, Résumé Plusieurs membranes composites ont été préparées avec de la sépiolite pure ou fluorée

, La sépiolite a été greffée avec succès avec le groupe fluor (-C7F15) et traitée avec de l'acide oxalique et de l'acide chlorhydrique pour éliminer toute trace de fer. De la sépiolite brute ou de la sépiolite modifiée a été ajoutée

G. A. Florides and P. Christodoulides, Global warming and carbon dioxide through sciences, Environment international, vol.35, issue.2, pp.390-401, 2009.

C. Change, Global Warming, TAPPI JOURNAL, 1998.

M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, 2004.

B. C. Steele and A. Heinzel, Materials for fuel-cell technologies," in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from, pp.224-231, 2011.

P. Costamagna and S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects, Journal of power sources, vol.102, issue.1-2, pp.253-269, 2001.

J. M. Moore, J. B. Lakeman, and G. O. Mepsted, Development of a PEM fuel cell powered portable field generator for the dismounted soldier, Journal of Power Sources, vol.106, issue.1-2, pp.16-20, 2002.

L. Schlapbach, Technology: Hydrogen-fuelled vehicles, Nature, vol.460, issue.7257, p.809, 2009.

J. Thomassin, C. Pagnoulle, D. Bizzari, G. Caldarella, A. Germain et al., Improvement of the barrier properties of Nafion® by fluoro-modified montmorillonite, Solid State Ionics, vol.177, pp.1137-1144, 2006.

K. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of membrane science, vol.185, issue.1, pp.29-39, 2001.

M. Ciureanu, Effects of Nafion® dehydration in PEM fuel cells, Journal of Applied Electrochemistry, vol.34, issue.7, pp.705-714, 2004.

H. Lee, Pinhole formation in PEMFC membrane after electrochemical degradation and wet/dry cycling test, Korean Journal of Chemical Engineering, vol.28, issue.2, pp.487-491, 2011.

G. Lin and T. Van-nguyen, Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC, Journal of The Electrochemical Society, vol.152, issue.10, pp.1942-1948, 2005.

S. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International journal of hydrogen energy, vol.35, issue.17, pp.9349-9384, 2010.

R. Nagarale, W. Shin, and P. K. Singh, Progress in ionic organic-inorganic composite membranes for fuel cell applications, Polymer Chemistry, vol.1, issue.4, pp.388-408, 2010.

A. K. Mishra, S. Bose, T. Kuila, N. H. Kim, and J. H. Lee, Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Progress in polymer Science, vol.37, issue.6, pp.842-869, 2012.

W. Zhengbang, H. Tang, and P. Mu, Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells, Journal of membrane science, vol.369, issue.1-2, pp.250-257, 2011.

B. Matos, E. Aricó, M. Linardi, A. Ferlauto, E. Santiago et al., Thermal properties of Nafion-TiO2 composite electrolytes for PEM fuel cell, Journal of thermal analysis and calorimetry, vol.97, issue.2, p.591, 2009.

V. D. Noto, R. Gliubizzi, E. Negro, and G. Pace, Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2) x] composite membranes, The Journal of Physical Chemistry B, vol.110, issue.49, pp.24972-24986, 2006.

F. Pereira, K. Vallé, P. Belleville, A. Morin, S. Lambert et al., Advanced mesostructured hybrid silica? nafion membranes for high-performance PEM fuel cell, Chemistry of Materials, vol.20, issue.5, pp.1710-1718, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00347595

N. H. Jalani, K. Dunn, and R. Datta, Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells, Electrochimica Acta, vol.51, issue.3, pp.553-560, 2005.

A. Saccà, Phosphotungstic Acid Supported on a Nanopowdered ZrO2 as a Filler in Nafion-Based Membranes for Polymer Electrolyte Fuel Cells, Fuel Cells, vol.8, issue.3-4, pp.225-235, 2008.

A. , Composite nafion/sulfated zirconia membranes: effect of the filler surface properties on proton transport characteristics, Chemistry of Materials, vol.22, issue.3, pp.813-821, 2009.

Y. Zhai, H. Zhang, J. Hu, and B. Yi, Preparation and characterization of sulfated zirconia (SO42?/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity, Journal of membrane science, vol.280, issue.1-2, pp.148-155, 2006.

D. J. Kim, M. J. Jo, and S. Y. Nam, A review of polymer-nanocomposite electrolyte membranes for fuel cell application, Journal of Industrial and Engineering Chemistry, vol.21, pp.36-52, 2015.

P. Kongkachuichay and S. Pimprom, Nafion/Analcime and Nafion/Faujasite composite membranes for polymer electrolyte membrane fuel cells, Chemical Engineering Research and Design, vol.88, issue.4, pp.496-500, 2010.

E. ?engül, H. Erdener, R. G. Akay, H. Yücel, N. Bac et al., Effects of sulfonated polyetheretherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance, international journal of hydrogen energy, vol.34, issue.10, pp.4645-4652, 2009.

B. P. Tripathi, M. Kumar, and V. K. Shahi, Highly stable proton conducting nanocomposite polymer electrolyte membrane (PEM) prepared by pore modifications: an extremely low methanol permeable PEM, Journal of Membrane Science, vol.327, issue.1-2, pp.145-154, 2009.

A. Carbone, A. Saccà, I. Gatto, R. Pedicini, and E. Passalacqua, Investigation on composite S-PEEK/H-BETA MEAs for medium temperature PEFC, International Journal of Hydrogen Energy, vol.33, issue.12, pp.3153-3158, 2008.

A. Filippov, Transport properties of novel hybrid cation-exchange membranes on the base of MF-4SC and halloysite nanotubes, Journal of Materials Science and Chemical Engineering, vol.3, issue.01, p.58, 2015.

