. .. Results, 144 6.2.3 Precoalescence strain as coalescence criterion

, Intervoid distance as coalescence criterion

.. .. Discussion,

P. .. Conclusions, , p.167

. Bibliography,

I. Westermann, K. O. Pedersen, T. Furu, T. Børvik, and O. S. Hopperstad, Effects of particles and solutes on strength, work-hardening and ductile fracture of aluminium alloys, Mechanics of Materials, vol.79, pp.58-72, 2014.

T. F. Morgeneyer, J. Besson, H. Proudhon, M. Starink, and I. Sinclair, Experimental and numerical analysis of toughness anisotropy in aa2139 al-alloy sheet, Acta Materialia, vol.57, issue.13, pp.3902-3915, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00413654

T. F. Morgeneyer, L. Helfen, I. Sinclair, H. Proudhon, F. Xu et al., Ductile crack initiation and propagation assessed via in situ synchrotron radiationcomputed laminography, Scripta Materialia, vol.65, issue.11, p.31, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00652978

T. Cao, C. Bobadilla, P. Montmitonnet, and P. Bouchard, A comparative study of three ductile damage approaches for fracture prediction in cold forming processes, Journal of Materials Processing Technology, vol.216, pp.385-404, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01090138

J. Papasidero, V. Doquet, and D. Mohr, Ductile fracture of aluminum 2024-t351 under proportional and non-proportional multi-axial loading: Bao-wierzbicki results revisited, International Journal of Solids and Structures, vol.69, pp.459-474, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01227222

M. Shakoor, M. Bernacki, and P. Bouchard, Ductile fracture of a metal matrix composite studied using 3d numerical modeling of void nucleation and coalescence, Engineering Fracture Mechanics, vol.189, pp.110-132, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01629229

P. Matic and A. B. Geltmacher, A cellular automaton-based technique for modeling mesoscale damage evolution, Computational materials science, vol.20, issue.1, pp.120-141, 2001.

T. De-geus, M. Cottura, B. Appolaire, R. Peerlings, and M. Geers, Fracture initiation in multi-phase materials: A systematic three-dimensional approach using a fft-based solver, Mechanics of Materials, vol.97, pp.199-211, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01426336

A. Buljac, M. Shakoor, J. Neggers, M. Bernacki, P. Bouchard et al.,

F. Morgeneyer and . Hild, Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging, Computational Mechanics, vol.59, issue.3, pp.419-441, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01480980

M. Shakoor, A. Buljac, J. Neggers, F. Hild, T. F. Morgeneyer et al., On the choice of boundary conditions for micromechanical simulations based on 3D imaging, International Journal of Solids and Structures, vol.112, p.117, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01471645

J. R. Rice and D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids, vol.17, issue.3, pp.201-217, 1969.

Y. Bai and T. Wierzbicki, A new model of metal plasticity and fracture with pressure and lode dependence, International journal of plasticity, vol.24, issue.6, p.15, 2008.

F. A. Mcclintock, A criterion for ductile fracture by the growth of holes, Journal of applied mechanics, vol.35, issue.2, pp.363-371, 1968.

M. Cockcroft and D. Latham, Ductility and the workability of metals, J Inst Metals, vol.96, issue.1, pp.33-39, 1968.

M. Wilkins, R. Streit, and J. Reaugh, Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests, tech. rep

, Science Applications, Inc, p.15, 1980.

G. R. Johnson and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, vol.21, p.15, 1985.

Y. Bai and T. Wierzbicki, Application of extended mohr-coulomb criterion to ductile fracture, International Journal of Fracture, vol.161, issue.1, p.1, 2010.

Y. Lou, H. Huh, S. Lim, and K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, International Journal of Solids and Structures, vol.49, issue.25, pp.3605-3615, 2012.

L. M. Kachanov, On creep rupture time, Izv. Acad. Nauk SSSR, Otd. Techn. Nauk, vol.8, pp.26-31, 1958.

G. Rousselier, Finite deformation constitutive relations including ductile fracture damage, p.6
URL : https://hal.archives-ouvertes.fr/hal-02060680

. Amsterdam, , vol.15, pp.331-355, 1981.

G. Rousselier, Ductile fracture models and their potential in local approach of fracture, Nuclear engineering and design, vol.105, issue.1, pp.97-111, 1987.

J. Lemaitre, A continuous damage mechanics model for ductile fracture, Journal of engineering materials and technology, vol.107, issue.1, pp.83-89, 1985.

J. Lemaitre and R. Desmorat, Engineering damage mechanics: ductile, creep, fatigue and brittle failures, p.16, 2005.

J. Lemaitre, R. Desmorat, and M. Sauzay, Anisotropic damage law of evolution, European Journal of Mechanics-A/Solids, vol.19, issue.2, p.16, 2000.

P. Bouchard, L. Bourgeon, S. Fayolle, and K. Mocellin, An enhanced lemaitre model formulation for materials processing damage computation, International Journal of Material Forming, vol.4, issue.3, p.16, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00521625

T. Cao, J. Gachet, P. Montmitonnet, and P. Bouchard, A lode-dependent enhanced lemaitre model for ductile fracture prediction at low stress triaxiality, Engineering Fracture Mechanics, vol.124, p.16, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00987142

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part i-yield criteria and flow rules for porous ductile media, Journal of engineering materials and technology, vol.99, issue.1, pp.2-15, 1977.

