and the highest supported available bitrate of that record-
ing. Even though we are using HAS as an example throughout the
chapter, the principles of our work can also be applied to setups that
the recording and bitrate selection is transposed from the client to the
server (e.g. RTP delivery).

In this chapter we examine all of the aforementioned factors and
provide insights on techniques that use timed metadata for selecting
the streams that would improve the user experience when viewing
live events via UGC. The main contribution of our work is that we
consider live scenarios, in which the content is consumed as it is pro-
duced, so we are proposing a scalable approach. In order to achieve
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that, we focus on client-side solutions, because the server-side pro-
cessing should be kept to a minimum, in order to increase the maxi-
mum number of concurrently connected users and reduce end-to-end
delay. In our proposed architecture, the server should only be respon-
sible for maintaining the synchronization between the gathered UGC
streams, expose stream characteristics (metrics) and generate differ-
ent video qualities/representations. To achieve that, we delegated
functions to the content producers (e.g. image quality assessment)
and the clients (e.g. stream evaluation).

On top of the proposed techniques to build a system supporting
live streaming of multiple UGC recordings, we are identifying the
user experience effects of the technical infrastructure. More specif-
ically, HAS systems rely on evaluating the link between the server
and the client, but we also study how the client should behave when
the network connection of the producers to the server is unstable.

To the best of our knowledge, this is the only study that takes
in account both content and network parameters, to optimize live
delivery of multiple UGC streams of the same event. However, there
are several works that contain elements that we use in our approach,
and we review them in the following Section 5.1. Then, in Section
5.2, we analyse the algorithm used for the Stream Selection and in
Section 5.3 the metrics we used as inputs. Following, in Section 5.4
are considerations for implementations of our proposal and in Section
5.5 is the setup and parameters used for the experimental part of our
study. In Section 5.6 we review the results of the experiments and we
conclude in Section 5.7 with a discussion on our proposal and future
work on the domain.

5.1 state of the art

There have been several studies on view selection, including for sensor-
based UGC content. We are using this previous work to design our
system, and extend it to make it suitable for live scenarios and to
apply network condition provisions.

On stream selection, we cannot use content-based solutions that re-
quire computationally expensive image analysis algorithms [69] [118]
and/or training [96]. Nonetheless, because we use some of the pro-
posed techniques (e.g. for algorithm modeling, scene length etc.), we
review these solutions in this section.

MoViMash [96], is a framework for creating a video mashup (i.e.
a video sourced by multiple cameras) of music performances us-
ing as design principles, Video Quality, View Quality, Diversity and
Learning. Our approach is close to MoViMash because we are using
similar principles, but, whenever possible, we replace the computa-
tionally expensive image recognition algorithms used (especially in
Video and View Quality assessment) with sensor-based estimation.
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Figure 28: System architecture overview

Also, concerning the architectural implementation, since we consider
live scenarios, we do not use classification and class prediction (ma-
chine learning-based) of the videos, but we keep modified versions
of the pre-filtering and ranking methods. More specifically, we follow
the suggestion of the authors for first evaluating "relevant" views, ac-
cording to discrete objective criteria (e.g. currently selected view is
excluded from the available views), then rank the remaining views
according to the metrics and finally decide on the next view and du-
ration of the scene.

The aforementioned proposals also offered pointers on the cine-
matic guidelines we follow. We picked criteria that can be applied
to a wide range of videos, by cross-selecting guidelines from exam-
ple applications in relevant works varying from music performances
[96], to sport events [8]. These criteria include achieving view di-
versity, calculate scene duration and general video editing directives
(such as keeping the 180-degree rule1 or avoiding jump-cuts2). We
omitted audio-related directives, because we do not perform any au-
dio quality evaluation and switching, but instead we maintain one
audio source for the duration of the experience.

Figure 29: AVRS end-to-end system design (from [69])

1 https://en.wikipedia.org/wiki/180-degree_rule
2 https://en.wikipedia.org/wiki/Jump_cut
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Figure 30: (a) Sensor, Content analysis methods and (b) comparison (from
[69])

Automatic Video Remixing System (AVRS) [69] is a proposal for
creating multi-camera "remix" videos of events. Even though it is
targeting offline distribution scenarios, where a single video "remix"
file is generated on the server and is sent to the clients, the proposed
system design (Figure 29) for the sensor-based mode is similar to
the one we used (Figure 28). Also, this work illustrates the compari-
son between sensor-based and content-based stream evaluation, and
validates our choice to focus on the former, to minimize system com-
plexity in order for our proposal to be scalable (Figure 30).

The sensor-based mode of AVRS is based on previous works on
the domain of multi-modal information extraction for UGC videos
[31]. The latter work also offers insights on detecting relevant record-
ings and Regions of Interests (RoIs) — techniques that can be used
with the stream selection algorithms. However, regarding the camera-
selection algorithms, we couldn’t validate the proposals, since the
datasets (one described as "real-world" and one "obtained in a sim-
ulated scenario") used in the paper are not available. Nonetheless,
there has been extensive work on the domain, for identifying RoIs,
specific event time and location, highlights etc. [21]. Our recom-
mended method is to use a purely sensor-based approach, because it
has very low computational complexity, yet is accurate enough. This
method first applies low-pass filter on the gyroscope to exclude noisy
values, then estimates the FoV (assuming a conservative view width
of 90 degrees) and discards outlier recordings [31].

Indexing and retrieval of the relevant videos is an area that we do
not focus on this work, but there are approaches that can be used to
build such applications. The proposed methods [10] [31] are based on
calculation (not estimation) of the FoV, that suffer from the drawbacks
we mentioned on the previous chapter. However, FoV calculation can
be used to quickly provide a set of most relevant recordings, and then
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filter out those that are not suitable by other means that can be more
"expensive" (e.g. with image feature extraction).

We also consider the blurriness of an image as a stream quality met-
ric. We are using blurriness because artefacts/distortions from other
causes (compression, shakiness etc.) can be either deduced from
other characteristics (e.g. use bitrate to estimate compression level)
or sensor-based metrics (e.g. shakiness). Regarding the specifics,
we calculate the blurriness level using Laplacian edge detection tech-
niques – that is we measure the variance of the second derivative of
the grayscale version of the frame [81]. Other blur detection tech-
niques can be used, on the condition that they are computationally
inexpensive to allow the system to scale for several sources [82] [29].

All of the aforementioned works address aspects that are relevant
to our approach and we incorporate these elements to our proposal,
but to the best of our knowledge, there is no previous complete work
on designing systems for live adaptive delivery of UGC content.

5.2 proposal overview

In this section we propose and overview a model for view selection
that is based on the state of the art. We elaborate more on the de-
tails of the metrics in the following section and the implementation-
specific details are in Section 5.4. Regarding the required sensors
for our model to be applicable, we assume that all the recording de-
vices provide the location (e.g. GPS sensor) and orientation (e.g. Ac-
celerometer / Gyroscope) data; features that are common to modern
smartphones and digital cameras. The location measurement consist
of Latitude, Longitude and Altitude values, and the orientation of
Pitch (a.k.a. Pan - X axis), Yaw (a.k.a. Tilt - Y axis), Roll (Z axis). From
the aforementioned sensor data we can calculate metrics for Shaki-
ness, Roll & Tilt, detailed in the following section, and approximate
the Field-of-View (FoV) and Region-of-Interest, as in Appendix A.2.
As a visual quality metric, we are sampling frames of each recording
and perform a blurriness-based image quality estimation. The last
metric we use for the stream evaluation is Link Reliability estimation,
to indicate the quality of connection between the recorders and the
server.

To summarize, we consider the following objective criteria for stream
evaluation:

• Field-of-View (FoV) estimation (location/orientation - sensor-
based)

• Shakiness (orientation - sensor-based)

• Roll & Tilt (orientation - sensor-based)

• Bitrate (metadata)
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• Image Quality (metadata)

• Link Reliability (LR) estimation (metadata)

All of the aforementioned criteria, are based on values gathered (i.e.
orientation and/or location for Shakiness, Roll & Tilt, FoV estima-
tion), or computed (Bitrate, Image Quality, Link Reliability estima-
tion). The values used for the metrics are gathered on the production
end and then they are sent to the server, where they are used to cal-
culate comparative metrics (e.g. Image Quality).

We define a view change/switch event as the time that the client
choses to perform a transition between recordings. During playback,
the time for the view change event and the suitable available views
are selected according to subjective cinematic criteria:

• Scene Duration

• View Angle

• View Distance

Also, unscheduled view changes might occur if the currently selected
view becomes unsuitable (i.e. does not film the RoI), or unavailable
(i.e. the content producer disconnects).

We detail the algorithm for the stream selection in the next section,
but it can be summarized as follows:

1. First (filtering phase), mark as irrelevant recordings that do not
film the RoI (using FoV estimation).

2. Then (ranking), we order the remaining streams according to
the metrics.

3. Finally (switching), when a view change event occurs, we switch
to the highest ranked view that meets the cinematic criteria at a
bitrate that can be supported by the client connection.

The ranking is updated as new data arrives, so it is available if an
unexpected premature view change event occurs, otherwise the view
change happens according to the scene duration defined by the cine-
matic criteria.

Finally, we address the case that the recorder-to-server network of a
stream becomes unstable soon after it has been selected after a switch.
This case has not been thoroughly studied in the literature, since pre-
vious work is focused on offline scenarios, or live scenarios without
considering the actual video delivery [31][69][96][118]. The switch-
and-unstable case can be divided in two sub-cases.

1. The network connection between the server and the active record-
ing (i.e. the producer) fails, thus the stream is disconnected.
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2. The network connection between the server and the active record-
ing (i.e. the producer) degrades, potentially drastically chang-
ing the position of the recording in the ranking.

For the degradation sub-case, the client can either stick to the record-
ing, with its new lowered quality, until the next switch, or speedup
the next switch, risking to disrupt the user experience with the abrupt
change of view. Because both courses of action have downsides, we
included this scenario in the user-study to examine whether it is pre-
ferred to stay in the current stream or speed up the switch in such
cases.

5.3 stream selection policies

Regarding the stream selection policy we used our own version of the
MoViMash [96] algorithm, adapted for live scenarios. As mentioned
in Section 5.1, we removed from the stream selection engine processes
that might affect the scalability of the system (e.g. online learning),
or that are application-specific (e.g. classification), but we kept the
filtering, ranking and switching steps, with their criteria described in
the following subsection. The stream selection engine is responsible
for filtering the irrelevant streams, rank the remaining streams and
finally switch, at the right time, to the one with the highest score.

5.3.0.1 Filtering

For the filtering phase, each stream is considered to be relevant if it
is filming the Region-of-Interest (RoI), and the rest are excluded from
the pool of available streams. Because in order to calculate accurately
the FoV, several camera characteristics (e.g. zoom level, camera angle,
lens aperture etc.) are required but are not always available, when
they are not present, we are using an estimation of the FoV - based
only on the location and orientation of the device.

5.3.0.2 Ranking Metrics

After the filtering, the available streams are ranked according to their
score. The score is calculated on the metrics for Shakiness, Roll & Tilt,
Image Quality, Bitrate and Link Reliability.

Shakiness (Ss), is the metric that indicates instability (i.e. sharp
and/or constant movement) of the camera, and can be calculated
using the accelerometer of the device. More specifically, the recom-
mended algorithm is [31]:

1. Set a sampling window and shakiness thresholds (Tsmin, Tsmax).

2. Filter the values through a 10 Hz high-pass filter, for all axes
(Pan - X, Tilt - Y, Roll - Z). This step is required to identify the
type of movement – that is to separate panning from shaking.
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3. For each set of samples:

a) Compute the sample variance of the three filter compo-
nents (let Ex, Ey, Ez).

b) Compute the median value of Ex, Ey and Ez, which is go-
ing to be the shakiness value (Mshake). This step is re-
quired to further eliminate the possibility of measuring a
fast panning (that happens in one axis) from shakiness

4. IfMshake < Tsmin there is no shakiness (Ss = 0.0), ifMshake >
Tsmin there is shakiness (Ss = 0.5), if Mshake > Tsmax there is
strong shakiness (Ss = 1.0)

Higher shakiness values indicate worse perceived video quality, thus
when calculating the final score, we use the complement to 1 of the
value (1− Ss).

