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Introduction

Context

Geostatistics is the branch of statistics attached to model spatial phenomena through proba-
bilistic models. Such phenomena are generally observed through measurements of their e ects
across a spatial domain. Within the geostatistical paradigm, we assume that the spatial phe-
nomenon is described by a random eld, that is a function that maps the points of the spatial
domain to random variables. The actual reality of the phenomenon is then considered to be
a particular realization of this random eld, and the measurements are seen as evaluations of
the realization at the same locations. The premise is then to use the statistical properties of
the random eld, somehow estimated from the measurements, to deduce information about the
underlying phenomenon.

In many cases, one can only assume that a single realization of the phenomenon/random
eld is observed. Some assumptions are therefore made so that properties observed on this
single realization can be generalized to describe the statistical properties of the random eld.
The most common one is assuming that the random eld is Gaussian| (Diggle et al), 1998), so
that it is su cient to only characterize its rst two moments:

its mean function, which corresponds to the expectation of the random eld at each point
of the domain;

its covariance function, which corresponds to the function mapping a pair of locations on
the domain to the covariance of the random eld at these points.

Three recurring objectives then occur when dealing with spatial data: the inference of the
parameters characterizing the mean and the covariance of a random eld, the simulation of a
random eld, and the estimation of a random eld from a set of observations. Many methods
designed to perform these tasks require to build a covariance matrix between a given set of
points of the domain (Chiles and Del ner, 2012; Diggle et al., 1998] Wackernagel, 2013). We
provide some examples. On one hand, the inference of the parameters characterizing a Gaussian
eld using a likelihood-based approach involves covariance matrices at the observed locations.
On the other hand, simulations of Gaussian elds on a set of locations of a domain can be
performed using the Cholesky factorization of the covariance matrix at these locations. Finally,
the estimation of a Gaussian eld from its partial observation, using a kriging approach, requires
to invert the covariance matrix at the observed locations . Hence it is crucial to be able to
properly de ne theses covariance matrices and to be able to work with them.

De ning the covariance matrices

The nice particular case of stationary models

To facilitate the construction of the covariance matrices, it is fairly common to consider that the
random eld is isotropic and second-order stationary, whenever the data lie in a nice, continuous
chunk of space. Within this assumption, which we simply call stationarity, the possible mean
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10 INTRODUCTION

and covariance functions of the random eld are simplied. On one hand, the mean function
is constant over the domain. On the other hand, the covariance function is a radial function,
meaning that the covariance between a pair of points willonly depend on the (Euclidean) distance
separating them.

In this context, the mean is usually estimated as the mean of the observed values and the
covariance function is estimated from the data points using variogram modeling or likelihood-
based approaches| (Diggle et &l., 1998; Wackernagel, 2013). Then, computing the covariance
matrices mentioned earlier simply comes down to apply the radial covariance function to the
entries of a distance matrix.

Unfortunately, as one may suspect, stationarity is a strong assumption that cannot be applied
to model any spatial dataset (Fouedjio,[2017). Dealing for instance with data lying in non-
Euclidean spaces, or with data for which the highly regular spatial structure implied by the
stationary assumption does not apply, requires more work.

Modeling the non-stationary covariance

In the non-stationary case, the covariance function can no longer be expressed as a simple
function of the distance between the points, but has an expression that depends on the location
and relative position of the considered pair of points. However, we assume here that some
prior structural information on the behavior of the random eld across the domain is available.
Namely, we assume that the random eld showslocal anisotropies Then, around each point of
the domain, there is a preferential direction along which the range of highly correlated values is
maximal, whereas it is minimal in the cross-direction(s). In particular, the angles de ning the
preferential directions are called anisotropy angles and the size of the ranges are called anisotropy
ranges.

A rst challenge is to determine the expression of this covariance function from the observed
data, which is tackled by imposing that the random eld can be modeled in a certain way.
Ideally, these models would allow to incorporate the prior structural information as it is directly
linked to the de nition of the covariance function.

The usual methods to model the corresponding non-stationary random elds all aim at
deriving an expression of the covariance function for any pairs of points in the domain. A
large review of the methods used to model non-stationary random elds was done by Fouedjio
(2017). We present in the following the three more popular approaches typically encountered in

practice'}

Basis function approach The basis function approach relies on the Karhunen Loéve theorem
(Lindgren| 2012), which states that any Gaussian eld on a bounded domain can be decomposed
as a weighted sum of orthogonal (deterministic) functions, called eigenfunctions. In particular,
the weights of the linear combination are independent Gaussian variables with decreasing vari-
ances. The eigenfunctions are solutions of a set of integral equations, called Fredholm equations,
which involve the expression of the covariance function. Conversely, the covariance function can
be expressed as a weighted sum involving these functions (Lindgren, 2012).

Without any particular assumption about the domain, the eigenfunctions are determined by
discretizing and solving the Fredholm equations. In this setting, the actual expression of the
covariance function is replaced by local approximations derived from the data|(Huang et al.,
2001). This method assumes in particular that the data is composed of several realizations
of the non-stationary process to model. Solving the discretized problem then amounts to the
diagonalization of a matrix, which itself becomes a real computational bottleneck when its size
(or equivalently the number of data points) increases.

Space deformation A second approach to solve the modeling problem consists in considering
that a non-stationary variable observed across a spatial domain can be turned into a stationary
variable after applying a (non-linear) deformation to the domain. Within this space deformation

1In this work, we only consider non-stationary covariances de ned for spatial data. New challenges appear
when dealing with space-time data given that the non-stationarity can result from both anisotropies in the spatial
domain (that can change over time) and the fact that the time coordinate should generally be di erentiated from
the space coordinates. We refer the reader to the work of Forcu et al. (2006, 2007),/\who proposed a method to
build models able to deal with such data.
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approach, the goal is then to characterize the deformation from the observed variable so that
the problem can be reformulated in a stationary framework in the deformed domain|(Sampsan
and Guttorp, 1992). This approach relies on the idea that the covariance function of the non-
stationary process can be written as the composition of a stationary (isotropic) covariance model
with a deformation function. Perrin and Senoussi (2000); Porcu et al. |(2010) derived character-
izations of the covariance functions for which this so-called (isotropic) stationary reducibility is
admissible.

The multi-dimensional scaling algorithm (Kruskal| 1964) is leveraged in this context: this
algorithm associates to each data point a set of coordinates in a new, deformed space, so that
data points with similar (resp. dissimilar) values are close to (resp. distant from) each other in
the deformed space. The implementation of this method usually relies on the assumption that the
data set is composed of several realizations of the same random process, although alternatives to
circumvent this assumption have been proposed (Anderes and Stein, 2008; Fouedjio et|al., 2015).
Another approach to determine the deformation consists in working with a set of parametrized
deformation functions which are tted on the data by minimizing an objective function (Anderes
and Stein,|2011; Perrin and Monestiez, 1999). Both approaches reveal to be computationnally
expensive, which limit their applicability for large-scale datasets.

Besides, to the best of our knowledge, these space deformation models do not allow to
easily take into account prior structural information about the non-stationarity, namely local
anisotropy angles and ranges. Indeed, they all seek to directly (but approximately) characterize
the overall deformation while only considering the location (and the value) of the data points.
This is regrettable as these parameters are supposed to be a consequence of the (assumed) defor-
mation process and one could think that including them in the estimation of spatial deformation
would simplify the problem.

Convolution model A third approach to modeling non-stationary data is the convolution
model, introduced by |Higdon et al! (1999). The idea is to model the value of the non-stationary
eld at a given point of the domain as the result of the (spatial) convolution over the domain of
a deterministic function, called kernel function, with a white noise (i.e. a random process over
the domain whose values at any two distinct points are independent and identically distributed).
Considering di erent kernel functions to compute the value of the random eld at di erent
locations of the domain then naturally yields a non-stationary eld.

In order to derive a closed-form for the covariance function of the resulting eld,[Paciorek
and Schervish (2006), Pintore and Holmes|(2004), Stejn (2005) and Porcu et all (2009) pro-
posed families of kernel functions which are parametrized at each point of the domain by the
local anisotropy parameters. In particular, they represent the anisotropy parameters as positive
de nite matrices of the form RD 2R T, whereR is a rotation matrix de ned by the anisotropy
angle(s) andD is the diagonal matrix whose entries are the inverse of the anisotropy ranges.

The covariance between two points is then expressed by averaging the representation matrix
at both points, which ensures in particular that the anisotropy parameters are locally respected.
The downside of this expression may be that only the information of the anisotropy at both
points is taken into account in their covariance, and not the overall structure of the anisotropy,
which in practice might in uence the covariance.

Random elds on manifolds

Dealing with non-stationarity is not su cient. Indeed, spatial data do not always occur on
nicely contiguous domains of Euclidean spaces. The simplest example might be data measured
across our planet, which arise naturally in applications such environmental science, geosciences
and cosmological data analysis| (Marinucci and Peccati, 2011). The use of Euclidean distance to
model correlations between points of a random eld de ned on a sphere then becomes unrealistic.
De ning and working with random elds on a sphere is an extensively studied subject.| Mar}
inucci and Peccat| (2011) provided a review of the theory surrounding random elds on a sphere.
In order to retrieve a framework similar to Euclidean spaces, most of the e ort was attached
to characterize valid covariance functions on the sphere, that would model correlation between
points using the arc length distance between them|(Gneiting| 2013; Huang et al|, 2011).
Stationary Gaussian random elds on a sphere are usually de ned through their expansion
into a basis of known (deterministic) functions called spherical harmonics |(Jones, 1963). In
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particular, this expansion can be seen as the counterpart of the expansion arising from the
Karhunen Loéve theorem, but for elds de ned on a sphere. This expansion is still being
exploited to derive for instance simulation methods and to characterize the covariance structure
of the resulting elds (Emery and Porcu| 2019; Lang and Schwab, 2015; Lantuejoul et al), 2019;
Marinucci and Peccati, |2011). Models have also been proposed to deal with both space-time
data (Porcu et al., |2016) and anisotropy (Estrade et al.,| 2019) on the sphere.

However, the work done for random elds on a sphere hardly generalizes to other spatial
domains, as they heavily rely on the intrinsic properties of the sphere as a surface. What then
can be done if our spatial data lie on an arbitrary (smooth) surface of body? An answer to this
question is provided by the theory of random elds de ned on manifolds.

Basically, a manifold is a set that behaves locally like a Euclidean space. This mathematical
object generalizes in particular the notions of surface and arbitrary body lying in a Euclidean
space.| Adler and Taylor (2009) provided a review of the theory de ning such elds. They mainly
focused on the geometry of their excursion sets, while dealing with brain mapping problems.

Working with covariance matrices: the big n problem

Knowing how to properly de ne a covariance model suited for a given spatial dataset does not
guarantee that we will be able to actually use it. Indeed, a second drawback arises when trying
to build and then work with covariance matrices: the so-called bign problem. By de nition,
the covariance matrix containsn  n covariance values that should be computed and stored,
where n is the number of points of interest. In practice, n may be the number of grid points
on which we desire to compute a simulation, or the number of data points. Hencen can easily
become very large, and thus, building and storing the covariance matrix quickly becomes a task
requiring heavy computational and storage needs.

In fact, this problem is encountered in both the stationary and the non-stationary frameworks.
Numerous solutions have been proposed in the stationary case (See Sun et al. (2012) for a review).
We can for instance cite the use of compactly supported covariance functions (Gneiting, 2002)
and of covariance tapering (Furrer et al|,|2006| Kaufman et al.| 2008), which limit the number of
non-zero entries in the covariance matrix. Similarly, imposing that the considered random eld is
Markovian ensures that the resulting precision matriy?| has a limited number of non-zero entries
(Rue and Held,|2005). The problems are then reformulated using the precision matrix instead
of the covariance matrix. If some of these solutions are transferable to the non-stationary case
(see for use of compactly supported non-stationary covariance models proposed by Liang and
Marcotte|(2016)), they usually come at the price of a restriction on the models we can consider.

The SPDE approach, a starting place

A solution to both the modeling problem and the big n problem introduced above is proposed
by |Lindgren et al.| (2011), with their so-called stochastic partial di erential equation (SPDE)
approach. The SPDE approach builds on a result fromp Whittle (1954) which states that Gaussian
random elds Z on RY with a Matérn covariance function, are the stationary solutions of the
SPDE given by

(% ) "%2=w ; 1)

where > 0, >d=2, > 0,( 2 ) ~?2is a pseudo-di erential operator (which can be seen
as a generalization of the Laplacian operator and is de ned using the Fourier transform) andV
is a Gaussian white noise. In particular, for =2, SPDE (1) rewrites 2Z Z = W where

corresponds to the usual Laplacian operator.

In their approach, [Lindgren et al.| (2011) characterize Matérn elds as solutions of SPDE
(@) rather than using their covariance function. They propose to formulate a solution for this
SPDE using the nite element method: hence, the solution is expressed as a linear combination
of a nite set of (user-de ned) interpolation functions de ned across the domain, weighted by
correlated Gaussian weights. They actually provide a closed form for the precision matrix of
these weights, in the case where 2 N. The precision matrix is then given as a low-degree
matrix polynomial of a sparse matrix. This means in particular that solving the SPDE using
this method actually yields Markovian solutions.

2j.e. the inverse of the covariance matrix



13

This approach sparked a lot of interest for several reasons. On one hand, Matérn elds are
widely used in applications of geostatistical models given its ability to t various degrees of
regularity of the data with the same function by playing with a single parameter (Stein, [2012).
On the other hand, the precision matrix of the weights obtained by the SPDE approach being
sparse, it provides a practical solution to the bign problem when using this exible covariance
model.

Lindgren et al|(2011) and then|Fuglstad et al| (2015) o er to tinker with SPDE (L} in order
to provide a practical answer to the two modeling problems raised above, in the case = 2. In
particular, their solutions conserve the desirable property that the precision matrix is sparse,
and therefore the computational gains associated with it.

Regarding non-stationary models They rst propose to work with spatially varying pa-
rameters and in SPDE (), which then creates globally non-stationary elds with a
locally isotropic covariance.

A second approach they suggest is inspired by the space deformation model presented ear-
lier, and consists in de ning SPDE @) in the deformed space. Rewriting the SPDE in the
original domain using a change of variable then yields an expression of the SPDE that is
locally parametrized by the Jacobian of the deformation process, or equivalently by local
angles and ranges of anisotropy.

Regarding models on general spatial domainsBuilding from the approach of |Adler and

Taylor|(2009), they propose to de ne SPDE @) directly on the general domain by seeing
it as a manifold. In particular, this amounts to replace the Laplacian operator by its gen-
eralization to manifolds, called the Laplace Beltrami operator (Lee, |2012). The resulting
solution is still what is meant by a Matérn eld, and is directly de ned on the manifold.

Thesis statement

The starting point of our work is a simple question: can we go a little further with the solutions
proposed by|Lindgren et all (2011) and Fuglstad et al. [(2015)? Precisely can we design an
approach

to model both non-stationary elds from local anisotropy information and elds de ned
on manifolds;

that works with a larger class of covariance functions than Matérn covariance functions;
and that can be applied to large datasets?

As it turns out, the answer is yes, and was actually suggested by these authors in their papers.
It relies on the notion of Riemannian manifold.

A Riemannian manifold is the association of a manifold with a locally de ned metric. This
metric is an application that de nes around each point of the manifold a notion of length and
of angles for in nitely small vectors that would be attached to that point. Hence the metric
can be interpreted as an application that locally rede nes the geometry of the manifold, and as
such, can be seen as describing a local deformation of the manifold at each one of its points.
Riemannian manifolds then seem particularly adapted to our problem, as the domain (i.e. the
manifold) on which the data lie is de ned together with a set of local anisotropies that in turn
can be interpreted as resulting from local deformatior@] (i.e. the metric).

To see how the SPDE model extensions proposed hy Lindgren et al. (2011) and Fuglstad
et al.| (2015) could be generalized, the focus is put not just on the solutions of the SPDH [1)
now de ned on the Riemannian manifold, but rather on the general mathematical object that
can formally describe such solutions:generalized random elds Generalized random elds are
the random counterpart of generalized functions (also called distributions), which are widely
used to formulate and derive the properties of solutions of partial derivative equations in the
deterministic case (Gelfand and Shiloy| 1964).

Then, the modeling problem is settled as follows. The de nition of a class of generalized
random elds on the Riemannian manifold that includes naturally the solutions of SPDE

Snamely a rotation and dilatation corresponding to the anisotropy angles and ranges
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is introduced. Using the same principle as the nite element method, their approximation by
a linear combination of prede ned deterministic functions is derived, and an expression of the
covariance matrix of the weights, comparable to the one obtained by Lindgren et al.|(2011)
in their particular case, is obtained. The fact that these elds are de ned on a Riemannian
manifold then ensures the applicability of the method for non-Euclidean domains (through the
speci cation of the manifold) and for non-stationary elds (through the specication of the
metric).

Remains the computational problem. As it turns out, the expression of the covariance matrix
obtained in the previous step can be leveraged to derive scalable and memory-e cient algorithms
for the simulation, prediction and inference of the corresponding weights. These algorithms rely
on an interpretation of the Gaussian vectors de ned from these covariance matrices as stochastic
graph signals, that is random variables indexed by the vertices of a graph. Within this framework,
called graph signal processing, generalizations of classical signal processing notions and tools,
such as the Fourier transform, Itering and translation operators, are leveraged to e ciently
process data indexed on graphs (Shuman et al., 2013).

As the theory (through the model specication) and the practice (through graph signal
processing algorithms) of generalized random elds are laid out, we end with the concrete study
of stationary and non-stationary spatial data. In particular, the simulation, the mapping, the
Itering and the inference of both synthetic and real data are performed to illustrate both the
exibility and the applicability of the concepts introduced through the work.

Outline and main contributions

The dissertation is composed of two parts, re ecting the two main components of this work.

Part [Jaims at introducing the graph signal processing framework, as well as the algorithms
that will later be used to study spatial data. In particular, we derive methods aiming at sim-
ulating stochastic graph signals, estimating their value when they are partially observed and
inferring their statistical properties.

We start by setting up the mathematical framework and the main notions necessary to work
with both deterministic and stochastic graph signals (Chapter[]). Following the usual graph
signal processing approach, these notions are de ned by drawing a parallel with classical signal
processing, which we highlight throughout the chapter. Of particular interest is the concept of
stationarity for stochastic graph signals, for which we propose a de nition.

Then, Chapter[g focuses on algorithms designed to perform (the equivalent of) ltering oper-
ations on graph signals. These operations play an essential role in the subsequent chapters, and
as such, we lay out an extensive comparison between several approaches. It results in the intro-
duction of the Chebyshev algorithm, which presents the best trade-o between computational
cost and accuracy. This algorithm is actually the key element that ensures the scalability of the
solutions proposed in this work. Applications of this algorithm to some practical problems are
then presented.

Chapter [3 is devoted to the simulation of stationary graph signals. An algorithm based on
Chebyshev ltering is proposed. Similar algorithms were already introduced in the literature
(Hammond et al., [2011;| Higham,| 2008; Susnjara et al!, 2015). However, we provide a study of
the statistical properties of the output of this algorithm and use it to derive actionable criteria to
set up its parameters. Finally, we propose a description of the algorithm in the wider framework
of Krylov subspaces.

Chapter [4 then tackles the estimation of a stationary stochastic graph signal from its partial
and noisy observations. We propose to solve this problem using an approach inspired by kriging
theory. Two cases are treated. The rst one can be interpreted as a mapping problem whereas
the second one is similar to a signal extraction problem. In both cases, we lay out practical
algorithms based on Chebyshev ltering. Finally, we give a formulation of these problems in
a wider optimization framework, which can inspire further developments towards their e cient
resolution.

Finally, Chapter p]aims at introducing an approach to infer the statistical properties of a
stochastic graph signal from its partial and noisy observations. We derive algorithms based on
Chebyshev Itering to answer this problem.

Now that the study of stochastic graph signals and their properties have been introduced,
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Part [Tlaims at deriving the approximation result that allows to reduce the study of generalized
random elds de ned on a Riemannian manifold to the study of a stochastic graph signal.

First, a self-su cient review of the main concepts and results of di erential and Riemannian
geometry used in this work is proposed in Chaptef 6. In particular, we clarify the rather intuitive
interpretation of Riemannian manifolds as locally deformed spaces.

Chapter|[7] aims at actually presenting our solution to the modeling problem described above.
The class of generalized random elds used to extend the results of Lindgren et al| (2011) is
introduced, and the approximation theorem which links them to stochastic graph signals is laid
out. Chapter [B|provides an application of this result when the approximation is performed using
the nite element method, and a convergence result is derived.

Finally, Chapter P]echoes the initial problem statement and illustrates the application of
the framework derived in this work to both synthetic and real data. In particular, examples of
simulation, mapping, Itering and inference are presented.

Disclaimer

The work presented in this dissertation is interdisciplinary: indeed, we play with notions of graph
theory, classical and graph signal processing, di erential and Riemannian geometry, function
approximation and generalized random elds. Consequently, this dissertation was written with
the intention of providing the reader with as much understanding of these subjects as needed to
derive the results that are presented.

Hence, some parts of the dissertation can easily be skipped by more experienced readers.
In Chapter f[] Section[I.] consists only in basic reminders of graph theory, and Sectidn ].2
of reminders of classical deterministic and stochastic signal processing. Readers familiar with
graph signal processing can skip Section 1.3. Readers familiar with di erential and Riemannian
geometry can skip Chapter{§. Finally, readers familiar with the nite element method can skip
Section[8.1.



Notations

M H Conjugate-Transpose of a matrixM

Cov[; ] Covariance between two random variables or covariance matrix between two
random vectors

jM j or detM Determinant of a matrix M

Diag(v) Diagonal matrix whose entries are the entries of the vectow

DCT[] Discrete cosine transform of a vector

DFT[ ] Discrete Fourier transform of a vector

k ko Euclidean norm of a vector

E[] Expectation of a random variable or vector

FI] Fourier transform of a signal

GRF Gaussian Random Field

GRFLA Gaussian Random Field with Local Anisotropies

GeRF Generalized Random Field

GFT[ ] Graph Fourier transform of a graph signal

1a Indicator function of a set A

[;1 Interval of all integers between two integers

spanfvy;:::;vng Linear span of a set ofn 1 vectorsvy;:::;vp

P[] Probability of an event

M p:q(R) Set of matrices with p rows and g columns, and with real coe cients

M (R) Set of square matrices of size with real coe cients

SGS Stochastic Graph Signal

supp() Support of a function

Trace() Trace of a matrix

MT Transpose of a matrix M

Var[ ] Variance of a random variable or covariance matrix of a vector
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Résumé

Dans ce chapitre, nous introduisons un cadre mathématique minimal permettant d'étudier le
traitement de signaux déterministes et stochastiques dé nis sur des graphes. Nous commencgons
par introduire les principales notions de théorie des graphes et de traitement du signal (au sens
classique du terme) nécessaires a la construction de la théorie entourant le traitement du sig-
nal sur graphe. Nous présentons ensuite cette derniére en suivant la méme approche que celle
présente dans la littérature associée.

Introduction

Graphs are structures aiming at representing complex data as a set of objects, called vertices, and
pairwise relationships between them, the edges (Bondy and Murty, 1976). These relationships
usually encode a notion of similarity between the objects they connect. This type of data
structure arises in applications such as social, energy, transportation and neural networks, but
also biology, image processing and many more (Newman, 2010). In practice, two main scenarios
arise:

either the focus is put on the structure of the graph itself, meaning that the graph is used
to model and study pairwise relationships a prede ned set of objects,

or these relationships are assumed to be known and the focus is put on modeling and
studying variables that are de ned on the objects.

Graph signal processing is an emerging eld focusing on developing tools to process data
arising from this last scenario (Shuman et al.,| 2013). These data are therefore modeled as
variables indexed by the vertices of a known graph, and named graph signals. The goal is then
to be able to perform on these graph signals common operations of continuous signal processing,
such as ltering, denoising and completion.

Given that now the data domain is highly irregular, as it consists of a set of discrete vertices
on an arbitrary graph, all these operations had to be rede ned in a uni ed framework suited
for graph data. This framework was built by generalizing classical signal processing notions
and tools, like for instance the Fourier transform and translation operators, to graph signals
(Girault,| 2015a; Ortega et al., |2018; Shuman et a|., 2013). This everlasting parallel between
classical signal processing and graph signal processing is at the core of this new eld.

This rst chapter aims at introducing a minimal mathematical framework for deterministic
and stochastic graph signal processing. In the rst two sections, the main notions of graph theory
and continuous and discrete signal processing useful to build this framework are introduced.
Then, in the subsequent sections, the graph signal processing framework is introduced following
the same approach as the one used by Shuman et jal. (2013), Girault (2015a) ahd Marques et al.
(2017).

1.1 Mathematical framework for graphs

In this section we review some basic de nitions and properties concerning the study of graphs.
We refer the reader to (Newman, 2010, Chapter 6) for a more complete overview of the mathe-
matical framework used in graph theory.

1.1.1 De nitions and notations

A (directed) graph G is a structure amounting to a set of objects and pairwise relationships
between them. Formally it consists in a set ofvertices V representing the objects and a set of
edgesE V V that represents pairwise relationships as pairs of vertices. AsubgraphH of G
is a graph whose vertex sei?is a subset ofV and whose edge set is a subset &\ (V° V 9.

In this work, only nite graphs, i.e. with a nite number of vertices n, are considered. In
this case, the set verticesv can be identi ed with the set of integers [1; n] and therefore vertices
can be represented as integers2 [1;n]. A graph with n vertices will also be called an-graph.
They can be represented as in Figur¢ 1.]la: each circle corresponds to a vertex and an arrow
from a vertex i to a vertex j is drawn whenever(i;j) 2 E.
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a) Directed graph.
@) grap (b) Undirected graph.

Figure 1.1: Representation of a directed and an undirected graph.

Figure 1.2: Representation of the neighborhood of ordefl of a vertex (in green) and of a path
(in red). The neighborhood and the path start from vertex 1.

A weighted graph is a graph for which a weight (i.e. a real value) is associated to each one
of its edges. The functionW :V V! R that assigns to each pair of vertices(i;j ) its weight
W(i;j) if (i;j) 2 E and 0 otherwise is calledweight function. A weighted graph is therefore
characterized by the triplet (V; E;W). By convention, graphs with no weights are identi ed with
weighted graphs for which all edges have a weight equal ta.

A graph is called undirected (or symmetric) if for any pair of vertices (i;j) 2V V , we
have (i;j) 2E ) (i) 2 E, and W(i;j) = W(j;i). In this case, whenever there is an an edge
between two verticesi and j, these vertices are callechdjacent (or connected and denotedi .
Undirected graphs can be represented as in Figure I.1b: each circle corresponds to a vertex and
a straight line between a vertexi and a vertexj is drawn wheneveri j.

A loop is an edge between a vertex and itself. Anulti-edgeis a set of two or more edges that
connect the same pair of vertices. A graph in which there are neither loops nor multi-edges is
called asimple graph.

A path on an (undirected) graph G from a vertex ip to a vertex ip is a sequence op+1 1

of the path. In particular, paths of length O correspond to the vertices of the graph and paths
of length 1 correspond to its edges.

The neighborhoodof order k 2 N of a vertex i is the set of all verticesj such that there
exists a path of length at mostk from i to j. It is denoted Ny (i). Any j 2 N(i) is called a
neighbor (of order k) of i. Basically, any vertex in a neighborhood of orderk of a vertex i can
be reached fromi with at most k hops along the edges of the graph. Figure[1.2 illustrates
the neighborhood of orderl of a given vertex (in green) of an undirected simple graph and an
example of path of length5 (in red).



24 1. Deterministic and stochastic graph signal processing

An undirected graph Gis connectedif there exists a path between any pair of its vertices. More
generally, aconnected componentof G is a connected subgraphH of G formed by vertices that
have no neighbor other than those present irH. It is easy to check that any graph is the disjoint
union of its connected components, where the union between two graph& = (Vi;E;;W1)
and G = (Vq; E;W>) with disjoint node sets and edge sets, is the graplG, [ G, de ned by
G [G2=(V1[V 2; B [E 2;W12) where Wy, is de ned so that its restriction to edges of E; (resp.
E) is Wy (resp. W»).

Two n-graphs G, = (Vi;E;W31) and G, = (V,; E; W3) are isomorphic if there exits an
edge-preserving bijection betweenV; and V, i.e. is a bijection from V; to V, such that:

8 . . . .
3 i1 ga, () (o)
8i1;j12V1; 2 and

Wi(ig;j1) = Wa( (i1); (1))

Thus, two isomorphic graphs have the same structure , meaning that they link their vertices
in the same way. In particular, if G, and G, are two subgraphs of a graphG then them being
isomorphic means a same layout of edges is observed at two parts G6f thus implying that the
structure they create is repeated at two di erent locations in G.

Assumption 1.1. In this work, only connected simple undirected nite graphs are considered.

1.1.2 Matrix representations of graphs

In this section G = (V;E;W) denotes a graph with n vertices de ned according to Assump-
tion [[.T] Severaln-matrices encompassing information on the structure ofG are now introduced.

Adjacency matrix

Given that Gis simple and undirected, for any pair of its vertices(i;j ), there exists at most one
edge between them. Theadjacency matrix W of G is de ned as then n symmetric matrix
whose entry Wj; is equal to the weight of the edge(i;j ) if it exits, and is zero otherwise:
8
< - e - .
W(;j) ifi
Wi =, .
-0 otherwise

Hence, the adjacency matrix summarizes all the relevant information about the graph structure:
the non-zero entries indicate the existence of an edge between two vertices and its weight.
Besides, ifG is composed of several connected components, then its adjacency mathi¥ can be
represented by a block matrix, where each block is the adjacency matrix of one of the connected
components. Indeed, the presence of a non-zero entry outside these blocks would imply that
there is an edge connecting two distinct connected components, which is impossible.

Remark 1.1.1. The fact that Gis undirected gives that W is symmetric, and the fact that
it is simple ensures that the diagonal entries ofW are zero.

Getting back to the notion of graph isomorphism, the following result provides a link between
isomorphic graphs and their adjacency matrices.

Proposition 1.1.1. Let G, and G, be two isomorphicn-graphs with adjacency matricesW
and W ,. Then, there exists a permutation of [1;n] such that

W;=P wW,p ;
whereP is the permutation matrix de ned by [P J; = i (). In other words,

8i;j 2 [Ln]; [Waly =[W2] ¢y ¢y (1.1)
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Proof. This result is a direct consequence of the de nition of isomorphic graphs. Identifying
the sets of vertices ofG, and G, with [1; n], the bijection between them de nes a permutation
that satis es Equation (L.1). O

In the particular case whereG, and G, are subgraphs of the same grapks, the result hereafter
follows.

Corollary 1.1.2. Let G be an-graph with adjacency matrix W and vertex setV.
Let G, and G, be two isomorphic subgraphs of, with vertex setsV; V andV, V .
Then there exists a permutation of [1;n] such that

8i,j 2Vi, Wy =[W] ) ) (1.2)

Proof. Following the de nition of isomorphic graphs, consider b to be the bijection that sends
Vi to V,. Then any permutation  of [1;n] such that 8i 2 Vi1, (i) = b(i) satis es Equa-

tion ([L.2). O

Remark 1.1.2. Both Proposition and Corollary are applicable to isomorphic
subgraphs of a graphG. The di erence is that in the latter case, the equation is satis ed by
the adjacency matrix W of the graph containing G, and G, whereas in the former case, it
involves the adjacency matrices of both subgraphs (which corresponds to sub-matrices 9 ).

Degree matrix

The degreed; of a vertexi 2 V is de ned as the sum of the weights of the edges to which it is
an endpoint. Hence, the degree of any vertex can be computed from the adjacency matrixwW
of G using the fact that

X
= W(j)= Wi =[W 1]
j=1 i=1
I
where 1, is the n-vector of ones. Note that in the particular case were all edge weights are equal
to 1, d; is equal to the number of neighbors of orderl of i.
The degree matrix D of G is then de ned as then n diagonal matrix whose (diagonal)

entries are the degrees of each vertex of the graph:

0 1
ds
o-8

§ = Diag(W 1,)
dn

Laplacian matrix

The Laplacian matrix (or graph Laplacian) L of Gisan n matrix de ned from its adjacency
and degree matrices as
L=D W

From its de nition, the Laplacian matrix enjoys several interesting properties.

Proposition 1.1.3.  Let L be the Laplacian matrix of a simple undirectedn-graph G with adja-
cency matrix W .

1. L is symmetric. Consequently,L is diagonalizable in a real orthonormal basis, and its
eigenvalues are real.
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2. The Hermitian form associated with L satis es:
1 XX
8u2cC"; uLu =2 Wi jui - ujj?

2i:1 j=1

whereu™ is de ned asut = g7.

3. 0 is an eigenvalue ofL.

Proof.
1. Direct consequence of the the fact thatW is symmetric.
P PP
2. petgs 2 C". Then, ubLu = u"Du  u"wu = | disu P Wi sy =
i Wi [_()uw, % u;). Hence, gi\{gn Igﬁat the indexesi and j play symmetric roles,

2ufLu = i jWij (s y; l$Uj)+ i i Wii (LﬁUj lﬂiui).

Finally, using the fact that W s symmetric and by switching the two sugs gf the second
double sum, we, g%{ZuH Lu = ;Wi(su wu+wgu  gu)= ; ; Wj(u
u)F u) = iWu 2

3.L1,=D1, W1, =0,.
O

Of particular interest is the case where all edge weights are non-negative as it yields stronger
properties for the associated Laplacian matrix.

Proposition 1.1.4. Let L be the graph Laplacian of a simple undirected grapfs whose weights
are non-negative. Then,

1. L is a positive semi-de nite matrix.

2. The dimension of the null space ol (or equivalently the multiplicity of its eigenvalue 0)
is equal to the number of connected components composing

3. The largest eigenvalue max Of L satis es

q

max  max  2(d+ &) ;
i2[1;n]

P P
where 8i 2 I[l; ﬂ]l, d = Ezl Wi and d\| = 2:1 Wi di.

Proof.

1. According to the second point of Proposition[1.1.B, the Hermitian form associated withL
is now positive, thus proving the result.

2. Denote A = fx 2 C" : for any pair of vertices i;j connected inG;x; = x;g and let r be
the number of connected componentsA is a vector space of dimensiom as it is spanned by
the set of r (linearly independent) vectors that are 1 on one of the connected components
of G and 0 elsewhere. We now prove thatA is the null space ofL .

Indeed, if x is in the null space ofL, then in particular x"Lx = 0 and therefore using
Item 2 of Proposition [1.1.3, x 2 A. Conversely, it is straightforward to check that any
vector in A is in the null space ofL. Therefore, the null space ofL has dimensionr.

3. Let W be the adjacency mqyix of G. Let (; x) be an eigenpair ofL. Then, Lx = X
gnd so, 8i 2 [[1;n]|P Xi = L Wik(xi Xg). Therefore, 8i;j 2 [Ln], (Xi xj) =
K Wik (X Xk) « Wik (Xj X)), which gives:

X
8i;j 2 [Lnlj jixi  xji (Wikjxi  Xkj + Wik jXj  Xkj)



1.1. Mathematical framework for graphs 27

Consider the couple(im;jm) = argmax;; jxi  Xjj. Then,
X
P Xad 0T WigkdXi,  Xkd+ Wi kX, Xi)
X k X . . . .
Wiik  (WiijXi,  Xij+ Wujxk X))
k X | . . . .
+ ij K (ij 10)%j,  Xio) + WiiojXk  Xioj)
10
By dividing by jxi, X;,] (which is non-zero otherwisex = 0) and using the fact that
Xim  Xjm] =maxij jXi Xjj, we get:
., X X X
] Witk (Wit + W)+ Wik (W, 10+ Wio)
k X | 10
= Wi k(di, +d)+ W k(d, +d)=d +d, +d +4
k
2(maxd? + &)
|

Given that this result is true for any eigenvalue of L, it is true for nax, Which proves the
proposition.
O

Normalized Laplacian matrix

The normalized Laplacian matrix (or normalized graph Laplacian C of Gis de ned for graphs
with strictly positive degrees as a scaled version of its Laplacian matrix:

C=D 1:2LD 1=2 _ In D lZZW D 1=2

Its entries are therefore de ned by

8
<1 ifi=]j
Ci = i
! : pvz”—d otherwise
i gj

Proposition 1.1.5. Let T be the normalized Laplacian matrix of a simple undirected graplc
with adjacency matrix W .

1. C is symmetric. Consequently,L is diagonalizable in a real orthonormal basis, and its
eigenvalues are real.

2. The Hermitian form associated with C satis es
PO

8u2C"; ufru =
i=1 j=1

3. 0is an eigenvalue ofCC.

Proof.
1. By de nition of its entries.

2. Simply notice that u"cu = D =2u "L D =2y .

3. One can easily check that~ P dy;iic; P d, | = 0n.
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In the particular case where all edge weights are non-negative, the normalized Laplacian
enjoys the following additional properties:

Proposition 1.1.6. Let [ be the normalized graph Laplacian of a simple undirected grapt
whose weights are non-negative. Then,

1. [C is a positive semi-de nite matrix.

2. The dimension of the null space of= (or equivalently the multiplicity of its eigenvalue Q)
is equal to the number of connected components composir

3. The largest eigenvalues nax Of C satis es

max 2

Proof. 1. According to Proposition [I.1.5, the Hermitian form of L is now positive, thus
proving the result.

2. Notice that a vector x 2 C" is in the null space of[C iif D *2x is in the null space ofL .
Consequently, the null space of” is the image of the null space of. under the isomorphism
represented byD 172, Therefore, using the rank nullity theorem, both spaces have the
same dimension.

3. First, we show that the eigenvalues of= and those ofD 1L are the same. Indeed, the eigen-
values ofD 'L are the roots of its characteristic polynomial de ned by p( ) =det(D L
Ih). This polynomial satises p( ) =det(D '“2(C  1,)D¥?) =det(D *?)det(C
I,)det(D'"2) =det(C  I,) which is the characteristic polynomial of ', hence proving
the claim.
The matrix D L can be seen as the Laplacian matrix of the graph whose adjacency ma-
trix is the non-symmetric matrix W O with elements areWiﬁJ = Wj =d. Its degree matrix
is then I, (as the rows of W ° all sum to 1). By noticing that the proof of item 3 of
Proposition [I.1.3 never uses the symmetry ofV , the bound obtained can be extended to
the non-symmetric case. In particular forD L, this bound equals2 (as all degrees of the
corresponding graph arel). This concludes our proof.
O

1.2 Background: Some notions of deterministic and stochas-
tic signal processing

In this section, we turn to the second building block of the graph signal processing framework.
We lay out the main notions of classical and stochastic signal processing on which we will later
on build a mathematical framework for graph signal processing. In the remainder of this section
d 1 denotes an integer.

1.2.1 Harmonic analysis of continuous signals

Most of the material covered in this section is detailed in (Stein and Weiss, 1971, Chapter 1).

Signals and energy A signal is a function x : R4! C. It is called integrable if
z

x(t)jdt < 1
Rd

The energy E(x) of a signalx is de ned as the positive and possibly in nite quantity
Z

E() = jx(0)jdt
Rd

Signals with nite energy therefore correspond to square-integrable functions orRY. In the
remainder of this section, only nite-energy signals are considered.
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We denote L2(RY) the Hilbert space of square-integrable functions ofR equipped with the
natural inner product h; i 2(ge) de ned by:

z
8x;y 2 L%(RY); M yiizrey = B(t)y(t)dt
Rd

In particular, 8x 2 L2(RY), E(x) = h¢Xi2(rey = kxkEZ(Rd) < 1, wherek Kkize is the norm
associated with the inner producth; i >ga).
Fourier transform The Fourier transform (FT) F of an integrable signalx is the function

F [x]:RY! C dened by
z
FIXI()=  x(t)e ' 'tdt: 2R°
Rd

In this last equation, the variable t is referred to as belonging to the time domain whereas the
variable is belongs to the frequency domain.

The FT is an invertible linear operator when applied to integrable functions whose FT is
itself integrable. The inverse FTF ! is then de ned for integrable functions x on the frequency
domain (which is RY) by

z

Folpa) = X( yet' d; t2RY

1

)¢ &

Another way of obtaining the inverse FT is by letting (Stein and Weiss, |1971, Theorem 2.4):
F D)= F¥( t); t2RY (1.3)

Plancherel's theorem (Stein and Weiss, 1971, Theorem 2.1) states that the FT conserves the
energy of an integrable signalx, i.e.
z Z

E(x)= " x(t)j?dt = Rde [XJ( )i*d = E(F [x])

This result is used to extend the de nition of the FT to any nite energy signal x, as the limit
the FT of integrable signals with nite energy converging to x. As such, the FT is a unitary
operator (Stein and Weiss,| 19711, Theorem 2.3) o 2(RY), meaning that

8x;y 2 L2(RY); M yiLzrey = I [X];F [yliL2(re

As for the inverse FT, it can also be extended toL?(R?) through Equation ([L.3).

Convolution The convolution product between two signalsx;y is the signalx y:RY! C
de ned by Z

(x y)(t)= x(u)y(t u)du; t2RY
Rd

The convolution theorem (Stein and Weiss,| 197[1, Theorem 2.6) links the notions of convolution
and FT by stating that the FT of a convolution product of two signals, one of which is integrable
and the other either integrable or with nite energy, is the point-wise product of their Fourier
transforms:

FIx yl=F[xF[y]

LTI operators See (Phillips et al!,| 2003, Chapter 3) for a more detailed approach. Letl = 1
for this particular de nition. A linear and time-invariant (LTI) operator A is a map satisfying
the following properties:

Linearity: if x1;X» are two signals, andc;; ¢, are two scalar values, thenAfcix; + CX2] =
CiA[X1] + CA[X2].

Time invariance: A commutes with time shifts, i.e. 8 > 0, A[t 7! x(t N=(t 7

AX]E ).
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A LTI operator A can be entirely characterized by a single functiona : R 7! C called impulse
responseand such that the action of the operator on a time signalx is the convolution (in the
time domain) of the impulse response and the signal:

Alx]=a x

Equivalently, following the convolution theorem, LTI operators can also be characterized by the
FT a= F [a] of their impulse response, calledransfer function. Then the action of the operator
on a time signal is described as the product in the frequency domain of the transfer function
and the Fourier transform of the signal:

F A= F[x]

1.2.2 Harmonic analysis of discrete time signals

The material covered in this section is detailed in (Oppenheim et al.| 2001, Chapter 2).
We assume that only a nite number n of samples from a signal and taken at regular time

Harmonic analysis was extended to this setting by replacing the notion of Fourier transform by
that of discrete Fourier transform. Both notions are linked as the discrete Fourier transform can
be seen as the Fourier transform of a signal de ned as a periodic train af impulses corresponding
to the n observed samples.

Discrete Fourier transform The discrete Fourier transform (DFT) of a vector of samples
X 2 C" is de ned as the vector® 2 C" with entries
1 X

R = % Xj e %G D . Ko [1n]
j=1

Each sample ofx can be retrieved from the set of its DFT coe cients using the following
inversion formula:
" X i 1k 1. .
XJ_EFH Rien ;o0 2101;n]
k=1
The DFT can be seen as the projection of an input signal onto an orthonormal basis of
discrete and nite signals. Indeed, letF be the matrix de ned by

h [
F=ps el bk : (1.4)
n 1 jk n

On one hand,F entirely de nes the DFT as for any x 2 C":
2=F"xandx = F®

On the other hand, F is a unitary matrix, ie. F ' = F" . Its columns therefore form an
orthonormal basis of C" for its canonical inner product h;:icn:

X
h;yicn = xMy = XkYk, X;y2C"
k=1
The DFT R of vector x therefore corresponds to the coordinates ox in this basis.

The DFT carries many of the properties of the Fourier transform. It is a linear, invertible
and unitary (for h;:icn) operator of C". In particular, Plancherel's theorem still holds.

Convolution The convolution between two sequences;y 2 C" is the vectorx y with entries
X0

X yk= Xj Yk pinp+r: k2 [Ln]
i=1
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where (k  j)[n] 2 [O;n 1] is the remainder of the Euclidean division of(k j) by n. Its
k-th entry corresponds to the sum-product of the sequencex and a wrapped version of the
sequencey that starts with its k-th entry.

The convolution theorem still holds with discrete sequences of samples, using now the DFT:

DFT[x y]=DFT[ x] DFT[y] ;

where denotes the entry-wise product of two vectors.

Circular convolutive operators Circular convolutive operators are de ned as linear oper-
ators A 2 M,(C) for which this matrix is a circulant matrix, i.e. there exists a sequence

0 1
T ap ol a
A a1 ay
A =
an
a, oo ay g

In particular, the action of a circular convolutive operator A on a sequence of samples can be
written 2 3

X
Ax =4 g jynpa X2 =a x

=1 1 kn

Such operators can be seen as the counterparts of LTI operators for nite sequences of samples,
given that they share the same characterization using the convolution product.

Moreover, the notion of time-invariance can be extended to nite sequences of regular sam-
plesx by once again identifying them to periodic signalsx composed of impulses corresponding
to each sample. Then shifting such a signal by the sampling time is equivalent to applying a cir-
cular shift to the sequence. This last operation can be seen as applying the following permutation
matrix to x: 0

0 O 0
1 0
J=E0 2Mp(R) : (1.5)
0o ::: 0 1 0
This last matrix, called circular shift matrix , can be used to decompose any circulant matrix as
X
A= aJdkl
k=1
where J° = | by convention. Consequently, circular convolutive operators commute with the

matrix J and therefore with time shifts.

1.2.3 Some notions regarding stochastic processes

Let d 1 and denoteB(RY) the set of all Borel sets ofRY.

Weakly-stationary processes of Rd

Let X = fX(t)g,re be a real-valuedstochastic processindexed by RY, i.e. a family of real
random variables X (t) indexed byt 2 RY and all de ned on the same probability space. X is
entirely characterized by the set of all joint distribution functions Fy,....;, de ned by:

Fiomt, P (X130005%Xn) 2 RT 70V PIX () <x g5, X (tn) <Xn]

.....
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for any integern 1 and anyty;:::;t, 2 RY (Parzen,|1999).

In practice, to catch a glimpse of the characteristics ofX , its rst two moments are preferred
to the speci cation of all these distributions (Stein| 2012). Its rst moment, called expectation
of the process ormean function, is a function that assigns to anyt 2 RY the expectation of
X (t). Its second moment, calledvariance function of the process, is a function that assigns to
any t 2 RY the variance of X (t). Of particular interest is the cross-moment of X , also called
covariance function and de ned as a function that assigns to anyti;t, 2 RY the covariance
X (ty) and X (t2).

The processX is called weakly stationary (or second-order stationary) if:

its mean function is constant: 9 2 R, 8t 2 RY, E[X ()] =
there exists a functionCx : R? 7! R such that the covariance function satis es: 8(t1;t») 2
R4 RY, Cov[X (t1); X (t2)]= Cx (t2 t1).

Remark 1.2.1. Note that the variance of a weakly stationary process must consequently be
nite and constant as 8t 2 RY, Var[X (t)] = Cov[ X (t); X (t)] = Cx (0).

Remark 1.2.2. The condition satis ed by the covariance function of a weakly stationary
process can be expressed using the Dirac delta function:

Cov[X (t1); X (t2)] = Cx (t2 ti1)= Cx ,(t2); ti;t22 RY

A weakly stationary process X is called isotropic if its covariance function Cx is radial,
i.e. there exists a functionCx : Ry 7! R such that 8h 2 RY;Cx (h) = Cx (khk). For sake of
simplicity, the same notation Cx is from now on be used to denote both the covariance function
of X and when applicable its writing as a radial function Cx .

Zero-mean weakly stationary processes admit a spectral representation (Stein, 2012, Section
2.5). Let X denote such a process. TheiX can be written as the inverse Fourier transform of
a complex random measu@ My on RY:

Y4
1

2)? e

X (t) = eNiMy (d )= F [Mx]() ; (1.6)

where M satis es:
8B 2 B(RY), E[Mx (B)]=0.

there exists a nite positive measure Fx on RY such that: 8B 2 B(RY), Var[My (B)] =
Fx (B).

8B1;B, 2 B(RY) such that B;\ B, = ;, Cov[Mx (B1);Mx (B2)] = 0.

The measureFy is called the spectral measureof X . The spectral measure of a weakly stationary
processX is linked to its covariance function Cx through the Fourier transform:

z
Cx(h)=F *[Fx](h)= éh ME(d
x (h) [Fx ](h) 2 (d)
The density fx of the spectral measureFyx , when it exists, is called the spectral density of X
and satis es: 1 Z
— 1 - ih shi
Cx(h)=F “[fx](h)= 2 e’ My ()d

In particular, given that the Fourier transform of a radial function is also radial (Ormerod,
1979), the spectral density of an isotropic eld will be a radial function. In particular, Ormerod

1A random measure can be considered as a stochastic process indexed by the elements of B(RY) and that
carries out the de ning properties of a measure, namely the countable sigma-additivity and the null empty-set

property.
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(1979) even gives the formula linking a radial covariance functionCy (which should be both
integrable and square-integrable onRY) and its associated spectral densityf o:

fo(k k) = k Kt =2 Co(r)dg=2 1(k kr)r%2dr, 2RI ; (1.7)

(2 )d=2 0

where J4-» 1 denotes the J-Bessel function with parameterd=2 1. Conversely, the expression
of the radial covariance function Cy can be retrieved from its radial spectral densityfq through
z 1
Co(khk) = (2 )%2khk! 92 fo(r)Jg=p 1(khkr)r®2dr; h 2 RY : (1.8)
0

White noise

A particular generalization of stochastic processes orRY, which is of great interest in this
dissertation, is now introduced: the white noise. A random signed measur®/ on R¢ is called a
white noise measure(or simply white noise) with variance 2 > 0if it satis es (Carrizo Vergara,

2018; Lindgren et al|, 2011):

8B 2 B(RY), E[W(B)]=0.

8B1;B, 2 B(RY), Cov[W(B1);W(B,)] = E[W(Bl)W(Bz)] = 2Leb(B;\ B,) where Leb
denotes here the Lebesgue measure of a Borel set.

The notion of spectral density can be extended to white noises by noticing that it admits
a spectral representation very similar to that of weakly stationary processes and introduced in

Equation ([L.6).

Proposition 1.2.1. Let W denote a white noise measure with variance? on RY. Then there
exists a complex measuréM, satisfying:
z

1 5 eih ;tiMW(d ) :

W(dt) = dt 5

and such that:
8B 2 B(RY), E[Mw (B)] = 0.
8B 2 B(RY), Var[Mw (B)]=(2 )¢ 2Leb(B).

8B1;B, 2 B(RY) such thatB;\ B, = ;, Cov[Mw (B1);Mw (B2)] =0.

Proof. See Appendix C.]. O

Similarly to stationary processes, the spectral measure of the white noise is de ned as the
measure associated to the variance d¥1y . Therefore, the spectral measure of the white noise
is the Lebesgue measure, scaled with a factd2 )¢ 2. This measure admits a density, which
de nes the spectral density of the white noise and corresponds to the constant function equal to
(2 )¢ 2. The white noise can therefore be seen as generalized stochastic process with a spectral
measure that is not nite but rather admits a density that is constant across the frequency
domain.

Kernel representation of stationary processes

A representation of a class of weakly stationary stochastic processes B® using a convolution

product of a white noise is now presented| (Higdon et al], 1999). Lek : R ! R denote a square-

integrable function, called kernel function, and introduce Z the stochastic process de ned by:
VA

Z(t) = k(t s)W(ds); t2RY : (1.9)
Rd
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Then, Z is zero-mean and its covariance function satis es:

Z Z
E[Z(t1)Z(t2)]= E k(ty u)k(tz v)W(du)W (dv)
Z Z Rd Rd

Cov[Z(t1); Z(t2)]

k(ty u)k(tz Vv)E[W(du)W (dv)]
Rd Z

k(t; u)k(t u)du = k(Wk(t, t;+u)du ;
d Rd

d

ZR

R

which is a function of the lagt, t;. Noticing, using the Cauchy Schwartz inequality, that its
values are always nite, we can conclude thatZ is a weakly stationary process with covariance
function: Z Z

Cz(n)= kWkh+wdi= kv hkwdu=k kh) ;

where k denotes the re ection of k i.e. 8t 2 RY:k(u) = k( u). Moreover, it admits a spectral
density fz satisfying:

fz( )= F[Cz1( )= F [KI( )F [KI( )= jF [KI()i* ;

which clearly de nes a positive nite measure given that k is square-integrable.