V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, International Journal of Fracture, vol.17, issue.4, p.16, 1981.

V. Tvergaard and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta metallurgica, vol.32, issue.1, p.19, 1984.

C. Chu and A. Needleman, Void nucleation effects in biaxially stretched sheets, Journal of engineering materials and technology, vol.102, issue.3, pp.249-256, 1980.

T. Cao, P. Montmitonnet, and P. Bouchard, A detailed description of the gursontvergaard-needleman model within a mixed velocity-pressure finite element formulation, International Journal for Numerical Methods in Engineering, vol.96, issue.9, p.18, 2013.

M. Gologanu, J. Leblond, and J. Devaux, Approximate models for ductile metals containing non-spherical voids-case of axisymmetric prolate ellipsoidal cavities, Journal of the Mechanics and Physics of Solids, vol.41, issue.11, p.18, 1993.

K. Nahshon and J. Hutchinson, Modification of the gurson model for shear failure, European Journal of Mechanics-A/Solids, vol.27, issue.1, p.18, 2008.

J. Wen, Y. Huang, K. Hwang, C. Liu, and M. Li, The modified gurson model accounting for the void size effect, International Journal of Plasticity, vol.21, issue.2, p.18, 2005.

A. A. Benzerga and J. Besson, Plastic potentials for anisotropic porous solids, European Journal of Mechanics-A/Solids, vol.20, issue.3, p.18, 2001.

N. Jacques, S. Mercier, and A. Molinari, Simulation of the failure of ductile materials under dynamic loading using continuum damage models with micro-inertia, 6th European Conference on Computational Mechanics/7th European Conference on Computational Fluid Dynamics (ECCM-ECFD 2018), p.18, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01864841

K. Siruguet and J. Leblond, Effect of void locking by inclusions upon the plastic behavior of porous ductile solids-i: theoretical modeling and numerical study of void growth, International Journal of Plasticity, vol.20, issue.2, p.18, 2004.

J. Besson and C. Guillemer-neel, An extension of the green and gurson models to kinematic hardening, Mechanics of materials, vol.35, issue.1-2, p.18, 2003.

A. Needleman, Void growth in an elastic-plastic medium, Journal of Applied mechanics, p.18, 1972.

C. Thomson, M. Worswick, A. Pilkey, D. Lloyd, and G. Burger, Modeling void nucleation and growth within periodic clusters of particles, Journal of the Mechanics and Physics of Solids, vol.47, issue.1, p.18, 1998.

C. Thomson, M. Worswick, A. Pilkey, and D. Lloyd, Void coalescence within periodic clusters of particles, Journal of the Mechanics and Physics of Solids, vol.51, issue.1, p.18, 2003.

C. Mcveigh, F. Vernerey, W. K. Liu, B. Moran, and G. Olson, An interactive microvoid shear localization mechanism in high strength steels, Journal of the Mechanics and Physics of Solids, vol.55, issue.2, p.18, 2007.

V. Tvergaard, Effect of void cluster on ductile failure evolution, Meccanica, vol.12, issue.51, pp.3097-3105, 2016.

C. Tekoglu, Void coalescence in ductile solids containing two populations of voids, Engineering Fracture Mechanics, vol.147, p.18, 2015.

I. Khan and V. Bhasin, On the role of secondary voids and their distribution in the mechanism of void growth and coalescence in porous plastic solids, International Journal of Solids and Structures, vol.108, pp.203-215, 2017.

N. Ohno and J. Hutchinson, Plastic flow localization due to non-uniform void distribution, Journal of the Mechanics and Physics of Solids, vol.32, issue.1, p.19, 1984.

M. Horstemeyer, M. Matalanis, A. Sieber, and M. Botos, Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence, international Journal of Plasticity, vol.16, issue.7, p.19, 2000.

J. Bandstra and D. Koss, Modeling the ductile fracture process of void coalescence by void-sheet formation, Materials Science and Engineering: A, vol.319, pp.490-495, 2001.

J. Bandstra, D. Koss, A. Geltmacher, P. Matic, and R. Everett, Modeling void coalescence during ductile fracture of a steel, Materials Science and Engineering: A, vol.366, issue.2, p.19, 2004.

V. Tvergaard and A. Needleman, Three dimensional microstructural effects on plane strain ductile crack growth, International journal of solids and structures, vol.43, issue.20, p.19, 2006.

J. Bandstra and D. Koss, On the influence of void clusters on void growth and coalescence during ductile fracture, Acta Materialia, vol.56, issue.16, p.19, 2008.

M. Shakoor, M. Bernacki, and P. Bouchard, A new body-fitted immersed volume method for the modeling of ductile fracture at the microscale: Analysis of void clusters and stress state effects on coalescence, Engineering Fracture Mechanics, vol.147, p.36, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01181257

X. Sun, K. S. Choi, W. N. Liu, and M. A. Khaleel, Predicting failure modes and ductility of dual phase steels using plastic strain localization, International Journal of Plasticity, vol.25, issue.10, p.19, 2009.