Roll & Tilt (St) is a metric extracted from the orientation sensors
of the device. The Roll, represents the angle between the left-right
horizontal axis of the camera and the ground 3. Tilt (Yaw) indicates
the angle between the font-back horizontal axis of the camera and the
ground – i.e. if the camera is shooting straight ahead should be equal
to 0

◦, if it is shooting downwards it should be negative and if it is
shooting upwards positive. As the absolute Roll angle increases the
perceived quality degrades, and we empirically found that a view is
"very disturbing" if the difference between the parallel to the ground
value reaches ±10

◦. The ±10
◦ is very conservative comparing to

MoViMash [96] that has a similar approach to Roll4 measurement,
with the difference that they degrade the score for values up to ±30◦
and if the Roll is higher, they completely remove the video from the
pool. We consider each degree of deviation to reduce the score per
0.1, thus for an angle aR, the Roll & Tilt score (St) is calculated as
shown:

St =


0, if aR = 0

|aR| ∗ 0.1, if |aR| ∈ [1, 10]

1, if |aR| ∈ (10, 80)

5

For the Tilt, to extract an accurate metric, the elevation is needed to
identify the actual deviation from the main view axis. However, be-
cause often the GPS sensor, that provides the altitude, is used indoors
we do not have accurate enough measurement of the altitude. There-
fore, we only consider "extreme" values (i.e. filming floor or ceiling).
When we have such an "extreme" value (e.g. |aT | > |± 70◦|) the Roll

3 this angle is also called "head tilt", which is not the same as the camera tilt
4 mentioned as "Tilt" in the paper – meaning "head tilt"
5 for angles wider than 80◦, the score starts to decrease since the video orientation

switches from/to portrait/landscape
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& Tilt score is zeroed (St = 1). Same as with Ss, St is also a negative
metric, thus to calculate the final score we also use the complement
to 1 of the value (1− St).

Bitrate (Vb) is a metric to evaluate how the highest quality repre-
sentation of a stream compares to the highest quality representations
available from the rest of the streams. At a given time t the server re-
ceives streams of bitrates {Bh1,Bh2, . . . ,Bhn}, for n available streams.
The Vb score for a stream x with a maximum bitrate Bhx is calculated
as following:

Let Bmin = min{Bh1, . . . ,Bhn} and Bmax = max{Bh1, . . . ,Bhn}:

Vbx = (Bhx −Bmin)
1

Bmax−Bmin

This means that if the currently available bitrate is the lowest (glob-
ally) it scores Vb = 0, if it is the the highest (globally) Vb = 1, or it is
mapped respectively for values in between.

Image Quality (Iq) is a metric to indicate whether the video has
"clean" (sharp/crisp) image. To calculate it, a frame from each stream
is sampled every second, and the blurriness (Ib) is measured by taking
the variance of the second derivative of its grayscale version [81], as
shown:

Let I(m, n) the grayscale representation of an M×N frame and L(m,
n) the second derivative operator 6:

Ib =

M∑
m

N∑
n

[|L(m,n)|− L2]

where L is the mean of absolute values:

L =
1

NM

M∑
m

N∑
n

|L(m,n)|

Then, the measurements from all streams are normalized between
0 and 1, as previously, with 0 assigned to the lowest measurement
and 1 to the highest. The final value of Image Quality for a stream is
the complement to 1 of Ib, i.e. Iq = 1− Ib.

Link Reliability (LR) is a composite metric consisting of an unordered
pair LR = {µbitrate,σ2}, with µbitrate being the average of the high-
est bitrate available for the stream over time (denoted previously as
Bh) and σ2 the number of quality switches per minute (i.e. the times
that the value of Bh changed). We did not invent µbitrate and σ2,
since they were already proposed to evaluate Link Reliability of HAS
systems [77], but instead we removed aspects irrelevant to our use-
case, such as the Buffer Level.

6 we used OpenCV that approximates it with a Laplacian mask – https://www.

pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
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The µbitrate is a history-based metric and refers to the highest
bitrate offered by the stream producer averaged over a period of time
(i.e. for a number of segments) and is computed with the following
equation:

µbitrate =

∑N
i=0 Bhi ∗ ti
tn

where (for si = Segment i),

i ∈ [0,N] Segment Index ti Duration of si
tn Current time (duration) Bhi Bitrate of si

The number of quality switches σ2 is the amount of times that
the maximum bitrate offered by the producer has changed and is
calculated as following:

σ2 =
∑N
i=0 g(si) g(si) =


1, if i = 0

1, if Bhi− 1 6= Bhi

0, else

The sensitivity of the LR metric can be optimized by adjusting the
granularity of µbitrate and σ2 when setting a window sample size.
For example, for window size of z segments: i ∈ [N − z,N], in-
stead of the full history i ∈ [0,N]. Finally, because LR is used as
a single metric for the ranking, we propose expressing the pair as
Lr = (µbitrate/Bmax) ∗ 1σ2 , with Bmax being the highest bitrate (Bh)
received from the source. We assume that LR is calculated on the
server, but it can be implemented on the client, with the server pro-
viding the individual elements of the metric as timed metadata.

5.3.0.3 Final Ranking

For the ranking, the overall Score (S) of each stream is calculated as
following:
S = a1(1− Ss) + a2(1− St) + a3Vb + a4Iq + a5Lr , with the weights
a1 = a2 = a3 = a4 = a5 = 0.20.
The selected weights of each score in this work are equal for two
reasons. First, for our study to be consistent with previous work
that uses similar ranking algorithms (e.g. MoViMash [96]). Secondly,
because in our case, we manually annotated missing data (due to in-
completeness of the dataset - detailed in Subsection 5.5.2), thus their
accuracy is verified. In other implementations the weights can be
adjusted according to the reliability of the data (and/or the sensitiv-
ity of the underlying hardware). For example, when the recording
device is measuring the orientation using accelerometer, that is pro-
viding noisy measurements, Shakiness can have a lower weight. As
a counter example, when the orientation is measured via gyroscope,
that is subjectable to drift, Roll & Tilt can have a lower weight.
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5.3.0.4 Switching

During playback a switch occurs at an interval between 6s and 12s.
This interval range is based on generic cinematic guidelines, but can
be refined for specific applications (e.g. shorter cuts for sport events,
beat-matched cuts for concerts etc.). The precise scene duration - i.e.
time of the switch (within this range), depends on the position of the
stream on the ranking.

When a switch event occurs, the stream selection engine picks the
highest ranked stream (other than the one currently playing) and
checks the following conditions:

1. Diversity: The view selected before the currently active is skipped
from this selection.

2. Angle Difference: If the viewing angle is similar to the one of
the current stream we might have a "jump cut effect", or if it is
close to ±180

◦, might cause confusion [8].

3. Diversity by Distance (conditional): If none of the streams
meets the Angle Difference criteria, we select the view with the
longest distance from the currently selected (to avoid image-
feature comparison between all streams [99] [96]).

5.4 implementation considerations

This is a first approach in streaming multi-source multi-stream UGC
content. As a result, we examined the basic elements of such systems.
In practice, modifications might be required according to the imple-
mentation specifications. Following are some proposals that can be
evaluated according to the delivery chain.

5.4.1 Generating Server-Side Representations

The content consumer should have multiple representations (bitrates)
available, to chose according to the policy of the HAS algorithm.
In a traditional scenario, having multiple representations from the
recorder to the server and perform typical DASH would suffice. How-
ever, because in UGC typically we encounter devices with constrained
energy, networking and/or processing capabilities, we propose DASH
with Scalable Video Coding (SVC) [100]. Alternatively, LiViU [117]
can be used to select the optimal protocol for streaming the recording
to the server in the highest quality, and then perform the transcoding
on the server side for DASH delivery to the client [105]. Each ap-
proach has different advantages, notably by performing DASH with
SVC, the users can opt for a higher latency with chances that they
will receive better quality, while with LiViU the recorder has higher
probability of staying in a high bitrate by switching protocols.
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Regardless of the approach, the important is that any given mo-
ment a) the server is aware of the highest bitrate representation re-
ceived by the recorder, in order to b) generate the respective represen-
tations for the client. Then we perform HAS from server to client.

Due to the variability of the highest available bitrate on the server
(e.g. due to network throughput drops), the highest available bitrate
to the client changes accordingly. However, for the duration of the
streaming, the server must keep all of the representations listed avail-
able to the client. The reason for this is that if representations are
to be excluded, the adaptive streaming descriptor/manifest must be
updated to match the changes which typically happens at regular
intervals 7 while in a UGC scenario with several recorders can poten-
tially happen very frequently.

HLS does not mention anything relevant to dynamically changing
available representations in the standard, but it is currently common
practice for the server to create the manifest once and not make any
changes thereafter – and for the client to load it and not check for
updates.

MPEG-DASH allows modifications of the manifest only at the end
of a period (or after a predefined update interval) 8, which means
that every time there is a change in the available representations the
period must conclude, the server must update the manifest, and the
clients must load the new descriptor and reconfigure. This can be
problematic since it will potentially happen very often (as the system
scales), and at the beginning of each period players typically empty
their buffers, thus causing constant global rebuffering events.

A naïve solution that could work for any client would be to mir-
ror the low-bitrate representation in place of all the others, when the
high-bitrate representation is not available to the server. This would
technically work to typical HAS clients, without implementing any
new functionalities. However, with this approach, the adaptation
algorithms (that are responsible for selecting the most suitable rep-
resentation) will effectively not work. The reason is that adaptation
algorithms typically work by estimating the networking conditions,
either by monitoring the buffer occupancy levels, or by asserting the
available throughput. Therefore, when the mirroring of the repre-
sentation is occurring, they will try to switch up on representations
constantly, given that the traffic can be easily handled. Also, when
the actual high bitrate representation becomes available again, the
player might stall since the estimation was based on the "deceiving"
mirrored requirements.

Alternatively, because there is already a communication channel
between the server and the client for the timed metadata, it can be

7 https://stackoverflow.com/questions/33123631/adaptive-streaming-player-

playlist-update-interval

8 https://dashif.org/docs/DASH-IF-IOP-v4.2-clean.htm#_Toc511040767
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used to signal changes in the available representations. This approach
is already indirectly implemented with the Vb metric that indicates
the bitrate.

5.4.2 Metrics Generation and Distribution

Until now, we have provided recommendations concerning the type
and method of logging the metrics, but we intentionally omitted
exposing explicit details in the way they should be processed and
distributed. The reasoning behind this decision is that several ap-
proaches exist, each with different advantages and disadvantages,
that can be examined at this point, now that the system, metrics and
policies are already explained. The approaches vary from the client
only receiving the final Score (S) of each stream and select the one
that has the highest, to receiving all the information available (e.g.
Location, Orientation, Sampled Frames, Bitrates etc.) and calculate
the metrics locally. The obvious advantage in the first case is the
small computational and network overhead for the client, and in the
second case is the flexibility on the client-side (e.g. to apply different
policies).

We propose a hybrid approach in which all of the metrics are gener-
ated on the server, based on the video and timed metadata received
from the recorder. Then, all the metrics (including the final Score),
the LR components (µbitrate, Bmax and σ2) and the geospatial in-
formation are available to the clients. This is similar to the approach
proposed at Chapter 3 where timed metadata were used for control
of multimedia applications. This technique maintains most of the
advantages:

• Low Throughput Requirements (compared to generating met-
rics on the clients): The Sampled Frames that have a consider-
able size and are required for the Iq metric are not transmitted
to the clients, nor processed there.

• Flexibility in Metrics Generation (compared to sending only
the final Score to the clients): Because all of the metrics are
transmitted to the client and the network and geospatial infor-
mation is available, different metrics can be generated in several
ways

– Different Algorithms for Existing Metrics: custom algo-
rithms for interpreting metrics can be implemented (e.g.
modified Link Reliability).