Conversely, given a spectral densityf (i.e. a positive function de ning a nite measure), a
weakly process with spectral densityf can be generated using Equation9) by takingk as the
function de ned by: p_
k=F [ f]

1.3 Graph signal processing in a nutshell

Now that the two building blocks necessary to its construction have been laid out, we introduce
the general framework used in graph signal processing. The notions presented in this section are
part of the standard framework used in the graph signal processing community. They are also
introduced in (Girault,| 2015a; Ortega et al., [2018; Perraudin and Vandergheynst, 2017; Shuman
et al., [2013).

1.3.1 Signals on a graph

A graph signalx on an-graph G=(V;E;W) is a function x : V! C that assigns to each vertex
i of G a complex numberx(i). Any graph signal x can be represented by a vectox such that
X; = X(i). Hence, vectors ofC" are identi ed with signals on a n-graph. A signal de ned on a
graph Gis called aG-signal.

Example 1.3.1 (Digital image processing) A digital image is a rectangular grid of adjacent
colored points, also called pixels. A simple undirected graphs can be associated to a given
digital image as follows: each pixel of the image is associated to a vertex & and adjacent
pixels de ne adjacent vertices onG.

By de nition, each pixel has a color. For black-and-white images, this color can be repre-
sented by a real value ranging from0 (for black) to 1 (for white) and corresponding to a shade
of grey. Hence, the function that associates to each pixel its shade of grey de nes a signal on
the graph G.

The inner product of two signalsx;y 2 C" is de ned as the inner product of the corresponding
vectors, and is denoted:
X
h;yi == hX;yien = 5 Yi
i=1
The energy E (x) of a graph signalx 2 C" is de ned as the square of 2-norm:

xX
E(x)= kxk?®= h:;xi = jxij?
i=1
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These de nitions are natural extensions of the de nition of the inner product and energy of
continuous signals in classical signal processing.

1.3.2 Graph shift operators

A n n matrix S is called ashift operator for the graph Gif its entries satisfy
8i;j 2[Ln]; S; 60) i jori=]j

Hence, the o -diagonal non-zero entries of a shift operator indicate the existence of an edge
between two vertices ofG.

More generally, the non-zero entries of the iteratesSK;k 2 of S provide some knowledge
about the existence of a path of lengthk between two given vertices of the corresponding graph.
Indeed, notice that the entries of SX can be deduced from the entries o by:

X X X

sk = Sil1 gkt ] = = Si|1S|1|2:::S|k 1 k 2
I=1 I;=1 lg 1=1

Hence for Sk i to be non-zero, at least one of the termsS;, S,1, ::: S, ,; must be non-zero,
meaning that there must exist a sequence ok 1 vertices ly;:::;lx 1 such that this term is
non-zero. According to the de nition of shift operators this actually means that the sequence

path of length k.
Shift operators can be seen as linear operators 08" whose action is de ned by

S:u2C"71Su2cC"

The signal Su is then said to be shifted. Notice that, according to the non-zero pattern ofS,
the value of the shifted signalSu at a vertex i satis es

X

8i 2 [1;n]; [Suli = Sju;+ Sj y;

jgi

] I
Hence the value of the shifted signalSu at a vertex i is a weighted sum of the values ofi at i
and its adjacent vertices and therefore can be seen as a local transformation of the original signal
u. Another interpretation of shifted signals, which justi es their name, consists in noticing that
to compute the value of Su at a vertex i, one needs to shift along the edges of the graph
and towards i the values taken by u at the adjacent vertices ofi, and then compute a linear
combination of these values.

Example 1.3.2 (Adjacency matrix) . The adjacency matrix W of Gis a possible choice shift
operator. Seen as an operator orC", its action is de ned as

2 3

X
W:u2C"71Wu=4  Wuy° 2¢C"
=1 1in
Therefore, applying the adjacency matrix to a signal results in computing for each vertex the
weighted average of the values of the signal at its adjacent vertices, the weights being de ned
as the edge weights.

Example 1.3.3 (Laplacian matrix) . The Laplacian matrix L of Gis another possible choice
of shift operator. Seen as an operator orC", its action is de ned as
2 3

N
L:u2C"71lu =4  W;(u u)s 2¢C"

=1 1in
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Therefore, applying the Laplacian matrix to a signal results in computing for each vertex
the weighted average of the di erences between the value of the signal at this vertex and
the values at its adjacent vertices. Hence, similarly to the discretization of the Laplacian
operator of functions of RY in nite di erences, the graph Laplacian computes at each vertex
i a weighted sum of the di erences between the value of a signal atand the value it takes in
each direction. In the graph settings these directions are de ned by the edges linked to.

Note also that the inner product between a signalx and the shifted signalLx satis es

1 XX
h;Lx i = hx ;xi = = Wi jxi - Xjj?
i=1 j=1

and can therefore be seen as a measure of the variations of the signaklong the edges of the
graph.

Example 1.3.4 (normalized Laplacian matrix). Just like the Laplacian matrix, the normal-
ized Laplacian matrix L of Gis also a possible shift operator. Seen as an operator d@", its
action is de ned as
2 1 3
. n 4 1 X Uj U 5
C:u2C"7'u =4p= W; p= p=
d._ di d;
=1 1in
and can be seen as applying a graph Laplacian to a scaled version of the signal. The scaling
in question consists in scaling down the values of the signals corresponding to high degree

vertices. The inner product between a signak and the shifted signalCx now writes:
2

. R A Xi Xi
h:Oxi= hox;xi = = Wi = P=

2i:1 j=1 i d

and can therefore still be seen as a measure of the variations of the scaled sigial 1=2x along
the edges of the graph.

In the remainder if this chapter, the following assumption is made on the shift operators that
will be considered.

Assumption 1.2.  Only real, symmetric shift operators S are considered.
Consequently,S is diagonalizable by a unitary matrix and has real eigenvalues. Such a de-
composition is denoted as follows:

1

0
1
S:V% %v”;
n

where

1 n denote the real eigenvalues db, ordered in ascending order,

form an orthonormal basis of C" composed of eigenvectors o6 such that:

8 2 [1;n]; sSvi) = ;v(®
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Remark 1.3.1. Note that V can be chosen to be a real matrix, i.e.v®:::::v(") can be
chosen to be a orthonormal basis oR" composed of real vectors and/ 1= VT,

1.3.3 Harmonic analysis of graph signals

A starting point: the ring graph

The ring graph of sizen is the unweighted n-graph such that each vertexi 2 [1;n] is (only)
linked to the verticesi 1andi+1. By convention the label O corresponds to the vertexn and
the label n + 1 corresponds to the vertex1, hence the circular property.

The ring graph is an undirected simple graph. Its adjacency matrix is the symmetric matrix
W, de ned as:

(1iHij) 1 (modn)

W.li = 10 n
Wl 0 otherwise ]

Equivalently, W , can be expressed using the circular permutation matrixJ (cf. Equation ()

as 0 1
1 0 ::: 0 1
0
01 . - :
W,=8 =J+JT=J3+J"1

: T |
1 .01
1 0 ::: O 1 O

The corresponding degree matrixD  is then given by:
D,=W,1=2l,
Finally the Laplacian matrix L, of the ring graph is given by:
Lr=D, W,=21, J J"1

Let S; denote either the adjacency matrix or the Laplacian of the ring graph. S is in
particular a shift operator of this graph. In both cases, there exists a polynomialP; such that:

S =P (J)

Indeed, P, is the polynomial X 7! X + X" Yif S, =W, andX 712 X X" YifS, =L,.
Recall that J is a diagonalizable matrix with n distinct eigenvalues which aren roots of unity
and an orthonormal eigenbasis given by the DFT matrix F (cf. Equation ():

h i
J=FDiag 1;!;:::;t "L FH: F = plj P Dk :
n 1 jk n

where! = &% and F satisesF 1= FH. In particular, the shift operator S; veri es:

The DFT can therefore be seen as projection onto an eigenbasis of a shift operator of the ring
graph.

Getting back to general graph signals, let's recall that signals on ar-graph can be identi ed
with vectors of C" and hence with sequences ofi samples. In particular for signals de ned
on the ring graph, the DFT of the corresponding sequence of samples is exactly the projection
of the signal onto an eigenbasis of a shift operator of the graph on which it is de ned. This
observation motivates the generalization of the notion of Fourier transform of signals on more
general graphs.
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Graph Fourier Transform

Following Assumption [1.2, the eigenvectors of a shift operator actually form an orthonormal
basis of C", thus meaning that any signal can be (uniquely) decomposed as a weighted sum of
these eigenvectors. This decomposition de nes the notion of graph Fourier transform.

De nition 1.3.1 . Let x 2 C" be a signal on an-graph with shift operator S. The graph Fourier
transform (GFT) of x with respect to an orthonormal eigenbasisv/ of S is the vector GFT[x]
de ned as: 0 1

hv® :xi
GFT[x]= VHx = : §
hv(M): xi

The GFT of a signal is therefore the vector containing its coordinates in the eigenbasis of
the shift operator:

x = hwO;xivlD =" [GFT[x]} v
i=1 i=1
It can be seen as a signal indexed by the eigenvalues of the shift operator, thus motivating the
use of the termgraph frequencyto refer to the eigenvalues of the shift operator. The termgraph
modesthen refers to the corresponding eigenvectors.
Any signal therefore has two equivalent representations:

in the vertex domain: the signal is seen as the assignment of a real value to each vertex

in the frequency domain the signal is seen as a linear combination of elementary signals
de ned as the eigenvectors of a shift operator and is characterized by the weights involved
in the combination.

The GFT with respect to V is an invertible operation. The inverse GFT of a vectory 2 C"
is de ned as follows: L
GFT 'yl= V" “y=Vy

1.3.4 Graph convolutions

The de nition of the convolution of graph signals relies on an analogy with the classical signal
processing framework. Indeed, the convolution theorem states that the FT of the convolution of
two (continuous) signals equals the point-wise product of their FTs. To conserve this property in
the graph signal processing framework, theonvolution of two graph signalsx;y 2 C" is de ned
as the graph signalx vy satisfying

X y=GFT [GFT[x] GFT[y]]=V VH"x vHy

From its de nition, the convolution product of graph signals carries several of the important
properties of the convolution of time signals. Namely, it is a commutative, associative and
bilinear operation.

Remark 1.3.2. The result of the convolution between two graph signals depends on the basis
V chosen to de ne the GFT. Given that there is no uniqueness of eigendecomposition for a
given shift operator, setting a shift operator is not su cient to set the framework necessary
to work with graph convolutions. The basis V should also be speci ed.

Graph convolutions are used to de ne graph translations, using an analogy with classical
signal processing. Indeed, translating time-wise a signal by a delay is equivalent to convolution
this same signal with a Dirac impulse at time . Both notions are now de ned for the graph
signal processing framework.

De nition 1.3.2 . [Dirac signal] Let G be a graph with set of vertices/. The Dirac signal of G
at vertexi 2 V is the G-signal () de ned by:

sk2v; = 4
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De nition 1.3.3 . [Graph translation] Let G be a graph with set of verticesV and let x be a
G-signal. The translation of x with respect to vertexi 2 V is the G-signal Tix de ned by:

Thy = )

In particular, the translation operator T () that maps anyG-signal to its translation with respect
toi 2V can be de ned hy:

T = vDiag VH O yH

1.3.5 Graph lters

A linear operator on graph signals is a linear mapping fromC" to itself. De ned as such, it can
be represented by a matrixA 2 M ,(C) whose columns correspond to the image of the canonical
basis of C". This operator is called real if its representative matrix is real. It can then be seen
as a linear mapping fromR" to itself.

Graph Iters are a class of linear operators on graph signals that act on the frequency content
of a signal. Through the GFT, any signal can be decomposed as a weighted sum of elementary
signals, each associated to a given graph frequency. Graph lIters aim at amplifying or attenuating
the weight of some of these signals on the overall decomposition. Such an operation can be
modeled using atransfer function A, which is a function that associates to each graph frequency

a scaling factorA( ) 2 C. Applying a graph Iter with transfer function A to a signal x yields
a signaly such that:
GFT[y]i = A( i)GFT[x]i; i2[1n]

Hence thei-th spectral component of the input signal x is now scaled by a factorA( ;). Note
in particular that duplicated frequencies/eigenvalues are necessarily scaled by the same factor.
Applying the inverse GFT to both members of this last equation gives:

0
A( 1)
y=V % § Vv Hx
A( n)

Graph lIters can therefore be represented by matrix functions A(S) of the shift operator S
de ned by 0 1

A( 1)

A(S):=V% §VH2Mn(C)
A( n)

Their action on a signal x is theny = A(S)x and this vector is called a Itered signal.
Three ingredients seem necessary to de ne a graph lter:

responding to the image of the set of eigenvalues & through a (transfer) function A,

a choice of (orthonormal) basisV for the eigendecomposition ofS.

The following theorem proves that the third requirement is actually not necessary, meaning that
graph lters can be de ned independently from the choice of the eigenbasis/ .

Theorem 1.3.1. Any graph Iter de ned on a n-graph with shift operator S and transfer func-
tion A can be uniquely written as a matrix polynomial ofS of degree at mostn 1, i.e., there

exists a unique set of coe cients agp;:::; 1 2 C such that:
D4 1
A(S) = a, Sk
k=0
In particular the coe cients ag;:::;a, 1 2 C are entirely de ned by the frequency response of

the graph lter.
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Proof. Let V denote any eigenbasis o5. Let A(S) be a graph Iter de ned through V and
with transfer function A and denote (A( 1):::A( »))T 2 C" its frequency response.

De ne P, to be the Lagrange interpolation polynomial that assigns to each ;i 2 [1;n]
the value Pao( i) = A( i). Letn n be the number of distinct eigenvalues ofS. According
to the unisolvence theorem,P, is the only polynomial of degree n 1 that interpolates

A at points i;:::; . Denoteag;:::;a, 1 the coe cients of this polynomial, some of which
possibly being zero. LetPa(S) be the graph lter de ned through V and with transfer
function Pa.

On one hand,

On the other hand,
0

L 0 0 11
k
k=0 ' K 1 1
Pa(S)=V vhH =v ak% §§v“
rPla } k=0 k
K n n
k=0
K1
=  aVDiag ;:::; K vH
k=0

It is straightforward to show by induction that, whatever the choice of orthonormal basis V ,
1

H Kewuun k H — k H - P k
VDiag f;:::; & V™ =S¥ which allows to conclude that P4 (S) = ax S¥.

k=0
Hence,P, is de ned independently of a choice of eigenbasi¥ given that it is a polynomial
whose coe cients are independent ofV . This concludes the proof asA(S) = Pa(S). O

Graph lters are therefore uniquely speci ed by a choice of shift operator S and a choice
of transfer function A which de nes their frequency response. Note also that following Theo-
rem[1.3], all graph lIters can be seen as matrix polynomials, even though the associated transfer
function is not derived from a polynomial function. The action of a graph Iter A(S) on a signal
can then be expressed as:

X K X K X K
yi =[A(S)X] = a[S"x] = a [ST]jx = X; Sl s
k=0 k=0 j=1 j=1 k=0

whereK n 1is the actual order of the polynomial representingA. Hence, the value of the
Itered signal at a vertex i is a linear combination of the values taken by the input signal.

More precisely, recall that the non-zero pattern of the iterates of the shift operator re ects
the existence of a path between pairs of vertices. In particular, whenever there is no path of
length lesser or equal toK between two verticesi and j, all elements[S¥]; ;0 k K are zero
and thereforex; is not used to compute the value of the ltered signal at vertexi. Formally this
means that the value of the ltered signal at a vertex i is a linear combination of the values of
the input signal within a K -hop neighborhood aroundi.

We now circle back to our ongoing analogy with classical signal processing. Graph lters are
the counterparts for graph signals of the notion of linear and time-invariant (LTI) operator de-
ned for continuous 1D signals. Both operators are linear maps and commute with translations.
Indeed, for any graph signalx, any graph Iter A(S) and any vertex i 2 V, the translation
operator T () with respect to i satis es:

Hence translating a Itered signal is the same as ltering the translated input. This is what
de ned time invariance for LTI operators on time signals.
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Note that the same representation of LTI operators by a convolution product holds for graph
A( 1) A( 1)
A(S)x = a x wherea = =GFT §%

Iters. Indeed, it is straightforward to see that'
A( n) A( n)

where the convolution product and the vectora are de ned using the same eigenbasiy .

1.4 Stochastic graph signals

Now that the framework for studying (deterministic) graph signals is in place, we turn to its
generalization to account for random graph signals. The aim is to provide some notions and tools
that will help us work with stochastic processes de ned on the vertices of a graph. The notions
introduced will be compared to the existing literature on stochastic graph signal processing
throughout the section.

In this section, G denotes a simple undirectedn-graph and S denotes a shift operator ofG
following Assumption [1.2.

1.4.1 Stationary stochastic graph signals

A graph signal on an-graph G is called stochastic if it assigns to each vertex ofs a random
variable. Stochastic graphs signal{SGS) on G can therefore be identi ed with random vectors
of C". As such, the rst two moments of a SGSX are:

its expectation, which is the vector of C" whose elements are the expectations of the
elements ofX : [E[X 1li = E[X;],

its covariance matrix, which is the n n matrix whose element(i;j ) is the covariance
betweenX; and X;: Var[X]= E (X E[X](X EXD)" .

Assumption 1.3.  Unless otherwise speci ed, the SGS considered in this work are zero-mean,
ie. EX]1=0

Based on this assumption, which will be discussed in Sectign 1.4.4, we introduce the notion
of stationary graph signal that we will use in this work. This de nition will be motivated
in Section[1.4.2 and compared to existing de nitions of stationary graph signals found in the
literature in Section I.4.3.

De nition 1.4.1 . Let S be a shift operator of G. A zero-mean SGSX on G is called S-
stationary if its covariance matrix Var[X ] is a graph Iter with a non-negative transfer function
fx :R! R;:

Var[X]= fx (S)

The transfer function de ning the covariance matrix of a S-stationary SGS is called the spectral
density of the SGS.

As de ned, the notion of stationarity depends on the shift operator S: the same SGS can
therefore be stationary or not according to the choice of shift operator. Of particular interest
however are white signals, that generalize to graph signals the notion of white noise and are
shift -independent.

Example 1.4.1 (White signal). A white signal on Gis a zero-mean SGSV whose components
are independent zero-mean unit-variance random variables. HencéV is a signal such that
E[W]=0and Var[W]=I,.

White signals are alwaysS-stationary, for any choice of shift operator S. The spectral
density f\ of a white signal is the function satisfyingfw ( )=1 forall 2 R.
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Proposition 1.4.1. The GFT X = GFT[ X ] of a zero-meanS-stationary graph signal X with
spectral densityfy is a zero-mean SGS with uncorrelated components. Its covariance matrix is
the diagonal matrix de ned by:

0 1

fx( 1)
Var[X]= VP Var[X ]V = % E

fx(n)

Proof. By linearity of the expectation, X is zero-mean. AndVar[X]=Cov[VHX ; V"X ]=
VHvar[X ]V = VH{y (S)V which yields the result by de nition of the graph lter fyx (S).
O

Following the de nition of the GFT, a zero-mean S-stationary graph signal X with spectral
density fx can be decomposed as:

X .
X = x;v)
i=1
where:
The signalsv®;:::;v(") are deterministic and pairwise orthogonal (with respect to the
graph scalar product).
The weights X7;:::; X, are random and pairwise uncorrelated variables with variances

This decomposition is therefore the GSP analogous of the Karhunen Loéve expansion of stochas-
tic processes.

Remark 1.4.1. If fyx cancels out at a given eigenvalue ; then the corresponding weight
X is a zero-mean variable with a0 variance. It is therefore a deterministic constant set to
0, meaning that the corresponding SGS has no component along(’). More generally, the
Karhunen Loéeve expansion of a SGSX with spectral density fx therefore writes:
X )
X = Xivh
i2[L;n]:fx ( )60

In particular, band-limited SGS can be de ned by considering spectral densities that cancel
out across a given bandwidth.

As de ned, the image of aS-stationary signal after application of a graph Iter also de ned
through S, is S-stationary.

Theorem 1.4.2. Let X be aS-stationary SGS with spectral densityfx and let h(S) be a graph
Iter with transfer function h. Then the ltered signal Y = h(S)X is S-stationary with spectral
density 7! h( )?fx ().

Proof. Clearly, Y is also a zero-mean SGS. lts covariance matrix is therefore given by:
Var[Y] = E[YY"] = E[h(S)XX Hh(S)H] = h(S)E[XX H]h(S)H. Using the fact that
h(S) is a Hermitian matrix gives Var[Y ] = h(S)Var[X ]h(S) = h(S)fx (S)h(S) and using
the fact that all these graph Iters are related to the same shift operator yields: Var[Y ] =
(hfx h)(S) = (h*fx )(S). O

A de ning property of S-stationary signals is now introduced.
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Theorem 1.4.3. A (zero-mean) SGSX is S-stationary with spectral density f x iif there exists

a white signalW such that: p__
X = fx(S)W

Proof. Let X be a zero-meanS-stationary SGS with spectral density fx . Without loss of

convention the casep = 0 corresponds to the case where afi( ;) are non-zero. LetX be the
GFT of X . Let W denote the zero-mean SGS de ned by:

00 1 0 11
0,
W = v @@_PP X+ @ P AA
Dn p On P
whereD, pisa(n p) (n p)diagonal matrix with entries P~ (1 );:::;pf 1( ) and
X p+l X n

is a vector with pbindependent zero-mean unit-variance components. ThenW is a white
signal and satises’ fx (S)W = X ..
The second implication of the proposition is a direct consequence of Theorem 1.4.2. [

1.4.2 Justi cation of the de nition of stationarity

As de ned, the notion of S-stationarity for graph signals allows to draw direct parallels with the
notion of weak stationarity that is de ned for stochastic processes onRY.

Spectral representation

The notion of measure can be extended to the Graph Signal Processing framework as follows.
A graph measure on the frequency domain is de ned as a measure on the power g&f) of the
(nite) discrete set = f 1;:::; 0 composed of the graph Fourier frequencies o&. A graph
measure can be entirely characterized by the knowledge of the value of the measure of each
singleton composing . Then, the measure of any subset oP () is simply de ned as:

X
852P(); (8= (i)
i2[1;n]: i2S
Hence a graph measure can be represented by then-vector = ( ( 1);:::; ( n))T, which

can be seen as signal on the graph frequency domain.

Remark 1.4.2. Similarly a graph measure on the vertex domain is de ned as a measure on
the power setP (V) of the ( nite) discrete set V composed of the vertices of the graph.

Proposition 1.4.4. Let X be aS-stationary SGS with spectral densityfx . Then there exists

a random graph measure x such that:
20 13

x (1)
X =GFT [ x]=GFT 15% : gz ;
x( n)
where x satis es:
8S2P (), E[ x(S)]=0.

The positive graph measure de ned from the spectral densitfx on satises: 8S2 P () ,
Var[ x (S)] = fx (S).

851;S2, 2P () suchthatS;\ S, =;, Cov[ x(S1); x(S2)]=0.
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Proof. Denote x the measure de ned by :
x =GFT[ X]
Clearly GFT [ x] = X . According to Proposition the vector x is a zero-mean

the corresponding graph measure is also zero-mean and satis 5:;S, 2 P () ,

X X
Cov[ x (S1); x (S2)] = Cov[ (i); ()]
i2[1;n]>&281 j2[1;n]: 2S2
= fx ()
k2[1;n]: k2S1\ S,

On one hand, ifS;\ S; = ;, Cov[ x (S1); x(S2)] = 0. On the other hand, the spectral
density fx de nes a positive graph measure that satises8S 2 P () , Var[ x (S)] = fx (S).
O

The conventions chosen to de ne both notions of Fourier transform and stationarity for
graph signals yield a direct correspondence with the framework of weakly stationary processes.
Indeed, in both cases stationary signals can be represented as the inverse Fourier transform of
a zero-mean random measure which is uncorrelated over disjoint sets and whose variance is a
deterministic positive ( nite) measure. Moreover, in both frameworks, the spectral density of
the signal actually corresponds to the density of the spectral measure.

Convolution representation

Similarly as weakly stationary processes, &-stationary SGS can be obtained by convolving a
white input with a kernel.

Proposition 1.4.5. A (zero-mean) SGS X is S-stationary with spectral density fx iif there
exists a white signalW such that:

20 13

PFcC 1) gz

Proof. Following the notations of the proposition and the de nition of the convolution product
of graph signals,

X =k W wherek = GFT 1§%

PECn)

00 , 1 1

V Diag pi( 1);:::;p§( n) VHw :pi(S)W :

which proves the result according to Theoren| 1.43. O

As it was the case with the framework of weakly stationary processes, stationary signals with
a known spectral density are obtained by convolving white input (white noise or white graph
signal) with a kernel function de ned as the inverse Fourier transform of the square-root of the
spectral density.

In terms of covariance, the next proposition provides a characterization ofS-stationary SGS,
based on a convolution and similar to the one presented in Remark 1.7.2 for weakly stationary
random elds.
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Proposition 1.4.6. A (zero-mean) SGS X is S-stationary with spectral density fx iif its

covariance satis es:
Cov[Xi;Xj]=[C ] (1.10)
20 13

whereC = GFT 1§%
fx( n)

1 to vertex i and O to all other vertices.

fx( 1)
%z and ; is the Dirac signal at vertexi, that assigns the value

[C =V ix() VH o =[fx(S) ] = NalX] )
= [Cov[X ;X T}, = Cov[X; X;]

O

The graph spectral density plays the same role as the spectral density of weakly stationary
random elds. Indeed, the covariance between a reference vertexand any other vertex j can
be expressed as the convolution between a covariance "signdl’, de ned as the inverse graph
Fourier Transform of the spectral density and the Dirac signal at vertexi.

Remark 1.4.3. In their work, Perraudin and Vandergheynst (2017) actually use Equa-
tion (L.10) to de ne their notion of stationarity of graph signals, called graph wide-sense
stationarity, in the particular case where the shift operator is the Graph Laplacian. It is
therefore equivalent to our notion of S-stationarity according to Proposition [[.4.6] They mo-
tivate their choice by explaining that they obtain a covariance that is de ned by a global
kernel function (our spectral density) and locally adapted to the structure of the graph to de-
rive covariance between vertices using a convolution with a localized signal, the Dirac signal.

1.4.3 Comparison with other de nitions of stationarity

In this section, we compare our de nition of a stationary SGS, given in De nition [.4.]to existing
de nitions of stationarity, and discuss the underlying assumptions made by choosing ours.
Comparison with the work of T. Espinasse

In his work, [Espinasse [(2011) de nes a notion of stationarity for a stochastic process indexed by
the vertices of graph. It is based on the notion of invariant.

Denition 1.4.2 . Let S, be the set of all permutations off 1;:::;ng and for 2 S, denoteP
the permutation matrix de ned by [P J; = ; (j). In particular, P is invertible and its inverse
is P 1= M 1.

An invariant is a function : Dom() Mn(R)! Mp(R) such that:

8A 2Dom() ,AT2Dom() and ( AT)=( A)T
8A 2Dom() ,8 2S,,P AP 2Dom() and (P AP )= P 1( A)P

The order of an invariant is the smallest integerr 0 such that8A 2 Dom() , 8i;j 2 [1;n],
the value of[ ( A)]; only depends on the elementBAy : k;| are within r hops from eitheri or

ig.
The notion of stationary SGS is then de ned as follows.

Denition 1.4.3 . [(Espinasse, 2011, De nition 3.7.3)] A SGS X on a graph G with shift
operator S is stationary of order r if its covariance matrix Var[X ] satis es:

Var[X ] is positive de nite.
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There exists an invariant  of order r such that:

Var[X]1= ( S)

Similarly to the de nition we introduced, this de nition describes stationarity with respect
to a choice of shift operator. Actually, the de nition we provided falls into the scope of the
de nition proposed by Espinasse (2011). Simply notice that any polynomial of degree is an
invariant of order r for the set of symmetric matrices.

This de nition ensures that the covariance between two pairs of vertices associated to two
large-enough isomorphic parts of the graph stays the same, as stated by the following propo-
sition.

Proposition 1.4.7.  Let (i1;j1) and (i2;j2) be two pairs of vertices of a graphG belonging to
two isomorphic subsetsv; and V, of vertices of G and such thati, (resp. j») is the image ofi;
(resp. j1).

Then for any processX stationary of order r in the sense of De nition L.4.3] if V; includes all
vertices within r hops of eitheri, or j,, then

COV[Xil;le] = COV[XiZ;ij]

Proof. Let us denote W the adjacency matrix of G. Following Corollary [[.1.2], there exists
a permutation  such that (i) = iz, (j1) = j2 and 8i;j 2 Vi, Wj = W ¢y () =
[P WP Jj.

Then, given that W is shift operator, it follows from De nition 1.4.3 that

Var[X Tli,i, = [ W)lizi, =10 W) 0y oy =[P P (W)P Ty,
And using the fact that is an invariant,
[Var[x ]]izjz :[( P 'wp )]i1j1

Hence, given that is of orderr, [Var[X ]]i,j, only depends on the elements dk;| of P WP
that are within r hops of (i1;j 1). If Vi is large enough to include these vertices, then these
elements are equal to those oW and therefore,

Var[X Ili,j, = [( W)liyj, = [Var[ X ]i,j,

O

This result acts like a generalization for graphs of the invariance of the covariance of a
stationary process by translation and symmetry, both being, similarly to graph isomorphisms,
bijective transformations that preserve the structure of the objects they are applied to. This
property is kept with the de nition of S-stationary we introduced as it is a particular case of

De nition 1.4.3]

Comparison to the work of Marques et al.
In their work, Marques et al.|(2017) provide three de nitions of weak stationarity for a SGS.

De nition 1.4.4 . [(Marques et all,|2017, De nitions 1 and 2)] Let G be an-graph with shift
operator S. A (zero-mean) SGS X is weakly stationary if it satis es one the following require-
ment:

1. X can be written asX = h(S)W for a graph lter h(S) and a white signalW .
2. Var[X ] and S are simultaneously diagonalizable.

3. For any integers a;b;c;d 0 such thata+ b= c+ d:
h .

i h T i

T = E (s°X) SUX :

E (S3X) SPX

or equivalently,
Savar[X ]SP = S°Vvar[X ]s¢
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Note that we proved in Theorem that Requirement[] is actually equivalent to our
de nition of S-stationary, thus linking our notion of stationarity to that of this new de nition.

Marques et al| (2017) show that Requirements[]z ancD3 are in fact equivalent, and that
Requirement[] implies[2 and[B. There is no equivalence betwedr] 1 afd 2 as Requiremgnt 1
implicitly imposes that the eigenspaces oS and Var[X ] must be the same, which is not generally
the case ifVar[X ] and S are just simultaneously diagonalizable. Indeed, letv® and v® be
two orthogonal eigenvectors belonging to the same eigenspace $f associated to a duplicated
eigenvalue . Then for Requirement[] to be satis ed, the eigenvalues ofar[X ] associated to
v and v@ must also be equal (toh?( )) and therefore v®Y and v are also in the same
eigenspace oWar[X ].

Hence, de ning stationarity through this Requirement [](or equivalently using our notion of
S-stationarity) yields a more restrictive notion than using the other two requirements. However,
both de nitions become in fact equivalent when S has no duplicated eigenvalue.

Besides, de ning stationarity using Requirement[] allows to keep the properties given by
Requirements[2 and 8. In particular, Requirement 3 generalizes the invariance of the correlation
operator by application of shifts by imposing that as long as the total number of times that a
signal is shifted is constant, the covariance stays the same.

Comparison to the work of B. Girault

In his work, Girault (2015a) bases the de nition of stationarity on an invariance of the covariance
by translation, similarly as in Requirement 8of De nition 1.4.4] But translations are now de ned
as the application of the following (complex) operator to a graph signal:

Ts = exp ipjpg :
s

where only symmetric positive semi-de nite shift operators S are considered and s is an upper
bound on the eigenvalues ofS.

Contrary to the de nitions based on the shift operator or Dirac signals, this de nition has
the particularity to conserve the energy of a graph signal which is de ned as its norm. It is
therefore an isometric operator. Stationarity is then de ned as follows:

De nition 1.4.5 . [(Girault, 2015b, De nition 3) ] Let G be an-graph with shift operator S. A
(zero-mean) SGSX is wide-sense stationary if its covariance matrix satis es

Var[X ]=Var[ TsX ]

Girault |(2015b| Proposition 1) proves that wide-sense stationarity is equivalent to Require-
ment [Z of De nition {.4.4] The same comparison with the notion of S-stationarity therefore
holds: both de nitions are equivalent only if the eigenvalues ofS are distinct. In the general
case, S-stationarity implies De nition 1[4.5 land therefore yields a more restrictive notion of
stationarity.

1.4.4 A few words on the mean

Up until now, only zero-mean SGS were considered, i.e. SGS such that their mean vector is
zero. However, it does not constitute a requirement for random elds to be weakly stationary.
Indeed, for a random eld to be stationary, its mean function should be constant. The natural
counterpart of this requirement for graph signals would be to impose that the mean vector
of a stationary SGS should be constant, meaning that there exists a constantm such that
the expectation of a stationary SGSY at any vertex i is E[Y;] = m. Hence a$S stationary
SGSY would be de ned as the sum of a constant vectorm1 and a stationary zero-mean SGS
X =Y EY]=Y ml

If we were to de ne stationary SGS like this, we would lose some of their properties, rst of
which being the preservation of stationary after lItering, as stated in Theorem [1.4.3. Indeed,
the mean of the Itered signal h(S)Y is mh(S)1 which is a constant signal if and only if1 is an
eigenvector ofS. This remark motivates the following de nition of S-stationary for signals that
may not be zero-mean.
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Denition 1.4.6 . A SGSY s called S-stationary if there exists an constantm such that:
Y mv is a zero-meanS-stationary SGS,

wherev is an eigenvector ofS.

Note that whatever the choice of eigenvectorv of S, Theorem[1.4.2 is satis ed. Besides,
in the particular case where S is the graph Laplacian, the constant signall is an admissible
candidate for v and therefore the mean of a stationary SGS can be considered as constant across
the vertices.

Conclusion

In this chapter, we presented the mathematical framework we will use to work with variables
indexed by the vertices of a (simple undirected) graph. Both the cases of deterministic and
random graph signals were considered, and their respective frameworks of study were built using
analogies with respectively classical signal processing theory and stochastic processes theory.

A key notion to keep in mind is that of shift operators, which are matrices aiming at repre-
senting the structure of the graph on which the signals are de ned. These matrices are used to
de ne all the key tools pertaining to both deterministic and stochastic graph signal processing.
Indeed, on one hand, the graph Fourier transform but also convolutions and Itering of graph
signals were all de ned while relying on the eigendecomposition of a shift operator. On the
other hand, the de nition of stationary stochastic graph signals was also entirely based on a
shift operator. The next chapter introduces practical algorithms, once again based on the shift
operator, that will be used in the rest of our work.

Finally, we recall the working assumptions that will be assumed for in the remainder of this
work (unless speci ed otherwise).

Assumption 1.1. In this work, only connected simple undirected nite graphs are considered.

Assumption 1.2. Only real, symmetric shift operators S are considered.
Consequently,S is diagonalizable by a unitary matrix and has real eigenvalues. Such a decom-

position is denoted as follows:
0 1
1
S=V %} §VH ;
n

where

1 n denote the real eigenvalues d§, ordered in ascending order,
form an orthonormal basis of C" composed of eigenvectors db such that:
8i 2 [L;n]; sSv® = ;v®

Assumption 1.3. Unless otherwise speci ed, the SGS considered in this work are zero-mean,
i.e. E[X]=0.
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Résumé

Le but de ce chapitre est d'apporter au lecteur une boite a outils d'algorithmes de traitement
du signal sur graphe. Ces algorithmes sont tous basés sur des opérations de ltrage de signaux
sur graphe. Ainsi, nous commencons par présenter et comparer di érentes méthodes (exactes ou
approchées) de ltrage de signaux sur graphe a n de motiver le choix qui est fait dans ce travail de
ne recourir qu'a l'une d'entre elles: le Itrage par approximation polynémiale de Tchebychev (ou
plus simplement Itrage de Tchebychev). Nous exposons ensuite I'utilisation de cet algorithme
pour calculer trace, histogramme de valeur propres, log-déterminant et inverse de fonctions de
matrices.

Introduction

In the previous chapter, the mathematical framework surrounding graph signal processing was
put in place, while following a strict analogy with continuous and discrete signal processing.
In particular, the notion of signal Itering on a graph G was introduced while relying on the
de nition of a matrix representation of G through a matrix called shift operator.

Much like in classical processing, Itering operations play a key role when processing graph
signals. As we will later see in Chapter$ B anfl]4, algorithms aiming at simulating and estimating
graph signals heavily rely on being able to compute e cient graph ltering operations. By
e cient, we mean that the Itering algorithm should minimize both computational and storage
costs when operated. The aim of this chapter is to introduce an approximate graph signal
Itering algorithm, that we call Chebyshev ltering, and that will be used throughout the rest
of this work.

The Chebyshev Itering algorithm has already been used for graph Itering purposes in the
graph signal processing community/(Hammond et al/, 2011; Susnjara et al., 2015), and before that
to compute approximations of matrix functions (Higham| 2008). The aim of this chapter really
is to provide a rigorous justi cation of why it is the most appropriate algorithm in our context
of application using arguments based on approximation theory and computational complexity,
and also comparisons with other possible choices of algorithlﬁs

We refer the reader to Appendix[B for recalls on the theory of function approximation and
interpolation, which are instrumental to graph Itering operations. In the rst section of this
chapter, we present and compare di erent approaches to graph ltering in order to motivate
the use of Chebyshev ltering. This last algorithm is then introduced. Finally, applications of
Chebyshev lItering to the computation of characteristics of graph lters are presented. They
will play a key role when dealing with the inference of stochastic graph signals.

Throughout this chapter, let h : R! R be a transfer function and h(S) be the associ-
ated graph Iter with respect to a symmetric shift operator S 2 M ,(R) de ned according to
Assumption [1.2.

2.1 Exact algorithms for graph lItering

Let x 2 R" denote a real graph signal on a graph associated witls. Our goal is to Iter x
by the graph Iter de ned by h and S, or equivalently evaluating the product h(S)x. In this
section, algorithms are derived to compute this product exactly. Two assumptions are made:

Evaluating h on any real value is possible and achievable with a negligible computational
complexity.

The matrix S and the vector x are known and stored in memory.

The computational complexity of each proposed algorithm is derived as an order of magnitude
for the count of oating-point operations performed by the algorithm. The memory requirements
are also evaluated, and are de ned as the amount of memory needed by the algorithm to store
temporary variables used by the algorithm. They do not take into account the space used to
store S and x.

INote however that we omit in this chapter any comparison with methods based on the Lanczos algorithm
(Golub and Van Loan, [1996b, |Chapter 9), as this case will be treated later in Section 3.(1:]
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2.1.1 Filtering via eigendecomposition

A rst solution to compute h(S)x consists in getting back to the de nition of graph lters.

GFT of the result. This rst approach is summed up by Algorithm

Algorithm 2.1:  Graph ltering via eigendecomposition.

Input:  Shift operator S 2 M ,(R). Vector x 2 R". Transfer function h: R! R.
Output: The product y = h(S)x 2 R".

Initialization: y = Xx;
1. Full eigendecomposition ofS: Use a diagonalization algorithm to compute then

2. Graph Fourier transform: y vV Hy.

3. Frequency scaling: Compute a component-wise multiplication with the impulse response
vector (h( 1):::h( o)7 : 8i 2 [Lnlyi  h( )y

4. Inverse graph Fourier transform:y  Vy

Return vy.

The computational bottleneck of this approach resides on its rst step: the full diagonal-
ization of the shift operator S. Indeed, on one hand, the matrixV (or at least subroutines
allowing to compute the products betweenV and a vector and betweenV T and a vector) must
be known to compute steps 2 and 4. On the other hand, all the eigenvalues & must be known
to compute the impulse response of the lter needed in step 3 from the expression of the transfer
function h.

This full diagonalization of a N n matrix is an expensive operation, computationally and
memory-wise. O(n?®) operations are required to compute the full set of eigenpairs of a real
symmetric matrix, using for instance the Jacobi method or the Householder tridiagonalization
approach implemented in the LAPACK library (Press et al.| 2007). And a storage space of order
0O(n?) must be available to store then vectors of sizen that compose the eigenbasi®/ and the
n eigenvalues. Such requirements become intractable asgrows as both the computational cost
and the memory requirements would explode.

2.1.2 Particular case: Polynomial transfer function

A second solution for this graph ltering problem is based on the observation that in the par-
ticular case where the transfer functionh is a polynomial of degreeK < n with coe cients

X
h(S)=  asS
k=0

Computing the product h(S)x can be done iteratively using Horner's scheme, as presented in
Algorithm £.2]

Algorithm 2.2]only involves products betweenS and various vectors: no costly factorization
of the shift operator has to be applied rst. In general, the computational cost of this algorithm
will therefore be of order O(Kn?) i.e. K times the cost of a matrix-vector product. However
in the case whereS is sparse, the cost of the matrix-vector product can be reduced t@(dn)
whered nis the mean number of non-zero entries 06 per row, thus yielding a graph ltering
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Algorithm 2.2 Graph ltering with a polynomial transfer function.
Input:  Shift operator S 2 M ,(R). Vector x 2 R". Coe cients ap;:::;ax 2 R.

R
Output: The product y = aSX x 2 R".

............................. KO
Initialization: y = ak X;
if K> 0then

for k from K 1to Odo

|y ax+ Sy;
Return vy.

algorithm with computational complexity O(Kdn). As for the storage requirements of this
algorithm, they are of order n to store the temporary vector y. Hence, they actually depend
neither on the shift operator, nor on the transfer function (assuming both are already known
and/or stored).

This last property is particularly interesting when considering the scalability of the algorithm:
as long asS and small ( xed) number of vectors can be stored, Algorithm can be used for
graph ltering. This was not the case with Algorithm Z.1.] Moreover, if polynomials with degree
K n are considered, the increase of computational costs with the size can be kept under
control as they grow at most quadratically with n. The same growth rate is cubic when using

Algorithm £.1]

2.1.3 General case: Polynomial interpolation of graph lIters

What about the case whenh is not a polynomial function? According to Theorem[1.3.1, any
graph Iter h(S) can be expressed as a lter whose transfer function is a polynomid?;, of degree
at most n 1. Computing the product h(S) could therefore be done using Algorith with
Pn. This approach supposes that the analytical expression oP, was rst derived from the sole
knowledge ofh and S. This is possible asPy, is the unique polynomial of degree at mostn 1

represents once again a rather costly step a®(n®) operations are required. However, contrary

to the full diagonalization approach of Algorithm P.1] there is no need to compute and store the
eigenbasis ofS: only the eigenvalues are needed. Less operations are in fact needed (even though
the number is still of order O(n®)) and the storage space needs are brought down t®(n) using

for instance a Lanczos method for the computation of eigenvalues (Press et al., 2007).

obtained using one of the methods presented in Appendik BI]1.

Keeping in mind that the expression of P, is computed to be used in Algorithm[2.2, the
Vandermonde approach seems to be the way to go as it provides directly the monomial coe cients
of P,,. However a linear system that involves a (full) Vandermonde matrix of sizen must be
solved to compute these coe cients, which can be done inO(n?) operations while requiring a
storage space of0(n). Besides, this system is known to be numerically unstable as it becomes
more and more ill-conditioned asn grows (Atkinson, [1989).

This last drawback is no longer a concern if the Newton approach is used. Indeed, computing
the coe cients of P} in the Newton polynomial basis can be done by either solving the triangular
system in Equation or using a divided-di erences approach [(Atkinsor},| 1989). Both algo-
rithms are numerically stable and provide an exact solution inO(n?) operations while requiring
storage needs of orde©(n). Then, evaluating the product P, (S)x can be done directly with the
Newton expansion ofPy, by slightly modifying Horner's scheme of Algorithm 2.2, as presented
in Algorithm 2.3]

Finally, one can notice that the Lagrange approach o ers the desirable advantage to require
no additional computations to get an expression forP,,. However, evaluating the productPy (S)x
using Equation is less straightforward than with the other two approaches. Indeed, com-
puting the monomial coe cients of Py from Equation (B.4) in order to use Algorithm 2.2]requires
O(n?) operations as each term of the sum must be expanded rst. A less expensive alternative
consists in using Equation ) directly to compute the product P,(S)x. Indeed, each term
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Algorithm 2.3:  Graph ltering with a Newton polynomial transfer function.
Input:  Shift operator S 2 M ,(R). Vector x 2 R". A family of interpolation points

KP
Output:  The product y = & k(S) x2R".
Initialization: y = ak 1X;
if K> 1then
for k from K 2to Odo
|y ax+Sy yy;

Return vy.

of the sum can be computed usingh nested multiplications, much like Horner's scheme. The
resulting method is outlined in Algorithm £.4] However, it comes at a computational cost of
order O(n?) as n products of n (shifted) monomials must be evaluated. On the other hand,
storage needs of onlyO(n) are required.

Algorithm 2.4:  Graph ltering with a Lagrange polynomial transfer function.
Input:  Shift operator S 2 M ,(R). Vector x 2 R". A family of interpolation points

Output:  The product y = 3 hgl(S) x 2 R".
Initialization:  u =0,y = O;
for k from 1to K do
u  Xx;
for j from 1to K, 6 k do
[ u Su U
y y+heu
Return vy.

2.1.4 Graph ltering via polynomial interpolation

Algorithm £.5]sums up the general approach to graph ltering using interpolating polynomials.
First, the full set of eigenvalues of S is computed. Then, an expression of the polynomial
interpolating h at these eigenvalues is calculated. Finally, depending on the expression chosen
at the previous step, the product P, (S)x is computed using an iterative algorithm requiring a
number of operations proportional to the size of the vectorsn and the degree of the polynomial.

Algorithm 2.5:  Graph ltering via polynomial interpolation.

Input:  Shift operator S 2 M ,(R). Vector x 2 R". Transfer function h: R! R.
Output:  The product y = h(S)x 2 R".

Initialization: y = X;

1. Eigenvalues ofS: Use a diagonalization algorithm to compute and store then

2. Compute an expression of the polynomiaP;, interpolating h at ;:::; , using either
the Vandermonde, the Newton or the Lagrange approach.

3. According to the expression ofP, chosen at step 2, compute the producty = P, (S)x
using either Algorithm P.2] Algorithm 2.3]or Algorithm Z.4.]

Return vy.
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Polynomial Full Polynomial interpolation
case Diagonalization Vandermonde‘ Newton ‘ Legendre
Description Algorithm 2.2 Algorithm 2.1 Algorithm 2.5
Eigendecomposition - O(n3) O(n?)
Polynomial coe cients 0 - 0(n?) 0(n?) 0
Product computations O(Kdn) 0(n?) O(Kdn) O(Kdn) | O(dn?)
Storage needs Oo(n) H 0O(n?) Oo(n) ‘ O(n) ‘ Oo(n)

Table 2.1: Comparison of exact algorithms for graph Itering of a vector of sizen. For methods
involving a polynomial, its degree is denotedK (except for the Legendre approach, which has a
polynomial of degreen).

2.1.5 Comparison of exact graph Itering algorithms

Table [2.7] provides a comparison of the computational and storage costs associated to the exact
graph Itering algorithms presented up until now. The full diagonalization method of Algorithm
[2.3 is compared to the polynomial interpolation method of Algorithm 2.5 and its three variants
(namely, the choice of the Vandermonde, the Newton or the Legendre approach to express the
interpolating polynomial).

The main computational bottleneck shared by these methods is the diagonalization of the
matrix S, which scales cubically with the size of the vectors. Once this diagonalization step is
performed, the full diagonalization approach o ers the fastest way to evaluate the producth(S)x.
Indeed, polynomial interpolation approaches require either the computation of the coe cients of
the polynomial or a tedious evaluation by nested multiplications. On the other hand, polynomial
interpolation approaches require much less storage space than the full diagonalization approach
given that the eigenbasis need not to be stored.

The particular case where the transfer function is polynomial yields the lowest overall com-
putational and storage requirements. Contrary to the polynomial interpolation approach, there
is no additional cost due the computation of interpolation points or more generally the diago-
nalization of S. This motivates a new approach to solving the e cient graph Itering problem,
namely nding a polynomial P}, such that:

Computing its expression will not require any costly preliminary operations as it is the
case with interpolation polynomials.

Computing the product P, (S)x can be done using an iterative scheme similar to those
introduced in Algorithms £.Z]and 2.3.

The products approximate well the product h(S)x in some sense to be de ned.

Hence we aim at replacing the polynomial interpolation ofh by its polynomial approximation,
hoping that the loss of accuracy will be compensated by the gains in computational e ciency of
the algorithm. This approach is presented in the next section.

2.2 Approximate algorithm for graph Itering: the Cheby-
shev algorithm

Following the considerations from the previous section, the idea is now to replace the costly exact
computation of the product h(S)x by that of a polynomial Iter P, (S)x such that P, (S)x
h(S)x in some sense. In particular,P, should be computed with minimal e ort compared to
the diagonalization step that was preliminary to all the exact methods.

2.2.1 Derivation of the algorithm

The steps leading to the Chebyshev lItering algorithm are now outlined.



2.2. Approximate algorithm for graph ltering: the Chebyshev algorithm 55

Computation of the approximation error

Let us rst focus on the discrepancy betweenh(S)x and its approximation by P, (S)x, also
referred to as approximation error. Both being vectors ofR", it is naturally measured by the
distance separating them inR". This distance can be de ned by any norm onR". Actually, the
choice of a norm is not important given that they are all equivalent in nite dimensional spaces,
i.e. for any normsNq; N, de ned on R", there exists two constantsC;; C, > 0 such that

8x 2 R"; CiNi(x) N 2(x) CaNi(x)
In particular, for the Euclidean norm, the approximation error is:

kh(S)x  Pn(S)xk3 = k(h(S) Pn(S))xki=xT (h(S) Pn(S))?x

2
_ xT(h(S)XT)l(Dh(S)) X (xTx)= R(h(S) Pu(S)2:x)kxkE

where the notation R(M ;x) denotes the Rayleigh quotient of a Hermitian matrix M and a
vector x (cf. Appendix . Given that both h(S) and P, (S) are graph lters with respect
to the same shift operatorS, it is straightforward to check that (h(S) Pn(S))? is also a graph
lter with respect to S and that its eigenvalues are(h( 1) Pn( 1))%::55(h( n)  Ph( n))2
Hence,

Jmn (01 PRCi)? R (N(S) Pa(SNPix)  max (h( 1) Pa( 1)’

Therefore,
kh(S)x  Pr(S)xka kgwlipé]jh( k) Pn( )] kxkz (2.1)

This proves a rather intuitive result: for P,(S)x to approximate well h(S)x, it suces
that the function P, approximates h well. More precisely, it suces that the values of Py

coincide, exact graph ltering by polynomial interpolation of Section P.1.3is retrieved as we get
kh(S)x Pn(S)xkz =0 and henceh(S)x = P,(S)x.

Choice of the polynomial approximation

Assume now that some approximation error is tolerated, i.e. we want for some threshold, > O:
kh(S)x Pp(S)xka o
Then, following Equation (, this condition can be enforced by imposing

max jh( k) Pn( «)j (x); where (x)= o=kxk,>0 : (2.2)
k2[1;n]

Comparing directly the values of fh( k) : k 2 [1;n]g and fPh( «) : k 2 [1;n]g to make sure
this last condition is satis ed would lead to the same problem as the one encountered in the
interpolation approach: namely, the values of all the eigenvalues oS must be known and
therefore S must be fully diagonalized.

However, in the context of approximation, a su cient condition to get Equation (2.2)]is if
max zpapjh( ) Pn( )i (x), where the interval [a; b is such that 1;:::; » 2 [a; 0. Hence,
the enforcement of the condition in Equation ) can be replaced by

r;[aﬁ]jh( ) Pn()j (x); where (x)= o=kxk, > 0and i;:::; n2[a;l] : (2.3)
a;

Finding a polynomial approximation Py of a function h over a segment[a; bl can be done
very e ciently using Chebyshev sumss described in details and justi ed in Appendix[B.4. The
rst step consists in moving the approximation problem from the interval [a;b] to [ 1;1]. This
is done by considering the (invertible) a ne transform 5, de ned by

ab:t2[a; 7! bza(t a 12 L,1] ; (2.4)
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and whose inverse is the linear mapping a;g de ned by

a

ap (121 1;1]7!a+b2 (t+1) 2 [a;h (2.5)
Hence, to approximateh over [a; b, we nd a polynomial approximation Py of the function
hmh
over[ 1;1] and return the polynomial
Pn=Py ap

Using Chebyshev sums, the polynomialP, is given as the truncation at a given order of
approximation m 2 N of the Chebyshev series ofi. It is therefore written

1 xn
Pp=3CTo+ Gk
k=1

where Ty denotes thek-th Chebyshev polynomial, and each coe cient ¢, k 2 [0; m] is given by
G = 2 fi(cos )cosk )d; k 2 [0;m] : (2.6)
0

These coe cients can be numerically computed either the Fast Fourier transform algorithm
(Cooley and Tukey, |1965) or an algorithm designed to compute the discrete cosine transform
(Chen et al.,|1977; Makhoul, 1980) of a vector, as detailed in Algorithm$ B.JL anfl B]2. As for the
order of the polynomial approximation m, it should be chosen to ensure Equation|(2)3). Checking
whether an order approximation m is large enough can be done numerically by evaluating the
di erence between the resulting polynomial approximation P, and h over a ne discretization
of [a; b].