N. Vanderesse, E. Maire, A. Chabod, and J. Buffière, Microtomographic study and finite element analysis of the porosity harmfulness in a cast aluminium alloy, International Journal of Fatigue, vol.33, issue.12, pp.1514-1525, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01538229

S. Youssef, E. Maire, and R. Gaertner, Finite element modelling of the actual structure of cellular materials determined by x-ray tomography, Acta Materialia, vol.53, issue.3, pp.719-730, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00436799

A. Benzerga, J. Besson, and A. Pineau, Coalescence-controlled anisotropic ductile fracture, Journal of Engineering Materials and Technology, vol.121, issue.2, p.19, 1999.

A. Pineau, A. A. Benzerga, and T. Pardoen, Failure of metals i: Brittle and ductile fracture, Acta Materialia, vol.107, pp.424-483, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308255

A. Pineau, Global and local approaches of fracture-transferability of laboratory test results to components, Topics in fracture and fatigue, p.19, 1992.

L. Brown and J. Embury, Initiation and growth of voids at second-phase particles, Proc. Conf. on Microstructure and Design of Alloys, Institute of Metals and Iron and Steel Insitute, vol.20, pp.164-169, 1973.

P. Thomason, A theory for ductile fracture by internal necking of cavities, J. Inst. Metals, vol.96, p.360, 1968.

P. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids, Acta Metallurgica, vol.33, issue.6, pp.1087-1095, 1985.

A. A. Benzerga and J. Leblond, Ductile fracture by void growth to coalescence, Advances in Applied Mechanics, vol.44, pp.169-305, 2010.

F. Scheyvaerts, T. Pardoen, and P. Onck, A new model for void coalescence by internal necking, International Journal of Damage Mechanics, vol.19, issue.1, pp.95-126, 2010.

T. Pardoen and J. Hutchinson, An extended model for void growth and coalescence, Journal of the Mechanics and Physics of Solids, vol.48, issue.12, pp.2467-2512, 2000.

A. A. Benzerga, Micromechanics of coalescence in ductile fracture, Journal of the Mechanics and Physics of Solids, vol.50, issue.6, pp.1331-1362, 2002.

A. Molinari, N. Jacques, S. Mercier, J. Leblond, and A. A. Benzerga, A micromechanical model for the dynamic behavior of porous media in the void coalescence stage, International Journal of Solids and Structures, vol.71, pp.1-18, 2015.

M. Torki, A. Benzerga, and J. Leblond, On void coalescence under combined tension and shear, Journal of Applied Mechanics, vol.82, issue.7, p.71005, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01667714

C. Tekoglu, J. Leblond, and T. Pardoen, A criterion for the onset of void coalescence under combined tension and shear, Journal of the Mechanics and Physics of Solids, vol.60, issue.7, pp.1363-1381, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01666671

M. Shakoor, V. M. Trejo-navas, D. P. Munõz, M. Bernacki, and P. Bouchard, Computational methods for ductile fracture modeling at the microscale, Archives of Computational Methods in Engineering, p.21, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01870941

J. Wulf, T. Steinkopff, and H. Fischmeister, Fe-simulation of crack paths in the real microstructure of an al (6061)/sic composite, Acta materialia, vol.44, issue.5, p.21, 1996.

J. Mediavilla, R. Peerlings, and M. Geers, A robust and consistent remeshing-transfer operator for ductile fracture simulations, Computers & structures, vol.84, issue.8-9, pp.604-623, 2006.

K. Perzy?ski, A. Wro?yna, R. Kuziak, A. Legwand, and L. Madej, Development and validation of multi scale failure model for dual phase steels, Finite Elements in Analysis and Design, vol.124, pp.7-21, 2017.

M. Jirásek, Comparative study on finite elements with embedded discontinuities, Computer methods in applied mechanics and engineering, vol.188, issue.1-3, p.22, 2000.

J. Oliver, A. E. Huespe, and P. J. Sánchez, A comparative study on finite elements for capturing strong discontinuities: E-fem vs x-fem, Computer methods in applied mechanics and engineering, vol.195, p.22, 2006.

T. Fries and T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications, International Journal for Numerical Methods in Engineering, vol.84, issue.3, p.22, 2010.

N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International journal for numerical methods in engineering, vol.46, issue.1, pp.131-150, 1999.

J. M. Melenk and I. Babu?ka, The partition of unity finite element method: basic theory and applications, Computer methods in applied mechanics and engineering, vol.139, issue.1-4, p.22, 1996.

T. Strouboulis, I. Babu?ka, and K. Copps, The design and analysis of the generalized finite element method, Computer methods in applied mechanics and engineering, vol.181, issue.1-3, p.22, 2000.

T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing, International journal for numerical methods in engineering, vol.45, issue.5, pp.601-620, 1999.

C. Daux, N. Moës, J. Dolbow, N. Sukumar, and T. Belytschko, Arbitrary branched and intersecting cracks with the extended finite element method, International journal for numerical methods in engineering, vol.48, issue.12, pp.1741-1760, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01005274

C. Duarte, O. Hamzeh, T. Liszka, and W. Tworzydlo, A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Computer Methods in Applied Mechanics and Engineering, vol.190, p.22, 2001.

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations, Journal of computational physics, vol.79, issue.1, p.22, 1988.