– Introducing New Metrics: testing algorithms using differ-
ent metrics, can be achieved by updating or parameteriz-
ing only the software running on the client, without any
modifications to the server (e.g. introducing a "mobility"
metric based on the geospatial traces).
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– Per Device Adaptation: by using information available to
the device (e.g. signal strength, WiFi or GSM connection
etc.) stream/representation selection policies can be ad-
justed accordingly, by calculating the Score only with re-
gards to the supported bitrates.

This approach introduces some data redundancy, because all the met-
rics for all streams are transmitted (instead of just the final Score), but
it can be useful in several cases. All the aforementioned flexibility is
maintained, and processing power at the clients is conserved (which
can reduce the energy consumed by the devices) because most of the
heavy computing is performed on the server, that can be of impor-
tance when the clients are portable devices. Also, by generating the
metrics on the server, new history-based, or other inter-source com-
parison metrics can be introduced.

Concerning the distribution of the aforementioned metrics, there
can be two approaches; either having the metrics available in a per
producer asset, or bundle the metrics from all the sources together,
in a pre-defined frequency. The first approach offers the advantages
of permitting to the client to fetch metrics only for a subset of the
sources, that can offer some features like black-listing unreliable (e.g.
classified as such due to frequent disconnect events) or low-quality
(e.g. devices equipped with a low-fidelity camera) sources. Other-
wise, bundling all the metrics together (e.g. every segment dura-
tion), reduces the number of HTTP requests, for the standard sce-
nario where all the metrics are required, but creates issues when the
producer-to-server delays are not uniform for all the sources.

5.5 experimental setup

We simulate a live distribution scenario in which simultaneous record-
ings of a concert are streamed from the producer to the server and
then to the client (consumer), where the view selection engine se-
lects the most suitable view. The quality of the connections from the
producers to the server and from the server to the client might vary,
impacting the maximum bitrate offered for the uploaded streams.

We experiment with three scenarios. For the first scenario, we test
our stream selection algorithm with perfect networking conditions to
identify its theoretical impact.

Then, for the second scenario, we introduce network degradations
on the link between the server and the client, in order to study how
our stream selection works in HAS systems.

Finally, we introduce degradations on the link between the produc-
ers and the server. This scenario allows us to examine how the stream
selection policy adapts to variable sources.
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5.5.1 Client

To test the stream selection policies, we created a client-side appli-
cation that supports playback of geotagged UGC videos. We used
the SWAPUGC [85] open-source platform (presented in Section 4.3)
to build our client. SWAPUGC supports the live MPEG-DASH pro-
file for segmented video files, thus we can simulate a live delivery
scenario.

Our client works as following: First, descriptor files of the record-
ings are parsed. The descriptor files contain information about the
recording, such as its timing characteristics and the location of the
spatial (location/orientation) and video (DASH) descriptor files. The
video descriptor files contain information regarding the duration, avail-
able qualities and timing of the video streams. To finish the initializa-
tion of the client, the first location/orientation pairs are parsed.

When the playback starts, a default view is initially selected. As
time progresses, callbacks are fired when new timed metadata arrives,
in the following three cases:

• Stream update, when the bitrate or the availability of a record-
ing changes.

• Sensor update, when a new location/orientation arrives.

• Metric update, when a new metric measurement arrives (e.g.
Image Quality).

In our implementation, we have different sampling frequency for dif-
ferent timed metadata, in practice, the updates can be grouped to
happen in one event (e.g. every second). The stream selection engine
can use this information to evaluate whether it should change to a
different stream, or remain on the currently active.

5.5.2 Setup

To evaluate the stream selection policies, a relevant dataset of record-
ings had to be used. We chose a dataset that contains recordings of
the BBC philharmonic, from several cameras, both UGC and profes-
sionally recorded [11]. The dataset contains synchronization informa-
tion of the video streams 9. However, the spatial information available
does not have any synchronization information and in some record-
ings is missing altogether, therefore we had to recreate it. In order to
re-record the orientation information we used the open-source Spa-
tiotemporal Video Navigation Recorder, and the location data was
manually annotated.

9 Available on the SWAPUGC repository is also the parser used to extract the timing
information of the videos and format the XML-based data of the dataset, to the
SWAPUGC JSON-based format.
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In total we used 7 recordings (from "Take #5" of the dataset). One
of the views is a fixed studio camera at the back of the room, that is
used as initial view at the start of the tests and then excluded from
the pool of streams. Figure 31 shows a visualization of the cameras at
the start of the Take (with the studio camera and the RoI highlighted
in red).

Figure 31: Visualization of available views

Finally, we used GPAC [62], to create segmented video files so they
can be distributed in a manner that resembles a live scenario (with
multiple qualities for adaptive streaming). We generated two repre-
sentations for each stream, one for "high" and one for "low" quality,
with bitrates 1800kbps and 400kbps respectively 10, and 2s-long ISO-
BMFF segments. Initially we had an "intermediate" representation at
1000kbps but we screened them to experts and saw insignificant dif-
ferences between it and the "high". The provided videos are not of
good enough quality to generate a higher bitrate.

The DASH adaptation we implemented in SWAPUGC is a simple
conservative buffer-based algorithm, that requests the highest bitrate,
until the buffer contents drop below a predefined threshold, in which
case switches to requesting a representation with lower bandwidth

10 we used the Youtube encoder settings as reference for the selected values:
https://support.google.com/youtube/answer/2853702
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requirements. Note that the specific adaptation policy we designed has
consideration for multiple content sources (detailed in Appendix A.1).

The source code and all of the aforementioned metadata and de-
scriptor files are available in the SWAPUGC repository, under a Cre-
ative Commons Attribution Non-Commercial Share Alike license (CC
BY-NC-SA 4.0). The original audio and video files are hosted on
the ICoSOLE project website, under a Creative Commons Attribution
Non-Commercial Share Alike license (CC BY-NC-SA 4.0).

5.5.3 Evaluation

We want to examine whether our stream evaluation technique actu-
ally works and how our policy should behave in unstable network
conditions, therefore we conducted a user study. For the user study
we used the aforementioned recordings of Take 5, that yield a total
overlap duration of 210s. In order to keep the duration of the video
short and avoid bias due to fatigue of the participants, we showed
80s of each video simulating a selection policy.
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Figure 32: Scores over time for all the videos used

Due to the high variance in the quality of the videos and during
each video (due to high mobility of the users), the stream selection is
non-trivial. Figure 32 shows the Score, generated by our algorithm,
for all the videos used in the experiment. We can observe that in this
particular set a recording (with ID "Take5_Nexus5") scores constantly
higher than the rest, however it can be selected only once every three
changes to maintain the diversity criterion of the cinematic rules. An-
other observation on the recordings is that all of the videos have rapid
changes in the ranking, because their individual criteria have frequent
changes (e.g. when a view becomes suddenly very shaky, the overall
Score for that stream is immediately reduced by 0.20).
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Figure 33: Image Quality metric (Iq) over time for all the videos used

Time (s)

Sh
ak

in
es

s 
m

et
ric

 (S
s)

0.0

0.5

1.0

10 20 30 40 50 60 70

20140325_121238

Time (s)

Sh
ak

in
es

s 
m

et
ric

 (S
s)

0

0.5

1

10 20 30 40 50 60 70

20140325_131253

Time (s)

Sh
ak

in
es

s 
m

et
ric

 (S
s)

0

0.5

1

10 20 30 40 50 60 70

Take5_Nexus5

Time (s)

Sh
ak

in
es

s 
m

et
ric

 (S
s)

0

0.5

1

10 20 30 40 50 60 70

IMG_0367

Time (s)

Sh
ak

in
es

s 
m

et
ric

 (S
s)

0

0.5

1

10 20 30 40 50 60 70

20140325_121245

Time (s)

Sh
ak

in
es

s 
m

et
ric

 (S
s)

0

0.5

1

10 20 30 40 50 60 70

VID_20140325_131247

Figure 34: Shakiness metric (Ss) per video, over time for all the videos used

To break down the Score, we plotted the metrics that remain the
same for all runs. Figure 33 shows the computed Iq metric (non-
normalized) over time for the videos used. We can observe that over-
all there is high variance in this metric, even though some videos
have consistently low or high values. For example the video with ID
20140325_121245 was mostly out of focus, thus its Iq score stays low,
thus validating the metric.

Figure 34 shows plots of the Shakiness metric (Ss) for each video.
Note that this is the metric value, not the complement to 1, thus
higher value means worse quality. As mentioned before, the orien-
tation sensors measurements of the videos were sometimes missing
and even those that exists did not have any timing information, thus
we had to manually annotate all the orientation-based metrics. This
is why the Shakiness metric has discrete values (we used 0.0, 0.2, 0.4,
0.6, 0.8 and 1.0). The same apply to the Roll & Tilt metric in Figure
35.

Regarding the videos, first, we generate two simulated runs to test
the effectiveness of our stream selection policies under perfect net-
working conditions. Therefore, we generated a baseline, that follows
only the cinematic criteria and the videos are in the highest bitrate.
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Figure 35: Roll & Tilt metric (St) per video, over time for all the videos used

Time (s)

Sc
or

e 
(S

)

0

0.25

0.5

0.75

1

0 10 20 30 40 50 60 70

Basic (Cinematic) Metric-based

Figure 36: Scores over time for the streams selected by cinematic-only and
proposed algorithms

And an other run, in which both the cinematic criteria and our pro-
posed stream selection policies are in effect, again without any net-
work degradations. This pair aims to identify whether the elementary
principles of our proposed approach are sound – i.e. if the MoViMash-
based algorithm with the modifications we applied outperforms a
simple cinematic-based stream selection algorithm. Since we have a
"perfect" network, the Vb metric has a fixed value of 1 and Lr rapidly
converges to 1. For comparison, the Cinematic-only selected streams
average a Score of 0.67, and our stream selection algorithm 0.79; the
evolution of the Score for selected streams over time is plotted on Fig-
ure 36. We can observe that even if the stream-selection is based on
the full criteria, at times the semi-random algorithm outperforms our
proposal (e.g. at the period between 57 and 68 seconds); this is ex-
pected to occasionally happen due to the view diversity criteria that
exclude direct view repetition. This means that if there are only two
high-ranked views in the pool, the selection will not be alternating
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(a) Server-Client Degradations (Trace 1)
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(b) Server-Client Degradations (Trace 2)
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(c) Producer-Server Degradations (Trace
3)
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Figure 37: Scores over time for streams selected by respective algorithms,
paired by network trace used

between them, instead the algorithm every third switch will select a
different one - even if it scores significantly lower.

Then, in order to test the behaviour of our stream selection policies
in realistic scenarios, we generated two more pairs of simulations in
which there are network degradations from the server to the client
– each pair with a different network trace (Fig. 37a and 37b). For
these two simulation pairs, we implemented the basic DASH buffer-
based adaptation algorithm described in the previous subsection. In
the first simulation of each pair, again we use the basic, cinematic-
based stream selection algorithm, while in the second we use our full
metric-based stream selection algorithm, both using the same DASH
policy. For this scenario, we would also like to identify whether our
approach is compatible with "traditional" DASH servers, that do not
support any signaling to the clients, therefore we keep the values of
Vb and Lr fixed for all streams.

Finally, the last two generated pairs contain network degradations
from the recorders to the server and all of the simulations use our
stream-selection algorithm (Fig. 37c and 37d). Because, the HAS
standards do not support such multi-source scenarios, if a high bi-
trate is not available anymore and instead is replaced by an upscaled
lower quality video, the client cannot be aware of that (at least just by
reading the mpd in case of MPEG-DASH). Therefore, for the first run
of each pair we keep the traditional server functionalities (no signal-
ing) and the client uses the multi-stream version of the buffer-based
DASH algorithm (detailed in Appendix A.1). The second run of each
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ID # of runs Adaptation Degredations

0101 1 Basic (Cinematic) None

0102 1 Metric-based (no Vb, Lr) None

0201 2 Basic (Cinematic) Server-Client

0202 2 Metric-based (no Vb, Lr) Server-Client

0301 2 Metric-based (no Vb, Lr) Recorder-Server

0302 2 Metric-based (Full) Recorder-Server

Table 4: Simulation characteristics

pair, is aiming to identify whether the full version of our algorithm,
with the proposed server signaling, improves the overall performance,
so the client is aware of the actual available bitrates and the Vb and
Lr metrics are put in effect.

