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Introduction

Context
Geostatistics is the branch of statistics attached to model spatial phenomena through proba-
bilistic models. Such phenomena are generally observed through measurements of their effects
across a spatial domain. Within the geostatistical paradigm, we assume that the spatial phe-
nomenon is described by a random field, that is a function that maps the points of the spatial
domain to random variables. The actual reality of the phenomenon is then considered to be
a particular realization of this random field, and the measurements are seen as evaluations of
the realization at the same locations. The premise is then to use the statistical properties of
the random field, somehow estimated from the measurements, to deduce information about the
underlying phenomenon.

In many cases, one can only assume that a single realization of the phenomenon/random
field is observed. Some assumptions are therefore made so that properties observed on this
single realization can be generalized to describe the statistical properties of the random field.
The most common one is assuming that the random field is Gaussian (Diggle et al., 1998), so
that it is sufficient to only characterize its first two moments:

� its mean function, which corresponds to the expectation of the random field at each point
of the domain;

� its covariance function, which corresponds to the function mapping a pair of locations on
the domain to the covariance of the random field at these points.

Three recurring objectives then occur when dealing with spatial data: the inference of the
parameters characterizing the mean and the covariance of a random field, the simulation of a
random field, and the estimation of a random field from a set of observations. Many methods
designed to perform these tasks require to build a covariance matrix between a given set of
points of the domain (Chilès and Delfiner, 2012; Diggle et al., 1998; Wackernagel, 2013). We
provide some examples. On one hand, the inference of the parameters characterizing a Gaussian
field using a likelihood-based approach involves covariance matrices at the observed locations.
On the other hand, simulations of Gaussian fields on a set of locations of a domain can be
performed using the Cholesky factorization of the covariance matrix at these locations. Finally,
the estimation of a Gaussian field from its partial observation, using a kriging approach, requires
to invert the covariance matrix at the observed locations . Hence it is crucial to be able to
properly define theses covariance matrices and to be able to work with them.

Defining the covariance matrices
The nice particular case of stationary models

To facilitate the construction of the covariance matrices, it is fairly common to consider that the
random field is isotropic and second-order stationary, whenever the data lie in a nice, continuous
“chunk” of space. Within this assumption, which we simply call stationarity, the possible mean
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10 INTRODUCTION

and covariance functions of the random field are simplified. On one hand, the mean function
is constant over the domain. On the other hand, the covariance function is a radial function,
meaning that the covariance between a pair of points will only depend on the (Euclidean) distance
separating them.

In this context, the mean is usually estimated as the mean of the observed values and the
covariance function is estimated from the data points using variogram modeling or likelihood-
based approaches (Diggle et al., 1998; Wackernagel, 2013). Then, computing the covariance
matrices mentioned earlier simply comes down to apply the radial covariance function to the
entries of a distance matrix.

Unfortunately, as one may suspect, stationarity is a strong assumption that cannot be applied
to model any spatial dataset (Fouedjio, 2017). Dealing for instance with data lying in non-
Euclidean spaces, or with data for which the highly regular spatial structure implied by the
stationary assumption does not apply, requires more work.

Modeling the non-stationary covariance

In the non-stationary case, the covariance function can no longer be expressed as a simple
function of the distance between the points, but has an expression that depends on the location
and relative position of the considered pair of points. However, we assume here that some
prior structural information on the behavior of the random field across the domain is available.
Namely, we assume that the random field shows local anisotropies. Then, around each point of
the domain, there is a preferential direction along which the range of highly correlated values is
maximal, whereas it is minimal in the cross-direction(s). In particular, the angles defining the
preferential directions are called anisotropy angles and the size of the ranges are called anisotropy
ranges.

A first challenge is to determine the expression of this covariance function from the observed
data, which is tackled by imposing that the random field can be modeled in a certain way.
Ideally, these models would allow to incorporate the prior structural information as it is directly
linked to the definition of the covariance function.

The usual methods to model the corresponding non-stationary random fields all aim at
deriving an expression of the covariance function for any pairs of points in the domain. A
large review of the methods used to model non-stationary random fields was done by Fouedjio
(2017). We present in the following the three more popular approaches typically encountered in
practice1.

Basis function approach The basis function approach relies on the Karhunen–Loève theorem
(Lindgren, 2012), which states that any Gaussian field on a bounded domain can be decomposed
as a weighted sum of orthogonal (deterministic) functions, called eigenfunctions. In particular,
the weights of the linear combination are independent Gaussian variables with decreasing vari-
ances. The eigenfunctions are solutions of a set of integral equations, called Fredholm equations,
which involve the expression of the covariance function. Conversely, the covariance function can
be expressed as a weighted sum involving these functions (Lindgren, 2012).

Without any particular assumption about the domain, the eigenfunctions are determined by
discretizing and solving the Fredholm equations. In this setting, the actual expression of the
covariance function is replaced by local approximations derived from the data (Huang et al.,
2001). This method assumes in particular that the data is composed of several realizations
of the non-stationary process to model. Solving the discretized problem then amounts to the
diagonalization of a matrix, which itself becomes a real computational bottleneck when its size
(or equivalently the number of data points) increases.

Space deformation A second approach to solve the modeling problem consists in considering
that a non-stationary variable observed across a spatial domain can be turned into a stationary
variable after applying a (non-linear) deformation to the domain. Within this space deformation

1In this work, we only consider non-stationary covariances defined for spatial data. New challenges appear
when dealing with space-time data given that the non-stationarity can result from both anisotropies in the spatial
domain (that can change over time) and the fact that the time coordinate should generally be differentiated from
the space coordinates. We refer the reader to the work of Porcu et al. (2006, 2007), who proposed a method to
build models able to deal with such data.
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approach, the goal is then to characterize the deformation from the observed variable so that
the problem can be reformulated in a stationary framework in the deformed domain (Sampson
and Guttorp, 1992). This approach relies on the idea that the covariance function of the non-
stationary process can be written as the composition of a stationary (isotropic) covariance model
with a deformation function. Perrin and Senoussi (2000); Porcu et al. (2010) derived character-
izations of the covariance functions for which this so-called (isotropic) stationary reducibility is
admissible.

The multi-dimensional scaling algorithm (Kruskal, 1964) is leveraged in this context: this
algorithm associates to each data point a set of coordinates in a new, “deformed” space, so that
data points with similar (resp. dissimilar) values are close to (resp. distant from) each other in
the deformed space. The implementation of this method usually relies on the assumption that the
data set is composed of several realizations of the same random process, although alternatives to
circumvent this assumption have been proposed (Anderes and Stein, 2008; Fouedjio et al., 2015).
Another approach to determine the deformation consists in working with a set of parametrized
deformation functions which are fitted on the data by minimizing an objective function (Anderes
and Stein, 2011; Perrin and Monestiez, 1999). Both approaches reveal to be computationnally
expensive, which limit their applicability for large-scale datasets.

Besides, to the best of our knowledge, these space deformation models do not allow to
easily take into account prior structural information about the non-stationarity, namely local
anisotropy angles and ranges. Indeed, they all seek to directly (but approximately) characterize
the overall deformation while only considering the location (and the value) of the data points.
This is regrettable as these parameters are supposed to be a consequence of the (assumed) defor-
mation process and one could think that including them in the estimation of spatial deformation
would simplify the problem.

Convolution model A third approach to modeling non-stationary data is the convolution
model, introduced by Higdon et al. (1999). The idea is to model the value of the non-stationary
field at a given point of the domain as the result of the (spatial) convolution over the domain of
a deterministic function, called kernel function, with a white noise (i.e. a random process over
the domain whose values at any two distinct points are independent and identically distributed).
Considering different kernel functions to compute the value of the random field at different
locations of the domain then naturally yields a non-stationary field.

In order to derive a closed-form for the covariance function of the resulting field, Paciorek
and Schervish (2006), Pintore and Holmes (2004), Stein (2005) and Porcu et al. (2009) pro-
posed families of kernel functions which are parametrized at each point of the domain by the
local anisotropy parameters. In particular, they represent the anisotropy parameters as positive
definite matrices of the form RD2RT , where R is a rotation matrix defined by the anisotropy
angle(s) and D is the diagonal matrix whose entries are the inverse of the anisotropy ranges.

The covariance between two points is then expressed by averaging the representation matrix
at both points, which ensures in particular that the anisotropy parameters are locally respected.
The downside of this expression may be that only the information of the anisotropy at both
points is taken into account in their covariance, and not the overall structure of the anisotropy,
which in practice might influence the covariance.

Random fields on manifolds

Dealing with non-stationarity is not sufficient. Indeed, spatial data do not always occur on
nicely contiguous domains of Euclidean spaces. The simplest example might be data measured
across our planet, which arise naturally in applications such environmental science, geosciences
and cosmological data analysis (Marinucci and Peccati, 2011). The use of Euclidean distance to
model correlations between points of a random field defined on a sphere then becomes unrealistic.

Defining and working with random fields on a sphere is an extensively studied subject. Mar-
inucci and Peccati (2011) provided a review of the theory surrounding random fields on a sphere.
In order to retrieve a framework similar to Euclidean spaces, most of the effort was attached
to characterize valid covariance functions on the sphere, that would model correlation between
points using the arc length distance between them (Gneiting, 2013; Huang et al., 2011).

Stationary Gaussian random fields on a sphere are usually defined through their expansion
into a basis of known (deterministic) functions called spherical harmonics (Jones, 1963). In
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particular, this expansion can be seen as the counterpart of the expansion arising from the
Karhunen–Loève theorem, but for fields defined on a sphere. This expansion is still being
exploited to derive for instance simulation methods and to characterize the covariance structure
of the resulting fields (Emery and Porcu, 2019; Lang and Schwab, 2015; Lantuéjoul et al., 2019;
Marinucci and Peccati, 2011). Models have also been proposed to deal with both space-time
data (Porcu et al., 2016) and anisotropy (Estrade et al., 2019) on the sphere.

However, the work done for random fields on a sphere hardly generalizes to other spatial
domains, as they heavily rely on the intrinsic properties of the sphere as a surface. What then
can be done if our spatial data lie on an arbitrary (smooth) surface of body? An answer to this
question is provided by the theory of random fields defined on manifolds.

Basically, a manifold is a set that behaves locally like a Euclidean space. This mathematical
object generalizes in particular the notions of surface and arbitrary body lying in a Euclidean
space. Adler and Taylor (2009) provided a review of the theory defining such fields. They mainly
focused on the geometry of their excursion sets, while dealing with brain mapping problems.

Working with covariance matrices: the big n problem
Knowing how to properly define a covariance model suited for a given spatial dataset does not
guarantee that we will be able to actually use it. Indeed, a second drawback arises when trying
to build and then work with covariance matrices: the so-called big n problem. By definition,
the covariance matrix contains n × n covariance values that should be computed and stored,
where n is the number of points of interest. In practice, n may be the number of grid points
on which we desire to compute a simulation, or the number of data points. Hence, n can easily
become very large, and thus, building and storing the covariance matrix quickly becomes a task
requiring heavy computational and storage needs.

In fact, this problem is encountered in both the stationary and the non-stationary frameworks.
Numerous solutions have been proposed in the stationary case (See Sun et al. (2012) for a review).
We can for instance cite the use of compactly supported covariance functions (Gneiting, 2002)
and of covariance tapering (Furrer et al., 2006; Kaufman et al., 2008), which limit the number of
non-zero entries in the covariance matrix. Similarly, imposing that the considered random field is
Markovian ensures that the resulting precision matrix2 has a limited number of non-zero entries
(Rue and Held, 2005). The problems are then reformulated using the precision matrix instead
of the covariance matrix. If some of these solutions are transferable to the non-stationary case
(see for use of compactly supported non-stationary covariance models proposed by Liang and
Marcotte (2016)), they usually come at the price of a restriction on the models we can consider.

The SPDE approach, a starting place
A solution to both the modeling problem and the big n problem introduced above is proposed
by Lindgren et al. (2011), with their so-called stochastic partial differential equation (SPDE)
approach. The SPDE approach builds on a result fromWhittle (1954) which states that Gaussian
random fields Z on Rd with a Matérn covariance function, are the stationary solutions of the
SPDE given by

(κ2 −∆)α/2Z = τW , (1)

where κ > 0, α > d/2, τ > 0, (κ2 −∆)α/2 is a pseudo-differential operator (which can be seen
as a generalization of the Laplacian operator and is defined using the Fourier transform) and W
is a Gaussian white noise. In particular, for α = 2, SPDE (1) rewrites κ2Z −∆Z = τW where
∆ corresponds to the usual Laplacian operator.

In their approach, Lindgren et al. (2011) characterize Matérn fields as solutions of SPDE
(1) rather than using their covariance function. They propose to formulate a solution for this
SPDE using the finite element method: hence, the solution is expressed as a linear combination
of a finite set of (user-defined) interpolation functions defined across the domain, weighted by
correlated Gaussian weights. They actually provide a closed form for the precision matrix of
these weights, in the case where α ∈ N. The precision matrix is then given as a low-degree
matrix polynomial of a sparse matrix. This means in particular that solving the SPDE using
this method actually yields Markovian solutions.

2i.e. the inverse of the covariance matrix
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This approach sparked a lot of interest for several reasons. On one hand, Matérn fields are
widely used in applications of geostatistical models given its ability to fit various degrees of
regularity of the data with the same function by playing with a single parameter (Stein, 2012).
On the other hand, the precision matrix of the weights obtained by the SPDE approach being
sparse, it provides a practical solution to the big n problem when using this flexible covariance
model.

Lindgren et al. (2011) and then Fuglstad et al. (2015) offer to tinker with SPDE (1) in order
to provide a practical answer to the two modeling problems raised above, in the case α = 2. In
particular, their solutions conserve the desirable property that the precision matrix is sparse,
and therefore the computational gains associated with it.

� Regarding non-stationary models. They first propose to work with spatially varying pa-
rameters κ and τ in SPDE (1), which then creates globally non-stationary fields with a
locally isotropic covariance.
A second approach they suggest is inspired by the space deformation model presented ear-
lier, and consists in defining SPDE (1) in the deformed space. Rewriting the SPDE in the
original domain using a change of variable then yields an expression of the SPDE that is
locally parametrized by the Jacobian of the deformation process, or equivalently by local
angles and ranges of anisotropy.

� Regarding models on general spatial domains. Building from the approach of Adler and
Taylor (2009), they propose to define SPDE (1) directly on the general domain by seeing
it as a manifold. In particular, this amounts to replace the Laplacian operator by its gen-
eralization to manifolds, called the Laplace–Beltrami operator (Lee, 2012). The resulting
solution is still what is meant by a Matérn field, and is directly defined on the manifold.

Thesis statement
The starting point of our work is a simple question: can we go a little further with the solutions
proposed by Lindgren et al. (2011) and Fuglstad et al. (2015)? Precisely can we design an
approach

� to model both non-stationary fields from local anisotropy information and fields defined
on manifolds;

� that works with a larger class of covariance functions than Matérn covariance functions;

� and that can be applied to large datasets?

As it turns out, the answer is yes, and was actually suggested by these authors in their papers.
It relies on the notion of Riemannian manifold.

A Riemannian manifold is the association of a manifold with a locally defined metric. This
metric is an application that defines around each point of the manifold a notion of length and
of angles for infinitely small vectors that would be attached to that point. Hence the metric
can be interpreted as an application that locally redefines the geometry of the manifold, and as
such, can be seen as describing a local deformation of the manifold at each one of its points.
Riemannian manifolds then seem particularly adapted to our problem, as the domain (i.e. the
manifold) on which the data lie is defined together with a set of local anisotropies that in turn
can be interpreted as resulting from local deformations3 (i.e. the metric).

To see how the SPDE model extensions proposed by Lindgren et al. (2011) and Fuglstad
et al. (2015) could be generalized, the focus is put not just on the solutions of the SPDE (1)
now defined on the Riemannian manifold, but rather on the general mathematical object that
can formally describe such solutions: generalized random fields. Generalized random fields are
the “random” counterpart of generalized functions (also called distributions), which are widely
used to formulate and derive the properties of solutions of partial derivative equations in the
deterministic case (Gelfand and Shilov, 1964).

Then, the modeling problem is settled as follows. The definition of a class of generalized
random fields on the Riemannian manifold that includes naturally the solutions of SPDE (1)

3namely a rotation and dilatation corresponding to the anisotropy angles and ranges
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is introduced. Using the same principle as the finite element method, their approximation by
a linear combination of predefined deterministic functions is derived, and an expression of the
covariance matrix of the weights, comparable to the one obtained by Lindgren et al. (2011)
in their particular case, is obtained. The fact that these fields are defined on a Riemannian
manifold then ensures the applicability of the method for non-Euclidean domains (through the
specification of the manifold) and for non-stationary fields (through the specification of the
metric).

Remains the computational problem. As it turns out, the expression of the covariance matrix
obtained in the previous step can be leveraged to derive scalable and memory-efficient algorithms
for the simulation, prediction and inference of the corresponding weights. These algorithms rely
on an interpretation of the Gaussian vectors defined from these covariance matrices as stochastic
graph signals, that is random variables indexed by the vertices of a graph. Within this framework,
called graph signal processing, generalizations of classical signal processing notions and tools,
such as the Fourier transform, filtering and translation operators, are leveraged to efficiently
process data indexed on graphs (Shuman et al., 2013).

As the theory (through the model specification) and the practice (through graph signal
processing algorithms) of generalized random fields are laid out, we end with the concrete study
of stationary and non-stationary spatial data. In particular, the simulation, the mapping, the
filtering and the inference of both synthetic and real data are performed to illustrate both the
flexibility and the applicability of the concepts introduced through the work.

Outline and main contributions
The dissertation is composed of two parts, reflecting the two main components of this work.

Part I aims at introducing the graph signal processing framework, as well as the algorithms
that will later be used to study spatial data. In particular, we derive methods aiming at sim-
ulating stochastic graph signals, estimating their value when they are partially observed and
inferring their statistical properties.

We start by setting up the mathematical framework and the main notions necessary to work
with both deterministic and stochastic graph signals (Chapter 1). Following the usual graph
signal processing approach, these notions are defined by drawing a parallel with classical signal
processing, which we highlight throughout the chapter. Of particular interest is the concept of
stationarity for stochastic graph signals, for which we propose a definition.

Then, Chapter 2 focuses on algorithms designed to perform (the equivalent of) filtering oper-
ations on graph signals. These operations play an essential role in the subsequent chapters, and
as such, we lay out an extensive comparison between several approaches. It results in the intro-
duction of the Chebyshev algorithm, which presents the best trade-off between computational
cost and accuracy. This algorithm is actually the key element that ensures the scalability of the
solutions proposed in this work. Applications of this algorithm to some practical problems are
then presented.

Chapter 3 is devoted to the simulation of stationary graph signals. An algorithm based on
Chebyshev filtering is proposed. Similar algorithms were already introduced in the literature
(Hammond et al., 2011; Higham, 2008; Susnjara et al., 2015). However, we provide a study of
the statistical properties of the output of this algorithm and use it to derive actionable criteria to
set up its parameters. Finally, we propose a description of the algorithm in the wider framework
of Krylov subspaces.

Chapter 4 then tackles the estimation of a stationary stochastic graph signal from its partial
and noisy observations. We propose to solve this problem using an approach inspired by kriging
theory. Two cases are treated. The first one can be interpreted as a mapping problem whereas
the second one is similar to a signal extraction problem. In both cases, we lay out practical
algorithms based on Chebyshev filtering. Finally, we give a formulation of these problems in
a wider optimization framework, which can inspire further developments towards their efficient
resolution.

Finally, Chapter 5 aims at introducing an approach to infer the statistical properties of a
stochastic graph signal from its partial and noisy observations. We derive algorithms based on
Chebyshev filtering to answer this problem.

Now that the study of stochastic graph signals and their properties have been introduced,
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Part II aims at deriving the approximation result that allows to reduce the study of generalized
random fields defined on a Riemannian manifold to the study of a stochastic graph signal.

First, a self-sufficient review of the main concepts and results of differential and Riemannian
geometry used in this work is proposed in Chapter 6. In particular, we clarify the rather intuitive
interpretation of Riemannian manifolds as locally deformed spaces.

Chapter 7 aims at actually presenting our solution to the modeling problem described above.
The class of generalized random fields used to extend the results of Lindgren et al. (2011) is
introduced, and the approximation theorem which links them to stochastic graph signals is laid
out. Chapter 8 provides an application of this result when the approximation is performed using
the finite element method, and a convergence result is derived.

Finally, Chapter 9 echoes the initial problem statement and illustrates the application of
the framework derived in this work to both synthetic and real data. In particular, examples of
simulation, mapping, filtering and inference are presented.

Disclaimer
The work presented in this dissertation is interdisciplinary: indeed, we play with notions of graph
theory, classical and graph signal processing, differential and Riemannian geometry, function
approximation and generalized random fields. Consequently, this dissertation was written with
the intention of providing the reader with as much understanding of these subjects as needed to
derive the results that are presented.

Hence, some parts of the dissertation can easily be skipped by more experienced readers.
In Chapter 1, Section 1.1 consists only in basic reminders of graph theory, and Section 1.2
of reminders of classical deterministic and stochastic signal processing. Readers familiar with
graph signal processing can skip Section 1.3. Readers familiar with differential and Riemannian
geometry can skip Chapter 6. Finally, readers familiar with the finite element method can skip
Section 8.1.



Notations

MH Conjugate-Transpose of a matrix M
Cov[·, ·] Covariance between two random variables or covariance matrix between two

random vectors
|M | or detM Determinant of a matrix M
Diag(v) Diagonal matrix whose entries are the entries of the vector v
DCT[·] Discrete cosine transform of a vector
DFT[·] Discrete Fourier transform of a vector
‖ · ‖2 Euclidean norm of a vector
E[·] Expectation of a random variable or vector
F [·] Fourier transform of a signal
GRF Gaussian Random Field
GRFLA Gaussian Random Field with Local Anisotropies
GeRF Generalized Random Field
GFT[·] Graph Fourier transform of a graph signal
1A Indicator function of a set A
[[·, ·]] Interval of all integers between two integers
span {v1, . . . ,vn} Linear span of a set of n ≥ 1 vectors v1, . . . ,vn

P [·] Probability of an event
Mp,q(R) Set of matrices with p rows and q columns, and with real coefficients
Mn(R) Set of square matrices of size n with real coefficients
SGS Stochastic Graph Signal
supp(·) Support of a function
Trace(·) Trace of a matrix
MT Transpose of a matrix M
Var[·] Variance of a random variable or covariance matrix of a vector
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22 1. Deterministic and stochastic graph signal processing

Résumé
Dans ce chapitre, nous introduisons un cadre mathématique minimal permettant d’étudier le

traitement de signaux déterministes et stochastiques définis sur des graphes. Nous commençons
par introduire les principales notions de théorie des graphes et de traitement du signal (au sens
classique du terme) nécessaires à la construction de la théorie entourant le traitement du sig-
nal sur graphe. Nous présentons ensuite cette dernière en suivant la même approche que celle
présente dans la littérature associée.