G. Cavallaro, R. De-lisi, G. Lazzara, and S. Milioto, Polyethylene glycol/clay nanotubes composites, Journal of thermal analysis and calorimetry, vol.112, issue.1, pp.383-389, 2013.

M. Oroujzadeh, S. Mehdipour-ataei, and M. Esfandeh, Microphase separated sepiolite-based nanocomposite blends of fully sulfonated poly (ether ketone)/non-sulfonated poly (ether sulfone) as proton exchange membranes from dual electrospun mats, RSC Advances, vol.5, issue.88, pp.72075-72083, 2015.

F. J. Fernandez-carretero, K. Suarez, O. Solorza, E. Riande, and V. Compan, PEMFC performance of MEAs based on Nafion® and sPSEBS hybrid membranes, Journal of New Materials for Electrochemical Systems, vol.13, issue.3, pp.191-199, 2010.

P. Bébin, M. Caravanier, and H. Galiano, Nafion®/clay-SO3H membrane for proton exchange membrane fuel cell application, Journal of Membrane Science, vol.278, issue.1-2, pp.35-42, 2006.

J. Chang, J. H. Park, G. Park, C. Kim, and O. O. Park, Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials, Journal of Power Sources, vol.124, issue.1, pp.18-25, 2003.

I. Nicotera, A. Enotiadis, K. Angjeli, L. Coppola, and D. Gournis, Evaluation of smectite clays as nanofillers for the synthesis of nanocomposite polymer electrolytes for fuel cell applications, international journal of hydrogen energy, vol.37, issue.7, pp.6236-6245, 2012.

F. Mura, R. Silva, and A. Pozio, Study on the conductivity of recast Nafion®/montmorillonite and Nafion®/TiO2 composite membranes, Electrochimica acta, vol.52, issue.19, pp.5824-5828, 2007.

K. Fatyeyeva, Grafting of p-styrene sulfonate and 1, 3-propane sultone onto Laponite for proton exchange membrane fuel cell application, Journal of membrane science, vol.366, issue.1-2, pp.33-42, 2011.

C. Beauger, G. Lainé, A. Burr, A. Taguet, and B. Otazaghine, Improvement of Nafion®-sepiolite composite membranes for PEMFC with sulfo-fluorinated sepiolite, Journal of Membrane Science, vol.495, pp.392-403, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186135

C. Beauger, G. Lainé, A. Burr, A. Taguet, B. Otazaghine et al., Nafion®-sepiolite composite membranes for improved proton exchange membrane fuel cell performance, Journal of membrane science, vol.430, pp.167-179, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00777471

H. Zhang, T. Zhang, J. Wang, F. Pei, Y. He et al., Enhanced proton conductivity of sulfonated poly (ether ether ketone) membrane embedded by dopamine-modified nanotubes for proton exchange membrane fuel cell, Fuel Cells, vol.13, issue.6, pp.1155-1165, 2013.

A. K. Mishra, T. Kuila, N. H. Kim, and J. H. Lee, Effect of peptizer on the properties of Nafion-Laponite clay nanocomposite membranes for polymer electrolyte membrane fuel cells, Journal of membrane science, vol.389, pp.316-323, 2012.

X. Liu, Proton conductivity improvement of sulfonated poly (ether ether ketone) nanocomposite membranes with sulfonated halloysite nanotubes prepared via dopamine-initiated atom transfer radical polymerization, Journal of Membrane Science, vol.504, pp.206-219, 2016.

M. Song, S. Park, Y. Kim, K. Kim, S. Min et al., Characterization of polymerlayered silicate nanocomposite membranes for direct methanol fuel cells, Electrochimica Acta, vol.50, issue.2-3, pp.639-643, 2004.

J. Thomassin, C. Pagnoulle, G. Caldarella, A. Germain, and R. Jérôme, Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application, Journal of membrane science, vol.270, issue.1-2, pp.50-56, 2006.

R. Kamble, M. Ghag, S. Gaikawad, and B. K. Panda, Halloysite Nanotubes and Applications: A Review, Journal of Advanced Scientific Research, vol.3, issue.2, 2012.

H. Zhang, Y. He, J. Zhang, L. Ma, Y. Li et al., Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer, Journal of Membrane Science, vol.505, pp.108-118, 2016.

H. Zhang, C. Ma, J. Wang, X. Wang, H. Bai et al., Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes, International journal of hydrogen energy, vol.39, issue.2, pp.974-986, 2014.

D. Bielska, A. Karewicz, T. Lachowicz, K. Berent, K. Szczubia?ka et al., Hybrid photosensitizer based on halloysite nanotubes for phenol-based pesticide photodegradation, Chemical Engineering Journal, vol.262, pp.125-132, 2015.

F. Fernandez-carretero, V. Compan, and E. Riande, Hybrid ion-exchange membranes for fuel cells and separation processes, Journal of power sources, vol.173, issue.1, pp.68-76, 2007.

J. Li, M. Pan, and H. Tang, Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells, RSC Advances, vol.4, issue.8, pp.3944-3965, 2014.

A. Stassi, Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation, Journal of Power Sources, vol.196, issue.21, pp.8925-8930, 2011.

S. Giancola, Composite short side chain PFSA membranes for PEM water electrolysis, Journal of membrane science, vol.570, pp.69-76, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01915203

D. Jones,

A. Aricò, High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane, Fuel Cells, vol.10, issue.6, pp.1013-1023, 2010.

A. Dupuis, Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques, Progress in Materials Science, vol.56, issue.3, pp.289-327, 2011.

A. Chandan, High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review, Journal of Power Sources, vol.231, pp.264-278, 2013.

J. Qiao, M. Saito, K. Hayamizu, and T. Okada, Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2, Journal of The Electrochemical Society, vol.153, issue.6, pp.967-974, 2006.