N. Moës, A. Gravouil, and T. Belytschko, Non-planar 3d crack growth by the extended finite element and level sets-part i: Mechanical model, International Journal for Numerical Methods in Engineering, vol.53, issue.11, pp.2549-2568, 2002.

N. Sukumar, D. L. Chopp, N. Moës, and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite-element method, Computer methods in applied mechanics and engineering, vol.190, issue.46-47, pp.6183-6200, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01528265

Z. Wang, T. Yu, T. Q. Bui, N. A. Trinh, N. T. Luong et al., Numerical modeling of 3-d inclusions and voids by a novel adaptive xfem, Advances in Engineering Software, vol.102, p.22, 2016.

N. Sukumar, N. Moës, B. Moran, and T. Belytschko, Extended finite element method for three-dimensional crack modelling, International Journal for Numerical Methods in Engineering, vol.48, issue.11, p.23, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01006859

S. Loehnert and T. Belytschko, A multiscale projection method for macro/microcrack simulations, International Journal for Numerical Methods in Engineering, vol.71, issue.12, pp.1466-1482, 2007.

T. Rabczuk, S. Bordas, and G. Zi, On three-dimensional modelling of crack growth using partition of unity methods, Computers & structures, vol.88, issue.23-24, p.23, 2010.

P. Laborde, J. Pommier, Y. Renard, and M. Salaün, High-order extended finite element method for cracked domains, International Journal for Numerical Methods in Engineering, vol.64, issue.3, p.23, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00815711

N. Sukumar, J. Dolbow, and N. Moës, Extended finite element method in computational fracture mechanics: a retrospective examination, International Journal of Fracture, vol.196, issue.1-2, p.23, 2015.

É. Béchet, H. Minnebo, N. Moës, and B. Burgardt, Improved implementation and robustness study of the x-fem for stress analysis around cracks, International Journal for Numerical Methods in Engineering, vol.64, issue.8, p.23, 2005.

T. Elguedj, A. Gravouil, and A. Combescure, Appropriate extended functions for xfem simulation of plastic fracture mechanics, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.7-8, p.23, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00373830

N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Münstermann, A. Hartmaier et al., A micromechanical damage simulation of dual phase steels using xfem, Computational Materials Science, vol.54, p.24, 2012.

A. Ramazani, A. Schwedt, A. Aretz, U. Prahl, and W. Bleck, Characterization and modelling of failure initiation in dp steel, Computational materials science, vol.75, p.24, 2013.

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. i. interfacial free energy, The Journal of chemical physics, vol.28, issue.2, p.24, 1958.

H. Amor, J. Marigo, and C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, Journal of the Mechanics and Physics of Solids, vol.57, issue.8, pp.1209-1229, 2009.

B. Bourdin, G. A. Francfort, and J. Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, vol.48, issue.4, pp.797-826, 2000.

C. Miehe, M. Hofacker, and F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, vol.199, pp.2765-2778, 2010.

M. Ambati, T. Gerasimov, and L. De-lorenzis, Phase-field modeling of ductile fracture, Computational Mechanics, vol.55, issue.5, pp.1017-1040, 2015.

M. J. Borden, T. J. Hughes, C. M. Landis, A. Anvari, and I. J. Lee, A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Computer Methods in Applied Mechanics and Engineering, vol.312, pp.130-166, 2016.

P. Shanthraj, L. Sharma, B. Svendsen, F. Roters, and D. Raabe, A phase field model for damage in elasto-viscoplastic materials, Computer Methods in Applied Mechanics and Engineering, vol.312, pp.167-185, 2016.

T. T. Nguyen, J. Yvonnet, M. Bornert, and C. Chateau, Initiation and propagation of complex 3d networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microct experiments and phase field simulations, Journal of the Mechanics and Physics of Solids, vol.95, pp.320-350, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01331213

T. T. Nguyen, J. Yvonnet, Q. Zhu, M. Bornert, and C. Chateau, A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, Engineering Fracture Mechanics, vol.139, pp.18-39, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140963

T. Nguyen, J. Yvonnet, Q. Zhu, M. Bornert, and C. Chateau, A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography, Computer Methods in Applied Mechanics and Engineering, vol.312, pp.567-595, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01213943

C. Gruau and T. Coupez, 3d tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, vol.194, pp.4951-4976, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00517639

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineerng analysis, International journal for numerical methods in engineering, vol.24, issue.2, pp.337-357, 1987.

Z. Zhang and A. Naga, A new finite element gradient recovery method: superconvergence property, SIAM Journal on Scientific Computing, vol.26, issue.4, p.26, 2005.

R. E. Khaoulani and P. Bouchard, Efficient numerical integration of an elasticplastic damage law within a mixed velocity-pressure formulation, Mathematics and Computers in Simulation, vol.94, p.26, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845444

R. E. Khaoulani and P. Bouchard, An anisotropic mesh adaptation strategy for damage and failure in ductile materials, Finite Elements in Analysis and Design, vol.59, p.26, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00702193

E. Roux, M. Bernacki, and P. Bouchard, A level-set and anisotropic adaptive remeshing strategy for the modeling of void growth under large plastic strain, Computational Materials Science, vol.68, pp.32-46, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00756435

E. Roux, M. Shakoor, M. Bernacki, and P. Bouchard, A new finite element approach for modelling ductile damage void nucleation and growth-analysis of loading path effect on damage mechanisms, Modelling and Simulation in Materials Science and Engineering, vol.22, issue.7, p.75001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01090403

T. Antretter and F. Fischer, Particle cleavage and ductile crack growth in a two-phase composite on a microscale, Computational materials science, vol.13, issue.1-3, p.26, 1998.