Introduction
Graphs are structures aiming at representing complex data as a set of objects, called vertices, and
pairwise relationships between them, the edges (Bondy and Murty, 1976). These relationships
usually encode a notion of similarity between the objects they connect. This type of data
structure arises in applications such as social, energy, transportation and neural networks, but
also biology, image processing and many more (Newman, 2010). In practice, two main scenarios
arise:

� either the focus is put on the structure of the graph itself, meaning that the graph is used
to model and study pairwise relationships a predefined set of objects,

� or these relationships are assumed to be known and the focus is put on modeling and
studying variables that are defined on the objects.

Graph signal processing is an emerging field focusing on developing tools to process data
arising from this last scenario (Shuman et al., 2013). These data are therefore modeled as
variables indexed by the vertices of a known graph, and named graph signals. The goal is then
to be able to perform on these graph signals common operations of continuous signal processing,
such as filtering, denoising and completion.

Given that now the data domain is highly irregular, as it consists of a set of discrete vertices
on an arbitrary graph, all these operations had to be redefined in a unified framework suited
for graph data. This framework was built by generalizing classical signal processing notions
and tools, like for instance the Fourier transform and translation operators, to graph signals
(Girault, 2015a; Ortega et al., 2018; Shuman et al., 2013). This everlasting parallel between
classical signal processing and graph signal processing is at the core of this new field.

This first chapter aims at introducing a minimal mathematical framework for deterministic
and stochastic graph signal processing. In the first two sections, the main notions of graph theory
and continuous and discrete signal processing useful to build this framework are introduced.
Then, in the subsequent sections, the graph signal processing framework is introduced following
the same approach as the one used by Shuman et al. (2013), Girault (2015a) and Marques et al.
(2017).

1.1 Mathematical framework for graphs
In this section we review some basic definitions and properties concerning the study of graphs.
We refer the reader to (Newman, 2010, Chapter 6) for a more complete overview of the mathe-
matical framework used in graph theory.

1.1.1 Definitions and notations
A (directed) graph G is a structure amounting to a set of objects and pairwise relationships
between them. Formally it consists in a set of vertices V representing the objects and a set of
edges E ⊆ V × V that represents pairwise relationships as pairs of vertices. A subgraph H of G
is a graph whose vertex set V ′ is a subset of V and whose edge set is a subset of E ∩ (V ′ × V ′).

In this work, only finite graphs, i.e. with a finite number of vertices n, are considered. In
this case, the set vertices V can be identified with the set of integers [[1, n]] and therefore vertices
can be represented as integers i ∈ [[1, n]]. A graph with n vertices will also be called a n-graph.
They can be represented as in Figure 1.1a: each circle corresponds to a vertex and an arrow
from a vertex i to a vertex j is drawn whenever (i, j) ∈ E .
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(a) Directed graph.
(b) Undirected graph.

Figure 1.1: Representation of a directed and an undirected graph.

Figure 1.2: Representation of the neighborhood of order 1 of a vertex (in green) and of a path
(in red). The neighborhood and the path start from vertex 1.

A weighted graph is a graph for which a weight (i.e. a real value) is associated to each one
of its edges. The function W : V × V → R that assigns to each pair of vertices (i, j) its weight
W(i, j) if (i, j) ∈ E and 0 otherwise is called weight function. A weighted graph is therefore
characterized by the triplet (V, E ,W). By convention, graphs with no weights are identified with
weighted graphs for which all edges have a weight equal to 1.

A graph is called undirected (or symmetric) if for any pair of vertices (i, j) ∈ V × V, we
have (i, j) ∈ E ⇒ (j, i) ∈ E , and W(i, j) = W(j, i). In this case, whenever there is an an edge
between two vertices i and j, these vertices are called adjacent (or connected) and denoted i ∼ j.
Undirected graphs can be represented as in Figure 1.1b: each circle corresponds to a vertex and
a straight line between a vertex i and a vertex j is drawn whenever i ∼ j.

A loop is an edge between a vertex and itself. A multi-edge is a set of two or more edges that
connect the same pair of vertices. A graph in which there are neither loops nor multi-edges is
called a simple graph.

A path on an (undirected) graph G from a vertex i0 to a vertex ip is a sequence of p+ 1 ≥ 1
vertices i0, . . . , ip of G such that ∀k ∈ [[0, p− 1]], ik and ik+1 are adjacent. p is called the length
of the path. In particular, paths of length 0 correspond to the vertices of the graph and paths
of length 1 correspond to its edges.

The neighborhood of order k ∈ N of a vertex i is the set of all vertices j such that there
exists a path of length at most k from i to j. It is denoted Nk(i). Any j ∈ Nk(i) is called a
neighbor (of order k) of i. Basically, any vertex in a neighborhood of order k of a vertex i can
be reached from i with at most k “hops” along the edges of the graph. Figure 1.2 illustrates
the neighborhood of order 1 of a given vertex (in green) of an undirected simple graph and an
example of path of length 5 (in red).
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An undirected graph G is connected if there exists a path between any pair of its vertices. More
generally, a connected component of G is a connected subgraph H of G formed by vertices that
have no neighbor other than those present in H. It is easy to check that any graph is the disjoint
union of its connected components, where the union between two graphs G1 = (V1, E1,W1)
and G2 = (V2, E2,W2) with disjoint node sets and edge sets, is the graph G1 ∪ G2 defined by
G1 ∪G2 = (V1 ∪V2, E1 ∪E2,W12) where W12 is defined so that its restriction to edges of E1 (resp.
E2) is W1 (resp. W2).

Two n-graphs G1 = (V1, E1,W1) and G2 = (V2, E2,W2) are isomorphic if there exits an
edge-preserving bijection π between V1 and V2 i.e. π is a bijection from V1 to V2 such that:

∀i1, j1 ∈ V1,


i1 ∼ j1 ⇔ π(i1) ∼ π(j1)

and
W1(i1, j1) =W2(π(i1), π(j1))

.

Thus, two isomorphic graphs have the same “structure”, meaning that they link their vertices
in the same way. In particular, if G1 and G2 are two subgraphs of a graph G then them being
isomorphic means a same layout of edges is observed at two parts of G, thus implying that the
structure they create is repeated at two different locations in G.

Assumption 1.1. In this work, only connected simple undirected finite graphs are considered.

1.1.2 Matrix representations of graphs
In this section G = (V, E ,W) denotes a graph with n vertices defined according to Assump-
tion 1.1. Several n-matrices encompassing information on the structure of G are now introduced.

Adjacency matrix

Given that G is simple and undirected, for any pair of its vertices (i, j), there exists at most one
edge between them. The adjacency matrix W of G is defined as the n × n symmetric matrix
whose entry Wij is equal to the weight of the edge (i, j) if it exits, and is zero otherwise:

Wij =

 W(i, j) if i ∼ j
0 otherwise

.

Hence, the adjacency matrix summarizes all the relevant information about the graph structure:
the non-zero entries indicate the existence of an edge between two vertices and its weight.
Besides, if G is composed of several connected components, then its adjacency matrixW can be
represented by a block matrix, where each block is the adjacency matrix of one of the connected
components. Indeed, the presence of a non-zero entry outside these blocks would imply that
there is an edge connecting two distinct connected components, which is impossible.

Remark 1.1.1. The fact that G is undirected gives thatW is symmetric, and the fact that
it is simple ensures that the diagonal entries ofW are zero.

Getting back to the notion of graph isomorphism, the following result provides a link between
isomorphic graphs and their adjacency matrices.

Proposition 1.1.1. Let G1 and G2 be two isomorphic n-graphs with adjacency matrices W1
and W2. Then, there exists a permutation π of [[1, n]] such that

W1 = P−1
π W2Pπ ,

where Pπ is the permutation matrix defined by [Pπ]ij = δiπ(j). In other words,

∀i, j ∈ [[1, n]], [W1]ij = [W2]π(i)π(j) . (1.1)
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Proof. This result is a direct consequence of the definition of isomorphic graphs. Identifying
the sets of vertices of G1 and G2 with [[1, n]], the bijection between them defines a permutation
that satisfies Equation (1.1).

In the particular case where G1 and G2 are subgraphs of the same graph G, the result hereafter
follows.

Corollary 1.1.2. Let G be a n-graph with adjacency matrix W and vertex set V.
Let G1 and G2 be two isomorphic subgraphs of G, with vertex sets V1 ⊂ V and V2 ⊂ V.
Then there exists a permutation π of [[1, n]] such that

∀i, j ∈ V1, Wij = [W ]π(i)π(j) . (1.2)

Proof. Following the definition of isomorphic graphs, consider b to be the bijection that sends
V1 to V2. Then any permutation π of [[1, n]] such that ∀i ∈ V1, π(i) = b(i) satisfies Equa-
tion (1.2).

Remark 1.1.2. Both Proposition 1.1.1 and Corollary 1.1.2 are applicable to isomorphic
subgraphs of a graph G. The difference is that in the latter case, the equation is satisfied by
the adjacency matrix W of the graph containing G1 and G2, whereas in the former case, it
involves the adjacency matrices of both subgraphs (which corresponds to sub-matrices ofW).

Degree matrix

The degree di of a vertex i ∈ V is defined as the sum of the weights of the edges to which it is
an endpoint. Hence, the degree of any vertex i can be computed from the adjacency matrixW
of G using the fact that

di =
n∑
j=1
j∼i

W(i, j) =
n∑
j=1
Wij = [W1n]i ,

where 1n is the n-vector of ones. Note that in the particular case were all edge weights are equal
to 1, di is equal to the number of neighbors of order 1 of i.

The degree matrix D of G is then defined as the n × n diagonal matrix whose (diagonal)
entries are the degrees of each vertex of the graph:

D =


d1

. . .

dn

 = Diag(W1n) .

Laplacian matrix

The Laplacian matrix (or graph Laplacian) L of G is a n× n matrix defined from its adjacency
and degree matrices as

L = D −W .

From its definition, the Laplacian matrix enjoys several interesting properties.

Proposition 1.1.3. Let L be the Laplacian matrix of a simple undirected n-graph G with adja-
cency matrix W.

1. L is symmetric. Consequently, L is diagonalizable in a real orthonormal basis, and its
eigenvalues are real.
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2. The Hermitian form associated with L satisfies:

∀u ∈ Cn, uHLu = 1
2

n∑
i=1

n∑
j=1
Wij |ui − uj |2 .

where uH is defined as uH := suT .

3. 0 is an eigenvalue of L.

Proof.

1. Direct consequence of the the fact thatW is symmetric.

2. Let u ∈ Cn. Then, uHLu = uHDu − uHWu =
∑
i di suiui −

∑
i

∑
jWij suiuj =∑

i

∑
jWij( suiui − suiuj). Hence, given that the indexes i and j play symmetric roles,

2uHLu =
∑
i

∑
jWij( suiui − suiuj) +

∑
j

∑
iWji( sujuj − sujui).

Finally, using the fact thatW is symmetric and by switching the two sums of the second
double sum, we get 2uHLu =

∑
i

∑
jWij( suiui − suiuj + sujuj − sujui) =

∑
i

∑
jWij(ui −

uj) �(ui − uj) =
∑
i

∑
jWij |ui − uj |2.

3. L1n = D1n −W1n = 0n.

Of particular interest is the case where all edge weights are non-negative as it yields stronger
properties for the associated Laplacian matrix.

Proposition 1.1.4. Let L be the graph Laplacian of a simple undirected graph G whose weights
are non-negative. Then,

1. L is a positive semi-definite matrix.

2. The dimension of the null space of L (or equivalently the multiplicity of its eigenvalue 0)
is equal to the number of connected components composing G.

3. The largest eigenvalue λmax of L satisfies

λmax ≤ max
i∈[[1,n]]

√
2(d2

i + d̂i) ,

where ∀i ∈ [[1, n]], di =
∑n
k=1Wik and d̂i =

∑n
k=1Wikdk.

Proof.

1. According to the second point of Proposition 1.1.3, the Hermitian form associated with L
is now positive, thus proving the result.

2. Denote A = {x ∈ Cn : for any pair of vertices i, j connected in G, xi = xj} and let r be
the number of connected components. A is a vector space of dimension r as it is spanned by
the set of r (linearly independent) vectors that are 1 on one of the connected components
of G and 0 elsewhere. We now prove that A is the null space of L.
Indeed, if x is in the null space of L, then in particular xHLx = 0 and therefore using
Item 2 of Proposition 1.1.3, x ∈ A. Conversely, it is straightforward to check that any
vector in A is in the null space of L. Therefore, the null space of L has dimension r.

3. Let W be the adjacency matrix of G. Let (λ,x) be an eigenpair of L. Then, Lx = λx
and so, ∀i ∈ [[1, n]], λxi =

∑
kWik(xi − xk). Therefore, ∀i, j ∈ [[1, n]], λ(xi − xj) =∑

kWik(xi − xk)−
∑
kWjk(xj − xk), which gives:

∀i, j ∈ [[1, n]], |λ||xi − xj | ≤
∑
k

(Wik|xi − xk|+Wjk|xj − xk|) .



1.1. Mathematical framework for graphs 27

Consider the couple (im, jm) = argmaxi,j |xi − xj |. Then,

|λ|2|xim − xjm | ≤ |λ|
∑
k

(Wimk|xim − xk|+Wjmk|xjm − xk|)

≤
∑
k

Wimk

∑
l

(Wiml|xim − xl|+Wkl|xk − xl|)

+Wjmk

∑
l′

(Wjml′ |xjm − xl′ |+Wkl′ |xk − xl′ |) .

By dividing by |xim − xjm | (which is non-zero otherwise x = 0) and using the fact that
|xim − xjm | = maxi,j |xi − xj |, we get:

|λ|2 ≤
∑
k

Wimk

∑
l

(Wiml +Wkl) +Wjmk

∑
l′

(Wjml′ +Wkl′)

=
∑
k

Wimk(dim + dk) +Wjmk(djm + dk) = d2
im + d̂im + d2

jm + d̂jm

≤ 2(max
i
d2
i + d̂i) .

Given that this result is true for any eigenvalue of L, it is true for λmax, which proves the
proposition.

Normalized Laplacian matrix

The normalized Laplacian matrix (or normalized graph Laplacian) L̃ of G is defined for graphs
with strictly positive degrees as a scaled version of its Laplacian matrix:

L̃ = D−1/2LD−1/2 = In −D−1/2WD−1/2 .

Its entries are therefore defined by

L̃ij =

 1 if i = j

− Wij√
didj

otherwise
.

Proposition 1.1.5. Let L̃ be the normalized Laplacian matrix of a simple undirected graph G
with adjacency matrix W.

1. L̃ is symmetric. Consequently, L is diagonalizable in a real orthonormal basis, and its
eigenvalues are real.

2. The Hermitian form associated with L̃ satisfies

∀u ∈ Cn, uHL̃u = 1
2

n∑
i=1

n∑
j=1
Wij

∣∣∣∣∣ ui√di − uj√
dj

∣∣∣∣∣
2

.

3. 0 is an eigenvalue of L̃.

Proof.

1. By definition of its entries.

2. Simply notice that uHL̃u =
(
D−1/2u

)H
L
(
D−1/2u

)
.

3. One can easily check that L̃
(√
d1, . . . ,

√
dn
)T = 0n.
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In the particular case where all edge weights are non-negative, the normalized Laplacian
enjoys the following additional properties:

Proposition 1.1.6. Let L̃ be the normalized graph Laplacian of a simple undirected graph G
whose weights are non-negative. Then,

1. L̃ is a positive semi-definite matrix.

2. The dimension of the null space of L̃ (or equivalently the multiplicity of its eigenvalue 0)
is equal to the number of connected components composing G.

3. The largest eigenvalues λmax of L̃ satisfies

λmax ≤ 2 .

Proof. 1. According to Proposition 1.1.5, the Hermitian form of L is now positive, thus
proving the result.

2. Notice that a vector x ∈ Cn is in the null space of L̃ iif D−1/2x is in the null space of L.
Consequently, the null space of L̃ is the image of the null space of L under the isomorphism
represented by D−1/2. Therefore, using the rank nullity theorem, both spaces have the
same dimension.

3. First, we show that the eigenvalues of L̃ and those ofD−1L are the same. Indeed, the eigen-
values ofD−1L are the roots of its characteristic polynomial defined by p(λ) = det(D−1L−
λIn). This polynomial satisfies p(λ) = det(D−1/2(L̃ − λIn)D1/2) = det(D−1/2) det(L̃ −
λIn) det(D1/2) = det(L̃−λIn) which is the characteristic polynomial of L̃, hence proving
the claim.
The matrix D−1L can be seen as the Laplacian matrix of the graph whose adjacency ma-
trix is the non-symmetric matrixW ′ with elements are W ′ij = Wij/di. Its degree matrix
is then In (as the rows of W ′ all sum to 1). By noticing that the proof of item 3 of
Proposition 1.1.3 never uses the symmetry ofW , the bound obtained can be extended to
the non-symmetric case. In particular for D−1L, this bound equals 2 (as all degrees of the
corresponding graph are 1). This concludes our proof.

1.2 Background: Some notions of deterministic and stochas-
tic signal processing

In this section, we turn to the second building block of the graph signal processing framework.
We lay out the main notions of classical and stochastic signal processing on which we will later
on build a mathematical framework for graph signal processing. In the remainder of this section
d ≥ 1 denotes an integer.

1.2.1 Harmonic analysis of continuous signals
Most of the material covered in this section is detailed in (Stein and Weiss, 1971, Chapter 1).

Signals and energy A signal is a function x : Rd → C. It is called integrable if∫
Rd
|x(t)|dt <∞ .

The energy E(x) of a signal x is defined as the positive and possibly infinite quantity

E(x) =
∫
Rd
|x(t)|2dt .

Signals with finite energy therefore correspond to square-integrable functions on Rd. In the
remainder of this section, only finite-energy signals are considered.
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We denote L2(Rd) the Hilbert space of square-integrable functions of R equipped with the
natural inner product 〈·, ·〉L2(Rd) defined by:

∀x, y ∈ L2(Rd), 〈x, y〉L2(Rd) =
∫
Rd
sx(t)y(t)dt .

In particular, ∀x ∈ L2(Rd), E(x) = 〈x, x〉L2(Rd) = ‖x‖2L2(Rd) <∞, where ‖ · ‖L2(Rd) is the norm
associated with the inner product 〈·, ·〉L2(Rd).

Fourier transform The Fourier transform (FT) F of an integrable signal x is the function
F [x] : Rd → C defined by

F [x](ξ) =
∫
Rd
x(t)e−iξT tdt, ξ ∈ Rd .

In this last equation, the variable t is referred to as belonging to the time domain whereas the
variable ξ is belongs to the frequency domain.

The FT is an invertible linear operator when applied to integrable functions whose FT is
itself integrable. The inverse FT F−1 is then defined for integrable functions x̃ on the frequency
domain (which is Rd) by

F−1[x̃](t) = 1
(2π)d

∫
Rd
x̃(ξ)eitT ξdξ, t ∈ Rd .

Another way of obtaining the inverse FT is by letting (Stein and Weiss, 1971, Theorem 2.4):

F−1[x̃](t) = F [x̃](−t), t ∈ Rd . (1.3)

Plancherel’s theorem (Stein and Weiss, 1971, Theorem 2.1) states that the FT conserves the
energy of an integrable signal x, i.e.

E(x) =
∫
Rd
|x(t)|2dt =

∫
Rd
|F [x](ξ)|2dξ = E(F [x]) .

This result is used to extend the definition of the FT to any finite energy signal x, as the limit
the FT of integrable signals with finite energy converging to x. As such, the FT is a unitary
operator (Stein and Weiss, 1971, Theorem 2.3) on L2(Rd), meaning that

∀x, y ∈ L2(Rd), 〈x, y〉L2(Rd) = 〈F [x],F [y]〉L2(Rd) .

As for the inverse FT, it can also be extended to L2(Rd) through Equation (1.3).

Convolution The convolution product between two signals x, y is the signal x ∗ y : Rd → C
defined by

(x ∗ y)(t) =
∫
Rd
x(u)y(t− u)du, t ∈ Rd .

The convolution theorem (Stein and Weiss, 1971, Theorem 2.6) links the notions of convolution
and FT by stating that the FT of a convolution product of two signals, one of which is integrable
and the other either integrable or with finite energy, is the point-wise product of their Fourier
transforms:

F [x ∗ y] = F [x]F [y] .

LTI operators See (Phillips et al., 2003, Chapter 3) for a more detailed approach. Let d = 1
for this particular definition. A linear and time-invariant (LTI) operator A is a map satisfying
the following properties:

� Linearity: if x1, x2 are two signals, and c1, c2 are two scalar values, then A[c1x1 + c2x2] =
c1A[x1] + c2A[x2].

� Time invariance: A commutes with time shifts, i.e. ∀τ > 0, A[t 7→ x(t − τ)] = (t 7→
A[x](t− τ)).
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A LTI operator A can be entirely characterized by a single function a : R 7→ C called impulse
response and such that the action of the operator on a time signal x is the convolution (in the
time domain) of the impulse response and the signal:

A[x] = a ∗ x .

Equivalently, following the convolution theorem, LTI operators can also be characterized by the
FT â = F [a] of their impulse response, called transfer function. Then the action of the operator
on a time signal is described as the product in the frequency domain of the transfer function
and the Fourier transform of the signal:

F [A[x]] = â×F [x] .

1.2.2 Harmonic analysis of discrete time signals
The material covered in this section is detailed in (Oppenheim et al., 2001, Chapter 2).

We assume that only a finite number n of samples from a signal and taken at regular time
steps are observed and denote x1, . . . , xn ∈ C these samples. They are represented by the vector
x = (x1, . . . , xn)T .

Harmonic analysis was extended to this setting by replacing the notion of Fourier transform by
that of discrete Fourier transform. Both notions are linked as the discrete Fourier transform can
be seen as the Fourier transform of a signal defined as a periodic train of n impulses corresponding
to the n observed samples.

Discrete Fourier transform The discrete Fourier transform (DFT) of a vector of samples
x ∈ Cn is defined as the vector x̂ ∈ Cn with entries

x̂k = 1√
n

n∑
j=1

xje
−i 2π

n (j−1)(k−1), k ∈ [[1, n]] .

Each sample of x can be retrieved from the set of its DFT coefficients using the following
inversion formula:

xj = 1√
n

n∑
k=1

x̂ke
i 2π
n (j−1)(k−1), j ∈ [[1, n]] .

The DFT can be seen as the projection of an input signal onto an orthonormal basis of
discrete and finite signals. Indeed, let F be the matrix defined by

F = 1√
n

[
ei 2π

n (j−1)(k−1)
]

1≤j,k≤n
. (1.4)

On one hand, F entirely defines the DFT as for any x ∈ Cn:

x̂ = FHx and x = F x̂ .

On the other hand, F is a unitary matrix, i.e. F−1 = FH . Its columns therefore form an
orthonormal basis of Cn for its canonical inner product 〈., .〉Cn :

〈x,y〉Cn = xHy =
n∑
k=1
�xkyk, x,y ∈ Cn .

The DFT x̂ of vector x therefore corresponds to the coordinates of x in this basis.
The DFT carries many of the properties of the Fourier transform. It is a linear, invertible

and unitary (for 〈., .〉Cn) operator of Cn. In particular, Plancherel’s theorem still holds.

Convolution The convolution between two sequences x,y ∈ Cn is the vector x∗y with entries

[x ∗ y]k =
n∑
j=1

xjy((k−j)[n])+1, k ∈ [[1, n]] ,
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where (k − j)[n] ∈ [[0, n − 1]] is the remainder of the Euclidean division of (k − j) by n. Its
k-th entry corresponds to the sum-product of the sequence x and a “wrapped” version of the
sequence y that starts with its k-th entry.