Remark 2.2.1. A restriction on the regularity of h over [a; b must be considered to safely
apply the Chebyshev polynomial approximation: namely h should be at least of bounded
variation (cf. De nition H.3.I)]or Dini-Lipschitz continuous (cf. De nition B.B.2), Jso that
any level of approximation error can be achieved by increasing the ordem of the polynomial
approximation (cf. Theorem [B.4.4).

A method to deal with discontinuous functions is introduced in Appendix [B.4.6.

Interval of approximation

The only remaining question is whether nding an interval [a; ] containing all the eigenvalues

of S is possible without actually computing the eigenvalues or having recourse to operations
with similar computational complexities. The answer is yes and the following results provide

examples of such intervals.

Proposition 2.2.1. Let S 2 M ,(R) be a symmetric matrix and denote 1;:::; , its eigenval-
ues. Then,
i

. o P
8i 2 [L;n]; i Trace (SZR
Hence, all the eigenvalues of are contained in the interval P Trace (S2); P Trace (S2) .

Proof. This is a direct gonsequence of the fact thatS® has eigenvalues 7;:::; 3 and that
therefore Trace S? = [ 2. O
Theorem 2.2.2 (Gerschgorin circle theorem (Gerschgorin, 1931)) Any eigenvalue of a sym-
metric matrix S 2 M ,(R) satis es:

X
2 [Si ri;Si +ri]; wherer; = iSi ]

i2[1;n] j6i

Hence, all the eigenvalues o6 are contained in the interval _2[lin](S“ ri);_znglax](sii +ry) .
i n i n
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Both Proposition P.2.7 and Theorem[2.2.2 provide expressions of intervals containing the
eigenvalues of the shift operator that can be computed with a limited complexity. Indeed, in the
former case, given thatS is real and symmetric, the trace of its square is equal to the sum of
the square of all its elements:

XX
Trace(S?) = S§
j=1 k=1
Hence, it can be computed usingO(dn) operations, whered is at most n (when S is a full
matrix). The same computational complexity can be derived in the latter case.

Remark 2.2.2. Finer intervals can be derived by using additional characteristics the shift
operator may have. For instance, ifS is positive (semi)-de nite, then 0 is a lower bound of
its eigenvalues. Consequently, the intervals proposed in Proposition 2.2.1 and Theoren 2.2.2
can be taken as h p i

0; Trace(S?)

and 2 3

X
0; max (Si + r;) = 40; max iSi j°
i2[1;n] izunl, g

(given that the diagonal elements ofS would then be non-negative).

2.2.2 Presentation of the algorithm

At this point, the approximating polynomial Py, is expressed as a Chebyshev sum and its co-
e cients are computed. Computing the product P, (S)x can be done iteratively by relying
on the recurrence relation between Chebyshev polynomials described in Equatiol). The
corresponding procedure is outlined in Algorithm[2.6.

Algorithm 2.6:  Graph ltering of a Chebyshev sum.
Input:  Shift operator S 2 M ,(R). Vector x 2 R". A set of Chebyshev coe cients

P
Output: The product y = %COTO(S) + & Tk(S) x 2 R".
Initialization: ul @ =u( Y=u=y=0;
for k from 0to m do

if k=0 then
| u o 3x;
else if k=1 then
[ u Sx
else
[ u 2sut D ul 2
y y+cou;
ut 2yt
u( 1) u ;
Return vy.

To sum things up, approximate graph Itering is performed in three steps. First, an interval
[a; b that contains all the eigenvalues is derived. Then a polynomial approximation of the transfer
function of the Iter over [a; ] is derived using Chebyshev sums. Finally, the ltering operation
is applied to this polynomial instead of the original transfer function, using an iterative method
that only involves matrix products by the shift operator. This approach is outlined in Algorithm
Z4.
Two remarks on the outline of Algorithm P.7]can be formulated. First, in most applications
considered in this work, the transfer functionsh are smooth enough so that an order of approxi-
mation of at most 10° are su cient to yield almost-zero approximation errors. Second, running
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Algorithm 2.7:  Chebyshev Itering algorithm for graph signals.
Parameters: Order of discretization N of integrals in Algorithm B.T]or B.Z]
Input:  Shift operator S 2 M ,(R). Vector x 2 R". Transfer function h: R! R.
Approximation order m 2 N.
Output:  An approximation of h(S)x.

Initialization: y = 0;
1. Approximation interval:
Find an interval [a; b that contains all the eigenvalues ofS. Examples are provided by

Proposition [2.2.7 and Theorem[2.2.P.

2. Coe cients of the Chebyshev sum:
Using Algorithm B.T]or B.Z] compute the coe cients of the Chebyshev sum of orderm
of the function t 2 [ 1;1]7! h(_,.;(t)) where . (t) denotes the linear mapping from

[ 1;1]to [a; b (cf. Equation (R.5)).

3. Filtering:
Use Algorithm with the coe cients obtained at the previous step and using
ab(S) = 52.S 221 as shift operator on the vectorx.
Store the result iny.

Return vy.

Algorithm with ab(S) as a shift operator can be done without having to actually compute
(and store) this matrix. Indeed, the only requirement this algorithm has for the shift operator
is the ability to compute its product with a n-vector. Yet, the product between ,,(S) and a
n-vector u can be written:
2 b+ a 57

ap(S)u= —_Su  —u (2.7)
Hence, any product by the shift operator in Algorithm P.6] can e ectively be replaced by the
combination of a product by S and a subtraction given by Equation (2.7).

Following from this last remark, the approach to graph lItering of Algorithm 2[7 ¢an be seen
as matrix-free algorithm. Indeed, it does not actually require the shift operator to be stored in
memory. Rather, it relies solely on being able to compute a product between the shift operator
and vectors. Hence, if all that was available was a function that computed this product (without
necessarily using a matrix stored in memory), the same would still apply.

This property is clearly desirable in a context where the size of the vectors and matrices may
be so large that any gain in memory is appreciated. In that case, exploiting the structure of
the shift operator to only keep in memory the values necessary to compute the matrix-vector
product may bring great savings in storage space. This is for instance the case for circulant
matrices for which just a few entries are necessary to compute a product with a vector.

2.2.3 Computational complexity of the algorithm

The computational complexity of Algorithm 2.7]is now explicitly calculated. Denote np, the
number of non-zero entries ofS and d the mean number of non-zero entries of a row ofS:
n,, = d n. Denote m the order of the Chebyshev approximation. The cost associated with
each step (ignoring additions and multiplications by non-stored zeros) is described as follows:

Step 1 requiresO(dn) operations as mentioned earlier.

Step 2 requires to apply fast Fourier transform or the discrete cosine transform algorithm
to a vector of length N. The cost of this operation is O(N logN) (Chen et al, |1977;
Makhoul| 1980).

Step 3 is composed of

m + 1 updates ofy that consists in multiplying the entries of a n-vector by a scalar
and adding them to another n-vector! m 2n operations
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m updates of the vector u that consists in multiplying a n-vector by ,.,(S) and
subtracting another n-vector to the result (! n operations). Each product by 5.,(S)
actually corresponds to a product byS (! dn operations) that is scaled by constant
(! n operations) and followed by the subtraction ( n operations) of an-vector that
was also scaled by a constant!( n operations): ! m (dn+4n) operations.

Therefore, the overall cost of the Chebyshev Itering algorithm is O(mdn + N logN) operations.
Considering that in most of our applications’] N n, we conclude that the actual complexity
of Algorithm P.7]is of order O(mdn) .

And regarding the storage needs, aside frons, x and the coe cients which are assumed to
be stored by default, the algorithm only needs enough space to work witld additional n-vectors.
The storage needs of this algorithm are therefore of orde©(n).

In conclusion, Algorithm P.7] provides a solution to perform graph lItering with a compu-
tational and storage costs of the same order of the minimal case of polynomial ltering that
was introduced in Algorithm P.2] Moreover, the user can trade computational time for accuracy
of the approximation using a single parameter: the orderm of the Chebyshev sum. Indeed,
asymptotically (when m grows to 1 ), the approximation error of the Chebyshev sums goes to
zero, and therefore, so does the approximation error of the vectors obtained using the Chebyshev
Itering algorithm (cf. Equation (2.

In the remaining of this work, the following assumption is made so that Chebyshev Itering
can be applied.

Assumption 2.1. Whenever a graph lter is considered, the associated transfer function
is assumed to be regular enough for its Chebyshev series to converge over an inteffeab]
containing all the eigenvalues of the shift operator.

In practice, we will assume the transfer function to be Dini-Lipschitz continuous or continuous
of bounded variation.

2.3 Applications of the Chebyshev Itering algorithm

In this section, a few useful algorithms designed to compute the trace, the log-determinant
and the histogram of eigenvalues of a graph Iterh(S) de ned by a shift operator following
Assumption and a transfer function h are presented. These algorithms will be particularly
useful when the inference of stochastic graph signals will be considered in Chaptg} 5, allowing
for instance to compute the likelihood of realizations of stochastic graph signals.

All the algorithms introduced in this section rely on the Chebyshev ltering algorithm, and
aim at computing accurate estimates of some characteristics of a graph Iteh(S) in a matrix-
free approach. The need to use this approach comes from the fact we want to avoid actually
building and storing the graph Iter h(S), due to the high computational and storage costs
associated. Direct methods are therefore out of the question.

Remark 2.3.1. All the algorithms presented in this section can actually be applied to draw
estimates of these same characteristics for any real symmetric matrid using the following
trick: we take S = M and seth:x 2 R! x. Note however that if the algorithm requires h
to be strictly positive, then the matrix M should be positive de nite.

2.3.1 Trace of a graph lter

We present here an approach aiming at computing the trace of a graph lIter. It relies on the
following proposition.

2N actually corresponds to the order of approximation of the integrals de ning the coe cients of the Chebyshev
sum (cf. Equation (4.6)] as Riemann sums. N can be xed at a few thousands in most cases. Hence it is therefore
safe to assume that N n.
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Proposition 2.3.1. Let S 2 M, (R) be a real symmetric shift operator and leth(S) be a graph
Iter with respect to S with transfer function h: R 7! R.

Let W be a white signal, i.e. a vector composed ai independent zero-mean and unit-variance
random variables.

Then W Th(S)W is an unbiased estimator of the trace oh(S):

E WTh(S)W =Trace(h(S)) : (2.8)

PP
Proof. By linearity of the expectation: E W "Th(S)W = [h(S)]kj E[WW;]. By de -
k=1 j=1
nition of W , E [WyW; ] = Cov[W;W;]is1if k = j and 0 otherwise. HenceE W Th(S)W =
p
[h(S)]y = Trace (h(S)). O
k=1

A stochastic approximation of the trace of a graph lter is therefore given by taking a Monte-
Carlo estimate of the expectation in Equation (2.§):

X
Trace (h(S)) Su with Sy = v wih(S)w; ; (2.9)
j=1

can be computed in two steps: rst the product u = h(S)w is calculated using the Chebyshev
ltering algorithm, then the inner product w'u is returned. Hence, an approximation of the
trace can be computed through Equation ) for a global computational cost of ltering M
signals. This method is outlined in Algorithm P.8]

Algorithm 2.8:  Trace approximation by Chebyshev lItering.

Parameters: Probability distribution D of a (real) random variable with mean 0 and
variance 1. Any additional parameters for Chebyshev Itering.
Input:  Shift operator S 2 M ,(R). Transfer function h: R! R. Approximation order
m 2 N of the transfer function. Number of realizations M .
Output:  An approximation of Trace(h(S)).

Initialization: y=0;

for j from 1to M do
Generatew 2 R" with independent entries drawn from D ;
Compute u = h(S)w using Chebyshev ltering at approximation order m ;
y (G Dy+wlu 5;

Return .

Remark 2.3.2. In practice, the formulation of Algorithm 2.8]allows for a premature exit
from the for loop. Indeed, at the j-th iteration, the scalar y actually contains the average
over all white signals generated up until this point. Hence, one could imagine an additional
criterion on the evolution of the values ofy that would provoke a loop break. For instance
we could stop the algorithm if, for several consecutive iterations, the di erence between the
current and previous values ofy is below a given threshold.

Algorithm 2.8]hence provides a method to compute the trace of any graph lter using Cheby-
shev ltering. The computational cost of this method is dominated by the Itering steps (as-
suming generating the random vectorsw is inexpensive and represents a cost of orded(n)).
Hence, the computational cost of Algorithm is of orderO(M  mdn) where d is the mean
number of non-zero entries in a row ofS and M is the number of realizations used to de ned
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Rademacher Gaussian
Variance of the trace 2 »n Pno . 2 )
estimator s (Trace(A <) k=1 Ark) v Trace(A )
Bound on the number of Flg =22 =) Flg =2
samples with central | 2-—————(Trace(A?) ke Af) | 27 ———"Trace(A?)

limit theorem

Bound on the number of , )
samples in the positive 62l A)” jog(2rank(A)) 20Tace(A)” |og(2)
semi-de nite case

Table 2.2: Properties of the estimatorSy, of the trace of a graph lter A = h(S), as de ned in
Equation (, with respect to the distribution chosen to generate the white signalsw. See
(Avron and Toledo} 2011) for proofs.

the stochastic estimators,m is the order of the Chebyshev approximation andn is the size ofS.
This should be compared to the huge computational cost of the exact approach that consists in
diagonalizing the graph lter, involving then O(n?®) operations.

Two questions remain unanswered: how to choose the distributiorD de ning the white sig-
nals and the number of realizationsM that should be generated. A natural criterion for these
choices consists in trying to minimize the variance of the estimatorSy in Equation (2.9). This
variance directly depends on both parameters, as it is given by >=M where 2 =Var[ W "h(S)W ],
and is linked to the approximation error jTrace(h(S)) Suj of Sy .

Indeed, the central limit theorem states that asymptotically in M, the limiting distribution
of Sy is normal with mean E[Sy ] = Trace(h(S)) and variance 2=M. Hence the approximation
error jTrace(h(S)) Swm j can be estimated using the cumulative distribution function (cdf) Fy of
the standard Gaussian distribution. Namely, the probability that its value is below a threshold

> 0is given by
|

PiTrace(n(S))  Swj 1 2Fn P— 1 (aSMI1 )

Equivalently, using the inverse cdfFy * of the standard Gaussian distribution (which is also its
guantile function), we have for any risk level0< < 1:

" F 4
2
P jTrace(h(S)) Swmj MFNl(l =2) 1 (asM 11 ):

Two factors directly impact the approximation error of Sy : the variance 2 of the quadratic
forms and the numberM of samples. In particular, minimizing the variance 2 by choosing an
appropriate distribution D should lead to require less samples to keep the approximation error
below a small threshold with high probability. Hutchinson|(1989, Proposition 1) shows that 2
is minimal whenever the entries of W follow a Rademacher distribution i.e. they take values
either +1 or 1 with probability 1=2, placing this distribution as a premium candidate for D.

Going further down this road, |/Avron and Toledo| (2011) estimated, in the particular case
where h(S) is also positive semi-de nite, the actual number of samples needed for the approxi-
mation error to be below a threshold with a probability 1 (with the asymptotic requirement
of the central limit theorem). They showed that generating the entries of w using a standard
Gaussian distribution demands a lower number of sampleM to achieve the same accuracy (with
the same probability) as when a Rademacher distribution is used. Both distributions are hence
considered to run Algorithm 2.8. Table[2.3 compares them in terms of variance of the estimator,
and number of samples required in the asymptotic case and in the positive de nite case.

2.3.2 Histogram of eigenvalues of a shift operator

values over a interval [a; b consists in partitioning this interval into a set of My 1 disjoint



62 2. Algorithmic toolbox for graph signal processing

subintervals of size = (b a)=My, also called bins, and counting the number of eigenvalues
falling into each one of the bins.
Formally, let n : R 7! N be the counting function de ned for > 0 by:

n o]
n(x)=Card j2[Ln]: ; 2[x §;X+§[ ;7 X2R (2.10)
Then the histogram of f 1;:::; ngover aninterval [a;] R containing them and with bin size
is de ned as the set of values:
n a+ m+} ) :m2|[0;H 1]

2

Hence, being able to compute the histogram of eigenvalues of a shift operator is equivalent to
being able to compute values of the counting functionn over the interval [a; b. Doing so with
an e cient algorithm is the object of this section.

Let us assume that the interval [a; b is known (using for instance Proposition or The-
orem ) and let > 0 be xed. A naive way of computing n (x);x 2 [a;b] consists in rst
computing all the eigenvalues ofS and then counting how many of them fall into the bin of
size centered atx. Doing so would be practically infeasible as the rst step requires the full
diagonalization of S. So, for the same reasons as those presented in Sectfjon 2]1.1 to avoid graph
Itering by eigendecomposition, this approach should not be considered. Instead, an approach
based on Chebyshev ltering is proposed, based on the following result, already exploited by
Di Napoli et al.|(2016).

Proposition 2.3.2. Let S be a real symmetric shift operator with eigenvalues;:::; » R
and leth:[a;b! R be a function de ned on an interval [a; ] containing all the eigenvalues of
S. Then,

X
EWTh(S)W = h( k) = Trace(h(S)) ; (2.11)
k=1
whereW 2 R" is a white signal.

Proof. This a a direct consequence of Propositioh 2.3]1 that relies on the fact that by de nition
of graph Iters and using the properties of the trace function:

X
=Trace(Diag(h( 1);::::h( )= h( «)
k=1

O

In particular, note that, for any x 2 [a; b], the counting function can be written using indicator
functions:

X
n (X): 1[x =2;X+ :2[( i) ;
k=1
where 1|y =2x+ =2 denotes the indicator function of the interval [x  =2;x + =2[. Hence,
from Proposition 2.3.3,

8x2[al; n (X)= E W 1y =px+ =2((S)W =Trace(ly =2x+ =2(S))

Following the results from Section[2.3.1, an idea would be to comput@ (x) using Algorithm
. However, the functiont 7! 1, -,.+ =(t) is not even continuous over[a; b as it has two
discontinuities at t = x  =2. Consequently, the Chebyshev series of this function will not
converge uniformly and moreover, oscillations near the discontinuities will appear due to the
Gibbs phenomenon (cf. Appendix B.4.6).

Nonetheless, this problem is circumvented using the approach presented in Appendjx B.4.6,
hence computing the coe cients of the Chebyshev sums of the discontinuous function and down-
scaling them using a -factor. This approach to compute the histogram is summed up in Algo-
rithm £.9] that returns a table whose rst column are the midpoints of a histogram and second
column contains an approximations of the counts in each bin centered at these midpoints.
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Algorithm 2.9:  Histogram approximation by Chebyshev ltering.

Parameters: Approximation order m 2 N of the counting function. Number of
realizations M used for the stochastic estimators. Probability
distribution D of a (real) zero-mean random variable with variancel.
Any additional parameters for Chebyshev ltering.

Input:  Shift operator S 2 M (R). Interval [a; b containing the eigenvalues ofS and on

which to compute the histogram. Bin size .
Output:  An approximation of the histogram of eigenvalues ofS.

Initialization: H2M dib a)= e;Z(R); Xo = O,y =0;
for k from Oto (db a=e 1)do
Xo a+(k+1=2) ;

m of the function t 7! i, =a2ixo+ =21( ap(t) Using Algorithm or Note:
a;g is the linear map de ned in Equation (. ;
y 0;
for j from 1to M do
Generatew 2 R" with independent entries drawn from D ;
Using Algorithm P.6] compute the product

X j
u-= — CjTj( a;b(s))W ;
m
k=0
where is one of the -factors of Equations (B.23) to (B.25) and 4 is the
linear map de ned in Equation (.4).;
Ly (G ly+w'u 5;
| Hki=Xo; Hik2=Y;
Return H.

The computational cost associated with Algorithm [2.9 is essentially the same as computing
db a)= etraces using Algorithm [2.§.

2.3.3 Log-determinant of a graph Iter

We assume in this subsection thath : R! R, is a continuous function taking strictly positive
values. We are interested in estimating the log-determinant of the graph Iter h(S). By de nition
of graph lters, it is straightforward to show that this quantity equals:

|

hg X
logdeth(S) = log h( x) = log(h( ) : (2.12)
k=1 k=1

Following then Proposition , the log-determinant of the graph lter h(S) can therefore be
expressed as:

logdeth(S)= E W T logh(S)W = Trace(log h(S)) : (2.13)

wherew is any white signal.

Two methods therefore arise for computinglog deth(S). The rst one consists in using
Equation (2.13) to notice that the log-determinant is equal to the trace of a graph Iter with
transfer function t 7! log(h(t)). Hence, Algorithm can be directly used ors and this transfer
function to yield an approximation of the log-determinant.

The second method starts from Equation ) and consists in directly approximating the
sum over the eigenvalues o§ using their histogram. Indeed, let [a; b be an interval containing
the eigenvalues ofS and let > 0 be the bin size of a histogram of these eigenvalues. Let
n denote the counting function that yields the number of eigenvalues falling into a bin of
size centered at any point of [a; 1], as de ned in Equation (2.10). Then log deth(S) can be
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approximated by:

0 db g=-¢e 1
logdeth(S) = log (h( «)) n (a)log(h(a)) (2.14)

k=1 j =0
wherea; = a+ j + % ;] 2[0;db a)=e 1] are the midpoints of the histogram. Basically,

the sum over all the eigenvalues is replaced by a sum over a discretization of the intervda; b
containing these eigenvalues, and weighted by the number of eigenvalues around each discretiza-
tion point. One can directly see that the smoother the variations of the function logh over [a; b
are, the better this approximation is. In particular, the approximation is exact whenever h is
constant, i.e. has no variations.

Hence, an approximation oflog deth(S) can be obtained in two steps. First, use Algorithm
[2.9 to compute a histogram of the eigenvalues oS, more precisely an approximation of the
weights n (a;) in Equation (R.14). Then use these counts to compute the approximation of the
log-determinant as de ned by Equation (2.14).

The computational cost associated with this approach is essentially that of the computation
of the histogram of eigenvalues. This cost is greater than the cost of computing a single trace,
as proposed in the rst approach. However, once the histogram is computed, determinants for
any graph lter de ned through the same shift operator can be computed at virtually no cost:
we only need to reevaluate Equation ) for the new transfer function. In the meantime,
with the rst approach, changing the transfer function implies to recompute from scratch the
log-determinant. Both methods therefore have their advantages and the choice between them
should be made in regard with the context of use of these determinants.

2.3.4 Solving a linear system involving a graph Iter

let h: R! R, be a continuous function taking strictly positive values. We are now interested
in nding an approximate solution of the linear system:

h(S)x = b : (2.15)

whereb 2 R".

h(S) is positive de nite given that its transfer function takes only strictly positive values. It
is therefore invertible, with inverse being de ned as the graph Iter also de ned through S but
with transfer function 1=h. Hence the solutionx 2 R" of Equation ) is given by:

X = %(S)b

An approximation of this vector can then be computed using Chebyshev Itering with shift
operator S and transfer function 1=h.

Conclusion

In this chapter, we introduced the Chebyshev Itering algorithm, designed to perform Itering
operations on graph signals using a polynomial approximation of the transfer function of the
Iter. In particular, it generates approximations of the Itered signals with a complexity that
grows linearly with the order of polynomial approximation and the size of the vectors. Increasing
the degree of the polynomial will improve the approximation as long as the following assumption
is met.

Assumption 2.1. Whenever a graph lIter is considered, the associated transfer function is
assumed to be regular enough for its Chebyshev series to converge over an intefagl] containing
all the eigenvalues of the shift operator.

In practice, we will assume the transfer function to be Dini-Lipschitz continuous or continuous
of bounded variation (cf. Theorem[B.4.4).

The Chebyshev ltering algorithm was then applied to compute characteristics of a graph
Iter, including its trace and log-determinant, while relying solely on products between the shift
operator de ning the graph Iter and white signals.
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Résumé

Dans ce chapitre, nous présentons des algorithmes (exacts ou approchés) destinés a générer
des simulations non-conditionnelles de signaux sur graphe stochastiques de propriétés de covari-
ance connues. En particulier, nous présentons un algorithme approché de simulation basé sur le
ltrage de Tchebychev, ainsi que les erreurs d'approximation numériques et statistiques qui en
découlent. Nous comparons également cet algorithme aux approches par sous-espaces de Krylov.

Introduction

In the rst two chapters, the focus was put on presenting a framework to study stochastic graph
signals (SGS). In the next three chapters, we use this framework to perform classical tasks
associated with the study of stochastic processes, namely the simulation of a SGS, its estimation
from an incomplete observation and nally the inference of the parameters de ning its probability
distribution. In particular, we restrict ourselves to the study of stationary Gaussian SGSs, as
they will play a key role in the application of the graph signal processing framework to the
modeling of non-stationary Gaussian elds, which will be laid out in the second part of this
dissertation.

Assumption 3.1. Only S-stationary Gaussian graph signals are considered, witls being a
shift operator de ned according to Assumption[1.2.

In this chapter, algorithms to compute unconditional simulations of a SGS with known spec-
tral density are derived. By unconditional simulation, we mean that we only aim at generating
a zero-mean SGS whose covariance matrix is a graph lter with a specied positive transfer
function. Hence, the SGS is drawn from its full distribution.

Two types of algorithms are presented in this chapter, much like what was done for graph
Itering. On one hand, direct and exact simulation algorithms, which generate simulations with
the desired statistical properties using matrix factorizations, are introduced. Then, an approxi-
mate simulation algorithm based on Chebyshev ltering is presented. Our main contributions for
this part are the derivation of numerical and statistical approximation errors for the approximate
simulation algorithm (cf. Section @) and its comparison with Krylov subspaces approaches (cf.

Section[3.3).

3.1 Simulation algorithms for Gaussian graph signals

Let S be a real symmetric shift operator, as de ned in Assumption[1.2. Algorithms to compute
simulations of a S-stationary Gaussian SGS and the statistical properties of these algorithm
are derived in this section. By Gaussian SGS we understand a SGS whose components follow
a multivariate Gaussian distribution. In particular, its distribution and therefore statistical
properties are entirely de ned by its rst two moments:

its expectation vector, which is assumed to bed.

its covariance matrix, which in regard to the S-stationarity assumption, is a graph lter
de ned by a strictly positive function called spectral density.

Let 1;:::; n denote the eigenvalues o5 and let V be any (real or complex) orthonormal
eigenbasis ofS. Let assume that we aim at generating realizations of a Gaussian SG$ with
spectral densityf : R! R, . Our goal therefore really is the simulation of a zero-mean vector
with (known) covariance matrix = f (S). We rst investigate some direct simulation algorithm
designed for this purpose.

3.1.1 Direct simulation of stationary graph signals

A direct method to generate samples of a Gaussian vector with known covariance matrix
consists in forming vectorsx of the form (Tong, 2012)

X =Bw ;
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where w is a realization of a Gaussian white signal (i.e. a zero-mean Gaussian vector whose
covariance matrix is the identity matrix) and B is a matrix such that

BB H =

A natural candidate for such a matrix B is the Cholesky decomposition of (Gentle, |2009).
Indeed, numerous linear algebra routines allow for the computation of this matrix factorization.
Algorithm 8.I]exposes this rst approach to the simulation of a stationary SGS.

Algorithm 3.1:  Simulation of stationary SGS by Cholesky factorization.

Input:  Shift operator S 2 M ,(R). Spectral densityf : R 7! R, .
Output: A S-stationary SGS with spectral density f .

Initialization:  x = 0;

Build the covariance matrix = f(S) ;

Compute the Cholesky factorL of ;

Generate a vectorw 2 R" whose entries are independent standard Gaussian variables ;
X Lw ;

Return X.

Two performance issues arise when using Algorithrh 3]1. First, the covariance matrix must
be entirely built from the shift operator and the spectral density and stored in memory before
any Cholesky factorization algorithm may be applied to it. But building using the de nition
of graph lIters involves to diagonalize the shift operator: this is a very expensive operation,
computationally and memory-wise (cf. Sectio). Moreover the full covariance matrix, which
is generally dense, must be stored in memory, which represents an important storage cost for
large values ofn.

Similarly to Chebyshev Itering (cf. Section , a cheaper alternative to diagonalization
would consist in replacingf (S) by a polynomial approximation, for instance by Sy, [f ](S) where
Sm[f ] denotes the Chebyshev series of orden of f. However, building the matrix Sy [f 1(S)
from its polynomial expression would involvem matrix-matrix products involving S. The com-
putational cost of a single product is of orderO(n?d): n? elements must be computed and each
element requires the scalar product of a row o6 which has in averaged non-zero elements, with
the column of another matrix. Hence the overall cost of buildingSy [f ](S) is of order O(mnZ2d).
This cost scales quadratically with the size of the vectors in the best case scenario (i.e. when
S is sparse withd  n) and grows linearly with the approximation order. As for the memory
requirements to store the result, the larger the orderm is, the less sparseSy [f ](S) is and the
more memory will be required. This can limit the order of approximation we can work with
regardless of the subsequent approximation errors.

Then, once is computed, its Cholesky factorization must be computed. The computational
cost of this operation is of orderO(n®) whenever is dense (Golub and Van Loan| 1996a). This
cost can be greatly reduced if is sparse: the new cost then depends on the size of the vectors
n, the number of non zero entries of and nally, its sparsity pattern which explains why a
reordering of the rows and column of the matrix aiming at obtaining optimal patterns is applied
beforehand. Determining the best reordering is in itself a computationally hard problem, and
often the user must rely on heuristics and hope for the best|(Luce and Ng, 2014).

Finally, even in the cases where the Cholesky factorization can be e ciently applied, i.e.
whenever is sparse and can easily be optimally reordered, the Cholesky factor must still be
stored in memory, which represents an additional memory cost.

Faced with the important computational and storage costs associated with the direct ap-
proach presented in this subsection, we now leverage the fact that the covariance is actually a
graph lter to derive a new simulation algorithm based on graph Itering.

3.1.2 Simulation of stationary graph signals by lItering

A second approach to generate simulations of a stationary SGS with a given spectral density
relies on the statistical properties of stationary SGSs. Indeed, in Theorenj 1.4]3, we showed
that a S-stationary SGS with spectral density f is the output of Itering white signals with the
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graph lter P f(S). Clearly, by de nition of Gaussian vectors (cf. Appendix , if the white
signal is Gaussian, so is its Itered output given that it is a linear transformation of the white
signal. Hence, the problem of generating a sample of a stationary SGS is simply reduced to that
of graph Itering. Using one of the exact ltering algorithms presented in Section [2.1] to Iter

a vector with independent standard Gaussian entries therefore yields the desired simulation of
SGS. This approach is synthesized in Algorithn{ 3.P.

Algorithm 3.2:  Simulation of a stationary SGS by exact graph ltering.

Input:  Shift operator S 2 M ,(R). Spectral densityf : R 7! R,
Output: A S-stationary SGS with spectral density f .

Initialization:  x = 0O;

Generate a veﬁtorw 2 R" whose entries are independent standard Gaussian variables. ;
Compute x =~ F(S)w using Algorithm R.1jor 2. ;

Return _ X.

The computational cost of Algorithm B.2]is essentially due to the exact ltering step, which
makes it intractable in practice. Indeed, costs similar or higher to the Cholesky approach are to
be expected (cf. Sectioff 2]1). Following then the results of Sectidn 2.2, a workaround is provided
by Chebyshev ltering, through which the exact computation of the Itered signal

x=" f(S)w ; (3.1)
is replaced by that of the signal
x(M = g [IO fls)w ; (3.2)

wherew is a realization of a (Gaussian) white sigrball andSy, [p f]is the polynomial corresponding
to the Chebyshev series of ordem of the function = f, over an interval containing the eigenvalues
of S. This approach, which we callChebyshev simulationis outlined in Algorithm 3.3]

Algorithm 3.3:  Chebyshev simulation of a stationary SGS.

Input:  Shift operator S 2 M ,(R). Spectral densityf : R 7! R,
Output: A S-stationary SGS with spectral density f .

Initialization:  x = 0O;

Generate a veﬁtorw 2 R" whose entries are independent standard Gaussian variables ;
Compute x = * f(S)w using Chebyshev ltering ;

Return X.

Once again, the resulting vectorx (™) is guaranteed to follow a zero-mean Gaussian distribu-
tion, as it is a linear transform of a zero-mean Gaussian vector. Its covariance matrix is given
by:

P P H P
Varx(™M]= Su[ fI(S) Sml[ fIS) =Sul fI(S)* ; (3-3)

which ensures thatx (™) is a S-stationary SGS. However in generaVar[x (™] is di erent from the
target covariance matrix, f (S). Indeed the former is aS- Iter with transfer function Sy, [ f]?
whereas the latter has transfer functionf . The next section investigates the di erence between
the resulting vectors x and x (™),

3.2 Approximation and statistical errors of Chebyshev sim-
ulations
In this section, we investigate the accuracy of the simulations generated by the Chebyshev

algorithm (cf. Algorithm 3.3). Two dimensions of the problem are considered. On one hand,
seeing the Chebyshev simulation algorithm as simply a graph Itering problem that was answered
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using Chebyshev Itering, a numerical approximation error is derived, in the same manner as
in Section[2.2. On the other hand, seeing the Chebyshev simulation algorithm as a simulation
algorithm in its own right, the statistical properties of its outputs are considered and compared
to the targeted ones.

3.2.1 Numerical approximation error of Chebyshev simulations

Let X = P f(S)W denote aS-stationary SGS with spectral density f , obtained from a Gaussian

white signal W . Chebyshev simulations basically replace samples of by samples of the SGS
X (M de ned by (cf. Equation (8.2))

xm = s [ Fsw

for some order of approximationm 2 N. The approximation error between both SGS can be
assessed using the same reasoning as in Sectjon| 2.2. Indeed Hgt denote this approximation
error, which is de ned as

Em:= kX XMk, =k P f(s) S m[ID f1(S) Wk

wherek k, denotes the Euclidean norm. In particular, E, is a (positive) random variable. Its

square can be expressed using the eigenvalues;:::; , of S as
p_ p_ X p_ p_ 2
EZ=k f Sq[ f] (S\WK= () Sml flIC W2 349
k=1

whereW = VTW is the graph Fourier transform of W with respect to some real orthonormal
eigenbasis ofS. In particular, note that fv is also a white signal.
Following Equation (, the expectation and variance of E2, are given by:
8

X _ _
SEEZI= . CF(Q Sal (W
K=t : (3.5)

X _ _
_EVar[Eﬁ]]ZZ pf(k) Sm[pf]( k)4
k=1

Hence asm ! 1 , both the expectation and the variance ofE2 go to zero, meaning that asymp-
totically the Bpproximation error E;, becomes zero. In particular, denoté',, the approximation
error of S[ f] over the interval [a; ] over which it is computed, i.e.

P~ P
"m:=max j f S f '
m = max () Sml f10)
Then, following Equation (B.5), we have E[EZ] = O(n"2) and Var[E2] = O(n"#). Besides,
recall that Chebyshev's inequality (Stewart, 2009, Section 8.2) ensures that, for any con dence
level > O: " r #

2
g>o0 pijez gezy REA . L o (3.6)

Hence, imposing a small enough approximation errot',, on the Chebyshev su ces to ensure
that with high probability, the approximation error E,, of the Chebyshev simulation can be
made as small as we want.

A more practical concentration inequality can be derived by introducing the random variable
B, associated toE, by

_ _ xXo
E2= PR Sal (0 W2 B2=02" W

Then in particular, E2 B2 and so, for any > 0,

h i
PEmw ]=PEZ 2 P® 2=p (W
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bution with n degrees of freedom, denoted?(n). Then,

2 2
=F 2(n)

PEnw 1 P Z2(n)

"2 n ;
m m
where F 2,y is the cumulative distribution function of 2(n). Therefore, if a con dence level
> 0is xed, the approximation error satis es
h q__ i
PEm "m F,,Q ) 1 ; > 0: (3.7)

This last expression can be made slightly more explicit by recalling that, according to the central
limit theorem, the distribution  ?(n) actually converges to a normal distribution with mean n
and variance 2n as n grows (Box et al},|2005). In practice, forn > 50, the di erence between
both distributions can even be neglected |(Box et al.; 2005). Assuming we fall in this case, the
concentration inequality becomes

2 S 3

PAE, "mPh 1+ 2F'A )5 1 ; > 0 ; (3.8)

where Fy denotes the cumulative distribution function of the standard Gaussian distribution.
HencB, with probability 1, the approximation error E,, of a Chebyshev simulation is of order
O( m n), and is therefore entirely driven by the approximation error ", of the Chebyshev sum.

Equations ) and ) provide conditions on the approximation error of the Chebyshev
sum, and therefore on the order of approximationm that should be chosen, so that with high
probability the approximation error of a Chebyshev simulation is as close to0 as one may want.

Following this approach leads to regarding the Chebyshev simulation algorithm purely as
an algorithm used to approximate numerically a target SGSx, which is known to have the
right statistical properties (hamely, Gaussian with covariance matrix f (S)). However, if the
algorithm were to yield a simulated SGSx (™) with bad approximation error, but whose statistical
properties are so close to those of that they both seem" drawn from the same distribution,
then x(™) would still constitute a great output for our simulation purpose. This approach is
investigated in the next section.

3.2.2 Statistical error of Chebyshev simulations

The goal of a simulation algorithm is to generate random vectors with some prede ned statistical
properties. In our case it comes down to generate zero-mean Gaussian vectors with covariance
matrix f(S). Once again,x(™ denotes an output of the Chebyshev simulation algorithm, as
de ned by Equation (. In this section, the statistical properties of x(™) are exploited in
order to derive a criterion on the approximation error of the Chebyshev sum that ensures that
x(M) can pass for a zero-mean Gaussian vector with covariance matrixf (S).

Notice rst that x(™) is by de nition a zero-mean Gaussian vector. The only stati%ical dif-
ference with x resides in the fact that the covariance matrix of x (™) is Var[x(M] = S,,[ T]3(S)
(instead of f (S)). Hence, the question that should be ansv&ered really is: what criterion can be
xed so that Gaussian vectors with covariance matrix Sy, [ f1?(S) become statistically indis-
cernible from their counterparts with covariance matrix f (S)? An approach based on statistical
tests on linear combinations obtained from both types of vectors is now outlined to answer this
interrogation.

Consider a sample ofNg independent zero-mean Gaussian vectorsx(lm); i ;x,(\‘”:) with

covariance matrix Sy, [p f1?(S). Each one of these vectors can be seen as an independent output
of the Chebyshev simulation algorithm. Let's consider the following null hypothesis test:

Ho : x(lm); D ;x,(\‘rz) is a sample ofNg independent vectors with covariance matrixf (S) .

Recall that by de nition (cf. Appendix a random vector z 2 R" is a Gaussian vector
with covariance matrix  if and only if, for any deterministic (and arbitrary) set of coe cients
c 2 R", c'z is a Gaussian variable with variancec” c. Therefore, hypothesisH, won't be
rejected if 8¢c 2 R", the hypothesisH§ de ned by:
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H§ : ch(lm); ::: ;ch(N":) is a sample of zero-mean Gaussian variables with variance
c'f(S)c,

is not rejected.

The (two-sided) chi-square test for the variance (Snedecor and Cochran, 1989) is considered
to test the null hypothesis H§ for somec 2 R". Indeed, based on a sample from a population
of normally distributed data, this test is used to check whether the population variance is equal
to an hypothesized value. In our case, this hypothesized value is" f (S)c and the sample is

ch(lm);:::;chf\,“:) .

For a given c 2 R", the statistic t(c) of the chi-square test for the variance is

2
t(c) = (Ns 1)% ;

where S?(c) is the (unbiased) sample variance de ned as

s

2 X
S?(c) = cx(™  me) ; m(c):Ni c’x

Ns 1, _
If the null hypothesis were to be true, i.e. if the population variance were to bec' f (S)c then
the statistic t(c) would follow a chi-squared distribution with Ns 1 degrees of freedom (denoted
2(Ns 1)). Hence, to test whether or not to reject the null hypothesis, the actual value oft(c)
computed from the sample is compared to typical values a 2(Ns 1) variable should take.
Formally, we say that H§ is not rejected with signi cance level > 0 if t(c) satis es

27;NS 1 o) SN 1 (3.9)

where E;NS . is the p-th quantile of the 2?(Ns 1) distribution. Recall in particular that
Foan, 1 g;NS 1) = p. If Equation ( is not satis ed, we say that H§ is rejected (with
signi cance level ).

Note that a draw from a 2(Ns 1) variable would have a probability 1 to fall in the
interval [ ZT;NS 5 3 ,N. 1] that appears in Equation @) This means that whenever the
null hypothesis is rejected with signi cance , the probability that it was true after all, and
therefore that t(c) is a ?(Ns 1) variable, is less than . is also referred to as the type-I
error, i.e. the probability of wrongfully rejecting the null hypothesis.

Recall now that the sample ch(lm>;:::;ch§,”;’ is generated from Chebyshev simula-

tions. pHence, the true population variance of the sample is known and is actually equal to
c"Sm[ TJ2(S)c. The testing procedure therefore really aims pa\t determining whether a sample
from a population of Gaussian variables with variancec™ S,,[ T]?(S)c can be mistaken for a
sample from a population of Gaussian variables with variancec™ f (S)c, in the sense thatH§
will not be rejected.
In particular, the probability R (c) that H§ is rejected with signi cance can be derived as
h i
R()=1 P ZT;N o) i SN 1
Note that, as described in the previous paragraph, in the case where the true population variance
is equal to the hypothesized one, this probability is equal to . In the general case, the following
result links R (c) to the accuracy of the polynomial approximation of f by Sy,[ f]? using a
criterion that is actually independent of c.

Proposition 3.2.1.  Let [a; 1 be an interval containing all the eigenvalues 0§. Let b, denote
the relative approximation error of the Chebyshev sum, de ned by

pi
— f() Sml FI()?
B = M2 Sml T1( )2

(3.10)

Let R (c) denote the probability of rejecting, with signi cance > 0 in a chi-square test for the
variance, the null hypothesisH§ (de ned for Ng samples).
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Then 8 > 0, there exists a threshold (Ns; ) > 0 such that:
o (Ns; ))8 c2R"; R (c) (1+ ) (3.11)

Proof. Let c 2 RY. Denote 2(c) = ¢' Sy [p f1?(S)c and 2(c)= c'f(S)c. Then, R (c) can
be written 2(0) 2(0)

olC) 2 0 olC) »2 .

2(c) 7Ns 1 t1c) 2(c) L ozNe 1

where t9c) is the statistic de ned by

R (=1 P

5(c) S%(c)
%c)= 09Dy = (N 1
By de nition, the sample ¢"x{™;::: ;ch(N":) is Gaussian with variance 2(c). Hence,t9c)
follows a 2(Ns 1) distribution. So, if (c) denotes the ratio
2
_ o(c)

Then,
R(©=1 Fen,n 1 ,n5 10 Fengn Za, 1 (©)

The probability R (c) only depends on the ratio (c) (and the parameters of the test,
namely Ng and ). Considering it as a function of the ratio 2 [0;+1 [, several properties
of R can be derived. First, given that8 2 R:, R () is a probability, 0 R () 1
Besides, from the fact that that F 2(\, 1) is @ continuous cumulative distribution function,
we get that R is also continuous (and even di erentiable) and that:

"|m0R ()=1= ||i”11 R () : (3.12)
Finally, from the study of the sign of its derivative (which can easily be expressed using the

distribution function of  2(Ns 1)), we get that R admits a unique global minimum on R,
for the following value i, of

min = 3
1

2 2
7;N5 1 j;Ns 1 7§Ns 1

In particular, R is strictly decreasing on[0; min [ and strictly increasing on] min;+1 [.
Consequently the intermediate value theorem ensures thaR de nes a bijection between
10; min] @and [R ( min); 1[, but also between[ min;+1 [and [R ( min);1[.
Consider now > Osuchthat (1+ ) < 1. Notably, we have

1>+ )> (ER@) R (mn)

Hence, the equationR ( )=(1+ ) admits exactly two solutions @) 2]0; min [ @and @ 2
] min:+1 [ Moreover, considering the variations ofR , we have8 2 [ ®; @] R ()
(1+ ) andalsol?] w. @ [. Introduce then the threshold

(Ng; )=minf1 @; @ 19
Given that by de nition of (Ng; ), [1 (Ns; );1+  (Ng; )] [ oF (2)], we have
8 > 0 such that j 1 (Ns; ); R(C) @+ ) : (3.13)
Notice now that for a any ¢ 2 R", the quantity j (c) 1j can be expressed as

2)  %(c) _ c'(f(S) Sl TR(S)c _ ¢'(f(S) S ml TR(S)C |
2(c) - cTSm[ TI2(S)c B kSm[ T1(S)ck3

i (0 1=
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Introducing the vector b= S, [p f1(S)c and using the de nition of graph lters, we get

: : b ' p_ p_ p_ b
© U= e Sl TS 1) Sal TES) Sol TXS) | o
0 Tt s TP
Sk st ek

Hencej (c) 1j can be expressed as the modulus of the Rayleigh quotient of a matrix
with respect to a vector depending onc. It can therefore be upper-bounded, for anyc 2 R",
by the eigenvalue of this matrix that has the largest magnitude. In our case, this gives

() Sml” FI 02

8c2R": j (c) 1 m — :
T W Lt TR

taining all the eigenvslues ofS, the condition b, (Ns; ) we will get in particular that
f)Sul I w)?

Sl 1 )2
(Ns; ) which concludes the proof according to Equation [(3.1B).

MaX2 1:n] (Ns; ) and therefore that for any ¢ 2 R", j (c) 1]

Therefore, if Equation ) is satis ed, then, for any c, hypothesisH§ is actually rejected
(with signi cance ) with a probability less than (1 + ) . This probability would have been
equal to if the samples were generated using the right covariance matrix. Therefore, the
parameter represents relative increase of the rejection probability due to the fact that the
samples are generated using an approximation of the target distribution.

As detailed in the proof, the bound (Ns; ) solely depends on the speci cation of the
characteristics of the statistical test: the sample sizeN, the signi cance level and the tolerated
increase of probability of rejection . Namely, it is given by:

(Ns; )=minf1  ®; @ 19

@ @

where @ and are the two solutions of the equation:

1 Foenen i ooms 1 Fene n 2n, 1 =@+ ) (3.14)

Hence, onceNs, and are xed, (Ns; ) can be numerically computed by solving Equa-
tion ( using any root nding algorithm such as the bisection method or even better Newton's
method given that the derivative of the function can be analytically computed (Press et al|| 2007).
Besides, the fact that the disjoint intervals on which each one of the solutions lies are known
can be used to ease the root nding process. Tablels 3.1 arjd 3.2 give values of the tolerance

(Ns; ) produced this way, for various sample sizedNs and thresholds . The signi cance is
xed at =0:05for Table Bd and =0:01 for Table B2.

Finally, note that given that Sp [p f] is de ned as the truncation of a Chebyshev series
at an order m, this order can be determined by specifying the parameters of the statistical
test the user would want its simulations to pass, along with a tolerated error in variance. These
parameters would in turn yield a value of (Ng; ) and therefore set a bound for the polynomial
approximation error b, . The order of truncation m is then chosen so thath, (Ns; ). This
approach will be used in Sectiorf 9.]1, when dealing with explicit examples of functions.

This section therefore provided an actual criterion that can be used to set the order of
approximation in the ltering step of the Chebyshev simulation algorithm (cf. Algorithm
so that the resulting simulations have good enough statistical properties. In the next section,
we link the Chebyshev simulation algorithm to Krylov subspace approaches, thus providing a
new insight on this algorithm.
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Sample sizeNg

50 100 500 1000 5000 10000
0.1%
1%
5% 1.89e-02 1.51e-02

10% || 3.00e-02 2.33e-02 1.18e-02
20% || 4.59e-02 3.48e-02 1.71e-02 1.24e-02
50% || 7.66e-02 5.71e-02 2.75e-02 1.98e-02 9.08e-03
100% || 1.10e-01 8.12e-02 3.89e-02 2.80e-02 1.28e-02 9.10e-03

Table 3.1: Values of the precision threshold (Ng; ) for di erent values of sample sizeNg and
of degradation of the type | error . The signi cance of the testis = 0:05.

Sample sizeNg

50 100 500 1000 5000 10000
0.1%
1%
5% 1.33e-02 1.09e-02

10% || 2.16e-02 1.71e-02| 9.00e-03
20% || 3.36e-02 2.59e-02 1.31e-02 9.54e-03
50% || 5.67e-02 4.28e-02 2.10e-02 1.52e-02 7.00e-03
100% || 8.11e-02 6.07e-02 2.94e-02 2.12e-02 9.76e-03 6.96e-03

Table 3.2: Values of the precision threshold (Ng; ) for di erent values of sample sizeNg and
of degradation of the type | error . The signi cance of the testis =0:01

3.3 Relation to Krylov subspace methods

3.3.1 Background: Krylov subspace approach

Krylov subspaces provide a framework for the study of some of the most used iterative algorithms
used to solve eigenvalue problems and linear systems involving a matri& 2 M, (R)
2015). The idea behind such algorithms is to iteratively generate a sequence of approximate
solutions of the problem while relying at each iteration on recurrence relations based on matrix-
vector products involving A. The approximate solution obtained at the m-th iteration step
lies in the subspaceK, (A;z) de ned for some problem-dependentz 2 R" and called Krylov
subspace of dimensiorm generated byA and z:

Km(A;z)= sparfz;Az;:::;A™ zg=f (A)z: polynomial of degree <mg

In particular, K, (A;z) is a vector space of dimension at mosh, the size of the matrix A.
An orthonormal basis of Ky, (A;z) can be constructed using the Lanczos algorithm|(Del Corso
let al.,[2015; Golub and Van Loan/ 1996b), which implements a Gram Schmidt orthogonalization
technique, as outlined in Algorithm B.4.

In Algorithm Enote that if 9j <m such that ;.; =0, the algorithm stops meaning that
Km(A;z) has dimensionj with [v4j:::jvj] as an orthonormal basis. Besides, the orthogonality
of the vectorsfv; g gives:

ViV =1m and V) vme =0

Finally, using the intermediate coe cients computed during the Lanczos algorithm, the resulting
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Algorithm 3.4:  Lanczos algorithm.

Input: A symmetric matrix A 2M ,(R), a vectorz 2 R" with kzk, =1, m n.
Output:  An orthonormal basis of K, (A ; 2).

Initialization: Vo=0,vi=12z, 1=0;
for j from 1to m do

h AVj iVi o1,
j=hTvj;

k h jVj;

j+1 = kkko;

Vis1 = K= 41,
Return Viy =[Vvij::1jvin] 2 M nm (R).

basisVy, satis es the following relation
AV = Vi Tm + m+1Vm+t erTn ;

where Ty, is the tridiagonal matrix de ned by

In particular, using the orthogonality of Vy,, this relation becomes
VAV = Ty

This last relation can be used to show that eigenvalues oA are well-approximated by those of
Tm asm grows, starting from the extremal ones (Golub and Van Loan, 1996pb).
Krylov subspaces arise naturally when studying iterative algorithms designed to solve linear
systems of the form;
Ax = b ; (3.15)

where A 2 M, (R) is assumed to be invertible andb 2 R". The following proposition details
this relation.

Proposition 3.3.1. Let A 2 M ,(R) be an invertible matrix. Then there exists a polynomial
of degree at mostn such that:
A t= (A)

Proof. Let Po be the characteristic polynomial of A, i.e. the polynomial de ned by the
relation:
Pa(X)=jXln A]

In particular, P is a polynomial of degreen, whosen-th order coe cient is 1 and O-th order
coecientis PA(0)=] Aj=( 1"jAj60. Hence, there existsc;;:::;¢c, 1 2 R such that
Pa(X)= X"+¢c, 1 X" '+ + ¢ X +( 1)"jAj. The Cayley-Hamilton theorem states that
Pa (A) = 0 (Friedberg et al., |2003, Theorem 5.23). Hence,

ﬂ(A” Yy, 1AM 2+ +clp)A =
- n n - n
JA]

Denoting  the polynomial of degreen 1 dened by (X) = (( 1" HAj)HX" * +
Ch 1XM %+ + ¢) then gives (A)A = A (A)= I, and therefore (A)= A 1 O
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Consequently, the solutionx = A b of Equation (8.15) can also be written asx = (A)b
for a polynomial of degree (at most)n 1 and therefore x lies in the Krylov subspace
Kn(A;b). In particular, if x© denotes an initial guess forx :

x x@=A 1 AxO)= (A9 2K, (A;r©®)

wherer@® = b Ax @ denotes a vector called initial residual. A whole class of iterative
algorithms, called projection methods, build on this observation to produce approximations of
the solution x starting from an initial guess by computing orthogonal projections on Krylov
subspaces of growing dimension (Saad, 2003). Among them, the generalized minimal residual
(GMRES) algorithm and the conjugate gradient algorithm, designed to solve linear systems
where A is respectively any invertible square matrix or symmetric positive de nite matrix.