P. Bouchard, F. Bay, Y. Chastel, and I. Tovena, Crack propagation modelling using an advanced remeshing technique, Computer methods in applied mechanics and engineering, vol.189, issue.3, p.26, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00677709

H. Javani, R. H. Peerlings, and M. G. Geers, Three-dimensional finite element modeling of ductile crack initiation and propagation, Advanced Modeling and Simulation in Engineering Sciences, vol.3, issue.1, p.19, 2016.

S. Feld-payet, V. Chiaruttini, J. Besson, and F. Feyel, A new marching ridges algorithm for crack path tracking in regularized media, International Journal of Solids and Structures, vol.71, p.27, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199601

P. Areias, J. Reinoso, P. Camanho, and T. Rabczuk, A constitutive-based elementby-element crack propagation algorithm with local mesh refinement, Computational Mechanics, vol.56, issue.2, p.27, 2015.

M. Shakoor, P. Bouchard, and M. Bernacki, An adaptive level-set method with enhanced volume conservation for simulations in multiphase domains, International Journal for Numerical Methods in Engineering, vol.109, issue.4, pp.555-576, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01327907

C. Labrecque and M. Gagne, Ductile iron: fifty years of continuous development

, Canadian Metallurgical Quarterly, vol.37, issue.5, p.28, 1998.

G. Hütter, L. Zybell, and M. Kuna, Micromechanisms of fracture in nodular cast iron: From experimental findings towards modeling strategies-a review, Engineering Fracture Mechanics, vol.144, pp.118-141, 2015.

M. Kuna, M. Springmann, K. Mädler, P. Hübner, and G. Pusch, Fracture mechanics based design of a railway wheel made of austempered ductile iron, Engineering Fracture Mechanics, vol.72, issue.2, p.28, 2005.

M. Shirani and G. Härkegård, Fatigue life distribution and size effect in ductile cast iron for wind turbine components, Engineering Failure Analysis, vol.18, issue.1, p.28, 2011.

M. Endo and K. Yanase, Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons, Theoretical and Applied Fracture Mechanics, vol.69, p.29, 2014.

A. Buljac, L. Helfen, F. Hild, and T. F. Morgeneyer, Effect of void arrangement on ductile damage mechanisms in nodular graphite cast iron: In situ 3d measurements, Engineering Fracture Mechanics, vol.192, p.143, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01710087

A. Ghahremaninezhad and K. Ravi-chandar, Deformation and failure in nodular cast iron, Acta Materialia, vol.60, issue.5, pp.2359-2368, 2012.

W. Brocks, S. Hao, and D. Steglich, Micromechanical modelling of the damage and toughness behaviour of nodular cast iron materials, Le Journal de Physique IV, vol.6, issue.C6, pp.6-43, 1996.
URL : https://hal.archives-ouvertes.fr/jpa-00254433

M. Kuna and D. Sun, Three-dimensional cell model analyses of void growth in ductile materials, International Journal of Fracture, vol.81, issue.3, pp.235-258, 1996.

M. Dong, C. Prioul, and D. François, Damage effect on the fracture toughness of nodular cast iron: part i. damage characterization and plastic flow stress modeling, Metallurgical and Materials Transactions A, vol.28, issue.11, pp.2245-2254, 1997.

K. Zhang, J. Bai, and D. François, Ductile fracture of materials with high void volumefraction, International Journal of Solids and Structures, vol.36, issue.23, pp.3407-3425, 1999.

N. Bonora and A. Ruggiero, Micromechanical modeling of ductile cast iron incorporating damage. part i: Ferritic ductile cast iron, International journal of solids and structures, vol.42, issue.5-6, pp.1401-1424, 2005.

L. Collini and G. Nicoletto, Determination of the relationship between microstructure and constitutive behaviour of nodular cast iron with a unit cell model, The Journal of Strain Analysis for Engineering Design, vol.40, issue.2, pp.107-116, 2005.

T. Andriollo, J. Thorborg, N. Tiedje, and J. Hattel, A micro-mechanical analysis of thermo-elastic properties and local residual stresses in ductile iron based on a new anisotropic model for the graphite nodules, Modelling and Simulation in Materials Science and Engineering, vol.24, issue.5, p.55012, 2016.

T. Andriollo, K. Hellström, M. R. Sonne, J. Thorborg, N. Tiedje et al., Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix, Journal of the Mechanics and Physics of Solids, vol.111, pp.333-357, 2018.

J. Koplik and A. Needleman, Void growth and coalescence in porous plastic solids, International Journal of Solids and Structures, vol.24, issue.8, pp.835-853, 1988.

G. Hütter, L. Zybell, and M. Kuna, Size effects due to secondary voids during ductile crack propagation, International Journal of Solids and Structures, vol.51, issue.3-4, pp.839-847, 2014.

L. Helfen, T. Baumbach, P. Mikulik, D. Kiel, P. Pernot et al., High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography, Applied Physics Letters, vol.86, issue.7, p.31, 2005.