The convolution theorem still holds with discrete sequences of samples, using now the DFT:

DFT[x ∗ y] = DFT[x]�DFT[y] ,

where � denotes the entry-wise product of two vectors.

Circular convolutive operators Circular convolutive operators are defined as linear oper-
ators A ∈ Mn(C) for which this matrix is a circulant matrix, i.e. there exists a sequence
a = (a1, . . . , an)T ∈ Cn such that:

A =



a1 an . . . . . . a2

a2 a1 an
...

...
. . . . . . . . .

...
...

. . . . . . an

an . . . . . . a2 a1


.

In particular, the action of a circular convolutive operator A on a sequence of samples x can be
written

Ax =

 n∑
j=1

a((k−j)[n])+1xj


1≤k≤n

= a ∗ x .

Such operators can be seen as the counterparts of LTI operators for finite sequences of samples,
given that they share the same characterization using the convolution product.

Moreover, the notion of “time-invariance” can be extended to finite sequences of regular sam-
ples x by once again identifying them to periodic signals x composed of impulses corresponding
to each sample. Then shifting such a signal by the sampling time is equivalent to applying a cir-
cular shift to the sequence. This last operation can be seen as applying the following permutation
matrix to x:

J =



0 0 . . . 0 1
1 0 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 . . . 0 1 0


∈Mn(R) . (1.5)

This last matrix, called circular shift matrix, can be used to decompose any circulant matrix as

A =
n∑
k=1

akJ
k−1 ,

where J0 = I by convention. Consequently, circular convolutive operators commute with the
matrix J and therefore with time shifts.

1.2.3 Some notions regarding stochastic processes
Let d ≥ 1 and denote B(Rd) the set of all Borel sets of Rd.

Weakly-stationary processes of Rd

Let X = {X(t)}t∈Rd be a real-valued stochastic process indexed by Rd, i.e. a family of real
random variables X(t) indexed by t ∈ Rd and all defined on the same probability space. X is
entirely characterized by the set of all joint distribution functions Ft1,...,tn defined by:

Ft1,...,tn : (x1, . . . , xn) ∈ Rn 7→ P[X(t1) < x1, . . . , X(tn) < xn] ,
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for any integer n ≥ 1 and any t1, . . . , tn ∈ Rd (Parzen, 1999).
In practice, to catch a glimpse of the characteristics of X, its first two moments are preferred

to the specification of all these distributions (Stein, 2012). Its first moment, called expectation
of the process or mean function, is a function that assigns to any t ∈ Rd the expectation of
X(t). Its second moment, called variance function of the process, is a function that assigns to
any t ∈ Rd the variance of X(t). Of particular interest is the cross-moment of X, also called
covariance function and defined as a function that assigns to any t1, t2 ∈ Rd the covariance
X(t1) and X(t2).

The process X is called weakly stationary (or second-order stationary) if:

� its mean function is constant: ∃µ ∈ R, ∀t ∈ Rd, E[X(t)] = µ,

� there exists a function CX : Rd 7→ R such that the covariance function satisfies: ∀(t1, t2) ∈
Rd × Rd, Cov[X(t1), X(t2)] = CX(t2 − t1).

Remark 1.2.1. Note that the variance of a weakly stationary process must consequently be
finite and constant as ∀t ∈ Rd, Var[X(t)] = Cov[X(t), X(t)] = CX(0).

Remark 1.2.2. The condition satisfied by the covariance function of a weakly stationary
process can be expressed using the Dirac delta function:

Cov[X(t1), X(t2)] = CX(t2 − t1) = CX ∗ δt1(t2), t1, t2 ∈ Rd .

A weakly stationary process X is called isotropic if its covariance function CX is radial,
i.e. there exists a function C̃X : R+ 7→ R such that ∀h ∈ Rd, CX(h) = C̃X(‖h‖). For sake of
simplicity, the same notation CX is from now on be used to denote both the covariance function
of X and when applicable its writing as a radial function C̃X .

Zero-mean weakly stationary processes admit a spectral representation (Stein, 2012, Section
2.5). Let X denote such a process. Then X can be written as the inverse Fourier transform of
a complex random measure1 MX on Rd:

X(t) = 1
(2π)d

∫
Rd
ei〈ξ,t〉MX(dξ) = F−1[MX ](t) , (1.6)

where MX satisfies:

� ∀B ∈ B(Rd), E[MX(B)] = 0.

� there exists a finite positive measure FX on Rd such that: ∀B ∈ B(Rd), Var[MX(B)] =
FX(B).

� ∀B1, B2 ∈ B(Rd) such that B1 ∩B2 = ∅, Cov[MX(B1),MX(B2)] = 0.

The measure FX is called the spectral measure of X. The spectral measure of a weakly stationary
process X is linked to its covariance function CX through the Fourier transform:

CX(h) = F−1[FX ](h) = 1
(2π)d

∫
Rd
ei〈ξ,h〉F (dξ)

The density fX of the spectral measure FX , when it exists, is called the spectral density of X
and satisfies:

CX(h) = F−1[fX ](h) = 1
(2π)d

∫
Rd
ei〈ξ,h〉fX(ξ)dξ

In particular, given that the Fourier transform of a radial function is also radial (Ormerod,
1979), the spectral density of an isotropic field will be a radial function. In particular, Ormerod

1A random measure can be considered as a stochastic process indexed by the elements of B(Rd) and that
carries out the defining properties of a measure, namely the countable sigma-additivity and the null empty-set
property.
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(1979) even gives the formula linking a radial covariance function C0 (which should be both
integrable and square-integrable on Rd) and its associated spectral density f0:

f0(‖ξ‖) = 1
(2π)d/2

‖ξ‖1−d/2
∫ ∞

0
C0(r)Jd/2−1(‖ξ‖r)rd/2dr, ξ ∈ Rd , (1.7)

where Jd/2−1 denotes the J-Bessel function with parameter d/2− 1. Conversely, the expression
of the radial covariance function C0 can be retrieved from its radial spectral density f0 through

C0(‖h‖) = (2π)d/2‖h‖1−d/2
∫ ∞

0
f0(r)Jd/2−1(‖h‖r)rd/2dr, h ∈ Rd . (1.8)

White noise

A particular generalization of stochastic processes on Rd, which is of great interest in this
dissertation, is now introduced: the white noise. A random signed measure W on Rd is called a
white noise measure (or simply white noise) with variance σ2 > 0 if it satisfies (Carrizo Vergara,
2018; Lindgren et al., 2011):

� ∀B ∈ B(Rd), E[W(B)] = 0.

� ∀B1, B2 ∈ B(Rd), Cov[W(B1),W(B2)] = E[�W(B1)W(B2)] = σ2Leb(B1 ∩ B2) where Leb
denotes here the Lebesgue measure of a Borel set.

The notion of spectral density can be extended to white noises by noticing that it admits
a spectral representation very similar to that of weakly stationary processes and introduced in
Equation (1.6).

Proposition 1.2.1. Let W denote a white noise measure with variance σ2 on Rd. Then there
exists a complex measure MW satisfying:

W(dt) = dt
1

(2π)d

∫
Rd
ei〈ξ,t〉MW(dξ) ,

and such that:

� ∀B ∈ B(Rd), E[MW(B)] = 0.

� ∀B ∈ B(Rd), Var[MW(B)] = (2π)dσ2Leb(B).

� ∀B1, B2 ∈ B(Rd) such that B1 ∩B2 = ∅, Cov[MW(B1),MW(B2)] = 0.

Proof. See Appendix C.1.

Similarly to stationary processes, the spectral measure of the white noise is defined as the
measure associated to the variance of MW . Therefore, the spectral measure of the white noise
is the Lebesgue measure, scaled with a factor (2π)dσ2. This measure admits a density, which
defines the spectral density of the white noise and corresponds to the constant function equal to
(2π)dσ2. The white noise can therefore be seen as generalized stochastic process with a spectral
measure that is not finite but rather admits a “density” that is constant across the frequency
domain.

Kernel representation of stationary processes

A representation of a class of weakly stationary stochastic processes of Rd using a convolution
product of a white noise is now presented (Higdon et al., 1999). Let k : Rd → R denote a square-
integrable function, called kernel function, and introduce Z the stochastic process defined by:

Z(t) =
∫
Rd
k(t− s)W(ds), t ∈ Rd . (1.9)
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Then, Z is zero-mean and its covariance function satisfies:

Cov[Z(t1), Z(t2)] = E[Z(t1)Z(t2)] = E
[∫

Rd

∫
Rd
k(t1 − u)k(t2 − v)W(du)W(dv)

]
=
∫
Rd

∫
Rd
k(t1 − u)k(t2 − v)E [W(du)W(dv)]

=
∫
Rd
k(t1 − u)k(t2 − u)du =

∫
Rd
k(u)k(t2 − t1 + u)du ,

which is a function of the lag t2 − t1. Noticing, using the Cauchy–Schwartz inequality, that its
values are always finite, we can conclude that Z is a weakly stationary process with covariance
function:

CZ(h) =
∫
Rd
k(u)k(h+ u)du =

∫
Rd
k(v − h)k(v)du = k ∗ ǩ(h) ,

where ǩ denotes the reflection of k i.e. ∀t ∈ Rd, ǩ(u) = k(−u). Moreover, it admits a spectral
density fZ satisfying:

fZ(ξ) = F [CZ ](ξ) = F [k](ξ)F [ǩ](ξ) = |F [k](ξ)|2 ,

which clearly defines a positive finite measure given that k is square-integrable.
Conversely, given a spectral density f (i.e. a positive function defining a finite measure), a

weakly process with spectral density f can be generated using Equation (1.9) by taking k as the
function defined by:

k = F−1[
√
f ] .

1.3 Graph signal processing in a nutshell
Now that the two building blocks necessary to its construction have been laid out, we introduce
the general framework used in graph signal processing. The notions presented in this section are
part of the standard framework used in the graph signal processing community. They are also
introduced in (Girault, 2015a; Ortega et al., 2018; Perraudin and Vandergheynst, 2017; Shuman
et al., 2013).

1.3.1 Signals on a graph
A graph signal x on a n-graph G = (V, E ,W) is a function x : V → C that assigns to each vertex
i of G a complex number x(i). Any graph signal x can be represented by a vector x such that
xi = x(i). Hence, vectors of Cn are identified with signals on a n-graph. A signal defined on a
graph G is called a G-signal.

Example 1.3.1 (Digital image processing). A digital image is a rectangular grid of adjacent
colored points, also called pixels. A simple undirected graph G can be associated to a given
digital image as follows: each pixel of the image is associated to a vertex of G and adjacent
pixels define adjacent vertices on G.

By definition, each pixel has a color. For black-and-white images, this color can be repre-
sented by a real value ranging from 0 (for black) to 1 (for white) and corresponding to a shade
of grey. Hence, the function that associates to each pixel its shade of grey defines a signal on
the graph G.

The inner product of two signals x,y ∈ Cn is defined as the inner product of the corresponding
vectors, and is denoted:

〈x,y〉 := 〈x,y〉Cn =
n∑
i=1
sxiyi .

The energy E(x) of a graph signal x ∈ Cn is defined as the square of 2-norm:

E(x) = ‖x‖2 = 〈x,x〉 =
n∑
i=1
|xi|2
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These definitions are natural extensions of the definition of the inner product and energy of
continuous signals in classical signal processing.

1.3.2 Graph shift operators
A n× n matrix S is called a shift operator for the graph G if its entries satisfy

∀i, j ∈ [[1, n]], Sij 6= 0⇒ i ∼ j or i = j .

Hence, the off-diagonal non-zero entries of a shift operator indicate the existence of an edge
between two vertices of G.

More generally, the non-zero entries of the iterates Sk, k ≥ 2 of S provide some knowledge
about the existence of a path of length k between two given vertices of the corresponding graph.
Indeed, notice that the entries of Sk can be deduced from the entries of S by:

[
Sk
]
ij

=
n∑

l1=1
Sil1

[
Sk−1]

l1j
= · · · =

n∑
l1=1
· · ·

n∑
lk−1=1

Sil1Sl1l2 . . . Slk−1j , k ≥ 2 .

Hence for
[
Sk
]
ij

to be non-zero, at least one of the terms Sil1Sl1l2 . . . Slk−1j must be non-zero,
meaning that there must exist a sequence of k − 1 vertices l1, . . . , lk−1 such that this term is
non-zero. According to the definition of shift operators this actually means that the sequence
i, l1, . . . , lk−1, j forms a path (of length k) between i and j, which consequently are linked by a
path of length k.

Shift operators can be seen as linear operators on Cn whose action is defined by

S : u ∈ Cn 7→ Su ∈ Cn .

The signal Su is then said to be shifted. Notice that, according to the non-zero pattern of S,
the value of the shifted signal Su at a vertex i satisfies

∀i ∈ [[1, n]], [Su]i = Siiui +
∑
j 6=i
j∼i

Sijuj .

Hence the value of the shifted signal Su at a vertex i is a weighted sum of the values of u at i
and its adjacent vertices and therefore can be seen as a local transformation of the original signal
u. Another interpretation of shifted signals, which justifies their name, consists in noticing that
to compute the value of Su at a vertex i, one needs to “shift” along the edges of the graph
and towards i the values taken by u at the adjacent vertices of i, and then compute a linear
combination of these values.

Example 1.3.2 (Adjacency matrix). The adjacency matrixW of G is a possible choice shift
operator. Seen as an operator on Cn, its action is defined as

W : u ∈ Cn 7→Wu =

 n∑
j=1
Wijuj


1≤i≤n

∈ Cn .

Therefore, applying the adjacency matrix to a signal results in computing for each vertex the
weighted average of the values of the signal at its adjacent vertices, the weights being defined
as the edge weights.

Example 1.3.3 (Laplacian matrix). The Laplacian matrix L of G is another possible choice
of shift operator. Seen as an operator on Cn, its action is defined as

L : u ∈ Cn 7→ Lu =

 n∑
j=1
Wij(ui − uj)


1≤i≤n

∈ Cn .
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Therefore, applying the Laplacian matrix to a signal results in computing for each vertex
the weighted average of the differences between the value of the signal at this vertex and
the values at its adjacent vertices. Hence, similarly to the discretization of the Laplacian
operator of functions of Rd in finite differences, the graph Laplacian computes at each vertex
i a weighted sum of the differences between the value of a signal at i and the value it takes in
each direction. In the graph settings these directions are defined by the edges linked to i.

Note also that the inner product between a signal x and the shifted signal Lx satisfies

〈x,Lx〉 = 〈Lx,x〉 = 1
2

n∑
i=1

n∑
j=1
Wij |xi − xj |2

and can therefore be seen as a measure of the variations of the signal x along the edges of the
graph.

Example 1.3.4 (normalized Laplacian matrix). Just like the Laplacian matrix, the normal-
ized Laplacian matrix L̃ of G is also a possible shift operator. Seen as an operator on Cn, its
action is defined as

L̃ : u ∈ Cn 7→ L̃u =

 1√
di

n∑
j=1
Wij

(
ui√
di
− uj√

dj

)
1≤i≤n

∈ Cn ,

and can be seen as applying a graph Laplacian to a scaled version of the signal. The scaling
in question consists in scaling down the values of the signals corresponding to high degree
vertices. The inner product between a signal x and the shifted signal L̃x now writes:

〈x, L̃x〉 = 〈L̃x,x〉 = 1
2

n∑
i=1

n∑
j=1
Wij

∣∣∣∣∣ xi√di − xj√
dj

∣∣∣∣∣
2

and can therefore still be seen as a measure of the variations of the scaled signalD−1/2x along
the edges of the graph.

In the remainder if this chapter, the following assumption is made on the shift operators that
will be considered.

Assumption 1.2. Only real, symmetric shift operators S are considered.
Consequently, S is diagonalizable by a unitary matrix and has real eigenvalues. Such a de-
composition is denoted as follows:

S = V


λ1

. . .

λn

V H ,

where

� λ1 ≤ · · · ≤ λn denote the real eigenvalues of S, ordered in ascending order,

� V =
[
v(1)| . . . |v(n)] is a unitary matrix (i.e. V −1 = V H)) whose columns v(1), . . . ,v(n)

form an orthonormal basis of Cn composed of eigenvectors of S such that:

∀i ∈ [[1, n]], Sv(i) = λiv
(i) .
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Remark 1.3.1. Note that V can be chosen to be a real matrix, i.e. v(1), . . . ,v(n) can be
chosen to be a orthonormal basis of Rn composed of real vectors and V −1 = V T .

1.3.3 Harmonic analysis of graph signals
A starting point: the ring graph

The ring graph of size n is the unweighted n-graph such that each vertex i ∈ [[1, n]] is (only)
linked to the vertices i− 1 and i+ 1. By convention the label 0 corresponds to the vertex n and
the label n+ 1 corresponds to the vertex 1, hence the circular property.

The ring graph is an undirected simple graph. Its adjacency matrix is the symmetric matrix
Wr defined as:

[Wr]ij =
{

1 if (i− j) ≡ ±1 (mod n)
0 otherwise

, 1 ≤ i, j ≤ n .

Equivalently,Wr can be expressed using the circular permutation matrix J (cf. Equation (1.5))
as

Wr =



0 1 0 . . . 0 1
1 0 1 0

0 1
. . . . . .

...
...

. . . . . . 1 0

0 1
. . . 1

1 0 . . . 0 1 0


= J + JT = J + Jn−1 .

The corresponding degree matrix Dr is then given by:

Dr =Wr1 = 2In .

Finally the Laplacian matrix Lr of the ring graph is given by:

Lr = Dr −Wr = 2In − J − Jn−1 .

Let Sr denote either the adjacency matrix or the Laplacian of the ring graph. S is in
particular a shift operator of this graph. In both cases, there exists a polynomial Pr such that:

Sr = Pr(J)

Indeed, Pr is the polynomial X 7→ X +Xn−1 if Sr =Wr and X 7→ 2−X −Xn−1 if Sr = Lr.
Recall that J is a diagonalizable matrix with n distinct eigenvalues which are n roots of unity

and an orthonormal eigenbasis given by the DFT matrix F (cf. Equation (1.4)):

J = FDiag
(
1, ω, . . . , ωn−1)FH , F = 1√

n

[
ω(j−1)(k−1)

]
1≤j,k≤n

,

where ω = ei 2π
n and F satisfies F−1 = FH . In particular, the shift operator Sr verifies:

Sr = Pr(J) = FDiag
(
Pr(1), Pr(ω), . . . , Pr(ωn−1)

)
FH .

The DFT can therefore be seen as projection onto an eigenbasis of a shift operator of the ring
graph.

Getting back to general graph signals, let’s recall that signals on a n-graph can be identified
with vectors of Cn and hence with sequences of n samples. In particular for signals defined
on the ring graph, the DFT of the corresponding sequence of samples is exactly the projection
of the signal onto an eigenbasis of a shift operator of the graph on which it is defined. This
observation motivates the generalization of the notion of Fourier transform of signals on more
general graphs.
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Graph Fourier Transform

Following Assumption 1.2, the eigenvectors of a shift operator actually form an orthonormal
basis of Cn, thus meaning that any signal can be (uniquely) decomposed as a weighted sum of
these eigenvectors. This decomposition defines the notion of graph Fourier transform.

Definition 1.3.1. Let x ∈ Cn be a signal on a n-graph with shift operator S. The graph Fourier
transform (GFT) of x with respect to an orthonormal eigenbasis V of S is the vector GFT [x]
defined as:

GFT [x] = V Hx =


〈v(1),x〉

...
〈v(n),x〉

 .

The GFT of a signal is therefore the vector containing its coordinates in the eigenbasis of
the shift operator:

x =
n∑
i=1
〈v(i),x〉v(i) =

n∑
i=1

[GFT [x]]i v
(i) .

It can be seen as a signal indexed by the eigenvalues of the shift operator, thus motivating the
use of the term graph frequency to refer to the eigenvalues of the shift operator. The term graph
modes then refers to the corresponding eigenvectors.

Any signal therefore has two equivalent representations:

� in the vertex domain: the signal is seen as the assignment of a real value to each vertex

� in the frequency domain: the signal is seen as a linear combination of elementary signals
defined as the eigenvectors of a shift operator and is characterized by the weights involved
in the combination.

The GFT with respect to V is an invertible operation. The inverse GFT of a vector y ∈ Cn
is defined as follows:

GFT−1[y] =
(
V H

)−1
y = V y .

1.3.4 Graph convolutions
The definition of the convolution of graph signals relies on an analogy with the classical signal
processing framework. Indeed, the convolution theorem states that the FT of the convolution of
two (continuous) signals equals the point-wise product of their FTs. To conserve this property in
the graph signal processing framework, the convolution of two graph signals x,y ∈ Cn is defined
as the graph signal x ∗ y satisfying

x ∗ y = GFT−1 [GFT[x]�GFT[y]] = V
((
V Hx

)
�
(
V Hy

))
.

From its definition, the convolution product of graph signals carries several of the important
properties of the convolution of time signals. Namely, it is a commutative, associative and
bilinear operation.

Remark 1.3.2. The result of the convolution between two graph signals depends on the basis
V chosen to define the GFT. Given that there is no uniqueness of eigendecomposition for a
given shift operator, setting a shift operator is not sufficient to set the framework necessary
to work with graph convolutions. The basis V should also be specified.

Graph convolutions are used to define graph translations, using an analogy with classical
signal processing. Indeed, translating time-wise a signal by a delay τ is equivalent to convolution
this same signal with a Dirac impulse at time τ . Both notions are now defined for the graph
signal processing framework.

Definition 1.3.2. [Dirac signal] Let G be a graph with set of vertices V. The Dirac signal of G
at vertex i ∈ V is the G-signal δ(i) defined by:

∀k ∈ V, δ
(i)
k = δik
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Definition 1.3.3. [Graph translation] Let G be a graph with set of vertices V and let x be a
G-signal. The translation of x with respect to vertex i ∈ V is the G-signal Tix defined by:

T (i)x = δ(i) ∗ x

In particular, the translation operator T (i) that maps any G-signal to its translation with respect
to i ∈ V can be defined by:

T (i) = V Diag
(
V Hδ(i)

)
V H

1.3.5 Graph filters
A linear operator on graph signals is a linear mapping from Cn to itself. Defined as such, it can
be represented by a matrix A ∈Mn(C) whose columns correspond to the image of the canonical
basis of Cn. This operator is called real if its representative matrix is real. It can then be seen
as a linear mapping from Rn to itself.

Graph filters are a class of linear operators on graph signals that act on the frequency content
of a signal. Through the GFT, any signal can be decomposed as a weighted sum of elementary
signals, each associated to a given graph frequency. Graph filters aim at amplifying or attenuating
the weight of some of these signals on the overall decomposition. Such an operation can be
modeled using a transfer function A, which is a function that associates to each graph frequency
λ a scaling factor A(λ) ∈ C. Applying a graph filter with transfer function A to a signal x yields
a signal y such that:

GFT[y]i = A(λi)GFT[x]i, i ∈ [[1, n]] .

Hence the i-th spectral component of the input signal x is now scaled by a factor A(λi). Note
in particular that duplicated frequencies/eigenvalues are necessarily scaled by the same factor.