To be able to identify the different runs of the same pair the naming
conversion we follow is concatenating the ID with the run number.
As an example the entry "020101" uses the same trace as "020201",
"020102" with "020202" etc. The total of the 10 simulations used for
the experiment is summed up on Table 4. Each run of the same
pair, for the simulations with network degradations (i.e. with IDs
02X and 03X), uses the same network trace. In order to ensure that
the results are not trace-specific, for the aforementioned simulations,
with IDs 02X and 03X, we generated two different pairs, with two
different traces. To sum up, the name of the entry is in the format
XX1-XX2-XX3, where XX1 indicates the ID/number of the pair, XX2
is the ID/number within the pair and XX3 indicates the ID/number
of the run/trace.

Regarding the network traces used, originally we wanted to use
real-life measured traces, however, because we require both upstream
(for the recorder to server link simulation) and downstream (for the
server to client link simulation) throughput, we were not able to find
a suitable dataset. The real-world recorded traces available, usually
do not offer uplink measurements (which is required for the recorder-
server link simulation), and when they do [89] [15] it is inaccurate.
The reason for this is that the applications used to record the traces
(for example, G-NetTrack Pro11 [89]) record the uplink throughput
utilized, not the actually available. In order to make an accurate
recording the authors should be stressing the uplink for the duration
of the recording, however they commonly put load on the downlink
only, thus the recorded uplink throughput is usually extremely low
(consisting only of the requests for the downloads). For that reason
we generated the network traces for the simulation, using a custom
python script that inputs a network quality variable representing the

11 http://www.gyokovsolutions.com/
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(a) Server-Client Throughput (Trace
1)

(b) Server-Client Throughput (Trace
2)

(c) Producer-Server Throughput
(Trace 3)

(d) Producer-Server Throughput
(Trace 4)

Figure 38: Visualization of the representation supported by the simulated
throughput, per trace over time

probability to support the high or low bitrate representation and out-
puts the network state (with granularity of 500ms).

On Figure 38 we plotted the generated traces. The plots show the
supported bitrate representations over time (not actual throughput
values), with "1" indicating low bitrate and "3" high. Subfigures 38a
and 38b are for the simulations for which we alter the throughput on
the server-client link and Subfigures 38c and 38d are for the recorder-
server links, on per-recorder plots.

As for the audio, because we do not evaluate the audio quality
or volume of the streams, we maintain the same audio source (from
one camera) for all the simulations, so we will not alter the overall
perception of the videos [13] [58]. In practice, this can be achieved by
"late-binding" the selected audio source and exposing only that audio
source on the HAS manifest. Audio has a low bitrate - comparing
to the video files - thus it is not exposed as much to the network
fluctuations.

5.6 user study

For the user study, all of the participants evaluated all of the simu-
lated runs. The order of the pairs and the order within a pair was
random, to avoid first-view (anchoring) bias and fatigue trends. Be-
fore the experiment started all of the users were told that they are
about to watch different videos of a concert recorded from mobile
phones and handheld cameras and we showed them two represen-
tative videos, one of "bad" quality and one of "good" quality, both
manually edited by a video expert. The "good" quality was a first-
pass edit of the videos, so it would be better than the simulated, but
not so good that would create unrealistic expectations on the users.
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The users answered a questionnaire aiming to measure the Quality
of Experience in terms of View Diversity, Image Quality and Overall
Pleasantness [99]. The statements (listed in Table 5) were presented
after each simulation and the participants rated them in a five-point
Likert-type scale according to the level of agreement or disagreement
(1. "Completely Disagree" to 5. "Completely Agree"). The statements
were mixed positive and negative, in order to discourage the par-
ticipants from directing the scores [48] [47]. Prior to formulating the
final version of the questionnaire we ran the experiment with 4 partic-
ipants, using their feedback to verify the clarity of the statements and
understanding of the experimental process. The results from these
test runs are excluded from the presented findings, because based on
the feedback we re-formulated the statements for the final version.

Statement QoE Aspect
S1. "The image quality of the video was

very bad"
Image Quality

S2. "It was difficult to see the details
(faces, hands etc.) in the video"

Image Quality

S3. "I enjoyed watching the video" Overall Pleasantness

S4. "I found watching the video tiring" Overall Pleasantness

S5. "I found the selected views/cameras
presenting accurately the action"

View Diversity

S6. "I found the view/camera changes
too often"

View Diversity

Table 5: Evaluation statements and target QoE aspect

In total, we had 21 volunteers for the final user study, both male
and female, with ages from 23 to 58 years old. Three of the volunteers
had professional-level experience with video editing, and seven had
"some" experience. All of the volunteers watched the simulated runs
on the same 15" inch screen, with some using speakers and others
headphones (according to their preferred habitual method).

5.6.1 Results

In this section, we analyze the responses of the participants. For the
sake of clarity, on all of the following numbers and visualizations,
the negative statements have reversed values (i.e. in all figures, the
higher the score - the better). Note that we are able to do this because
in this subjective study we are interested only in the relevant com-
parative values, otherwise it should be strongly advised against this
practice, because positive statements have weaker effect than nega-
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tives (explaining why ’S3’ and ’S5’ have globally lower score than the
rest) [47].

video ID S1 S2 S3 S4 S5 S6 AVG

010101 3.18 2.86 2.09 2.68 1.90 2.31 2.50

010201 4.09 4.04 3.59 3.90 3.77 4.00 3.90

020101 1.95 2.09 1.95 2.77 2.31 2.86 2.32

020201 3.27 3.31 3.09 3.77 3.50 3.72 3.44

020102 1.50 1.68 1.86 2.27 2.95 3.13 2.23

020202 2.54 2.59 2.54 3.09 3.09 3.50 2.89

030101 2.36 2.36 2.36 2.86 2.95 3.31 2.70

030201 3.81 3.77 3.50 3.86 3.72 3.68 3.72

030102 2.40 2.63 2.13 2.22 2.36 2.86 2.43

030202 3.63 3.63 3.04 3.45 3.13 3.22 3.35

Table 6: Mean statement scores per generated videos (simulated runs)
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Figure 39: Scores given for S3, for all videos, by user ID

On Table 6 we can see the mean scores for all statements and the
average score, per video ID (maintaining the pair order). The scores
have an average standard deviation (STD) of 0.99. The high STD value
is expected, because the aesthetic standards of each user differ, thus
some users might have a better overall opinion on the videos than
others. This is visible in Figure 39 where we plotted the responses of
all the users for the Statement S3, for all videos. We can observe that
most respondents (11 out of 21) used only two or three consecutive
values from the 5-point scale for their evaluations (i.e. [1,3], [2,4],
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or [3,5]), and only 5 used the full 5-point scale. The same trend is
observed for the rest of the questions as well.
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Figure 40: Average scores per statement, by video ID

The statement scores from Table 6 are also plotted in Figure 40.
We can observe, that overall, the simulations that use our algorithm
(0102X and 0202X), outperform those that rely only on the cinematic
criteria (0101X and 0201X).
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Figure 41: Average scores for Cinematic and Metric-based adaptation
(perfect network)

More specifically, for the first pair, that targets measuring the ele-
mentary effectiveness of our view selection algorithm, with perfect
networking conditions, the baseline cinematic-based solution scores
an average of 2.50, and our algorithm 3.90. The specific scores for
each statement, for pair-wise comparison are plotted in Figure 41.
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Figure 42: Average scores for Cinematic and Metric-based adaptation
(server-client degradations)

The results confirm our assumption that our algorithm can select
views with better-perceived Image Quality (S1, S2) and improves the
Overall Pleasantness (S3, S4) of the videos. Furthermore, even though
both algorithms use the same cinematic criteria the users evaluated
our approach on view selection as more relevant (S5). We attribute
this improvement on the effect of including the rest of the metrics
(thus the overall camera quality) in the camera selection process at
a switch. This phenomenon also impacts the perceived frequency of
camera changes (S6), even though for the duration of the videos the
amount of switches is similar (10 for 010101 and 8 for 010201). Both
algorithms have the same boundaries for the scene length, but in the
baseline video the selected value is random, while in our proposal it
is affected by the overall metrics score. Because our algorithm is apt
in evaluating the stream quality, it results to "good quality" scenes
being longer than the "bad quality" scenes.

Seeing that our proposed algorithm outperforms the baseline in
ideal networks, we next compare the runs that simulate link degra-
dations. Figure 42 shows the scores for all statements of the baseline
cinematic algorithm against our proposed metric-based, for two dif-
ferent network traces. Both approaches use the same HAS buffered-
based adaptation algorithm.

Again, the metric-based algorithm scores higher in all of the ex-
amined criteria, however we can observe that the impact depends on
the trace. Comparing to the 3.90 average score for the first test, the
scores for the second were 3.44 and 2.89. This fluctuation is justified
by the overall drop of quality for the final output, therefore even if
the algorithm selects a "good" view, the perceived quality is lower
due to the encoding artefacts of the low-bitrate representations. This
assumption is backed by the comments of the participants, that often
expressed difficulty to identify differences and accurately evaluate
the statements when the quality of the final output was low. Note
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that the participants where unaware of which runs had simulated
varying throughput or not.
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Figure 43: Average scores for Metric-based and Full adaptation
(recorder-server degradations)

The final test was to evaluate the impact of signaling metrics from
the server to the client, therefore in the first scenario we have the
metric-based algorithm used so far, and in the second its full version,
including the Vb and Lr metrics, that require signaling to work as
designed. Both clients use the same HAS buffer-based adaptation
algorithm (the multiple sources version described Appendix A.1). For
these test runs, we introduced network degradations on the recorder-
server network. The results are plotted in Figure 43.

The introduction of the server-client signaling, thus the implemen-
tation of the Vb and Lr metrics, improves the performance of the al-
gorithm by almost 1 point on average. Using these metrics, the client
avoids switching to a stream from an "unstable" recorder, minimiz-
ing the possibility of having to stream a low-quality representation.
Signaling can be used when the currently selected stream becomes
unavailable. When the client is aware that a link issue occurs (i.e.
the high-bitrate representation is not available), it can re-evaluate the
ranking with the new bitrate and decide to haste the switch (if the cur-
rent scene duration exceeds the minimum limit set by the cinematic
criteria).

Finally, regarding the feedback from the participants, most of the
users stated "shakiness" as being the most annoying issue with the
videos, followed by the lack of steady cameras, cameras changing of-
ten and fast direction, camera not filming the RoI et.al. Also, some
participants stated that depending on the target application, they
would use such algorithms to follow an event. Example target ap-
plications mentioned were "live streaming of the event" and "con-
tent preview/overview", on the other end, applications like "learn-
ing/training (musical instrument)" and "promotional videos" were
deemed unsuitable for such techniques. All of the comments from
the participants are listed in the Appendix A.3.
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5.7 discussion and future work

In this Chapter, we proposed a stream selection mechanism for multi-
view multi-quality UGC videos with accompanying geospatial data.
We presented the individual elements (cinematic and quality metrics)
and the details of the respective algorithms. We conducted a user
study to measure the effectiveness of our base algorithm and how it
adapts to various networking infrastructures.

From the results of the user study we can conclude that our pro-
posed metrics-based algorithm offers improved QoE compared to just
following cinematic criteria. It can also work in platforms with sim-
ple servers (i.e. that do not support signalling), by excluding the Vb
and Lr metrics. However, to reach its full potential, it requires server
signalling.

Regarding the future work, the two fronts that we would like to
work after the end of this Thesis are the Delivery and the User Expe-
rience (UX). On the latter, we would like to study the aural aspects
of the platform. First, in our tests, since we do not have a proposed
audio evaluation algorithm, the client gets the audio signal from only
one camera. We would like to examine lightweight audio evaluation
techniques to integrate in our proposal to select the optimal audio
source. The second audio-related issue we would like to address, is
finding a suitable, lightweight audio analysis algorithm that will give
us information on the event (i.e. if it is dialog-based, music-oriented
etc.) in order to potentially integrate respective directives to the cine-
matic criteria, for example switching on tempo if the event is a concert
[118].