3.3.2 Link to the Chebyshev simulation algorithm

In this section, the relation between the Chebyshev simulation algorithm and Krylov subspaces is
exposed, and a comparison with a more standard Krylov subspace approach to generate samples
from a S-stationary SGS with known spectral density is presented.

Recall that Section[3.1.2 provides a direct way to generate samples of stationary SGS with
spectral density f . Denote x such a vector:

x=" f(S)w ; (3.16)

wherew is a realization of a white signal. On the other hand, the Chebyshev simulation algorithm
yields, for an order of approximation m 2 N, a vector x (™) given by

XM = sol” FUSW (3.17)

where S[p flisa polyn%mial of degreem de ned as the Chebyshev sum (or interpolant) of order

m of the function x 7!~ f (x) on an interval [a; b containing the eigenvalues ofS.

Note consequently thatx(cm) 2 Km+1 (S;w). Besides, the Chebyshev simulation algorithm

can basically be seen as an iterative algorithm. Indeed, to compute (Cm) for any given m every

x(Ck) for 0 k < m is successively computed and is simply updated to generanfe(ck+l) . This
justi es the fact that Chebyshev simulations can be considered as a Krylov subspace approach.

A standard approach using Krylov subspaces to generate samples from a Gaussian vector
with known covariance (or precision) matrix uses the Lanczos algorithm to come up with an
approximation of x (Simpson et all,[2008). Indeed, in exact arithmetic, this algorithm can
provide an orthonormal basis of Ky+1 (S;") (Golub and Van Loan| [1996h). x can then be
approximated by (Frommer and Simoncini, 2008; Simpson et al., 2008)

P —
x{™ = kwkaVims1 f(Tme1)er (3.18)

wheree; = (10 ::: 0)T 2 R", Tr41 is a tridiagonal (symmetric) matrix of size m+1 and V1
is a matrix containing the m +1 vectors of the orthonormal basis ofKy,+1 (S;w), both matrices
being products of the Lanczos algorithm.

The cost associated with computingx (Lm) can be decomposed as follows :

Run the Lanczos algorithm for m iterations: this represents a cost ofO(mdp; n) operations,
where dp; is the mean number of non-zero values in a row of (cf. Algorithm .

Then, compute Equation (3.18): this involves the full diagonalization of the symmetric
tridiagonal matrix Tp+1, which is an O((m + 1) 3) operation using for instance LAPACK's
eigensolvers|(Demmel et all, 2008). Apply then a matrix-vector product withV,.; . Hence,
the overall cost of this step isO((m + 1) 2 + nm) operations.

Computing x(Lm) therefore comes at an overall cost ofd(md,, n + m3) operations. Regarding
the storage needs of this process, the matri¥,+; and the eigendecomposition ofl ,,+; need to
be stored, which requires a storage need @(mn + m?).

From Section[2.2, it is clear that the Chebyshev simulation algorithm requires less operations
and storage space to generate an approximation of from the same Krylov subspace. But on
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Lanczos Chebyshev

Computational cost | O(mdy,n+ m3) | O(md,, n)

Storage needs o(mn + m?) O(n)

Approximation error O(m) O( m logm)

Table 3.3: Comparison between the Lanczos algorithm and our Chebyshev algorithm aftem
iterations, for the simulation of a sample from stationary SGS.

the other hand, at the same approximation orderm, the quality of the approximation obtained
using the Lanczos algorithm will be better than the one using the Chebyshev algorithm. Indeed,
in the Lanczos case (still in exact arithmetic) this approximation error satis es (Musco et all,
2017)
K (m) . _ : P .
X X, 'ky  2kwky m; m = min max | f(x) j

polynomial  X2[ min ; max ]
of degree m

where nin (resp. max) denotes the smallest (resp. largest) eigenvalue db. Thus it yields
in the Lanczos case an error of orde©( ). In the Chebyshev case, the approximation error
satis es

T Prs) s nlPFIS) w

kw k3

p— p— w
kx xM™iG=k = f(S) Swm[ fIS) Wk3= kw k2
Noting the Rayleigh equation in this last expression, we can upper-bound it by the largest
eigenvalue of the matrix from which it is de ned. Hence, by taking the square-root,

o J— p_
(m) . .
kx  x¢ 'ka kW"?kE“[?;’,f]J f(k) Sml FIC )i

Kwke max () Sal FI0)

This last estimate can be bounded using , and the Lebesgue constant ,, thus giving for
the Chebyshev approximation an error of orderO( m m) = O( m logm) (Mason and Hand-
scomb, 2002). The results of the comparison between the Lanczos algorithm and our Chebyshev
algorithm are summed up in Table[3.3.

For small values of m the Lanczos algorithms is more adequate as it provides an approxi-
mation with a lower error. Its main aw resides in the fact that, contrary to our Chebyshev
algorithm, the storage needs grow linearly with the order of approximation. Hence for large prob-
lems (i.e. whenn is large), a restriction on the order of approximation has to be set according
to the storage space available to the user.

In order to tackle this storage problem, some adjustments can be made to the original Lanczos
algorithm (Aune et al., 2013). For instance, restarting procedures allow to work with a xed
number of stored basis vectors of the Krylov space. However, these methods result in a loss of
approximation accuracy and push to use complex preconditioning techniques in order to improve
the convergence speed of the algorithm, which in turn increases the overall computational cost
(Simpson et all,|2008). The Chebyshev simulation algorithm doesn't share this storage aw,
allowing it to make up for its relative lack of precision by the possibility to work with much
higher orders of approximation without the headache of nding the right variation of Lanczos
algorithm[f] to use.

Another attractive feature of the Chebyshev algorithm is the statistical stopping criterion
derived in Section[3.2.2. This criterion was established by using the fact thatx (™ could be

written as x(cm) = m(S)" where the coe cients de ning , are deterministic (which in our

case means that they are not linked tow) and that therefore xg“) is a Gaussian vector with
known covariance.

INote also that the comparison is carried out under the assumption of exact arithmetic. In oating points
computations, a loss of orthogonality of Vm+1 is observed as m grows, leading to larger approximation errors
(Musco et al.,[ 2017} and forcing the user to adapt the algorithm using workarounds such as re-orthogonalization
techniques or restart techniques (thus increasing the overall complexity of the algorithm).
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This is no longer the case when considering the Lanczos algorithm given that these same
coe cients would e ectively depend on the entries of w as this vector is used to compute the

matrices Vipn+1 and Tp+1 used to de ne x(Lm). The only available stopping criteria for the

Lanczos algorithm are therefore linked to the actual numerical approximation errorkx x(Lm)k
and not the statistical properties of the vector we wish to simulate. Moreover, given that in
practice x is not available, the stopping criteria actually rely on the link between the Lanczos
algorithm and the Conjugate Gradient algorithm, using the residuals of the latter as a bound
on the approximation error (Aune et al., 2013).

Conclusion

In this section, algorithms to generate simulations of a stationary SGS were introduced. The
focus was put on an approximate simulation algorithm, which we called Chebyshev simulation
algorithm, and that was based on Chebyshev graph Itering operations.

The numerical approximation error of the simulations generated by the Chebyshev algorithm
were computed, and led to concentration inequalities linking the accuracy of the polynomial
approximation used in the ltering step and the error between the simulation vector and a
vector that is known to have the right statistical properties.

Going then a step further, the statistical properties of the simulated vectors were directly
derived and compared to the targeted ones through an approach based on statistical tests. This
yielded criteria on the accuracy of the polynomial approximation used in the ltering step so
that the simulated vectors could pass for vectors with the targeted statistical properties.

Finally, the Chebyshev simulation algorithm was presented as a Krylov subspace approach,
and compared to a more standard method of simulation from this class of algorithms, based
on the Lanczos algorithm. Both methods produce an estimate of the simulated output using a
polynomial approximation of prede ned degree. At the same degree, the Lanczos approach will
yield a better estimate when considering numerical approximation error. However, the use of
Chebyshev simulations is justi ed by their cheap computational and storage costs, the ability
to evaluate statistical errors, and the guarantee that the simulations produced by the algorithm
are Gaussian vectors.
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Résumé

Dans ce chapitre, nous nous intéressons au probléme lié a l'estimation d'un signal sur
graphe stochastique stationnaire a partir de I'observation partielle et/ou bruitée d'une de ses
réalisation. Nous supposons par contre connue sa covariance. Nous présentons des estimateurs
adaptés a cette situation, ainsi que des algorithmes et des détails d'implémentation permettant
de les utiliser en pratique.

Introduction

Throughout this chapter, S denotes a shift operator of sizen de ned following Assumption [.2],
meaning that S is a symmetric matrix that relates to the adjacency relations of a simple undi-
rected graph. We focus on the problem of predicting aS-stationary stochastic graph signal
(SGS) from its incomplete and possibly noisy observation. However, the parameters de ning the
covariance of the SGS, namely the shift operatoiS and the spectral density, are assumed to be
known. The task of estimating them as well will be tackled in the next chapter.

Hence, our starting point is a vector of observed values derived from a single realization of
a S-stationary SGS through an a ne transform: each observed value is a linear combination of
entries of the SGS to which an independent noise variable with known variance is added. The
goal is then to come up with a predictor of the realization that gave rise to the observation
vector.

To tackle this problem, an approach based on the geostatistical paradigm is adopted, meaning
that a predictor of the random signal given the observed data is built instead of trying to predict
directly the realization of this random signal (Chiles and Del ner; 2012).

In the rst two sections of this chapter, predictors are derived for the cases where the noise
a ecting the observations is assumed to be entirely uncorrelated or arising fromS-stationary
signals. The remaining of the chapter then focuses on algorithms used to compute these predic-
tors, and on their implementation. In particular, the same restrictions regarding computational
and storage costs as in the previous chapter still apply, meaning that a matrix-free approach is
once again adopted.

4.1 Prediction of a stationary graph signal

The problem answered in this section is the following. Letz 2 R" be a realization of aS-
stationary SGS Z with known spectral density f : R! R.. We aim at building a predictor of
z from its incomplete observation. Formally, we assume that we do not observe directly, but
rather a vector z, 2 RY, linked to z by the relation

Zo=Moz+ W, ; 4.21)

where M ¢ 2 M g (R) is a known full-rank matrix called observation matrix, w, is a g-vector
composed of realizations of independent standard Gaussian variables, and 0 is a variance
parameter. Basically, it is assumed that the observed vectorz, is a linear transform of the
original signal z to which a noise component of variance 2 is added. Note that taking =0
allows to consider a noise-free model.

In particular, the rather general formulation of Equation ( includes the case where only a
few components of a SGS are observed and must be used to reconstruct the whole signal. Then
Z, is the vector composed of the components af that are actually observed, M  is the matrix
that extracts the observed components fromz and = 0. More precisely, M , is the matrix
whose(k;j )-th element is one ifz; is the k-th observed component ofz, and 0 otherwise.

4.1.1 Kriging predictor in the zero-mean case

We aim at nding a predictor of a signal z, conditionally to the observation of z,. Hence,
following the geostatistical paradigm (Chiles and Del ner, 2012),z and z, are seen as realizations
of random vectorsZ and Z, that are linked through the relation

Zo=MoZ+ W, ; (42)
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whereZ is a S-stationary SGS with spectral density f , W is a zero-mean Gaussian vector with
covariance matrix | 4 and M, and are de ned as above. In particular, we call the random
vector Z, observation process predictors of z are then built by considering the conditional

distribution of Z givenZ, = z,.

Proposition 4.1.1. Let Z be aS-stationary SGS with spectral densityf and letW , be a vector
of independent standard Gaussian variables.
Let Z, be the random vector de ned by Equation(4.2) for some (deterministic) matrix M o 2
M ¢:n (R) and variance parameter 0. Denote z, a particular realization of Z,.

Then,

[Z2jZo = 2z0] N (E[Z]zo];Var[Zjz,]) ; (4.3)
where E[Z jz,] is the conditional expectation ofZ givenZ, = z,:

E[Zjzo] = F(SMT Mof(SMT + 21, 'z, ; (4.4)

h i
and Var[Zjzo] = E (Z E[Z]jzo])(Z E[ijo])T jZo = z, s the conditional covariance ma-
trix of Z givenZ, = z4:

Var[Zjzo] = f(S) f(S)MJ M f(S)M{ + 24 'Mof(S) : (4.5)

In particular, whenever f is non-zero on the set of eigenvalues & and > 0, the conditional
expectation and covariance matrix ofZ can also be expressed as

1

E[Zjzo]l= (2=f)(S)+ MM, "MJz, ; (4.6)

and
Var[Zjzo]= 2 ( 2=f)(S)+ MM, & (4.7)
Proof. See Appendi{ C.2. O

Circling back to the initial prediction problem, the next proposition justi es why choosing
the conditional expectation E[Z jz,] as a predictor of Z given the observationsz, is optimal in
some sense. We rst introduce the notion of best linear unbiased predictor. LeZ 2 R" and
Z, 2 RY be two random vectors de ned as in Proposition[4.1.1 andz, be a realization of Z,.
A vector z 2 R" is the best linear unbiased predictor(BLUP) of a random vector Z given a
vector of observationsz, if it is:

Linear: There exists an g weight matrix, denoted K, and a vector 2 R" such
that z = + Kz ,. Hence each entry ofZ is predicted by a linear combination of the
observations inzg.

Unbiased: E[Z Z]= OwhereZz = +KZ,,,i.e. theerrortermZ Z iszero-mean.

Minimal variance: K is the matrix that minimizes Var[Z  Z],i.e. theerrortermzZ Z
has minimal variance over all possible linear predictors oZ from Z,.

The next proposition then follows from Proposition [4.1.1.

Proposition 4.1.2. Let Z and Z, be two random vectors de ned as in Propositiof 4.1.]l and
Zo be a realization ofZ,, considered as an observation o .

The conditional expectation E[Z jz,] of Z givenZ, = z, is the best unbiased linear predictor
of Z given z,.

Proof. See Appendi C.2. O
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Hence,z = E[Z]z,] is an optimal choice of linear predictor ofZ given z, given that it is
unbiased and it ensures that the variance of the error is minimal. By analogy with the simple
kriging predictor used in Geostatistics, which is de ned in the same manner|(Chiles and Del ner,
2012; Wackernagel, 2013)z = E[Z]jz,] is called kriging predictor of Z by z,.

Besides, note thatZ = E[Z]Z,] is the conditional expectation of Z with respect to the
random variable Z,. As such, it is also equal to the conditional expectation ofZ with respect to

(Z,), the -algebra generated byZ , (Feller, 1971). WheneverZ and Z, are square-integrable
random variables,Z de nes an orthogonal projection of Z onto the space of (Z,)-measurable
functions, with respect to the inner product (X;Y ) 7! E[XY ]. As such,Z can be interpreted
as the projection of Z on the set of random variables that encapsulate information fromZ,. In
this sense,Z is the best representation ofZ achievable by a prediction based orZ .

In the next section, kriging predictors are derived for the case where&Z is not necessarily
zero-mean.

4.1.2 Kriging predictor in the non-zero mean case

Recalling De nition {.4.6] let us assume for this subsection thatZ is a S-stationary SGS with
spectral density f and possibly non-zero mean (cf. Sectio.4). Hence, there exists a zero-
mean S-stationary SGSY with spectral density f, an eigenvectorv 2 R" of S and somem 2 R
such that

Z=Y +mv : (4.8)

Once again, we aim at predictingZ 2 R" from a vector of observationsz, 2 R% drawn from a
observation processZ, de ned by Equation (§.2).

SGS with known mean

We rst assume that both the mean eigenvectorv and the mean valuem in Equation ( are
known.

Proposition 4.1.3. Let Z be aS-stationary SGS with spectral densityf : R! R: and with
mean mv wherem 2 R and v 2 R" is an eigenvector ofS. Let us assume that bothm and v
are known.

Then, the BLUP Z of Z given a vector of observationg, given by Equation@) is

Z = E[Zjz]= mv+f(SIMT Mof(SMT + 214 ‘(zo mMov) : (4.9)
In the case wheref is non-zero on the set of eigenvalues 08 and > 0, we have the

following equivalent formulation of the kriging predictor:

1

Z = E[Zjzol=mv+ (2=)(S)+ MM, "MJ(zo mMyv) (4.10)

Proof. See Appendix C.2. O

Remark 4.1.1. Regarding the conditional covariance matrix, Var[Z jz,], simple calculations
show that Var[Z jz,] = Var[ Y jy,], and therefore it keeps the same formula as in Equatio5)
and, when applicable, Equation [4.7).

SGS with unknown mean

We now assume that the mean parametem is unknown. However the vectorv carrying the
mean is assumed to be known. The BLUP o given z, then has the following expression.

Proposition 4.1.4. Let Z be aS-stationary SGS with spectral densityf : R! R, and mean
mv wherem 2 R andv 2 R" is an eigenvector ofS. Let us assume thatv is known butm is
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unknown.
Then, the BLUP Z of Z given a vector of observationg, given by Equation @.1)) is
0 1 10 1
Mof(SMJ + 2| M oV y4s)
z = fSMT  |v of (SIM I ° C o (4.11)
(M V)T 0 0
Proof. See Appendix C.2. O

This predictor introduced in the proposition above actually corresponds to the ordinary
kriging predictor encountered in Geostatistics (Wackernagel! 2013) and is the BLUP ofZ .

4.1.3 Conditional simulations

The idea behind conditional simulations is to generate simulations of a stationary SGS that agree
with some observation data when the same observation process is applied to them. Considering
a S-stationary SGSZ and an observation procesg , de ned by Equation (§.1), we assume that
we only observe a (single) realizatiornz, of Z. We aim at generating a simulation z; of Z such
that

MoZe+ Woc=Zo

for some realization ofw,. of W,. This is actually equivalent to draw z. from the conditional
distribution of Z given Z, = z,. Hence, following Proposition[4.11,

ze N (E[Zjzo];Var[Zjzo]) (4.12)

where E[Z jz,] and Var[Z jz,] are de ned in Equations (4.4) to (4.7).

Conditional simulations are widely used in Geostatistics for uncertainty assessments when
studying complex (spatial) phenomena |Chiles and Del nef, |2012; Lantuejoul,| 2013). The
premise is that each conditional simulation can be interpreted as a possible picture of the phe-
nomenon or an alternative version of the reality of the phenomenon, that is generated while
honoring the limited information gathered about it. Using conjointly all these alternative sce-
narios allows to assess which one of them might be problematic and therefore identify possible
outliers.

In the context of SGS, a possible use of conditional simulations would be to compute predic-
tions of non linear functions of Z , conditional to some observed dataz,. Indeed, ifzél) pil ;zéN)
denote a set ofN > 0 independently generated conditional simulations ofZ , then for any func-
tion F of Z, a prediction F(Z) of F(Z) conditional to Z = z, is given using a Monte-Carlo
approach, via the relation

_ X (K)
F@z) = ¢ F@)
k=1

Direct approach to conditional simulations

Circling back to the generation of conditional simulations, a direct approach consists in noticing
that any conditional simulation z. following Equation ({.12) is a realization of a random vector
Z . that can be written

Z.=E[Zjzo]+ 20 (4.13)

where Z 0. is a zero-mean Gaussian vector with covariance matrin/ar{Z jz,]. Hence, a condi-
tional simulation z. is obtained by adding the conditional expectation E[Z jz,] to a realization
of Z .. Realizations ofZ . may be obtained by a factorization method (cf. Sectior] 3.1.]1) given
that their covariance matrix is known but does not exhibit any particular structure that could be
used to bypass this method (like for instance them being graph Iters). Algorithm outlines
this procedure.
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Algorithm 4.1:  Conditional simulation using a direct approach.
Input: Observation matrix M ,, Variance parameter and observation vectorz,.
Spectral density of the signalf of a zero-meanS-stationary SGSZ .
Output: A simulation of Z conditional to z,.

Compute E[Z jz,] using Equation (4.4) or Equation (4.6) ;

Find a matrix B 2 M ,(R) such that BB T = Var[ Zjz,], where Var[Z jz,] can be
equivalently expressed as Equation[(4]5) or Equation|(4]7) ;

Compute z2%, = B" where" is a vector with independent standard Gaussian entries;
Return z. = E[Zjz,] + z% ;

The direct approach presented in Algorithm[4.] has a huge bottleneck: the factorization of
Var[Zjz,]. Contrary to the case where the covariance matrix is a graph lIter, the factorization
here supposes that rst, Var[Zjz,] is formed and stored. FormingVar[Z jz,] involves to fully
form a graph lter which must be avoided as it is a costly operation (cf. Section[4.3.]1 for more
details). Hence, the direct approach of Algorithm is usually discarded when it comes to
generate conditional simulation.

Kriging approach to conditional simulations

This second approach for generating conditional simulations builds on the one presented above.
It allows to compute conditional simulations of SGSs as long as we know how to compute un-
conditional simulations of SGSs with known spectral density, and that we know how to compute
conditional expectations of these SGS. The former was addressed in Chapfer 3. The latter is the
purpose of Section$ 4]3 anfl 4]5. We therefore assume for this subsection that both tasks can be
performed.

Starting once gain with Equation (4.13), we aim at nding a more e cient way to generate
a simulation of Z 2., which is a Gaussian vector with mean0 and covariance matrix Var[Z jz,].

nc:
The following proposition answers this question.

Proposition 4.1.5. Let Z be aS-stationary SGS with spectral densityf . Let Z, be the random
vector de ned from Z by Equation (4.2).
Denote E[Z jZ ,] the conditional expectation ofZ given Z, (which is the random vector obtained
by substituting z, to Z, in Equation (4.4)).
Then,
Z E[ZjZo] N (O;Var[Zjz]) ;

where Var[Z jz,] is de ned through Equation @ and only depends orM ,, and f (S).

Proof. See Appendix C.2. O

Remark 4.1.2. Given that the corresponding expressions are equivalent[Z jZ ,] and Var[Z jz,]
in Proposition can also be computed using respectively Equatior (4.6) and Equation (4.7).

Consequently, a simulation ofZ . can be generated by computing a realization of the random
variable Z  E[Z|Z,], given that they both have the same distribution. This can be done in
three steps:

1. Generate a realizationz® of Z , which is a S-stationary SGS with spectral density f .
2. Compute the vector E[Z jzJ] which is obtained by replacingz, with z2 in Equation (f.4),

where
0 _—

28=Moz%+ wl ; (4.14)
and wQ is a vector of independent standard Gaussian variables.

3. The actual simulation z%. of Z2. is given by z%. = z° E[Zjz0].
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Equation (§.13) then gives the following expression for a conditional simulationz of z:
2o = E[Z]zo] + 2, = E[Zjzo] + 2° E[Z]zg]

In particular, noting that the expression of both E[Z jz,] and E[Z jz{] are linear with respect to
Zo and 28, this last equation can be written as

z.= 2%+ E[Zjzo 27 ;

whereE[Zjz, zJ] denotes the vector obtained by substituting z, by z,  zJ in Equation (4.4)

or Equation (4.6):

ElZjzo zJ=f(SM] Mof(SMJ + 214 (20 29

1 (4.15)
= (2=H)S)+ MgMo "MJ (2o 29
Equation (4.15) is used to derive the conditional simulation algorithm outlined in Algo-
rithm £.2] This algorithm sums up this kriging approach to conditional simulations, that yields
a conditional simulation for the cost of an unconditional simulation and a linear prediction of
SGS by kriging. The user should note that the second equality in Equation ) is de ned
only if f is strictly positive over the eigenvalues ofS and > 0.

Algorithm 4.2:  Conditional simulation by kriging.
Input: Observation matrix M ,, Variance parameter and observation vectorz,.
Spectral density of the signalf of a zero-meanS-stationary SGS Z..
Output: A simulation of Z conditional to z,.

Compute a unconditional simulation z° of Z using one of the algorithms of Sectiol ;
Compute z9 using Equation (4.19) ;

Compute E[Zjz, z9] using Equation (4.18) ;

Return z. = 2%+ E[Zjz, 20];

4.2 Extraction of a stationary graph signal

The prediction problem of Section[4.] is now extended: correlated noises are indeed added in the
observation process. This situation arises naturally in Geostatistics, where the noise a ecting
a spatial dataset can also presents spatial correlations that can be modeled. We transpose this
setting to stochastic graph signals.

Let Z 2 R" be once again aS-stationary SGS with known spectral densityf : R! R..
We aim at recovering a predictor of Z from its noisy observation. Formally, we assume that we
do not observeZ directly, but rather a vector z, 2 R? which is a realization of an observation
processZ, de ned by:

where:

8k 2 [1;pl, Zk is assumed to be stationary with respect to a shift operatorSx and has
spectral density f ¢, both of which are known.

W, is a vector with g independentstandard Gaussian entries.

0 is a variance parameter.
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We therefore aim at extracting a particular signal Z from the observation of a superposition of in-

and unstructured noise the vector Wy in order to introduce a distinction between them. The
observation process involves a modi cation of each structured noise through an observation
matrix.

This new problem is a direct generalization of the prediction problem of Sectiof 4]1, which is
retrieved whenp =0, i.e. where the noise oZ,, de ned as the dierence Z, M oZ, is purely
a measurement error. This parallel allows to derive linear predictors oZ in the same way as in
Section[4.]1.

4.2.1 Linear predictor in the known-mean case

Let us assume for this section thatZ is a S-stationary SGS with spectral density f and possibly
non-zero meanmv wherem 2 R and v 2 R" is an eigenvector ofS. In particular Y := Z mv
de nes a zero-meanS-stationary SGS'Y with spectral density f .

We aim at extracting Z 2 R" from a vector of observationsz, 2 R% drawn from a observation
processZ, (de ned by Equation () by building a linear predictor of Z from z,. The

Proposition 4.2.1. Let Z be aS-stationary SGS with spectral densityf and known meanmv
wherem 2 R and v 2 R" is an eigenvector ofS. Let z, 2 RY be a realization of an observation

processZ, de ned by Equation (4.16).
Then, the BLUP Z of Z given z, is the conditional expectation ofZ givenZ, = z,, that is

z

E[Zjz.]

P

X
mv+f(S) Mg Mf(S)MJ + M f(SKM + 2lq (2o MMgV):
k=1

(4.17)

Besides, the conditional covariance matrix ofZ givenZ, = z, is given by
|
' 1

P
Var[Zjzo] = F(S) f(SIMJ Mf(S)MJ + M f(SKMJ + 214 M,f(S): (4.18)
k=1

Proof. See Appendix C.2. O

Other formulations of the solution of the extraction problem can be formulated for the par-
ticular case where the spectral densityf is non-zero over the set of eigenvalues & and > 0.

Proposition 4.2.2. Let Z be a zero-meanS-stationary SGS with spectral densityf and let
Z, 2 RY be a realization of an observation procesZ , de ned by Equation (4.16).

satisfy

0 1
Z mv
Zp
0 , 1 10 1
MdMo+ +(S) MJM; s MJIM, MJ(zo mMgv)
% MIM, M{Mi+ —(S) ::: MM, E %Mf(zo mM oV)
My Mo, MMy i MJMP+£(SP) M (Zo MM ov)

(4.19)
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Proof. See Appendix C.2. O

4.2.2 Linear predictor in the unknown-mean case

Once again, we assume for this section thaZ is a S-stationary SGS with spectral density f and
possibly non-zero mearmv wherem 2 R and v 2 R" is an eigenvector ofS. However we now
assume that the mean valuem is unknown and the mean eigenvector is known. The BLUP of
Z given z, has the following expression.

Proposition 4.2.3. Let Z be aS-stationary SGS with spectral densityf and meanmv where
m 2 R andv 2 R" is an eigenvector ofS. Let us assume thatv is known butm is unknown.
Then, the BLUP Z of Z given a vector of observations, de ned by Equation (4.16) is:

0 1 19 1
P
a Mof (S)MJ + Mf(SKM Y + 2l M oV %zo E
Z = f(S)M, |V k=1
(M ov)T 0 0
(4.20)
Proof. See Appendix C.2. O

In the next sections, we present numerical methods to e ectively solve the prediction and
extraction problems that were introduced in the past two sections. As a matter of fact, given
that the prediction problem is the particular case of an extraction problem for which there are

now on.

4.3 Practical implementation in the known-mean case

Let us assume that we aim at extracting a signalZ with known mean mv wherem 2 R and
v 2 R" is an eigenvector ofS, from an observation vectorz, arising from an observation process

Z, de ned by Equation (f.16).
4.3.1 Matrix-free formulation of the problem

Propositions [4.2.] and[4.2.p provide expressions for the BLUR of Z given z, that share a
common formulation. Indeed, they can be written as:

z =PK b ; (4.21)
where:

K is a symmetric positive-de nite matrix de ned from the covariance matrices f (S),

P isan nk matrix de ned from the covariance matrix f (S) and the observation matrix
M o-

More precisely, the matricesK , P and the vector b have the following expression (cf. Proposi-
tion {.2.1)):
P
K= M((SMJ + M f(SM T + 214
0 ( ) 0 - k k( k) k q (4.22)
b=z, mMgy,; P=f(S)M/]
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Whenever the spectral densityf of the extracted signal is non-zero over the eigenvalues &
and > 0, an alternative formulation is given by (cf. Proposition

0 1
MJIMo+ (S) MIM;, 3% MJIM,
MIM, MIM1+ (S1) :i: MM,
K = . _ :
T T T 2
MgMoy 4 MJM: B MM+ —(Sy) 4.23)
MT
o]}
M
b= . (zo MMyv);, P =1
Mg

In that case, z actually corresponds to the best linear predictor of the vector containing the

Hence, a straightforward way to get the extracted signalz would consist in building the
matrices P, K and b, and actually computing z through Equation (4.21). This can be done in
two steps:

1. First, compute the term x = K b by either inverting K and multiplying the inverse
with b or more generally by solving the linear system

Kx =b ; (4.24)
using any algorithm designed for this purpose.
2. Returnz = Px .

In practice, building and storing the matrices K and P in order to directly use them in
Equation (@) quickly becomes an intractable operation. To understand this, notice that the
expression of both matrices involves at least one graph Iter. Hence computing and storing<
and P actually requires to compute and store at least one graph lter. This can be done using
the de nition of graph Iters, which involves the diagonalization of a shift operator. If the shift
operator has sizen, this approach would therefore requireO(n®) operations and a storage space
of order O(n?) given that the resulting matrix has no reason to be sparse.

Following the idea of Chebyshev Itering, we might think of computing a polynomial approx-
imation of the graph Iter. However, doing so now involves matrix-matrix products between the
shift operator and a matrix of size n that becomes less and less sparse as the number of products
grows. The whole point of the Chebyshev approach would therefore be lost: only low-order
approximations would be considered otherwise the computation of the graph Iter would be as
expensive as using the diagonalization method.

Even if we assume that we are able to build any graph Iters, a storage problem arises. Take
for instance the case of the matrixK , whose computation seems inevitable to solve the system
of Equation ). Storing K would require O(n?) storage space, as it is in general a dense
matrix.

Another approach should therefore be used to solve the system of Equati04). Even
though computing directly the matrix K is prohibited, computing products between K and
vectors of the same size can be done in an e cient way using Chebyshev ltering. Assuming
the observation matrices are sparse, the computational and storage cost of computing a product
Kx can be brought down to roughly the cost of performingp+ 1 graph lItering operations.

In the case whereK is de ned as in Equation ), a product Kx is given by

P
Kx = Mof(SMJIx+ M f(SOM/Ix+ 2x ;
k=1

where each term of the formM of (S)M [ x can be computed in three steps. First, the vector
M I x is computed (which is cheap asM , is sparse). Then Chebyshev ltering is used on the
graph lter f(S) and the vector M ] x. And nally, the resulting vector is multiplied by M .
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Similarly, in the case whereK is de ned as in Equation (4.23), we have

0 P 1
2
0 1 MJ Mox+ Mixk + +(S)x
X k=1
MT Mox+ T M + (S
X1 1 oX kXk - (S1)X1
K ] = k=1 ;
P

Xp M Mox+  Mixi + (Spxp

k=1

where each term g the form( 2=f)(S)x is computed using Chebyshev ltering. Note also that
the term (M ox + E:l M kXk) can be computed once, stored, and used for every subvector of
the product.

Hence e cient programs based on Chebyshev ltering can be written to compute the product
Kx for any vector x, and do not require to actually build the matrix K . The idea is then to
use matrix-free solvers to solve Equation (4.24). Such solvers have the desirable properties
that they are able to solve linear systems using only products between vectors and the matrix
de ning the linear system. In particular, they do not require to explicitly have access to elements
of this matrix and therefore to have them stored somewhere.

Note nally that if a method is found to e ciently solve Equation (4.then computing
the actual extracted signal is done by simply multiplying the obtained solution by the matrix
P . This last operation can once again be performed using Chebyshev algorithm and therefore
amounts to the cost of at most one graph ltering operation. In the following, we therefore focus
solely on the numerical resolution of Equation [4.24).

4.3.2 Optimization framework
Note that the solution x of Equation (§.24) satis es:

x =argmin fop (X); where fop(X) = %XTKX b'x : (4.25)
X2 R"K

Indeed, given thatK is a positive de nite matrix, the function foy : R" ! R is calledobjective
function and is convex, and therefore its stationary point is its unique minimum. In particular,

8x 2R™; rfe(X)=Kx b ;
and therefore the (unique) stationary point of fon is x = K b. Computing x is therefore
equivalent to solving the minimization problem de ned by Equation (£.25).
Remark 4.3.1. Let us denotek ki the norm de ned for any x 2 R"« by kxkx = P XTKX .
Then, 8x 2 R"«,
kx  x k2 =(x)TKx  2x)TKx +(x )TKx
And if we now dene x by x = K 'bwe have
1 T T 1 T
fop (X )= 5(x )’ Kx  (x )'b=S(x)'b
Hence, by combining both equations we get
kx X ki =2(fopt(X) fopt(x)) (4.26)

We therefore retrieve the fact that the minimum of the objective function is reached by the
solution of the systemKx = b.

Besides, evaluatingf o, or r fope at any point x 2 R"« only requires to be able to compute
the product Kx , and therefore can be done within a matrix-free approach. Hence a rst-order
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optimization method, i.e. one that is based on the gradient of the objective function, can be
used to solve the problem and therefore gek (Nocedal and Wright, 200€). We discard in a

rst approach any second-order optimization method, which, even though they enjoy faster con-
vergence rates to the solution, require to compute the Hessian matrix of the objective (Nocedal
and Wright, 2006), which is here the matrix K .

We rather look at algorithms that minimize both computational and storage costs in a matrix-
free approach. Ideally, only a few vectors should be stored at any time during the optimization
process, and each iteration should require a nhumber as small as possible of products between
vectors and the matrix K , the optimal number of products being of coursel (to compute a
gradient). First order descent algorithms allow to check both boxes.

More generally, descent algorithms |(Nocedal and Wright, 2006) iteratively build a sequence
x©@:x@:::: that converges tox and whose terms follow the general recurrence relation:

xk ) = x4 g K o (4.27)

where fd®®¥ g, ¢ is a family of vectors called descent directions and generally computed using
their own recurrence relation, which involves gradient computations andf gk o is a family of
(positive) parameters called step sizes.

4.3.3 Steepest gradient descent algorithm

The simplest example of descent algorithm is theconstant-step gradient descent algorithn(No-
cedal and Wright, 2006), which consists in choosing a constant step size for all updates in
Equation (B.27), and taking d® = 1 fq5 (x¥) which corresponds to the direction of greatest
decrease of o5 . Hence, we set a parameter 2 R, and build the sequence:

x (k*D) = (k) rfoe(x); k 0 : (4.28)

As one may suspect, a successful convergence of this sequence towardsighly depends on the
choice of : taking a value of that is too large results in the divergence of the algorithm and
taking a value of that is too small results in a very slow convergence| (Nocedal and Wright,
2006). To avoid the hassle of setting the right parameters, the next algorithm is preferred.

The steepest gradient descent algorithnfNocedal and Wright, 2006) is derived by choosing at
each iteration k of the gradient descent a step size x = °°" that yields the greatest decrease
of the objective function fq, . Hence,

e — argmax fopr XK fo x® r o (x®) ; k0
2R

Given that fop is quadratic, this problem has a closed-form solution that is obtained by calcu-
lating the stationary point of the function 7! fop X&) fop x (X0 r fopt (X)) . This
gives

Steep _ fopt (X(k))Tr fopt (X(k)) -k 0

K o (X TK T fop (xK)
The steepest gradient algorithm is outlined in Algorithm B.3] It assumes that only a routine
allowing to compute matrix-vector products between K and any vector of sizeng is known.
Besides, the iterations of the algorithm are carried out until convergence is reached", which
means here that a good enough approximation of the solution was reached. To assess the quality
of a given iterate x(¥) | a stopping criterion is usually set by requiring that the (Euclidean) norm
of r fope (X X)), which is given by kr fop (x(®)k = kb Kx Kk, is below a prede ned threshold
(Nocedal and Wright, 200€). Other possible stopping criteria include checking the norm of the
di erence between successive iterates or successive values taken fiyy; .

The performance of the steepest gradient algorithm is determined by how fast or equivalently
how many iterations are needed for thek-th approximation x(¢) of the solution x generated by
the algorithm to reach a given approximation error, measured as a distance betweer®) and
X . For the steepest gradient descent algorithm, this convergence rate depends (only) on the
initial guess we have forx and on the properties ofK through a quantity called the condition
number of K (Nocedal and Wright| 2006;| Saad| 2003).
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Algorithm 4.3:  Steepest gradient algorithm.
Input: For a positive de nite matrix K 2 M, (R) , a routine prody (v) that returns
for any v 2 R"« the vector Kv . A vector b2 R"« . An initial guess x ©
Output:  An approximation of x = K !b.

k=0;
d(o) = r fopt(X(O))z b KX (0) :
while Convergence is not reachedlo
- (d®)HTd® |
k= [@@)TKd ©
X(k+1) = X(k) + kd(k) :
dk+) = gk) k prody (d(k)y;
k k+1;

Return x &),

Let us denote byk k; either the Euclidean norm of a vector or the matrix norm subordinate
to the Euclidean norm as de ned for matrices ofM , (R) by
KAX ko q q

kAk; := sup =sup R(ATA;x)= max (ATA); A2Mn(R) ;
xe0 Kxkz x60

where nax (:) denotes the largest eigenvalue of a matrix andR (M ;v) denotes the Rayleigh
quotient of a Hermitian matrix M and a vectorv (cf. Appendix A.2.1).
The condition number (A) of an invertible matrix A is then de ned as:

(A) = kAkokA Tk,

Note that in the particular case of a (symmetric) positive de nite matrix K , its condition number
can expressed as
(K ) - max (K ) ’
min (K )
where max (K) (resp. min (K )) denotes the largest (resp. lowest) eigenvalue of .

Proposition 4.3.1.  The sequencex©@ ;x®M;::: generated by applying the steepest gradient al-
gorithm to the minimization problem of Equation (4.25) satis es

(K) 1

k
(K)+1 @ x e

8k 0 kx® x kg
where (5 ) is the condition number of K and k kg is the norm de ned for any x 2 R"« by
kxkg = xTKXx .
In particular, 8 > 0,

1 kx @ K
K o S ko x® x ke
log (K )+1
Proof. See (Sun and Yuan| 2006, Theorem 3.1.5). O

A similar result can be deduced about the convergence towards the global minimum of the
objective function fop: of the sequence f ope (X X)) gk o.

Corollary 4.3.2. The sequencex©@ ;x@ :::: generated by applying the steepest gradient algo-
rithm to the minimization problem of Equation (4.25) satis es:
Ky 1 2
8k O fopt (X(k)) fopt (x) EK ; 1 1:opt (X(O)) fopt (x) ;

where (K) is the condition number ofK .
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Proof. This result is a direct consequence of Propositiof 4.3]1 and Equatior{ (4.26). O

Hence, the convergence rate of the steepest gradient algorithm is greatly determined by the
condition number of the matrix K . For ill-conditioned problems, which correspond to the case
where (K ) is large, convergence may be very slow. In fact, an disproportionate number of
iterations may be needed for the sequencéx (¥ g, o to reach the minimum x (Nocedal and
Wright, 2006). However, this aw is not shared by the algorithm that will be introduced in the
next subsection, which has the desirable property to converge in a nite number of iterations.

4.3.4 Conjugate gradient algorithm

The conjugate gradient algorithm (Nocedal and Wright, |2006) is an iterative method designed
to solve linear systems of the form of Equation|(4.24) wher&k 2 M, (R) is indeed a symmetric
positive de nite matrix. It builds a sequence fx'“'go « n, Of approximations of the solution
using the following principle.

Let x© be an initial guess forx . Recall from Section[3.3.1 that

x xO =k 1O

where 8k 0, r ¥) denotes the vector de ned byr®) = b Kx ) called k-th residual vec-
tor. Hence, following Proposition ,x x© lies in the Krylov subspace of dimensionng
generated byK and r©, and denotedK,, (K ;r©@) (cf. Section[3.3.1).

The conjugate gradient algorithm generates a sequencex X)g, o such that 8k 0, x (¢
x(©@ s the K -orthogonal projection of x ~ x© onto the subspaceK (K ;r (@) of dimensionk
(Del Corso et al!,|2015). Namely,

x®W =xO+ argmin kx  x© yk¢; k 0 ; (4.29)
y2K (K ;r @)

wherek:kk is the norm de ned for any x 2 R" by kxkx = P xTKx . In particular for k = ny ,
giventhat x  x©@ 2K (K ;r @), the minimum in Equation (4.29) is reached fory = x =~ x©,
and therefore

X(“K):x(0)+(x X(O)):X

Hence the conjugate gradient reaches the actual solution in (at mosty iterations.

Remark 4.3.2. Note that, using Equation (%.26), Equation (4.29) can be written as:

x (k) = argmin kx  xkg = argmin f opt (X)
X2xO + Ky (K ;r©@) X2XxO© + Ky (K ;r©@)

Hence, the conjugate algorithm actually computes at each iterationk the vector in the a ne
spacex @ + Ky (K ;r @) that minimizes the objective function f op .

orthonormal basis of K,, (K ;r©),i.e. 8 6 j 2 [1;nk ], kvikc = kvjkx =1 and v{ Kv =0.
Such a basis can be built using a Gram-Schmidt orthogonalization technique, similarly to the
Lanczos algorithm (cf. Algorithm B.4). Doing so, it ensures that81 k ng, vi;iii;vi is a
K -orthonorn&l basis of Ki (K ;r ©@). Then, in particular, there exists ¢;;:::; ¢, 2 R such that
x  x©@ =" " gv; which gives by de nition of x®, k 0, x®0  x©@ =" € ¢vj. And
therefore,

x® = x® 4+ g vig; k0

recurrence relations that are used to compute the projections de ningx () (Del Corso et al!,
2015). In fact, the conjugate gradient algorithm actually computes projections using the recur-
rence relation:

x kD = x4 gk K 0
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where the descent directionsd®) follow their own recurrence relation:
dk+D) = p(k+1) 4 kd(k); k 0

In particular, the descent directions are K -orthogonal and the residuals are orthogonal (with
respect to the Euclidean norm), which allows to derive closed-form expressions of the coe cients
ky k-
(r(k))Tr(k) (r (k+1) )Tr(k+1)

KT @)TKd @ KT T ()T

The conjugate gradient algorithm is outlined in Algorithm £.4]

Algorithm 4.4:  Conjugate gradient algorithm.
Input: For a positive de nite matrix K 2 M, (R) , a routine prody (v) that returns
for any v 2 R"« the vector Kv . A vector b 2 R"« . An initial guess x ©
Output:  An approximation of x = K !b.

k=0;

r(o) =b prodK (X(O)), d(o) = r(o) :

p©@ = prody (d©);

while Convergence is not reachedlo
_ T

K= (d@)Tp®

X(k+1) = X(k) + kd(k) ;

Pl = p () )
_ (r(k+1) )Tr(k+1) .

k= Tyt rm

dk+D) = pk+1) o (k).

p(k+1) = prodK (d(k+1)) :
k k+1;

Return x &),

As mentioned earlier, the conjugate gradient algorithm reaches the solution of the linear
system in a nite number of iterations ng . In fact, the algorithm is stopped as soon as the
k-th residual is null, as this means that x() = x . In theory, this can happen for k < n .
However that, in the worst case scenario, thek = ng which can be very large. Stopping the
algorithm beforehand, once thek-th iterate is close enough to the solution, seems once again
more adequate. Fortunately, the conjugate gradient algorithm enjoys a better convergence rate
than the steepest gradient algorithm.

Proposition 4.3.3.  The sequencex @ ;x@:::: generated by applying the conjugate gradient
algorithm to the minimization problem of Equation (4.25) satis es

P '«
K) 1 o

8k 0; kx® x k —— X ke 4.30
K )+ 1 K (4.30)
where (K) is the condition number ofK .
In particular, 8 > 0, 8k 0,
0
K ot log X XKy )0y ke
(K) 1
log P——
(K)+1

Proof. See (Saad, 2003, Theorem 6.29 & Equation 6.128). O



94 4. Prediction of stationary stochastic graph signals

Corollary 4.3.4. The sequencex© ;x®:::: generated by applying the conjugate gradient al-
gorithm to the minimization problem of Equation (4.25) satis es:

P ok

pi
K 1
8 0 fou(x®) fou(x) % Fopt (X@)  Fop (X )

Proof. This result is a direct consequence of Propositiofi 4.3]3 and Equatior{ (4.26). O

Given that by de nition, (K) 1, we havep (K) (K ) and therefore, the conjugate
gradient bene ts from a faster convergence rate than the srgeepest gradient descent (introduced
in the previous subsection). However, for some problems, (K ) can still be quite large. In
that case, preconditioning methods should be applied on top of the optimization algorithm to
speed up the convergence.

4.3.5 Note on preconditioning

The idea behind preconditioning is to replace the ill-conditioned system of Equation [(4.2/4)
by another system, with a better condition number, and whose solution can easily be used to
compute the solution of the original system (Saad, 2003). In our case, Equatio4) is replaced
by

(PL KP R)U =PL,b and x = Pgru ; (431)

where P 2 M (R) (resp. Pr 2 M (R)) is an invertible matrix called left-preconditioning
(resp. right-preconditioning) matrix and is chosen so that (P_.KP g) < (K) and is as small
as possible.

Given the form of Equation ), the algorithms presented in this section can be rewritten
to solve this new system without having to actually the matrix (P_ KP r). Basically, products by
the preconditioning matrices are added at each iteration. HenceP, 2 M ,(R) and Pr 2 M (R)
are chosen so that matrix vector products involving them come at a small computational cost,
thus ensuring that the gains in terms of number of iterations to convergence are not overshadowed
by the fact that each iteration comes at a greater cost.

An optimal choice for these preconditioning matrices would satisfy (P, KP g) =1, which is
the lowest value a condition number can have. This corresponds to the case whéh KP r = cl
for somec 6 0, which givesK ' = PgrP,. Finding preconditioning matrices satisfying this
relation is actually equivalent to computing directly the inverse of K which is here out of the
question. Instead, the preconditioning matrices are chosen so thatPrP.) ! is somewhat close
to K, which ensures in general that the condition number will be reduced|(Saad, 2003).

Classical choices of preconditioning matrices include (Saad, 2003):

the Jacobi preconditioner, for which Pgr = I, and P is taken to be the diagonal matrix
whose entries are the inverse of the diagonal entries ¢f .

the Gauss-Seidel preconditioner, for whichPg = I, and P is taken to be the inverse of
the lower triangular part of K . Products betweenP| and vectors are therefore computed
by solving a triangular system.

incomplete factorization techniques that de ne P * and P, * as incomplete factorizations
of K, which are cheaply computable.

In our particular context however, K is not actually known, and we only have a routine comput-
ing its product with vectors. Moreover, as the size of the vectormi can be quite large, the calls
to this routine should be limited at a strict minimum. Hence many classical preconditioners, like
those mentioned above, cannot be used to accelerate the convergence of the descent algorithms

used to solve Equation [4.24).
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4.4 Practical implementation on the unknown-mean case

Let us now assume that we aim at extracting a signalZ with mean mv wherem 2 R is unknown
(but v 2 R" is a prede ned eigenvector ofS), still from an observation vector z, arising from
an observation processZ, de ned by Equation (§.16).

4.4.1 Matrix-free formulation of the problem

The best unbiased linear solutionz of Z given the observationz, is now given by (cf. Propo-
sition .2.3)
z =PK b ;

where the matricesP" 2 M., 41 (R), K 2 M, +1 (R) and b2 M, +1 (R) are de ned by
0 13 0 1

P = P v K:% < M”g ; b:%bg ; (4.32)

M) | 0 0

whereK , P and b are de ned by Equation (#.22) and therefore are the same as the ones used
for the problem of extraction of a signal with mean 0.
Once again,z is computed in two steps:

1. First, compute the term x = K b by solving the linear system:

Kx =b : (4.33)

2. Retumnz =Px .

The same conclusions as in the known-mean case still holds here: a matrix-free approach, based
on Chebyshev Itering, must be considered to perform both tasks as they involve basically the
same matrices as the ones used in the known-mean case. Indeed, the matrix-vector products
involving P~ and K™ can easily be expressed in function of matrix-vector products involving the
matrices K and P in Equation (f.22) as

0 1 0 1 0 1

P@YA=px+ v: K@ A=-@ KX + Mov A
(Mov)Tx; x2R"™; 2R

Even though the unknown-mean case seems quite similar to its known-mean counterpart,
there is a major di erence that prevents us from using the solving methods: the matrix involved
in the linear system to be solved is no longer positive de nite. Indeed, note for instance that if

max (K ) denotes the largest eigenvalue oK , then

0 1+ O 1
M oV M ov T

@ MY A e MY Ay M KMY) k)
max(K ) max (K ) kM OVk

And this last quantity is strictly negative given that the Rayleigh quotient appearing in the right
side of the equation is upper bounded by max (K ) > 0. HenceK cannot be positive de nite.
Solving Equation (4.33) using the steepest descent algorithm or the conjugate gradient algorithm
should therefore be avoided. The next section introduces an algorithm designed to tackle this
new problem.

4.4.2 Conjugate residual algorithm

The conjugate residual algorithm (Saad,| 2008) aims at solving a system of the form Equa-
tion (#.33) in the case that it is only required that K is symmetric. The idea behind this
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algorithm is to get back to the positive de nite problem. Indeed, by multiplying Equation (4.33)|
by KT = K we get the equivalent linear system:

KTKx =K' (4.34)

where now, the matrix K"K = K2 is positive de nite. This system can therefore be solved
using either one of the solvers introduced in Sectiofi 4]3. In particular, it would be su cient
to have a routine that computes the product betweenK and vectors as the product between
K- TK = K2 and a vector can then be done by calling this routine twice. Note however that
this approach comes at a computational price: each iteration would now cost twice as much as
in the case where the system was positive de nite.

Fortunately, the conjugate gradient algorithm can be cleverly rewritten to speci cally solve
the system of Equation ) while requiring at each iteration only a single product between
K™ and a vector: this approach is outlined in Algorithm ES] Computationally, when compared
to a classical conjugate gradient algorithm, it comes at the price of storing an additional vector
throughout the procedure. Algorithm generates a set oK T K -conjugate descent directions
and ensures that the residuals areK -conjugate (Saad, 2003).

Algorithm 4.5:  Conjugate residual algorithm.

Input:  For a symmetric matrix K 2 M, _(R) , a routine prod,- (v) that returns for

any v 2 R« the vector Kv . A vector B2 R"< . An initial guess x©
Output:  An approximation of x = K 'b.

k=0;
r(o) =b prodK(X-(O)); d(o) = r(O) ;
p(o) = prodK(d(O)); q(o) = p(o) (: prodlc(r(o) )) :
while Convergence is not reachedlo
_ @) g _ ()T g
K= (p0)Tp® = (pt)Tp)
x(K+D) = (k) 4 d0
r(k+) = (k) kp(k),
q(k+1) - prOdK(r(kﬂ)) :
(k+1) )Tq(k+1) (r(k+1) )T q(k+1) X
k= T{qi)Tg® = gy gl
dk+d) = pk+1) 4 d();
pktD) = gk + | p®):
|k k+1;

Return xT),

Remark 4.4.1. Using the formalism of Equation (4.28), solving Equation {4.33), or equiva-
lently Equation (4.33), is equivalent to a least-square optimization problem, de ned by:

x =argmin fop (x);  where o (x) = %kK‘x— bk3 - (4.35)
x2R"Kk

And at each iteration k of the algorithm:

x(K) = argmin fopt () = argmin kK x bk,
x2 %O + Ky (K ;r©@) x2 %O + Ky (K ;r©)

Hence, the conjugate residual algorithm actually computes at each iteratiork the vector x of
the a ne space x© + K, (K ;r©) that minimizes the norm of the residual vectorb K x.