Applying the inverse GFT to both members of this last equation gives:

y = V


A(λ1)

. . .

A(λn)

V Hx .

Graph filters can therefore be represented by matrix functions A(S) of the shift operator S
defined by

A(S) := V


A(λ1)

. . .

A(λn)

V H ∈Mn(C) .

Their action on a signal x is then y = A(S)x and this vector is called a filtered signal.
Three ingredients seem necessary to define a graph filter:
� a choice of diagonalizable shift operator S with eigenvalues λ1, . . . , λn,

� a set of values {A(λ1), . . . , A(λn)}, called frequency response of the graph filter, and cor-
responding to the image of the set of eigenvalues of S through a (transfer) function A,

� a choice of (orthonormal) basis V for the eigendecomposition of S.

The following theorem proves that the third requirement is actually not necessary, meaning that
graph filters can be defined independently from the choice of the eigenbasis V .

Theorem 1.3.1. Any graph filter defined on a n-graph with shift operator S and transfer func-
tion A can be uniquely written as a matrix polynomial of S of degree at most n − 1, i.e., there
exists a unique set of coefficients a0, . . . , an−1 ∈ C such that:

A(S) =
n−1∑
k=0

akS
k

In particular the coefficients a0, . . . , an−1 ∈ C are entirely defined by the frequency response of
the graph filter.
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Proof. Let V denote any eigenbasis of S. Let A(S) be a graph filter defined through V and
with transfer function A and denote (A(λ1) . . . A(λn))T ∈ Cn its frequency response.

Define PA to be the Lagrange interpolation polynomial that assigns to each λi, i ∈ [[1, n]]
the value PA(λi) = A(λi). Let nλ ≤ n be the number of distinct eigenvalues of S. According
to the unisolvence theorem, PA is the only polynomial of degree ≤ nλ − 1 that interpolates
A at points λ1, . . . , λn. Denote a0, . . . , an−1 the coefficients of this polynomial, some of which
possibly being zero. Let PA(S) be the graph filter defined through V and with transfer
function PA.

On one hand,

PA(S) = V Diag (PA(λ1), . . . , PA(λn))V H = V Diag (A(λ1), . . . , A(λn))V H = A(S) .

On the other hand,

PA(S) = V


n−1∑
k=0

akλ
k
1

. . .
n−1∑
k=0

akλ
k
n

V H = V


n−1∑
k=0

ak


λk1

. . .

λkn


V H

=
n−1∑
k=0

akV Diag
(
λk1 , . . . , λ

k
n

)
V H .

It is straightforward to show by induction that, whatever the choice of orthonormal basis V ,

V Diag
(
λk1 , . . . , λ

k
n

)
V H = Sk, which allows to conclude that PA(S) =

n−1∑
k=0

akS
k.

Hence, PA is defined independently of a choice of eigenbasis V given that it is a polynomial
whose coefficients are independent of V . This concludes the proof as A(S) = PA(S).

Graph filters are therefore uniquely specified by a choice of shift operator S and a choice
of transfer function A which defines their frequency response. Note also that following Theo-
rem 1.3.1, all graph filters can be seen as matrix polynomials, even though the associated transfer
function is not derived from a polynomial function. The action of a graph filter A(S) on a signal
can then be expressed as:

yi = [A(S)x]i =
K∑
k=0

ak[Skx]i =
K∑
k=0

ak

n∑
j=1

[Sk]ijxj =
n∑
j=1

xj

K∑
k=0

ak[Sk]ij ,

where K ≤ n− 1 is the actual order of the polynomial representing A. Hence, the value of the
filtered signal at a vertex i is a linear combination of the values taken by the input signal.

More precisely, recall that the non-zero pattern of the iterates of the shift operator reflects
the existence of a path between pairs of vertices. In particular, whenever there is no path of
length lesser or equal to K between two vertices i and j, all elements [Sk]ij , 0 ≤ k ≤ K are zero
and therefore xj is not used to compute the value of the filtered signal at vertex i. Formally this
means that the value of the filtered signal at a vertex i is a linear combination of the values of
the input signal within a K-hop neighborhood around i.

We now circle back to our ongoing analogy with classical signal processing. Graph filters are
the counterparts for graph signals of the notion of linear and time-invariant (LTI) operator de-
fined for continuous 1D signals. Both operators are linear maps and commute with translations.
Indeed, for any graph signal x, any graph filter A(S) and any vertex i ∈ V, the translation
operator T (i) with respect to i satisfies:

T (i)A(S)x = V Diag
(
V Hδ(i)

)
Diag (A(λ1), . . . , A(λn))V Hx = A(S)T (i)x .

Hence translating a filtered signal is the same as filtering the translated input. This is what
defined time invariance for LTI operators on time signals.
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Note that the same representation of LTI operators by a convolution product holds for graph
filters. Indeed, it is straightforward to see that:

A(S)x = a ∗ x where a = V


A(λ1)

...
A(λn)

 = GFT−1



A(λ1)

...
A(λn)


 ,

where the convolution product and the vector a are defined using the same eigenbasis V .

1.4 Stochastic graph signals
Now that the framework for studying (deterministic) graph signals is in place, we turn to its
generalization to account for random graph signals. The aim is to provide some notions and tools
that will help us work with stochastic processes defined on the vertices of a graph. The notions
introduced will be compared to the existing literature on stochastic graph signal processing
throughout the section.

In this section, G denotes a simple undirected n-graph and S denotes a shift operator of G
following Assumption 1.2.

1.4.1 Stationary stochastic graph signals
A graph signal on a n-graph G is called stochastic if it assigns to each vertex of G a random
variable. Stochastic graphs signals (SGS) on G can therefore be identified with random vectors
of Cn. As such, the first two moments of a SGS X are:

� its expectation, which is the vector of Cn whose elements are the expectations of the
elements of X: [E[X]]i = E[Xi],

� its covariance matrix, which is the n × n matrix whose element (i, j) is the covariance
between Xi and Xj : Var[X] = E

[
(X − E[X])(X − E[X])H

]
.

Assumption 1.3. Unless otherwise specified, the SGS considered in this work are zero-mean,
i.e. E[X] = 0.

Based on this assumption, which will be discussed in Section 1.4.4, we introduce the notion
of stationary graph signal that we will use in this work. This definition will be motivated
in Section 1.4.2 and compared to existing definitions of stationary graph signals found in the
literature in Section 1.4.3.

Definition 1.4.1. Let S be a shift operator of G. A zero-mean SGS X on G is called S-
stationary if its covariance matrix Var[X] is a graph filter with a non-negative transfer function
fX : R→ R+:

Var[X] = fX(S) .

The transfer function defining the covariance matrix of a S-stationary SGS is called the spectral
density of the SGS.

As defined, the notion of stationarity depends on the shift operator S: the same SGS can
therefore be stationary or not according to the choice of shift operator. Of particular interest
however are white signals, that generalize to graph signals the notion of white noise and are
“shift”-independent.

Example 1.4.1 (White signal). A white signal on G is a zero-mean SGSW whose components
are independent zero-mean unit-variance random variables. Hence, W is a signal such that
E[W ] = 0 and Var[W ] = In.

White signals are always S-stationary, for any choice of shift operator S. The spectral
density fW of a white signal is the function satisfying fW (λ) = 1 for all λ ∈ R.
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Proposition 1.4.1. The GFT X̃ = GFT[X] of a zero-mean S-stationary graph signal X with
spectral density fX is a zero-mean SGS with uncorrelated components. Its covariance matrix is
the diagonal matrix defined by:

Var[X̃] = V HVar[X]V =


fX(λ1)

. . .

fX(λn)

 .

Proof. By linearity of the expectation, X̃ is zero-mean. And Var[X̃] = Cov[V HX,V HX] =
V HVar[X]V = V HfX(S)V which yields the result by definition of the graph filter fX(S).

Following the definition of the GFT, a zero-mean S-stationary graph signal X with spectral
density fX can be decomposed as:

X =
n∑
i=1

X̃iv
(i) ,

where:

� The signals v(1), . . . ,v(n) are deterministic and pairwise orthogonal (with respect to the
graph scalar product).

� The weights X̃1, . . . , X̃n are random and pairwise uncorrelated variables with variances
fX(λ1), . . . , fX(λn).

This decomposition is therefore the GSP analogous of the Karhunen–Loève expansion of stochas-
tic processes.

Remark 1.4.1. If fX cancels out at a given eigenvalue λi then the corresponding weight
Xi is a zero-mean variable with a 0 variance. It is therefore a deterministic constant set to
0, meaning that the corresponding SGS has no component along v(i). More generally, the
Karhunen–Loève expansion of a SGS X with spectral density fX therefore writes:

X =
∑

i∈[[1,n]]:fX(λi)6=0

X̃iv
(i)

In particular, band-limited SGS can be defined by considering spectral densities that cancel
out across a given bandwidth.

As defined, the image of a S-stationary signal after application of a graph filter also defined
through S, is S-stationary.

Theorem 1.4.2. Let X be a S-stationary SGS with spectral density fX and let h(S) be a graph
filter with transfer function h. Then the filtered signal Y = h(S)X is S-stationary with spectral
density λ 7→ h(λ)2fX(λ).

Proof. Clearly, Y is also a zero-mean SGS. Its covariance matrix is therefore given by:
Var[Y ] = E[Y Y H ] = E[h(S)XXHh(S)H ] = h(S)E[XXH ]h(S)H . Using the fact that
h(S) is a Hermitian matrix gives Var[Y ] = h(S)Var[X]h(S) = h(S)fX(S)h(S) and using
the fact that all these graph filters are related to the same shift operator yields: Var[Y ] =
(hfXh)(S) = (h2fX)(S).

A defining property of S-stationary signals is now introduced.
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Theorem 1.4.3. A (zero-mean) SGS X is S-stationary with spectral density fX iif there exists
a white signal W such that:

X =
√
fX(S)W .

Proof. Let X be a zero-mean S-stationary SGS with spectral density fX . Without loss of
generality, let us assume that for a given p ∈ [[0, n]], f(λ1) = 0, . . . , f(λp) = 0 where by
convention the case p = 0 corresponds to the case where all f(λi) are non-zero. Let X̃ be the
GFT of X. Let W denote the zero-mean SGS defined by:

W = V

 0p,p
Dn−p

 X̃ +

 εp

0n−p

 ,

whereDn−p is a (n−p)×(n−p) diagonal matrix with entries
(

1√
fX(λp+1)

, . . . , 1√
fX(λn)

)
and

ε is a vector with p independent zero-mean unit-variance components. Then, W is a white
signal and satisfies

√
fX(S)W = X.

The second implication of the proposition is a direct consequence of Theorem 1.4.2.

1.4.2 Justification of the definition of stationarity
As defined, the notion of S-stationarity for graph signals allows to draw direct parallels with the
notion of weak stationarity that is defined for stochastic processes on Rd.

Spectral representation

The notion of measure can be extended to the Graph Signal Processing framework as follows.
A graph measure on the frequency domain is defined as a measure on the power set P(Λ) of the
(finite) discrete set Λ = {λ1, . . . , λn} composed of the graph Fourier frequencies of S. A graph
measure µ can be entirely characterized by the knowledge of the value of the measure of each
singleton composing Λ. Then, the measure of any subset of P(Λ) is simply defined as:

∀S ∈ P(Λ), µ(S) =
∑

i∈[[1,n]]:λi∈S

µ(λi) .

Hence a graph measure µ can be represented by the n-vector µ = (µ(λ1), . . . , µ(λn))T , which
can be seen as signal on the graph frequency domain.

Remark 1.4.2. Similarly a graph measure on the vertex domain is defined as a measure on
the power set P(V) of the (finite) discrete set V composed of the vertices of the graph.

Proposition 1.4.4. Let X be a S-stationary SGS with spectral density fX . Then there exists
a random graph measure µX such that:

X = GFT−1 [µX ] = GFT−1




µX(λ1)
...

µX(λn)


 ,

where µX satisfies:

� ∀S ∈ P(Λ), E[µX(S)] = 0.

� The positive graph measure defined from the spectral density fX on Λ satisfies: ∀S ∈ P(Λ),
Var[µX(S)] = fX(S).

� ∀S1, S2 ∈ P(Λ) such that S1 ∩ S2 = ∅, Cov[µX(S1), µX(S2)] = 0.
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Proof. Denote µX the measure defined by :

µX = GFT [X]

Clearly GFT−1 [µX ] = X. According to Proposition 1.4.1 the vector µX is a zero-mean
random vector and has a diagonal covariance matrix with entries (fX(λ1), . . . , fX(λn)). Hence,
the corresponding graph measure is also zero-mean and satisfies ∀S1, S2 ∈ P(Λ),

Cov[µX(S1), µX(S2)] =
∑

i∈[[1,n]]λi∈S1

∑
j∈[[1,n]]:λj∈S2

Cov[µ(λi), µ(λj)]

=
∑

k∈[[1,n]]:λk∈S1∩S2

fX(λk) .

On one hand, if S1 ∩ S2 = ∅, Cov[µX(S1), µX(S2)] = 0. On the other hand, the spectral
density fX defines a positive graph measure that satisfies ∀S ∈ P(Λ), Var[µX(S)] = fX(S).

The conventions chosen to define both notions of Fourier transform and stationarity for
graph signals yield a direct correspondence with the framework of weakly stationary processes.
Indeed, in both cases stationary signals can be represented as the inverse Fourier transform of
a zero-mean random measure which is uncorrelated over disjoint sets and whose variance is a
deterministic positive (finite) measure. Moreover, in both frameworks, the spectral density of
the signal actually corresponds to the density of the spectral measure.

Convolution representation

Similarly as weakly stationary processes, a S-stationary SGS can be obtained by convolving a
white input with a kernel.

Proposition 1.4.5. A (zero-mean) SGS X is S-stationary with spectral density fX iif there
exists a white signal W such that:

X = k ∗W , where k = GFT−1



√
fX(λ1)
...

√
fX(λn)


 .

Proof. Following the notations of the proposition and the definition of the convolution product
of graph signals,

X = V
((
V Hk

)
�
(
V HW

))
= V



√
fX(λ1)
...

√
fX(λn)

� (V HW
)


= V Diag
(√

fX(λ1), . . . ,
√
fX(λn)

)
V HW =

√
fX(S)W ,

which proves the result according to Theorem 1.4.3.

As it was the case with the framework of weakly stationary processes, stationary signals with
a known spectral density are obtained by convolving white input (white noise or white graph
signal) with a kernel function defined as the inverse Fourier transform of the square-root of the
spectral density.

In terms of covariance, the next proposition provides a characterization of S-stationary SGS,
based on a convolution and similar to the one presented in Remark 1.2.2 for weakly stationary
random fields.
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Proposition 1.4.6. A (zero-mean) SGS X is S-stationary with spectral density fX iif its
covariance satisfies:

Cov[Xi, Xj ] = [C ∗ δi]j , (1.10)

where C = GFT−1




fX(λ1)
...

fX(λn)


 and δi is the Dirac signal at vertex i, that assigns the value

1 to vertex i and 0 to all other vertices.

Proof. Denote fX(λ) = (fX(λ1), . . . , fX(λn))T . Then,

[C ∗ δi]j =
[
V
(
fX(λ)�

(
V Hδi

))]
j

= [fX(S)δi]j = [Var[X]δi]j
= [Cov[Xi,X]]j = Cov[Xi, Xj ] .

The graph spectral density plays the same role as the spectral density of weakly stationary
random fields. Indeed, the covariance between a reference vertex i and any other vertex j can
be expressed as the convolution between a covariance "signal" C, defined as the inverse graph
Fourier Transform of the spectral density and the Dirac signal at vertex i.

Remark 1.4.3. In their work, Perraudin and Vandergheynst (2017) actually use Equa-
tion (1.10) to define their notion of stationarity of graph signals, called graph wide-sense
stationarity, in the particular case where the shift operator is the Graph Laplacian. It is
therefore equivalent to our notion of S-stationarity according to Proposition 1.4.6. They mo-
tivate their choice by explaining that they obtain a covariance that is defined by a global
kernel function (our spectral density) and locally adapted to the structure of the graph to de-
rive covariance between vertices using a convolution with a localized signal, the Dirac signal.

1.4.3 Comparison with other definitions of stationarity
In this section, we compare our definition of a stationary SGS, given in Definition 1.4.1 to existing
definitions of stationarity, and discuss the underlying assumptions made by choosing ours.

Comparison with the work of T. Espinasse

In his work, Espinasse (2011) defines a notion of stationarity for a stochastic process indexed by
the vertices of graph. It is based on the notion of invariant.

Definition 1.4.2. Let Sn be the set of all permutations of {1, . . . , n} and for σ ∈ Sn denote Pσ
the permutation matrix defined by [Pσ]ij = δiσ(j). In particular, Pσ is invertible and its inverse
is P−1

σ = Mσ−1 .
An invariant is a function Φ : Dom(Φ) ⊂Mn(R)→Mn(R) such that:

� ∀A ∈ Dom(Φ), AT ∈ Dom(Φ) and Φ(AT ) = Φ(A)T

� ∀A ∈ Dom(Φ), ∀σ ∈ Sn, P−1
σ APσ ∈ Dom(Φ) and Φ(P−1

σ APσ) = P−1
σ Φ(A)Pσ

The order of an invariant Φ is the smallest integer r ≥ 0 such that ∀A ∈ Dom(Φ), ∀i, j ∈ [[1, n]],
the value of [Φ(A)]ij only depends on the elements {Akl : k, l are within r hops from either i or
j}.

The notion of stationary SGS is then defined as follows.

Definition 1.4.3. [(Espinasse, 2011, Definition 3.7.3)] A SGS X on a graph G with shift
operator S is stationary of order r if its covariance matrix Var[X] satisfies:

� Var[X] is positive definite.
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� There exists an invariant Φ of order r such that:

Var[X] = Φ(S) .

Similarly to the definition we introduced, this definition describes stationarity with respect
to a choice of shift operator. Actually, the definition we provided falls into the scope of the
definition proposed by Espinasse (2011). Simply notice that any polynomial of degree r is an
invariant of order r for the set of symmetric matrices.

This definition ensures that the covariance between two pairs of vertices associated to two
“large-enough” isomorphic parts of the graph stays the same, as stated by the following propo-
sition.

Proposition 1.4.7. Let (i1, j1) and (i2, j2) be two pairs of vertices of a graph G belonging to
two isomorphic subsets V1 and V2 of vertices of G and such that i2 (resp. j2) is the image of i1
(resp. j1).
Then for any process X stationary of order r in the sense of Definition 1.4.3, if V1 includes all
vertices within r hops of either i1 or j1, then

Cov[Xi1 , Xj1 ] = Cov[Xi2 , Xj2 ] .

Proof. Let us denote W the adjacency matrix of G. Following Corollary 1.1.2, there exists
a permutation σ such that σ(i1) = i2, σ(j1) = j2 and ∀i, j ∈ V∞, Wij = Wσ(i)σ(j) =
[P−1
σ WPσ]ij .
Then, given that W is shift operator, it follows from Definition 1.4.3 that

[Var[X]]i2j2 = [Φ(W )]i2j2 = [Φ(W )]σ(i1)σ(j1) = [P−1
σ Φ(W )Pσ]i1j1 .

And using the fact that Φ is an invariant,

[Var[X]]i2j2 = [Φ(P−1
σ WPσ)]i1j1 .

Hence, given that Φ is of order r, [Var[X]]i2j2 only depends on the elements of k, l of P−1
σ WPσ

that are within r hops of (i1, j1). If V1 is large enough to include these vertices, then these
elements are equal to those of W and therefore,

[Var[X]]i2j2 = [Φ(W )]i1j1 = [Var[X]]i1j1 .

This result acts like a generalization for graphs of the invariance of the covariance of a
stationary process by translation and symmetry, both being, similarly to graph isomorphisms,
bijective transformations that preserve the structure of the objects they are applied to. This
property is kept with the definition of S-stationary we introduced as it is a particular case of
Definition 1.4.3.

Comparison to the work of Marques et al.

In their work, Marques et al. (2017) provide three definitions of weak stationarity for a SGS.

Definition 1.4.4. [(Marques et al., 2017, Definitions 1 and 2)] Let G be a n-graph with shift
operator S. A (zero-mean) SGS X is weakly stationary if it satisfies one the following require-
ment:

1. X can be written as X = h(S)W for a graph filter h(S) and a white signal W .

2. Var[X] and S are simultaneously diagonalizable.

3. For any integers a, b, c, d ≥ 0 such that a+ b = c+ d:

E
[
(SaX)

(
SbX

)T ] = E
[
(ScX)

(
SdX

)T ]
,

or equivalently,
SaVar[X]Sb = ScVar[X]Sd .
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Note that we proved in Theorem 1.4.3 that Requirement 1 is actually equivalent to our
definition of S-stationary, thus linking our notion of stationarity to that of this new definition.

Marques et al. (2017) show that Requirements 2 and 3 are in fact equivalent, and that
Requirement 1 implies 2 and 3. There is no equivalence between 1 and 2 as Requirement 1
implicitly imposes that the eigenspaces of S and Var[X] must be the same, which is not generally
the case if Var[X] and S are just simultaneously diagonalizable. Indeed, let v(1) and v(2) be
two orthogonal eigenvectors belonging to the same eigenspace of S, associated to a duplicated
eigenvalue λ. Then for Requirement 1 to be satisfied, the eigenvalues of Var[X] associated to
v(1) and v(2) must also be equal (to h2(λ)) and therefore v(1) and v(2) are also in the same
eigenspace of Var[X].

Hence, defining stationarity through this Requirement 1 (or equivalently using our notion of
S-stationarity) yields a more restrictive notion than using the other two requirements. However,
both definitions become in fact equivalent when S has no duplicated eigenvalue.

Besides, defining stationarity using Requirement 1 allows to keep the properties given by
Requirements 2 and 3. In particular, Requirement 3 generalizes the invariance of the correlation
operator by application of shifts by imposing that as long as the total number of times that a
signal is shifted is constant, the covariance stays the same.

Comparison to the work of B. Girault

In his work, Girault (2015a) bases the definition of stationarity on an invariance of the covariance
by translation, similarly as in Requirement 3 of Definition 1.4.4. But translations are now defined
as the application of the following (complex) operator to a graph signal:

TS = exp
(
−i π
√
ρS

√
S

)
,

where only symmetric positive semi-definite shift operators S are considered and ρS is an upper
bound on the eigenvalues of S.

Contrary to the definitions based on the shift operator or Dirac signals, this definition has
the particularity to conserve the energy of a graph signal which is defined as its norm. It is
therefore an isometric operator. Stationarity is then defined as follows:

Definition 1.4.5. [(Girault, 2015b, Definition 3)] Let G be a n-graph with shift operator S. A
(zero-mean) SGS X is wide-sense stationary if its covariance matrix satisfies

Var[X] = Var[TSX] .

Girault (2015b, Proposition 1) proves that wide-sense stationarity is equivalent to Require-
ment 2 of Definition 1.4.4. The same comparison with the notion of S-stationarity therefore
holds: both definitions are equivalent only if the eigenvalues of S are distinct. In the general
case, S-stationarity implies Definition 1.4.5 and therefore yields a more restrictive notion of
stationarity.