Q. Guo, P. N. Pintauro, H. Tang, and S. O'connor, Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes, Journal of Membrane Science, vol.154, issue.2, pp.175-181, 1999.

S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International journal of hydrogen energy, vol.35, issue.17, pp.9349-9384, 2010.

F. N. Büchi, B. Gupta, O. Haas, and G. G. Scherer, Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells, Electrochimica Acta, vol.40, issue.3, pp.345-353, 1995.

J. Xie, D. L. Wood, D. M. Wayne, T. A. Zawodzinski, P. Atanassov et al., Durability of PEFCs at high humidity conditions, Journal of the Electrochemical Society, vol.152, issue.1, pp.104-113, 2005.

C. A. Daniels, Polymers: structure and properties, 1989.

Y. Tang, A. M. Karlsson, M. H. Santare, M. Gilbert, S. Cleghorn et al., An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane, Materials Science and Engineering: A, vol.425, issue.1-2, pp.297-304, 2006.

N. Uematsu, N. Hoshi, T. Koga, and M. Ikeda, Synthesis of novel perfluorosulfonamide monomers and their application, Journal of fluorine chemistry, vol.127, issue.8, pp.1087-1095, 2006.

S. Subianto, Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells, Journal of Power Sources, vol.233, pp.216-230, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00781419

V. Arcella and A. Ghielmi, Solvay Solexis EP1238999 B1, 2006.

J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, and S. Gottesfeld, Advanced composite polymer electrolyte fuel cell membranes, ECS Proceedings Volumes, vol.1995, pp.193-201, 1995.

J. Jaafar, A. Ismail, and T. Matsuura, Effect of dispersion state of Cloisite15A® on the performance of SPEEK/Cloisite15A nanocomposite membrane for DMFC application, Journal of Applied Polymer Science, vol.124, issue.2, pp.969-977, 2012.

M. Othman, A. Ismail, and A. Mustafa, Proton conducting composite membrane from sulfonated poly (ether ether ketone) and boron orthophosphate for direct methanol fuel cell application, Journal of membrane science, vol.299, issue.1-2, pp.156-165, 2007.

M. M. Hasani-sadrabadi, S. H. Emami, R. Ghaffarian, and H. Moaddel, Nanocomposite membranes made from sulfonated poly (ether ether ketone) and montmorillonite clay for fuel cell applications, Energy & Fuels, vol.22, issue.4, pp.2539-2542, 2008.

C. Yang, Fabrication and characterization of poly (vinyl alcohol)/montmorillonite/poly (styrene sulfonic acid) proton-conducting composite membranes for direct methanol fuel cells, International Journal of Hydrogen Energy, vol.36, issue.7, pp.4419-4431, 2011.

C. Yang, S. Chiu, and S. Kuo, Preparation of poly(vinyl alcohol)/montmorillonite/poly(styrene sulfonic acid) composite membranes for hydrogen-oxygen polymer electrolyte fuel cells, Current Applied Physics, vol.11, issue.1, pp.229-237

C. Yang, Y. Lee, and J. M. Yang, Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes, Journal of Power Sources, vol.188, issue.1, pp.30-37, 2009.

B. S. Pivovar, Y. Wang, and E. Cussler, Pervaporation membranes in direct methanol fuel cells, Journal of Membrane Science, vol.154, issue.2, pp.155-162, 1999.

P. Duangkaew and J. Wootthikanokkhan, Methanol permeability and proton conductivity of direct methanol fuel cell membranes based on sulfonated poly (vinyl alcohol)-layered silicate nanocomposites, Journal of applied polymer science, vol.109, issue.1, pp.452-458, 2008.

S. Chuang, S. L. , .. Hsu, and C. Hsu, Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications, Journal of Power Sources, vol.168, issue.1, pp.172-177, 2007.

J. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa et al., Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells, Solid State Ionics, vol.147, issue.1-2, pp.189-194, 2002.

M. M. Hasani-sadrabadi, N. M. Dorri, S. R. Ghaffarian, E. Dashtimoghadam, K. Sarikhani et al.,

. Majedi, Effects of organically modified nanoclay on the transport properties and electrochemical performance of acid-doped polybenzimidazole membranes, Journal of Applied Polymer Science, vol.117, issue.2, pp.1227-1233, 2010.

J. Peron, E. Ruiz, D. J. Jones, and J. Rozière, Solution sulfonation of a novel polybenzimidazole: a proton electrolyte for fuel cell application, Journal of Membrane Science, vol.314, issue.1-2, pp.247-256, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00347463

F. Ublekov, H. Penchev, V. Georgiev, I. Radev, and V. Sinigersky, Protonated montmorillonite as a highly effective proton-conductivity enhancer in p-PBI membranes for PEM fuel cells, Materials Letters, vol.135, pp.5-7

M. M. Hasani-sadrabadi, S. H. Emami, and H. Moaddel, Preparation and characterization of nanocomposite membranes made of poly (2, 6-dimethyl-1, 4-phenylene oxide) and montmorillonite for direct methanol fuel cells, Journal of Power Sources, vol.183, issue.2, pp.551-556, 2008.

L. Unnikrishnan, S. Mohanty, S. K. Nayak, and N. Singh, Synthesis and characterization of polysulfone/clay nanocomposite membranes for fuel cell application, Journal of Applied Polymer Science, vol.124, issue.S1, pp.309-318, 2012.

F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. Mcgrath, Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes, Journal of Membrane Science, vol.197, issue.1-2, pp.231-242, 2002.

Y. Kim, K. Seo, and S. Choi, Polymeric nanocomposite proton exchange membranes prepared by radiation-induced polymerization for direct methanol fuel cell, Radiation Physics and Chemistry, vol.118, pp.35-41, 2016.