T. F. Morgeneyer, L. Helfen, H. Mubarak, and F. Hild, 3d digital volume correlation of synchrotron radiation laminography images of ductile crack initiation: an initial feasibility study, Experimental Mechanics, vol.53, issue.4, pp.543-556, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00848726

A. Swinton, Röntgen ray experiments, Nature, vol.54, issue.1389, p.31, 1896.

L. Brühl, Über verwendung von röntgenischen x-strahlen zu paläontologische diagnostichen zweken, Verhandlungen der Berliner physiologischen Gesellschaft. Archiv für Anatomie und Physiologie, p.31, 1896.

V. Cnudde and M. N. Boone, High-resolution x-ray computed tomography in geosciences: A review of the current technology and applications, Earth-Science Reviews, vol.123, p.31, 2013.

A. Myagotin, A. Voropaev, L. Helfen, D. Hanschke, and T. Baumbach, Efficient volume reconstruction for parallel-beam computed laminography by filtered backprojection on multi-core clusters, IEEE Transactions on Image Processing, vol.22, issue.12, p.31, 2013.

T. Ueda, L. Helfen, and T. F. Morgeneyer, In situ laminography study of threedimensional individual void shape evolution at crack initiation and comparison with gurson-tvergaard-needleman-type simulations, Acta Materialia, vol.78, p.31, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01056836

A. Buljac, T. Taillandier-thomas, T. F. Morgeneyer, L. Helfen, S. Roux et al., Slant strained band development during flat to slant crack transition in aa 2198 t8 sheet: in situ 3d measurements, International Journal of Fracture, vol.200, issue.1-2, pp.49-62, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01385406

J. Gammage, D. Wilkinson, J. Embury, and E. Maire, Damage studies in heterogeneous aluminium alloys using x-ray tomography, Philosophical Magazine, vol.85, issue.26-27, pp.3191-3206, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00436876

A. Weck, D. Wilkinson, and E. Maire, Observation of void nucleation, growth and coalescence in a model metal matrix composite using x-ray tomography, Materials Science and Engineering: A, vol.488, issue.1, pp.435-445, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00433966

Y. Shen, T. F. Morgeneyer, J. Garnier, L. Allais, L. Helfen et al., Threedimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations
URL : https://hal.archives-ouvertes.fr/hal-00815629

, Acta Materialia, vol.61, issue.7, pp.2571-2582, 2013.

T. F. Morgeneyer, T. Taillandier-thomas, L. Helfen, T. Baumbach, I. Sinclair et al., In situ 3-d observation of early strain localization during failure of thin al alloy (2198) sheet, Acta Materialia, vol.69, p.32, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00952176

M. Grédiac and F. Hild, Full-field measurements and identification in solid mechanics, vol.32, 2012.

E. Roux and P. Bouchard, On the interest of using full field measurements in ductile damage model calibration, International Journal of Solids and Structures, vol.72, p.32, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01183968

B. Bay, Methods and applications of digital volume correlation, The Journal of Strain Analysis for Engineering Design, vol.43, issue.8, pp.745-760, 2008.

A. Buljac, C. Jailin, A. Mendoza, J. Neggers, T. Taillandier-thomas et al., Digital volume correlation: Review of progress and challenges, Experimental Mechanics, vol.58, issue.5, pp.661-708, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744752

T. Taillandier-thomas, S. Roux, T. F. Morgeneyer, and F. Hild, Localized strain field measurement on laminography data with mechanical regularization, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.324, p.33, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00956440

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, Digital volume correlation: threedimensional strain mapping using X-ray tomography, Experimental mechanics, vol.39, issue.3, p.33, 1999.

F. Hild and S. Roux, Comparison of local and global approaches to digital image correlation, Experimental Mechanics, vol.52, issue.9, pp.1503-1519, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00750756

O. C. Zienkiewicz and R. L. Taylor, The finite element method for solid and structural mechanics, vol.33, 2005.

A. Ern and J. Guermond, Theory and practice of finite elements, vol.159, 2013.

H. Digonnet, L. Silva, and T. Coupez, Cimlib: a fully parallel application for numerical simulations based on components assembly, AIP Conference Proceedings, vol.908, pp.269-274, 2007.

F. Brezzi, D. Boffi, L. Demkowicz, R. Durán, R. Falk et al., Mixed finite elements, compatibility conditions, and applications, p.36, 2008.

D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the stokes equations, Calcolo, vol.21, issue.4, p.36, 1984.

E. Perchat, Mini-élément et factorisation incomplètes pour la parallélisation d'un solveur de Stokes 2D: application au forgeage, p.36, 2000.

R. H. Wagoner and J. Chenot, Metal forming analysis, p.36, 2001.

K. J. Fidkowski and D. L. , A triangular cut-cell adaptive method for highorder discretizations of the compressible navier-stokes equations, Journal of Computational Physics, vol.225, issue.2, p.36, 2007.

T. Coupez, H. Digonnet, and R. Ducloux, Parallel meshing and remeshing, Applied Mathematical Modelling, vol.25, issue.2, p.36, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00536635

D. Quan, T. Toulorge, E. Marchandise, J. Remacle, and G. Bricteux, Anisotropic mesh adaptation with optimal convergence for finite elements using embedded geometries, Computer Methods in Applied Mechanics and Engineering, vol.268, p.36, 2014.