1.4.4 A few words on the mean
Up until now, only zero-mean SGS were considered, i.e. SGS such that their mean vector is
zero. However, it does not constitute a requirement for random fields to be weakly stationary.
Indeed, for a random field to be stationary, its mean function should be constant. The natural
counterpart of this requirement for graph signals would be to impose that the mean vector
of a stationary SGS should be constant, meaning that there exists a constant m such that
the expectation of a stationary SGS Y at any vertex i is E[Yi] = m. Hence a S stationary
SGS Y would be defined as the sum of a constant vector m1 and a stationary zero-mean SGS
X = Y − E[Y ] = Y −m1.

If we were to define stationary SGS like this, we would lose some of their properties, first of
which being the preservation of stationary after filtering, as stated in Theorem 1.4.2. Indeed,
the mean of the filtered signal h(S)Y is mh(S)1 which is a constant signal if and only if 1 is an
eigenvector of S. This remark motivates the following definition of S-stationary for signals that
may not be zero-mean.



48 1. Deterministic and stochastic graph signal processing

Definition 1.4.6. A SGS Y is called S-stationary if there exists an constant m such that:

Y −mv is a zero-mean S-stationary SGS,

where v is an eigenvector of S.

Note that whatever the choice of eigenvector v of S, Theorem 1.4.2 is satisfied. Besides,
in the particular case where S is the graph Laplacian, the constant signal 1 is an admissible
candidate for v and therefore the mean of a stationary SGS can be considered as constant across
the vertices.

Conclusion
In this chapter, we presented the mathematical framework we will use to work with variables
indexed by the vertices of a (simple undirected) graph. Both the cases of deterministic and
random graph signals were considered, and their respective frameworks of study were built using
analogies with respectively classical signal processing theory and stochastic processes theory.

A key notion to keep in mind is that of shift operators, which are matrices aiming at repre-
senting the structure of the graph on which the signals are defined. These matrices are used to
define all the key tools pertaining to both deterministic and stochastic graph signal processing.
Indeed, on one hand, the graph Fourier transform but also convolutions and filtering of graph
signals were all defined while relying on the eigendecomposition of a shift operator. On the
other hand, the definition of stationary stochastic graph signals was also entirely based on a
shift operator. The next chapter introduces practical algorithms, once again based on the shift
operator, that will be used in the rest of our work.

Finally, we recall the working assumptions that will be assumed for in the remainder of this
work (unless specified otherwise).

Assumption 1.1. In this work, only connected simple undirected finite graphs are considered.

Assumption 1.2. Only real, symmetric shift operators S are considered.
Consequently, S is diagonalizable by a unitary matrix and has real eigenvalues. Such a decom-
position is denoted as follows:

S = V


λ1

. . .

λn

V H ,

where

� λ1 ≤ · · · ≤ λn denote the real eigenvalues of S, ordered in ascending order,

� V =
[
v(1)| . . . |v(n)] is a unitary matrix (i.e. V −1 = V H)) whose columns v(1), . . . ,v(n)

form an orthonormal basis of Cn composed of eigenvectors of S such that:

∀i ∈ [[1, n]], Sv(i) = λiv
(i) .

Assumption 1.3. Unless otherwise specified, the SGS considered in this work are zero-mean,
i.e. E[X] = 0.
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Résumé
Le but de ce chapitre est d’apporter au lecteur une boite à outils d’algorithmes de traitement

du signal sur graphe. Ces algorithmes sont tous basés sur des opérations de filtrage de signaux
sur graphe. Ainsi, nous commençons par présenter et comparer différentes méthodes (exactes ou
approchées) de filtrage de signaux sur graphe afin de motiver le choix qui est fait dans ce travail de
ne recourir qu’à l’une d’entre elles: le filtrage par approximation polynômiale de Tchebychev (ou
plus simplement “filtrage de Tchebychev”). Nous exposons ensuite l’utilisation de cet algorithme
pour calculer trace, histogramme de valeur propres, log-déterminant et inverse de fonctions de
matrices.

Introduction
In the previous chapter, the mathematical framework surrounding graph signal processing was
put in place, while following a strict analogy with continuous and discrete signal processing.
In particular, the notion of signal filtering on a graph G was introduced while relying on the
definition of a matrix representation of G through a matrix called shift operator.

Much like in classical processing, filtering operations play a key role when processing graph
signals. As we will later see in Chapters 3 and 4, algorithms aiming at simulating and estimating
graph signals heavily rely on being able to compute efficient graph filtering operations. By
efficient, we mean that the filtering algorithm should minimize both computational and storage
costs when operated. The aim of this chapter is to introduce an approximate graph signal
filtering algorithm, that we call Chebyshev filtering, and that will be used throughout the rest
of this work.

The Chebyshev filtering algorithm has already been used for graph filtering purposes in the
graph signal processing community (Hammond et al., 2011; Susnjara et al., 2015), and before that
to compute approximations of matrix functions (Higham, 2008). The aim of this chapter really
is to provide a rigorous justification of why it is the most appropriate algorithm in our context
of application using arguments based on approximation theory and computational complexity,
and also comparisons with other possible choices of algorithms1.

We refer the reader to Appendix B for recalls on the theory of function approximation and
interpolation, which are instrumental to graph filtering operations. In the first section of this
chapter, we present and compare different approaches to graph filtering in order to motivate
the use of Chebyshev filtering. This last algorithm is then introduced. Finally, applications of
Chebyshev filtering to the computation of characteristics of graph filters are presented. They
will play a key role when dealing with the inference of stochastic graph signals.

Throughout this chapter, let h : R → R be a transfer function and h(S) be the associ-
ated graph filter with respect to a symmetric shift operator S ∈ Mn(R) defined according to
Assumption 1.2.

2.1 Exact algorithms for graph filtering
Let x ∈ Rn denote a real graph signal on a graph associated with S. Our goal is to filter x
by the graph filter defined by h and S, or equivalently evaluating the product h(S)x. In this
section, algorithms are derived to compute this product exactly. Two assumptions are made:

� Evaluating h on any real value is possible and achievable with a negligible computational
complexity.

� The matrix S and the vector x are known and stored in memory.

The computational complexity of each proposed algorithm is derived as an order of magnitude
for the count of floating-point operations performed by the algorithm. The memory requirements
are also evaluated, and are defined as the amount of memory needed by the algorithm to store
temporary variables used by the algorithm. They do not take into account the space used to
store S and x.

1Note however that we omit in this chapter any comparison with methods based on the Lanczos algorithm
(Golub and Van Loan, 1996b, Chapter 9), as this case will be treated later in Section 3.3.
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2.1.1 Filtering via eigendecomposition
A first solution to compute h(S)x consists in getting back to the definition of graph filters.
Assuming that an orthonormal eigenbasis matrix V and the eigenvalues λ1, . . . , λn of S have
been computed and stored, the vector h(S)x can be expressed as

h(S)x = V Diag(h(λ1), . . . , h(λn))V Hx .

Computing the product h(S)x can be done in three steps: compute a graph Fourier transform
(GFT) of x, multiply the components of this vector by h(λ1), . . . , h(λn) and take the inverse
GFT of the result. This first approach is summed up by Algorithm 2.1.

Algorithm 2.1: Graph filtering via eigendecomposition.
Input: Shift operator S ∈Mn(R). Vector x ∈ Rn. Transfer function h : R→ R.
Output: The product y = h(S)x ∈ Rn.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: y = x;

1. Full eigendecomposition of S: Use a diagonalization algorithm to compute the n
eigenvalues λ1, . . . , λn and an orthonormal eigenbasis V ∈Mn(C) of S, and store them.

2. Graph Fourier transform: y ← V Hy.

3. Frequency scaling: Compute a component-wise multiplication with the impulse response
vector (h(λ1) . . . h(λn))T : ∀i ∈ [[1, n]], yi ← h(λi)yi.

4. Inverse graph Fourier transform: y ← V y

Return y.

The computational bottleneck of this approach resides on its first step: the full diagonal-
ization of the shift operator S. Indeed, on one hand, the matrix V (or at least subroutines
allowing to compute the products between V and a vector and between V T and a vector) must
be known to compute steps 2 and 4. On the other hand, all the eigenvalues of S must be known
to compute the impulse response of the filter needed in step 3 from the expression of the transfer
function h.

This full diagonalization of a n × n matrix is an expensive operation, computationally and
memory-wise. O(n3) operations are required to compute the full set of eigenpairs of a real
symmetric matrix, using for instance the Jacobi method or the Householder tridiagonalization
approach implemented in the LAPACK library (Press et al., 2007). And a storage space of order
O(n2) must be available to store the n vectors of size n that compose the eigenbasis V and the
n eigenvalues. Such requirements become intractable as n grows as both the computational cost
and the memory requirements would explode.

2.1.2 Particular case: Polynomial transfer function
A second solution for this graph filtering problem is based on the observation that in the par-
ticular case where the transfer function h is a polynomial of degree K < n with coefficients
a0, . . . , aK ∈ R, the corresponding graph filter h(S) is a matrix polynomial defined by:

h(S) =
K∑
k=0

akS
k .

Computing the product h(S)x can be done iteratively using Horner’s scheme, as presented in
Algorithm 2.2.

Algorithm 2.2 only involves products between S and various vectors: no costly factorization
of the shift operator has to be applied first. In general, the computational cost of this algorithm
will therefore be of order O(Kn2) i.e. K times the cost of a matrix-vector product. However
in the case where S is sparse, the cost of the matrix-vector product can be reduced to O(dn)
where d� n is the mean number of non-zero entries of S per row, thus yielding a graph filtering
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Algorithm 2.2: Graph filtering with a polynomial transfer function.
Input: Shift operator S ∈Mn(R). Vector x ∈ Rn. Coefficients a0, . . . , aK ∈ R.

Output: The product y =
(

K∑
k=0

akS
k

)
x ∈ Rn.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: y = aKx;
if K > 0 then

for k from K − 1 to 0 do
y ← akx+ Sy;

Return y.

algorithm with computational complexity O(Kdn). As for the storage requirements of this
algorithm, they are of order n to store the temporary vector y. Hence, they actually depend
neither on the shift operator, nor on the transfer function (assuming both are already known
and/or stored).

This last property is particularly interesting when considering the scalability of the algorithm:
as long as S and small (fixed) number of vectors can be stored, Algorithm 2.2 can be used for
graph filtering. This was not the case with Algorithm 2.1. Moreover, if polynomials with degree
K � n are considered, the increase of computational costs with the size n can be kept under
control as they grow at most quadratically with n. The same growth rate is cubic when using
Algorithm 2.1.

2.1.3 General case: Polynomial interpolation of graph filters
What about the case when h is not a polynomial function? According to Theorem 1.3.1, any
graph filter h(S) can be expressed as a filter whose transfer function is a polynomial Ph of degree
at most n− 1. Computing the product h(S) could therefore be done using Algorithm 2.2 with
Ph. This approach supposes that the analytical expression of Ph was first derived from the sole
knowledge of h and S. This is possible as Ph is the unique polynomial of degree at most n− 1
interpolating h at eigenvalues λ1, . . . , λn ∈ R of S.

Hence, to find Ph, the full set of eigenvalues of λ1, . . . , λn of S must first be computed. This
represents once again a rather costly step as O(n3) operations are required. However, contrary
to the full diagonalization approach of Algorithm 2.1, there is no need to compute and store the
eigenbasis of S: only the eigenvalues are needed. Less operations are in fact needed (even though
the number is still of order O(n3)) and the storage space needs are brought down to O(n) using
for instance a Lanczos method for the computation of eigenvalues (Press et al., 2007).

Once the eigenvalues λ1, . . . , λn of S are computed, the interpolating polynomial Ph can be
obtained using one of the methods presented in Appendix B.1.

Keeping in mind that the expression of Ph is computed to be used in Algorithm 2.2, the
Vandermonde approach seems to be the way to go as it provides directly the monomial coefficients
of Ph. However a linear system that involves a (full) Vandermonde matrix of size n must be
solved to compute these coefficients, which can be done in O(n2) operations while requiring a
storage space of O(n). Besides, this system is known to be numerically unstable as it becomes
more and more ill-conditioned as n grows (Atkinson, 1989).

This last drawback is no longer a concern if the Newton approach is used. Indeed, computing
the coefficients of Ph in the Newton polynomial basis can be done by either solving the triangular
system in Equation (B.3) or using a divided-differences approach (Atkinson, 1989). Both algo-
rithms are numerically stable and provide an exact solution in O(n2) operations while requiring
storage needs of order O(n). Then, evaluating the product Ph(S)x can be done directly with the
Newton expansion of Ph by slightly modifying Horner’s scheme of Algorithm 2.2, as presented
in Algorithm 2.3.

Finally, one can notice that the Lagrange approach offers the desirable advantage to require
no additional computations to get an expression for Ph. However, evaluating the product Ph(S)x
using Equation (B.4) is less straightforward than with the other two approaches. Indeed, com-
puting the monomial coefficients of Ph from Equation (B.4) in order to use Algorithm 2.2 requires
O(n3) operations as each term of the sum must be expanded first. A less expensive alternative
consists in using Equation (B.4) directly to compute the product Ph(S)x. Indeed, each term
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Algorithm 2.3: Graph filtering with a Newton polynomial transfer function.
Input: Shift operator S ∈Mn(R). Vector x ∈ Rn. A family of interpolation points

λ1, . . . , λK defining a Newton basis {ηk}1≤k≤K−1. Coefficients c0, . . . , cK−1 ∈ R.

Output: The product y =
(
K−1∑
k=0

ckηk(S)
)
x ∈ Rn.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: y = aK−1x;
if K > 1 then

for k from K − 2 to 0 do
y ← akx+ Sy − λky;

Return y.

of the sum can be computed using n nested multiplications, much like Horner’s scheme. The
resulting method is outlined in Algorithm 2.4. However, it comes at a computational cost of
order O(n2) as n products of n (shifted) monomials must be evaluated. On the other hand,
storage needs of only O(n) are required.

Algorithm 2.4: Graph filtering with a Lagrange polynomial transfer function.
Input: Shift operator S ∈Mn(R). Vector x ∈ Rn. A family of interpolation points

λ1, . . . , λK defining a Lagrange basis {lk}1≤k≤K . Coefficients h1, . . . , hk ∈ R.

Output: The product y =
(

K∑
k=1

hklk(S)
)
x ∈ Rn.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: u = 0, y = 0;
for k from 1 to K do

u← x ;
for j from 1 to K, j 6= k do

u← Su− λku;
y ← y + hku

Return y.

2.1.4 Graph filtering via polynomial interpolation
Algorithm 2.5 sums up the general approach to graph filtering using interpolating polynomials.
First, the full set of eigenvalues of S is computed. Then, an expression of the polynomial
interpolating h at these eigenvalues is calculated. Finally, depending on the expression chosen
at the previous step, the product Ph(S)x is computed using an iterative algorithm requiring a
number of operations proportional to the size of the vectors n and the degree of the polynomial.

Algorithm 2.5: Graph filtering via polynomial interpolation.
Input: Shift operator S ∈Mn(R). Vector x ∈ Rn. Transfer function h : R→ R.
Output: The product y = h(S)x ∈ Rn.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: y = x;

1. Eigenvalues of S: Use a diagonalization algorithm to compute and store the n
eigenvalues λ1, . . . , λn of S.

2. Compute an expression of the polynomial Ph interpolating h at λ1, . . . , λn using either
the Vandermonde, the Newton or the Lagrange approach.

3. According to the expression of Ph chosen at step 2, compute the product y = Ph(S)x
using either Algorithm 2.2, Algorithm 2.3 or Algorithm 2.4.

Return y.
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Polynomial Full Polynomial interpolation
case Diagonalization Vandermonde Newton Legendre

Description Algorithm 2.2 Algorithm 2.1 Algorithm 2.5

Eigendecomposition - O(n3) O(n3)
Polynomial coefficients 0 - O(n2) O(n2) 0
Product computations O(Kdn) O(n2) O(Kdn) O(Kdn) O(dn2)

Storage needs O(n) O(n2) O(n) O(n) O(n)

Table 2.1: Comparison of exact algorithms for graph filtering of a vector of size n. For methods
involving a polynomial, its degree is denoted K (except for the Legendre approach, which has a

polynomial of degree n).

2.1.5 Comparison of exact graph filtering algorithms
Table 2.1 provides a comparison of the computational and storage costs associated to the exact
graph filtering algorithms presented up until now. The full diagonalization method of Algorithm
2.1 is compared to the polynomial interpolation method of Algorithm 2.5 and its three variants
(namely, the choice of the Vandermonde, the Newton or the Legendre approach to express the
interpolating polynomial).

The main computational bottleneck shared by these methods is the diagonalization of the
matrix S, which scales cubically with the size of the vectors n. Once this diagonalization step is
performed, the full diagonalization approach offers the fastest way to evaluate the product h(S)x.
Indeed, polynomial interpolation approaches require either the computation of the coefficients of
the polynomial or a tedious evaluation by nested multiplications. On the other hand, polynomial
interpolation approaches require much less storage space than the full diagonalization approach
given that the eigenbasis need not to be stored.

The particular case where the transfer function is polynomial yields the lowest overall com-
putational and storage requirements. Contrary to the polynomial interpolation approach, there
is no additional cost due the computation of interpolation points or more generally the diago-
nalization of S. This motivates a new approach to solving the efficient graph filtering problem,
namely finding a polynomial Ph such that:

� Computing its expression will not require any costly preliminary operations as it is the
case with interpolation polynomials.

� Computing the product Ph(S)x can be done using an iterative scheme similar to those
introduced in Algorithms 2.2 and 2.3.

� The products approximate well the product h(S)x in some sense to be defined.

Hence we aim at replacing the polynomial interpolation of h by its polynomial approximation,
hoping that the loss of accuracy will be compensated by the gains in computational efficiency of
the algorithm. This approach is presented in the next section.

2.2 Approximate algorithm for graph filtering: the Cheby-
shev algorithm

Following the considerations from the previous section, the idea is now to replace the costly exact
computation of the product h(S)x by that of a polynomial filter Ph(S)x such that Ph(S)x ≈
h(S)x in some sense. In particular, Ph should be computed with minimal effort compared to
the diagonalization step that was preliminary to all the exact methods.

2.2.1 Derivation of the algorithm
The steps leading to the Chebyshev filtering algorithm are now outlined.
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Computation of the approximation error

Let us first focus on the discrepancy between h(S)x and its approximation by Ph(S)x, also
referred to as approximation error. Both being vectors of Rn, it is naturally measured by the
distance separating them in Rn. This distance can be defined by any norm on Rn. Actually, the
choice of a norm is not important given that they are all equivalent in finite dimensional spaces,
i.e. for any norms N1,N2 defined on Rn, there exists two constants C1, C2 > 0 such that

∀x ∈ Rn, C1N1(x) ≤ N2(x) ≤ C2N1(x) .

In particular, for the Euclidean norm, the approximation error is:

‖h(S)x− Ph(S)x‖22 = ‖ (h(S)− Ph(S))x‖22 = xT (h(S)− Ph(S))2
x

= xT (h(S)− Ph(S))2
x

xTx
× (xTx) = R((h(S)− Ph(S))2

,x)‖x‖22 ,

where the notation R(M ,x) denotes the Rayleigh quotient of a Hermitian matrix M and a
vector x (cf. Appendix A.2.1). Given that both h(S) and Ph(S) are graph filters with respect
to the same shift operator S, it is straightforward to check that (h(S)− Ph(S))2 is also a graph
filter with respect to S and that its eigenvalues are (h(λ1) − Ph(λ1))2, . . . , (h(λn) − Ph(λn))2.
Hence,

min
k∈[[1,n]]

(h(λk)− Ph(λk))2 ≤ R((h(S)− Ph(S))2
,x) ≤ max

k∈[[1,n]]
(h(λk)− Ph(λk))2 .

Therefore,

‖h(S)x− Ph(S)x‖2 ≤
(

max
k∈[[1,n]]

|h(λk)− Ph(λk)|
)
‖x‖2 . (2.1)

This proves a rather intuitive result: for Ph(S)x to approximate well h(S)x, it suffices
that the function Ph approximates h well. More precisely, it suffices that the values of Ph
are close to that of h on the set of eigenvalues λ1, . . . , λn of S. In particular, if these values
coincide, exact graph filtering by polynomial interpolation of Section 2.1.3 is retrieved as we get
‖h(S)x− Ph(S)x‖2 = 0 and hence h(S)x = Ph(S)x.

Choice of the polynomial approximation

Assume now that some approximation error is tolerated, i.e. we want for some threshold ε0 > 0:

‖h(S)x− Ph(S)x‖2 ≤ ε0 .

Then, following Equation (2.1), this condition can be enforced by imposing

max
k∈[[1,n]]

|h(λk)− Ph(λk)| ≤ ε(x), where ε(x) = ε0/‖x‖2 > 0 . (2.2)

Comparing directly the values of {h(λk) : k ∈ [[1, n]]} and {Ph(λk) : k ∈ [[1, n]]} to make sure
this last condition is satisfied would lead to the same problem as the one encountered in the
interpolation approach: namely, the values of all the eigenvalues of S must be known and
therefore S must be fully diagonalized.

However, in the context of approximation, a sufficient condition to get Equation (2.2) is if
maxλ∈[a,b] |h(λ)− Ph(λ)| ≤ ε(x), where the interval [a, b] is such that λ1, . . . , λn ∈ [a, b]. Hence,
the enforcement of the condition in Equation (2.2) can be replaced by

max
λ∈[a,b]

|h(λ)− Ph(λ)| ≤ ε(x), where ε(x) = ε0/‖x‖2 > 0 and λ1, . . . , λn ∈ [a, b] . (2.3)

Finding a polynomial approximation Ph of a function h over a segment [a, b] can be done
very efficiently using Chebyshev sums as described in details and justified in Appendix B.4. The
first step consists in moving the approximation problem from the interval [a, b] to [−1, 1]. This
is done by considering the (invertible) affine transform φa,b defined by

φa,b : t ∈ [a, b] 7→ 2
b− a

(t− a)− 1 ∈ [−1, 1] , (2.4)
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and whose inverse is the linear mapping φ−1
a,b defined by

φ−1
a,b : t ∈ [−1, 1] 7→ a+ b− a

2 (t+ 1) ∈ [a, b] . (2.5)

Hence, to approximate h over [a, b], we find a polynomial approximation Pĥ of the function

ĥ := h ◦ φ−1
a,b

over [−1, 1] and return the polynomial

Ph := Pĥ ◦ φa,b .

Using Chebyshev sums, the polynomial Pĥ is given as the truncation at a given order of
approximation m ∈ N of the Chebyshev series of ĥ. It is therefore written

Pĥ = 1
2c0T0 +

m∑
k=1

ckTk ,

where Tk denotes the k-th Chebyshev polynomial, and each coefficient ck, k ∈ [[0,m]] is given by

ck = 2
π

∫ π

0
ĥ(cos θ) cos(kθ)dθ, k ∈ [[0,m]] . (2.6)

These coefficients can be numerically computed either the Fast Fourier transform algorithm
(Cooley and Tukey, 1965) or an algorithm designed to compute the discrete cosine transform
(Chen et al., 1977; Makhoul, 1980) of a vector, as detailed in Algorithms B.1 and B.2. As for the
order of the polynomial approximationm, it should be chosen to ensure Equation (2.3). Checking
whether an order approximation m is large enough can be done numerically by evaluating the
difference between the resulting polynomial approximation Ph and h over a fine discretization
of [a, b].