Similarly, using the camera information, on top of the RoI, we can
identify the class of the event. For example, in sport events the view-
ing angle of the UGC cameras tends to vary a lot (and in bursts),
because most of the cameras tend to follow the action - that is more
quickly paced than other events. This can be used to adjust the cine-
matic criteria accordingly.

As for the Delivery, the streaming adaptation policy is an aspect
deserving further study. In our implementation, we used a buffer-
based adaptation policy, however it would be useful to examine how
different policies affect the implementations of our proposal. For ex-
ample, throughput-based adaptation policies are based on estimating
the current throughput capabilities, therefore streams with bitrates
that cannot be supported by the estimated available throughput can
be excluded in the filtering phase.

Also, because our system uses streams from varying sources, at
varying qualities and networking conditions, it would be interesting
to make a comparison with algorithms used in Tiled Video Stream-
ing [120]. When very big videos (e.g. 360

◦, 4k etc.) are streamed,
are often split in "tiles" that are available in different bitrates and the
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client selects the most appropriate according to the viewport (tile)
and connection (bitrate). Therefore, there are system-design similari-
ties between adaptation for UGC content streaming and Tiled Video
Streaming and future contributions to either field, might be applica-
ble to the other.
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6
B U F F E R M A N A G E M E N T F O R S Y N C H R O N O U S A N D
L O W- L AT E N C Y P L AY B A C K O F M U LT I - S T R E A M
U S E R G E N E R AT E D C O N T E N T

So far we have studied an architecture for delivery of video with
timed metadata and we examined this architecture by addressing sce-
narios and respective methods for streaming and presentation of ex-
tended AV streams produced from common and specialized scenarios
for live and on-demand delivery. A significant portion of these sce-
narios concerns gathering and distributing User-Generated Content
(UGC) – as in Chapters 4 and 5.

We have mentioned that in UGC scenarios, there are differences
comparing to the traditional distribution systems. In the "traditional"
scenario, the recording sensors are directly connected to the server
(e.g. Kinect-based control in Chapter 3), but in the "UGC" scenario
the sensor data is recorded (and potentially processed) locally and
send to the remote server over an unstable connection. Because of
this uncertainty on the content production side special consideration
should be granted to improve the overall experience on the client. For
example, in the previous chapter, we introduced signaling from the
server to the clients on the status of the recorders, novel adaptation
algorithms, and generation of different bitrates both at the recorder
and on the server side.

We show our proposed architecture for "traditional" multi-stream
systems in Figure 44a, and the "UGC" version illustrated in Figure
44b.

Content from different sources might arrive with different delays -
depending on the respective remote connection, potential local data
processing etc. Even from the same source, depending on the connec-
tion quality to the server, a wide spectrum of delays can be observed
when bursts of (delayed) data arrive as the user reconnects.

This diversity of delays, in combination with an unreliable upload
mechanism (e.g. over UDP), can also cause out-of-order delivery of
frames. Sources for such incidents can be when the user is uploading
the content using a mobile broadband connection and a switch from
a high to low latency cell occurs (i.e. handover1), or when a stream
source is a multi-hop sensor network gateway etc. In the latter case,
the end-to-end delay can be in the order of minutes per hop for low-
power wireless sensor networks (e.g. slotted IEEE 802.15.4) [93]. Also,
due to the non-uniform nature of recording devices, different types
and/or qualities of data (both AV and sensor) might exist. Addition-

1 also mentioned in literature as handoff
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(a) Traditional Server-Client schema

(b) UGC Producer-Server-Client schema

Figure 44: Extended AV stream Architectures Overview

ally, in contrast to AV streams where losing frames on delivery can
create issues in multiple other frames during playback (because they
might be required by the decoder), this is not always the case with
the timed metadata.

All of the above issues create challenges in delivering the content
streams with low-latency and consuming them in a synchronous man-
ner. We focus on tackling those challenges with client-side solutions,
because in UGC scenarios there is no control on the production end,
other than extracting information on the status of the recorders and
signal it to the clients (as we did previously, in Chapter 5).

To address the challenges, we propose a client-side buffer manage-
ment scheme for multiple streams. The priority of our scheme is to
achieve synchronization between the streams, while reducing the number of
buffering events2, and has provision for two consumption modes, that
facilitate different secondary goals:

• Synchronized, emphasizing on eliminating frame losses.

• Low-latency, that reduces buffering duration.

The Synchronized playback can be used in cases where fidelity dur-
ing playback is paramount (e.g. when watching a performance). Low-
latency is targeting scenarios where reducing delay is prioritized over
lossless playback (e.g. for security systems monitoring). We also

2 as "buffering event" or "rebuffering event" we define the incident that the buffer of
the client is empty, thus the player is in "stalling" state; and "buffering duration" is
the duration that the player stays in "stalling" state
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propose solutions for applications that require switching or compro-
mising between the two modes (e.g. support both quick response and
thorough investigation of an emergency).

In the next section we review the state of the art on UGC-compatible
synchronization algorithms. Then, in Section 6.2, we demonstrate our
proposal for synchronous and low-latency consumption of extended
AV streams. Finally, we close this Chapter with a discussion in Sec-
tion 6.3.

6.1 state of the art

There are studies and surveys on multimedia content synchroniza-
tion [16] [34] [56] [50] [28]. We considered all of the previous work as
foundation for our work. Due to the criteria mentioned in the intro-
duction, we filtered irrelevant methods. More specifically, regarding
the synchronization type, intra-stream techniques are not in the scope
of this Thesis, since it has been thoroughly studied [56], thus we as-
sume accurate media sampling of our streams. Also, inter-destination
synchronization is not relevant, because we consider the streams to be
consumed from a single device. Our work is suitable for inter-stream
synchronization, dealing with streams of various characteristics from
different sources.

On top of defining the synchronization type of our focus, we used
the classification method utilized in such studies [16] [56] to identify
specific techniques relevant to our work. Regarding the synchroniza-
tion system location, we exclude most preventive and reactive "Source
Control" techniques, like "deadline-based transmission scheduling" or
"adjusting transmission rate" that require feedback from the clients to
the server in order to change transmission scheduling and rate respec-
tively [91] [90] [57]. This feedback can be used to adjust transmission
[90] or playback [57] of the content. This is a point-to-point design
which can not be done in a live UGC scenario where the server does
not produce the content and there are several clients consuming it.
However, such techniques can be used for on-demand delivery, high
latency systems - by implementing a server-side buffering scheme, or
hybrid systems in which the content comes both from sources directly
connected to the server and UGC (e.g. project Cognitus 3).

Alternatively, if server side buffering is used, or for on-demand de-
livery, synchronization can be achieved by packaging all of the avail-
able streams in a single container [26]. This solution, unless used in
systems with a bounded number of users/streams, is not suitable for
the server-to-consumer part of an UGC platform (which is the part
that we focus on this chapter), since it would require packaging con-
tent from several producers in a single extremely large file. However
it can provide frame-accurate synchronization, with minimal effort,

3 www.cognitus-h2020.eu
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on the producer-to-server part, especially if a widespread format like
mp4 is used.

Since we do not have control on the production of the content, we
only use basic "Source Control" techniques in our proposal, that con-
cerns providing synchronization information (i.e. timestamps, frame
numbers and source identifiers) already present in UGC systems.

Our "Receiver Control" solution, uses buffering techniques and/or re-
active skips to offer synchronization. Such methods have been used
as part of systems in a variety of works, from modeling event-based
synchronization [1], to complementing agent-based adaptive systems
[68] and protocols for time, error and synchronization control [119],
among others. The event-based synchronization model [1] does not
suffice to cover UGC scenarios because it is based on multiplexing
"download" and "display" commands in the video stream. This ap-
proach assumes that at the time a video frame is sent, the represen-
tation time for the respective extra data frame is known and it is
ahead enough on the timeline to allow transmission and processing
of the video frame, request the extra data frame, transmit and pro-
cess of that extra data frame, and all that before the display event is
fired. The agent-based system [68] is also not suitable for our target-
ing UGC systems because it assumes a fixed and known frame rate
on the production end, and requires intensive bidirectional commu-
nication between the server and the clients.

Our work is not competing with any of the aforementioned rele-
vant work, instead it aims to complement these approaches when ap-
plied in multi-source multi-stream scenarios. In many use cases it can
not be used alone to offer solutions for all the synchronization prob-
lems that occur. Such an example case is when simultaneous record-
ings do not share a common clock and have to be synchronized on
the server, prior to distributing to the clients. For that example, an ex-
tra (inter-bundle) synchronization layer must be applied server-side
(e.g. using audio feature extraction [104]) and our proposal can be
used on the client.

Finally, regarding the server-side processing, even though the pre-
vious example where a post-production resynchronization layer is
in place adds significant overhead on the server, it has applications
when common time reference is not feasible and/or the content con-
sumer can tolerate large end-to-end delays. In contrast, the tech-
niques we propose minimize that overhead, in order to also be ap-
plicable in delay-sensitive scenarios.

6.2 client-side buffering scheme

Because we were unable to find a generic timed metadata dataset
with accompanying video, large enough to have statistical signifi-
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cance, we generated a test data set with example timed metadata
and video streams.

Each stream file has frame information for a total duration (TDur)
of 100s with a 30Hz frame rate frequency (F). We selected this frame
rate because it is close to the frame rate of the Kinect for joint coordi-
nates and to common frame rates for video. Listing 1 shows an exam-
ple sample describing a frame, containing the Frame Number (FRN),
Arrival (T_arr), Display/Composition (T_disp) time, and Delay.

The video frames generated (as the one shown in the Listing 1)
have a fixed 100ms delay. We selected a fixed video delay since this
can be the case when an encoder is used. The timed metadata frames
have a delay varying from Dmin= 200ms to Dmax= 3200ms, with
an average of Davg= 1700ms. The delay range was selected to fit
values close to those that we experimentally observed in the Kinect-
based control application demonstrated in Chapter 3 and of relevant
literature [119], on theDminend, to delays that are observed in single-
hop wireless networks using low-energy communication protocols
like IEEE 802.15.4 [93] or BLE [23], on the Dmax end.

In total, for the simulations, we generated 1000 extra-data stream
files, out of which 500 with a uniform delay distribution and 500

with a normal distribution. We opted for the generated samples to
follow two different, but common, distributions so we can examine
any potential effects from the form of the samples on our proposed
techniques. A visualization of the data set frame delays is shown in
Figure 45. For future work we plan on testing our proposal against
other common distributions (e.g. Poisson) and actual data sets.

1 "FRN":544,

2 "T_disp":18133.33,

3 "T_arr":18233.33,

4 "Delay":100

Listing 1: Frame sample contents

To accommodate a broader spectrum of application scenarios we in-
clude cases such as a distributed processing environment (e.g. cloud
computing), or multiple sources over a network (e.g. wireless sensor
network), thus in the simulations we allowed out-of-order frame de-
livery. That is, at time tcurr, a frame FRNn with Delay = Dn will
arrive before a frame FRNn−x (where x ∈ Z>0), if Dn−x + (x ∗ 1F) <
tcurr. Because of the out-of-order arrival of frames, in this chap-
ter when we refer to a buffer containing such frames, we count its
size (Bsize) or length (Blen) in consecutive frames, starting from the
next frame scheduled for consumption. When the buffer size or
length is measured by counting all the frames (for size), or the dif-
ference between the first and the last timestamp (for length), we refer
to fragmented buffer size (Bsize_frag) and length (Blen_frag) respec-
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Figure 45: Delay distribution of generated frames

tively. More information on fragmented and non-fragmented buffer
size/length, on Appendix A.4.

6.2.1 Synchronized Playback of Streams

We used the aforementioned data set to feed a multimedia client sim-
ulator 4. For the simulations we are using the video stream (that has
a fixed delay), as reference clock.