M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method-application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, vol.39, issue.23, p.39, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139858

A. Buljac, V. M. Trejo-navas, M. Shakoor, A. Bouterf, J. Neggers et al.,

T. F. Bouchard, F. Morgeneyer, and . Hild, On the calibration of elastoplastic parameters at the microscale via x-ray microtomography and digital volume correlation for the simulation of ductile damage, European Journal of Mechanics-A/Solids, vol.72, pp.287-297, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01767392

Z. Tomi?evi?, J. Kodvanj, and F. Hild, Characterization of the nonlinear behavior of nodular graphite cast iron via inverse identification. Analysis of uniaxial tests, Europ

J. Mech, A/Solids, vol.59, p.39, 2016.

D. L. Pham, C. Xu, and J. L. Prince, Current methods in medical image segmentation, Annual review of biomedical engineering, vol.2, issue.1, pp.315-337, 2000.

P. Iassonov, T. Gebrenegus, and M. Tuller, Segmentation of x-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures, Water Resources Research, vol.45, issue.9, 2009.

M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic imaging, vol.13, issue.1, pp.146-166, 2004.

L. Staniewicz and P. A. Midgley, Machine learning as a tool for classifying electron tomographic reconstructions, Advanced Structural and Chemical Imaging, vol.1, issue.1, p.9, 2015.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, vol.46, 2016.

A. Madra, N. E. Hajj, and M. Benzeggagh, X-ray microtomography applications for quantitative and qualitative analysis of porosity in woven glass fiber reinforced thermoplastic, Composites Science and Technology, vol.95, pp.50-58, 2014.

D. S. Bulgarevich, S. Tsukamoto, T. Kasuya, M. Demura, and M. Watanabe, Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures, Scientific reports, vol.8, issue.1, p.2078, 2018.

A. Buljac, T. Taillandier-thomas, L. Helfen, T. F. Morgeneyer, and F. Hild, Evaluation of measurement uncertainties of digital volume correlation applied to laminography data, The Journal of Strain Analysis for Engineering Design, vol.53, issue.2, pp.49-65, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01674568

L. Helfen, A. Myagotin, A. Rack, P. Pernot, P. Mikulik et al., Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices, physica status solidi (a), vol.204, p.47, 2007.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nature methods, vol.9, issue.7, p.47, 2012.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nih image to imagej: 25 years of image analysis, Nature methods, vol.9, issue.7, p.47, 2012.

R. Adams and L. Bischof, Seeded region growing, IEEE Transactions, vol.16, issue.6, p.48, 1994.

J. A. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol.3, p.48, 1999.

T. Ridler and S. Calvard, Picture thresholding using an iterative selection method, IEEE trans syst Man Cybern, vol.8, issue.8, p.51, 1978.

L. Huang and M. J. Wang, Image thresholding by minimizing the measures of fuzziness, Pattern recognition, vol.28, issue.1, pp.41-51, 1995.

J. Prewitt and M. L. Mendelsohn, The analysis of cell images, Annals of the New York Academy of Sciences, vol.128, issue.1, p.51, 1966.

C. Li, P. K. , and -. S. Tam, An iterative algorithm for minimum cross entropy thresholding, Pattern recognition letters, vol.19, issue.8, p.51, 1998.

C. H. Li and C. Lee, Minimum cross entropy thresholding, Pattern recognition, vol.26, issue.4, p.51, 1993.

J. N. Kapur, P. K. Sahoo, and A. K. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Computer vision, graphics, and image processing, vol.29, p.51, 1985.

C. A. Glasbey, An analysis of histogram-based thresholding algorithms, CVGIP: Graphical models and image processing, vol.55, issue.6, p.51, 1993.

J. Kittler and J. Illingworth, Minimum error thresholding, Pattern recognition, vol.19, issue.1, p.51, 1986.

W. Tsai, Moment-preserving thresholding: A new approach, Computer Vision, Graphics, and Image Processing, vol.29, p.51, 1985.

N. Otsu, A threshold selection method from gray-level histograms, IEEE transactions on systems, man, and cybernetics, vol.9, issue.1, p.51, 1979.

W. Doyle, Operations useful for similarity-invariant pattern recognition, Journal of the ACM (JACM), vol.9, issue.2, p.51, 1962.

A. Rényi, On measures of entropy and information, tech. rep., HUNGARIAN ACADEMY OF SCIENCES Budapest Hungary, p.51, 1961.

A. G. Shanbhag, Utilization of information measure as a means of image thresholding, CVGIP: Graphical Models and Image Processing, vol.56, issue.5, p.51, 1994.

G. Zack, W. Rogers, and S. Latt, Automatic measurement of sister chromatid exchange frequency, Journal of Histochemistry & Cytochemistry, vol.25, issue.7, p.51, 1977.

J. Yen, F. Chang, and S. Chang, A new criterion for automatic multilevel thresholding, IEEE Transactions on Image Processing, vol.4, issue.3, p.51, 1995.