Remark 2.2.1. A restriction on the regularity of h over [a, b] must be considered to safely
apply the Chebyshev polynomial approximation: namely h should be at least of bounded
variation (cf. Definition B.3.1) or Dini-Lipschitz continuous (cf. Definition B.3.2), so that
any level of approximation error can be achieved by increasing the order m of the polynomial
approximation (cf. Theorem B.4.4).

A method to deal with discontinuous functions is introduced in Appendix B.4.6.

Interval of approximation

The only remaining question is whether finding an interval [a, b] containing all the eigenvalues
of S is possible without actually computing the eigenvalues or having recourse to operations
with similar computational complexities. The answer is yes and the following results provide
examples of such intervals.
Proposition 2.2.1. Let S ∈Mn(R) be a symmetric matrix and denote λ1, . . . , λn its eigenval-
ues. Then,

∀i ∈ [[1, n]], |λi| ≤
√

Trace (S2) .

Hence, all the eigenvalues of S are contained in the interval
[
−
√

Trace (S2),
√

Trace (S2)
]
.

Proof. This is a direct consequence of the fact that S2 has eigenvalues λ2
1, . . . , λ

2
n and that

therefore Trace
(
S2) =

∑n
j=1 λ

2
j .

Theorem 2.2.2 (Gerschgorin circle theorem (Gerschgorin, 1931)). Any eigenvalue λ of a sym-
metric matrix S ∈Mn(R) satisfies:

λ ∈
⋃

i∈[[1,n]]

[Sii − ri, Sii + ri], where ri =
∑
j 6=i
|Sij | .

Hence, all the eigenvalues of S are contained in the interval
[

min
i∈[[1,n]]

(Sii − ri), max
i∈[[1,n]]

(Sii + ri)
]
.
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Both Proposition 2.2.1 and Theorem 2.2.2 provide expressions of intervals containing the
eigenvalues of the shift operator that can be computed with a limited complexity. Indeed, in the
former case, given that S is real and symmetric, the trace of its square is equal to the sum of
the square of all its elements:

Trace(S2) =
n∑
j=1

n∑
k=1

S2
ij .

Hence, it can be computed using O(dn) operations, where d is at most n (when S is a full
matrix). The same computational complexity can be derived in the latter case.

Remark 2.2.2. Finer intervals can be derived by using additional characteristics the shift
operator may have. For instance, if S is positive (semi)-definite, then 0 is a lower bound of
its eigenvalues. Consequently, the intervals proposed in Proposition 2.2.1 and Theorem 2.2.2
can be taken as [

0,
√

Trace (S2)
]

and [
0, max
i∈[[1,n]]

(Sii + ri)
]

=

0, max
i∈[[1,n]]

n∑
j=1
|Sij |


(given that the diagonal elements of S would then be non-negative).

2.2.2 Presentation of the algorithm
At this point, the approximating polynomial Ph is expressed as a Chebyshev sum and its co-
efficients are computed. Computing the product Ph(S)x can be done iteratively by relying
on the recurrence relation between Chebyshev polynomials described in Equation (B.11). The
corresponding procedure is outlined in Algorithm 2.6.

Algorithm 2.6: Graph filtering of a Chebyshev sum.
Input: Shift operator S ∈Mn(R). Vector x ∈ Rn. A set of Chebyshev coefficients

c0, . . . , cm ∈ R.

Output: The product y =
(

1
2c0T0(S) +

m∑
k=1

ckTk(S)
)
x ∈ Rn.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: u(−2) = u(−1) = u = y = 0;
for k from 0 to m do

if k = 0 then
u← 1

2x ;
else if k = 1 then

u← Sx
else

u← 2Su(−1) − u(−2) ;
y ← y + cku ;
u(−2) ← u(−1) ;
u(−1) ← u ;

Return y.

To sum things up, approximate graph filtering is performed in three steps. First, an interval
[a, b] that contains all the eigenvalues is derived. Then a polynomial approximation of the transfer
function of the filter over [a, b] is derived using Chebyshev sums. Finally, the filtering operation
is applied to this polynomial instead of the original transfer function, using an iterative method
that only involves matrix products by the shift operator. This approach is outlined in Algorithm
2.7.

Two remarks on the outline of Algorithm 2.7 can be formulated. First, in most applications
considered in this work, the transfer functions h are smooth enough so that an order of approxi-
mation of at most 103 are sufficient to yield almost-zero approximation errors. Second, running
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Algorithm 2.7: Chebyshev filtering algorithm for graph signals.
Parameters: Order of discretization N of integrals in Algorithm B.1 or B.2
Input: Shift operator S ∈Mn(R). Vector x ∈ Rn. Transfer function h : R→ R.

Approximation order m ∈ N.
Output: An approximation of h(S)x.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: y = 0;

1. Approximation interval:
Find an interval [a, b] that contains all the eigenvalues of S. Examples are provided by
Proposition 2.2.1 and Theorem 2.2.2.

2. Coefficients of the Chebyshev sum:
Using Algorithm B.1 or B.2, compute the coefficients of the Chebyshev sum of order m
of the function t ∈ [−1, 1] 7→ h(φ−1

a,b(t)) where φ−1
a,b(t) denotes the linear mapping from

[−1, 1] to [a, b] (cf. Equation (2.5)).

3. Filtering:
Use Algorithm 2.6 with the coefficients obtained at the previous step and using
φa,b(S) = 2

b−aS −
b+a
b−aI as shift operator on the vector x.

Store the result in y.

Return y.

Algorithm 2.6 with φa,b(S) as a shift operator can be done without having to actually compute
(and store) this matrix. Indeed, the only requirement this algorithm has for the shift operator
is the ability to compute its product with a n-vector. Yet, the product between φa,b(S) and a
n-vector u can be written:

φa,b(S)u = 2
b− a

Su− b+ a

b− a
u (2.7)

Hence, any product by the shift operator in Algorithm 2.6 can effectively be replaced by the
combination of a product by S and a subtraction given by Equation (2.7).

Following from this last remark, the approach to graph filtering of Algorithm 2.7 can be seen
as “matrix-free” algorithm. Indeed, it does not actually require the shift operator to be stored in
memory. Rather, it relies solely on being able to compute a product between the shift operator
and vectors. Hence, if all that was available was a function that computed this product (without
necessarily using a matrix stored in memory), the same would still apply.

This property is clearly desirable in a context where the size of the vectors and matrices may
be so large that any gain in memory is appreciated. In that case, exploiting the structure of
the shift operator to only keep in memory the values necessary to compute the matrix-vector
product may bring great savings in storage space. This is for instance the case for circulant
matrices for which just a few entries are necessary to compute a product with a vector.

2.2.3 Computational complexity of the algorithm
The computational complexity of Algorithm 2.7 is now explicitly calculated. Denote nnz the
number of non-zero entries of S and d the mean number of non-zero entries of a row of S:
nnz = d × n. Denote m the order of the Chebyshev approximation. The cost associated with
each step (ignoring additions and multiplications by non-stored zeros) is described as follows:

� Step 1 requires O(dn) operations as mentioned earlier.

� Step 2 requires to apply fast Fourier transform or the discrete cosine transform algorithm
to a vector of length N . The cost of this operation is O(N logN) (Chen et al., 1977;
Makhoul, 1980).

� Step 3 is composed of

� m + 1 updates of y that consists in multiplying the entries of a n-vector by a scalar
and adding them to another n-vector → m× 2n operations
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� m updates of the vector u that consists in multiplying a n-vector by φa,b(S) and
subtracting another n-vector to the result (→ n operations). Each product by φa,b(S)
actually corresponds to a product by S (→ dn operations) that is scaled by constant
(→ n operations) and followed by the subtraction (→ n operations) of a n-vector that
was also scaled by a constant (→ n operations): → m× (dn+ 4n) operations.

Therefore, the overall cost of the Chebyshev filtering algorithm is O(mdn+N logN) operations.
Considering that in most of our applications2 N � n, we conclude that the actual complexity
of Algorithm 2.7 is of order O(mdn) .

And regarding the storage needs, aside from S, x and the coefficients which are assumed to
be stored by default, the algorithm only needs enough space to work with 4 additional n-vectors.
The storage needs of this algorithm are therefore of order O(n).

In conclusion, Algorithm 2.7 provides a solution to perform graph filtering with a compu-
tational and storage costs of the same order of the minimal case of polynomial filtering that
was introduced in Algorithm 2.2. Moreover, the user can trade computational time for accuracy
of the approximation using a single parameter: the order m of the Chebyshev sum. Indeed,
asymptotically (when m grows to ∞), the approximation error of the Chebyshev sums goes to
zero, and therefore, so does the approximation error of the vectors obtained using the Chebyshev
filtering algorithm (cf. Equation (2.1)).

In the remaining of this work, the following assumption is made so that Chebyshev filtering
can be applied.

Assumption 2.1. Whenever a graph filter is considered, the associated transfer function
is assumed to be regular enough for its Chebyshev series to converge over an interval [a, b]
containing all the eigenvalues of the shift operator.

In practice, we will assume the transfer function to be Dini-Lipschitz continuous or continuous
of bounded variation.

2.3 Applications of the Chebyshev filtering algorithm
In this section, a few useful algorithms designed to compute the trace, the log-determinant
and the histogram of eigenvalues of a graph filter h(S) defined by a shift operator following
Assumption 1.2 and a transfer function h are presented. These algorithms will be particularly
useful when the inference of stochastic graph signals will be considered in Chapter 5, allowing
for instance to compute the likelihood of realizations of stochastic graph signals.

All the algorithms introduced in this section rely on the Chebyshev filtering algorithm, and
aim at computing accurate estimates of some characteristics of a graph filter h(S) in a matrix-
free approach. The need to use this approach comes from the fact we want to avoid actually
building and storing the graph filter h(S), due to the high computational and storage costs
associated. Direct methods are therefore out of the question.

Remark 2.3.1. All the algorithms presented in this section can actually be applied to draw
estimates of these same characteristics for any real symmetric matrix M using the following
trick: we take S = M and set h : x ∈ R→ x. Note however that if the algorithm requires h
to be strictly positive, then the matrix M should be positive definite.

2.3.1 Trace of a graph filter
We present here an approach aiming at computing the trace of a graph filter. It relies on the
following proposition.

2N actually corresponds to the order of approximation of the integrals defining the coefficients of the Chebyshev
sum (cf. Equation (2.6)) as Riemann sums. N can be fixed at a few thousands in most cases. Hence it is therefore
safe to assume that N � n.
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Proposition 2.3.1. Let S ∈Mn(R) be a real symmetric shift operator and let h(S) be a graph
filter with respect to S with transfer function h : R 7→ R.
Let W be a white signal, i.e. a vector composed of n independent zero-mean and unit-variance
random variables.
Then W Th(S)W is an unbiased estimator of the trace of h(S):

E
[
W Th(S)W

]
= Trace (h(S)) . (2.8)

Proof. By linearity of the expectation: E
[
W Th(S)W

]
=

n∑
k=1

n∑
j=1

[h(S)]kj E [WkWj ]. By defi-

nition ofW , E [WkWj ] = Cov [Wk,Wj ] is 1 if k = j and 0 otherwise. Hence, E
[
W Th(S)W

]
=

n∑
k=1

[h(S)]kk = Trace (h(S)).

A stochastic approximation of the trace of a graph filter is therefore given by taking a Monte-
Carlo estimate of the expectation in Equation (2.8):

Trace (h(S)) ≈ SM with SM = 1
M

m∑
j=1

wT
j h(S)wj , (2.9)

where w1, . . . ,wM are M independent realizations ofW . The quadratic form in Equation (2.8)
can be computed in two steps: first the product u = h(S)w is calculated using the Chebyshev
filtering algorithm, then the inner product wTu is returned. Hence, an approximation of the
trace can be computed through Equation (2.9) for a global computational cost of filtering M
signals. This method is outlined in Algorithm 2.8.

Algorithm 2.8: Trace approximation by Chebyshev filtering.
Parameters: Probability distribution D of a (real) random variable with mean 0 and

variance 1. Any additional parameters for Chebyshev filtering.
Input: Shift operator S ∈Mn(R). Transfer function h : R→ R. Approximation order

m ∈ N of the transfer function. Number of realizations M .
Output: An approximation of Trace(h(S)).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: y = 0;
for j from 1 to M do

Generate w ∈ Rn with independent entries drawn from D ;
Compute u = h(S)w using Chebyshev filtering at approximation order m ;
y ←

(
(j − 1)y +wTu

)
/j ;

Return y.

Remark 2.3.2. In practice, the formulation of Algorithm 2.8 allows for a premature exit
from the “for” loop. Indeed, at the j-th iteration, the scalar y actually contains the average
over all white signals generated up until this point. Hence, one could imagine an additional
criterion on the evolution of the values of y that would provoke a loop break. For instance
we could stop the algorithm if, for several consecutive iterations, the difference between the
current and previous values of y is below a given threshold.

Algorithm 2.8 hence provides a method to compute the trace of any graph filter using Cheby-
shev filtering. The computational cost of this method is dominated by the filtering steps (as-
suming generating the random vectors w is inexpensive and represents a cost of order O(n)).
Hence, the computational cost of Algorithm 2.8 is of order O(M ×mdn) where d is the mean
number of non-zero entries in a row of S and M is the number of realizations used to defined
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Rademacher Gaussian

Variance of the trace
estimator

2
M (Trace(A2)−

∑n
k=1A

2
kk) 2

MTrace(A2)

Bound on the number of
samples with central

limit theorem
2F
−1
N (1−α/2)2

ε2 (Trace(A2)−
∑n
k=1A

2
kk) 2F

−1
N (1−α/2)2

ε2 Trace(A2)

Bound on the number of
samples in the positive

semi-definite case
6Trace(A)2

ε2 log( 2
α rank(A)) 20Trace(A)2

ε2 log( 2
α )

Table 2.2: Properties of the estimator SM of the trace of a graph filter A = h(S), as defined in
Equation (2.9), with respect to the distribution chosen to generate the white signals w. See

(Avron and Toledo, 2011) for proofs.

the stochastic estimators, m is the order of the Chebyshev approximation and n is the size of S.
This should be compared to the huge computational cost of the exact approach that consists in
diagonalizing the graph filter, involving then O(n3) operations.

Two questions remain unanswered: how to choose the distribution D defining the white sig-
nals and the number of realizations M that should be generated. A natural criterion for these
choices consists in trying to minimize the variance of the estimator SM in Equation (2.9). This
variance directly depends on both parameters, as it is given by σ2/M where σ2 = Var[W Th(S)W ],
and is linked to the approximation error |Trace(h(S))− SM | of SM .

Indeed, the central limit theorem states that asymptotically in M , the limiting distribution
of SM is normal with mean E[SM ] = Trace(h(S)) and variance σ2/M . Hence the approximation
error |Trace(h(S))−SM | can be estimated using the cumulative distribution function (cdf) FN of
the standard Gaussian distribution. Namely, the probability that its value is below a threshold
ε > 0 is given by

P [|Trace(h(S))− SM | ≤ ε] ≈ 2FN

(
ε√
σ2/M

)
− 1 (as M →∞).

Equivalently, using the inverse cdf F−1
N of the standard Gaussian distribution (which is also its

quantile function), we have for any risk level 0 < α < 1:

P

[
|Trace(h(S))− SM | ≤

√
σ2

M
F−1
N (1− α/2)

]
≈ 1− α (as M →∞).

Two factors directly impact the approximation error of SM : the variance σ2 of the quadratic
forms and the number M of samples. In particular, minimizing the variance σ2 by choosing an
appropriate distribution D should lead to require less samples to keep the approximation error
below a small threshold with high probability. Hutchinson (1989, Proposition 1) shows that σ2

is minimal whenever the entries of W follow a Rademacher distribution i.e. they take values
either +1 or −1 with probability 1/2, placing this distribution as a premium candidate for D.

Going further down this road, Avron and Toledo (2011) estimated, in the particular case
where h(S) is also positive semi-definite, the actual number of samples needed for the approxi-
mation error to be below a threshold ε with a probability 1−α (with the asymptotic requirement
of the central limit theorem). They showed that generating the entries of w using a standard
Gaussian distribution demands a lower number of samplesM to achieve the same accuracy (with
the same probability) as when a Rademacher distribution is used. Both distributions are hence
considered to run Algorithm 2.8. Table 2.2 compares them in terms of variance of the estimator,
and number of samples required in the asymptotic case and in the positive definite case.

2.3.2 Histogram of eigenvalues of a shift operator
Recall that we denote λ1, . . . , λn ∈ R the eigenvalues of S. Computing a histogram of these
values over a interval [a, b] consists in partitioning this interval into a set of Mb ≥ 1 disjoint
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subintervals of size τ = (b − a)/Mb, also called bins, and counting the number of eigenvalues
falling into each one of the bins.

Formally, let nτ : R 7→ N be the counting function defined for τ > 0 by:

nτ (x) = Card
{
j ∈ [[1, n]] : λj ∈ [x− τ

2 , x+ τ

2 [
}
, x ∈ R . (2.10)

Then the histogram of {λ1, . . . , λn} over an interval [a, b] ⊂ R containing them and with bin size
τ is defined as the set of values:{

nτ

(
a+

(
m+ 1

2

)
τ)
)

: m ∈ [[0,
⌈
b− a
τ

⌉
− 1]]

}
.

Hence, being able to compute the histogram of eigenvalues of a shift operator is equivalent to
being able to compute values of the counting function nτ over the interval [a, b]. Doing so with
an efficient algorithm is the object of this section.

Let us assume that the interval [a, b] is known (using for instance Proposition 2.2.1 or The-
orem 2.2.2) and let τ > 0 be fixed. A naive way of computing nτ (x), x ∈ [a, b] consists in first
computing all the eigenvalues of S and then counting how many of them fall into the bin of
size τ centered at x. Doing so would be practically infeasible as the first step requires the full
diagonalization of S. So, for the same reasons as those presented in Section 2.1.1 to avoid graph
filtering by eigendecomposition, this approach should not be considered. Instead, an approach
based on Chebyshev filtering is proposed, based on the following result, already exploited by
Di Napoli et al. (2016).

Proposition 2.3.2. Let S be a real symmetric shift operator with eigenvalues λ1, . . . , λn ⊂ R
and let h : [a, b]→ R be a function defined on an interval [a, b] containing all the eigenvalues of
S. Then,

E
[
W Th(S)W

]
=

n∑
k=1

h(λk) = Trace(h(S)) , (2.11)

where W ∈ Rn is a white signal.

Proof. This a a direct consequence of Proposition 2.3.1 that relies on the fact that by definition
of graph filters and using the properties of the trace function:

Trace(h(S)) = Trace(V TDiag(h(λ1), . . . , h(λn))V ) = Trace(Diag(h(λ1), . . . , h(λn))V V T )

= Trace(Diag(h(λ1), . . . , h(λn))) =
n∑
k=1

h(λk) .

In particular, note that, for any x ∈ [a, b], the counting function can be written using indicator
functions:

nτ (x) =
n∑
k=1

1[x−τ/2,x+τ/2[(λi) ,

where 1[x−τ/2,x+τ/2[ denotes the indicator function of the interval [x − τ/2, x + τ/2[. Hence,
from Proposition 2.3.2,

∀x ∈ [a, b], nτ (x) = E
[
wT1[x−τ/2,x+τ/2[(S)w

]
= Trace(1[x−τ/2,x+τ/2[(S)) .

Following the results from Section 2.3.1, an idea would be to compute nτ (x) using Algorithm
2.8. However, the function t 7→ 1[x−τ/2,x+τ/2[(t) is not even continuous over [a, b] as it has two
discontinuities at t = x ± τ/2. Consequently, the Chebyshev series of this function will not
converge uniformly and moreover, oscillations near the discontinuities will appear due to the
Gibbs phenomenon (cf. Appendix B.4.6).

Nonetheless, this problem is circumvented using the approach presented in Appendix B.4.6,
hence computing the coefficients of the Chebyshev sums of the discontinuous function and down-
scaling them using a σ-factor. This approach to compute the histogram is summed up in Algo-
rithm 2.9, that returns a table whose first column are the midpoints of a histogram and second
column contains an approximations of the counts in each bin centered at these midpoints.
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Algorithm 2.9: Histogram approximation by Chebyshev filtering.
Parameters: Approximation order m ∈ N of the counting function. Number of

realizations M used for the stochastic estimators. Probability
distribution D of a (real) zero-mean random variable with variance 1.
Any additional parameters for Chebyshev filtering.

Input: Shift operator S ∈Mn(R). Interval [a, b] containing the eigenvalues of S and on
which to compute the histogram. Bin size τ .

Output: An approximation of the histogram of eigenvalues of S.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: H ∈Md(b−a)/τe,2(R), x0 = 0, y = 0;
for k from 0 to (d(b− a)/τe − 1) do

x0 ← a+ (k + 1/2) τ ;
Compute the coefficients c0, . . . , cm of the Chebyshev sum (or interpolant) of order
m of the function t 7→ 1[x0−τ/2,x0+τ/2[(φ−1

a,b(t)) using Algorithm B.1 or B.2. Note:
φ−1
a,b is the linear map defined in Equation (2.5). ;

y ← 0 ;
for j from 1 to M do

Generate w ∈ Rn with independent entries drawn from D ;
Using Algorithm 2.6, compute the product

u =
m∑
k=0

σ

(
j

m

)
cjTj(φa,b(S))w ,

where σ is one of the σ-factors of Equations (B.22) to (B.25) and φa,b is the
linear map defined in Equation (2.4).;
y ←

(
(j − 1)y +wTu

)
/j ;

Hk1 = x0, Hk2 = y;
Return H.

The computational cost associated with Algorithm 2.9 is essentially the same as computing
d(b− a)/τe traces using Algorithm 2.8.

2.3.3 Log-determinant of a graph filter
We assume in this subsection that h : R → R∗+ is a continuous function taking strictly positive
values. We are interested in estimating the log-determinant of the graph filter h(S). By definition
of graph filters, it is straightforward to show that this quantity equals:

log deth(S) = log
(

n∏
k=1

h(λk)
)

=
n∑
k=1

log (h(λk)) . (2.12)

Following then Proposition 2.3.2, the log-determinant of the graph filter h(S) can therefore be
expressed as:

log deth(S) = E
[
W T log h(S)W

]
= Trace(log h(S)) , (2.13)

where w is any white signal.
Two methods therefore arise for computing log deth(S). The first one consists in using

Equation (2.13) to notice that the log-determinant is equal to the trace of a graph filter with
transfer function t 7→ log(h(t)). Hence, Algorithm 2.8 can be directly used on S and this transfer
function to yield an approximation of the log-determinant.

The second method starts from Equation (2.12) and consists in directly approximating the
sum over the eigenvalues of S using their histogram. Indeed, let [a, b] be an interval containing
the eigenvalues of S and let τ > 0 be the bin size of a histogram of these eigenvalues. Let
nτ denote the counting function that yields the number of eigenvalues falling into a bin of
size τ centered at any point of [a, b], as defined in Equation (2.10). Then log deth(S) can be
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approximated by:

log deth(S) =
n∑
k=1

log (h(λk)) ≈
d(b−a)/τe−1∑

j=0
nτ (aj) log (h(aj)) , (2.14)

where aj = a+
(
j + 1

2
)
τ, j ∈ [[0, d(b− a)/τe − 1]] are the midpoints of the histogram. Basically,

the sum over all the eigenvalues is replaced by a sum over a discretization of the interval [a, b]
containing these eigenvalues, and weighted by the number of eigenvalues around each discretiza-
tion point. One can directly see that the smoother the variations of the function log h over [a, b]
are, the better this approximation is. In particular, the approximation is exact whenever h is
constant, i.e. has no variations.