The client has two buffers, one for the video (BV ) and one for the
extra-data (BM). Upon the arrival of a frame at T_arr (relative to the
simulation start time), it is pushed in the respective buffer, and it is
removed when the playback timeline reaches T_disp. To achieve syn-
chronization between the two streams, their playback pauses when-
ever either buffer is empty (i.e. BMsize = 0 or BVsize = 0), causing a
Rebuffering event [107].

In order to avoid rebuffering during playback, that would disrupt
the user experience, we set an initial buffer length requirement (Binit).
Initial playback commences when the duration of the frames inside
each buffer (Blen) equals to the respective Binit threshold. Thus,
the initial buffering duration is not fixed; instead, it depends on
the time required to obtain the defined length of continuous data
in the buffer, which in turn is affected by the stream delay charac-
teristics. Because the generated video frames have a fixed delay, we
set a constant BVinit = 100ms and we ran 40s-long simulations for
BMinit = {100, 300, ..., 1500}ms. The BVinit value can be any con-
stant, for example, it can be set to match the requirements of a codec
using prediction techniques (e.g. for B-frames).

4 source code of the simulator and dataset generator available at:
https://github.com/emmanouil/Buffer-Tests
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Figure 46: Buffering duration to Binit value

Figure 46 shows a stacked bar chart with the resulting buffering du-
ration averages (in ms - y axis), in respect to the BMinit threshold (in
ms - x axis). The dark colored bars indicate the initial buffering dura-
tion, while the corresponding visible light colored part indicates the
duration of rebuffering events. We can observe that for the uniform
distributed samples the time required to reach BMinit is longer than
the respective for the normal distribution. However, in both cases,
when the initial buffering duration exceeds the maximum sample de-
lay (i.e. TBMinit >Dmax), no rebuffering events occur.

As a result, if the Dmax is known in advance (e.g. from the sys-
tem specifications), it can be utilized to avoid rebuffering events. The
buffering policy can be adjusted, so instead of setting the initial buffer-
ing criterion (Binit) to the desired content duration for the buffered
stream, to be set as fixed buffering time. If this initial buffering dura-
tion is set to be equal or greater than the knownDmax, no rebuffering
events should occur, unless the Dmax value increases later.

uses with asynchronous playback This technique can also
be used in systems for which synchronous and asynchronous con-
sumption modes are required, such as environmental monitoring de-
ployments. As an example, the user might be remotely monitoring
an area, though a low-latency video stream coupled with low-power
(high-delay) temperature sensor measurements. By default, on the
consumption-end, low-latency is desired, for immediate response on
emergencies (e.g. a fire). In order to achieve that, both the video
and the temperature frames are rendered upon arrival - thus not syn-
chronously, since they have different delays.
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Figure 47: Percentage of dropped (to consumed) frames per Binit value

However, if the purpose is to identify the origin or spread of the
fire, synchronous playback of the streams is crucial. The user can
seek to the desired time and consume the content in a synchronous
manner. If the time difference (∆t) between the current and rewind
point is less than Dmax, a buffering event will occur for a duration
equal to Dmax minus ∆t.

6.2.2 Proposal For Low-Latency Playback of Streams

In the synchronous consumption mode, the impact on initial buffer-
ing can be significant, adding an overall delay to the stream playback.
This can cause synchronized playback to be unsuitable for use-cases
where it is preferred to consume the content in a low-latency mode.
Some systems, such as the Kinect-based synthesis described in Chpa-
ter 3, are designed is such way that can afford to skip some timed
metadata frames. For these systems, to achieve a tradeoff between re-
ducing the stream playback latency (i.e. due to initial buffering) and
increasing the system bootstrap time, frames that arrive late, can be
dropped.

In that scenario, initial buffering can be adjusted either to a buffer
threshold Binit, or to a maximum acceptable delay – defined by the
specification of the system (instead ofDmax). Afterwards, when play-
back starts, delayed frames are discarded, eliminating the rebuffering
events.

We ran simulations using the same dataset and parameters as be-
fore, but dropping frames instead of rebuffering, and in Figure 47 we
display the percentage of frames dropped to total frames consumed
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for different Binit values. By accepting an example frame drop rate
of 7% (which is less than a frame per second), we can set Binit to
300 ms, thus reducing the initial buffering duration for the normal
distribution sample from 3200 ms to 2600 ms, or for an even lower
drop rate of 3% to 2800 ms.

This buffering technique can be applied to low-latency systems,
or systems that support both low-latency and synchronous playback.
In the latter case, if the player is in low-latency mode and the user
wants to switch to synchronous, a single rebuffering event occurs
for a duration equal to Dmax minus the initial buffering. For the
reverse scenario, that the switch is from synchronous to low-latency,
the player time-shifts to the desired latency value and the late frames
are dropped thereafter.

multiple streams - multiple delays There are cases that
multiple qualities of the same stream can arrive, depending on the
underlying hardware and type of data. For example, in the UGC
video with geospatial matadata scenario (like in Chapters 4 and 5),
some devices are equipped with gyroscope sensors that directly pro-
vide high-quality orientation values, while others calculate them us-
ing measurements from the magnetic field sensor and accelerometer.
Even though the processing delay is negligible, the resulting values
must be smoothed (normalized) over time to match in accuracy those
that would have been provided via a composite gyroscope sensor [73].
Similarly, in a stream of 3D object reconstructions using a smartphone
[71], the fidelity of the 3D models is proportional to the number of
samples used for the reconstruction, therefore to the production delay.
In such cases, multiple streams of the same data can be provided, and
the quality (accuracy / fidelity) of each data stream is proportional
to its delay.

For such cases, application of our proposal for synchronous con-
sumption is straightforward, since to produce streams of predefined
qualities, the processing requirements are also predefined; therefore
the Dmax for each extra-data stream is known in advance. However,
there can be an issue if the user, while consuming a stream, would
like to switch to a stream of a different quality/delay. If the selected
stream has lower quality (and therefore lower delay), the switching is
seamless. However, when changing to a higher delay stream, trigger-
ing a rebuffering will degrade the over User Experience. In that case,
on top of switching the stream, we can change the buffer behavior
as well, from synchronous to low-latency, thus avoiding the rebuffering
event.

Similarly, a client rendering frames only in low-latency mode, with
multiple streams available, can switch to a different stream. If the
client is playing a low-latency stream and switches to one with higher
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Figure 48: Percentage of dropped (to consumed) frames per Binit, for
various delays

latency, the percentage of dropped to consumed frames will increase,
while in the oppose case, it will decrease.

Example drops rates for streams with various delays are shown in
Figure 48. We can observe that, if for example the Binit was set at
300 ms, even in the highest delay range of [400, 1200] ms, the frame
losses are below 3% of the total number of frames, and even if we
are not aware of the initial buffering time that would be required
for a different stream (e.g.[100, 500] ms), when the switching to the
low-latency stream occurs, the percentage of frames dropped will be
lower.

6.3 discussion

We demonstrated that by signaling the maximum production delay
of a stream (Dmax) to the client, the buffer size can be adjusted to
eliminate rebuffering events, thus offering a smooth synchronized
playback experience.

For systems that have low-latency requirements, the policy can be
adjusted to a maximum initial buffering duration (or to a minimum
required buffer length - Binit) and dropping late frames thereafter,
instead of rebuffering. The same principle can be applied for seam-
lessly switching between streams with different characteristics.

We also examined how those two modes can co-exist in a platform
that supports synchronized and low-latency streaming.
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Our work can be applied to applications that utilize extended AV
streams. Especially in a UGC streaming scenario, that feedback to
the content producer is not supported (therefore the quality of the
transmitted extra data is not known to the producer), using the afore-
mentioned methods can lead to lower end-to-end delay, while main-
taining synchronized and low-latency consumption capabilities. This
applies to examples given previously (and to our applications from
previous chapters), where filtering data over time results to higher
quality output and our buffering scheme can be applied.

Our work can be extended, to include delay estimation schemes,
in case that signaling the Dmax is not feasible and synchronous con-
sumption is required. There has already been research on this field
[103] and some of the algorithms can be used in conjunction with our
proposals.

Some specific aspects of delay estimation are close to the appli-
cation scenarios that we have already presented in this manuscript.
For example, previous work for consuming Adaptive Video streams
over HTTP in mobile networks [70] uses GPS error metrics and GSM
network quality to assert whether the user moves from an outdoors
(good service) to an indoors (dubious service) setting. Those measure-
ments can be recorded on the producer end in the UGC with geospa-
tial data scenario (as in the applications demonstrated in Chapters
4 and 5), thus used for signaling potential upcoming changes in the
Dmax.

Finally, it would be of interest as future work to propose the Dmax
signaling to be integrated in relevant standards, part of the current
streaming ecosystem, such as MPEG-DASH, IETF RTP etc. [121] [34].
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Part IV

C O N C L U S I O N A N D D E L I V E R A B L E S





7
C O N C L U S I O N

In this Thesis, we studied the requirements, apparatus and environ-
ment to propose techniques for enhancing video applications through
timed metadata. In the Introduction we mentioned that we were look-
ing to answer questions like the following:

• What kind of added value does the timed metadata offer to AV applica-
tions?
We identified that the timed metadata with respect to the AV
systems can:

– Enable new use-case scenaria.

– Improve the performance of current (and future) AV sys-
tems by optimizing client-side delivery and server-side pro-
cessing/repackaging of AV content .

– Allow implementation of different end-user applications
using the same metadata.

• Where and how should the timed metadata be processed?
Even though there is not a clear answer to this question, we
recommend to gather everything on the recorder-side. Then,
process the metadata (including synchronization provisions) on
the server. In most cases, the extra data are light (compared to
the AV data), for such cases transmit all of them. Finally, the
rendering and presentation aspects should be handled on the
client.

• Are there common building blocks / techniques that can be studied and
then applied to different application scenaria?
Following the aforementioned guidelines, the resulting elemen-
tary building blocks are the same for most extended AV applica-
tions, adjusted to the respective specifications. Techniques (e.g.
buffering, adaptation etc.) can be applied to applications that
use timed metadata of specific properties.

As the main motivation for this Thesis was to examine the feasi-
bility of distributing all types of timed metadata in everyday appli-
cations and their potential usefulness, we begun by identifying the
characteristics, challenges and classes of such systems. Despite the
variety of cases encountered, we outlined an architecture pattern that
can facilitate recording, distribution and consumption of various data
types, for several use cases. Based on this architecture and the afore-
mentioned work, we conducted the studies and implemented rele-
vant applications thereafter. These contributions can be used as a
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reference for identification of relevant future work, or as foundations
for possible extensions.

The main body of our work is split in two parts, the first on us-
ing timed metadata to extend the capabilities of audiovisual systems
and the second to improve content delivery of such systems. For the
first part, we analyzed the specifications and requirements for two
categories of applications. First, for multimedia control, using inputs
from a specialized device and second for spatiotemporal video navi-
gation, using inputs from common devices.

In both cases, we built relevant systems, in order to demonstrate
the features enabled from the timed metadata and in the process we
got further understanding on the limitations and extensions of ex-
tended AV systems. For example, in Chapter 3, we studied audiovi-
sual synthesis applications and we demonstrated that accompanying
timed metadata can increase flexibility and reduce client-side compu-
tational complexity, with the producer maintaining control over the
final output. We also identified possible issues with such applica-
tions, like potential asynchronies between frames or modalities — a
challenge that we address in Chapter 6.

Similarly, in Chapter 4, we studied how timed metadata can be
used to enable spatiotemporal video navigation. Again, we showed
extensions, like enabling visualization and navigation of UGC videos,
and we identified shortcomings, e.g. marker congestion occurring in
content-crowded regions.

For the second part, we proposed techniques for optimizing video
delivery by using timed metadata. The timed metadata are used to
facilitate the selection of the relevant videos and the selection of ap-
propriate bitrates of these videos. Then, we demonstrated methods
for buffer management for accommodating delivery of timed meta-
data in different scenarios. These methods can be applied to the use
cases we already studied and examined via proof of concept plat-
forms, and to use cases that we considered but we did not have the
chance to thoroughly examine, like sensor networks.