The convergence rate of the conjugate residual algorithm can be directly derived from the
convergence rate of the conjugate gradient algorithm.
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Proposition 4.4.1. The sequencex© ;x®:::: generated by applying the conjugate residual
algorithm to the minimization problem of Equation (4.35) satis es

k

gk 0 kxS 10 gy,
(K)+1
where (K") is the condition number of K.
In particular, 8 > 0, 8k 0,
(0)
K (1K_) —1lo KX Bk ) ew g
Iog (K)+1
q___
Proof. Note that kK’ TK k, = max (KTK)2 = (K TK) = kK'k3 and that similarly

K(KTK) ko = k(K 1)K YTk = kK K3 gives:
(KTK)= (K)?

Substituting K in Proposition by K'TK™ then gives the result by noticing that kvky. r =
kKK wky, 8w 2 R« | O

4.5 Unied approach through quadratic programming

In this section the extraction problem in the known-mean case and in the unknown-mean case
are uni ed into a single optimization framework called quadratic programming. This opens a
lead to eventually use wide array of numerical solvers designed for this type of problems in order
to tackle the optimization tasks arising from the computation of the BLUP of a signal.

Quadratic programs (QP) with equality constraints are stated as follows (Nocedal and
Wright, 2006} |Sun and Yuan, 2006). LetQ be a symmetric matrix of sizeN, d 2 RN and
E2Mwun (R),e2 RM for someM 0. We aim at nding x 2 RN satisfying:

x =argmin fopt (X) = }xTQx xTd
X2 RN 2 : (4.36)

subjectto Ex = e

The equation Ex = e imposes a set ofM linear equations, called equality constraints, that
must be satis ed by the solution x of the problem. In particular, if M =0, no constraints are
imposed while searching for a minimum off ,; (i.e. E and e are not de ned) and Problem
is called unconstrained QP problem. If the matrix Q is positive semide nite (resp. de nite),
Problem is called a convex QP (resp. strictly convex QP) as the functiorf o, to minimize
is convex (resp. strictly convex).

Clearly, as stated in Section[4.3.R, the solutionx of the linear system that arises from the
extraction of a known-mean signal is the solution of an unconstrained strictly convex QP de ned
by the matrix Q = K and the vectord = b.

In the case where the signal to be extracted is of unknown mean, the following proposition
shows that the linear system can also be seen as a strictly convex QP, but now with an equality
constraint.

Proposition 4.5.1.  Let x be the solution of the linear system of Equation(4.33), where the
matrix K~ and the vectorb are de ned in Equation (4.32).
Then x can be decomposed as =( (x )T | )T where:

1
X =argmin foy (X)= =x'Kx x'b
ngR“K op: () 2 ; (4.37)

subjectto (M ,v)Tx =0
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and
_ (MoV)T(b Kx )

kM VK2 !
whereK and b are de ned in Equation (4.27) (with m = 0).

(4.38)

Proof. Let N = ng . Let x be decomposed ax = ( »' ; )T for someb 2 RN and
2 R. Let us show that ¥ = x and that satis es Equation (4.38).
Note that the equation K x = b implies that ¥ and must satisfy

Kb+ Mov=b and (Mov)'=0 : (4.39)

In particular, by denoting L the function de ned on RN R by
L (y; )= %yTKy y'b+ (MoV)Ty; y2RY; 2R ;

we get from Equation (4.39) that r h(b; ) = 0 and therefore (x; ) is a stationary point of
L . Noticing now that L is actually the Lagrangian function of the constrained minimization
problem of Equation (4.37), for which plays the role of a Lagrange multiplier, we get that
b=x.

The expression of with respect to o = x follows from Equation (4.39) implying that
(MoV)T(Kx + M) =(Mv)Tb, which gives the result. O

Consequently, solving the linear system arising from the extraction of a signal with unknown
mean can e ectively be replaced by solving a strictly convex QP, de ned by Equation )
with a single equality constraint. This QP is actually the same QP as the one arising in the
known mean case, but with an equality constraint.

Circling back to our matrix-free requirement, note that, for either one of the QPs presented
in this section, a routine that evaluates the objective function fqp or its gradient r fq can
easily be derived from a routineprod, that computes the product by K and would require a
single call to prod, . Solving these QPs can actually be done by calling any optimization solver
designed for quadratic (or more generally non-linear) problems that takes as an input routines to
evaluate the objective function, its gradient and the constraint. This is the case for most of the
implementation of these methods (Nocedal and Wright, 2006, Saad, 2003). The only constraint
that we should keep in mind is to restrict the number of evaluations of the objective function
and its gradient that the solver performs at each iteration.

Implementations of such solvers are available in the R packagesloptr (Ypma, 2018) and
mize (Melville, 2019). Studying the characteristics and performances of the myriad of non-linear
solvers that exist today exceeds the scope of this work. However, it represents an actual lead to
nd a solver that would perform better than the descent algorithms that we currently use.

Conclusion

In this chapter, the problem of predicting or extracting a SGS from its noisy observation was
tackled. In particular, the noises considered were either composed of uncorrelated elements
a ecting each observation, or were a sum of linear transformations of independent stationary
signals. The predictors presented were directly inspired from the kriging predictors common in
Geostatistics, and are the best linear unbiased predictors.

We proposed algorithms to compute these predictors in a matrix-free approach while once
again relying on the Chebyshev Itering algorithm. These algorithms all come down to solving an
optimization problem, and the associated solving methods were presented. Finally, the prediction
problems of this chapter were formulated as quadratic programming problems, thus expanding
the possible means of solving the associated optimization problems.
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Résumé

Nous nous intéressons maintenant au méme probleme d'estimation que dans le chapitre
précédent, mais sans supposer cette fois que la covariance du signal est connue. Il s'agit donc
d'inférer les propriétés statistiques d'un signal partiellement observé et bruité, tout en I'estimant.
Nous présentons deux approches basées sur une maximisation de vraisemblance: la premiére
consiste & maximiser directement la vraisemblance en utilisant sa forme analytique, la seconde
fait recours a l'algorithme EM ( Expectation-Maximization).

Introduction

Starting from the formalism of Section[4.], let us assume that a zero-mean stationary SGS
Z 2 R" with respect to a shift operator S and with spectral density f, is observed through a
realization z, 2 RY of an observation procesZ, 2 RY de ned by

Zo=MoZ+ W, : (5.1)

whereM , 2 M 4.4 (R) is the observation matrix of the process, 0 is the variance parameter
and W, 2 RY is a vector with d independent standard Gaussian entries.

We assume that the only known quantities of the problem are the observation matrixM o
and of course the observation vectorz,. This section aims at providing an algorithm designed
to predict conjointly the remaining quantities, namely S, f, and z, wherez is the realization
of Z that gave rise to z, i.e

Zo=Moz+ Wy ;

for some realizationw, of W,.

Chapter [ provides a framework and algorithms for the case where the only quantity to
estimate isz. We now add to the unknowns of the problem the elementsS, f, characterizing
the Gaussian distribution followed by Z . Let us assume that these elements are parametrized
by the entries of a vector 2 RN?, where Np 1. This means that the estimators of S, f,

will be chosen from families of matrices, functions and real numbers parametrized by. We
denote byS ,f , the members of these families associated with the vector of parameters.

In this chapter we investigate two solutions to this inference problem, both based on the
maximization of the likelihood of the observed data. On one hand, the direct maximization of
this likelihood, through its analytical expression, is exposed. Then, an approach based on the
maximization of surrogate but more easily computable function is presented. It is based on the
Expectation-Maximization algorithm (Dempster et al., 1977). Finally, the particular case where
the shift operator is assumed to be known is looked into, as it yields several simpli cations that
lighten the overall computational and storage costs of the inference process.

5.1 Inference by direct likelihood maximization

5.1.1 Principle of the direct likelihood maximization approach

Our starting point is that following Equation ( Z, follows a Gaussian distribution with
mean 0 and covariance matrix  given by

=M f(S)MJ + 24 (5.2)
Hence, for a set of parameters 2 RN?, we denote by  the covariance matrix that Z , would
have had if its distribution were specied by S ,f , instead of S, f,

=Mof (S)MJ + 24 (5.3)

Then, the log-likelihood L( ; z,) of given z,, which is de ned as the evaluation of the log of
the distribution function of Z, at Z, = z,, under the assumption that its is de ned through S
f , , can be expressed as

L( ;zo)=log (Zo=20)= % logj j+ 2zl 'zo+ dlog2 : (5.4)
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A maximum likelihood approach consists in maximizing Equation (5.4) for . Finding an
analytical expression for the maximum seems unlikely. Hence we have to rely on a generic
optimization algorithm. Such algorithms require to be able to at least evaluateL ( ; z,) for any

, Or even better, to compute its gradient and Hessian matrix (Nocedal and Wright,| 2006). In
the next subsections, we focus on the evaluation of the likelihood functioi.( ; z,) forany , as
it is the base of many optimization algorithms and can then be used to approximate gradients
and Hessian matrices through for instance nite di erence approaches|(Nocedal and Wright,
2006).

5.1.2 Evaluation of the likelihood function: the covariance approach

The sole evaluation ofL ( ; z,) requires to compute the log-determinant of  and the quadratic
term z/! 1z,. This should once again be done in a matrix-free approach, given that building
is out of the question (as it involves once again to build a graph lter).

The product between  and any vectorv 2 RYisgivenby v =M/J (f (S )Mv)+ 2v
and is computable in three steps: rst the vector v®= M ,v is formed, then the producty =
f (S )vPis calculated using Chebyshev ltering and nally the vector M [y + 2v is returned.
This way, the matrix , and in fact any other matrix except M, and S , need not to actually
be formed to compute v. This is in accordance with the matrix-free framework in which we
work.

In order to evaluate the log-determinant in Equation (5.4), the matrix , which is symmet-
ric and positive de nite, is seen as shift operator. Notice then that, consequently to Proposi
tion 2.3.7, its log-determinant can be written as

logj j=Trace(log( )) ;

and corresponds therefore to the trace of the graph lterlog( ). Algorithm can therefore
yield an estimate oflogj | based on the Chebyshev Itering of a prede ned number of white
signals by the Iter log( ). In particular, only products between and vectors of RY are
required to calculate this estimate.

In order to use Chebyshev Itering with as shift operator, bounds on its eigenvalues must
be known. However in this case, the shift operator is not explicitly formed: only its products
with vectors are. The following proposition provides an estimate of these bounds in function
of , f, and the extremal eigenvalues oM ] M, and S , which can be computed with more
classical approaches using for instance Theorem 2.2.2.

Proposition 5.1.1. Letn;d 1. Letf :R. 7' R,, > OandletS 2 M,(R) be symmetric.
For an observation matrix M 4 2 M 4., (R), we denote by the matrix de ned by Equation .
Then,

max( ) 2+ max(MJMo) f( )

max
2[ min (S); max (S)]

and

min() 2+ min(M(;rMo) f() ;

min
2[ min (S); max (S)]

where max () (resp. min ()) denotes the largest (resp. lowest) eigenvalue of a matrix.
Proof. See Appendix C.3. O

The computation of the quadratic term is then performed in two steps. First, the linear
system
X = Zo

is solved forx , and then the quadratic term is given by z/ 170 = zI'x . Following from the
approach outlined for the log-determinant, x can be computed using the results of Section 2.3.4
on the graph lter Id( ), whereld denotes the identity map of R. Hencex would be computed
by ltering z, with the graph Iter h( ), where of courseéh : x 7! 1=x. Once again only products
between  would be needed.

A second approach to computex consists in noticing that the linear system it satis es
actually corresponds to the linear system in Equation [4.24) which is solved to compute the
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kriging estimate of Proposition using the approach outlined in Sectiori 4]3. The steepest
gradient or the conjugate gradient algorithm can therefore be used to solve it in a matrix-free
approach, and therefore yieldx .

Algorithm 5.1:  Covariance approach to the evaluation of the likehood function.

Input: Parameter vector 2 RN?. A routine prod ( ;v) that computes the product
v for  dened in Equation (§.3) and v 2 RY.
Output:  An estimate of L( ; z,) as de ned in Equation (5.4).

Compute the bounds on the eigenvalues of that are given by Proposition ;
Compute logj j using Algorithm on the graph Iter with shift operator and
transfer function x 7! log(x) ;
Compute x = Z, Using:
Either the steepest gradient or the conjugate gradient algorithms described in Algorithms

[43 and[43.

Or Chebyshev ltering to compute the product h( )z, whereh : x 7! 1=x.

Return L( ;zo)= 2 logj j+z{x +dlog2

Algorithm $.T]sums up the method used to evaluate the likelihood of a particular parameter
vector . Plugging this function into an optimization algorithm that only requires evaluation of
the objective function will then yield the parameters  that actually maximizes L( ; z,). Ex-
amples of such algorithms include the Nelder Meade algorithm which only relies on evaluations
of the objective function, or gradient descent algorithms for which the gradients are numerically
approximated from function evaluations (Press et all, 2007).

It is hard to predict in advance the number of evaluations of the likelihood function that will
be necessary to nd the maximum. In this regard, its cost of evaluation should be reduced at a
minimum. However, in Algorithm $.I] each evaluation requires numerous products between the
covariance matrix and vectors in order to compute both the determinant and the solution
of the linear system. Each one of these products may be quite costly as it involves a Chebyshev
Itering step.

5.1.3 Evaluation of the likelihood function: the precision approach

In an attempt to save some computing time, an idea consists in working directly with the
precision matrix Q = ! instead of the covariance matrix . Indeed, the likelihoodL( ; z,)
to maximize can be expressed in function of) as

L( iz)= 5 10gjQ j+2]Q zo+ dlog2 (5.5)

So following, the same reasoning that led to Algorithm, evaluatingL ( ; z,) could be done
while relying only on products betweenQ and vectors. To do so, an expression o) as a

function of the parametrized objectsf , S and  must be derived. Ideally, this expression
should be di erent than simply taking Q = L= Mof (S)MJ + 24 ! as otherwise,
we retrieve Algorithm 5.7]

Following from the proof of Proposition 4.1.1, we recall that the joint distribution of the
vectors Z and Z,, now under a parameter , is actually that of a zero-mean Gaussian vector
whose covariance matrix€ can be expressed with respect to  (cf. Equation ():

0 1 0 10 10 1

_@ ) My _gh ag ) A@" M"TA: (5.6)
Mof (S) Mo lg 2l g l 4

e
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The inverse of this matrix, denoted by @ , is then given by

0 10 10 1
T —
l g 2|d Mo g
0 1 (5.7)
_@FF XS )+ MM, ZMOTA:
2M0 2|d

Hence, the inverse of , which is Q , can be expressed using a Schur complement & (cf.
Equation (A.6)) as
Q= = Zig M. Mg

where ® is the matrix de ned by
G =@=f )S)+ MM, : (5.8)

The quadratic term xTQ x in Equation ( therefore involves the resolution of a linear system
in ® and can therefore be computed using the same approach as the one derived for the
computation of the quadratic term in Algorithm §.1]

As for the log-determinant of Q that appears in Equation @) giventhat j@ j = j(1=f )(S )j

i 2l4j, it satis es (cf. Equation (p.7))
logjQ j= 2dlog +logj=f )(S)j logj® j

In this expression, the term logj(1=f )(S )j is the log-determinant of a graph Iter de ned
through the shift operator S and can therefore be computed using the results of Sectidn 2.3.3
using a method requiring only products betweenS and vectors.

The term Iogj(’Q j can be computed using the same approach as the one outlined for the
computation of logj j in Algorithm thus requiring products between the matrix @ and
vectors. The next proposition gives an estimate of the eigenvalue bounds mf@ needed to use
this approach, which is summarized in Algorithm[5.2.

Proposition 5.1.2. Letn;d 1 Letf :Ry 7' R,, > OandletS 2 Mp(R) be symmetric.
For an observation matrix M , 2 M 4., (R), we denote by@ the matrix de ned by

§:=@1=f)(S)+ *MJM,

Then,
1

2 T
MTM,)+ max Y
max (@) max (M o M o) 20 min (S); max (S)] T ()

and
1

2 T i
_ S MTM )+ min AR
min (@) min ( o 0) 2[ min (S); max (S)] f ( )

where max () (resp. min ()) denotes the largest (resp. lowest) eigenvalue of a matrix.
Proof. The proof of Proposition[5.1.3 can be directly adapted to prove this result. O

Algorithms B.I] and [5.7 both propose a similar approach to the evaluation of the likelihood
function. They both rely on the computation of the log-determinant and on the resolution of a
linear system involving a matrix (either or (9 ) that is not sparse a priori and whose products
with a vector require to perform Chebyshev ltering operations. In one case, the approximated
function is f  (for Algorithm and in the other case it is (1=f ) (for Algorithm . Hence,
the choice between both algorithms should be made based on which one fof or (1=f ) requires
less polynomials to be approximated by a Chebyshev series. This will ensure that we minimize
the cost of evaluation of the likelihood function and therefore the cost of the overall minimization
process.
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Algorithm 5.2:  Precision approach to the evaluation of the likehood function.
Input: Parameter vector 2 RN® . A routine prod @( ; V) that computes the product

@ v for ® de ned in Equation ( and v 2 RY.
Output:  An estimate of L( ; z,) as de ned in Equation (5.5).

Compute logj(1=f )(S )j using an algorithm from Section[2.3.3;
Compute the bounds on the eigenvalues o that are given by Proposition ;

Compute Iogj(@ j using Algorithm on the graph Iter with shift operator & and
transfer function x 7! log(x) ;

Compute x = ® *M [z, using:

Either the steepest gradient or the conjugate gradient algorithms described in
Algorithms #.3]and [4.4.

Or Chebyshev Itering to compute the product h((’? )M [z, whereh : x 7! 1=x.

Compute the quantity g corresponding to the quadratic term:

- 2 2
a=  * 252 (M g 20)" X

Return  L( ; zo) = % 2dlog logj(1=f )(S )j+Iogj(’9 j+q dlog2

5.2 Inference using the Expectation-Maximization approach

We now propose an alternative to the direct maximization of the hard-to-evaluate” likelihood
function that is based on the Expectation-Maximization (EM) algorithm (Dempster et al.,|1977).

5.2.1 Formulation of the EM algorithm for SGS inference

Given a parameter vector , recall that the associated joint distribution of (Z;Z,) is that of a
zero-mean Gaussian vector with covariance matrix given bye . In particular, the log-likelihood
of given now a couple(Z = ;Z, = z,) with 2 R" would therefore be

E( ; :2o)=log (Z= ;Zo= 20)
0 0 17 0 1 1
= ZBiogie j+@ A e 1@ As(n+aog2 K
z z

o o

(5.9)

where € is given by Equation ). This equation can be rewritten with respectto@ = € 1,

the precision matrix of (Z;Z,) under the set of parameters :
0 0 1+ 0 1 1
1 e
B : :z20)= é@ logi€@ j+@ A ®@ @ A+(n+dlog2 X (5.10)
z z

o (o]

where @ is given by Equation ), and satis es in particular
logj® j= 2dlog +logj(d=f }(S)j : (5.11)

Hence the likelihoodE( ; ;z,) de ned in Equation ( is way cheaper to compute than its
counterpart L( ; z,) of Equation . Indeed, computing the log-determinant in E( ; ;z)
through Equation (b.11) requires mainly to compute the log-determinant of the graph lIter
de ned through the shift operator S . Using Chebyshev ltering to estimate this quantity
with the methods presented in Section[ 2.3, it requires only products betweers , which is
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generally spars@, and vectors. In comparison, computing the log-determinant in Equation )
(resp. Equation )) required products between (resp. (@ ), and therefore f (S ) (resp.
(2=f )(S )), and vectors.

As for the quadratic termin E( ; ;z,), it is computed with the cost of basically a Chebyshev
Itering operation with S . Comparatively, the quadratic term in the expression of L( ; z,)
requires to solve a linear system de ned by  (or (9 ). This property is particularly interesting
when considering Markovian models. In this setting, conditional independence relations are
imposed between the entries of the modeled signal, which results in its precision matrix being
sparse (Rue and Held, 2005). In particular, models can easily be retrieved by imposing that
1=f is a low-degree polynomial.

The idea of the EM algorithm is to replace the maximization of L( ; z,) with the maxi-
mization of an objective function de ned through L( ; ;z,) and which is hoped to be easier to
compute. To do so, note that the log-likelihoodL( ; z,)=log (Z, = z,) can be expressed as
the log of a marginal distribution of the joint distribution of (Z,;2), and so,

VA Z

L( ;zo)=log (Z= ;Zo=120)d =log expE( ; ;zo)d

The EM algorithm leverages this expression to maximize. ( ; z,) through an iterative approach.
A sequencef (K g, o converging to a local maximum ofL( ; z,) is generated through a recur-
rence that comprises two steps

Expectation step Find an expression for the expectation functionE (, de ned by

h i
Ew: 7NE B( ;Z w;z) where Z « =[ZjZo=z0; ] : (5.12)

Maximization step: Maximize the expectation function E (:

k+1) = argmax E «( ) : (5.13)
2RNP

Basically, to compute the value of the expectation functionE (, at some , the observed data
Z, = z, are completed with a vectorZ = Z «, that is drawn from the conditional distribution
of Z given Z, = z, and under the current estimate (k) of the maximum. Then, E () is
de ned as the average over all completion vectorsZ «, drawn this way, of the log-likelihood
of with respect to the completed pair (Z = Z «);Zo = Zo).

In the next two subsections, we show two ways of performing the Expectation step of the
EM algorithm in our particular inference problem.

5.2.2 EM by trace approximation
First; note that Proposition 4.1.T]actually gives the distribution of Z «:

Z w0 =[ZjZo=12; ] N 28 1m ]z, Lo (5.14)

where ® (., is once again the matrix de ned in Equation @) but with = &), We now
derive the expression ofE «,( ) from this observation. First, note that using the linearity of
the expectation, we have

h i
1 Ce 2 1
E (k)( ) = é |Ogj(§ j+ E ZT(k)@ Z () 725 M OE[Z (k)] + 72520 + C;

where C is a constant. Note then that, following Proposition [A.3.5 we have

E[(Z (k))T@ Z (k)]:Trace((JQ Var[Z (k)])+ E[Z (k)]T@ E[Z (k)]

1Recall indeed that S is supposed to be a shift operator, and as such its sparsity pattern is directly linked
to the amount of connections in the graph it represents. In many real-world applications, and in particular in
the ones that will be presented in this work, these graphs are sparsely connected, and therefore yield sparse shift
operators.
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Injecting this relation in the previous equation then gives,

1 o
E w()= > logj®@ J"'Trace(@ ¢] (i))"‘ T(k)@ (k)
5.15
) - (5.15)
—ZoMo w0+ —2Z5Z0 +C

where, following Equation (5.14),
(k) = E[Z (k)] = (E)@ (]l;) M JZO

Thus, the steps of the EM algorithm come down to the computation of a sequence of pa-
rameters vectors ©; M:::: through the recurrence relation of the maximization step, i.e.
Equation (6.13), where E «,( ) is given by Equation (5.15). In particular, by removing all
constant terms and all additive terms that do not depend on in Equation (p.15), and using
Equation , we get the following equivalent formulation of the recurrence relation:

D =argmin  Trace(® @ 1)+ T, ® o+ izzg (Zo 2Mo )
2RV (5.16)
+2dlog logj(a=f )(S )j ;

where ( does not depend on and can therefore be computed once and for all prior to the
minimization process of Equation (5.16), and so be used at each evaluation of the objective
function.

Evaluating the objective function in Equation ( for a particular  requires mainly to:

Compute the log-determinant logj(1=f )(S )j = logjf (S )j which is done through
Equation (5.11) and involves a limited number of Chebyshev ltering operations with
S .

Compute the quadratic term T(k)@ «, Which requires a single product between®
and (, as ) Iis computed and stored once and for all. Hence, the cost of this
operation is basically that of a single Chebyshev Itering operation with S .

Compute the trace term Trace(@ & 1)).

The trace term in Equation ( poses a problem. Indeed, as building the matrice and
® « is out of the question, this term should be approximated using an approach similar to the
one outlined for the trace of graph lters (cf. Section[2.3.1). Indeed, we can for instance write

Trace(® & 1)=EWT™d & L w]=E® W)"d Lw] ; (5.17)

whereW is a zero-mean random vector with covariance matrixl , (cf. Proposition . This
term can therefore be approximated using a Monte-Carlo estimate, similarly to what was done
for the trace of graph lters in Section . Precisely, ifw® ;:::;w(N) denote N realizations
of W, then we write

X T .
Trace(®@ & 1) L Awh b Lwh (5.18)
i=1

In practice, as in Section[2.3.1, the entries oW are independent and identically distributed
variables following either a Gaussian or a Rademacher distribution. Hence the same conclusions
regarding the link between the sample sizeN and the approximation accuracy can be extended
to this case.

Computing the approximation in Equation ( then requires to:

Compute N products between(’Q and a vector: as seen earlier, such products amount to
the cost of a Chebyshev lItering operation with shift operator S (and transfer function

a=f)).



5.2. Inference using the Expectation-Maximization approach 107

Solving N linear system de ned by the matrix ® « : this can be done using a descent
algorithm (or eventually a Chebyshev Itering operation with shift operator (9 « and
transfer function 7! 1=).

When solving the minimization problem of Equation ), given that the objective function
is evaluated several times, several evaluations of the trace term are performed for a xed value of
(k) put varying values of . In this case, we can actually reuse the solutions of the linear system
from one evaluation to the other as they depend only on (¥). Hence, they can be computed once
and for all at the beginning of the minimization process, thus reducing the cost of evaluatin
the trace term to that of performing the products between @ and vectors. Algorithm
summarizes this approach of likelihood maximization by EM.

Algorithm 5.3:  EM algorithm for likelihood maximization by trace approximations.

Input:  An observation vector z, from a process de ned by Equation ).
Families of spectral densitiesff g , variance parametersf g and shift operators
fS g parametrized by the same parameter vector 2 RNP .

An initial guess of parameter vector © .

Output:  An estimate of the parameter vector maximizing the likelihood givenz,.

k=0;
while Convergence is not achievedio
Expectation step

Compute = 28 1M Tz, (where® 2 is dened in Equation () using a
descent algorithm (cf. Algorithm [4.3]or [4.4) ;

Generate and store a vectow () 2 R" with independent zero-mean and
unit-variance entries ;

Compute and storex™ = @ 1 w( using a descent algorithm (cf. Algorithm

orfd.4);

Maximization step
Solve the following minimization problem (using a general-purpose optimization

algorithm):
X T .
(k+1) — argmin i x (1) @ w) + T(k)@ o + izzg (zo 2M4o )
2RNP i=1
+2dlog logj(1=f )(S )j
B k k+1;
Return (k)

Each iteration of Algorithm $.3]can be decomposed into two steps:

A preprocessing step that amounts to generate and stordN random n-vectors, solving
N + 1 linear systems involving@ ) and storing the results (which are n-vectors). Note
that each product between@ ) and a vector involves a Chebyshev ltering operation and
that a total of 2N + 1 n-vectors need to be stored.

An optimization step that consists in minimizing a function whose evaluation amounts to
N + 1 products between(? and vectors and a Chebyshev Itering operation.

The memory requirements of Algorithm can be reduced by using a di erent approach to
the approximation of the trace term Trace( (i)) than the one presented in Equation ).
Indeed, following Proposition[A.4.17, we have

CovWw T w;WwTd } w]=2Trace(d & 1) ;
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whereW is a zero-meanGaussian vector with covariance matrix | ,. Using once again a Monte-

of N independent realizations of W as the sample covariance of the set of pairs

n [0}
(W(l))T® W(I),(W(I))T@ (]k-)W(l) . . :
i2[1;N]

Hence,

1 X i - 1 X .
Traced & 1) ——— t9 t O su = tV SO s

(5.19)
where on one hand,

. . , X
tV=(wT@ w® and t = & ¥

and on the other hand,
S(I()k) — (W(i))T(Jg (i)w(i) and s 1 = — S(I()k)

Computing the approximation in Equation ($.19) now requires to

Compute t" for i 2 [1;N] by computing a product between between@ and a vector
(this be done for the cost of a Chebyshev lItering operation).

Compute s(i()k) for i 2 [1;N] by solving a linear system de ned by(’Q ) and can be done
using for instance a descent algorithm.

The computational cost associated with this trace approximation is therefore basically the same
as the cost associated with the previous one (in Equation8)). The di erence between them
is in the quantities which are stored when several evaluations of the trace term are performed
for a xed value of (k) but varying values of . In this case, note that we can now reuse the
coe cients s('()k), which only depend on (). Hence, they can be computed once and for all at
the beginning of the minimization process, thus reducing the cost of evaluating the trace term
to that of computing the coe cients ), Algorithm summarizes this approach of likelihood
maximization by EM.

Each iteration of Algorithm $.4]can be decomposed into two steps:

A preprocessing step that amounts to generate and stordN random n-vectors, solving
N +1 linear systems involving® «, and storing one of these solutions andN + 1 scalar
values. Hence, we need to stor&l lessn-vectors compared to Algorithm[5.3.

An optimization step that consists in minimizing a function whose evaluation amounts to
N +1 products between@ and vectors and a Chebyshev lItering operation.

Hence, for basically the same computational cost as Algorithnj 5]3, Algorithni 5.14 allows to save
on the memory requirements by storing less vectors.

Let us quickly compare the direct maximization of L( ; z,) through its evaluations with
Algorithm §.I]with the minimization problem of Equation (§.16)| induced by the EM approach.

On one hand, in Algorithms[5.3 and[5.4, heavy calculations requiring to solve a linear system
involving ® «,, are precomputed once and for all so that the subsequent evaluations of the
objective function only require a limited number of Chebyshev Itering operations with S .
In comparison, whenL( ; z,) is directly maximized, such systems have to be solved at each
evaluation of the objective function.

On the other hand it should be noted that within the EM approach, an optimization problem
must be solved at each iteration whereas a single optimization problem is solved in the likelihood
approach.
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Algorithm 5.4:  Memory-saving EM algorithm for likelihood maximization by trace
approximations.
Input:  An observation vector z, from a process de ned by Equation ).
Families of spectral densitiesff g , variance parametersf g and shift operators
fS g parametrized by the same parameter vector 2 RNP .
An initial guess of parameter vector © .
Output:  An estimate of the parameter vector maximizing the likelihood givenz,.

k=0;
while Convergence is not achievedio
Expectation step
Compute = 4@ 1MJzo (where® 1 is de ned in Equation (.8)) using a
descent algorithm (cf. Algorithm [4.3or [4.4) ;

Generate and store a vectow () 2 R" with independent zero-mean and
unit-variance entries ;
Compute xV = & } w(® using a descent algorithm (cf. Algorithm or) ;
store st), = (w®)Tx® ;
P .
Stores w = & v, 8O

Maximization step
Solve the following minimization problem (using a general purpose optimization
algorithm):

1 . .
&) =argmin - ———— s s tV+ T
gRNp 2(N 1) _ (k) (k) (k)(g (k)

+ izzg (Zo 2M, ) +2dlog logj(1=f }(S)j

wheret®) = (wO)Td w). ;
| k  k+1;
Return (K,

5.2.3 EM by conditional simulations

Starting from the formulation of the EM algorithm through its two steps, another approach can
be taken to maximize the expectation function. Indeed, a Monte-Carlo estimate can be used
to directly approximate E («,( ) using a set of conditional simulations ofZ. The expectation
over [Zjzo; ®]in E () is then replaced by an average over a set of ol realizations

@ ... (N) i .
Z 0020, of this random vector, namely:

h i

Ew()=E B(:Z w,:Z) E( ;Z(i()k);zo)

This approach was introduced by| Wei and Tannel (1990) and is calledMonte-Carlo EM algo-
rithm.

Each conditional simulation z('()k> is generated through Algorithm . They come at the
price of a Chebyshev ltering operation with S (, (for the non-conditional simulation) and the
solving of a linear system involving@ « (for the conditioning through kriging). Note that the
conditional simulations can be precomputed during the expectation step as they only depend on
the parameter (X), which is xed during the maximization step. Then, the maximization step
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is reduced to the following optimization problem:

) 1 1 X LT .
& =argmin - 5zl (zo 2M oz )+ N 20, @ 20,
2R i=1 (5.20)

+2dlog logj(1=f )(S )j ;

wherez «, denotes the mean of the conditional simulations:

1 X .
Z (x) = W Z(I()k)
i=1
If the conditional simulations z(l()k) il ;Z(’(\lk)) are precomputed and stored, the evaluation of

the objective function in Equation ( requires that of N quadratic forms de ned by @ and
that of the log-determinant of the graph lter (1=f )(S ). Algorithm summarizes this new
formulation of the EM algorithm.

Algorithm 5.5:  EM algorithm for likelihood maximization by conditional simulations.
Input:  An observation vector z, from a process de ned by Equation ).
Families of spectral densitiesff g , variance parametersf g and shift operators
fS g parametrized by the same parameter vector 2 RNP .

An initial guess of parameter vector © .
Output:  An estimate of the parameter vector maximizing the likelihood givenz,.

k=0;
while Convergence is not achievedio
Expectation step

Generate a vectorw 2 R" with independent standard Gaussian entries ;
Compute a non-conditional simulation of Z under (K) by computing the vector
0= " f w0 (S w)w ;

Generate a vectorw? 2 R? with independent standard Gaussian entries ;
Compute the residual kriging estimate, which is the solutionx° of the linear
systemx®= 28 1 MJI(zo0 (Moz%+ ww?), (whered® 3 is dened in
Equation (5.8)) using a descent algorithm (cf. Algorithm [4.3 or[4.4) ;

store z(), = z%+ x°;

P .
Storez «, = Ni iN:l Z(I()k) )

Maximization step
Solve the following minimization problem (using a general purpose optimization

algorithm):
_ 1 1 X ) T .
& =argmin - 5zl (zo 2M oz )+ — z('()k) ® z('()k)
2RYp N o
+2dlog logj(1=f )(S )j
| k  k+1;
Return (k)

Each iteration of Algorithm $.5]can be decomposed into two steps:

A preprocessing step that amounts to generate and storé& conditional simulations, and
therefore anBJunts toN Chebyshev ltering operations with shift operator S «, and trans-
fer function © f «); and solving N linear systems de ned by(JQ . In total, we need to
store N +1 n-vectors at this step.
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An optimization step that consists in minimizing a function whose evaluation amounts to
N +1 products between® and vectors and a Chebyshev Itering operation.

Hence, Algorithms[5.4 and[5.5 basically operate with the same computational complexity and
storage needs. One advantage of Algorithr 5|5 over Algorithri 5]4 would be that at each iteration
of the algorithm, we actually compute estimators of the underlying eld Z given the data z,,

which are given by the conditional simulations and their average. Hence, in a context where the
ultimate goal is SGS estimation, the estimators are readily available each step of the way using

Algorithm §.5]

5.3 Particular case: Inference with a known shift operator

In this section, we look into the particular case when the shift operator is xed to a single value
and known value S, i.e. 8 ;S = S. As we may see, several simpli cations of the algorithms
introduced in the previous sections can be made to alleviate their computational and storage
COsSts.

5.3.1 General remark

Whenever the shift operator is xed, the following trick can be used to lighten the computational
cost of the direct likelihood maximization relying on Algorithm $.Z2]and Algorithms 5.3]to 5.5
based on the EM approach. Indeed, computational savings can be made for the evaluation
of the log-determinant term logj(1=f )(S )j = logjf (S )j =logj(1=f )(S)j = logjf (S)j
that appears systematically in the objective function of the associated optimization problems.

Following the method introduced in Section[2.3.3, we can compute the histogram of eigenval-
ues ofS once and for all using Algorithm|[2.9, and use it as an additional input of Algorithms[5.2
to @ Then, the log-determinant logj(1=f )(S)j can be estimated for anyf using Equa-
tion (, and therefore requiring only direct evaluation of a function on points of R. Hence,
the evaluation of the log-determinant would now require no graph lItering operation at all, and
would in fact be totally inexpensive to compute compared to the other terms involved in the
objective function.

In particular, for the implementation of the EM approaches of Algorithms B.3|to 5.5 using
this trick ensures that the cost of evaluation of the objective function in the optimization step
is reduced to that of a prede ned number of quadratic forms de ned by the matrix ® (given
in Equation (p.8)). This number is xed by the user and corresponds to the degree of the
approximation of the Monte-Carlo estimates used in these implementations.

5.3.2 Particular case: Polynomial spectral densities

We still assume in this subsection that the shift operator S of Z is xed and known, and we
aim at determining its spectral density f and the variance parameter of its observation process
using parametrized families of both of them. We assume in particular in this section that
the spectral density f , or rather its inverse, is chosen from a family of polynomial functions of
xed degree and deduce desirable simpli cation for the implementation of the EM approaches

of Algorithms B.3to 5.5,
For a vector parameter =( 1;:::; n,)" 2 RN? we therefore x:

1 Wt e 1
= kTk 1 and —=e"r | (5.21)
k=1

where Ty 1 denotes the(k  1)-th Chebyshev polynomial, shifted on an interval containing the
eigenvalues ofS. Hence, we ensure that > 0 and that f (S) de nes a covariance matrix.

Remark 5.3.1. As mentioned earlier, taking 1=f to be a (low-degree) polynomial is actually
equivalent to assuming an underlying Markovian model between the entries of the resulting
SGS. This hypothesis is not unusual when working with Gaussian vectors. Indeed, the spar-
sity of the resulting precision matrices of their discretization allows for instance fast sample
computations and likelihood computations (Rue and Held,| 2005).
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Denote by p the polynomial given by

NX 1
p = kTk 1
k=1

Hence(1=f ) = p?. Also, the matrix (9 de ned in Equation ( and appearing in the expres-
sion of the objective functions of Algorithms[5.3 to[5.5 now writes

I
1 T2

& =p(s)+ MIM,= kT 1(S) + MMM,
k=1

Injecting Equation (5.21) in the expression of the objective functions of Algorithms[5.3 tof5.5
allows to actually derive an analytical expression for their gradients, and therefore to use for
instance descent algorithms without having to estimate the gradients from evaluations of the
function.

Indeed, note that these objective functions are the sum of four main types of terms: for
u;v vectors independent of , we have either quadratic terms of the formvT™ & v, or the log-
determinant (1=f )(S), or terms of the form  2uTv or the log of . Using the derivative
formulas by|Petersen and Pedersen (2008), the gradient of these terms (with respect to2 RNr)
is then given by

0
vITo(S)p (S)v
r(vid v)=2 '
VI Th, 2(S)p (S)v
2vVTM IM ov
0 1 0 1
0 0
r( 2u'v)=2 : . r(og )= : :
0 0
2UTV Np

Trace To(S)p (S) *

r (logj(1=f )(S)j) = r (2logjp (S)j) =2 '
Trace Tn, 2(S)p (S) *

0

Assuming that the trick of Section is used, computing the gradientr (logj(1=f )(S)j)
is as cheap as computindogj(1=f )(S)j. Indeed, simply note that the entries of this gradient
vector satisfy

X0 :
8 2 [N, 2] Trace T;(S)p (S) * = g—’( )
i=1

the precomputed histogram of eigenvalues o8 in the same way as in Sectiorj 2.3]3. Hence, the
cost of computing the gradient of the objective function comes to that of evaluating the gradients
of the formr (v' ® v). Such gradients can easily by computed using two runs of the Chebyshev
ltering with graph Iter p (S) and the vector v:

The rst run is actually used to compute the product p (S)v and involves exactlyNp 2
products between (a matrix as sparse asp and vectors.

For the second run, instead of using them to form the vectop (S)v, each productT; (S)v,
0 j Np 2 generated during the run is extracted and used to compute thdj +1) -th

entry of r (vT® v).
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Thus, computing the gradient of the objective function comes roughly at the cost of evaluating
the objective function twice. Hence, optimization algorithms for non-linear problems using the
gradient (or more generally rst-order derivatives) of the objective function can easily be used
to tackle the optimization task of Algorithms 5.3]to 5.5] We can for instance cite the gradient
descent and the conjugate gradient algorithms who both nd adaptation in the context of non-
linear problems (Bertsekas, 1997).

Conclusion

In this chapter, we introduced two classes of algorithms designed to perform inference based on
a noisy and partial observation of a stationary SGS. On one hand, the likelihood of the vector
of observations was directly maximized using an optimization algorithm. The main drawback
of this approach is the high cost associated with the evaluation of the objective function of the
optimization problem. That is why an approach based on the EM algorithm was introduced as
a possible alternative.

Three implementations of the EM algorithm were proposed. They all iterate two steps:
a preprocessing step involving a prede ned number of linear systems to solve, followed by an
optimization step where the cost of evaluating the objective function was drastically reduced
when compared to the direct approach. Finally simpli cations and computational tricks were
presented for the cases where the shift operator is assumed to be known, and when a Markov
model is assumed on the graph signals.

This chapter actually concludes the rst part of our work: practical solutions for the simula-
tion, the estimation and the inference of SGSs have been introduced. Now that our algorithmic
toolbox is complete, we turn to the motivation of this work: working with non-stationary Gaus-
sian elds and complex domains. The aim for the second part of this dissertation is to present
the framework and the results allowing to take on this challenge, and how they relate to the
graph signal processing framework.
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Résumé

Le but de ce chapitre est d'introduire des notions de géométrie di érentielle et riemannienne
qui seront utilisées dans la suite du manuscrit. 1l s'agit d'un mini-cours, basés sur plusieurs
ouvrages de référence, et cherchant a apporter au lecteur une bonne intuition sur ces sujets.

Introduction

Gaussian random elds (GRF) are widely used to model spatially correlated data in environ-
mental and earth sciences Chiles and Del ner|(2012); Lantuéjoul |(2013); Wackernage| (2013).
These data usually correspond to samples of a regionalized variable i.e. a variable de ned on
a spatial domain. Following the geostatistical paradigm, this regionalized variable is modeled
in a probabilistic framework by a GRF: z is then seen as a patrticular realization of a GRFZ.
Rather than characterizing directly the features of the regionalized variablez from its samples,
the focus is set on deducing from these samples some features of the GRF Conditioning
methods are then used to revert back to the data and honor them in some sense.

Working with GRFs capable of modeling truthfully the particularities of the spatial data at
hand is instrumental to the use of geostatistical methods. In some applications, these data can
be de ned on complex spatial domains such as arbitrary surfaces of a three-dimensional space,
or showcase preferential directions of high correlation (also called anisotropy directions) that
change over the domain. In both cases, the GRFs used in the geostatistical models should re ect
these particular features.

The objective of the second part of this dissertation is to provide a general framework that
can be used to de ne GRFs that account for the complex geometric features listed above. This
framework is actually summarized by the title of this dissertation: Generalized random elds on
Riemannian manifolds. The basic idea is to de ne GRFs (or rather generalized random elds)
on a mathematical object that allows to model both surfaces and local deformations on a spatial
domain (the so-called Riemannian manifold).

The outline of the second part of this dissertation is as follows.

We rst introduce the reader to basic notions of di erential and Riemannian geometry
and to the central object they model: Riemannian manifolds. We show in particular
why Riemannian manifolds are suited to the modeling problem we are trying to tackle
(Chapter ).

Then, the framework allowing to work with (generalized) random elds on Riemannian
manifolds is studied. We prove a theorem which links these elds to stochastic graph sig-
nals, thus opening the way to work with them using the framework and the tools introduced
in the rst part of this dissertation (Chapter 7@]

Next, this theorem is applied to derive nite element approximations of the modeled non-
stationary elds, similarly as what is proposed by (Lindgren et al.| 2011), and the conver-
gence of this approximation is studied (Chapter|§).

Finally, the power of this new framework is illustrated by applying it to practical problems
involving real and synthetic data (Chapter .

As mentioned above, this particular chapter aims at providing the reader with some basic
understanding of the notions of di erential and Riemannian geometry used in this work. Several
concepts, such as the notions of orientability and connections were deliberately omitted in order
to focus the text on the key concepts that will actually be used in the next chapters. This
summary is intended to be self-su cient and is a condensed version of textbooks on di erential
and Riemannian geometry (listed hereafter).

For a more comprehensive understanding of the subject, the reader is referred to the books
used to write this chapter. For an introduction on di erential geometry, see (Abraham et al.|
2012), (Land,|2012), (Lee} 2012). For an introduction on Riemannian and spectral geometry, see
(Beérard, 200€), (Canzan|,| 2013), |(Craioveanu et a/.| 2013),(Jost, 2008), (Lablée, 2015).
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6.1 Manifolds and di erential geometry

6.1.1 Manifolds, charts, atlases and functions

A manifold M of dimensiond 1, also calledd-manifold, is a topological space such that:

M is a Hausdor space: 8p;q 2 M , there exists open subsetdJ,; Uy of M such that
p2Uy,,qg2UgandUp\ Ug = ;.

M is second-countable, i.e. there exists a countable familyJ = fU;gjon Of open subsets
of M such that any open subsetU M can be written as the union of a subfamily ofU.

M is locally Euclidean of dimensiond: every p 2 M has a neighborhood homeomorphic
to an open set ofRY.

Assumption 6.1.  All manifolds encountered in this work are assumed to be (topologically)
connected, i.e. they cannot be expressed as the disjoint union of two open sets.

Formally, for any point p 2 M there exists an open setU, containing p and there exists
U, ! B8, R" that maps U, towards a open subsetd, of RY, and such that is continuous,
bijective and its inverse is also continuous (hence, is a homeomorphism). Manifolds can be
seen as generalizations of the notions of curves and surfaces to higher dimensions. Each point of
a manifold can be seen as described by a set df coordinates" given by its image through the
homeomorphism .

Example 6.1.1. The simplest example of ad-manifold may be open domains oRY. Indeed,
if B RY denotes an open domain oRY, equipped with the same topology asRY, then the
three requirements that de ne a manifold are clearly veri ed by B. In particular, the identity
map de nes a homeomorphism between any open neighborhood @f2 B and an open set of
RY.

In particular, RY itself but also open balls of RY of any (strictly positive) radius are d-
manifolds.

Example 6.1.2. Let S* denote the unit sphere ofR® (equipped with its natural Euclidean
topology): q
SP=fp2R3:kpky= pi+ps+pi=1g

S? inherits a topology from R3: indeed, open sets 0? can be de ned as intersections ofs?
with open sets of R®. HenceS? is second-countable afR® is. Besides, with this topology, S?
is Hausdor . Indeed, for any distinct points p;q 2 S?* we can nd a small enough open ball of
R3 around each one of them such that the balls do not intersect. The open sets & de ned
as the intersection of these balls withS then satisfy the Hausdor property.
Now let p 2 S? and consider the applications ; °de ned over the open set
b= ; []

33l

i ° 0) ()1 ° in( ) "
cos( ) cos sin
(; )28 %sin()cos()%; ~i(;)2067 %sin()cos()§ ;
sin( ) cos()cos()

and ~ actually represent parametrizations of parts of a unit sphere using spherical coor-
dinates (cf. Figure ). As such they de ne two di eomorphisms from open sets ofs? that
cover S?, to open sets ofR?. This proves that S? is locally Euclidean of dimension 2.
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Figure 6.1: lllustration of the two parametrizations of S? de ned on Example[6.1.3. The gure
on the left corresponds to  and the gure on the right corresponds to ~. Any point of S? can
be retrieved by at least one of these di eomorphisms.

Figure 6.2: lllustration of a transition map. Two subsets U (in yellow) and U (in blue) of a
manifold M and their intersection (in green) are represented.

More generally, if U is an open subset oM and x : U! RY a homeomorphism that maps
U to an open subsetl = x(U) of RY, then the pair (U;x) is called acoordinate chart (or simply
chart). Following the de nition of manifolds, any point p 2 M is contained in the domain
U of some coordinate chart(U;x): we then say that the chart (U;x) contains the point p.

Let (U;x) and (U%y) denote two charts such thatU\ U°6 ;. The application y x *!:
U\ U°%! RYis called transition map (between U and U9: it can actually be interpreted as
an application turning local coordinates on U into local coordinates on U° as illustrated in
Figure [6.4. Note that given that x and y are homeomorphisms, their associated transition
mapy X ! is also a homeomorphism, with inversex y *. If besidesy x ! and its inverse
are CX-di erentiable, then by de nition, y x ! is a CX-di eomorphism and the charts (U;Xx)
and (U%y) are said to be CK-compatible In particular, C*! -compatible charts are also called
smoothly compatiblecharts.

An atlas A is a collection of coordinate chartsA = f(U( );x()): 2 I1gof M indexed by
a setl and such that[ ,;U() = M. An atlas is said to be C¥-di erentiable if 8; 2 | such
that UC )\ UC) 6 ;| the transition map x( ) (x( )) 1is CKk-dierentiable. In particular,a C? -
di erentiable atlas is also called smooth atlas Hence, aC*-di erentiable (resp. smooth) atlas is
simply a collection of charts that are pairwise CK-compatible (resp. smoothly compatible).
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Figure 6.3: lllustration of a coordinate representation of a function.

Example 6.1.3. Following the notations of Example [6.1.2, denotex = Yandy = ~ 1.
Let then U (resp. O) be the open subset ofs? de ned by U = (@) (resp. U%= ~(lb)). Then,
both (U;x) and (U%) are charts of $?.

Besides,A = f(U;x); (U%y)g de nes an atlas of .

Two smooth atlasesA; and A, are compatible if their union A;[A » is also a smooth atlas:
in particular, this means that any chart in A1 is smoothly compatible with all charts in A, (and
vice-versa). One can check that atlas compatibility de nes an equivalence relation.

Given some atlas of referencé\, let Gy be an equivalence class for this relation that contains
A, i.e. G is the set of all atlases that are compatible withA. Then all atlases inG, are included
inside a single smooth atlas, called maximal smooth atlas, and such that it contains any chart
that is smoothly compatible with all charts in A. The notion of smooth manifold is then de ned
as the association(M ; A) of a manifold M with a maximal smooth atlas A (or equivalently its
equivalence class of compatible atlase€, ). The notion of CK-di erentiable manifold is de ned
similarly, by considering collections of CX-di erentiable charts.

Let (M ;A) be a smoothd-manifold and let k 1. A function f : M! RX is a smooth
function if for any chart (U;x) 2 A, the function f x !, called coordinate representation of
f, is a smooth function ofx(U) RY (cf. Figure ). Of particular interest is the case where
k=1, ie.f is real-valued. The set of real-valued smooth functions oM is denotedC*! (M ).

6.1.2 Submanifolds of R"

Let n 1. Of particular interest in this thesis are (embedded) submanifolds ofR", which are
subsets ofR" having the de ning properties of a manifold. They are embedded inR" through the
inclusion map, meaning that the topology on submanifolds ofR" is actually the trace topology
of R". Hence, open sets of a submanifold dR" are de ned as the intersection of open sets of
R" with the subset of R" de ning the submanifold.

Formally, for d n, a d-submanifold of R" is a subsetM R" such that 8p 2 M , there
exists an open neighborhood op, denotedV (p) R" and a di eomorphism :R"! R" such
that

(M\ V()= (V(p)\ R? f 0, ag
Therefore, associates to any pointg 2 M\ V (p), a unique set ofd real values, which corre-

sponds to the rst d entries of (q) 2 R", the n dremaining entries of this n-vector being always
zero. The pair (M\ V (p); ) hence corresponds to a chart as de ned for abstract manifolds.

6.1.3 Tangent space

The notion of tangent space of a manifold generalizes that of tangent line of a parametrized curve:
a tangent space at a pointp 2 M can therefore be thought of as a linear approximation of
M in a small neighborhood ofp. These notions are generalized to the rather abstract case of
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manifolds by de ning tangent vectors (i.e. the elements of a tangent space) through their action
on smooth functions de ned on the manifold, much like tangent vectors ofR? can be seen as
directional derivatives of smooth curves de ned on this same domain.

A tangent vector of M at a point p 2 M is a mapt, : C1 (M) ! R that satis es the
following properties:

Linearity: 8f;g 2C! (M), 8 2R:tp(f +g)= t o(f)+ t,(9).
Leibniz rule: 8f;g 2 C* (M ): tp(fg) = a(p)tp(f) + T (P)tp(9)-

One can show |(Lee, 2012, Corollary 3.3) that the seff,M of all tangent vectors at a point
p 2 M , which is calledtangent space atp, is a vector space of dimensiord de ned by

@ .
ToM =span — :i2][Ld ; 6.1
p p @x, [1;d] (6.1)
where the tangent vectors@=@jy;i 2 [1;d] are called directional derivatives and are de ned,
for a choice of chart(U;x) 2 A containing p, by:
@ @f
8f 2Ct(M); — (f)= =—(p):= @Ff x YH)(x
(M) @x p( ) @X(p) c )(x(p))
Here, @f x )(x(p)) denotes the usuali-th partial derivative at the point x(p) 2 0 of the
functon f x 1:8 RII R:
f x '(x(p)+te)) f x *(x(p) f x '(x(p)+ tei) f(p)

= lim
t th o t

@f x (x(p)=lim_

Note that, given that M is a smooth manifold,f x ! is a smooth function of R and therefore
this quantity is well de ned.