Hence, an approximation of log deth(S) can be obtained in two steps. First, use Algorithm
2.9 to compute a histogram of the eigenvalues of S, more precisely an approximation of the
weights nτ (aj) in Equation (2.14). Then use these counts to compute the approximation of the
log-determinant as defined by Equation (2.14).

The computational cost associated with this approach is essentially that of the computation
of the histogram of eigenvalues. This cost is greater than the cost of computing a single trace,
as proposed in the first approach. However, once the histogram is computed, determinants for
any graph filter defined through the same shift operator can be computed at virtually no cost:
we only need to reevaluate Equation (2.14) for the new transfer function. In the meantime,
with the first approach, changing the transfer function implies to recompute from scratch the
log-determinant. Both methods therefore have their advantages and the choice between them
should be made in regard with the context of use of these determinants.

2.3.4 Solving a linear system involving a graph filter
Once again let S ∈ Mn(R) be a real symmetric shift operator with eigenvalues λ1, . . . , λn and
let h : R → R∗+ be a continuous function taking strictly positive values. We are now interested
in finding an approximate solution of the linear system:

h(S)x = b , (2.15)

where b ∈ Rn.
h(S) is positive definite given that its transfer function takes only strictly positive values. It

is therefore invertible, with inverse being defined as the graph filter also defined through S but
with transfer function 1/h. Hence the solution x ∈ Rn of Equation (2.15) is given by:

x = 1
h

(S)b .

An approximation of this vector can then be computed using Chebyshev filtering with shift
operator S and transfer function 1/h.

Conclusion
In this chapter, we introduced the Chebyshev filtering algorithm, designed to perform filtering
operations on graph signals using a polynomial approximation of the transfer function of the
filter. In particular, it generates approximations of the filtered signals with a complexity that
grows linearly with the order of polynomial approximation and the size of the vectors. Increasing
the degree of the polynomial will improve the approximation as long as the following assumption
is met.
Assumption 2.1. Whenever a graph filter is considered, the associated transfer function is
assumed to be regular enough for its Chebyshev series to converge over an interval [a, b] containing
all the eigenvalues of the shift operator.

In practice, we will assume the transfer function to be Dini-Lipschitz continuous or continuous
of bounded variation (cf. Theorem B.4.4).

The Chebyshev filtering algorithm was then applied to compute characteristics of a graph
filter, including its trace and log-determinant, while relying solely on products between the shift
operator defining the graph filter and white signals.
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Résumé
Dans ce chapitre, nous présentons des algorithmes (exacts ou approchés) destinés à générer

des simulations non-conditionnelles de signaux sur graphe stochastiques de propriétés de covari-
ance connues. En particulier, nous présentons un algorithme approché de simulation basé sur le
filtrage de Tchebychev, ainsi que les erreurs d’approximation numériques et statistiques qui en
découlent. Nous comparons également cet algorithme aux approches par sous-espaces de Krylov.

Introduction
In the first two chapters, the focus was put on presenting a framework to study stochastic graph
signals (SGS). In the next three chapters, we use this framework to perform classical tasks
associated with the study of stochastic processes, namely the simulation of a SGS, its estimation
from an incomplete observation and finally the inference of the parameters defining its probability
distribution. In particular, we restrict ourselves to the study of stationary Gaussian SGSs, as
they will play a key role in the application of the graph signal processing framework to the
modeling of non-stationary Gaussian fields, which will be laid out in the second part of this
dissertation.

Assumption 3.1. Only S-stationary Gaussian graph signals are considered, with S being a
shift operator defined according to Assumption 1.2.

In this chapter, algorithms to compute unconditional simulations of a SGS with known spec-
tral density are derived. By unconditional simulation, we mean that we only aim at generating
a zero-mean SGS whose covariance matrix is a graph filter with a specified positive transfer
function. Hence, the SGS is drawn from its full distribution.

Two types of algorithms are presented in this chapter, much like what was done for graph
filtering. On one hand, direct and exact simulation algorithms, which generate simulations with
the desired statistical properties using matrix factorizations, are introduced. Then, an approxi-
mate simulation algorithm based on Chebyshev filtering is presented. Our main contributions for
this part are the derivation of numerical and statistical approximation errors for the approximate
simulation algorithm (cf. Section 3.2) and its comparison with Krylov subspaces approaches (cf.
Section 3.3).

3.1 Simulation algorithms for Gaussian graph signals
Let S be a real symmetric shift operator, as defined in Assumption 1.2. Algorithms to compute
simulations of a S-stationary Gaussian SGS and the statistical properties of these algorithm
are derived in this section. By Gaussian SGS we understand a SGS whose components follow
a multivariate Gaussian distribution. In particular, its distribution and therefore statistical
properties are entirely defined by its first two moments:

� its expectation vector, which is assumed to be 0.

� its covariance matrix, which in regard to the S-stationarity assumption, is a graph filter
defined by a strictly positive function called spectral density.

Let λ1, . . . , λn denote the eigenvalues of S and let V be any (real or complex) orthonormal
eigenbasis of S. Let assume that we aim at generating realizations of a Gaussian SGS x with
spectral density f : R → R∗+. Our goal therefore really is the simulation of a zero-mean vector
with (known) covariance matrix Σ = f(S). We first investigate some direct simulation algorithm
designed for this purpose.

3.1.1 Direct simulation of stationary graph signals
A direct method to generate samples of a Gaussian vector with known covariance matrix Σ
consists in forming vectors x of the form (Tong, 2012)

x = Bw ,
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where w is a realization of a Gaussian white signal (i.e. a zero-mean Gaussian vector whose
covariance matrix is the identity matrix) and B is a matrix such that

BBH = Σ .

A natural candidate for such a matrix B is the Cholesky decomposition of Σ (Gentle, 2009).
Indeed, numerous linear algebra routines allow for the computation of this matrix factorization.
Algorithm 3.1 exposes this first approach to the simulation of a stationary SGS.

Algorithm 3.1: Simulation of stationary SGS by Cholesky factorization.
Input: Shift operator S ∈Mn(R). Spectral density f : R 7→ R+.
Output: A S-stationary SGS with spectral density f .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: x = 0;
Build the covariance matrix Σ = f(S) ;
Compute the Cholesky factor L of Σ;
Generate a vector w ∈ Rn whose entries are independent standard Gaussian variables ;
x← Lw ;
Return x.

Two performance issues arise when using Algorithm 3.1. First, the covariance matrix must
be entirely built from the shift operator and the spectral density and stored in memory before
any Cholesky factorization algorithm may be applied to it. But building Σ using the definition
of graph filters involves to diagonalize the shift operator: this is a very expensive operation,
computationally and memory-wise (cf. Section 2.1). Moreover the full covariance matrix, which
is generally dense, must be stored in memory, which represents an important storage cost for
large values of n.

Similarly to Chebyshev filtering (cf. Section 2.2), a cheaper alternative to diagonalization
would consist in replacing f(S) by a polynomial approximation, for instance by Sm[f ](S) where
Sm[f ] denotes the Chebyshev series of order m of f . However, building the matrix Sm[f ](S)
from its polynomial expression would involve m matrix-matrix products involving S. The com-
putational cost of a single product is of order O(n2d): n2 elements must be computed and each
element requires the scalar product of a row of S which has in average d non-zero elements, with
the column of another matrix. Hence the overall cost of building Sm[f ](S) is of order O(mn2d).
This cost scales quadratically with the size of the vectors n in the best case scenario (i.e. when
S is sparse with d � n) and grows linearly with the approximation order. As for the memory
requirements to store the result, the larger the order m is, the less sparse Sm[f ](S) is and the
more memory will be required. This can limit the order of approximation we can work with
regardless of the subsequent approximation errors.

Then, once Σ is computed, its Cholesky factorization must be computed. The computational
cost of this operation is of order O(n3) whenever Σ is dense (Golub and Van Loan, 1996a). This
cost can be greatly reduced if Σ is sparse: the new cost then depends on the size of the vectors
n, the number of non zero entries of Σ and finally, its sparsity pattern which explains why a
reordering of the rows and column of the matrix aiming at obtaining optimal patterns is applied
beforehand. Determining the best reordering is in itself a computationally hard problem, and
often the user must rely on heuristics and hope for the best (Luce and Ng, 2014).

Finally, even in the cases where the Cholesky factorization can be efficiently applied, i.e.
whenever Σ is sparse and can easily be optimally reordered, the Cholesky factor must still be
stored in memory, which represents an additional memory cost.

Faced with the important computational and storage costs associated with the direct ap-
proach presented in this subsection, we now leverage the fact that the covariance is actually a
graph filter to derive a new simulation algorithm based on graph filtering.

3.1.2 Simulation of stationary graph signals by filtering
A second approach to generate simulations of a stationary SGS with a given spectral density
relies on the statistical properties of stationary SGSs. Indeed, in Theorem 1.4.3, we showed
that a S-stationary SGS with spectral density f is the output of filtering white signals with the
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graph filter
√
f(S). Clearly, by definition of Gaussian vectors (cf. Appendix A.4.2), if the white

signal is Gaussian, so is its filtered output given that it is a linear transformation of the white
signal. Hence, the problem of generating a sample of a stationary SGS is simply reduced to that
of graph filtering. Using one of the exact filtering algorithms presented in Section 2.1 to filter
a vector with independent standard Gaussian entries therefore yields the desired simulation of
SGS. This approach is synthesized in Algorithm 3.2.

Algorithm 3.2: Simulation of a stationary SGS by exact graph filtering.
Input: Shift operator S ∈Mn(R). Spectral density f : R 7→ R+.
Output: A S-stationary SGS with spectral density f .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: x = 0;
Generate a vector w ∈ Rn whose entries are independent standard Gaussian variables. ;
Compute x =

√
f(S)w using Algorithm 2.1 or 2.5. ;

Return x.

The computational cost of Algorithm 3.2 is essentially due to the exact filtering step, which
makes it intractable in practice. Indeed, costs similar or higher to the Cholesky approach are to
be expected (cf. Section 2.1). Following then the results of Section 2.2, a workaround is provided
by Chebyshev filtering, through which the exact computation of the filtered signal

x =
√
f(S)w , (3.1)

is replaced by that of the signal

x(m) = Sm[
√
f ](S)w , (3.2)

wherew is a realization of a (Gaussian) white signal and Sm[
√
f ] is the polynomial corresponding

to the Chebyshev series of orderm of the function
√
f , over an interval containing the eigenvalues

of S. This approach, which we call Chebyshev simulation, is outlined in Algorithm 3.3.

Algorithm 3.3: Chebyshev simulation of a stationary SGS.
Input: Shift operator S ∈Mn(R). Spectral density f : R 7→ R+.
Output: A S-stationary SGS with spectral density f .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: x = 0;
Generate a vector w ∈ Rn whose entries are independent standard Gaussian variables ;
Compute x =

√
f(S)w using Chebyshev filtering ;

Return x.

Once again, the resulting vector x(m) is guaranteed to follow a zero-mean Gaussian distribu-
tion, as it is a linear transform of a zero-mean Gaussian vector. Its covariance matrix is given
by:

Var[x(m)] = Sm[
√
f ](S)

(
Sm[

√
f ](S)

)H
= Sm[

√
f ](S)2 , (3.3)

which ensures that x(m) is a S-stationary SGS. However in general Var[x(m)] is different from the
target covariance matrix, f(S). Indeed the former is a S-filter with transfer function Sm[

√
f ]2

whereas the latter has transfer function f . The next section investigates the difference between
the resulting vectors x and x(m).

3.2 Approximation and statistical errors of Chebyshev sim-
ulations

In this section, we investigate the accuracy of the simulations generated by the Chebyshev
algorithm (cf. Algorithm 3.3). Two dimensions of the problem are considered. On one hand,
seeing the Chebyshev simulation algorithm as simply a graph filtering problem that was answered
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using Chebyshev filtering, a numerical approximation error is derived, in the same manner as
in Section 2.2. On the other hand, seeing the Chebyshev simulation algorithm as a simulation
algorithm in its own right, the statistical properties of its outputs are considered and compared
to the targeted ones.

3.2.1 Numerical approximation error of Chebyshev simulations
LetX =

√
f(S)W denote a S-stationary SGS with spectral density f , obtained from a Gaussian

white signal W . Chebyshev simulations basically replace samples of X by samples of the SGS
X(m) defined by (cf. Equation (3.2))

X(m) = Sm[
√
f ](S)W ,

for some order of approximation m ∈ N. The approximation error between both SGS can be
assessed using the same reasoning as in Section 2.2. Indeed, let Em denote this approximation
error, which is defined as

Em := ‖X −X(m)‖2 = ‖
(√

f(S)− Sm[
√
f ](S)

)
W ‖2 .

where ‖ · ‖2 denotes the Euclidean norm. In particular, Em is a (positive) random variable. Its
square can be expressed using the eigenvalues λ1, . . . , λn of S as

E2
m = ‖

(√
f − Sm[

√
f ]
)

(S)W ‖22 =
n∑
k=1

(√
f(λk)− Sm[

√
f ](λk)

)2
W̃ 2
k , (3.4)

where W̃ = V TW is the graph Fourier transform of W with respect to some real orthonormal
eigenbasis of S. In particular, note that W̃ is also a white signal.

Following Equation (3.4), the expectation and variance of E2
m are given by:

E[E2
m] =

n∑
k=1

(√
f(λk)− Sm[

√
f ](λk)

)2

Var[E2
m] = 2

n∑
k=1

(√
f(λk)− Sm[

√
f ](λk)

)4
. (3.5)

Hence as m→∞, both the expectation and the variance of E2
m go to zero, meaning that asymp-

totically the approximation error Em becomes zero. In particular, denote εm the approximation
error of Sm[

√
f ] over the interval [a, b] over which it is computed, i.e.

εm := max
λ∈[a,b]

|
√
f(λ)− Sm[

√
f ](λ)| .

Then, following Equation (3.5), we have E[E2
m] = O(nε2

m) and Var[E2
m] = O(nε4

m). Besides,
recall that Chebyshev’s inequality (Stewart, 2009, Section 8.2) ensures that, for any confidence
level α > 0:

∀α > 0, P

[
|E2
m − E[E2

m]| ≤
√

Var[E2
m]

α

]
≥ 1− α, α > 0 . (3.6)

Hence, imposing a small enough approximation error εm on the Chebyshev suffices to ensure
that with high probability, the approximation error Em of the Chebyshev simulation can be
made as small as we want.

A more practical concentration inequality can be derived by introducing the random variable
Êm associated to Em by

E2
m =

n∑
k=1

(√
f(λk)− Sm[

√
f ](λk)

)2
W̃ 2
k =⇒ Ê2

m := ε2
m

n∑
k=1

W̃ 2
k .

Then in particular, E2
m ≤ Ê2

m and so, for any η > 0,

P [Em ≤ η] = P
[
E2
m ≤ η2] ≥ P

[
Ê2
m ≤ η2

]
= P

[
n∑
k=1

W̃ 2
k ≤

η2

ε2
m

]
.
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Given that W̃1, . . . , W̃n are standard Gaussian variables,
∑n
k=1 W̃

2
k follows a chi-squared distri-

bution with n degrees of freedom, denoted χ2(n). Then,

P [Em ≤ η] ≥ P
[
χ2(n) ≤ η2

ε2
m

]
= Fχ2(n)

(
η2

ε2
m

)
,

where Fχ2(n) is the cumulative distribution function of χ2(n). Therefore, if a confidence level
α > 0 is fixed, the approximation error satisfies

P
[
Em ≤ εm

√
F−1
χ2(n) (1− α)

]
≥ 1− α, α > 0 . (3.7)

This last expression can be made slightly more explicit by recalling that, according to the central
limit theorem, the distribution χ2(n) actually converges to a normal distribution with mean n
and variance 2n as n grows (Box et al., 2005). In practice, for n > 50, the difference between
both distributions can even be neglected (Box et al., 2005). Assuming we fall in this case, the
concentration inequality becomes

P

Em ≤ εm√n
√

1 +
√

2
n
F−1
N (1− α)

 ≥ 1− α, α > 0 , (3.8)

where FN denotes the cumulative distribution function of the standard Gaussian distribution.
Hence, with probability 1−α, the approximation error Em of a Chebyshev simulation is of order
O(εm

√
n), and is therefore entirely driven by the approximation error εm of the Chebyshev sum.

Equations (3.7) and (3.8) provide conditions on the approximation error of the Chebyshev
sum, and therefore on the order of approximation m that should be chosen, so that with high
probability the approximation error of a Chebyshev simulation is as close to 0 as one may want.

Following this approach leads to regarding the Chebyshev simulation algorithm purely as
an algorithm used to approximate numerically a target SGS x, which is known to have the
right statistical properties (namely, Gaussian with covariance matrix f(S)). However, if the
algorithm were to yield a simulated SGS x(m) with bad approximation error, but whose statistical
properties are so close to those of x that they both “seem" drawn from the same distribution,
then x(m) would still constitute a great output for our simulation purpose. This approach is
investigated in the next section.

3.2.2 Statistical error of Chebyshev simulations
The goal of a simulation algorithm is to generate random vectors with some predefined statistical
properties. In our case it comes down to generate zero-mean Gaussian vectors with covariance
matrix f(S). Once again, x(m) denotes an output of the Chebyshev simulation algorithm, as
defined by Equation (3.2). In this section, the statistical properties of x(m) are exploited in
order to derive a criterion on the approximation error of the Chebyshev sum that ensures that
x(m) can “pass” for a zero-mean Gaussian vector with covariance matrix f(S).

Notice first that x(m) is by definition a zero-mean Gaussian vector. The only statistical dif-
ference with x resides in the fact that the covariance matrix of x(m) is Var[x(m)] = Sm[

√
f ]2(S)

(instead of f(S)). Hence, the question that should be answered really is: what criterion can be
fixed so that Gaussian vectors with covariance matrix Sm[

√
f ]2(S) become statistically indis-

cernible from their counterparts with covariance matrix f(S)? An approach based on statistical
tests on linear combinations obtained from both types of vectors is now outlined to answer this
interrogation.

Consider a sample of Ns independent zero-mean Gaussian vectors
(
x

(m)
1 , . . . ,x

(m)
Ns

)
with

covariance matrix Sm[
√
f ]2(S). Each one of these vectors can be seen as an independent output

of the Chebyshev simulation algorithm. Let’s consider the following null hypothesis test:

H0 :
(
x

(m)
1 , . . . ,x

(m)
Ns

)
is a sample of Ns independent vectors with covariance matrix f(S) .

Recall that by definition (cf. Appendix A.4.2), a random vector z ∈ Rn is a Gaussian vector
with covariance matrix Σ if and only if, for any deterministic (and arbitrary) set of coefficients
c ∈ Rn , cTz is a Gaussian variable with variance cTΣc. Therefore, hypothesis H0 won’t be
rejected if ∀c ∈ Rn, the hypothesis Hc0 defined by:
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Hc0 :
(
cTx

(m)
1 , . . . , cTx

(m)
Ns

)
is a sample of zero-mean Gaussian variables with variance

cT f(S)c,

is not rejected.
The (two-sided) chi-square test for the variance (Snedecor and Cochran, 1989) is considered

to test the null hypothesis Hc0 for some c ∈ Rn. Indeed, based on a sample from a population
of normally distributed data, this test is used to check whether the population variance is equal
to an hypothesized value. In our case, this hypothesized value is cT f(S)c and the sample is(
cTx

(m)
1 , . . . , cTx

(m)
Ns

)
.

For a given c ∈ Rn, the statistic t(c) of the chi-square test for the variance is

t(c) = (Ns − 1) S2(c)
cT f(S)c ,

where S2(c) is the (unbiased) sample variance defined as

S2(c) = 1
Ns − 1

Ns∑
k=1

(
cTx

(m)
k −m(c)

)2
, m(c) = 1

Ns

Ns∑
j=1

cTx
(m)
j .

If the null hypothesis were to be true, i.e. if the population variance were to be cT f(S)c then
the statistic t(c) would follow a chi-squared distribution with Ns−1 degrees of freedom (denoted
χ2(Ns− 1)). Hence, to test whether or not to reject the null hypothesis, the actual value of t(c)
computed from the sample is compared to “typical” values a χ2(Ns − 1) variable should take.

Formally, we say that Hc0 is not rejected with significance level α > 0 if t(c) satisfies

χ2
α
2 ,Ns−1 ≤ t(c) ≤ χ2

1−α2 ,Ns−1 , (3.9)

where χ2
p,Ns−1 is the p-th quantile of the χ2(Ns − 1) distribution. Recall in particular that

Fχ2(Ns−1)(χ2
p,Ns−1) = p. If Equation (3.9) is not satisfied, we say that Hc0 is rejected (with

significance level α).
Note that a draw from a χ2(Ns − 1) variable would have a probability 1 − α to fall in the

interval [χ2
α
2 ,Ns−1, χ

2
1−α2 ,Ns−1] that appears in Equation (3.9). This means that whenever the

null hypothesis is rejected with significance α, the probability that it was true after all, and
therefore that t(c) is a χ2(Ns − 1) variable, is less than α. α is also referred to as the type-I
error, i.e. the probability of wrongfully rejecting the null hypothesis.

Recall now that the sample
(
cTx

(m)
1 , . . . , cTx

(m)
Ns

)
is generated from Chebyshev simula-

tions. Hence, the true population variance of the sample is known and is actually equal to
cTSm[

√
f ]2(S)c. The testing procedure therefore really aims at determining whether a sample

from a population of Gaussian variables with variance cTSm[
√
f ]2(S)c can be mistaken for a

sample from a population of Gaussian variables with variance cT f(S)c, in the sense that Hc0
will not be rejected.

In particular, the probability Rα(c) that Hc0 is rejected with significance α can be derived as

Rα(c) = 1− P
[
χ2
α
2 ,N−1 ≤ t(c) ≤ χ2

1−α2 ,N−1

]
.

Note that, as described in the previous paragraph, in the case where the true population variance
is equal to the hypothesized one, this probability is equal to α. In the general case, the following
result links Rα(c) to the accuracy of the polynomial approximation of f by Sm[

√
f ]2 using a

criterion that is actually independent of c.

Proposition 3.2.1. Let [a, b] be an interval containing all the eigenvalues of S. Let ε̂m denote
the relative approximation error of the Chebyshev sum, defined by

ε̂m := max
λ∈[a,b]

∣∣∣∣f(λ)− Sm[
√
f ](λ)2

Sm[
√
f ](λ)2

∣∣∣∣ . (3.10)

Let Rα(c) denote the probability of rejecting, with significance α > 0 in a chi-square test for the
variance, the null hypothesis Hc0 (defined for Ns samples).
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Then ∀γ > 0, there exists a threshold ηα(Ns, γ) > 0 such that:

ε̂m ≤ ηα(Ns, γ)⇒ ∀c ∈ Rn, Rα(c) ≤ (1 + γ)α . (3.11)

Proof. Let c ∈ RNs . Denote σ2(c) = cTSm[
√
f ]2(S)c and σ2

0(c) = cT f(S)c. Then, Rα(c) can
be written

Rα(c) = 1− P
[
σ2

0(c)
σ2(c)χ

2
α
2 ,Ns−1 ≤ t′(c) ≤

σ2
0(c)
σ2(c)χ

2
1−α2 ,Ns−1

]
,

where t′(c) is the statistic defined by

t′(c) = σ2
0(c)
σ2(c) t(c) = (Ns − 1)S

2(c)
σ2(c) .