7.1 outlook and potential application fields

Our work has the potential to be integrated in existing video-centric
platforms that utilize timed metadata (e.g. GeoUGV), or to seed ex-
tensions in fields that use timed metadata with video, but have no
current considerations for delivery optimizations. An example of the
latter would be telemedicine, that Kinect is used for rehabilitation and
recovery monitoring [80], but without regards for systems aspects.

To further elaborate, while staying on the telemedicine example, for
the initial part of the Thesis, we have argued that such applications
can benefit from adopting our proposed classification and architec-
ture design proposals, and at the same time, by using international
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standards, can lead e-healthcare to a more interoperable and modular
direction.

Then, we appeal to the concept of liberating the systems for future
applications by selecting the appropriate level of abstraction on the
transmitted modalities. Distributed applications of telemedicine can
benefit in this aspect by transmitting and archiving data and synchro-
nization information provided from the cameras and other recording
devices (BCIs, Kinect etc.). An example benefit would be facilitating
implementation of new client-side features, retroactively validating
new diagnostic techniques and/or facilitating collaboration between
different applications, including platforms from different vendors. Fi-
nally, due to the diversity of modalities and environments that is
prevalent in the telemedicine domain, distribution issues occur (out-
of-order delivery, frame drops etc.) and our recommendations from
Chapter 6 can be applied to ease their effect on the receiving end.

Telemedicine is just one example of a field that our work can con-
tribute. Even simple media players for multiview video can be en-
hanced through the appropriate distribution and utilization of timed
metadata. For example, in Chapter 4 we showed how to facilitate the
selection of the appropriate video and the navigation to the relevant
point in the timeline. Also, by applying the principles of Chapter 5,
the media player can improve the User Experience by using the timed
metadata to automatically select the appropriate view and quality.

7.2 research perspectives and future work

Concerning the future work on our proposals, there can be exploratory
research in breadth and depth of the relevant systems as well as exten-
sions on the interoperability with academic and industry practices.

To increase the impact area of our proposals, we could examine dif-
ferent environments that we did not have the chance to do so during
the PhD. One such example mentioned in several instances through-
out the manuscript is the sensor networks. Even though we take pro-
visions according to the specifications of different sensor networks,
and we do consider borderline cases, if we had the time we would
have extended our work by studying real life deployments of dif-
ferent configurations (wired / wireless, main / battery / harvesting
powered, personal / local / wide area etc.).

The sensor network setup is especially interesting to be studied for
live scenarios, because of the traditionally large delays that occur on
the data collection. The nodes tend to have large (to save power) and
varying (according to their depth in the network) delays therefore are
not commonly applied to scenarios with live consumption of the con-
tent. Even though we did study such applications (e.g. in Chapter
6), a large-scale experimental work would be very interesting. A pro-
posed example of such work would be for a smart cities deployment
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where a plethora of cameras and smaller sensor networks are inter-
connected and the data gathered is used in different scenaria (energy
monitoring, traffic optimization etc.) each with different priorities
and specifications. It is also noteworthy that often in such systems
(in contrast to the systems we studied), the AV is not the main con-
tent, and occasionally can be missing completely.

To increase the impact effect of our proposals, experiments with
different configurations of the studied scenarios would be beneficial.
For example, in the buffering proposals, if time was not of the essence,
we would have studied more delay ranges and distributions.

Additionally, specific configurations could advance the quality of
the obtained results. Such an example is with the UGC view and
stream selection work, that we could try different coefficients to the
metrics used for the final score, according to the underlying videos
used. For example, we could study how the coefficients of the met-
rics and the cinematic criteria can be adapted according to the video
content type (sport event, concert etc.). Moreover, since to our knowl-
edge, our work is the first that considers both sensor measurements
and network evaluation criteria for stream and quality selection, there
is potential for improving our contributions by fine tuning (or alter-
ing) the metrics. Due its novelty, we would focus especially at the
Link Reliability metric, since it is newly introduced and there is no
other work on UGC stream selection with a similar recorder-to-server
connection evaluation metric.

Another research aspect of the UGC stream work that deserves
examination would be the application of our proposals in immersive
scenarios. Having already tools and techniques to identify the quality
of the streams and their spatiotemporal relevance can potentially en-
able the integration of these UGC streams in immersive environments.
For example, the entanglement of UGC videos in virtual worlds (or
VR exploration of virtual representations) can be a possibility, if the
proper QoE studies are conducted.
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8.2 software

This section lists the open source software developed during this The-
sis, mentioned on this manuscript. Note that it contains complete
software implementations of our own design; contributions to exter-
nal repositories are not included.

8.2.1 Kinect-based Control

Kinect-based Control is a set of tools for recording and playback of
Kinect data for control of multimedia applications using MS Kinect
as an input. The repository contains the recorder and an example
client application for modular audio synthesis with accompanying
visualizations (as presented in Chapter 3).

current status :
Inactive. Project concluded in 2017.

languages/platforms used :
Recorder: C++ (MS Kinect SDK, libgpac, ffmpeg) – Client: Javascript
(p5.js)

repositories :
Main repository: https://github.com/emmanouil/MOOOK/

8.2.2 Spatiotemporal Video Navigation

Spatiotemporal Video Navigation is a platform for selecting the ap-
propriate video, at the desired time, according to geospatial criteria
of the recording (as presented in Chapter 4). It consists of three parts:

• Recorder: An Android app for recording videos and the accom-
panying geospatial data.

• Parser: A Python module for parsing and formatting the record-
ings.

• Client: A web-based client/viewer for the recordings.

current status :
Maintained, but not under active development.

languages/platforms used :
Recorder: Java (Android SDK) – Parser: Python – Client: Javascript,
Google Maps JS API – Example videos: MP4Box, ffmpeg
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repositories :
Client (main repository): https://github.com/emmanouil/Spatiotemporal-
Navigation
Recorder: https://git.io/SNR

8.2.3 SWAPUGC

SoftWare for Adaptive Playback of User-Generated Content is a set
of tools used for implementing platforms for playback of spatially an-
notated videos. It supports playback of multiple concurrent streams,
with multiple representations (bitrates) per stream, and adaptation
algorithms (metadata and/or bandwidth-based).

current status :
Under development. Currently changing the format to a set of li-
braries and the parser scripts.

languages/platforms used :
Parsers (for SNR and ICoSOLE recordings): Python – Blur estimation:
Python (OpenCV) – Demo Client and Browser Scripts: Javascript,
Google Maps JS API – Example videos: MP4Box, ffmpeg

repositories :
Main repository: https://github.com/emmanouil/SWAPUGC/
Recorder: same as Spatiotemporal Video Navigation
Demo (hosted by ACM MMSys): https://acmmmsys.github.io/2018-
SWAPUGC
Dataset (provided by ICoSOLE project): http://icosole.lab.vrt.be/

8.2.4 Buffer Simulator

A simulator for conducting simulations of buffering techniques. It
contains a frame generator (to simulate the streams), the buffer/net-
work simulator and visualization scripts.

current status :
Inactive. Project concluded in 2017.

languages/platforms used :
Data generator and Simulator: Javascript (Nodejs) – Analysis and
Visualization scripts: Python (Numpy, Matplotlib)

repositories :
Main repository: https://github.com/emmanouil/Buffer-Tests
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A
A P P E N D I X

a.1 buffer-based adaptation algorithm

Throughout the manuscript, we are using references to HAS adapta-
tion algorithms. Especially in Chapter 5, we run simulations using a
buffer-based adaptation policy described in this section.

In HAS systems, the purpose of the adaptation algorithm is to de-
tect the capabilities of the network connection with the server and
identify the highest-bitrate representation that can support. The net-
work evaluation typically happens by throughput estimation (through-
put-based adaptation), or by observing the variations in the buffer
contents (buffer-based adaptation) [60].

We implemented a conservative buffer-based adaptation policy that
on top of supporting multiple representations, supports multiple sou-
rces/streams. Figure 49 shows an overview of the algorithm. We de-
fine two thresholds Rmax which if reached the buffer is considered
to be full, and Rmin that if the buffer occupancy falls bellow it is
considered to be almost empty. Whenever a buffer update occurs, if
the client is in a high-bitrate representation and the buffer level is be-
tween Rmin and Rmax, it just requests the next segment of the same
high-bitrate. Otherwise, if it is above Rmax, it does nothing, or if it is
bellow Rmin it requests a low-bitrate segment.

If the update occurs, while in a low-bitrate representation and the
buffer level is between Rmin and Rmax, if it just switched to this
stream, tries to request a high-bitrate segment, or, if it was already
on this stream, the client requests the next low-bitrate segment. If at
the time of the update the buffer level is bellow Rmin, it switches to
a different stream (staying in low-bitrate representation). The reason-
ing behind this behaviour is that the buffer might be depleting due to
the connection of the recorder to the server and not from the server
to the client. If the buffer level at the update is above Rmax, the client
does nothing.

The algorithm defines the "just switched" behaviour by the number
of segments requested in the current stream (Nsreq). The policy can
be parametrized by setting different Nsreq, Rmax and Rmin values.

The proposed algorithm is loosely based on BBA [49], because it
also uses the Rmax and Rmin. However, the main difference is that
BBA has no provision for multiple sources/streams and that BBA is
more aggressive because it always tries to switch to a high-bitrate
representation when the buffer level is above Rmax.
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Figure 49: Overview of buffer-based quality adaptation algorithm

Bellow is a list of the specific policy values used at the simulations
for Chapter 5:
Segment Length = 2s
Rmax = 2 segments (4s)
Rmin = ½ segment (1s)
Nsreq = 1 segment (2s)
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a.2 field-of-view and region-of-interest

field-of-view (FoV) of a camera is the spatial area that is visu-
ally covered during the recording of a video. Because we use it for
visualization and indexing, we are interested in its 2D projection.

To calculate the FoV, the location (P), direction (~d), visible distance
(R) and angle of view (α) of the camera are required [10]. P and
~d are provided by the respective location and orientation sensors of
the device. R is difficult to be evaluated for most cases, since it re-
quires extensive prior knowledge about the surroundings (obstacles,
weather etc.) but the value can be set according to the application.
For example, in indoor recordings, an R value of 20 to 60 m should
accommodate accurately enough FoV estimations. For outdoors, R
can vary a lot and might reach up to 800 m; for such cases, it can be
approximated using hotspot identification [46].

The angle of view can be calculated, using the sensor (film) size
(d) and the effective focal length (f) of the camera, with the following
formula:

α = 2 ∗ arctan d
2f

Because d and f are not always available, when they are missing we
are doing a conservative FoV estimation using α ≈ 65◦. This value is
selected because it corresponds to α for (wide) lenses between 24 and
35mm 1, which are the cameras that are typical in modern smartpho-
nes 2 3. For comparison, other platforms use also α = 65◦ as default
value (e.g. when calculating the camera panning speed) [31], while
GeoUGV was using α = 51◦ when the other parameters were not
available [66].

region-of-interest (RoI) is the spatial area that a specific event
is taking place during the recording (e.g. a scene at a music concert).
Unless it is predefined, it can be automatically identified via consen-
sus on the active views, which is based on the assumption that a
significant amount of "good" quality cameras will record it.

For our work we recommend using a sensor-based system [30].
The methodology of the system is fist to define a viewing angle (e.g.
for music concerts 90◦ is recommended [31]). Then, use the orienta-
tion recordings history (it can be short-term for fast bootstrap and/or
moving RoIs) to identify the RoI. The recording history can also be
used to refine the viewing angle over time.

Figure 50 shows (a) the visualization of seven active recorders and
(b) the histogram of the recorded compass values used to calculate
the viewing angle and RoI. We can observe the importance of the

1 https://en.wikipedia.org/wiki/Angle_of_view#Common_lens_angles_of_view
2 https://www.gsmarena.com/
3 https://medium.com/@andrewkemendo/smartphone-camera-focal-length-

reference-for-computer-vision-and-ar-applications-cd4c932046b1
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Figure 50: RoI identification (a) visualization of recorders (b) histogram of
cameras orientation (from [30])

consensus system in Fig. 50 (b) that there is a user constantly filming
an area outside the RoI and would have been included if a simple
averaging algorithm was used instead. The illustrated example as-
sumes that all the recorders are on the same side of the scene, thus
the RoI is perceived as a plane, but similar sensor-based approaches
exist for convex hull RoIs [116].
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a.3 user study feedback

Following are the participant IDs with the comments they made dur-
ing or after the user study.