Following Equation (, any tangent vector t, 2 ToM can be represented by a vector
t% 2 RY such that

(6.2)

The vector ty 2 RY, called representative vector of t, with respect to the chart (U;x), simply
contains the coordinates oft, in the particular basis given in Equation (6.1). Conversely any
ty 2 RY, de nes an elementt, of ToM by Equation (. Hence tangent vectors can be seen

as both directional derivatives and vectors ofRY attached to a particular point of the manifold.

Example 6.1.4. Let B RY be an open domain ofRY, seen as ad-manifold. The chart
(B; xE4¢) where xEY¢ maps points of B to their Cartesian coordinates, covers the whole man-
ifold. Note that xE!¢ is actually the restriction to B of the identity map of RY .

Let p 2 B. Then for every k 2 [1;d], the directional derivative @=@Xj,, corresponds
exactly to the application that maps a smooth function on B RY to its usual k-th partial
derivative at p: @=@¥jp, = @jp.

Moreover for a tangent vectort, 2 T,B with representative vector tE”C 2 RY with respect
to the chart (B;xE'¢), we have

xd Euc
8f 2 Ct (B); tp(f)= [tEUC]i@f (p)=r f(p)TtEuc — Ir”nof(p-'- htph ) f(p) :
i=1 :

where r f (p) denotes the gradient off : B RY ! R at p. Hencety(f) is the (usual)
directional derivative of f at p along the direction tE“C.

Note that if another chart (UC%y) is chosen to de ne the basis of Equation [(6.]), then the
chain rule (cf. Theorem) allows to conclude that the relation between both basis is given
by

@ _* o

Q@ _ 7 @, @
@, ,, @

; 6.3
ex, (6.3)

(p)
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Figure 6.4: lllustration of a map between manifolds.

where @x=@y(p) is the image of the functionp 7! x; (p) through the tangent vector @:@X'
or equivalently the i-th partial derivative (with respect to the coordinate system (U%y) also
containing p) of the j-th component of the coordinate function x. In particular, applying this
relation to Equation ( gives a link between the coordinates of a tangent vectort, in both
bases.

Proposition 6.1.1. Let M be ad-manifold and forp2M lett, 2 T,M .

Then for any coordinate charts (U; x) and (U%y) containing p, the representative vectors of
tp denotedt;; 2 RY in the basis of directional derivativesf @=@}»01 « ¢ and t% 2 RY in the
basis of directional derivativesf @=@}; 01 « q Satisfy

t;; =Jdxy 1(y(p))t% ;

where Jy , :(y(p)) denotes the Jacobian matrix of the applicationx y 1 yu9 RY |
x(U) RY at the point y(p) 2 RY.

Finally, the tangent bundleof M , denoted TM , is the disjoint union of all the tangent spaces
of M : G
™ = TpoM  (disjoint union)
p2Mm

6.1.4 Maps and di erentials

Let (M 1;A1) be a smoothd;-manifold and (M ,;A,) be a smooth d,-manifold. A map
M1!M 5 is asmooth mapif:

For all p 2 M ; there exists a chart (U;x) 2 A; containing p and a chart (V;y) 2 A,
containing ( p) suchthat ( U) V.

The composite mapy x 1 from B = x(U) to ¥ = y(V) is smooth.

An illustration of the di erent building blocks of a smooth map is provided in Figure .4] In
particular, smooth maps are continuous, and composition of smooth maps are also smooth.
Examples of smooth maps include constant maps (i.e. applications that map alp 2 M ; to the
same pointq 2 M ;) and the identity map (from M ; to M ;).

Amap : M;!M ,isadieomorphism between manifoldsif it is a bijective smooth map
whose inverse is also a smooth map. If such a map exists, thed ; and M , are said to be
di eomorphic. In particular, only manifolds having the same dimension can be di eomorphic.

Let : M;!M , be asmooth map. Thedi erential of at a point p 2 M ; is the map
d , from the tangent space ofM ; at p to the tangent space ofM  at ( p) 2M »:

dp:TpM]_! T(p)Mg )
such that 8t, 2 ToM 1, d p(tp) is the tangent vector of M , at ( p) de ned by:
8f 2C* (M2); d p(tp)(f) = tp(f )
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In particular, this last equation is well-de ned given that  is a smooth map and sof is a
smooth function from M ; to R.

Two important properties of di erentials of smooth maps should be kept in mind. First,
they de ne linear maps between tangent spaces. Second, whenever the smooth mapis a
di eomorphism, then the di erential at any point p 2 M ; is a bijective map that satis es

(dp) *=dl Hep:T(pmM2! TyM;,

Hence, the inverse of the dierential of at p 2 M ; is the di erential of the inverse of at
( p) 2 M , (and therefore is also linear).

The action of the dierential d , on a tangent vectort, 2 T,M ; can be made explicit
using directional derivatives and the notion of Jacobian matrix, which we now de ne. Consider
a chart (U;x) 2 A ; containing p and a chart (V;y) 2 A, containing ( p). The Jacobian matrix
J (p) 2 My,.q,(R) of at p with respect to the charts (U;x) and (V;y), is de ned as the
(usual) Jacobian matrix of the function b= y x L:x(U) R%L! yV) R% atthe
point x(p) 2 R%:

J(P)=Jy x:(x(p)= @y x 1i(x(p)) L P2M 1
J 1
where forl i dy, (Y x 1); denotes thei-th coordinate function of function y x 1.

Proposition 6.1.2. Let (M 1;A;) be a smoothd-manifold, (M ,; A2) a smoothd-manifold and
Mi1!M , asmooth map.
Let p 2 M ;. Consider then a chart(U; x) 2 A ; containing p and a chart (V;y) 2 A, containing
( p)-
Then, 8t, 2 T,M 1, with representative vectort$ 2 R? with respect to the chart(U;x), the
image oft, by the dierential d , of at p satis es

)Qz
do(t)= [ (P @;‘3;( |
p

i=1

2T(p)M2 X

whereJ (p) 2 M 4,4, (R) is the Jacobian matrix of at p with respect to the charts(U; x) and
(Viy).

Hence the di erential d , maps the representative vector of a tangent vector of, M 1 to its
product with the Jacobian matrix of at p.

Proof. This property is a direct consequence of the chain rule. O

6.2 Riemannian manifolds

The notion of geometry is now introduced on smooth manifolds, while relying on the same
concepts as those used in Euclidean spaces. This seems a natural choice given that by de nition,
manifolds are locally Euclidean. In particular, the notions of length and angles between vectors
attached to a point of a manifold are de ned by introducing an inner product that is de ned

on each tangent space of the manifold. These inner products are chosen so that they de ne a
smooth structure on the manifold called Riemannian metric, and the association of a manifold
with a Riemannian metric is called a Riemannian manifold.

De ning a Riemannian metric on a manifold allows to de ne familiar geometric concepts on
the manifold, such as lengths, angles and distances. The aim of this section is to introduce both
the concept of Riemannian metric and its use to de ne the aforementioned geometric concepts.
The next section will then focus on the development of an integration theory on (smooth)
manifold, while once again relying on Riemannian metrics.

6.2.1 Riemannian metric

Let M be a smoothd-manifold. A Riemannian metric g on M is an application that smoothly
associates to each poinp 2 M a symmetric positive de nite bilinear form g(p) (also denoted
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Op) de ned on its tangent space T,M . Namely, g associates to eactp 2 M an application g
de ned by

%: T,M T,M | R
(Up; Vp) 7' gp(Up;Vp)
such that

Op is symmetric bilinear: 8up;vp;wWp 2 ToM , 8 2 R gp(Up;Vp) = Go(Vp;Up); Gp(up +
WpiVp) = G (Up;iVp) + Go(WpiVp)i  Go(UpiVp) = gp(UpiVp)

Op is positive de nite: 8up 2 T,M , u, 60 ) g(up;up) > 0.

The association (M ;g) of a smooth manifold M and a Riemannian metric g de ned on this
manifold is then called a Riemannian manifold.

In particular, note that g, actually de nes an inner product on the vector spaceT,M and
can be expressed using the local coordinates from a chaft; x) containing p as

xd
O (Up; Vp) = (Up) T G*(p)vy = Gi (P)luplilvpli

i=1 j=1
Whereup,v; are the representative vectors olu,; vy, 2 T,M with respect to the chart (U;x) (as
de ned in Equation (-) and G*(p) is a symmetric positive de nite matrix of size d, called
representative matrix of the metricg at p 2 M with respect to the chart(U; x), and whose entries
are de ned by

!

@ @

— — : : 4
@x, @x, ’ biod 64

[G*(P)]i = Gj (P)= %
The requirement that the Riemannian metric g smoothly" maps points of the manifold to inner
products on their tangent spaces then corresponds to requiring that8k;j 2 [1;d], the maps
p 7! Gi; (p) de ne smooth functions from U to R.
Note that the representative matrix of a metric actually depends on the considered chart
containing p 2 M , as underlined by the superscriptx in Equation (. The following result
provides a link between representative matrices of the same metric for di erent charts.

Proposition 6.2.1. Let (M ;g) be a Riemannian manifold and letp 2 M . Consider (U; x) and
(U%y) two charts of M containing p. Then, the representative matrices ofg with respect to both
charts, as de ned in Equation (6.4), satisfy

GY(p) = Iy y 1(Y(P) G*(P)Ix y :(Y(P)) (6.5)

where J, , :(y(p)) denotes the (usual) Jacobian matrix of the functionx y L:y(Uy R9I
x(U) RY at the point y(p).

Proof. This result is a consequence of Propositiof 6.1]1. 0O

Example 6.2.1 (Euclidean Metric). Let B be an open domain ofR%. The chart (B;xFu),
where xE s the inclusion map into RY, covers the whole manifold. TheEuclidean metric,
denoted gF“¢, is the Riemannian metric on B de ned as the bilinear form that associates to
any pair of tangent vectors of T;B (where p 2 B) the dot product of their representative
vectors with respect to the canonical chart(B;x5'¢). Hence, for anyp 2 B,

O 1

xd
8u;v 2 RY; “°@ U gge ; o @L A= V= uTy

In particular, the representative matrix of the Euclidean metric gF'® at p and with respect to
(B; xE4) is the identity matrix.
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One way to de ne a Riemannian metric on a manifold is to inherit it from another manifold
equipped with its own metric, as detailed in the following result.

Proposition 6.2.2. Let M ; and M , be two smooth manifolds, and let us assume thadl , is
equipped with a Riemannian metricg®.

Let us also assume that there exists a smooth map M ;! M , such that its di erential d
at any point p 2 M ; is injective.

Then g°and induce a Riemannian metric  g° on M which is de ned as:

8p2M ;8up;vp 2 TyM 1;  ( go)p(up;Vp): go(d p(Up)id p(vp))

Proof. The injectivity of d , ensures that( g%, de nes an inner product on T,M ; and the
smoothness ofg’ and  ensures the smoothness of the metri¢  g9. O

In particular, following the notations of Proposition gis called the pullback metric
of @by and (M; @Y% denes a Riemannian manifold. A consequence of the proposition
is that any smooth manifold M admits a Riemannian metric, that can be built by gluing”
together pullback metrics of Euclidean metrics de ned on domains of charts ofM .

Theorem 6.2.3. Every smooth manifold admits a Riemannian metric.
Proof. See (Lee| 2012, Proposition 13.3) O

Hence, any smooth manifold can be seen as a Riemannian manifold, which is why we will
focus on Riemannian manifolds for the rest of this chapter.

6.2.2 A few geometric notions on Riemannian manifolds

The metric of a Riemannian manifold allows to locally de ne classical geometric notions on the
tangent space of each point of the manifold. Namely, ifM ; g) denotes a Riemannian manifold,
andp2M :

The length of a tangent vectort, 2prM is de ned asktpkg, = P Op (tp;tp). In particular,
8vp 2 ToM such thatv, 80, vp= gp(Vvp;Vp) has length 1.

The angle between two tangent vectorsiy; v, 2 TpM is de ned as

cos = 9o (Up; Vo)
Kupkg, kvp kg,

Two tangent vectors up; Vv, 2 TyM are calledorthogonal if g, (up;Vvy) =0 i.e. if either one
of them is zero or the angle between them is= 2.

Two tangent vectors u,;vp 2 T,M are calledorthonormal if they are orthogonal and have
length 1.

The notion of distance between points of a manifold is also introduced thanks to the Rie-
mannian metric and the notion of curve along the manifold. A parametrized curve(resp. smooth
curve) of M is a map from an open intervall R to M that is continuous (resp. smooth).
This means that for any tg 2 I, the function t 2]ts ;to+ [7! x (t), de ned for a chart
(U; x) containing (t) and a small enough > 0, is continuous (resp. smooth) att = tg.

Let [a; R be a segment ofR. Amap :[a;bh! M is called acurve segmentfrom

(@=p12M to (b= p 2 M if for some > O, there exists a parametrized curve
~:Ja ;b+ ['M that agrees with on[a;b. In particular, is calledsmooth curve segment
if ~is smooth, andpiecewise smooth curve segmerit there exits a subdivision of [a; b, denoted
tc=a t; tn  tn+1 = b, for which the restriction of  to any segment[ty;tx+1]is a
smooth curve segment (from (ty) to (tk+1))-
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Then the length of a (piecewise) smooth curve segmemtf M , parametrized by :[a;f ! M
is de ned from the Riemannian metric g of M as
Zy
Lg( ): k O(t)kg (1)dt ;

a

where qt)2 T tyM is the tangent vector de ned as:

df )

1 . (o) —
8t 2C (M) A(f)= =

(1)

This quantity is actually independent from the parametrization  of the curve, i.e. 8 :[c;d]!
[a; bl di eomorphism, Lg( )= Lg( ).

The distance between two pointpi;p, 2 M is nally de ned as the in mum of the length
of piecewise smooth curve segments betweenp; and p:

dg(p1;p2) = inf Lg( ); p1sp22M (6.6)

[a;b]'M piecewise smooth
(a)=p1; (b)=p2

In particular, a Riemannian manifold (M ; g) is a metric space with respect to the Riemannian
distance function dy, and the topology induced by this distance function is the same as the
original topology of M . This means that open setsU M de ned in the original topology of
M are also open sets in the topology induced by, i.e. sets such that

8p2U; 9> Osuchthat8q2M : dyg(p;g)< ) gq2U

In other words, for any point of U there exists a (small enough) ball around that point that is
fully contained in U, where the notion of ball is de ned through dj.

As a metric space, the notions of boundedness and completeness can be extended to a Rie-
mannian manifold (M ;g). Any B M is boundedif 9C 0 8ps1;p> 2 B, dyg(p1;p2) C.
(M ;) is called completeif the metric space (M ;dg) is complete, i.e. any Cauchy sequence of
M converges inM . Hence if (M ;@) is complete and(pk)x2n iS a sequence of points oM such
that:

8 > 0;9N 2 Nsuchthat8m;n2N: m n N) dg(pm;pn) <

Then (pk)k2n converges and its limit is a point of M .

6.2.3 Geodesics

A geodesicon M is a smooth curve : [a;b ! M that minimizes the energy functional Eq
de ned as ) z,
Eq( )= 3. k qt)kg , dt
The expression ofEy has the following physical interpretation. Consider a particle of unit mass
moving freely on M and whose position at a timet is given by (t). To obtain the equation
of motion of this particle, the principle of least action can be applied. It consists in nding the
trajectory  that minimizes the integral of the Lagrangian of the system, which in the case of
a free particle is reduced to its instantaneous kinetic energyl=2k O(t)kz(t). Hence, as de ned,
the geodesic represents the trajectory of a particle moving freely on the manifold from (a) to
(b).

The existence of geodesics between points sharing a chart is a consequence of the fact that
this minimization problem can be turned into a second order di erential equation through the
Euler Lagrange equations of functionals, as one would do in physics. This underlines the locality
of geodesics, that are not necessarily de ned for any pair of points on the manifold.

De ned as such, geodesics have two noticeable properties. First, they have a constant velocity,
meaning that if :[a;b ! M is a geodesic, there exists a constant such that 8t 2 [a;h],

k qt)k 1) = ¢. Consequently, geodesics are parametrized by their length:

‘[a;bf!'M  geodesic) 8 t2 [a;b:Lg( jiax)) = ot a)
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This property explains why geodesics on manifolds are sometimes referred as the generalization
of Euclidean straight lines".
Second, geodesics locally minimize the distance between points along them:

‘[asb'M  geodesic) 8 ti;tz 2 [a;1) i Lg( jiyi,7) = dg( (1) (t2))

where dy denotes the distance de ned in Equation ). Hence geodesics locally de ned paths
of minimal length on the manifold.

A theorem (Jost, 2008, Theorem 1.4.3) states that for any pointp of a Riemannian manifold,
there exist a di eomorphism, called exponential mapof M at p that maps tangent vectors of
TpM of length less than some > 0 to an open neighborhood ofp of size less than . Formally,
the exponential mapexp, yields a one-to-one correspondence between tangent vectars 2 T, M
such that kupkg, < and points g 2 M such that dq(p;q) < . In particular, exp,(up) is given
as the endpoint of the geodesic of lengtrkupky, that starts at p in the direction u,. Hence
small vectors in the tangent space of a pointp can be seen, through the exponential map, as
small displacements from ap along the geodesics of the manifold.

6.3 Integration on Riemannian manifolds

As we saw in the previous section, endowing a smooth manifold with a Riemannian metric
allows to introduce geometric concepts on it, nhamely lengths, angles and distances. In this
section, integration theory on a manifold is de ned using once again a Riemannian metric. In
particular, as we may see, a volume element can be introduced on manifolds, that corresponds
locally to the deformation of the Euclidean volume element induced by the metric. Integrals of
real functions de ned on the manifold are then de ned by gluing together integrals de ned
using this volume measure on subsets covering the manifold.

6.3.1 Integrals on a Riemannian manifold

Let (M ;g) be a Riemannian manifold. LetA M be an open subset oM . A function
f : Al R is called measurableon A if for any chart (U;x) of M containing A the map
f x ':x(A) RY! Rismeasurable, i.e. if the preimage of any Borel set ofis a Borel set
of x(A). In this case, theintegral of f over the open subseA M s denote(ﬂ A fdVg and is
de ned as the foIIowian Lebesgug integral overx(A):

fdVg : = f ox Yx) j&¥"(x (x)) dx
A A (6.7)
= f jG**%  x (x)dx ;
X(A)
where jG*j1*2 is the smooth function that maps any point of p 2 U to the square-root of the
determinant of G*(p), the representative matrix of g at p with respect to the chart (U;x) as

de ned in Equation (.4).
This quantity is independent from the choice of chart containing A. Indeed, if (U%y) denotes

another chart contzaining A, the change of coordinates formula of integrals orR? yields

fdvg = fjcXit=2 vy ' (y x H)(x)dx
A Z(x y 1) y(A)
= fiGX ™y Hy)idx y 1(¥)idy
Zy(/-\)
. I I . 1=2
= " foy Yy) i3y :()TT Gy My idxy :(y)i dy
X(A

Using the change of map formula of Equation ), this last equation becomes
z Z z

— i x;il=2 1 — ; i1=2 1
fdVg = f jG¥j X T(x)dx = f jGYj y “(y)dy
A X(A) y(A)
R
1For the moment, writing A fdV4 the integral of f over A should be purely taken as a notation. In the next
subsection, this notation will be justi ed by interpreting the term Vg as a measure on the manifold, and dVy as

the corresponding volume element.
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Hence, as de ned in Equation [6.7), the integral overA is independent of the choice of a coor-
dinate map overA.

The integral of a function f over a subset of a manifold can be seen as the integral of its
coordinate representationf x ! through a chart x mapping A, scaled by a smooth function
jGXj1=2 ( independent of f ) that corrects the volume element so that it takes into account the
actual geometry of the manifold (as de ned by its metric). Equivalently, it can also be seen
as the integral of f x ! over x(A) RY with respect to a positive measure with density
X 71jG*(x (x))j*? with respect to the Lebesgue measure.

To go from this local de nition of integrals to integrals de ned on the whole manifold M,
local integrals de ned over subsets coveringM are glued" together using the notion of par-
tition of unity, which is now dened. Let A = (U();x()): 21 denote an atlas ofM
(indexed by a setl). A partition of unity subordinate to the atlas A is a set of functions
f :M! [0;1]: 2 Ig(alsoindexed byl) such that:

8 21, supp U(), wheresupp s the support of , i.e. the closure of the set of
all points p 2 M such that (p) 6 0. Note that consequently, is zero outsideU( ).

8p2M, (p)is non-zero only for a nite number of indexes 2 1.
P
8p2M, , (p)=1.

R
Then, the integral of a function f : M! R over the manifoldM is denoted ,, fdV4 and is
de ned as the sum over the covering open sets composing an atlas of M of local integrals of
f, weighted by a partition of unity:
Z x Z
fdvg = fdvg (6.8)
M 21 ut)

In particular, measurable functions on M are de ned as functions that are measurable on any
chart of M , and therefore for which each integral in Equation ) is de ned. Note also that
the de nition of the integral of a function over M is actually independent from the choices of
the atlas A and its subordinate partition of unity. This is due to the fact that the local integrals
are chart-invariant and that each function composing the partition of unity is zero outside an
open set ofM .

Hence, the integration of a function of M requires to choose an atlas and a subordinate
partition of unity, which may become a tedious task. However, in some cases, integrals over
a manifold can be expressed as usual Lebesgue integral over open setRéfand therefore be
calculated explicitly by classical methods.

Example 6.3.1 (Integration over an open set). Let us assume that the Riemannian manifold
(M ;g) is such that M is di eomorphic to an open setA RY and denote by x this di eo-
morphism. Then the set A = f(A;x)g is an atlas for M composed of a single chart. This
situation is particularly desirable as the function mapping all points of A to 1 can be chosen
as a partition of unity. Hence the integral of a function f : M! R over M reduces to an
integral over A R%: 7 7
fdvg = fdVy ;
M A
which in turn is computed using Equation (6.7).
This case arises wherM is itself an open subset ofRY. Then, x can be chosen to be the
identity map and the integral over (M ;g) is given by
Z Z
fdvg= f(p) jG(Pi*?dp (M R%open) ; (6.9)
M M
where G is the representative matrix of the metric g with respect to the chart obtained by
considering the identity map (cf. Equation (). Hence, the integral off over the Riemannian
manifold (M ;g) is reduced to a common integral over a subset ofRY (which here isM ) of
the function p 7! f (p) jG(p)j*=2.
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6.3.2 Measure on a Riemannian manifold

The integration of a measurable function over a subset of a manifold is de ned using the de nition

of the integral overghe whole manifold. Indeed, the integral off : M ! R over any subset
M M s denoted ,, fdVg4 and is given by
z z

fdVg= (1w f)dvy ;
M M

wherely :M! R is the indicator function of the subset M. Similarly, a measureV, can be
de ned over subsetsM M , as

Y4 Y4

M M
It is straightforward to check that Vy is well-de ned as a positive measure oveM . It is called
the canonical measure associated to the Riemannian manifoldM ;g). In particular,
x Z
— i x( ) i1=2 () !
Vg(M) = jG* X (x)dx
o1 xCIUENM)

M M s called anull set of M wheneverVy(M) =0. This is equivalent to imposing that
for any chart (U;x) of M, the setx(U\ M) is a null set for the measure ofRY with density

X 7V jG*(x 1(x))j1:2 with respect to the Lebesgue measure. In particular, for any null setM
and for any measurable functionf : M! R:
z z z

M null set ) fdvy=0 and fdvg = fdVq
M M Mn M

In practice, this last property can be used to compute integrals over manifolds, as they can be
reduced to a more easy to compute integral over a subset of the manifold by removing null sets
from the manifold. This is illustrated in the next example.

Example 6.3.2 (Integration on a sphere). Let us assume that the Riemannian manifold
(M ;g) is such that M is the sphereS*> R3. Contrary to the previous example, M cannot
be covered entirely with a single chart. However, a chart coverings? except for negligible
parts can easily be built, so that carrying out the integration over S* without these parts is
the same as carrying out the integration overS? entirely. Indeed, the map

1 5 [ 1 50! $nf(0;0,1);(0;0; 1)y
;) 7! (cos cos; sin cos; sin )

de nes a di eomorphism from an open set of R? to the unit-sphere minus two poles. These
poles form a null set as their images by any coordinate chart will be isolated points irR®
which are null sets for the Lebesgue measure. Hence, integration ov€®?; g) is given by:
z z z q
fdVg = f () iG ((; )jdd (6.10)
& 1 5 01 =3l

where G is the representative matrix of the metric g with respect to the chart obtained from

(cf. Equation (§.4)).

6.3.3 Integrability on a Riemannian manifold

We assume in this section thatM is a compact ganifold.
A function f : M! R is calledintegrable if , jfjdVy < 1 and square-integrableif jfj?is

2
integrable. Let M) he the binary relation de ned over the set of square-integrable functions

by z

£, ™Y, (f1 f2)2dVy=0; fq;f, square-integrable: (6.11)
M
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LZ(M)

In particular, is an equivalence relation over the set of square-integrable functions dfl ,

and the set of equivalence classes undeer('vI ) is denoted byL?(M).

Hence, any element ofL?(M ) actually corresponds to a set of square integrable functions
such that any pair of them satis es Equation (@) However, using a common abuse of notation,
elements ofL?(M ) will also be called square-integrable functions of-2(M ) and we will write

Z

L2(M)= f:M! Rmeasurable: f2dyy<1
M

Hence the equivalence classes de ning?(M ) are identi ed with the functions composing these
classes.
L2(M ) can be equipped with the inner-producth; i 2(v ) de ned by
z
Hl;f2iL2(M) = flfgdvg; fl;f22 LZ(M ) ; (612)
M

with associated normk Kk z(y ) given by
q___
kKfkizgmy = HfiLzmy; f22L%M) (6.13)

L2(M ) then de nes a Hilbert space (Craioveanu et al.| 201B).

Remark 6.3.1. The setL?(M ) can equivalently be de ned as the completion via Cauchy
sequences with respect to the normk:k 2(y y of the set of smooth functions with compact
support over M .

6.4 Manifolds with boundary

Manifolds with boundary are a generalization of manifolds as de ned in the previous sections,
and called here ordinary manifolds. They allow to extend the notion of edge (or border) to
manifolds.

6.4.1 De nitions and rst properties

Formally, the de nition of a manifold with boundary is the same as the de nition of an ordinary
manifold, except that it is now required that a neighborhood of any point of the manifold be
homeomorphic to either an open subset oRY or an open subset oHY = R 1 R, . In particular,
open subsets oHY are de ned as the intersection of open sets oR? with H¢.

Hence, a coordinate chart(U; x) of a d-manifold with boundary M is either

a regular chart, i.e. x is a homeomorphism fromU M to an open subset ofRY. Then
x(U) is open set ofRY that is homeomorphic to an open subsetJ of M ,

or a boundary chart, i.e. x is a homeomorphism fromU M to an open subset ofH®
which means that

8p2 U; x(p)=(xu(p);:::;xa(p)) 2 RY and xg(p) O
Then x(U) is the intersection of an open set oRY with HA.

Then, a point p 2 M is called aninterior point if there exists a regular chart that contains p.
Otherwise, p is called aboundary point: in this case, if (U; x) is a boundary chart containing p,
then x4(p) = 0.

The set Int(M ) of all interior points of M is called theinterior of M and the set@ of all
boundary points of M is called the boundary of M . Basically, for a boundary point p 2 @M ,
we see that even an in nitesimal perturbations of its coordinatesx(p) can push us o the edge"
of the manifold: indeed, as soon as thel-th component of the perturbed coordinates is strictly
negative, its preimage byx will not fall into M .
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For a d-manifold with boundary M , we have:
M =Int(M)[ @

Ordinary manifolds are the particular case of manifolds with an empty boundary: that is why
they are also called manifolds without boundary. More generally, In{M ) is an ordinary d-
manifold and @/ is an ordinary (d 1)-manifold.

The other de nitions introduced for ordinary manifolds still hold for manifolds with boundary,
as long as requirements on charts account for both regular and boundary charts, i.eR? can
be replaced byH? as the mapping destination of coordinates charts. This is how notions like
smoothness of manifolds and maps or tangent spaces are naturally extended to manifolds with
boundaries.

Some particular points concerning tangent spaces should be noted. L& denote a manifold
with boundary. On one hand, if p 2 Int(M ) then p can basically be seen as point of the ordinary
manifold Int(M ) and T,M = T,Int(M ). On the other hand, if p 2 @1 then two cases arise:

either p is seen as a point of thed-manifold with boundary M and then its tangent
spaceT,M is also ad-dimensional vector space spanned by directional derivatives along
coordinate charts.

or p is seen as a point of thgld 1)-manifold without boundary @/ and then its tangent
spaceT, @1 can be seen as a restriction oT, M . Indeed, let (U;x) be a boundary chart
containing p, such that xq(p) = 0. Then, T,@ is spanned byf @=@x.::; @=@x10.

Note in particular that T,@ is a vector subspace of dimensiod 1 of T,M , which is a
vector space of dimensiord.

Manifolds de ned by an implicit function are a particular case of manifold with boundary.
This is formalized in the next proposition.

Proposition 6.4.1. Let F : RY 7! R be a smooth function ofR? such that
fp2 RY:F(p)=0g8 ;

and such that
8p2RY F(p)=0)r F(p)60 ;

the Cartesian coordinates).
Then, the set
M =fp2RY:F(p) Og

is a d-manifold with boundary such that
its interioris Int M = fp 2 RY: F(p) < Og, which is a d-manifold without boundary;
its boundary is@1 = fp 2 RY:F(p) =0g, which is a(d 1)-manifold without boundary;

both Int M and @/ are submanifolds ofRY.

Proof. Let M; = fp2 R4 : F(p) < Ogand M, = fp 2 RY : F(p) = 0g. Clearly, M =
Mi1[M ,.

First, the smoothness ofF is used to prove that M ; is an ordinary d-manifold, with the
usual topology of the Euclidean spaceRY. Indeed, note that given that M ; is the preimage
by F of the open set] 1 ;0[ of R, by continuity of F, F is an open set ofRY. And so as
such, it de nes an (ordinary) d-submanifold of RY.

Then, let p 2 M , and let us assume, without loss of generality, that@F (p) 6 0. The
implicit function theorem (Wilfred, |2002, Section 2.10) states that, as long as@F (p) 6 O,

:U! R such that

(P1iiiiipg 1)=pa and 8x2U; F(x; (x))=0



6.4. Manifolds with boundary 133

Note that in particular 8x 2 U, (x; (x)) 2M ,. Hence, de nes a coordinate chart between
an open set ofM , around p and an open setR® 1. M , is therefore a(d 1)-submanifold of
RY, and in particular an ordinary (d 1)-manifold.
The setM = M ;[M , then de nes a manifold with boundary, with interior M ; and
boundary M »,.
O

Example 6.4.1. The unit ball B3 of R? is de ned as the set of points
B3=f(xy;z) 2 R®:x2+y?+ 2> 1g

By denoting F : (x;y;z) 2 R3 7! x?+y2+z? 1,wehaveB® = f(x;y;z) 2 R®:F(x;y;z) Og.
In particular, F is a smooth function of R® and satises r F(x;y;z) = (2x; 2y;2z)". Hence,
B2 is a 3-manifold with boundary and its boundary, given by f(x;y;z) 2 R® : F(x;y;z) =0g,
is the 2-sphereS?.

This result actually still holds for other dimensions: the unit-ball B¢ of RY is a d-manifold
with boundary and satis es @9 = S 1.

Remark 6.4.1. It should be noted that the boundary @M of a manifold with boundary
M generally di ers from the boundary of M seen as a (subset of a) topological space. To
distinguish both notions we call @/ the manifold boundary of M and we call topological
boundary the second kind of boundary. Both types of boundary are fundamentally di erent,
and thus, M can have (or not) a manifold boundary regardless of the fact that it has (or not)
a topological boundary.

To illustrate this point, consider the unit sphere S* of R3. As we saw, it de nes a manifold
without boundary. However, seen as a subset of (the topological spacd}?, its topological
boundary is alsoS? itself. Consider now the unit ball B3 of R3. As we saw, it de nes a manifold
with boundary, whose manifold boundaryS? R3. Seen as a subset of (the topological space)
R3, its topological boundary is alsoS?  R3. But if now we seeB? as a subset ofR?, its
topological boundary becomesB? itself.

6.4.2 Riemannian manifolds with boundary

A manifold with boundary can also be equipped with a Riemannian metric and then de nes a
Riemannian manifold with boundary. Indeed, the tangent spaces at any point of a manifold with
boundary have the same dimension, and the notion of Riemannian metric on a manifold with
boundary can then be naturally extended using the same de nition as in the ordinary case.

Let then (M ;g) denote a Riemannian manifold with boundary, and g its metric. Then the
boundary @1 of M can be endowed with its own metric, inherited from the metric of M .
Indeed, given that 8p 2 @M, T,@M TpM then the tensor eld @gde ned at any point
p2@1 by

@g:(up;vp) 2 To@  Tp@ 7! @g(Up;Vp) = Gp(Up;Vp)

de nes a Riemannian metric on@ . Hence,(@ ; @Yis a Riemannian ordinary(d 1)-manifold.

Integrating a function over a smooth d-manifold with boundary M that is equipped with
a Riemannian metric g is actually equivalent to integrating the same function over the interior
Int (M ) seen as a Riemannian manifold also equipped with the metrig. Indeed, by de nition
of the boundary of a manifold, the image of a pointp 2 @1 will always lie in the boundary of
the domain of integration in the right side of Equation (, and can therefore be discarded.

On the other hand, integration can be de ned over just the boundary @1 of a smooth d-
manifold with boundary M . In this case, @/ is seen a smooth(d 1)-manifold equipped with
the Riemannian metric @gand we denotedSy the volume element of @1 associated with @g
dS = dVigg

Both types of integrals intervene in Green's theorem, which will be stated in Sectiorj 6.5]1,
and which plays a key role in the theory of analysis of functions on Riemannian manifolds.
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6.4.3 Normal vector at the boundary

Let (M ;g) be a Riemannian manifold with boundary. The orthogonal subspace off,@ in
TpM is de ned by

To@1° = fup 2 T,M © 8y, 2 T,@ 5 Gy(up;Vp) =09

In particular, T,@1 and T,@ ? are in direct sum, meaning tangent vectors inT,@1 can
be uniquely decomposed as the sum of an element @, @1 and an element of T,@ ° and
vice-versa:

oM =T,@ T,@”’

Any vector of T,@ * is called a normal vector of@ at p.

Given that T, @V is a vector space of dimensiord 1 and that T,M is a vector space of
dimensiond, T,@ ° is a vector space of dimensiori. It is therefore spanned by any non-zero
element it contains. Let then n, 2 T,M ? be the tangent vector such thatg, (np;np) =1 and
Op(Np; @=@X < 0 where (U; x) is a boundary chart containing p and such that xq(p) =0. np
is called outward unit normal vector of @/ at p and satis es

?

Tp@1 7 =spanfn,g

It can be shown thatp 7! np is a well-de ned continuous vector eld over @M , i.e. an application
that maps each point of a manifold to one of its tangent vector.

Normal vectors of a manifold with boundary de ned as in Proposition can be easily
deduced from the expression of their de ning equation.

Proposition 6.4.2. Let (M ;g) be a Riemannian manifold with boundary de ned through a
smooth function F : R ! R by:

M =fp2RY:F(p) Og ;

wherep 7! r F(p) is non-zero on @V . Let us assume thatM is equipped with the Euclidean
metric g.
Then 8p 2 M , the unit outward normal vector n, 2 T,M atp 2 @/ is represented in the

1
Np = Wr F(p)

Proof. See Appendix C.4. O

Example 6.4.2. Following Proposition [6.4.7, the unit outward normal vector of the unit-ball
BY at one of its point p 2 BY is given by

n.= _Vp .
P - 3

wherevp =1 F(p)=2p

6.4.4 Manifolds with corners

Geometric objects like rectangles, triangles, cubes or more generally polyhedrons B often
arise as spatial domains on which a phenomenon is studied. Clearly, such subsets R are
manifolds with boundary. However, they will not have a smooth structure due to the fact that
they have corners. That is why the notion of manifold with corners is introduced.

A d-manifold with corner is a d-manifold with boundary such that any of its coordinate
charts (U; x) is either

a regular chart,

a boundary chart,
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or a chart with corners, i.e. x is a homeomorphism fromU to an open subs@ of (R+)9,
which means

8p2U; x(p)2fx2RY:x; O0:::;xq Og

As it is the case for manifolds with or without boundary, a manifold with corners is called smooth
if it can be covered by smoothly compatible charts with corners (cf. Sectiol).

Let us assume from now on thatM is a smooth manifold with corners. If the image ofp 2 M
through a chart with corner (U;x) falls on one of the edges of (R. )Y, i.e. if x(p) has more
than one coordinate equal to zero, therp is called corner point of M . In smooth manifolds with
corners, this property is actually independent from the choice of chart. As a quick reminder,
boundary points of M correspond to points of p for which exactly one coordinate vanishes.
Hence the image through a coordinate chart of a corner point oM lies on one the edges of
(R+ ).

Once again, the notions introduced for smooth manifolds with or without boundary, such as
smooth maps, partitions of unity, tangent vectors and Riemannian metrics, can be extended to
smooth manifolds with corners by considering now smoothly compatible charts with corners.

Regarding the integration of a function over a (Riemannian) manifold with corners, the same
de nition as the one stated for manifold with boundary holds (cf. Section[6.4.2). Hence, ifM
is a smooth manifold with corners equipped with a metricg, then the integral of a function over
M can be reduced to the integral of the same function over IntM ) (also equipped with g).

And to integrate a function over the boundary @ of M , one chops up the integral over
@ into integrals over subsets of@ that can be considered as ordinary(d 1)-manifolds or
d-manifolds with boundary, equipped with the metric @g In particular, the boundary points of
M will lie in the boundaries of these chopped up pieces, and will e ectively be discarded in the
integration process.

The results that will be presented in the remainder of this chapter and in the subsequent
ones rely on the so-called spectral theory of Riemannian manifolds. This branch of di erential
geometry aims at deriving tools to work with functions de ned over a Riemannian manifold
using their decomposition as a sum ofxed smooth functions satisfying a di erential equation
(called eigenvalue problem). The next section aims at introducing these concepts.

Remark 6.4.2. In the remainder of this work, (smooth) manifolds with corners will be
identi ed with (smooth) manifolds with boundary. Indeed, the results of spectral theory that
will be used rely on boundary conditions being assumed on the considered functions, so that
their integral over the boundary is always discarded. Consequently, the presence of corners
on the boundary will have no e ect on the derived results.

6.5 Dierential operators

The gradient and the Laplacian of functions de ned over a Riemannian manifold are now intro-
duced. The central piece of this section is the spectral theorem, which provides a decomposition
of any square-integrable function de ned on a compact Riemannian manifold. This decomposi-
tion will later be used to de ne (generalized) random elds on a Riemannian manifold, which
can be considered for now as a randomized version of the notion of distribution that will also be
introduced in this section.

In the remainder of this section, (M ;g) denotes a Riemannian manifold with or without
boundary and Ct (M) is the set of smooth functions ofM .

6.5.1 Gradient, Laplacian and Green's theorem

Let f 2 Ct (M). The gradient of f on M is the applicationr yf : M 7! TM such that
8p2M ,rmf(p)2TpM and

8Up 2 ToM; go(r m f(P);up) = Up(f)

2for the trace topology.
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In particular, r y f is a vector eld. In local coordinates of a chart (U;x) of M the gradient is
given by
@

; 2U
@x, "

xd xd
()= G*(p) g;(p)

i=1 j=1

For p 2 U, the representative vector ofr y f (p) with respect to the chart (U; x) is denoted by

r xf and is given by 0 1
&l (p)
r «f (p) = G*(p) 1% : §2R“
2L(p)
The Laplace Beltrami operator, simply called Laplacian here, is a generalization on Rie-
mannian manifolds of the Laplace operator (or Laplacian) of smooth functions ofRY. In lo-

cal coordinates of a chart(U;x) of M the Laplacian of f 2 C! (M) is the smooth function
mf 2Ct (M) dened by

1 @YX @ p_ @f
f(p)= p—— = G (G ', = i p2U
. JGX(p)J i=1 j=1 @X . @}( p

Green's theorem holds for integration on Riemannian manifolds. However it is required of
them that they are compact. A compact manifold is a manifold with possibly empty boundary
which is compact as a topological space. In particular submanifolds (with or without boundary)
of RY that are topologically compact in RY are compact manifolds.

We rst introduce the following notations. Let f1;f, 2 C! (M ). We write

Z Z
y g(r mformfa)dvg:= y (P 7 g (rwmfa(p)ir mfa(p)) dvg

and 7 7
fiog(n;r m f2)dSy := fi (P7' gp(np;r mfa(p)) dSy
@ @

where dSy denotes the restriction of the measuredVy of M on the boundary @1 (cf. Sec-
tion and ng denotes the unit outward normal vector at a point p 2 @\ .

Theorem 6.5.1 (Green's theorem) Let (M ;g) be a compact connected Riemannian manifold
with (or without) boundary and f1;f, 2 C* (M).
Then,
Z Z Z
fi wmfadVy= g(r m for mfo)dvy+ fig(nr m f2)dSy
M M @

wheren denotes the vector eld associating to each poing 2 @V its unit outward normal vector.

Proof. See ((Lang, 2012, Theorem 3.4). O

This result still holds when M is not compact but either f, or f, is a compactly supported
function of C! (M) (Lang| [2012). Besides, there exist three cases for which Green's theorem
simpli es and yields interesting results for functions of L>(M ). These three cases are:

Closed condition: M is a compact connected manifold without boundary.

Dirichlet boundary conditions: M is a compact connected manifold with boundary@ .
f 2 C! (M) follows Dirichlet boundary conditions if

8p2@; f(p)=0
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Neumann boundary conditiors: M is a compact connected manifold with boundary@ .
f 2 Ct (M) follows Neumann boundary conditions if

8p2@; g(np;rmf(p)=0 ;
where n, denotes the unit normal vector at a pointp 2 @ .
In either one of these cases, the following corollary of Green's theorem is valid.

Corollary 6.5.2. Let (M ;g) be a compact connected Riemannian manifold and let;;f, 2
Cl (M). If either @1 = ; or @ 6= ; and fq;f, follow Dirichlet or Neumann boundary
conditions then,

Wy, wmfaicemy=hrwforwfaicemy=h wmfofaicemy

where the notationhr y f1;r v f2i_ 2w ) Symbolizes the integral oveM given by
Z

herl;erZiLz(M): g(I’Mfl;erz)dVg
M

Proof. This is a direct consequence of the fact that, within the requirement of this corollary,
the integral over @/ that appears in Theorem[6.5.1 is zero. O

Remark 6.5.1. Note that if r y f2(p) and r y f2(p) have support in a coordinate chart
(U; x) then

0 1. 0o 1
@ @b
A z @x @x
hrwm for MfgiLZ(M): rxf]Ter ngdVg: % ; (Gx) 1% §dVg
’ " e @t
@x @x

Consequently, whenever(M ;g) be a compact connected Riemannian manifold, y de-
nes a formally self-adjoint operator on functions of C* (M) that satisfy appropriate boundary
conditions. Moreover, it is a positive semi-de nite operator as8f 2 C! (M) with boundary
conditions when needed,

H; MfiLZ(M):her;eriLZ(M) 0

This result can be leveraged to prove the so-called spectral theorem that is introduced in the
next subsection.

6.5.2 Spectral theorem

The spectral theorem is a fundamental result of di erential geometry. It relies on the notion of
eigenvalue problem that is now introduced.

Let (M ;g) be a compact connected Riemannian manifold with (possibly empty) boundary
@/ . An eigenvalue problemanswers the following question: nd all pairs(; ) where 2 R
and 2 C! (M), 60, such that

Moo= (6.14)

For such a pair (; ), Iis a calledeigenvalueand is called eigenfunction associated to the
eigenvalue . In particular, for a given eigenvalue , the set of all eigenfunctions associated to
forms a vector spaceE , called eigenspaceof , and whose dimension is callednultiplicity of
. The set of all eigenvalues corresponding to an eigenvalue problem is callegectrum of M

(for this problem).
Di erent eigenvalue problems corresponds to di erent requirements on the value of the eigen-
functions on the boundary @M :
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The closed eigenvalue problenconsists in nding pairs (; ) that are solutions of Equa-
tion (p.14) in the case where@ = ;.

The Dirichlet eigenvalue problemconsists in nding pairs (; ) that are solutions of Equa-
tion (p.14) and such that follows Dirichlet boundary conditions (in the case where
a6 ;).

The Neumann eigenvalue problemconsists in nding pairs (; ) that are solutions of
Equation (6.14) and such that follows Neumann boundary conditions (in the case where
@ 6= ;).

The next theorem provides a result on solutions of these eigenvalue problems.

Theorem 6.5.3 (Spectral theorem). Let (M ;g) be a compact connected Riemannian mani-
fold with (possibly empty) boundary@ . The following assertions are true for the closed, the
Dirichlet and the Neumann eigenvalue problems.

The spectrum of  ; is an in nite (countable) sequence of real values

0 1 2 Kool
where each eigenvalue is repeated in the sequerice gk2 n @S many times as its multiplicity.
Besides, limy1 Kk=+1.

Each eigenvalue has nite multiplicity and the eigenspaces corresponding to distinct eigenspaces
are L2(M )-orthogonal. Hence, for any eigenvalues y; j:

k6 ;)8 fi2E ;fj 2E ,; HifjiL2qwy=0

Each eigenfunction isC?! -smooth and analytic, and the direct sum of all eigenspaces is
dense inL?(M ) for the norm kik_z(q . Hence, there exists aL?(M )-orthonormal basis
fexgon of L2(M ) such that8k 2 N, e, 2 C! (M) is an eigenfunction associated to the
eigenvalue :

MQ(: kQ( y ka(kLz(M):]' and kej)h a(;ejiLZ(M):O
In particular,

X
8f 2 L2(M); f ey Lz )6 =0
k2N L2(M )

Proof. See (Lablée, 2015, Proposition 4.3.1 & Section 4.4) or (Jost, 2008, Theorem 3.2.1).
O

This theorem provides a decomposition of any functionf 2 L?(M ) onto an orthonormal
basisfecgkan Of eigenfunctions of the negative Laplacian, as
X
f = Iﬁ o f i|_2(M )q )
k2N

where the equality is understand in theL2-sense.
The next result gives an estimate of the growth rate of the eigenvalues of the Laplacian of a
compact Riemannian manifold.

Theorem 6.5.4 (Weyl asymptotic formula). Let (M ;g) be a compact connected Riemannian
d-manifold with (possibly empty) boundary@ and letf ,gxon denote the eigenvalues of
as described in Theoren 6.5.8.

Then,
2=d
2 )¢ 2=d .
k K1 W k y (615)
where 4= 92=(d=2+1) is the volume of the (usual) unit ball ofR? and Vg(M ) = ,, dVj.
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Proof. See Section 7.6 of| (Lablée, 2015). O

In the next subsection, the domain of de nition of the Laplace Beltrami operator is extended
to a wider class of functions than justC! (M ). This extension relies on the notion of distribution
on M that will be introduced.

6.5.3 Sobolev spaces and distributions on a Riemannian manifold

In this section, the notion of distribution on a Riemannian manifold is introduced in order to
safely de ne the Laplacian of a non-smooth function of the manifold. This step is important as
many of the functions whose Laplacian will be considered in the remainder of this work will not
be smooth but merely piecewise di erentiable (cf. Chapter§).

Throughout this section, (M ;g) denotes a compact connected Riemannian manifold with
(possibly empty) boundary @/ . Let G (M) C ! (M) be the set of smooth functions ofM
with compact support in Int (M ) = Mn @1 .

Distributions on a Riemannian space

The notion of distribution on M is now introduced. Let D (M ) denote eitherCt (M ) or G (M ).
A distribution T with test function space D(M ) is a linear map from D(M ) to R which is
also continuous i.e. for any sequencéuygyon Of functions of D(M ) converging to a function
u2 D(M), the sequence T (ux)gkan converges toT (u).

In particular, given that M is compact and that thereforeD(M ) L2(M ), we can associate
to any f 2 L2(M ) the distribution T; with test function space D (M ) de ned by

T :u2DM) 7! Tr(u)= Huipem) (6.16)

Note in particular that Equation (g.16) is actually de ned for u 2 L2(M ) and that therefore Ty
can also be considered as a linear continuous map : L2(M)! R.

More generally, the fact that D(M ) is dense inL?(M ) (Bérard, 2006, Chapter 1ll, Point
(13)) allows to extend the domain of de nition of some distributions.

Lemma 6.5.5. Letf 2 L?(M) and denoteT; the distribution with test function space D (M )
de ned by Equation (6.16). Let T be any other distribution with test function spaceD (M ).
If T and T; agree onD(M ) then T admits a continuous linear extension onL?(M ) de ned
by
8 2L3(M); T():=Ti()=H; iLzm)

Proof. Let 2 L?(M) andf \gk2n be a sequence of functions ob (M ) converging to
Dene T( ):= lI(i|rln T( k). Then,

k|!i1m T( = ||<i1r1n Te( k)= ||<i1r1n W, wicegmy =M izmy =T ()2R
[
Note in particular that Lemma §.5.5]allows to actually identify arbitrary distributions with

(the distributions associated with) functions of L?(M ), as long as they coincide on the test
function space.

Corollary 6.5.6. Let f1;f, 2 L?(M ) and denoteT;,; T;, the associated distributions de ned

by Equation (6.16).

If Tr, and Tt, agree onD(M ) thenfq = f; in the L2-sense.

Corollary allows to identify distributions and functions of L?(M ) and will be leveraged
to extend the domain of de nition of the Laplace operator.
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Sobolev spaces on a Riemannian space

We now introduced three subsetsL?(M ) onto which the de nition of the Laplacian operator
can be extended. These sets of functions are referred to &obolev spacesf M .

First, denote kiky1(v ) the norm associated with the inner product ;1w ) on ct (M)
de ned by:

8 1;'22CH (M), H i 2iwamy = H 1 2ltemy + hrw " 1ir m ' 2item)
The rst Sobolev space we will be working with isH(M ).
De nition 6.5.1 . H(M ) is de ned as the closure ofC! (M ) in L?(M ) for the norm kiky1(u ).

H1(M ) is therefore the smallest closed subset df>(M ) containing Ct (M ), and can be seen
as the set containingC! (M) and the functions of L2(M ) that are limit (with respect to the
norm k:ky1(m ) of a sequence of elements at' (M). The elements ofH *(M ) are functions of
L2(M ) whose rst derivatives (in the sense of distributions) can be identi ed to elementsL?(M )

(asin Lemma). In particular,
8 1;'22HYM); hry' 151w’ 2iiemy <1
The second Sobolev space we will be working with isl 3(M ).
De nition 6.5.2 . H}(M ) is de ned as the closure ofG} (M ) in L%(M ) for the norm kiky1(m ).

The elements ofH (M ) correspond to the elements oH 1(M ) that follow Dirichlet boundary
conditions in the weak sense, i.e.

Z
8 2HiM);8u2Co'M); u(s) ' (s)ds=0
@

Remark 6.5.2. Note that by de nition, C' (M) (resp. G (M)) is dense inH(M ) (resp.
H&(M)) for the norm kiky1om ).

Extensions of the Laplacian operator

The de nition of the Laplacian operator is extended to functions in Sobolev spaces oM , at least

in the distribution sense, in a way that it coincides with the actual de nition of the Laplacian
when the functions are regular enough. Three extensions of the Laplacian operators correspond-
ing to the three boundary conditions described earlier are now presented.