M. Purwanto, Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells, RSC Advances, vol.6, issue.3, pp.2314-2322, 2016.

X. Bao, F. Zhang, and Q. Liu, Sulfonated poly (2, 5-benzimidazole)(ABPBI)/MMT/ionic liquids composite membranes for high temperature PEM applications, international journal of hydrogen energy, vol.40, issue.46, pp.16767-16774, 2015.

Z. Hu, G. He, S. Gu, Y. Liu, and X. Wu, Montmorillonite-reinforced sulfonated poly (phthalazinone ether sulfone ketone) nanocomposite proton exchange membranes for direct methanol fuel cells, Journal of Applied Polymer Science, vol.131, issue.3, 2014.

B. Eren, R. Aydin, and E. Eren, Morphology and thermal characterization of montmorillonite/polybenzimidazole nanocomposite, Journal of Thermal Analysis and Calorimetry, vol.115, issue.2, pp.1525-1531, 2014.

M. Prasad, S. Mohanty, and S. K. Nayak, Study of polymeric nanocomposite membrane made from sulfonated polysulfone and nanoclay for fuel cell applications, High Performance Polymers, vol.26, issue.5, pp.578-586, 2014.

D. Kim, H. Hwang, S. Jung, and S. Nam, Sulfonated poly (arylene ether sulfone)/Laponite-SO3H composite membrane for direct methanol fuel cell, Journal of Industrial and Engineering Chemistry, vol.18, issue.1, pp.556-562, 2012.

D. J. Kim, H. Y. Hwang, S. Y. Nam, and Y. T. Hong, Characterization of a composite membrane based on SPAES/sulfonated montmorillonite for DMFC application, Macromolecular research, vol.20, issue.1, pp.21-29, 2012.

L. C. Battirola, L. H. Gasparotto, U. P. Rodrigues-filho, and G. Tremiliosi-filho, Poly (imide)/organically-modified montmorillonite nanocomposite as a potential membrane for alkaline fuel cells, Membranes, vol.2, issue.3, pp.430-439, 2012.

A. Ganguly and A. K. Bhowmick, Sulfonated styrene-(ethylene-co-butylene)-styrene/montmorillonite clay nanocomposites: synthesis, morphology, and properties, Nanoscale research letters, vol.3, issue.1, p.36, 2008.

C. Yen, S. Liao, Y. Lin, C. Hung, Y. Lin et al., Preparation and properties of high performance nanocomposite bipolar plate for fuel cell, Journal of Power Sources, vol.162, issue.1, pp.309-315, 2006.

S. Xie, S. Zhang, F. Wang, M. Yang, R. Séguéla et al., Preparation, structure and thermomechanical properties of nylon-6 nanocomposites with lamella-type and fiber-type sepiolite, Composites science and technology, vol.67, issue.11-12, pp.2334-2341, 2007.

S. Trabia, K. Choi, Z. Olsen, T. Hwang, J. Nam et al., Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs), Materials, vol.11, issue.5, p.665, 2018.

S. Siracusano, V. Baglio, A. Stassi, L. Merlo, E. Moukheiber et al., Performance analysis of short-side-chain Aquivion® perfluorosulfonic acid polymer for proton exchange membrane water electrolysis, Journal of membrane science, vol.466, pp.1-7, 2014.

B. Matos, E. Aricó, M. Linardi, A. Ferlauto, E. Santiago et al., Thermal properties of Nafion-TiO2 composite electrolytes for PEM fuel cell, Journal of thermal analysis and calorimetry, vol.97, issue.2, pp.591-594, 2009.

C. Felice, S. Ye, and D. Qu, Nafion? montmorillonite nanocomposite membrane for the effective reduction of fuel crossover, Industrial & Engineering Chemistry Research, vol.49, issue.4, pp.1514-1519, 2010.

C. Karthikeyan, Aligned Nafion® nanocomposites: Preparation and morphological characterization, Macromolecular Materials and Engineering, vol.288, issue.2, pp.175-180, 2003.

L. D. Prado, C. Karthikeyan, K. Schulte, S. Nunes, and I. L. De-torriani, Organic modification of layered silicates: structural and thermal characterizations, Journal of Non-Crystalline Solids, vol.351, pp.970-975, 2005.

J. Thomassin, C. Pagnoulle, G. Caldarella, A. Germain, and R. Jérôme, Impact of acid containing montmorillonite on the properties of Nafion® membranes, Polymer, vol.46, issue.25, pp.11389-11395, 2005.

I. Nicotera, V. Kosma, C. Simari, C. Urso, A. Aricò et al., Methanol and proton transport in layered double hydroxide and smectite clay-based composites: influence on the electrochemical behavior of direct methanol fuel cells at intermediate temperatures, Journal of Solid State Electrochemistry, vol.19, issue.7, pp.2053-2061, 2015.

B. Ruzicka and E. Zaccarelli, A fresh look at the Laponite phase diagram, Soft Matter, vol.7, issue.4, pp.1268-1286, 2011.

G. Tartaglione, D. Tabuani, and G. Camino, Thermal and morphological characterisation of organically modified sepiolite, Microporous and Mesoporous Materials, vol.107, issue.1-2, pp.161-168, 2008.

Z. Tabatabaei-yazdi and S. Mehdipour-ataei, Poly (ether-imide) and related sepiolite nanocomposites: investigation of physical, thermal, and mechanical properties, Polymers for Advanced Technologies, vol.26, issue.4, pp.308-314, 2015.

E. Bilotti, H. Fischer, and T. Peijs, Polymer nanocomposites based on needle-like sepiolite clays: Effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical properties, Journal of applied polymer science, vol.107, issue.2, pp.1116-1123, 2008.

F. Fernandez-carretero, E. Riande, C. Rio, F. Sánchez, J. Acosta et al., Preparation and characterization of hybrid membranes based on Nafion® using partially sulfonated inorganic fillers, Journal of New Materials for Electrochemical Systems, vol.13, issue.2, pp.83-93, 2010.