ID: 0 - test run

ID: 1 - test run

ID: 2 - test run

ID: 3 - test run

ID: 4

"Over time it becomes hard, because I do not have in mind the im-
pressions from previous videos"
"The frequency of the scene cuts varies within the same video"
"The evaluation was a difficult task"

ID: 5

"The cuts between views were not smooth"
"The view switching should be spatially consistent"
"The camera in some views moves very fast"

ID: 6

(Commenting specifically on S5) "I would like a fixed camera that just
shows the whole orchestra"
(Commenting specifically on S5) "In a classical music concert the ques-
tion does not make much sense"
"It would be interesting to have a camera that focuses on the players
only"

ID: 7

"A lot of view obstructions"
"Shakiness is very annoying"
"The worst part of the videos were when the camera was filming the
crew or random people"
"Resolution was not that much of a problem, comparing to the other
issues (like shakiness)"
"Clean close-ups were missing"

ID: 8

"All of the videos were very bad overall"
"I prefer bad image quality than shakiness or not filming the orches-
tra"
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ID: 9

"The questions put me in a negative disposition"
"It was very disturbing when the camera was not showing the orches-
tra"
"I prefer cameras with less detail (i.e. lower image quality) and less
shakiness, than the opposite"
"View obstruction from people or objects was annoying. The effect
was especially annoying when the person filming was passing behind
an obstacle (person or object), because if a person passes in front of
the camera is expected to happen at some point"

ID: 10

"I personally can tolerate bad image quality"
"At points the camera was far away and in low-quality and couldn’t
see the details"
"I paid too much attention in the beginning, so it became tiring after
a while. Maybe if there was some sort of interaction with the user it
would feel more interesting."
"It would be interesting the same test to be conducted in a mobile
phone (because of different expectations, affects experience etc.)"

ID: 11

"I felt more focused in the beginning of the study"
"I think that if I watched the videos twice, I would change my mind"
"The study was too long"
"Maybe we should evaluate the good training video, to set a base-
line."
"The videos were too many (and too long). Maybe they should be
shortened down to the disputable parts"

ID: 12

"Cameras were of bad quality. Feels like the videos were predefined
extracts that were shuffled and stitched" (when asked what was the
most striking issue with the videos) "shakiness of the camera and
filming floors, walls etc."
"The scene showing when the video ends shapes my opinion" (i.e. if
a video finishes with a bad view, I have a bad opinion for the video)

ID: 13

"If the videos were longer it might have been tiring watching them"
(commented after replying S4)
"I have watched UGC videos with the audio from each camera. In
this case that the audio comes from one source it is more difficult to
judge the bad videos"
"The image quality when the video starts affects positively my per-
ception (if it starts with a good view I might overlook further degra-
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dations)

ID: 14

"Shakiness is really annoying"
"Even if it is showing the action and the image is clear, if it is shaky I
would have switched off after a few seconds"
"...especially when the subject is close to the camera, the shakiness
effect is horrible"
"Image Quality is the least important"
"Even just one close-up but steady camera would be better (and switch-
ing to a steady camera gives a sense of “immersiveness“)"
"Cello and Bass are not very visible (and when they are, it’s shaky)"
"As soon as the camera is stable, it is fine no matter what is the qual-
ity"
"Sometimes the camera switches too late (a bit after it is out of FoV)"

ID: 15

"Some videos shake a lot"
"The more videos I am watching, the more confused I am"

ID: 16

"Questions would have been better if the were either positive or neg-
ative, not mixed"
"The problem with the cameras is not that they change too often, it is
that they change abruptly"
(wrt S5) "I personally find interesting seeing the rest of the room, not
just the orchestra. But I do not like it when it is filming the floor etc."
"The abrupt changes influence my overall opinion on the view changes"
"I would like to have a camera with a close-up to some player (at least
at some point)"
"When an instrument keeps playing, with the others stopped, I would
expect to have that specific instrument on my view, not the idle play-
ers"

ID: 17

"It was confusing that the statements were mixed positive/negative"
"All of the videos in terms of overall quality were close"
"I prefer the steady cameras (without shakiness)"

ID: 18

"Comparing to blurriness, shakiness is more unbearable"
"Fast move and shakiness made me feel dizziness and a bit sick"
(wrt S4) "For the last few videos I felt more tired (and I appreciated
more when there was a good view)"
"Shooting out of RoI made me lose focus"
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ID: 19

(wrt S5) "Answering was problematic because all the views were sim-
ilar"
"When the last scene was bad, it was influencing negatively my an-
swer"
"Shakiness and camera moving fast were very annoying and tiring"

ID: 20

"Some times it was showing me stuff I was not interested about"
"It was a difficult evaluation"
"Too shaky was the worst"
"I’d prefer a video that was less shaky and of worse quality"

ID: 21

"I feel I have seen the same views with and without image stabiliza-
tion and with and without image degradation"
"It was difficult to tell artifacts from encoding from artifacts from the
content"
"The most important problem was moving around and lack of stabi-
lization (shakiness), followed by bad image quality and bad FoV"
"I would rather have a stable, clean in FoV view, even if people are
pasing in front of the camera"
"Away views made me more resilient to shakiness than close-ups"
"Quality switches were more tolerable when happening in a transi-
tion, not in the middle of a scene"

ID: 22

(after watching the training videos) "‘Best‘ video depends on the goal
- e.g. editing a video for impression in different than editing for casu-
ally watching"
"A couple of videos start really bad and end really good, in those
cases it is difficult to decide"
"A sudden up-to-down move that occurred in some videos was very
disturbing"

ID: 23

"I think all the videos are very bad"
"Some begin ok and at the end are really bad. There is a consistency
problem"

ID: 24

"Many views would have been better with a fixed camera (instead of
the user moving around)"
"The view changes were usually ok, but for me the most important
was the framing"
"Sometimes it is tiring because it does not follow well the current
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frame [meaning shot / camera framing]"
"Some of the transitions were nice, but others can be improved"
"Out of FoV shots sometimes can be interesting (e.g. to peak "behind
the scenes" or the audience)"
"Shakiness of the camera was the most annoying factor"
"Sometimes a nice smooth move of the camera was disrupted from a
switch"

ID: 25

"It was not easy to separate the whole experience for the individual
questions"
"Moving and Shakiness were the worst factors - it tired me. If the
image is just not clean it is normal"
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a.4 buffer notation used

Assuming a system generating consecutive non-overlapping frames
of duration Tf each, with varying delays. At a given time t, the client-
side buffer contains 6 frames, as illustrated in Figure 51. The received
frames (with T_arr 6 t) are displayed in gray, while the delayed
(T_arr > t) are whitened out.

The buffer size (Bsize) should be equal to the number of consecu-
tive frames contained, starting from the first frame to be scheduled for
playback, in that example the Bsize = 3, with first frame FRN = n. The
buffer length is equal to the buffer size multiplied by the frame du-
ration (i.e. Blen = Bsize * Tf). The fragmented buffer size (Bsize_frag)
is equal to the total number of frames in the buffer, in that example
Bsize_frag = 6. Respectively, the fragmented buffer length is equal
to the fragmented buffer size, multiplied to the frame duration (i.e.
Blen_frag = Bsize_frag * Tf).

Figure 51: Buffer visualization with received (gray) and missing (white)
frames
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Titre : Amélioration des Applications Vidéo Grâce aux Métadonnées Temporelles

Mots clés : Streaming, Multimedia, UX, UGC, Synchronization

Résumé : Les dispositifs d’enregistrement vidéo
sont souvent équipés de capteurs (smartphones par
exemple, avec récepteur GPS, gyroscope, etc.) ou
utilisés dans des systèmes où des capteurs sont
présents (par exemple, caméras de surveillance,
zones avec capteurs de température et/ou d’humi-
dité). Par conséquent, de nombreux systèmes traitent
et distribuent la vidéo avec des flux de métadonnées
temporels, souvent sous forme de contenu généré
par l’utilisateur (UGC). La diffusion vidéo a fait l’objet
d’études approfondies, mais les flux de métadonnées
ont des caractéristiques et des formes différentes, et il
n’existe en pratique pas de méthode cohérente et effi-
cace pour les traiter conjointement avec les flux vidéo.
Dans cette thèse, nous étudions les moyens
d’améliorer les applications vidéo grâce aux
métadonnées temporelles. Nous définissons comme
métadonnées temporelles toutes les données non au-
diovisuelles enregistrées ou produites, qui sont perti-
nentes à un moment précis sur la ligne de temps du
média.
”L’amélioration” des applications vidéo a une double
signification, et ce travail se compose de deux parties
respectives. Premièrement, utiliser les métadonnées
temporelles pour étendre les capacités des applica-
tions multimédias, en introduisant de nouvelles fonc-

tionnalités. Deuxièmement, utiliser les métadonnées
chronométrées pour améliorer la distribution de
contenu pour de telles applications.
Pour l’extension d’applications multimédias, nous
avons adopté une approche exploratoire et nous
présentons deux cas d’utilisation avec des exemples
d’application. Dans le premier cas, les métadonnées
temporelles sont utilisées comme données d’entrée
pour générer du contenu, et dans le second, elles
sont utilisées pour étendre les capacités de navigation
pour le contenu multimédia sous-jacent. En concevant
et en mettant en œuvre deux scénarios d’application
différents, nous avons pu identifier le potentiel et les
limites des systèmes vidéo avec métadonnées tem-
porelles.
Nous utilisons les résultats de la première partie
afin d’améliorer les applications vidéo, en utilisant les
métadonnées temporelles pour optimiser la diffusion
du contenu. Plus précisément, nous étudions l’uti-
lisation de métadonnées temporelles pour l’adapta-
tion multi-variables dans la diffusion vidéo multi-vues
et nous testons nos propositions sur une des plate-
formes développées précédemment. Notre dernière
contribution est un système de buffering pour la lec-
ture synchrone et à faible latence dans les systèmes
de streaming en direct.

Title : Enhancing Video Applications Through Timed Metadata

Keywords : Streaming, Multimedia, UX, UGC, Synchronization

Abstract : Video recording devices are often equip-
ped with sensors (smartphones for example, with
GPS receiver, gyroscope etc.), or used in settings
where sensors are present (e.g. monitor cameras,
in areas with temperature and/or humidity sensors).
As a result, many systems process and distribute
video together with timed metadata streams, often
sourced as User-Generated Content. Video delivery
has been thoroughly studied, however timed meta-
data streams have varying characteristics and forms,
thus a consistent and effective way to handle them in
conjunction with the video streams does not exist.
In this Thesis we study ways to enhance video ap-
plications through timed metadata. We define as ti-
med metadata all the non-audiovisual data recorded
or produced, that are relevant to a specific time on the
media timeline.
”Enhancing” video applications has a double mea-
ning, and this work consists of two respective parts.
First, using the timed metadata to extend the capabi-
lities of multimedia applications, by introducing novel

functionalities. Second, using the timed metadata to
improve the content delivery for such applications.
To extend multimedia applications, we have taken an
exploratory approach, and we demonstrate two use
cases with application examples. In the first case, ti-
med metadata is used as input for generating content,
and in the second, it is used to extend the navigational
capabilities for the underlying multimedia content. By
designing and implementing two different application
scenarios we were able to identify the potential and
limitations of video systems with timed metadata.
We use the findings from the first part, to work from
the perspective of enhancing video applications, by
using the timed metadata to improve delivery of the
content. More specifically, we study the use of timed
metadata for multi-variable adaptation in multi-view vi-
deo delivery - and we test our proposals on one of
the platforms developed previously. Our final contri-
bution is a buffering scheme for synchronous and low-
latency playback in live streaming systems.
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