Closed Laplacian Let us assume thatM is a manifold without boundary, i.e. @ = ;. For
" 2 HY(M) denote T the linear application de ned by

TC: H!M) ! R

. (6.17)
u 70 TEU)=hrwm' rwmuigzem)

Notingthat C* (M) H?(M), TC actually de nes a distribution on M with test function space
C! (M). In particular, if we assume that ' 2 H*(M ) is such that ' can be computed
from its current de nition (cf. Section and satis es m' 2 L%(M), we have from

Green's theorem that

8u2C'(M); TC(u)=h wmiuiLzm) : (6.18)
thus giving that T.C coincides with m ' in the sense of distributions. Note also that, using
the density of Ct (M ) in L2(M ), Equation (6.18) actually holds 8u 2 H1(M ) L2(M ). Hence
TS can be identi ed with the linear map u7'h y ;u iL2(v ) de ned from the Laplacian of
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In the more general case where we only assume that 2 HY(M ), the Laplacian of ' is
directly de ned as the linear map T given in Equation ), and is then denoted ' so
that we can write

8 1;'22HYM); h w1 2itzmy = TE( 2)

Consequently we have8' 1;' » 2 HY(M ):

h w1 2icemy=hrm" iirm' 2iceeimy=h w2, 1iL2m) (6.19)
Dirichlet Laplacian Let us assume thatM is a manifold with non-empty boundary @ .
For' 2 H}(M) denote TP the linear application de ned by
TP : HiM™ ! R
o(M) _ (6.20)
u 70 TP(u)=hry’ rwuiczm)

Note that the only di erence between Equation (6.17) and Equation (6.20) is the domain of
de nition of the map. The same reasoning as the one used in the closed case can therefore be
applied. It shows that TP once again de nes a distribution onM , but with test function space
Ct (M).

Hence, when' 2 H3(M), the Laplacian of ' is directly de ned as the linear map T.P
given in Equation (6.20), and is then denoted ' . In particular Equation (§.19] holds now
8 1;' 22 HE(M).

Neumann Laplacian Let us assume thatM is a manifold with non-empty boundary @ .
Let ' 2 H1(M) such that ' follows Neumann boundary conditions in the L?-sense, meaning
that z

8u2 Coam); u(s) gs(ns;r wm' (s)ds=0 (6.21)
@Y
Denote then TN the linear application de ned by

TN : HYM) ! R

(6.22)
u 70 TN (U): hry ' r MUiLZ(M)
Note that this is actually the same de nition as Equation (: only the domain from which
the function ' was chosen changed. The same reasoning as in the closed case can then be
used to de ne the Laplacian of' from the map TN.
Namely, when' 2 H(M) follows Neumann boundary conditions, the Laplacian of' is
directly de ned as the linear map TN given in Equation ), and is then denoted ' .

6.6 Riemannian geometry and local deformations

To conclude this chapter on Riemannian geometry, we reintroduce the main de ning properties
of Riemannian manifolds using a practical and rather intuitive perspective. Indeed, as we
may now see, Riemannian manifolds are a mathematical object particularly suited to model
spatial domains undergoing local deformations. This parallel will be leveraged later in this work
to interpret (generalized) random elds de ned on Riemannian manifolds as locally deformed
(generalized) random elds (cf. Chapter[7).

6.6.1 Link to Continuum mechanics

In this subsection, a parallel is drawn between the study of nite deformations in continuum me-
chanics and Riemannian manifolds, which provides an interpretation of the notion of Riemannian
metric as being linked to local deformations (Fiala, 2008} Simo and Marsden, 1934).

Let Br denote a body that occupies a portion of a spatial domain. FormallyBr can be seen
as a continuous and connected subset d®?. Let us assume that the bodyBr is deformed from
its initial (reference) con guration By into a deformed oneBp  RY. This process, which is
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assumed to be reversible, is called a nite deformation and can be modeled as a di eomorphism
Br ! ( Br) = Bp that maps any point p 2 Bg in the reference con guration to its
position g = ( p) 2 Bp in the deformed con guration.
Let p 2 Bgr and let g 2 Bp be its position in the deformed con guration. Let dp be an
in nitesimal displacement from p to a point (p + dp) 2 Br (in nitely close to p in Br). Then
the displacementdq between both points in the deformed bodyBp can be written as

dg=( p+dp) (p)
Using a Taylor development of rst order around p, this last equation gives

dg= ( p)+ J (p)dp+ o(kdpk) ( p)=J (p)dp + o(kdpk) ;

where J (p) denotes the Jacobian matrix of at point p 2 Br. Hence, if the terms of higher
order are neglected (due to the in nitesimal nature ofdp), then the displacements in the reference
and in the deformed con gurations are linked by

dg= F(p)dp ;

where F is a tensor eld, called deformation gradient tensor eld, that associates to any point
p in the reference con guration a tensorF (p) de ned by

F(p):dp 7! F(p)dp = J (p)dp

In particular, to characterize length changes and angle changes around a poimgt 2 B after
the deformation process, it is useful to see how inner products between displacement vectors
vary. Let then dp1;dp, be two displacement vectors fromp and let dg; and dg, be their images
in the deformed con guration. We have

hdgy; dopi = hF (p)dps; F (p)dpai = dpi C(p)dpz

whereC is a tensor eld, called (right) Cauchy-Green deformation tensor, that associates to any
point p in the reference con guration a tensor C(p) de ned by

C(p) : (dp1;dp2) 7! dpi C(p)dp2 = dpi F (p)"F (p)dp

The Cauchy-Green deformation tensor informs on how lengths and angles of small vectors
around a point p in the reference con guration are modi ed after the deformation process, and
therefore how the geometry around that point is modi ed. Indeed, for any vectorsdp; dp;; dp»
around any point p in the reference con guration, the length dp and the angle betweendp;
and dp, are modi ed according to:

kdpk becomes kdgk = P dpTC(p)dp ;

_ _dpJdp; 0— (dp)"dpy _ dp] C (g)dp,
COos = becomes cos Y= t 2 = P 1y
kdp. kkdpz2k kdpTkkdp2k = T dpTC(p)dp1 dp} C (p)dp»

Circling back to the subject of this section, Riemannian manifolds actually provide a natural
mathematical framework for the study of deformations. Indeed, consider now thatBg and Bp
are submanifolds ofRY, and that Bp is equipped with the Euclidean metric, denotedg®“°. The
deformation di eomorphism  therefore de nes a smooth map between two smooth manifolds,
Br and Bp. Hence, the pullback metric ofgF'¢ by  de nes a Riemannian metric onBg by:

8p2M ;8up;Vp 2 TyBrg; g™ (Up; Vp) = gF°°(d p(up)id p(Vp))

where d , denotes the dierential of the map : Bg ! Bp at the point p 2 B. Using the
de nition of the Euclidean metric, this last equation becomes
xd
™ (Upivp) = 3 (MU (P)Vplk = W (P)up;d (P)Vpi = ugd (P)TI (P)Vp
k=1

Identifying (through the exponential map) the roles of the (representative) vectors up; vy
de ned on the tangent space ofBr seen as a manifold with the displacement vectors along the
body dp1;dp, of the continuum mechanics approach, we retrieve the expression of the Cauchy-
Green deformation tensor. Hence the deformation tensor simply corresponds to the pullback
metric of the Euclidean metric by the deformation di eomorphism , and therefore de nes its
own Riemannian metric on the undeformed bodyBr. The geometry induced by a Riemannian
metric g =  gF'° on a manifold Bg can be interpreted as the geometry that would exist on
the body By after it has been deformed through .
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6.6.2 Laplacian as a change of coordinates

In this subsection, the Laplace Beltrami operator, which plays a central role in the spectral
analysis of Riemannian manifolds is reintroduced using the same formalism as the one used in
the previous subsection. We show that the Laplace Beltrami operator de ned in Bg can be
identi ed to a classical Laplacian operator de ned on Bp through the change of coordinates
induced by the deformation transformation . We assume that the functions considered in this
subsection follow Dirichlet boundary conditions, i.e. they are zero on the boundary oBgr (or
Bp)

Once againBp is purely seen as a domain oR® (or equivalently as a d-submanifold of R®
endowed with the Euclidean metric). Hence the de nition of the gradient and the Laplacian of
functions of Bp corresponds to the classical de nition of such objects for functions oRY, i.e.
using partial derivatives with respect to Cartesian coordinates. Denote thenr g« the gradient
operator and re the negative Laplacian operator as de ned onRY.

The Laplacian of a (su ciently smooth) function f :Bp ! R can also be de ned as a distri-
bution with test function space C¢ (Bp) (i.e. the set of smooth functions ofBp that are zero on
the boundary @B ). It then maps any u 2 Ct (Bp) to the scalar valueh  gaf;u iL2rey 2 R
de ned by

h  efiui = Nr qof; T gai = et ey . u2cl (Bp) : (6.23)
rRoUTL2(Ray = NMpa®; I galUly 2(Ray 1= y =l 2(Rd); o (Bo) :
1 @H @4

where h;:i 2(gey denotes the inner-product associated with square-integrable functions oRY
(i.e. the Lebesgue integral of their product). In particular, if f 2 C?(Bp), rif 2 CO(Bp)
and we have

z
h  refiUipzre) = ( ref)Qu(g)dg; u2C§ (Bp) (6.24)
Let u2 C4 (Bp) and let f 2 C?(Bp). We denotef™= : Br ! R the function of Bgr
canonically associated withf through . We therefore havef = f~ 1 and the chain rule (cf.

Theorem|A.1.1) gives an expression of the partial derivative of with respect to those of f~

@ 1
@n

xd
8k 2 [1;d]; %(qr gp( ) @
=1

Injecting this last equation in Equation (§.23) then gives

xd Z xd xd a" @ @ a 1
o _ @, . N )
h  refiUiLe(re) = L Be e, @P (a)) @ (Q)@p( (9)) @d (g)dq
Z X x » . 1
= g 1 Q 1 @ I @) Jio q
Bo =1 jo=1 @p( (q))@p( @ 1 @A @ @n (g9)dqg
X @ X a
= = 1 = 1 J s J ) T od ’
@l @ g @O @I @hed

where of coursey = u and J :(q) denotes the Jacobian matrix of ':Bp ! Bg at the
point g 2 Bp. Operating a change of variablesg = ( p) in the last equation then gives (cf.

Theorem[A.1.2)
xi Z xd
h wofiUicegn = g,;(p) g;(p)w ((P)I () Tioidetd (p)idp ;

lo=1 Br =1

whereJ (p) denotes the (usual) Jacobian matrix of : Bgr ! Bp.
Note in particular that the chain rule also yields that 8p 2 Bg, J (p) 1 = J 1(( p)).
Hence, for anyp 2 Bg, by denoting G (p) the matrix de ned by

G(P)=J (M'J (p); P2Br ; (6.25)
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we get
xd A
h Rdf;UiLZ(Rd) =
10=1

G

xd a Y J——
.. @p —(P)[G(p) “lie detG(p)dp

(p)
- @p

Finally, given that u2 C¢ (Bp), we havew 2 C# (Br) and so, the integration by parts formula
gives I

X Z @ p__X a
h af; Ui 2(pay = tH(p) — detG G 1jo— d
R L2(RY) e (P)@p I=l[ In (I@p (p)dp
Z H

. p____x @
divge detG  [G Yjo— dp ;
. t(p)divg e |:1[ In @p (p)dp

by de nition of the divergence operator divgs acting on functions RY.
On the other hand, a direct change of coordinates) = ( p) in Equation (§.24) gives
Z Z
h  refiUip oy = ref (Q)u(a)dg = ref (C P)UC( p))jdetd (p)idp
BZ BR
P
"ref(p) detG(p)u(p)dp

Br

where” gef = ( gaf) denotes the function ofBg canonically associated with r«f through

Identifying these two expressions ofh  gaf; Ui 2(rey, Which are true 8u 2 C¢ (Bp), then
gives
!
@f i
@p '

xd
Nf =( mef) = pﬁdivm P et G Yo f 2C2%(Bp): (6.26)
e

=1

We recognize in the right member of the equation the expression (in local coordinates) of the
Laplace Beltrami operator applied to the function f~= f : Br! R, whereBg is now seen
as a Riemanniand-manifold endowed with a metric g de ned from the eld of positive-de nite
matrices f G(p)gp28. given by Equation ). We therefore retrieve the same construction
of a Riemannian manifold from a body B through deformation transformation , as the one
presented in Sectior{ 6.6.]1.

Hence, applying the Laplace Beltrami operator to a (su ciently smooth) function f~ of the
Riemannian manifold (Bg;g) is equivalent to applying the classical Laplacian operator ofRY
on the function f~ ! de ned on the deformed bodyBp = ( Bgr). The Laplace Beltrami
operator on (Bgr;g) can therefore be seen as a classical Laplacian operator on the deformed
con guration Bp, seen through the change of coordinates induced by .

Conclusion

In this chapter, we introduced basic notions of di erential and Riemannian geometry. The focus
was set on (compact) Riemannian manifolds, which can be seen as locally Euclidean spaces for
which the geometry around each point is de ned by a spatially varying inner product called
Riemannian metric. In particular, integration and di erential calculus were reintroduced in
these spaces.

We provided a more physical interpretation of Riemannian manifolds, which actually re-
lates them the spatial deformation models used in Geostatistics to model non-stationary data
(Sampson and Guttorp,|1992). The Riemannian metric was then simply interpreted as an ap-
plication allowing to compute lengths and angles as if the spatial domain on which it is de ned
was deformed.

The Laplace Beltrami operator, which corresponds to the generalization of the Laplace op-
erator to Riemannian manifolds, was introduced. As we may see in the subsequent chapters, this
operator plays a key role when working with functions de ned on the manifold. We indeed
stated the spectral theorem, which ensures that its eigenfunctions act like a decomposition basis
for any square-integrable function de ned on the Riemannian manifold.
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The next chapter will build on this result to build a class of (generalized) random elds that
can be seen as the counterparts, on a Riemannian manifold, of isotropic stationary Gaussian
random elds of RY. As we may see, working with these elds will answer the modeling problem
posed in this thesis.
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Résumé

Dans ce chapitre, nous présentons un cadre mathématique permettant de dé nir et de tra-
vailler avec des champs gaussiens dé nis sur des domaines complexes ou caractérisés par des
anisotropies locales. L'idée est d'étendre aux variétés riemanniennes la notion de champ gaussien
isotrope et stationnaire telle que dé nie sur des domaines euclidiens. Travailler sur des variétés
riemanniennes permet a la fois de modéliser des champs dé nis sur des domaines seulement lo-
calement euclidiens, mais aussi de modéliser des anisotropies locales en dé nissant une métrique
appropriée.

Nous commengons par introduire une classe de champs aléatoires généralisés dé nie a partir
des fonctions propres et des valeurs propres de l'opérateur de Laplace Beltrami de la variété
riemannienne. Nous en étudions ensuite les propriétés statistiques, et plus particulierement leur
covariance a n de montrer en quoi cette classe de champ répond a notre problématique initiale.
En n, nous proposons une discrétisation de Ritz Galerkin de ces champs, qui sera destinée aux
application numériques.

Introduction

In this chapter we circle back to our initial modeling problem, that is de ning a framework
that allows to easily work with Gaussian random elds de ned on complex spatial domains or
characterized by local anisotropies. As it turns out, this problem is answered by transposing
the notion of isotropic stationary Gaussian random elds (as de ned in RY) to Riemannian
manifolds. Indeed, as we saw in the previous chapter, these objects can naturally represent
complex domains and local deformations of space.

We will propose a passage from the de nition of random elds onRY to Riemannian man-
ifolds using their characterization by a pseudo-di erential operator (Lang and Pottho , 2011).
This allows to rede ne the notion of stationarity without involving a covariance function, and
therefore in a way that is independent of the actual geometry of the manifold. Doing otherwise
would indeed have forced us to nd a counterpart to the notions of invariance by translation and
rotation that characterize the covariance of isotropic random elds in RY, and which are obvi-
ously geometry-dependent. We therefore end up with a framework that can easily be transposed
to a wide range of domains.

However, the fact that we are working with pseudo-di erential operators forces us to gener-
alize the notion of random eld to more than just a stochastic process indexed by the spatial
domain. This is why the notion of generalized random eld is introduced. It allows us to justify
the fact that we work with both pseudo-di erential operators, and processes/ elds that may not
be smooth.

The approach we present is similar to the approach used by Lindgren et &l| (2011) to generalize
the de nition of a class of stochastic partial di erential equations to manifolds in order to de ne
Matérn eld on them. Bolin et al. |(2018) also used this approach to derive results on the
numerical approximation of solutions of SPDEs de ned by a fractional power of an elliptic
di erential operator on a bounded domain of RY.

We extend both approaches to the case where the domain of study is a compact Riemannian
manifold. In particular, the generalized random elds that will be considered are de ned by
leveraging the spectral theorem on compact Riemannian manifolds (cf. Theorefn 6.5.3). As we
may see, this approach has several advantages:

the proposed construction of generalized random elds holds for any compact connected
Riemannian manifold,

the covariance properties of the resulting (generalized) random elds can easily be linked
to the covariance properties of usual random elds de ned onR¢, and in particular those
that display local anisotropies,

the resulting generalized random elds can be discretized using a very general approach
and doing so, can be numerically computed.

In a rst section, we introduce the class of generalized random elds which will be used in
this work, and the surrounding framework. Our main contributions are presented in the two
subsequent sections.
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On one hand, we leverage the notion of metric to show how they can relate to the de nition
of local anisotropies on the resulting random elds. This is done by looking into the covariance
properties of these generalized random elds.

On the other hand, a method of discretization of these generalized random elds, based
on the Ritz Galerkin approximation approach, is presented: the generalized random elds are
approximated by a weighted sum of linearly independent (deterministic) functions de ned on
the manifold and a theorem describing the statistical properties of the weights is stated (and
proven). As we may see, this discretization is linked to the notion of stochastic graph signal, and
will be leveraged in the subsequent chapters to numerically work with the generalized random
elds de ned here.

Note however that the work presented in this chapter only concerns zero-mean Gaussian
elds.

Assumption 7.1.  All (generalized) Gaussian elds in this work are assumed to be zero-mean.

7.1 Generalized random elds: mathematical framework

In this section, the mathematical framework leading to the de nition of a particular class of
generalized random elds on a compact Riemannian manifold is presented.

7.1.1 Functions of the Laplacian

The aim of this subsection is to introduce a class of operators acting oh?(M ), called functions
of the Laplacian, and derived from the spectral theorem (cf. Theore3). These operators
are classically used to express solutions of some di erential equations and to prove the Weyl
asymptotic formula that was introduced in Theorem (Bouclet, |2012). We will be using
these operators to de ne the class of generalized random elds with which we will be working.

Consider then : Ry 7! R such that is bounded. We introduce ( n ) the (linear)
operator on L?(M ) whose action is de ned by:

X
8f 2L3M); ( w)f = (hecficem)e (7.1)
k2N

( wm ) is called function of the Laplacian. The next proposition details the action of this
operator.

Proposition 7.1.1. The operator ( ) de ned in Equation @) satis es
( m)iLEM)! L*M)

Besides, its de nition does not depend on the orthonormal basis of eigenfunctions of  used

in Equation (7.1).

Proof. is bounded, and therefore, so is 2. Hence, there existsM 2 R such that 8 2 R,
( )2<M . Take thenf 2 L?(M ), and let ff3gp2n be the sequence de ned by

xP
fo= (WheGficzmye; p2N
k=0

Note in particular that 8p;g2 N such that g > p we have
xa

xd
kf-a fA,-JkEz(M)z ( k)zkekafIEZ(M) M ra(;fiEZ(M)p-q!l +1 0 ’
k= p+1 k=p+1 o

P
given that kzmhﬁkifiEZ(M) = kf kEZ(M) < 1. Henceff,gp2n is a Cauchy sequence of
L2(M ). It is therefore convergent in L2(M ) given that L2(M ) is complete.
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Finally, simply notice that by de nition,

(W)t = lim f

to conclude the proof. O

( wm) denes a linear (and continuous) operator fromL?(M ) to L2(M ), which basically
scales the coordinates of an input functionf by the evaluation of on each corresponding
eigenvalue of .

( m) can be seen as a generalization of pseudo-di erential operators &9 on the Rie-
mannian manifold (M ;g). Indeed, a pseudo-di erential operator P of RY is an operator on
real-valued functions of R whose action on a particular function' is de ned by

PP =F Y 2RY7Ip() FT 1) ; (7.2)

where p is a smooth function called symbol ofP, whose derivatives are required to be polyno-
mially bounded.

Dealing now with a Riemannian manifold (instead of RY), the notion of Fourier transform can
be naturally extended by noticing that the Fourier transform of RY actually corresponds to the
decomposition of a function into the continuously indexed set of functiond x 2 RY 7! g’ g oRd-
It is straightforward to check that these functions actually are eigenfunctions of the negative
Laplacian of RY, associated with eigenvaluesk k?g ,re. Hence the Fourier transform inRY can
be interpreted as a decomposition of a function into a weighted sum of eigenfunctions of the
Laplacian.

Extending now this observation to Riemannian manifolds, the notion of Fourier transform can
hence be identi ed with the decomposition of a function into the countable basis of eigenfunctions
of the Laplace-Beltrami operator. Denote thenF y : L2(M ) ! “2(N) the map that associates
to any f 2 L2(M ) its coordinates in the basisf e gk n:

8f 2L*(M); Fwmf]= fhefiLzm)tken
This operator is invertible and its inverse F ,, L2C2(N) 1 L2(M) is given by:
X
8fokgan 2 T2(N); Fy'lfactkon] = & 2 L3(M)
k2N

Then the de nition of the operator ( ) in Equation ( can be written
( wm)=Futf () hecficzm)den (7.3)

Equation ( presents a form similar in all aspects to Equation ). The function in
Equation ( plays the role of the symbol function in Equation ), and functions de ned on
the continuous spaceR¢ are replaced by countable sequences.

This observation justi es the parallel that is drawn between pseudo di erential operators
and the functional operators studied in this section. A more in-depth comparison between them
is carried out in Appendix D.1.7} in the case where the Riemannian manifold considered is a
bounded box ofRY.

7.1.2 Generalized random elds of L2%(M)

General de nitions and notions

A generalized random eld (GeRF) Z on M is a linear and continuous functional that associates
toany' 2 C! (M) arandom variable Z (' ) 2 R (Gelfand and ShiloV,[1964). A GeRFZ is

..... m

----- m -
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The mean of Z is the linear and continuous functional 7 which associates to any' 2
C! (M), the expectation of Z (" ):

z(")=ERZ(C); " 2Ct(M)

In particular Z is called zero-mean if8" 2 C* (M), z(')=0.

If the expectation of the product Z (' 1)Z (' ») exists for any' 1;' » 2 C* (M) and is con-
tinuous in (' 1;' 2), then the covariance functional C; : Ct (M) C! (M)! R of Z is the
positive de nite functional de ned as

Cz(" 1" 2):=CovV[Z( 1);Z( 2]= EIZ( )Z( 2)] EZ( DIEZ( 2l "1;"22Ct(M):

Finally, the characteristic functional 7 of Z is the functional that associates to any' 2
C! (M) the value of the characteristic function of Z (' ) at 1, namely

2" 2Ct (M) 7! E[€7()]

The characteristic function of a GeRF is continuous onC* (M ) and satises 7 (0) = 1. Besides,
Minlos' theorem ensures that the characteristic functional of a GeRF entirely characterizes its
probability distribution (Gelfand and Shilov,|1964; Lang, 2007).

Gaussian GeRF and white noise

A GeRF Z is called Gaussian GeRF, or generalized Gaussian eld(GeGF), if forany m 1

is a non-singular Gaussian vector. The characteristic functional of a zero-mean GeGE is then

given by (cf. Theorem[A.4.4):
8 2C' (M), (' )=e %)

whereC;z is once again the covariance functional oZ . Conversely, given a continuous, symmetric
and positive-de nite bilinear form Q onC! (M) C?! (M), the functional de ned by

'2Ct (M) 7 e R0 )

is the characteristic function of a GeGF with covariance functional Q (Gelfand and Shilov,|1964).
In particular, considering as bilinear form the inner product of L?(M ), yields the functional

r2Ct M) T e ™ Tz (7.4)

Any GeRF with characteristic function given by Equation ( is a GeGF called Gaussian white
noise onM . A characterization of Gaussian white noises based on the Hilbert space?(M ) is
given by the following proposition.

Proposition 7.1.2.  Let fW;gjon be a sequence of independent, standard Gaussian variables.
Then, the linear functional W de ned over L3(M ) by

X
W:' 2L3M) 7! Wjh;ejizm) (7.5)
i2N

is a Gaussian white noise onM . In particular, it satis es
8 2L*M); E[W()]=0 (7.6)

and
8 1;'22L*(M); Cov[W( 1);W( 2)]1=H 1;" 2iczm) (7.7)
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Proof. Note that given that C* (M) L?(M ), W can be seen as a GeRF oM .
Let' 2 C! (M). Following from the mutual independence of theW;, the characteristic
function of W satis es:
iy

= non(thejicemy) s
i2N i2N

P
w()=E e jZNth'3ej'L2(M) - E gWilte jii2m,

where  (0:1) denotes the characteristic function of the standard Gaussian distribution, which
is given by n0:1)(t) = € t“=2 8t 2 R. Hence,
Y oL , P
w()= e fMeillew) =g & 2 iilom) =g
j2N

i 2
L2m) :

which is the characteristic function of a Gaussian white noise. Henc&V is Gaussian white
noise.

Equations (7.6) and (7.7) then follow from the fact that the Gaussian white noise is a zero-
mean generalized random process with covariance functiondt;:i >(v ); and by density of

Cl(M)inL?(M). O

Seen as the functional de ned in Propositior{ 7.1.2, the Gaussian white noise has several prop-
erties related to L2(M ). For one, it is de ned on L?(M ) and not only on C* (M ). Moreover,
for any m 1 and for any "::; m 2 L2(M ), we have:

U

W(' m) n,'1lL2(M) oM mice)

W( 1)

which means that (W (' 1):::W(' n))T de nes a zero-mean Gaussian vector. Finally, note that
8 2L3M); Var[W(' )= E jW()j® =K kloyy<1

Hence all random variablesW (' ) have a nite variance.

L2(M )-valued GeGF

We now introduce (and denote by)L?( ;M) the set of L2(M )-valued random variables de ned
on a probability space( ;F;P) and satisfying

822 L?*( ;M); E[Z]=0_2v) and E[kZkZ,(y 1< 1 : (7.8)

In particular, this means that any Z 2 L%( ;M) is almost surely in L?(M ). This condition is
actually enforced by Eqyation (7.8). Indeed, according to Markov's inequality {Stewari,[2009,

Section 8.1),8N 1L, P kaI_z(M y N E[kaEZ(NI )]:N. And taking the limitas N !'1

then gives P kaI_Z(M y=+t+1 =1 PZ 2 L?(M) =0. Consequently, anyZ 2 L?( ;M)

can be represented in the basi$eg gjon as
X
Z= Zig (7.9)
i2N
where Z,;Z5;::: are real-valued random variables satisfyingE[Z;] = 0 and E[ij] < 1 (Tone,
2011).
L2( ;M) is a Hilbert space when equipped with the scalar producth; dLz¢ .m) (and asso-
ciated norm k:k_2( .y )) de ned by:

82;z°2 L% ;M); hZ;Z% 2 .m)=E hZ;Z% 2(m)
Note in particular that if Z and Z° are represented as in Equation ), we have

X X
hZ;Z% 2 )=  E[Z;Z)] and KkZkf. .,=  E[Z]]
i2N i2N
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The next result introduces a class of GeGFs de ned through the white noise that can be
identi ed with elements of L?( ;M ).

Theorem 7.1.3. Let fW; gj2n be a sequence of independent standard Gaussian variables de ning
a Gaussian white noiseW gs in Proposition [7.1.2]
For :R; 7! R such that 2N (j)><1,denote (v )W the GeGF of M de ned on

L*(M) by
(C mWI()=W ( wm)) '2L%Mm ; (7.10)
where () is the function of the Laplacian de ned in Equation (7.1).
Then, ( wm )W can be identi ed with the elementZ 2 L?( ;M) de ned by

X
Z= W (g ; (7.11)
i2N

through the linear functional of L?(M ) dened by: * 2 L3(M ) 71 hZ;" i 2(u ).

Proof. Clearly, Z is an element ofL?( ;M) given that E[Z] = OLzmy and
2 h 2 | X 2
kaLz( ;M): E kaLZ(M) = ( J) <1 :
i2N
We now show that the linear functional ' 2 L2(M ) 7! hZ;" iLzm) isequalto ( m)W.
Indeed, 8' 2 L2(M ), we have from Proposition[7.1.2:
0 1
X .
(( mW)()=w@ (g izmygA
i2N
x . .
= W (phgititemy =hZ itz ;
j2N

which concludes the proof. O

From now on, GeGFs of the form (  y )W will be directly identi ed with their represen-
tation Z in L2( ;M ), and we will write them as:

X
Z= ( wm)W= Wi () ; (7.12)
i2N

where fW; g;2n is a sequence of independent, standard Gaussian variables. As such, they are
considered as linear applications that mapL2(M ) to zero-mean Gaussian variables such that

X
8 2L%M); Z()= W (bt itemy
i2N

and

8u;v2L2(M); Cov[Z(u);Z(WI=h( wm)u ( wm)ViLzw)
* i i 7.13)

( j)2m;U|L2(M)|’E;VILz(M) : ( .
i2N

In particular,  will be taken to be a non-negative square-integrable function orR. , to ensure
that Equation (7.12) is well-de ned. In the next section, the statistical properties of such elds,
and in particular their covariance, are investigated and related to those of usual random elds.

7.2 Covariance properties of generalized Gaussian elds

The aim of this section is to show how the covariance properties of the GeGFs de ned in the
previous section by Equation [7.12) relate to the usual description of the covariance properties of
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random elds of RY. In particular, we show they can basically be seen as random elds de ned
on the manifold, whose spectral density is given by and with local anisotropies de ned by the
Riemannian metric.

To come up with these conclusions, we rst consider the case where the Riemannian manifold
(M ;g) is a compact domain ofRY endowed with the Euclidean metric (cf. Example[6.2.1). This
allows to draw a direct parallel between GeGFs de ned on this trivial manifold and the so-called
Karhunen Loéve expansion of random elds. In particular, we deduce a practical interpretation
of . Then, this same manifold is endowed with a Riemannian metric to derive the conclusion
on local anisotropies.

7.2.1 Generalized random elds and Karhunen Loéve expansion

In this subsection, we draw a parallel between the de nition of GeGFs we proposed in Sec-
tion and the Karhunen Loéve expansion of Gaussian random elds in the particular case
where the domain we consider is a hypercube d®9. We rst recall the de nition of this expan-
sion.

Let B denote the unit hypercube of RY and let Z be a zero-mean Gaussian random eld
dened on B. Denotecz : B B! R the covariance function ofZ, i.e.

8x;y 2 B; cz(x;y)=Cov[Z(x);Z(y)]l = E[Z(x)Z(y)]

Denote by L?(B) the set of square-integrable functions oB. We can associate to the covari-
ance functionc; an operator G : L?(B)! L?(B), called covariance operator, which maps any
" 2 L?B) to a function G [ ] 2 L?(B) given by

Z

Gl I(x) = BCz(x;y)' (y)dy : (7.14)

Similarly as what was done for the Laplacian (cf. SectioZ), a function 2 L?(B) is
called eigenfunction of G with associated eigenvalue 2 R if it satis es

Gl]1= (7.15)
The Karhunen Loéve theorem then states the following results (Lindgren,| 2012).

Theorem 7.2.1 (Karhunen Loéve theorem). Let Z be a (continuous in quadratic mean) Gaus-
sian random eld with covariance operator G, , de ned on the hypercubeB.
On one hand, there exists a complete (countable) orthogo@basis of L?(B) consisting of
eigenfunctionsf ygon Of G .
On the other hand, iff ygkon denotes the eigenvalues associated with  gkon, then 8k 2 N,
k 0andZ can be decomposed as
X p__
Z= Wim "« ok (7.16)
k2N

where f Wy gk2n IS a set of zero-mean uncorrelated (Gaussian) random variables with unit vari-
ance. Equation (7.16) is called the Karhunen Loéve expansion ofZ.

Remark 7.2.1. Note that Z can be identi ed with a zero-mean GeGHlZ with covariance
functional Cz (cf. Section[7.1.2) given by:
Z

8u;v2 C! (B); Cz(ujv)= ] cz (X;y)u(x)v(y)dy

Then the eigenfunctions  and eigenvalues i of the covariance operatorG; also correspond
to eigenfunctions and eigenvalues of the covariance functional; in the sense that

8u2 C' (B); Cz( «x;u)= kh;uiLzg)

Hence, Theoren{ 7.2]L can also be stated using the covariance functional instead of the covari-
ance operator.

1For the usual inner product on L2(B).
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We now circle back to the class of GeGFs considered in this work and characterized in
Theorem[7.1.3. We show in particular that the expansion in Equation [7.1]) can be identi ed
with the Karhunen Loéve expansion of the GeGF.

Indeed, let Z be now a GeGF de ned as in Equation [7.11). Then,8u 2 C*! (B), the
eigenfunctionsf e gk2 n Of the negative Laplace-Beltrami operator onB satisfy

Cz(a;u):=Cov[Z(&);Z(u)]=h ( B)a; ( 8)uiLes)

X
(Dheseize)e; (10)her; UiL2(g)@0 = (k)’heGui g, :
12N 102 N L2(B)

Hence, the eigenfunctiond e, gk n Of the negative Laplace-Beltrami operator are eigenfunctions
of the covariance functional ofZ with associated eigenvalue$ ( ¢)?gk2n. Then, following The-
orem[7.2.], the expansion of in Equation ([.11) corresponds to a Karhunen Loéve expansion.

Hence, using the formalism of Karhunen Loéve expansions, we identify the GeGFZ with
the zero-mean random function series given by

X
Z(x)= Wi (j)g(x); x2Bp
2N

where f W, gjon denotes a sequence of independent standard Gaussian variables, ahd; gjon
(resp. f g g;2n) are the eigenvalues (resp. eigenfunctions) of the Laplacian oBp . Its covariance
function is then obtained as

X X
Cov[Z (x);Z(y)]l = EWW;] (1)) (g (x)e(y)); Xy 2Bp
j2NKk2N

which gives X
CovZ(x):Z(= ()’ (X)e(y); xiy2Bp : (7.17)
i2N
In their work on Gaussian process regression, Solin and Sarkka (2014), show that away
from the boundary of Bp, the covariance function de ned by Equation (7.17) yields a good
approximation of the isotropic covariance function de ned as the inverse Fourier transform of
the function 2, which we denoteCy:

Co=F 7 : (7.18)

Another proof is provided by (Huang et al., 2001), and relies on the identi cation of the
Karhunen Loéve expansion ofZ with the discretized spectral representation of a Gaussian ran-
dom eld with covariance function Cj.

Hence we have that for pointsx;y 2 Bp away from the boundaries,

Cov[Z (x);Z(y)] = Co(kx yko) : (7.19)

where Cy is given by Equation (7.18).

Remark 7.2.2. The link between our de nition of GeGFs and the Karhunen Loéve expan-
sion exhibited in this subsection actually provides an additional justi cation to the fact the
Laplacian functions can be considered as the transposition of pseudo-di erential operators to
compact domains ofR? (cf. Section[7.1.7).

Indeed, following a characterization from (Lang and Pottho ,2011), a stationary eld with
covariance Co on RY can be identi ed with a generalized random eld of R? de ned by

Z=L W ; (7.20)

where once againCo and 2 are linked through Equation (7.18), L denotes the pseudo-
di erential with symbol function and W is a Gaussian white noise orRY. In particular,

R 2This identi cation can actually be seen as (formally) de ning the GeGF Z asthemap Z :u2 C! (B) 7!
B u(x)Z(x)dx.
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Z is therefore seen as a linear application mappin@? (RY) (the set of compactly-supported
smooth functions of RY) to zero-mean Gaussian variables such that

8u;v2 C! (RY; Cov[Z(u);Z(v)]= hL u;L Vigzgay (7.21)

Comparing Equation (7.13) with Equation (f.20) and Equation ([7.13) with Equation (}.21)
then allows to conclude that the de nition Laplacian functions play the exact same role as
the pseudo-di erential operators do when de ning stationary elds.

7.2.2 Generalized random elds on a compact domain of RY equipped
with a metric

In this subsection, we use the formalism presented in Sectign §.88r ~ RY denotes a compact
and connected set ofRY, with (piecewise) smooth boundary, called reference con guration.
Br ! Bp = ( B) denotes a di eomorphism that maps any point p 2 Br to a point
q= ( p)2Bp inthe setBp RY, which is called deformed con guration.
In particular, the body Bg is seen as a compact-submanifold Bg of RY, equipped with
a Riemannian metric g, represented by a eld of positive de nite matrices fG(p)gp2,. In
particular, Bp = ( Bg), and we assume that is linked to g through Equation (6.25). Let
then g, be the Laplace-Beltrami operator on(Br; Q).
Following Equation (f.12), we now de ne a GeGF Zg on Bg through
X
Zr= Wik (e
k2N

wheref W\ g2 \ is a set of independent standard Gaussian variables, and Egkz n (resp. feE Ok2N)
are the eigenvalues (resp. eigenfunctions) of g,

Let re denote the classical Laplacian ofRY, de ned on functions of Bp. Note that,
following Equation (6.26), the eigenfunctions of g, satisfy

8k2N; g = (el ) = {ef
And therefore the function € = € !is an eigenfunction of g« on Bp, associated with
the eigenvalue P := R. Hence,
1 X RyaR 1 X DD
Zp = Zr = Wi (ke = Wi (k)&
k2N k2N

de nes a GeGF on Bp. In particular, following from Section [[.2.1, Zp can be seen as an
isotropic stationary random eld with spectral density 2 and covariance function satisfying

Equation ([7.19).
Consider now two pointsp 2 Br and p+ dp 2 Br separated by an in nitesimal displacement
vector dp 2 RY. Following the results of Section|6.6.1 we have,

Cov[Zr(p); Zr(p + dp)] = Cov[Zp (( P));Zp (( p+ dp))]

p___ (7.22)
=C(k(p+dp) (pk)=C dpG(p)dp

Besides,G (p) being a positive-de nite and symmetric matrix, it can be diagonalized as

G(p) = R(p)" Diag( 1(p);:::; a(P)R(P) (7.23)
where R(p) 2 Mg4(R) is an orthogonal matrix (i.,e. R(p)TR(p) = R(P)R(P)T = I4) and
1(P);:::; q(p) > 0. For d 2 f2;3g, wheneverdetR(p) = 1, R(p) represents a rotation

transformationf] In this case, Equation (7.22) becomes

_ P— p
Cov[Zr(p);Zr(p + dp)] = C(kDiag(1= 1(p);:::;1=  4(p))R(p)dpkz) : (7.24)

3If detR(p) = 1, R(p) represents a re ection transformation (Friedberg et al., 2DD3).
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Hence, the covariance oZg around p 2 Br acts basically like an isotropic eld with covariance
C de ned gn a neighborhood ofp deformed by the rotation induced by R (p) and dilatation with
factors 1= 1(p);:::;1=  4(p) D

Conversely, given elds of axis lengthsf 1= 1(p)Gp28x, - 1=  a(P)Gp28. and of rotation
matrices fR(p)gp28, and de ned across a domainBr, a GeGF that behaves locally as in
Equation (7.22) can be generated and characterized as a GeGF de ned on the Riemannian
manifold obtained by equipping Bg with a Riemannian metric de ned by Equation (7.23). This
idea will be discussed in Sectiorp 7.4]2 and leveraged to model a class of non-stationary elds
de ned on Bg, called Gaussian random elds with local anisotropies

Note in particular, there is no need to actually specify the transformation deformation that
was associated to the metric in our formalism, as it does not intervene in the characterization
of the metric or the pseudo-di erential operators de ning the elds once fG(p)gp2e, iS xed.

7.3 Discretization of generalized Gaussian elds

In the last section, we showed how the covariance of the GeGFs de ned through Equatior] (7.12)
could be linked to the covariance function of a eld whose spectral density is 2. Besides,
endowing a manifold with a Riemannian metric proved to be a natural way to de ne local
anisotropies on the manifold.

We now aim at computing numerical approximations of such elds using a discretization
of the functions of the Laplacian and of the resulting GeGFs we have been working with. It
leads to their approximation by a weighted sum of user-de ned deterministic functions called
basis functions and de ned on the manifold. The discretization we propose, based on the Ritz
Galerkin approximation theory, can be seen as an extension to general functions of the Laplacians
and to Riemannian manifolds of the approach proposed by Bolin et al.|(2018) to derive numerical
approximation results for fractional elliptic stochastic partial di erential equations.

Our main contribution is the derivation of Theorem [.3.5|which provides a complete charac-
terization of the weights of such an approximation. The study of the convergence properties of
these approximations is delayed to the next chapter, for a particular set of basis functions.

The following notations are adopted in this section. LetH (M ) denote either HY(M ) if a
closed or a Neumann Laplacian is considered, dd}(M ) if a Dirichlet Laplacian is considered
(cf. Section ). Taken 1l1andf g; x n a family of linearly independent functions of
H(M). V, H(M) denotes its linear span:

Vh =spanf k2 [1;n]g

In particular, V, is a n-dimensional vector space included irH (M ).

7.3.1 Ritz Galerkin discretization of functions of the Laplacian
Let' 2 H(M ). Following the Ritz Galerkin approximation approach (Brenner and Scott,| 2007|

Strang and Fix, 1973), the discretization of ' over an-dimensional spaceV, H(M) is
de ned as the element ofV,, which we denote n' 2 V,, that agrees with m - ooverV,.
Formally, and following the de nition of m ' provided in Section[6.5.3, , is dened as

the element ofV, satisfying:
8v2Vh;, h nivipgmy=hry 5 ruvigewmy (7.25)

Consider now the operator |, that associates to any' 2 H(M ) its discretization n' 2
Vy, as de ned by Equation ). n is called the Ritz Galerkin approximation of the operator

m - In particular, if ffyg; « n denotesany orthonormal basis of Vj, (with respect to the
scalar producth; i 2(m)), n satis es

n :Vn ! Vn
X : (7.26)

7! n' = herk;rM'iLz(M)fk
k=1

4This is actually equivalent to saying that around p 2 Bgr, Zr acts like a stationary eld with geometric
anisotropy (Chiles and Del ner, 2012)
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Let C and R be the n-matrices respectively calledmass matrix and sti ness matrix , and
de ned by
C

h: dicemy 4 ;
Lk (7.27)
R= hry irm iiemy 4 g g
Lemma 7.3.1. Let C and R be the matrices de ned in Equation (7.27).
Then, C is a symmetric positive de nite matrix and R is a symmetric positive semi-de nite
matrix.

Proof. On one hand, note thatC is symmetric since the functionsf gk are real-valued. Also,
8x 2 R",
. XX . X )
x'Cx = Xkh ks piczmyxi = ko Xk kkLz(M) 0:
k=1 1=1 k=1
Given that the functions f gk are linearly independent, this quantity is zero only if x = 0.
Hence, C is positive de nite.
On the other hand, R is symmetric by de nition of its entries (cf. Corollary §.5.2). And,
8x 2 R",

T X X _ X 5
X' Rx =h Xgrwm «; XiIrm ricemy = K Xkl M kkLz(M) 0
k=1 1=1 k=1
HenceG is positive semi-de nite. O

Remark 7.3.1. Following the proof of Lemma|7.3.1, note thatR is positive de nite (and
therefore invertible) whenever8' 2 V,, r v =0p2my) ' =0r2m) -

We denote by C =2 the principal square-rooE] of the mass matrix C. In particular, C2 is
invertible and we denote by C 172 its inverse. The following result provides a link between the
matrices C and R and the endomorphism of V,.

Theorem 7.3.2. Letf y01 « n be a family of linearly independent functions ofH (M ), sat-
isfying Dirichlet or Neumann boundary conditions whenever@ 6= ;. Let V, denote its linear
span.

Then the endomorphism  , de ned by Equation (7.26) is diagonalizable and its eigenvalues
are those of the matrixS de ned by

s=cCc ¥Rrc ¥ (7.28)

where the matricesC and R are de ned in Equation (7.27) and C 12 is the inverse of the
principal square-root of C.
In particular, the application E : R" ! V,, de ned by

X
E:v2R" 70 [C Y] « ; (7.29)
k=1

is an isometric isomorphism that maps the eigenvectors d® to the eigenfunctions of .
Proof. Note rst that S is real symmetric and is therefore diagonalizable. Take then an
eigenvalue ofS and denotev 6 0 an associated eigenvector. Then,

Sv=C ¥RC ¥Wy= v= c¥?c ¥y ;
and so,Ru = Cu whereu = C *2v. Hence, using Equation [7.2]),
X

xXo
8k 2 [L;n]; hrv kv deem)u = ho iy U
1=1 =1

5Hence, C172 s obtained by applying the square-root function to the eigenvalues of C, in the same way as
graph lIters were de ned (cf. Section 1.8.5).]
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which gives using Equation [7.29),
8k2 [Ln]; hry krmEWN)icemy= hiGEW)iczmy - (7.30)

Note then that f (g is also a basis oV, as it is a family of linearly independent functions
spanning V,,. Denote then A 2 M ,(R) the invertible change-of-basis matrix betweenf | gk
and the orthonormal basisff gk of V, in Equation (/.26). In particular, A satis es

X0
8k2[Ln]; «= Ay f
1=1
Then Equation (7.30) can be written
0 1 0 1
herl;r M E(V)iLZ(M) Hl;E(V)iLZ(M)
N O T
hrw fasr m E(V)icem) Hn E(V)iLam)

Multiplying both members of this equality by A * then yields that
8k 2 [Lin]; hryfisr m E(V)iLemy = HiGEMV)iLzm)

And so, given that E(v) 2 V,,

X X
nE(v) = hrw fisr m E(V)icem)fk = M E(V)icem)fk = E (V)
k=1 k=1

Therefore is an eigenvalue of |, and E maps the eigenvectors ofS to the eigenfunctions
of n-
Note then that, 8x 2 R",

XX T
KE (X)kZ 2y ) = [C ™2xIh «; 1iLemy[C 2= C ¥x  CC '2x = kxk3:
k=1 1=1

Hence, given that it is also linear, E is an isometry betweenR" (with the metric k:k;) and
Vi (with the metric k:k_2(v )). Consequently E is injective: indeed, 8x 2 R", E(x) =0 )
kxk3 = kE (x)kfz(,\,I y =0 andso,x =0. And nally, using the rank nullity theorem Fiiedberg

et al.| (2003), E is bijective (as an injective application between two vector spaces with same
dimension). O

Denote by f xng1 « n  R.« the eigenvalues of the matrixS in Theorem [7.3.2, and let
fvkgs «k n R" be an orthonormal basis ofR" composed of real eigenvectors o satisfying
8k 2 [1;n], Svk = «nVk. Denoting by V 2 M ,(R) the matrix

Vo= (vajiiijva)

we then have 1

0
1;n
s:v% §VT; ViV =vvT =1, : (7.31)

Given that the application E de ned in Equation (7.29) is a linear isometry, it maps or-
thonormal sequences irR" (with respect to h;:i,) to orthonormal sequences inV, (with respect
to h;:i_2m)). Hence, the sequencéen 01 «k n Vi, where

8k 2 [L;n]; e = E(vk) ;

is an orthonormal family of functions of V.
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Moreover, given that E is linear and bijective, fE(vk)g1 « n is actually a basis ofV, since
fvkdi « n is a basis ofR". Consequently, fex.n g1 « n de nes an orthonormal basis of V,
composed of eigenfunctions of .

Take :R. ! R. Following the de nition of the discretized operator n and analogously
to the de nition of the operator ( ) from the operator m » the discretization of the
operator ( m ) onV, is then de ned as the endomorphism () of V, given by

( n):Val VW,

X _ 7.32
T W= (ke i Be (7:32)
k=1
Lemma 7.3.3. The denition of () in Equation (7.37) does not depend on the choice
of orthonormal basisfex, g1 « n Of eigenfunctions of |, satisfying 8k 2 [1;n], n€n =

k;n e.(;n .

Proof. Let fexngi k n andfe, g1 « n denote two orthonormal basis ofV, such that 8k 2

[1;n], n€n = kn€mn and n€n = kn€y,. Assume that () is dened by
Equation ([7.32).

Let A 2 M ,(R) be the change-of-basis matrix betweer e.., g« and feﬁ;n Ok, I.€.

X 0
8k 2 [Lin]; e&n = A€,
1=1

The orthonormality of fec, gk and f el gk gives that

X x XX
A el s efoniizm yAxao = A 110Aop
I=1 10=1 1=1 10=1
X0
AuAka =[AA Tluo = o
=1

8k; k%2 [1;n];  bhexn ;eKO;niLZ(M )

Hence,AAT =1, = ATA.
On the other hand,F;he fact that fec., g« gnd feﬁ’;n gk are eigenfunctions of gives 8k 2
[1;n], n€n = Al n€) = L A, = kn@in = kn et A€l
Hence,

8k;1 2 [L,n];  knAw = Ak
Consequently, note that8k;1 2 [1;n], ( kn)Aw = ( 1n)Ax still holds (this can be veri ed
with a simple proof by contradiction). Therefore, we have

0 1
( 1n)
(A=A (), where ( ):= % §
( nn)
Finally, note that 8' 2V, ,
* +
X X 0 X 0
( n)' = ( k;l’l) '; Ak|q;n Akloelo;n
)é( | i L2(M ) 0|0
= ( kn)AkAxo ;e n L2(m) Clo;n
Kl °
X T (] 0 X T (] 0
= . O[A ( )A]||° 1€ n L2(M) €on = ‘ O[A A ( )]”0 1€ In L2(M) €o:n
X 0 0 X ' 0 0
= (hn (o e n L2(M) €o.n = ( I;n) he n L2(m) €n s

I |

which proves the result. O
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7.3.2 Ritz Galerkin discretization of GeGFs
Let W, be the V,-valued random variable de ned by

X
W, = Wien (7.33)
k=1

where Wq;:::; W, are independent standard Gaussian variables. ThenW, is called white
noise on V,. This de nition of white noise is coherent with the characterization of Gaus-
sian white noiseg introduced in Proposition[7.1.2. Indeed, the linear functional' 2 V, 7!
hWh;'iLz2my = E=1 Wiheen ;' 2wy maps elements ofV, to Gaussian variables satisfying
8 2 Vh, E[n'Wq;"iLem)y] =0 and 8' 1;' 2 2 Vj,

X
CovlhWa ;" iLzmys WL T zvy] = Peen s ticevyPeen " 2itewy = 13" 2item) -
k=1

In particular, by independence of the Wy, the characteristic function of this functional is

12V, 71 E[EM Tz = N (MBn " Lo y) = € 2 e
k=1

which is the expected form de ned in Equation (7.4).

Proposition 7.3.4. Let W, be a white noise onV,.

Then W}, can be written
xo
Wn = Wk kK (7.34)

k=1

where the weightsWy ::: W, for a Gaussian vector de ned by(W,:::W,)T N (0;C 1).

Proof. Using the linearity of the map B de nedin Theorem@, the de nition of W, 2 V, in
Equation (7.33) can be written W, = = J_; WKkE(Vk) = E (g Wivi) = E V(W15 Wy)T
where (Wq;::;W,)T N (0;1).

But also, denoting \Eli ::1; W, the coordinates of W, in the basisf gk, we get from Equa-

tion (, Wh = o, W i = E C¥(W,:::W,)T . Hence, using the fact that E is
bijective, we get (W, :::W,)T = C 172V (Wy:::W,)T which proves the result. O

Theorem 7.3.5. Let Z, be theV,-valued random variable de ned by
Zn= ( nMWh o (7.35)

where () is the mapping of Equation(7.32) and W, is a Gaussian white noise onv,.
Then, Z, can be decomposed in the basfs xg; « n as

X
Zy = Zk k (7.36)
k=1
The weightsZ1;:::;Z, form a Gaussian vectorZ = (Z1;:::;Z,)" with mean 0 and covariance
matrix
var[zZ]= C ¥ (s)c ¥ ; (7.37)

whereC and S are de ned in Equations ) and ) , C 172 s the inverse of the principal
square-root of C and 2(S) denotes the graph Iter with shift operator S and transfer function

7 ()2

Proof.PNotice that Z, 2 V,, hence there exists some random vectoZ 2 R" such that
—_ n H H —_ 1=2
Zn = 4 Zk «- And following Equation (f.29), Z, = E C'¥2Z .
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But also, followlng the de nition of W, |rquuat|on (7.33) and the linearity of E, Z, =
( n)Whp = k=1 ( kn)WKE(vk) = E( k=1 ( kn )Wk V) which gives,

| 1
(1n) ’ Wy

Zn= ( nMWh=E V :
( n]n) Wn

Therefore, given that E is bijective,
(1n) ! W1 !
z=C v L
( nn ) V\in
where (W1 :::W,)T N (0;1), which proves the result. O

Theorem[7.3.% provides an explicit expression for the the covariance matrix of the weights
of V,-valued random variables. Consequently, generating realizations of such random functions
can easily be done by simulating a zero-mean Gaussian vector of weights with covariance matrix
given in Equation (7.37) and then building the weighted sum Equation ({7.3). More generally,
the statistical properties of such elds are entirely speci ed by those of its random weights.