P. Yuan, Functionalization of halloysite clay nanotubes by grafting with ?aminopropyltriethoxysilane, The Journal of Physical Chemistry C, vol.112, issue.40, pp.15742-15751, 2008.

Y. Xie, D. Qian, D. Wu, and X. Ma, Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes, Chemical Engineering Journal, vol.168, issue.2, pp.959-963, 2011.

M. E. Mackay, General strategies for nanoparticle dispersion, Science, vol.311, issue.5768, pp.1740-1743, 2006.

R. Krishnamoorti, Strategies for dispersing nanoparticles in polymers, MRS bulletin, vol.32, issue.4, pp.341-347, 2007.

G. J. Fleer, Polymers at interfaces and in colloidal dispersions, Advances in colloid and interface science, vol.159, issue.2, pp.99-116, 2010.

Y. S. Lipatov, Polymer blends and interpenetrating polymer networks at the interface with solids, Progress in Polymer Science, vol.27, issue.9, pp.1721-1801, 2002.

C. R. Vestal and Z. J. Zhang, Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles, Journal of the American Chemical Society, vol.124, issue.48, pp.14312-14313, 2002.

T. L. Wang, C. C. Ou, and C. H. Yang, Synthesis and properties of organic/inorganic hybrid nanoparticles prepared using atom transfer radical polymerization, Journal of applied polymer science, vol.109, issue.5, pp.3421-3430, 2008.

H. Hosseini, S. Shojaee-aliabadi, S. Hosseini, and L. Mirmoghtadaie, Nanoantimicrobials in Food Industry, Nanotechnology Applications in Food, pp.223-243, 2017.

H. Y. Hwang, S. J. Kim, D. Y. Oh, Y. T. Hong, and S. Y. Nam, Proton Conduction and Methanol Transport through Sulfonated Poly (styrene-b-ethylene/butylene-b-styrene)/Clay Nanocomposite

, Macromolecular Research, vol.19, issue.1, pp.84-89, 2011.

P. Bordes, E. Pollet, and L. Avérous, Nano-biocomposites: biodegradable polyester/nanoclay systems, Progress in Polymer Science, vol.34, issue.2, pp.125-155, 2009.

A. Rico-zavala, Synthesis and characterization of composite membranes modified with Halloysite nanotubes and phosphotungstic acid for electrochemical hydrogen pumps, Renewable Energy, vol.122, pp.163-172, 2018.

M. T. Salleh, Stability of SPEEK/Cloisite®/TAP nanocomposite membrane under Fenton reagent condition for direct methanol fuel cell application, Polymer Degradation and Stability, vol.137, pp.83-99, 2017.

S. H. Lee, W. J. Lee, T. K. Kim, M. K. Bayazit, S. O. Kim et al., UV-crosslinked poly (arylene ether sulfone)-LAPONITE® nanocomposites for proton exchange membranes, RSC Advances, vol.7, issue.45, pp.28358-28365, 2017.

D. Jung, S. Cho, D. Peck, D. Shin, and J. Kim,

, Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell, Journal of Power Sources, vol.118, issue.1-2, pp.205-211, 2003.

J. Zhang, G. Yin, Z. Wang, Q. Lai, and K. Cai, Effects of hot pressing conditions on the performances of MEAs for direct methanol fuel cells, Journal of power sources, vol.165, issue.1, pp.73-81, 2007.

T. Frey and M. Linardi, Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance, Electrochimica Acta, vol.50, issue.1, pp.99-105, 2004.

V. Mehta and J. S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, Journal of power sources, vol.114, issue.1, pp.32-53, 2003.

P. Liu, Polymer modified clay minerals: A review, Applied Clay Science, vol.38, issue.1-2, pp.64-76, 2007.

K. Adachi and Y. Tsukahara, Macroinitiator and Macromonomer: Preparation and Application, Encyclopedia of Polymeric Nanomaterials, pp.1167-1175, 2015.

X. Wu, N. Wu, C. Shi, Z. Zheng, H. Qi et al., Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells, Applied Surface Science, vol.388, pp.239-244, 2016.

R. Gosalawit, S. Chirachanchai, S. Shishatskiy, and S. P. Nunes, Krytox-Montmorillonite-Nafion® nanocomposite membrane for effective methanol crossover reduction in DMFCs, Solid State Ionics, vol.178, pp.1627-1635, 2007.

M. K. Song, S. B. Park, Y. T. Kim, K. H. Kim, S. K. Min et al., Characterization of polymerlayered silicate nanocomposite membranes for direct methanol fuel cells, Electrochimica Acta, vol.50, issue.2-3, pp.639-643, 2004.

R. Jana and H. Bhunia, Thermal stability and proton conductivity of silane based nanostructured composite membranes, Solid State Ionics, vol.178, p.206, 2008.

S. Moulik, B. A. Vaishnavi, H. Nagar, and S. Sridhar, Water Competitive Diffusion, Encyclopedia of Membranes, pp.1973-1983, 2016.

Z. Wojnarowska and M. Paluch, Recent progress on dielectric properties of protic ionic liquids, Journal of Physics-Condensed Matter, vol.27, issue.7, 2015.

W. H. Hogarth, J. C. Da-costa, and G. Q. Lu, Solid acid membranes for high temperature (> 140 degrees C) proton exchange membrane fuel cells, Journal of Power Sources, vol.142, issue.1-2, pp.223-237, 2005.

S. Bureekaew, One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity, Nature Materials, vol.8, issue.10, pp.831-836, 2009.

P. Bahavan-palani, R. Kannan, S. Rajashabala, S. Rajendran, and G. Velraj, Effect of nano-composite on polyvinyl alcohol-based proton conducting membrane for direct methanol fuel cell applications, Ionics, journal article, vol.21, issue.2, pp.507-513, 2015.