L. Breiman, Random forests, Machine learning, vol.45, issue.1, p.51, 2001.

I. Arganda-carreras, V. Kaynig, C. Rueden, K. W. Eliceiri, J. Schindelin et al., Trainable weka segmentation: a machine learning tool for microscopy pixel classification, Bioinformatics, vol.33, issue.15, p.53, 2017.

K. A. Kasvayee, K. Salomonsson, E. Ghassemali, and A. E. Jarfors, Microstructural strain distribution in ductile iron; comparison between finite element simulation and digital image correlation measurements, Materials Science and Engineering: A, vol.655, pp.27-35, 2016.

K. Salomonsson and J. Olofsson, Analysis of localized plastic strain in heterogeneous cast iron microstructures using 3d finite element simulations, Proceedings of the 4th World Congress on Integrated Computational Materials Engineering, vol.84, pp.217-225, 2017.

A. Weck and D. Wilkinson, Experimental investigation of void coalescence in metallic sheets containing laser drilled holes, Acta Materialia, vol.56, issue.8, pp.1774-1784, 2008.

G. Fischer, J. Nellesen, N. Anar, K. Ehrig, H. Riesemeier et al., 3d analysis of micro-deformation in vhcf-loaded nodular cast iron by µct, Materials Science and Engineering: A, vol.577, pp.202-209, 2013.

V. M. Trejo-navas, A. Buljac, F. Hild, T. Morgeneyer, L. Helfe et al.,

. Bouchard, A comparative study of image segmentation methods for micromechanical simulations of ductile damage, Submitted to Computational Materials Science, vol.88, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01950835

E. Voce, A practical strain hardening function, Metallurgia, vol.51, p.94, 1955.

T. Cox and J. R. Low, An investigation of the plastic fracture of aisi 4340 and 18 nickel-200 grade maraging steels, Metallurgical and Materials Transactions B, vol.5, issue.6, p.116, 1974.

D. Goto, D. Koss, and V. Jablokov, The influence of tensile stress states on the failure of HY-100 steel, Metallurgical and Materials Transactions A, vol.30, issue.11, p.116, 1999.

E. Maire, S. Zhou, J. Adrien, and M. Dimichiel, Damage quantification in aluminium alloys using in situ tensile tests in X-ray tomography, Engineering Fracture Mechanics, vol.78, issue.15, p.116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01538237

L. Babout, E. Maire, and R. Fougeres, Damage initiation in model metallic materials: X-ray tomography and modelling, Acta Materialia, vol.52, issue.8, pp.2475-2487, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00474482

J. A. Nelder and R. Mead, A simplex method for function minimization, The computer journal, vol.7, issue.4, p.119, 1965.

S. G. Johnson, The nlopt nonlinear-optimization package, p.119, 2014.

Y. Huang, Accurate dilatation rates for spherical voids in triaxial stress fields, Journal of Applied Mechanics, vol.58, p.1084, 1991.

J. Fansi, Prediction of DP steel fracture by FEM simulations using an advanced Gurson model, vol.154, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00869032

F. Scheyvaerts, P. Onck, C. Tekoglu, and T. Pardoen, The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension, Journal of the Mechanics and Physics of Solids, vol.59, issue.2, p.141, 2011.

X. Gao and J. Kim, Modeling of ductile fracture: significance of void coalescence, International Journal of Solids and Structures, vol.43, issue.20, p.141, 2006.

T. Pardoen, F. Scheyvaerts, C. Tekoglu, and L. Lecarme, Recent progress in micromechanics-based modeling of void coalescence, ffThe SEM Annual Conference, p.141, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01558953

C. Teko?lu, J. Hutchinson, and T. Pardoen, On localization and void coalescence as a precursor to ductile fracture, Phil. Trans. R. Soc. A, vol.373, p.141, 2015.

V. M. Trejo-navas, M. Bernacki, and P. Bouchard, An examination of microscopic precoalescence strain measures in ductile cast iron through mechanical simulations based on 3D imaging

C. I. Bliss, The calculation of the dosage-mortality curve, Annals of Applied Biology, vol.22, issue.1, p.148

D. Mcfadden, Conditional logit analysis of qualitative choice behavior, Frontiers in Econometrics, p.149, 1974.

C. Landron, O. Bouaziz, E. Maire, and J. Adrien, Characterization and modeling of void nucleation by interface decohesion in dual phase steels, Scripta Materialia, vol.63, issue.10, p.155, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00523143

C. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme et al., Validation of void growth models using x-ray microtomography characterization of damage in dual phase steels, Acta Materialia, vol.59, issue.20, p.155, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01538054

L. Lecarme, E. Maire, A. K. Kc, C. De, L. Vleeschouwer et al., Heterogenous void growth revealed by in situ 3-d x-ray microtomography using automatic cavity tracking, Acta Materialia, vol.63, p.162, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01538028

P. Thomason, A view on ductile-fracture modelling, Fatigue & Fracture of Engineering Materials & Structures, vol.21, issue.9, p.163, 1998.

V. Tvergaard, Material failure by void coalescence in localized shear bands, International journal of solids and structures, vol.18, issue.8, p.164, 1982.

T. De-geus, R. Peerlings, and M. Geers, Microstructural topology effects on the onset of ductile failure in multi-phase materials-a systematic computational approach, International Journal of Solids and Structures, vol.67, p.165, 2015.