Following Equation ([7.37), note that the vector

X = c¥?z

is a zero-mean Gaussian vector with covariance matrix 2(S). It can therefore be seen as a
S-stationary stochastic graph signal with spectral density 2, on a n-graph G for which S can
be a shift operator. This means in particular that the two vertices i;j of Gsuch thati 6 j should
be adjacent wheneverS; =[C '“?RC !72]; 6 0. The results and algorithms presented in the
rst two parts of this work can therefore be applied to X seen as a graph signal. For instance
the simulation algorithm of Section [3.7 can be used to generate realizations of and therefore
ofZ = C ¥2x.

Of particular interest is the case where the matrix S is sparse, as then the graph ltering al-
gorithms become computationally e cient. In the next chapter, a particular family of subspaces
V, of L?(M ) yielding sparse shift operatorsS is presented: the subspaces arising from the nite
element method. Convergence results of the discretization of a GeGF onto such subspaces are
derived.

7.4 Discussion

7.4.1 Comparison with the Karhunen Loeve expansion

In Section[7.2.] we provided a link between our construction of GeGFs and Karhunen Loéve
expansions. The latter are classically used to derive numerical approximations of a Gaussian
eld by truncating at a given order the expansion in Equation (. The main drawback of this
approach is the determination of the eigenfunctions (and eigenvalues) of the covariance operator
de ning the expansion.

For some simple domains, the analytical expression of the eigenfunctions is known, and the
Karhunen Loéve expansion becomes an e cient modeling tool for isotropic elds de ned on
them (Solin and Sarkké, 2014). In the general case however, the determination of approxima-
tion eigenfunctions can easily require heavy computations: the integral (eigenvalue) problem of
Equations (7.14) and (7.15) is indeed discretized, and the resulting matrix eigenvalue problem
is solved by diagonalization (Huang et al.| 2001).

On the other hand, with our description of GeGFs, no problem-speci c diagonalization is ac-
tually needed. Indeed, the weights of the (Ritz Galerkin) discretization of any (isotropic) GeGF
are given by Theorem[7.3.5 and can be leveraged using the graph signal processing techniques
presented in the early chapters of this work. Moreover, the extension to more complex domains
(i.e. arbitrary smooth submanifolds of RY) and to elds with local anisotropies is straightfor-
ward using our approach: it only a ects the de nition of the entries of the mass and sti ness
matrices in Theorem[7.3.5. Doing the same with Karhunen Loéve expansions would suppose
rst to de ne the covariance operator, which is far from trivial for these problems.
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7.4.2 Accounting for local anisotropies

We assume for this subsection thatB denotes a compact connected domain oRY and that
d 2 f2;3g. The goal of this section is to highlight how our characterization of GeGFs on
Riemannian manifolds relates to a particular class of non-stationary Gaussian random elds on
B.

Namely, we call Gaussian random eld with local anisotropieﬁ (GRFLA) on B any non-
stationary Gaussian random eld Z de ned on B such that its covariance function satis es

q__
802B; CoviZ(p):iZ(P+ M =~ CokA(PhK)=Co hTAMTAM@N ; (7.38)

where A (p) 2 M ¢(R) is an invertible matrix and C, is an isotropic covariance function. Hence,
Z corresponds to a random eld that can be made locally isotropic around each poinp 2 B by

the linear change of variableh ! h®= A(p)h. In particular, the matrix A (p)T A(p) is called

anisotropy matrix and is symmetric positive de nite.

The anisotropy matrices de ning a GRFLA actually have a geometric interpretation. Indeed,
for d 2 f 2; 3g, the anisotropy matrices can be written as the composition of a rotation matrix,
a diagonal matrix and the inverse of rotation matrix (cf. Appendix . Around each point
of the domain, the covariance ofZ then acts like the covariance of a stationary eld with
geometric anisotropy de ned by these matrices. Hence, working with GRFLA allows to handle
a large spectrum of non-stationary random elds, as the local behavior of the resulting elds
is parametrized by interpretable geometric parameters, namely a rotation and scalings along
principal coordinate axes.

Following the results of Section[7.2.2, building a GeGF orB that acts like a GRFLA can be
done by endowingB with a Riemannian metric. Then if a eld of local anisotropy parameters
(namely rotation angles ; 1; 2; 3 and ranges 1; »; 3 for the scalings) are de ned across a
domain B, we can endowB with the metric de ned by

(V Diag 1= 1(p)? 1= 2(p)? V| ifd=2
G(p) = (P) AR O , ! ;
\Y 1(p); 2(p); 3(D)D|ag 1= l(p) 1= Z(p) V= S(p) Vz(p); 2(p): 3(p) ifd=3

(7.39)

whereV denotes a two(or-three)-dimensional rotation matrix (cf. Appendix . Then our
construction of GeGFs using the Laplace-Beltrami operator associated with this metric will yield
a random eld on B which respects the prescribed local anisotropies.

The advantage of this method is that it allows to easily incorporate into the model of a
non-stationary random eld information about its local behavior, as described geometrically by
the anisotropy parameters. In the remainder of this subsection, we draw parallels between this
approach and other approaches aiming at modeling non-stationary random elds. A complete
review of such models can be found in (Fouedjio, 2017).

Space deformation

Within the space deformation approach, a non-stationary eld Z de ned on B is modeled as
8p2B; Z(p)=Y((P) ; (7.40)

where is a deterministic non-linear smooth bijective function de ned over B and Y is an
isotropic random eld on ( B) which covariance function is denoted byC. The covariance
function of Z then satis es

8p1;p22 B;  Cov[Z(p1);Z(p2)l= C(k( p1) ( p2)k2) (7.41)

A rst-order Taylor approximation of Equation (7[41)]allows to retrieve Equation (7.38)|where
A (p) is set to be the Jacobian matrix of at p. Hence,Z is a GRFLA.

In practice, problems involving Z are transposed to the isotropic eld Y by determining the
transformation  from observations of Z, which can be done using a multi-dimensional scaling
algorithm (Kruskal, 1964). This approach is detailed in (Sampson and Guttorp, 1992).

8This notion corresponds, in the zero-mean case, to the notion of locally stationary eld introduced by (Math-
eron, [1971)).
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Following the results of Sectiond 6.p andl 7.2]2, the random elds de ned by Equation[(7.40)
can be directly interpreted as instances of one of our GeGFs, de ned oB equipped with the
Riemannian metric de ned from the Jacobian matrix of  (cf. Equation (). In a context
where the anisotropy parameters are known, using the formalism of GeRFs on Riemannian
manifolds rather than the space deformation representation of Equation) allows to actually
work with Z without having to specify the deformation transformation , that actually may not
exis{’] Indeed, we simply set the metric onB using Equation (7.39) and then use Theoren 7.3]5
to characterize (numerical approximations) of the resulting GeGF.

Convolution model

Within the convolution approach (Higdon et al.| 1999), a non-stationary eld Z de ned on B
is modeled at each pointp 2 B as the result of a (stochastic) convolution onRY of a so-called
kernel function g, with a Gaussian white noiseW:
z
8p2B; Z(p)= G (X)W (dx) (7.42)
B

Note that the non-stationarity of Z is a consequence of the fact that we allow the kernel functions
fopOpop to vary with p 2 B.

In the case where a eld of anisotropy parameters is de ned onB, [Paciorek and Schervish
(2006) proposed to setq, as the density of a multivariate Gaussian distribution centered at p
and with covariance matrix G(p), as given by Equation ). This yields a closed-form for the
covariance function of the resulting eld Z:

1
d=2"" detA (p1; p2)

Cov[Z(p1);Z(p2)] = e (2 PTA(LP) (2 P, pp 2B (7.43)

where
G(p1) + G(p2)
2

Hence, Z can be seen as GRFLA if we consider that, for anyp 2 B, if we take h ! 0 then
detA(p;p + h) can be considered as constant. In particular,Z then corresponds to a non-
stationary Gaussian covariance function. Generalizations of Equation[(7.43) have been proposed
for Matérn and Cauchy covariance functions (Stein/ 2005). They yield the same forms of covari-
ance function as in Equation {7.43), except that the Gaussian covariance function is replaced by
the appropriate one.

Contrary to the space deformation approach, taking eld of anisotropies into account is done
readily when setting the kernel functions through f G(p)gp2g in Equation (. However,
when considering the expression of the resulting covariance function, we see that the covariance
between two points depends only what is happening at these two points speci cally. Indeed,
the covariance betweenZ(p;) and Z(p,) in Equation (f.43) can be seen as the covariance,
betweenp; 2 B and p, 2 B, of a random function on B with (global) geometric anisotropy
de ned by the averaged anisotropy matrix A (p1;b2). Hence, the structure of the anisotropy
eld between p; and p; is not taken into account in Equation (.

This property is not shared by the space deformation approach, which in this sense is more
exible. Indeed, the deformation process in Equation (, makes it so that the covariance
between any two points of the domainB depends on the overall structure of the anisotropy eld.
This is due to the fact that this structure is actually de ned by the function

Hence, our GeGFs on Riemannian manifolds allow to take the best of the two approaches
presented in this discussion. They ally the ease of taking into account elds of local anisotropies
(of the convolution model) to the de nition of covariance functions that assimilate them as a
whole (as space deformation models do). In summary, the GeGF approach allows to easily
take into account local anisotropies in a global model of covariance. However, we lose the
closed-form expression of the covariance model, which can only be computed numerically using
Theorem[7.3.5.

At least if we consider transformations from RY to RY.... However, Perrin and Meiring (2003) 5howed that
a non-stationary eld (with moments at least of order 2) dened on RY can always be seen as a stationary eld
de ned R24, which points towards considering deformations into space with higher dimensions.

A (p1;p2) =
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7.4.3 Link to stochastic partial di erential equation approach

In this subsection, we show how the class of GeGFs we introduced relates to the stochastic partial
di erential equation (SPDE) approach introduced by Lindgren et al. |(2011).

Within the SPDE approach, stationary Gaussian random elds Z on RY with a Matérn
covariance function, are characterized as the stationary solutions of the SPDE de ned irRY by

(2 ) 22= W (7.44)

where > 0, >d=2, > 0, (2 ) 72 is the pseudo-di erential operator with symbol
function p( )= 2+ k k? (cf. Equation () and W is a Gaussian white noise|(Whittle, 1954).
Hence, Equation ) can actually be seen as a particular case of the more general set of SPDEs
de ned as

LpZ =W ; (7.45)

where p is a strictly positive radial function of RY, i.e. for somepy : R+ ! R,,
8 2R% p()=po(k k) ;

and L, is the pseudo-di erential operator of RY with symbol function p. In particular, the
equality is here understood in the second-order sense, meaning tha is seen as a generalized
random eld and both sides have the same covariance functional.

The class of SPDEs de ned by Equation ) was extensively studied by| (Carrizo Vergara
et al., 2018), who derived conditions on the symbol functionp for the existence (and uniqueness)
of stationary solutions. Precisely, they show that existence and uniqueness of a stationary
solutions are guaranteed ifpy is a continuous non-negative function satisfying the following
conditions:

po is polynomially upper-bounded,
po is lower-bounded by the inverse of a strictly positive polynomial,
9N > 0; RRdjpo(k! k?)j 2(1+ k! k?) Nd' < 1.
They show that the solution is the obtained as the generalized random eldZ of R? de ned by
Z=1L1pW

where L ,-, is the pseudo-di erential operator with symbol function 1=p (Carrizo Vergara et al.,
2018, Theorem 1 & Remark 2). In particular, Z is de ned as in Remark.

Following Remark [7.2.2, we conclude that the class of GeGFs we have been working with
includes the solutions of Equation [7.45) (when transposed to the manifold) and therefore the
solutions of the SPDE in|Lindgren et al) (2011), which are retrieved by taking

Po(k k2) = }( 2+ k k¥)= 2

In particular one may notice that the expressions of the covariance matrix of the weights of the
nite element approximation of Matérn elds proposed by Lindgren et al. |(2011) are retrieved

by setting = 1=p in Theorem[7.3.5.

Conclusion

Generalized random elds on Riemannian manifolds were introduced as a tool allowing to model
Gaussian elds on complex spatial domains and with local anisotropies. They can be seen as the
transposition of isotropic stationary random elds of RY to compact Riemannian manifolds. They
were de ned using a general approach based on the properties of the Laplace-Beltrami operator
associated with the Riemannian manifold: this operator actually takes on the transposition
process mentioned above given that it accounts for both the geometry of the manifold and
the eventual presence of anisotropies (through the Riemannian metric used to de ne it). The
approach presented in this section can therefore be applied on any compact Riemannian manifold
to de ne non-stationary eld from the expression of a (radial) spectral density.
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The discretization of these generalized random elds was then tackled. Given a set of deter-
ministic basis functions de ned on the domain, we looked for approximations that would be
written as a weighted sum of the basis functions. We derived a theorem that entirely charac-
terizes the random weights of this linear combination, thus providing a numerical model for the
generalized random elds.

In the next section, we apply this decomposition theorem to the basis functions obtained
from the nite element method and derive a convergence result for the approximation.
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Résumé

Dans ce chapitre, nous proposons de discrétiser les champs gaussiens généralisés introduits
au chapitre précédent a l'aide de la méthode des éléments nis, en nous basant sur les résultats
d'approximation de Ritz Galrkin déja obtenus.

Nous commencons par introduire la méthode des éléments nis et a en présenter des exemples
de mise en +uvre. Puis nous appliquons cette méthode a la discrétisation de champs gaussiens
généralisés, en prenant soin de détailler le probléeme des conditions limites. Nous présentons
également une analyse d'erreur de l'approximation obtenue, débouchant sur un résultat de con-
vergence de l'approximation vers le champ lorsque la taille de maillage se réduit. Enn, nous
donnons un exemple complet de construction de cette approximation a n de mettre en évidence
l'intérét de travailler avec des éléments nis.

Introduction

The aim of this chapter is to build from the results of Theorem([7.3.5, and provide an example of
construction of a discretization of a generalized random eld de ned on a Riemannian manifold.
The set of basis functions used to de ne the approximation are derived from the nite element
method, and we start by recalling its principle. Convergence results of the nite element ap-
proximation are then exposed. Finally, the full construction of this approximation is carried out
on a simple example.

8.1 Introduction to the nite element method

In this section, we recall the principle of the nite element method and the mathematical objects
it involves. We refer the reader to (Brenner and Scoti, 2007| Raviart et al., 1998} Strang and
Fix| 1973) for a complete review of the method and its main convergence properties.

8.1.1 Mathematical construction of nite elements
De nition of a nite element

Let K RY be a compact and connected set, with a non-empty interior. LetX = fx(gN, be
a set of N points of K: x() 2 K. Finally, let P be a nite-dimensional vector space of functions
mapping K to R. The triplet (K;X;P ) is called alLagrange nite element if 8 2 RY, there
exists a unique elementp 2 P such that 8j 2 [L;N], p(x()) = ;. In this case, we say that
the set X is P-unisolvent. Hence, all elements of are uniquely de ned by the values they take
over the points of K constituting X.
From now on (K; X; P ) denotes a Lagrange nite element. Consider then the familyf p() gl

of functions of P de ned by:

8i 2 [LLN]; 8 2[LNT pP(xW)=

The functions fp() g\, are calledshape functionsof the nite element. They de ne a basis of
the vector spaceP as any elementp 2 P can be uniquely written as

X o
p= px®p®; p2P
i=1
More generally, consider the operator  that associates to anyv : K ! R the element of P
de ned by

X
kv= v(xM)ph2p (8.1)
i=1
and called P-interpolator associated with the nite element (K;X;P ). In particular, gV is
called P-interpolate of v. Vv is indeed the unique element ofP that interpolates v over the
set of points X ..
Starting from the de nition of a single Lagrange nite element, the next proposition is used
to build a whole family of nite elements.



8.1. Introduction to the nite element method 169

Proposition 8.1.1. Let (K;X;P ) be a Lagrange nite element.
Then for any bijective function F : K ! 1 = F(K) RY, the triplet (®; ; ) de ned by

R=F(K);, R=FX)=fFxM)gL,; P=p F '=fp F *:p2Pg (8.2)

is also a Lagrange nite element.
In particular, (K;X;P ) and (K; ®; B) are said to be equivalent. If besidesF is an ane
function, then (K;X;P ) and (1; ®; B) are called a ne-equivalent.

Proof. By de nition, ¥ is a setofN = Card X points of © and B is a vector space of functions
mapping R to R which has the same dimension a®. We now show that ® is B-unisolvent.
Let 2 RY and assume that there existspy; b, 2 B such that 8j 2 [1;N], pu(F (x())) =

b(F(x())) = ;. By denition of B, there exists pi;p, 2 P suchpy = p F ! and
P, = po F 1 Hence 8 2 [L;N], pi(x1)) = p(x0)) =, and so, by given that X is
P-unisolvent, p; = py. This then gives, p1 = p,, ans so,¥® is P-unisolvent.

Therefore, (R; ®; P) de nes a Lagrange nite element. O

Finite elements de ned from simplices

We now restrict ourselves to the case where the compact sé is a d-simplex, which we denote
T. Namely, T is the convex hull of (d+1) pomtsfa(')gd+1 of RY such that there is no hyperplane
of RY containing all of them. T is a polyhedron and particular, ford = 2, T is a triangle and for
d=3, T is a tetrahedron.

It can be shown that, given that the points fa)g®™*! of R? do not lie in a single hyperplane
of RY, the matrix A 2 M 441 (R) de ned by

0 1 0 1
a(ll) a(ld+1)
a® | ::: | ald+D) Do :
A= = @ (d+1) (8.3)
ay
1 ‘ R ‘ 1 1 1

P + +
B invertible. Indeed, 8y 2 R%1, Ay = 0) = 1 ya® = 0 and d > yk = 0, which gives

4 w(@® al@D)= 0 and so otherwise To any pointx 2 RY we can therefore associate a

set of (d + 1) coe cients gathered in a vector b(x) = (b (x);:::;bg+1 (X))T 2 R de ned as
the solution of the system 0 1
X
Ab(x)= @ —A (8.4)
1
These coe cients are called barycentric coordinates of x with respect to T and can be seen as
the unique set of coe cients by (x);:::;by+1 (X) 2 R such that
1 _ gq—l
x= hx)a®; with b(x)=1; x2RY : (8.5)
i=1 i=1

In particular, 8i 2 [1;d+ 1], the barycentric coordinates ofa(!) are given by thei-th canonical
basis vector ofR%*1: b (a)= ,1 ij d+1.
The barycentric coordinates b of a simplex T provide a characterization of the points it
contains:
T=fx2RY:8i 2 [1;d+1]; b(x) 2 [0;1]g
%1 %1 )
= ga’: c¢=1and8i2[Ld+1]; ¢ 2 [0;1]
i=1 i=1
In particular, Figure 8.I|provides a graphical interpretation of the barycentric coordinates of a
triangle (i.e. a 2-simplex).

(8.6)
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Figure 8.1: lllustration of the barycentric coordinates of a triangle. The i-th barycentric
coordinate iy of a point lying inside the triangle is equal to the ratio between the corresponding
colored area and the total area of the triangle.

For1 i d+1 and ad-simplex T with barycentric coordinates b, the subsetU; T
de ned by
U=fx2T: k(x)=0g (8.7)

is called aface of T. In particular, U; is one of the faces of the polyhedron oRY de ned by T.
Note also that, following Equation (B.6), U; is actually a (d  1)-simplex de ned by the points
fa""gkz[l;dﬂ] nfig USing the characterization of simplices given by Equations ) and6).
The barycentric coordinates with respect to a faceU; T of a point x 2 U; are therefore equal
to its barycentric coordinates with respect to T, where thei-th barycentric coordinate (which is
zero) is omitted.

For m O, let P, be the set of all polynomial functions fromRY to R with degree at most
m. Hence, any elementp 2 P, can be written as

X
p(x) = ax; x2R?
k2 Nd;jkj m

. P
where x¥ := dezl x}(‘ , jKj = qul jkjj and the coe cients ¢, 2 R are indexed by the index
vectorsk 2 N9 jkj m. In particular, Py is a vector space of dimension
!

o _d+m _ (d+ m)!
N = dim(Pm) = e

Note that we will also denote the restrictions of Py, to subsets ofRY with non-empty interior by
Pm.

Let then X, be the set of points of ad-simplex T de ned from their barycentric coordinates
b by

Xm= x2RY: 8 2[1,d+1]; B(x)2 O;%;:::;mTl;l ; (8.8)
and for the particular case wherem =0, take,
1
_ d. ; . . _
Xo= x2R%: 8 2[1,d+1]; B(x)= 9+ 1 (8.9)

Note that X, is therefore composed oN = dim(P,) points. Indeed, for anyx 2 X, can be
uniquely idegti ed by the vector b%x) = m(by(x) be(x))T which satis es bqx) 2 N9 and
ibA(x)j = m jd:1 B(x)= m@ by (x)) m. Henceb{(x) is the multi-index of a monomial
in Py, which proves the statement.

Consequently, using an extension of Lagrange interpolation to the multivariate case (Saniee,
2008), we can deduce that the polynomial ofP,, interpolating a function v : T 7! R over the
points of X, is uniquely de ned. Hence, X, is Py-unisolvent and the triplet (T;Xm;Pm)
de nes a Lagrange nite element called d-simplex of type(m).



8.1. Introduction to the nite element method 171

Figure 8.2: lllustration of the standard d-simplices ford =2 (left) and d = 3 (right).

Remark 8.1.1. If we restrict the functions of P, on one of the facedJ; of T, then X, \ U; is
Pmju; -unisolvent, meaning that the values a functionp 2 Py, takes at the points of X, that lie
on a faceU; uniquely de ne the values p takes on the whole face. This is a direct consequence
of the fact that X, \ U; actually de nes the interpolating set (as de ned in Equation ()

of the (d 1)-simplex of type (m) associated with the faceU; .

A very useful property of simplices is that if T and P denote two d-simplices, then their
associatedd-simplices of type(m) are equivalent nite elements. Indeed, the applicationF that
maps any point x 2 T with barycentric coordinates (with respect to T) b(x) 2 R%! to the
point of ¥ = F(x) 2 P with barycentric coordinates (with respect to P) B(%) = b(x) 2 Rd*!
is a bijective transform sendingT to b. Following Proposition , it is then straightforward
to check that the Lagrange nite element de ned by Equation ( actually corresponds to the
d-simplex of type (m) built from P.

In particular, following the de nition of barycentric coordinates as solution of the linear
system in Equation ), the pointsx 2 T and b = F(x) 2 b satisfy

0 1 0 1

@%A = AB(h) = Ab(x)= A l@XTA ; (8.10)

where the matricesA and A are given by Equation ) using the vertices de ning the simplices
T and P. This gives the relation

b=F(X)=Mx +c ;

whereM 2 M 4(R) is the matrix containing the d rst rows and columns of A landc2 R
is the vector containing the d rst entries of the last column of A 1 Hence, thed-simplices
of type (m) associated withT and P are in fact a ne-equivalent.

In conclusion, all d-simplices of type(m) are in bijection with one another, through an a ne
transform. In practice, they are all de ned from a single referenced-simplex of type (m) which
is now de ned.

Construction of the standard nite element

Let To be the d-simplex de ned from the following points of RY: agl) =(1;0;:::;0), agz) =

©0;1,0;:::;0), ..., af)d) =(0;:::;0;1) and aédﬂ) =(0;0;:::;0). To is called the standard d-
simplex (cf. Figure[8.3) .
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In particular, the barycentric coordinates b° of a standard d-simplex satisfy for any x 2 RY
the relation A°0°(x) =(xT j1)T where
0 1

l4 | Og
A= @
171

Equivalently, the barycentric coordinates with respect to Ty are given by

xd
8x 2 RY; BPx)=x 8i2[1d] and B, (x)=1 Xj (8.11)
i=1

Hence, the rst d barycentric coordinates of a pointx 2 RY with respect to Ty correspond to its
actual Cartesian coordinates.
The d-simplex of type (m) de ned from Ty is called the standard d-simplex of type(m) and is
denoted (To; X 3 ; Pm). In particular, following Equations (8.8] and (8.11), we have (form 1)
8 8 9
0 g S 8i2nd; x 2 0t;im i =
Xm=_ X2R%: g L - )
. 1 j=1X1'2 O;H;:::;—;l ,
and we denotep{’;i 2 [1; Card X 2] the shape functions of(To; X %; Pp).
Any d-simplex of type (m) can be deduced from(To; X 2 ; P ) using their a ne equivalence.
Using Equation ) and the particular form of A?, the (bijective) ane map Fr that sends
Tp to a given d-simplex T (while conserving its barycentric coordinates) is given by

Frioxo2To7! x=F(xo)= al®™) + Mx g2 T ; (8.12)
whereM 2 M 4(R) is the (invertible) matrix de ned by
0 1
M = % a® @) || gl fd+) § : (8.13)

The inverse of F, which mapsT to Ty is therefore given by
Frlx2T 7 xo=Fr(x)=M *x al®b)2T1, : (8.14)

In particular, note that given that Fr maintains the barycentric coordinates and following Equa-
tion (B.11), F; * simply corresponds to the function that mapsx 2 T to its rst d barycentric
coordinates (with respect to T). These transformations are illustrated in Figure .
Any d-simplex of type (m) (T;Xm;Pm) can then be retrieved from(To; X 2 ; Pry) through
n _ 0
T=Fr(To); Xm=Fr(X%); Pmn=span p@=pl" F ':i2[1;CardXn] ; (8.15)

where pg');i 2 [1; Card X,,] denote the shape functions of(To; X2 ;Pp), i.e. the polynomial
of Py, satisfying which is 1 at the i-th point of X2 and 0 at any other point of X2. We can
therefore restrict ourselves to the study of the standardd-simplex of type (m).

In the particular case wherem 2, we now derive the expression of the shape functions of
(To; X8 Pm). First, we introduce the following notations:

1
NN X ald= 1 g
© Td+1 0 d+1TC
iy~ 1 ). .
ag"):é(a8’+a8)); 1 i<j d+1 ;
(i) qd+1

where once againfa,’gZ; denotes the(d+ 1) points whose convex hull de nes thed-simplex
To, and given by .
8i2[1;d+1]; 8 2[Ld; [af’} = 4
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Figure 8.3: lllustration of the a ne transformation from a general 2-simplex T to the standard
2-simplex To. by;bp; b; denote the barycentric coordinate functions ofT.

Figure 8.4: lllustration of the possible interpolation points from a general 2-simplex T (left)
and for the standard 2-simplex Tq (right).
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Interpolating points X 2 Shape functions Number
m = fag’g Py (x) =1 1
: (1) = v
m = fal’g Po”(x) = Xip d+1
o g i dn where xgs1 =1 4 %
()= xi@x 1)
m=2 | fal’o i ¢ [f a0 % ig an pg”(x)=4xixip (682,
where xg+; =1 id:l Xj

Table 8.1: Interpolating points X % and associated shape functions for the standard-simplex
oftypemwithd land0 m 2

Then, for m 2, the points in X2 are taken from faéo)g [f ag)gl i a1 [f agj )gl i d+l-

These interpolation points are illustrated in Figure 8.4 for d = 2.
Table then gives the expression of the points composing . and the corresponding shape
functions of To for m 3. We denote by p(()) the shape function associated with the point

al)2x9.

Remark 8.1.2. As we may see in the subsequent sections of this chapter, the nite element
method relies on the computation of integrals de ned on simplices. The relations in Equa-
tion ( are then used to express integrals over arbitraryd-simplices as integrals on the
standard d-simplex, through a change of variable (cf. Theorenj A.1P).
Indeed, if' : T! R is a measurable function on ad-simplex T, then its integral over T
can be written as an integral over the standardd-simplex Ty as
Z z

"(x)dx =M
T To

F(xo)dxo

where jM j is the determinant of the matrix M de ned in Equation (8.13). In particular,
this determinant actually corresponds to twice the surface (resp.6 times the volume) of the
triangle (resp. tetrahedron) T whend =2 (resp. d = 3).

8.1.2 Finite element method

We rst assume that M RY is a compact polyhedral set, i.e.M is a compact set formed by a
nite union of polyhedrons of RY. A triangulation T, of M is a nite decomposition of M

[
M = T
T2Th
such that:
Each elementT 2 T}, is a d-simplex.
Two distinct simplices of T,, have disjoint interiors.

Any face of a simplexT; 2 Ty, is either the face of a distinct simplexT, 2 Ty, or is part of
the boundary of M .

In particular, note that the intersection of two distinct simplices of T, is either empty or it is a
common face or a common vertex. The inde is called the size of the triangulation and denotes
the largest diameter ht of an elementT 2 Ty:

h=max hr; where hy = sup d(pi;p2)
T2Th P1;p22T

For a d-simplex T, let 1 be the radius of the largest ball of RY that can be contained in
T, and let ht be the diameter of T. A family of triangulations fTgn2n, whereH ]0;+1 [, is
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called shape regularif there exists a constantC > O such that 8h 2 H, 8T 2 T,, 1 Chy.
Besides,fTrgn2n is called quasi-uniform if there exists a constantC°> 0 such that 8h 2 H,
8T 2Th, ht Ch.

Let m 0. We associate to eachl 2 Ty, a Lagrange nite element (T; X ; Pm) which is ad-
simplex of type (m). Consider then the setX;, M de ned as the union of all the interpolating
sets X, corresponding to the nite elements of the triangulation Ty:

[

(T:X'miPm)
T2Th

The elements ofXy are points of M called nodes of the triangulation T,.

Note that if we consider two of such nite elements(T; X, ; Pm) and (b;)bm ; Pm) such that
T and P have a common faceU, then the interpolating points of X,, and ¥, that lie in U
coincide, i.e. X\ U= )bm \ U. Indeed, this is a direct consequence of the de nition ofX ,, and
., (cf. Equation () and of the fact that the barycentric coordinates of a point of U are the
same whether they are considered with respect td or b. Using then the fact that X, \ U and
®m\ U are Pmju-unisolvent, we deduce that the functions ofPy, dened on T or P coincide

along any common facel = T\ P as long as they coincides on the pointX,, \ U = ®m\ U.
Let then ' be the function de ned for any square-integrable function' : M! R by

8T 2Ty, 8x2T; h(xX)= 1" (xX) ;

where 1 is the Py -interpolator associated with the nite element (T;Xm;Pm), as de ned in
Equation (. h is therefore well-de ned (including along the faces of the simplices of},) and
is a continuous function of M . Besides, on each simpleX 2 T,, with associated nite element
(T; Xm;Pm), it coincides with the Py, -interpolate of ' .

We now introduce the setV}, of (continuous) functions of M de ned by

Vh=f n' ' 2L%(M)g

Then V, is a vector subspace oL?(M ) of dimension N, = jXuj, and is called nite element
space Indeed, if we denote '
Xn=1txWg | N,

then a basis forV;, is provided by the set of functionsf g1 j N,  Vh Where for eachj 2
[1;Ny], the function ; is de ned by the relation:

8k 2 [LNp];  j(xM)= (8.16)

Hence we have
Vi =spanff o1 ; n,9 (8.17)

where | is the unique function of Vi, that is 1 at the node x) 2 X}, and 0 at any other node
of the triangulation. In particular,

Xn _
8v2Vh v= v(xW)
j=1

Note that the basis functions f ;g; ; ~, have a limited support: indeed if x(4) 2 T then
coincides with the shape function associated with the interpolating pointx () of T (cf. for
instance Table), and otherwise ; is zero overT. Hence the support of ; is limited to the
simplices that contain x ).

8.1.3 Triangulation of non-polyhedral sets

In this section, we no longer assume thaM is a compact polyhedral set ofRY. Instead, we now
take M to be a compact subset ofR? with a (piecewise) smooth boundary@ . The idea is to
approximate M by a polyhedral setM 1, such that any vertex on the boundary of M 4, is a point
of @M . Then, M y, is triangulated as described above by a triangulationT,, according to the
boundary conditions prescribed by the problem.
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Figure 8.5: Triangulation of a non-polyhedral setM (delimited by the black boundary). The
approximating polyhedral set M y, is represented in blue and the skinMnM 4, in red.

In the general case whereM has a curved boundary, the setMnM 4, also called skin,
will be non-empty (cf. Figure B.5). To account for the fact that the skin is not part of the
triangulation, small adjustments can be made to extend the de nition of the basis functions to
the skin.

In the Dirichlet case, given that the value of the basis functions is zero on the boundary of
M  and that we also want them to be zero on@/ , we may simply set the value of all basis
functions over the skin to be zero (Strang and Fix, 1973).

Using the same approach for the Neumann case however would result in a discontinuity of the
basis functions across@M ,. Instead, when linear shape functions are considered{ = 1), we
may for instance extend into each piece of the skin the shape functions of the adjacent simplex
(Strang and Fix| 1973). Given that their derivatives are piecewise constant, their values on the
faces of@ , will be propagated on the skin.

Another possible method to account for curved boundaries consists in deforming the simplices
approximating M on its boundary so that their faces that lie on @M , are themselves curved
(Strang and Fix| 1973). Such elements are called isoparametric and are de ned through a
bijective transformation that maps the standard d-simplex Ty to a deformed d-simplex T. In
particular, the faces of the deformed simplexT are polynomial surfaces de ned using the same
shape functions as the one used to build the nite elements.

8.1.4 Triangulation of surfaces of R3

We now consider the case wherél is a smooth surface embedded irR*, and de ned either
parametrically or implicitly. M can therefore be seen ag-submanifold of R3. Triangulating M
consists in de ning a locally planar surfaceM , composed of trianglesT M , that approximate
locally M , in the sense that8p 2 T, dist(p; M) , for some threshold > 0 xed in advance.
Hence, we can write [
Mp = T
T2Th

where T,, denotes the triangulation of M , i.e. the set of triangles de ning M . In particular,
the triangles of T, must satisfy the following requirements:

Given that each triangle T 2 T, can be seen as &-simplex de ned by 3 points fallg; | 3
of R3, we impose that these points lie in the original surfaceM : a() 2 M .

8T;T°2 Ty, either T=T% or T\ T%=;, or T\ T%is a common edge or vertex off and
TO

The notions of shape regular and quasi-uniform are directly extended from the case of the
triangulation of compact sets of RY.
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It can be showed that, for a small enough mesh size, each triangl€ 2 T, can be mapped
to a curved triangle T M , where curved triangles are de ned as the image of the standard
2-simplex through a bijective application that maps itto M . This is a consequence of the local
coordinate mappings de ning the surfaceM . Conversely, in order to avoid double coverings, the
triangulation T, is built so that each point of M can be associated to (at most) and one point
of Ty, meaning that the M and M ,, are in bijection.

Hence functions de ned onM can be seen as de ned orM , and vice versa, using the
bijection between both surfaces. Indeed, ifa: T ! T denotes the mapping that sendsT 2 Ty,
to its curved counterpart T 2 M , then we can associate to any : T ! R the function
v=v a !:T! R. Consequently the function spaceVy on T,, which is de ned in the same
manner as it would be de ned for the triangulation of a compact set ofR?, can be seen as a set
of functions de ned on M .

Finally, note that each triangle T 2 Tp R® in the triangulation of My is actually in
bijection with the standard 2-simplex T, R2. If x®;x®@:x® 2 R3 denote the three vertices
of T and M denotes the matrix de ned by

M= xO xO@ |[x®@ xO® 2Mz(R) ;
then the application F de ned by
Froy2To7' F(y)=x® +My 2T (8.18)
is a bijective map sendingTy, R?to T R3. Its inverse is given by
Frl:x2T7F Yx)=(M™™M) ' MT(x x®)2T1, : (8.19)

In particular, F; ! sends a point of T to its rst two barycentric coordinates as de ned by
Equation (. Hence nite elements can be built on M }, using the fact that all triangles are
a ne-equivalent to the standard 2-simplex.

8.2 Generalized random eld approximation

Circling back to the discretization problem introduced in Section[7.3, nite element spaces are
used to de ne the set of approximating functions V, used to discretize generalized Gaussian
elds (GeGFs) on a compact manifold M . In particular, in the remainder of this chapter, these
sets of function will rather be denoted by V}, where h will correspond to the mesh size of the
triangulation, as the latter is directly linked to the dimension of the set.

8.2.1 Accounting for boundary conditions

The sets of basis functionsv;, arising from nite element spaces are used to approximate GeGFs
de ned on the domain M . The boundary conditions de ning the eigenvalue problems onM
should be accounted for as they are a key building block of the construction of GeGFs. In
particular the set of approximating functions should be chosen as a subset of the domain of
de nition of the Laplacian. For the Dirichlet Laplacian/boundary conditions, this setis H(M)
and for the closed and Neumann case, the set id (M ).

The closed eigenvalue problem arises whe is a manifold without boundary. In particular,
this is the case whenM is a closed surface, i.e. a surface that is topologically compact but
has no boundary as a manifold (ex: sphere, torus). In that case, the se¥, arising from the
triangulation of M can directly be used as a set of approximating functions of the problem given
that no restriction is required and that it is a subset of H*(M ).

The Dirichlet eigenvalue problem can be considered wheM is a compact manifold with
non-empty boundary. This is the case whenM is a topological compact ofRY (with smooth
boundary). Approximation functions re ecting this boundary condition should be used: hence,
the approximation function should also be zero on the boundary oM so that they can lie in
H3(M ). Consequently, the set of approximating function that should be chosen is:

VO=f" 2Vh:'jeu =09 ;
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where V, is the set of basis functions de ned by the triangulation of M . In particular, V is
a vector subspace ofV,, whose dimension is equal to the number of unconstrained nodes of
the triangulation, i.e. the number of nodes that are not on the boundary of M (or rather the
boundary of the the polyhedron formed by the simplices of the triangulation). Indeed,V\° is
spanned by the basis functions oV, (de ned by Equation () associated with these nodes
(and only these nodes). Besidesy," H(M).

As for the Neumann eigenvalue problem, it can be considered for the same types of domains
M as the Dirichlet problem. The set of approximation functions can be taken to be the whole set
of basis functionsV;,, which is a subset ofH*(M ). The boundary conditions will be implicitly
enforced by de nition of the Neumann Laplacian.

8.2.2 Error analysis of the nite element approximation

In this section, a convergence result of the nite element approximation of a GeGF is exposed.
This result is simply an extension of Theorem 2.10 in|(Bolin et al.,[ 2018), and is proved in the
exact same way.

First, we recall some notations. Let(Vh)nh210;1) be a family of nite element spaces indexed
by a mesh sizeh over a domain M RY. In particular, following the previous subsection,
the nite element spaces are de ned so that they account for boundary conditions. We denote
ny, = dim(V,) the number of basis functions associated with the triangulatio{ﬂ of M with mesh
sizeh.

Let m denote the Laplace-Beltrami operator, de ned overL?(M ), and let h denote
its discretization over V, as de ned in Equation (7.26). Letf ;gon andf nh01 « n, be the
eigenvalues of  and hplisted in non-decreasing order.

Let :R. ! Rsuchthat ;,y (j)*<1.

The following assumptions are considered to derive an error bound between a GeGFde ned
by Equation (7.12) and its nite element approximation de ned by Equation (7.36).

Assumption 8.1 (Growth of the eigenvalues of ). There exist three constants > 0,
¢ > 0andC > 0 such that the eigenvalue$ ;g N satisfy

8 2N; ;>0) cj i Cij
Assumption 8.2 (Derivative of ). :R; ! Risderivable onR., and there existCperiy > O
anda 0 such that c
. -0 . Deriv
8x>0; | "(X)j a

Assumption 8.3  (Asymptotic behavior of ). There exists a constant > 0 such that

‘R+! Rsatisesj ()j= O , l.e.
I +1
9C > 0;9R >0 R)j () C

Assumption 8.4 (Dimension of the nite element space) There exist two constantsd > O,
Cres > 0 such that
np =dim(Vh) = Ceesh @

Assumption 8.5 (Mesh size) The mesh sizeh shall satisfy:
& e Voasa
1 R

Cres c

in particular ny, is equal to either the total number of interpolation points (for closed and Neumann boundary
conditions) or the number of interpolation points that do not lie on the boundary of the domain (for Dirichlet
boundary conditions).

h
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whereCres, R, and ¢ are the constants de ned in Assumptiong 8.L[ 8.3 and 8}4.
In particular, following Assumptions 8.1]and[8.4, forallj ny, ; R.

Assumption 8.6 (Eigenvalues and eigenvectors of ). There exist constantsHg 2]0; 1],
C1;C, > 0, and exponentsr;s;q > 0 such that

8h 2]0:Ho[; 8k 2 [1:np]; 0w v i :
1 O 1 1 h 1 H
keh  eckfzny Coh™ {

wheref h01 k n, andfech 01 « n, are the eigenvalues and eigenvectors of the discretized
operator h associated with a mesh sizé.

Following the notations of the previous sections, letZ and Zy, be the random elds de ned
by:

X
Z= (L)W= W (j)g (8.20)
i2N
and
Xh
Zp = (Ln)Wp = Wi ( kh)ech (8.21)
k=1

where fW, gjon is a sequence of independent standard Gaussian variables. The expected ap-
proximation error of Z by Z;, is then de ned by :

' —n i

kz zZ hk|_2(; M) = E kz zZ hk

2. ) (8.22)

and can be bounded using the following result.

Theorem 8.2.1. Let VW, |, m and | satisfying Assumptions[8.] to[8.6.
Assume that the function is such thata < g+ in Assumption and that the growth of
eigenvalues , de ned in Assumption 8.1} satis es

i< min 5;7 : (8.23)
2 gd (q+ a)d

Then, for h > 0 su ciently small, the approximation error of the GeGF Z (de ned by Equa-
tion (8.20)) by its nite element discretization Z, (de ned by Equation (8.21))) is bounded by

KZ Z nkie; vy Mhmnfsidc 1=2irg (8.24)

whereM > 0 is a constant independent ofh.
Proof. See AppendixD.2 for a proof of this theorem. O

In the applications that will be presented in the next chapter, Assumptions[8.] to[8.6 are
satis ed and therefore, Theorem[8.2.] applies. Indeed,

Assumption is a direct consequence of the Weyl asymptotic formula (cf. Theorem 6.5.4),
and will be satis ed as long as a compact connected Riemannian manifold is considered,;

Assumptions[8.2 and 8.8 depend only on a suitable choice of spectral density (or equiva-
lently covariance function) of the random elds with which we work;

Assumptions[8.4 and 8.5 depend only on the size of the triangulation, which is also set by
the user;

Assumption is a consequence of (Strang and Fix, 1973, Theorems 6.1 & 6.2) for ne
enough triangulations.

In particular, we refer the reader to the work of [Bolin et al.|(2018) for an example of possible
values taken by the parameters de ned in these assumptions.
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8.3 Example of construction of a nite element approxi-
mation

We assume in this section that a GeGFZ is built from a Neumann Laplacian on a compact
2-manifold M . We assume that a nite element spaceV,, = spanf ; :j 2 [1;Ny]g has been
built on M from shape functions taken inP;. Hence the functions inV}, are piecewise-linear
and continuous functions of R?.

We seek to built the discretization Zy, of Z described in Theoren{7.3.5. This comes down to
building the matrices S and C de ning the covariance matrix of the weights in Equation ([7.36),
through the relation in Equation (7.37).

Recall rst that each basis function ; is related to the nodex ) of the triangulation through
Equation (. In particular, on each triangle containing x ), j coincides with the basis
function associated withx1); and on the triangles that do not contain x), ; is zero.

map _
Friy2To7! Fr(y)= xUe) + Mqy 2T (8.25)

where
MT = X(Jl) X(jd+1 )ij(Jd) X(jd+1)
is a bijective map that sendsTy to T. Note that F is given by

Frlx2T7F Y (x)=Pr x xU2) 2T, ; (8.26)

where Pt = M ;! if M is a d-submanifold of RY (for instance a polyhedral set of RY) and
Pr =(M{M+) M ] if M is ad-submanifold of R9*? (for instance a surface inR%). Then,
Fr ! maps any point of T to its rst two barycentric coordinates.

Given a point x) 2 X},, we denote

T = T 2T, : x1) is one the vertices ofTg (8.27)

J = ]k - Then the restriction of ; to T is given by
K; )
T = ot Frto

where the expression of the functionpgkj) is given in Table . As for the gradient of ; on T
it is therefore given by
8x2T; r j(x)=Pfcy ;

where 8k 2 [1;d], cx denotes thek-th canonical basis vector ofR? and we set
xd

Cd+1 = k= 14
k=1

As expected, note that the gradient of ; is constant over each triangle of the triangulation.

8.3.1 Construction of the mass matrix

Recall the expression of the elements of the mass matri€ 2 My, (R) in Equation ([.27). It
is a common practice to actually replace the matrixC by a diagonal matrix (also denotedC)
with entries given by

8 2 [LNnl; Cj =hj;liczqm)

This approach, called mass lumping, bears negligible e ects on the outcome of the approximation
while bringing major simpli cations (Chen and Thomee| 1985;|Lindgren et al|,|2011). Indeed,
the matrix C being now diagonal, its (inverse) principal square-root is given with no extra
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computational e ort by taking the (inverse) square-root of its diagonal entries. This property
will be particularly useful when computing the scaled sti ness matrix S.

Mass lumping is applied in the following. The elementsC; are de ned by integrals over
(M ;g). Given that the triangulation of M is a partition of this set, the integral over M can
be split into a sum of integrals over each simplexT 2 T,. On each simplexT, assuming that
there exists a coordinate chart(Ur;xt) containing T, the integral can be expressed using local
coordinates, thus giving

Cj = jdvg = jdVg = i XTl('[) jorT j(XTl(t))dt ;
M T2T, T Tor, X1(T)

where x1(T) RY is the image of T through xt and jg**j denotes the determinant of the
representative matrix of the metric g with respect to the coordinate chart (Ut ; xt) at any point
of T Ur. In particular, given that the simplices T are portions of RY, we can choosext to be
the identity mapping Id and Ut to be a small enough open set oM containing T. This gives
x £ p x £ p
Cj = i(p) jdi(p)dp = i(P) jgi(p)dp

T2Th T T2 @

where Th(') is de ned in Equation ( forany p 2 T, jgi(p) now denotes the determinant of
the representative matrix G(p) of the metric g with respect to the chart (Ut ;Id). In particular,
G(p) can be seen as a matrix de ning local anisotropies ovell through Equation (.
Finally, a change of variabley = F+ (p) in these integrals allows to express them as integrals
over the same domainTg
x £ p q
Cj = i Fr(y) g Fr(y) detde (y)TJr, (Y)dy

oT
(i) o
T2Th

where Jg, denotes the Jacobian matrix ofFr. This gives the following expression o and j:

x 9—— 7
T G PR vy
Cj = detM{M+t  py''(y) jgi Fr(y)dy ; (8.28)

Tor B To
h

where kj 2 [1;d + 1] is the vertex index of the triangulation node x@) in T 2 T,U and the

expression ofpg ) is given in Table .
In practice, the computation of these elements is eased by assuming that the eld of matrices
G(p) is constant across each triangle:

8T 2Th; 8p2T; G(p)= Gt ;

for some (symmetric) positive de nite matrix G1. For ne triangulation and smoothly varying
matrices G (p) this approximation is valid and we usually take Gt to be the value of G(p) at
the center of gravity of T or the mean of the valuesG (p) at the vertices of T. Hence,

X qiTp—Z (k) .
C = detM {Mt detGr  py  (y)dy ;

: T
Tor 0 0

where the remaining integral is actually the volume of thed + 1 standard simplex (cf. (Stein,

1966)). Hence, . N

e ¢
- T .
S = G detM TM 1 detGy : (8.29)

(i)
T2T

8.3.2 Construction of the sti ness matrix
Following Equation ([7.27), the elements of the sti ness matrix R are given by

8i;j 2 [LNn]; Rj =hry iirwm jirem)
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Once again the integral overM is decomposed as a sum of integrals over each simplex of the
triangulation, thus giving
x £ p
Ry = ri(P)TG(P) r j(p) idi(p)dp
ToT, T
where G and jgj are de ned as in the previous section. Using the fact that the gradients have
limited support, we get
X Z p
Rj = r (PTG 'r j(p) idi(p)dp

(i) i)
T2T ONT |

Applying once again the change of variabley = F1(p) nally gives,
X q— 72

P
Rj = detM IM+t  cfPrG(Fr(y)) 'P{cy jdi(Fr(y)dy
Tor hr ) To
or equivalently X q
Rj = detMIM+ ¢ PrHTP{cy (8.30)

To1 (O B

where H 1 is the matrix de ned by
Z
P
Hr = jg(Fr(y)G(Fr(y)) ‘dy ;
To

and the integral of a matrix is understood as the integral of its entries. Note that if we once
gain assume that the matricesG (p) are constant on each triangle the coe cients R; would be
given by L X q - D ] .
Rj = a detM M+t detGr ¢, PG Prcy (8.31)
UFARA IR

For the elementR; to be non-zero, the nodex( 2 X}, and x1) 2 X, must be the vertices
of at least one common simplexT. This means that x() and x ) must form the edge of one
of the triangles (or tetrahedron) of the triangulation. Thus, the number of non-zero entries of
R is equal to the number of simplex edges in the triangulation, thus yielding the fact that the
matrix R will be sparse.

Recall now the concluding remarks of Sectiof 7]3, which pointed out the link between ap-
proximation weights and graph signals. The particular form of Equation (8.31) actually allows
to specify the graph on which the signal lies. Indeed, denote by, the graph whose vertices are
the nodes of the triangulation X, and such thati j wheneverx() and x() form the edge of
one of the simplices of the triangulation. In particular, G, is an undirected simple graph. Then
R is a shift operator of G,. The following proposition even goes a step further.

Proposition 8.3.1. Let G, be the graph de ned from the vertices of the triangulation of a
domain M (as described above) with linear basis function$ gj,[1.n,1- Let assume that each
edge(i;j ) of G, has weightw; given by

wij = hr v i;rwm jicemys 10

Then the stiness matrix R de ned from the basis functions is the graph Laplacian ofG,.

Proof. Note that 8i 8 j vertices of the graph/triangulation, w; =0 andw; = R;. Note
then that the degree d; of the vertex i of G, is given by
X X X q — —
d=w = detM IM+ ¢ PrHTP{cy
i=1 JJ;1| To1 (T
X X q

= detM IM+ ¢ PrHTP{cy
T2Th“)J'2>j<§ni\T
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P
Noting then that = ;,, |1 Cx = O by de nition of the vectors cy and of the indicesk;, we

get
X X 4 T T
wi = detMFMT G PrHTP1 ( c)= Rj

j=1 )
! T2T,

Hence the o -diagonal entries of R are minus the weights ofG, and the diagonal entries ofR
are the degrees of the vertices 0f,. R is therefore the graph Laplacian ofG,.
O

Note that, given that C is taken diagonal, the scaled stiness matrixS = C 72SC 172
is also a shift operator G, and is a sparse matrix. Using graph lItering algorithms for the
simulations, prediction and inference of the approximation weights is therefore expected to yield
good computational and storage performances.

8.3.3 Particular case: constant anisotropy on a 2D grid

In this section, we look into the particular case where:
The domain of study M is a rectangular domain ofRR?.

The coe cients of the metric are constant, meaning that the eld of matrices fG(p)gpaom
is constant overM . We then denote by G its value.

As we may see, we can leverage the redundancy of the entries of the sti ness matrix for storage
and computational gains.

The triangulation M is performed in two steps. First, a regular grid, with steps (I1;12) is
de ned over M. Then each rectangledx dy is divided into two triangles by cutting them
along the same diagonal. We assume here that all rectangles were cut along their top-left to
bottom-right. We call T, this grid triangulation of M .

To each triangle T 2 T, we associate the vertex indicegj1;j2;j3) such that xU3) is the
corner of T and x 1) (resp x{2)) is the vertex of T horizontally (resp. vertically) aligned with
xU3) Then, by de nition of the matrices M 1 we have

0 1

|
8T2T,/; Mt=M = @ IA; 2f 119
2

The matricesM t = M ,and Pt = M | 1= M 1!= P, are therefore independent ofT.
Leveraging the fact that the metric coe cients are constant, the expressions of the coe cients
C; and Rj; are therefore simpli ed to

_1 X b= _ lloP n roy () O. i .
Cj =5 l1l, detG = & detGCard T2T/, :x® 27T ; j2[LNy] (832
T2t )
and 1 X P .
Rj = 3 lil, detG o PG 'PTcy; ij 2[LNn] (8.33)
To1 (T O

Note that we now have 8i;j 2 [1;N],

X
Rij = C-krI Htc K;
To1 (W O
where
1 P— 1pT
H = E']_'z detG PG P
These coe cients are non-zero only ifi = j or i andj form the edge of one of the triangles of

the grid triangulation, i.e. i andj must be adjacent vertices in the triangulation graph. For a
triangulation point x ), denote (i1;i») 2 [1;n1] [1;n2] its grid coordinates. The only possible
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