C. Yang and Y. Lee, Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC), Thin Solid Films, vol.517, issue.17, pp.4735-4740, 2009.

X. Bao, F. Zhang, and Q. Liu, Sulfonated poly(2,5-benzimidazole) (ABPBI)/ MMT/ ionic liquids composite membranes for high temperature PEM applications, International Journal of Hydrogen Energy, vol.40, issue.46, pp.16767-16774

H. J. Kim, Synthesis of poly(2,5-benzimidazole) for use as a fuel-cell membrane, Macromolecular Rapid Communications, vol.25, issue.8, pp.894-897, 2004.

C. Karthikeyan, S. Nunes, and K. Schulte, Ionomer-silicates composite membranes: Permeability and conductivity studies, European polymer journal, vol.41, issue.6, pp.1350-1356, 2005.

Y. Kim, Y. O. Kang, and S. Choi, Radiolytic synthesis of vinyl Polymer-Clay nanocomposite membranes for direct methanol fuel cell, Journal of Nanomaterials, vol.2014, 2014.

J. Lee, Y. Yoo, and J. Y. Lee, Characterization of Nafion nanocomposites with spheric silica, layered silicate, and amphiphilic organic molecule and their actuator application, Macromolecular Research, journal article, vol.23, issue.2, pp.167-176, 2015.

L. Zhang, J. Xu, G. Hou, H. Tang, and F. Deng, Interactions between Nafion resin and protonated dodecylamine modified montmorillonite: A solid state NMR study, Journal of colloid and interface science, vol.311, issue.1, pp.38-44, 2007.

Y. Kim, Y. Choi, H. K. Kim, and J. S. Lee, New sulfonic acid moiety grafted on montmorillonite as filler of organic-inorganic composite membrane for non-humidified proton-exchange membrane fuel cells, Journal of Power Sources, vol.195, issue.15, pp.4653-4659, 2010.

Y. Kim, J. S. Lee, C. H. Rhee, H. K. Kim, and H. Chang, Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic-inorganic composite membranes, Journal of power sources, vol.162, issue.1, pp.180-185, 2006.

T. K. Kim, Preparation of Nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process, Journal of Power Sources, vol.165, issue.1, pp.1-8, 2007.

Y. Lin, C. Yen, C. Hung, Y. Hsiao, and C. M. Ma, A novel composite membranes based on sulfonated montmorillonite modified Nafion® for DMFCs, Journal of Power Sources, vol.168, issue.1, pp.162-166, 2007.

H. Xiuchong, T. Haolin, and P. Mu, Synthesis and performance of water-retention PEMs with nafionintercalating-montmorillonite hybrid, Journal of applied polymer science, vol.108, issue.1, pp.529-534, 2008.

M. M. Hasani-sadrabadi, E. Dashtimoghadam, F. S. Majedi, K. Kabiri, M. Solati-hashjin et al., Novel nanocomposite proton exchange membranes based on Nafion® and AMPS-modified montmorillonite for fuel cell applications, Journal of Membrane Science, vol.365, issue.1-2, pp.286-293, 2010.

R. Gosalawit, S. Chirachanchai, S. Shishatskiy, and S. P. Nunes, Sulfonated montmorillonite/sulfonated poly (ether ether ketone)(SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs), Journal of Membrane Science, vol.323, issue.2, pp.337-346, 2008.

S. Mohtar, A. Ismail, and T. Matsuura, Preparation and characterization of SPEEK/MMT-STA composite membrane for DMFC application, Journal of membrane science, vol.371, issue.1-2, pp.10-19, 2011.

H. Do?an, T. Y. Inan, M. Koral, and M. Kaya, Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications, Applied Clay Science, vol.52, issue.3, pp.285-294, 2011.

M. F. Samberan, M. M. Hasani-sadrabadi, S. R. Ghaffarian, and A. Alimadadi, Investigation of the effects of AMPS-modified nanoclay on fuel cell performance of sulfonated aromatic proton exchange membranes, International Journal of Hydrogen Energy, vol.38, issue.32, pp.14076-14084, 2013.

C. Yang, S. Chiu, and S. Kuo, Preparation of poly (vinyl alcohol)/montmorillonite/poly (styrene sulfonic acid) composite membranes for hydrogen-oxygen polymer electrolyte fuel cells, Current Applied Physics, vol.11, issue.1, pp.229-237, 2011.

D. Xing, G. He, Z. Hou, P. Ming, and S. Song, Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane, International journal of hydrogen energy, vol.36, issue.3, pp.2177-2183, 2011.

W. Lee, H. Kim, T. K. Kim, and H. Chang, Nafion based organic/inorganic composite membrane for airbreathing direct methanol fuel cells, Journal of membrane science, vol.292, issue.1-2, pp.29-34, 2007.

Y. Kim, J. S. Lee, C. H. Rhee, H. K. Kim, and H. Chang, Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic-inorganic composite membranes, Journal of Power Sources, vol.162, issue.1, pp.180-185, 2006.

R. Silva, S. Passerini, and A. Pozio, Solution-cast Nafion®/montmorillonite composite membrane with low methanol permeability, Electrochimica Acta, vol.50, issue.13, pp.2639-2645, 2005.

Z. Gaowen and Z. Zhentao, Organic/inorganic composite membranes for application in DMFC, Journal of Membrane Science, vol.261, issue.1-2, pp.107-113, 2005.

M. M. Hasani-sadrabadi, E. Dashtimoghadam, K. Sarikhani, F. S. Majedi, and G. Khanbabaei, Electrochemical investigation of sulfonated poly (ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications, Journal of Power Sources, vol.195, issue.9, pp.2450-2456, 2010.

J. Jaafar, A. F. Ismail, and T. Matsuura, Preparation and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application, Journal of Membrane Science, vol.345, issue.1-2, pp.119-127, 2009.

M. M. Hasani-sadrabadi, S. R. Ghaffarian, N. Mokarram-dorri, E. Dashtimoghadam, and F. S. Majedi, Characterization of nanohybrid membranes for direct methanol fuel cell applications, Solid State Ionics, vol.180, pp.1497-1504, 2009.

V. R. Hande, S. K. Rath, S. Rao, and M. Patri, Cross-linked sulfonated poly (ether ether ketone)(SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM), Journal of membrane science, vol.372, issue.1-2, pp.40-48, 2011.

L. Unnikrishnan, P. Madamana, S. Mohanty, and S. K. Nayak, Polysulfone/C30B nanocomposite membranes for fuel cell applications: effect of various sulfonating agents, Polymer-Plastics Technology and Engineering, vol.51, issue.6, pp.568-577, 2012.

Z. Shami, N. Sharifi-sanjani, B. Khanyghma, S. Farjpour, and A. Fotouhi, Ordered exfoliated silicate platelets architecture: hydrogen bonded poly (acrylic acid)-poly (ethylene oxide)/Na-montmorillonite complex nanofibrous membranes prepared by electrospinning technique, RSC Advances, vol.4, issue.77, pp.40892-40897, 2014.

M. M. Hasani-sadrabadi, E. Dashtimoghadam, S. R. Ghaffarian, M. H. Sadrabadi, M. Heidari et al., Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone), Renewable Energy, vol.35, issue.1, pp.226-231, 2010.

M. Tohidian, S. R. Ghaffarian, S. E. Shakeri, E. Dashtimoghadam, and M. M. Hasani-sadrabadi, Organically modified montmorillonite and chitosan-phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications, Journal of Solid State Electrochemistry, vol.17, issue.8, pp.2123-2137, 2013.

Z. Hu, G. He, S. Gu, Y. Liu, and X. Wu, Montmorillonite-reinforced sulfonated poly(phthalazinone ether sulfone ketone) nanocomposite proton exchange membranes for direct methanol fuel cells, Journal of Applied Polymer Science, vol.131, issue.3, 2014.

M. M. Hasani-sadrabadi, Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications, Chemical Communications, vol.46, issue.35, pp.6500-6502, 2010.

M. M. Hasani-sadrabadi, E. Dashtimoghadam, F. S. Majedi, and K. Kabiri, Nafion®/bio-functionalized montmorillonite nanohybrids as novel polyelectrolyte membranes for direct methanol fuel cells, Journal of Power Sources, vol.190, issue.2, pp.318-321, 2009.

D. Plackett, High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells, Journal of membrane science, vol.383, issue.1-2, pp.78-87, 2011.

K. Fatyeyeva, C. Chappey, F. Poncin-epaillard, D. Langevin, J. Valleton et al., Composite membranes based on Nafion® and plasma treated clay charges: elaboration and water sorption investigations, Journal of membrane science, vol.369, issue.1-2, pp.155-166, 2011.

A. Filippov, D. Afonin, N. Kononenko, Y. Lvov, and V. Vinokurov, New approach to characterization of hybrid nanocomposites, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.521, pp.251-259, 2017.

F. J. Fernandez-carretero, E. Riande, C. Rio, F. Sanchez, J. L. Acosta et al., Preparation and Characterization of Hybrid Membranes based on Nafion (R) using Partially Sulfonated Inorganic Fillers, Journal of New Materials for Electrochemical Systems, vol.13, issue.2, p.000282032200001, 2010.

M. Oroujzadeh, S. Mehdipour-ataei, and M. Esfandeh, Preparation and properties of novel sulfonated poly(arylene ether ketone) random copolymers for polymer electrolyte membrane fuel cells, European Polymer Journal, vol.49, issue.6, pp.1673-1681, 2013.

H. Yang, W. Lee, B. Choi, and W. Kim, Preparation of Nafion/Pt-containing TiO2/graphene oxide composite membranes for self-humidifying proton exchange membrane fuel cell, Journal of Membrane Science, vol.504, pp.20-28, 2016.

R. Sothornvit, J. Rhim, and S. Hong, Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films, Journal of Food Engineering, vol.91, issue.3, pp.468-473, 2009.

S. H. Woo, A. Rigacci, and C. Beauger, Influence of sepiolite and halloysite nanoclay additives on the water uptake and swelling of Nafion based composite membranes for PEMFC: impact of the blending time on composite homogeneity, Chemistry Letters, vol.48, 2019.

Y. S. Kim and B. Pivovar, Comparing proton conductivity of polymer electrolytes by percent conducting volume, ECS Transactions, vol.25, issue.1, pp.1425-1431, 2009.

A. Mokrini, A. Siu, L. Robitaille, L. Gonzalez, and F. Sanchez, Investigation of advanced hybrid PEM based on sulfonyl fluoride PFSA and grafted inorganic nanoparticles, ECS Transactions, vol.33, issue.1, pp.823-838, 2010.

N. Agmon, The grotthuss mechanism, Chemical Physics Letters, vol.244, issue.5-6, pp.456-462, 1995.

C. Zhao, Block sulfonated poly (ether ether ketone) s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes, Journal of power sources, vol.162, issue.2, pp.1003-1009, 2006.

T. Grancha, Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral bio MOF, Chemistry of Materials, vol.28, issue.13, pp.4608-4615, 2016.

E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi et al., Halloysite clay minerals-a review, 2005.

B. Szczepanik, P. Rogala, P. M. S?omkiewicz, D. Bana?, A. Kubala-kuku? et al., Synthesis, characterization and photocatalytic activity of TiO2-halloysite and Fe2O3-halloysite nanocomposites for photodegradation of chloroanilines in water, Applied Clay Science, vol.149, pp.118-126, 2017.

K. Cooper, Characterizing through-plane and in-plane ionic conductivity of polymer electrolyte membranes, ECS Transactions, vol.41, issue.1, pp.1371-1380, 2011.

J. Fang, Polyimide Proton Exchange Membranes, Advanced Polyimide Materials, pp.323-383, 2018.

S. M. Andersen, C. F. Nørgaard, M. J. Larsen, and E. Skou, Tin dioxide as an effective antioxidant for proton exchange membrane fuel cells, Journal of Power Sources, vol.273, pp.158-161, 2015.

C. A. Rice-evans, N. J. Miller, and G. Paganga, Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free radical biology and medicine, vol.20, issue.7, pp.933-956, 1996.

L. Wang, Y. Tu, T. Lian, J. Hung, J. Yen et al., Distinctive antioxidant and antiinflammatory effects of flavonols, Journal of Agricultural and Food Chemistry, vol.54, issue.26, pp.9798-9804, 2006.

W. Bors, W. Heller, C. Michel, and M. Saran, Radical chemistry of flavonoid antioxidants, Antioxidants in therapy and preventive medicine, pp.165-170, 1990.

J. Hanuza, Molecular structure and vibrational spectra of quercetin and quercetin-5'-sulfonic acid, Vibrational Spectroscopy, vol.88, pp.94-105, 2017.

M. Gebert, A. Ghielmi, L. Merlo, M. Corasaniti, and V. Arcella, AQUIVION {trade mark, serif}--The Short-Side-Chain and Low-EW PFSA for Next-Generation PEFCs Expands Production and Utilization, ECS Transactions, vol.26, issue.1, pp.279-283, 2010.

A. Skulimowska, Proton exchange membrane water electrolysis with short-side-chain Aquivion® membrane and IrO2 anode catalyst, International Journal of Hydrogen Energy, vol.39, issue.12, pp.6307-6316, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00956832

A. Esteban-cubillo, R. Pina-zapardiel, J. Moya, M. Barba, and C. Pecharromán, The role of magnesium on the stability of crystalline sepiolite structure, Journal of the European Ceramic Society, vol.28, issue.9, pp.1763-1768, 2008.

A. Yebra-rodriguez, J. Martin-ramos, F. Rey, C. Viseras, and A. Lopez-galindo, Effect of acid treatment on the structure of sepiolite, Clay Minerals, vol.38, issue.3, pp.353-360, 2003.

A. S. Aricò, V. Baglio, and V. Antonucci, Composite membranes for high temperature direct methanol fuel cells, Membranes for Energy Conversion, vol.2, pp.123-167, 2007.

L. Liang, Effects of surface chemistry on kinetics of coagulation of submicron iron oxide particles ([alpha]-Fe2O3) in water, 1988.

K. D. Kreuer, A. Rabenau, and W. Weppner, Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors, Angewandte Chemie International Edition, vol.21, issue.3, pp.208-209, 1982.

M. S. Del-río, E. García-romero, M. Suárez, I. Silva, L. Fuentes-montero et al., Variability in sepiolite: Diffraction studies, American Mineralogist, vol.96, issue.10, pp.1443-1454, 2011.

K. Chemizmu and R. Fentona, Fenton reaction-controversy concerning the chemistry, Ecological chemistry and engineering, vol.16, pp.347-358, 2009.

W. Barb, J. Baxendale, P. George, and K. Hargrave, Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.-The ferrous ion reaction, Transactions of the Faraday Society, vol.47, pp.462-500, 1951.

M. S. Barrios, L. F. González, M. V. Rodríguez, and J. M. Pozas, Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties, Applied Clay Science, vol.10, issue.3, pp.247-258, 1995.

L. Gozalez, L. Ibarra, A. Rodriguez, J. Moya, and F. Valle, Fibrous silica gel obtained from sepiolite by HCl attack, Clay Minerals, vol.19, issue.1, pp.93-98, 1984.

A. Jiménez-lópez, J. D. López-gonzález, A. Ram?rez-s?enz, F. Rodr?guez-reinoso, C. Valenzuela-calahorro et al., Evolution of surface area in a sepiolite as a function of acid and heat treatments, Clay Minerals, vol.13, issue.4, pp.375-385, 1978.

S. Kostinski, R. Pandey, S. Gowtham, U. Pernisz, and A. Kostinski, Diffusion of water molecules in amorphous silica, IEEE Electron Device Letters, vol.33, issue.6, pp.863-865, 2012.

O. Sel, L. To-thi, C. Kim, C. Debiemme-chouvy, C. Gabrielli et al., Determination of the diffusion coefficient of protons in Nafion thin films by ac-electrogravimetry, Langmuir, vol.29, issue.45, pp.13655-13660, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00935182

J. Jaafar, A. Ismail, T. Matsuura, and K. Nagai, Performance of SPEEK based polymer-nanoclay inorganic membrane for DMFC, Journal of membrane science, vol.382, issue.1-2, pp.202-211, 2011.

R. H. Alonso, L. Estevez, H. Lian, A. Kelarakis, and E. P. Giannelis, Nafion-clay nanocomposite membranes: morphology and properties, Polymer, vol.50, issue.11, pp.2402-2410, 2009.

Y. Lin, C. Yen, C. M. Ma, S. Liao, C. Hung et al., Preparation and properties of high performance nanocomposite proton exchange membrane for fuel cell, Journal of power sources, vol.165, issue.2, pp.692-700, 2007.

R. H. Vora and M. Vora, 1, 2?-Bis (4-aminophenoxy) benzene based designed fluoro-poly (etherimide)/MMT clay nanocomposites: synthesis and properties for high performance applications, Materials Science and Engineering: B, vol.132, issue.1-2, pp.90-102, 2006.