By definition, the sample
(
cTx

(m)
1 , . . . , cTx

(m)
Ns

)
is Gaussian with variance σ2(c). Hence, t′(c)

follows a χ2(Ns − 1) distribution. So, if τ(c) denotes the ratio

τ(c) = σ2
0(c)
σ2(c) .

Then,

Rα(c) = 1−
(
Fχ2(Ns−1)

(
χ2

1−α2 ,Ns−1τ(c)
)
− Fχ2(Ns−1)

(
χ2
α
2 ,Ns−1τ(c)

))
.

The probability Rα(c) only depends on the ratio τ(c) (and the parameters of the test,
namely Ns and α). Considering it as a function of the ratio τ ∈ [0,+∞[, several properties
of Rα can be derived. First, given that ∀τ ∈ R+, Rα(τ) is a probability, 0 ≤ Rα(τ) ≤ 1.
Besides, from the fact that that Fχ2(Ns−1) is a continuous cumulative distribution function,
we get that Rα is also continuous (and even differentiable) and that:

lim
τ→0

Rα(τ) = 1 = lim
τ→+∞

Rα(τ) . (3.12)

Finally, from the study of the sign of its derivative (which can easily be expressed using the
distribution function of χ2(Ns − 1)), we get that Rα admits a unique global minimum on R+
for the following value τmin of τ :

τmin = Ns − 1
χ2

1−α2 ,Ns−1 − χ2
α
2 ,Ns−1

log
(
χ2

1−α2 ,Ns−1

χ2
α
2 ,Ns−1

)
.

In particular, Rα is strictly decreasing on [0, τmin[ and strictly increasing on ]τmin,+∞[.
Consequently the intermediate value theorem ensures that Rα defines a bijection between

]0, τmin] and [Rα(τmin), 1[, but also between [τmin,+∞[ and [Rα(τmin), 1[.
Consider now γ > 0 such that (1 + γ)α < 1. Notably, we have

1 > (1 + γ)α > α (= Rα(1)) ≥ Rα(τmin) .

Hence, the equation Rα(τ) = (1 + γ)α admits exactly two solutions τ (1)
γ ∈]0, τmin[ and τ (2)

γ ∈
]τmin,+∞[. Moreover, considering the variations of Rα, we have ∀τ ∈ [τ (1)

γ , τ
(2)
γ ], Rα(τ) ≤

(1 + γ)α and also 1 ∈]τ (1)
γ , τ

(2)
γ [. Introduce then the threshold

ηα(Ns, γ) = min{1− τ (1)
γ ; τ (2)

γ − 1} .

Given that by definition of ηα(Ns, γ), [1− ηα(Ns, γ), 1 + ηα(Ns, γ)] ⊂ [τ (1)
γ , τ

(2)
γ ], we have

∀τ > 0 such that |τ − 1| ≤ ηα(Ns, γ), Rα(τ) ≤ (1 + γ)α . (3.13)

Notice now that for a any c ∈ Rn, the quantity |τ(c)− 1| can be expressed as

|τ(c)− 1| =
∣∣∣∣σ2

0(c)− σ2(c)
σ2(c)

∣∣∣∣ =
∣∣∣∣cT (f(S)− Sm[

√
f ]2(S))c

cTSm[
√
f ]2(S)c

∣∣∣∣ =
∣∣∣∣cT (f(S)− Sm[

√
f ]2(S))c

‖Sm[
√
f ](S)c‖22

∣∣∣∣ .
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Introducing the vector ĉ = Sm[
√
f ](S)c and using the definition of graph filters, we get

|τ(c)− 1| =

∣∣∣∣∣
(

ĉ

‖ĉ‖2

)T (
Sm[

√
f ](S)

)−1 (
f(S)− Sm[

√
f ]2(S)

)(
Sm[

√
f ](S)

)−1
(

ĉ

‖ĉ‖2

)∣∣∣∣∣
=

∣∣∣∣∣
(

ĉ

‖ĉ‖2

)T ((
f − Sm[

√
f ]2

Sm[
√
f ]2

)
(S)
)(

ĉ

‖ĉ‖2

)∣∣∣∣∣ .

Hence |τ(c) − 1| can be expressed as the modulus of the Rayleigh quotient of a matrix
with respect to a vector depending on c. It can therefore be upper-bounded, for any c ∈ Rn,
by the eigenvalue of this matrix that has the largest magnitude. In our case, this gives

∀c ∈ Rn, |τ(c)− 1| ≤ max
k∈[[1,n]]

∣∣∣∣f(λk)− Sm[
√
f ](λk)2

Sm[
√
f ](λk)2

∣∣∣∣ ,

where λ1, . . . , λn denote the eigenvalues of S. Hence by imposing for an interval [a, b] con-
taining all the eigenvalues of S, the condition ε̂m ≤ ηα(Ns, γ) we will get in particular that

maxk∈[[1,n]]

∣∣∣∣ f(λk)−Sm[
√
f ](λk)2

Sm[
√
f ](λk)2

∣∣∣∣ ≤ ηα(Ns, γ) and therefore that for any c ∈ Rn, |τ(c) − 1| ≤

ηα(Ns, γ) which concludes the proof according to Equation (3.13).

Therefore, if Equation (3.11) is satisfied, then, for any c, hypothesis Hc0 is actually rejected
(with significance α) with a probability less than (1 + γ)α. This probability would have been
equal to α if the samples were generated using the right covariance matrix. Therefore, the
parameter γ represents relative increase of the rejection probability due to the fact that the
samples are generated using an approximation of the target distribution.

As detailed in the proof, the bound ηα(Ns, γ) solely depends on the specification of the
characteristics of the statistical test: the sample size Ns, the significance level α and the tolerated
increase of probability of rejection γ. Namely, it is given by:

ηα(Ns, γ) = min{1− τ (1)
γ ; τ (2)

γ − 1} ,

where τ (1)
γ and τ (2)

γ are the two solutions of the equation:

1−
(
Fχ2(Ns−1)

(
χ2

1−α2 ,Ns−1τ
)
− Fχ2(Ns−1)

(
χ2
α
2 ,Ns−1τ

))
= (1 + γ)α . (3.14)

Hence, once Ns, α and γ are fixed, ηα(Ns, γ) can be numerically computed by solving Equa-
tion (3.14) using any root finding algorithm such as the bisection method or even better Newton’s
method given that the derivative of the function can be analytically computed (Press et al., 2007).
Besides, the fact that the disjoint intervals on which each one of the solutions lies are known
can be used to ease the root finding process. Tables 3.1 and 3.2 give values of the tolerance
ηα(Ns, γ) produced this way, for various sample sizes Ns and thresholds γ. The significance is
fixed at α = 0.05 for Table 3.1 and α = 0.01 for Table 3.2.

Finally, note that given that Sm[
√
f ] is defined as the truncation of a Chebyshev series

at an order m, this order can be determined by specifying the parameters of the statistical
test the user would want its simulations to pass, along with a tolerated error in variance. These
parameters would in turn yield a value of ηα(Ns, γ) and therefore set a bound for the polynomial
approximation error ε̂m. The order of truncation m is then chosen so that ε̂m ≤ ηα(Ns, γ). This
approach will be used in Section 9.1, when dealing with explicit examples of functions f .

This section therefore provided an actual criterion that can be used to set the order of
approximation in the filtering step of the Chebyshev simulation algorithm (cf. Algorithm 3.3),
so that the resulting simulations have “good enough” statistical properties. In the next section,
we link the Chebyshev simulation algorithm to Krylov subspace approaches, thus providing a
new insight on this algorithm.
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γ
Sample size Ns

50 100 500 1000 5000 10000
0.1% 6.40e-04 6.20e-04 5.40e-04 4.80e-04 3.00e-04 2.40e-04
1% 5.44e-03 4.80e-03 3.04e-03 2.36e-03 1.20e-03 8.60e-04
5% 1.89e-02 1.51e-02 8.06e-03 5.94e-03 2.82e-03 2.02e-03
10% 3.00e-02 2.33e-02 1.18e-02 8.64e-03 4.02e-03 2.88e-03
20% 4.59e-02 3.48e-02 1.71e-02 1.24e-02 5.74e-03 4.08e-03
50% 7.66e-02 5.71e-02 2.75e-02 1.98e-02 9.08e-03 6.46e-03
100% 1.10e-01 8.12e-02 3.89e-02 2.80e-02 1.28e-02 9.10e-03

Table 3.1: Values of the precision threshold ηα(Ns, γ) for different values of sample size Ns and
of degradation of the type I error γ. The significance of the test is α = 0.05.

γ
Sample size Ns

50 100 500 1000 5000 10000
0.1% 4.00e-04 4.00e-04 3.60e-04 3.20e-04 2.20e-04 1.80e-04
1% 3.56e-03 3.24e-03 2.20e-03 1.74e-03 9.20e-04 6.60e-04
5% 1.33e-02 1.09e-02 6.06e-03 4.52e-03 2.18e-03 1.56e-03
10% 2.16e-02 1.71e-02 9.00e-03 6.62e-03 3.12e-03 2.24e-03
20% 3.36e-02 2.59e-02 1.31e-02 9.54e-03 4.44e-03 3.18e-03
50% 5.67e-02 4.28e-02 2.10e-02 1.52e-02 7.00e-03 5.00e-03
100% 8.11e-02 6.07e-02 2.94e-02 2.12e-02 9.76e-03 6.96e-03

Table 3.2: Values of the precision threshold ηα(Ns, γ) for different values of sample size Ns and
of degradation of the type I error γ. The significance of the test is α = 0.01

3.3 Relation to Krylov subspace methods

3.3.1 Background: Krylov subspace approach
Krylov subspaces provide a framework for the study of some of the most used iterative algorithms
used to solve eigenvalue problems and linear systems involving a matrix A ∈Mn(R) (Del Corso
et al., 2015). The idea behind such algorithms is to iteratively generate a sequence of approximate
solutions of the problem while relying at each iteration on recurrence relations based on matrix-
vector products involving A. The approximate solution obtained at the m-th iteration step
lies in the subspace Km(A, z) defined for some problem-dependent z ∈ Rn and called Krylov
subspace of dimension m generated by A and z:

Km(A, z) = span{z,Az, . . . ,Am−1z} = {π(A)z : π polynomial of degree < m} .

In particular, Km(A, z) is a vector space of dimension at most n, the size of the matrix A.
An orthonormal basis of Km(A, z) can be constructed using the Lanczos algorithm (Del Corso
et al., 2015; Golub and Van Loan, 1996b), which implements a Gram–Schmidt orthogonalization
technique, as outlined in Algorithm 3.4.

In Algorithm 3.4 note that if ∃j < m such that δj+1 = 0, the algorithm stops meaning that
Km(A, z) has dimension j with [v1| . . . |vj ] as an orthonormal basis. Besides, the orthogonality
of the vectors {vj} gives:

V T
mVm = Im and V T

m vm+1 = 0 .

Finally, using the intermediate coefficients computed during the Lanczos algorithm, the resulting
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Algorithm 3.4: Lanczos algorithm.
Input: A symmetric matrix A ∈Mn(R), a vector z ∈ Rn with ‖z‖2 = 1, m ≤ n.
Output: An orthonormal basis of Km(A, z).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: v0 = 0, v1 = z, δ1 = 0;
for j from 1 to m do

h← Avj − δjvj−1 ;
γj = hTvj ;
k← h− γjvj ;
δj+1 = ‖k‖2;
vj+1 = k/δj+1;

Return Vm = [v1| . . . |vm] ∈Mn,m(R).

basis Vm satisfies the following relation

AVm = VmTm + δm+1vm+1e
T
m ,

where Tm is the tridiagonal matrix defined by

Tm =


γ1 δ2

δ2 γ2
. . .

. . . . . . δm

δm γm

 .

In particular, using the orthogonality of Vm, this relation becomes

V T
mAVm = Tm .

This last relation can be used to show that eigenvalues of A are well-approximated by those of
Tm as m grows, starting from the extremal ones (Golub and Van Loan, 1996b).

Krylov subspaces arise naturally when studying iterative algorithms designed to solve linear
systems of the form:

Ax = b , (3.15)

where A ∈ Mn(R) is assumed to be invertible and b ∈ Rn. The following proposition details
this relation.

Proposition 3.3.1. Let A ∈Mn(R) be an invertible matrix. Then there exists a polynomial π
of degree at most n such that:

A−1 = π(A) .

Proof. Let PA be the characteristic polynomial of A, i.e. the polynomial defined by the
relation:

PA(X) = |XIn −A| .

In particular, PA is a polynomial of degree n, whose n-th order coefficient is 1 and 0-th order
coefficient is PA(0) = | −A| = (−1)n|A| 6= 0. Hence, there exists c1, . . . , cn−1 ∈ R such that
PA(X) = Xn + cn−1X

n−1 + · · ·+ c1X + (−1)n|A|. The Cayley-Hamilton theorem states that
PA(A) = 0 (Friedberg et al., 2003, Theorem 5.23). Hence,

(−1)n−1

|A|
(An−1 + cn−1A

n−2 + · · ·+ c1In)A = In .

Denoting π the polynomial of degree n − 1 defined by π(X) = ((−1)n−1/|A|)(Xn−1 +
cn−1X

n−2 + · · ·+ c1) then gives π(A)A = Aπ(A) = In and therefore π(A) = A−1.
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Consequently, the solution x∗ = A−1b of Equation (3.15) can also be written as x∗ = π(A)b
for a polynomial π of degree (at most) n − 1 and therefore x∗ lies in the Krylov subspace
Kn(A, b). In particular, if x(0) denotes an initial guess for x∗:

x∗ − x(0) = A−1(b−Ax(0)) = π(A)r(0) ∈ Kn(A, r(0)) ,

where r(0) = b − Ax(0) denotes a vector called initial residual. A whole class of iterative
algorithms, called projection methods, build on this observation to produce approximations of
the solution x∗ starting from an initial guess by computing orthogonal projections on Krylov
subspaces of growing dimension (Saad, 2003). Among them, the generalized minimal residual
(GMRES) algorithm and the conjugate gradient algorithm, designed to solve linear systems
where A is respectively any invertible square matrix or symmetric positive definite matrix.

3.3.2 Link to the Chebyshev simulation algorithm
In this section, the relation between the Chebyshev simulation algorithm and Krylov subspaces is
exposed, and a comparison with a more standard Krylov subspace approach to generate samples
from a S-stationary SGS with known spectral density is presented.

Recall that Section 3.1.2 provides a direct way to generate samples of stationary SGS with
spectral density f . Denote x such a vector:

x =
√
f(S)w , (3.16)

wherew is a realization of a white signal. On the other hand, the Chebyshev simulation algorithm
yields, for an order of approximation m ∈ N, a vector x(m) given by

x
(m)
C = Sm[

√
f ](S)w , (3.17)

where S[
√
f ] is a polynomial of degree m defined as the Chebyshev sum (or interpolant) of order

m of the function x 7→
√
f(x) on an interval [a, b] containing the eigenvalues of S.

Note consequently that x(m)
C ∈ Km+1(S,w). Besides, the Chebyshev simulation algorithm

can basically be seen as an iterative algorithm. Indeed, to compute x(m)
C for any given m every

x
(k)
C for 0 ≤ k < m is successively computed and is simply updated to generate x(k+1)

C . This
justifies the fact that Chebyshev simulations can be considered as a Krylov subspace approach.

A standard approach using Krylov subspaces to generate samples from a Gaussian vector
with known covariance (or precision) matrix uses the Lanczos algorithm to come up with an
approximation of x (Simpson et al., 2008). Indeed, in exact arithmetic, this algorithm can
provide an orthonormal basis of Km+1(S, ε) (Golub and Van Loan, 1996b). x can then be
approximated by (Frommer and Simoncini, 2008; Simpson et al., 2008)

x
(m)
L = ‖w‖2Vm+1

√
f(Tm+1)e1 , (3.18)

where e1 = (1 0 . . . 0)T ∈ Rn, Tm+1 is a tridiagonal (symmetric) matrix of size m+1 and Vm+1
is a matrix containing the m+ 1 vectors of the orthonormal basis of Km+1(S,w), both matrices
being products of the Lanczos algorithm.

The cost associated with computing x(m)
L can be decomposed as follows :

� Run the Lanczos algorithm form iterations: this represents a cost of O(mdnzn) operations,
where dnz is the mean number of non-zero values in a row of S (cf. Algorithm 3.4).

� Then, compute Equation (3.18): this involves the full diagonalization of the symmetric
tridiagonal matrix Tm+1, which is an O((m+ 1)3) operation using for instance LAPACK’s
eigensolvers (Demmel et al., 2008). Apply then a matrix-vector product with Vm+1. Hence,
the overall cost of this step is O((m+ 1)3 + nm) operations.

Computing x(m)
L therefore comes at an overall cost of O(mdnzn + m3) operations. Regarding

the storage needs of this process, the matrix Vm+1 and the eigendecomposition of Tm+1 need to
be stored, which requires a storage need of O(mn+m2).

From Section 2.2, it is clear that the Chebyshev simulation algorithm requires less operations
and storage space to generate an approximation of x from the same Krylov subspace. But on
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Lanczos Chebyshev
Computational cost O(mdnzn+m3) O(mdnzn)
Storage needs O(mn+m2) O(n)
Approximation error O(δm) O(δm logm)

Table 3.3: Comparison between the Lanczos algorithm and our Chebyshev algorithm after m
iterations, for the simulation of a sample from stationary SGS.

the other hand, at the same approximation order m, the quality of the approximation obtained
using the Lanczos algorithm will be better than the one using the Chebyshev algorithm. Indeed,
in the Lanczos case (still in exact arithmetic) this approximation error satisfies (Musco et al.,
2017)

‖x− x(m)
L ‖2 ≤ 2‖w‖2δm, δm = min

π polynomial
of degree ≤m

max
x∈[λmin,λmax]

|
√
f(x)− π(x)| ,

where λmin (resp. λmax) denotes the smallest (resp. largest) eigenvalue of S. Thus it yields
in the Lanczos case an error of order O(δm). In the Chebyshev case, the approximation error
satisfies

‖x− x(m)
C ‖22 = ‖

(√
f(S)− Sm[

√
f ](S)

)
w‖22 =

wT
(√
f(S)− Sm[

√
f ](S)

)
w

‖w‖22
‖w‖22 .

Noting the Rayleigh equation in this last expression, we can upper-bound it by the largest
eigenvalue of the matrix from which it is defined. Hence, by taking the square-root,

‖x− x(m)
C ‖2 ≤ ‖w‖2 max

k∈[[1,n]]
|
√
f(λk)− Sm[

√
f ](λk)|

≤ ‖w‖2 max
λ∈[λmin,λmax]

|
√
f(λ)− Sm[

√
f ](λ)| .

This last estimate can be bounded using δm and the Lebesgue constant λm, thus giving for
the Chebyshev approximation an error of order O(λmδm) = O(δm logm) (Mason and Hand-
scomb, 2002). The results of the comparison between the Lanczos algorithm and our Chebyshev
algorithm are summed up in Table 3.3.

For small values of m the Lanczos algorithms is more adequate as it provides an approxi-
mation with a lower error. Its main flaw resides in the fact that, contrary to our Chebyshev
algorithm, the storage needs grow linearly with the order of approximation. Hence for large prob-
lems (i.e. when n is large), a restriction on the order of approximation has to be set according
to the storage space available to the user.

In order to tackle this storage problem, some adjustments can be made to the original Lanczos
algorithm (Aune et al., 2013). For instance, restarting procedures allow to work with a fixed
number of stored basis vectors of the Krylov space. However, these methods result in a loss of
approximation accuracy and push to use complex preconditioning techniques in order to improve
the convergence speed of the algorithm, which in turn increases the overall computational cost
(Simpson et al., 2008). The Chebyshev simulation algorithm doesn’t share this storage flaw,
allowing it to make up for its relative lack of precision by the possibility to work with much
higher orders of approximation without the headache of finding the right variation of Lanczos
algorithm1 to use.

Another attractive feature of the Chebyshev algorithm is the statistical stopping criterion
derived in Section 3.2.2. This criterion was established by using the fact that x(m)

C could be
written as x(m)

C = πm(S)ε where the coefficients defining πm are deterministic (which in our
case means that they are not linked to w) and that therefore x(m)

C is a Gaussian vector with
known covariance.

1Note also that the comparison is carried out under the assumption of exact arithmetic. In floating points
computations, a loss of orthogonality of Vm+1 is observed as m grows, leading to larger approximation errors
(Musco et al., 2017) and forcing the user to adapt the algorithm using workarounds such as re-orthogonalization
techniques or restart techniques (thus increasing the overall complexity of the algorithm).
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This is no longer the case when considering the Lanczos algorithm given that these same
coefficients would effectively depend on the entries of w as this vector is used to compute the
matrices Vm+1 and Tm+1 used to define x(m)

L . The only available stopping criteria for the
Lanczos algorithm are therefore linked to the actual numerical approximation error ‖x− x(m)

L ‖
and not the statistical properties of the vector we wish to simulate. Moreover, given that in
practice x is not available, the stopping criteria actually rely on the link between the Lanczos
algorithm and the Conjugate Gradient algorithm, using the residuals of the latter as a bound
on the approximation error (Aune et al., 2013).

Conclusion
In this section, algorithms to generate simulations of a stationary SGS were introduced. The
focus was put on an approximate simulation algorithm, which we called Chebyshev simulation
algorithm, and that was based on Chebyshev graph filtering operations.

The numerical approximation error of the simulations generated by the Chebyshev algorithm
were computed, and led to concentration inequalities linking the accuracy of the polynomial
approximation used in the filtering step and the error between the simulation vector and a
vector that is known to have the right statistical properties.

Going then a step further, the statistical properties of the simulated vectors were directly
derived and compared to the targeted ones through an approach based on statistical tests. This
yielded criteria on the accuracy of the polynomial approximation used in the filtering step so
that the simulated vectors could “pass” for vectors with the targeted statistical properties.

Finally, the Chebyshev simulation algorithm was presented as a Krylov subspace approach,
and compared to a more standard method of simulation from this class of algorithms, based
on the Lanczos algorithm. Both methods produce an estimate of the simulated output using a
polynomial approximation of predefined degree. At the same degree, the Lanczos approach will
yield a better estimate when considering numerical approximation error. However, the use of
Chebyshev simulations is justified by their cheap computational and storage costs, the ability
to evaluate statistical errors, and the guarantee that the simulations produced by the algorithm
are Gaussian vectors.



4
Prediction of stationary
stochastic graph signals

Contents
4.1 Prediction of a stationary graph signal . . 80

4.1.1 Kriging predictor in the zero-mean case . . 80
4.1.2 Kriging predictor in the non-zero mean case 82
4.1.3 Conditional simulations . . . . . . . . . . . 83

4.2 Extraction of a stationary graph signal . . 85
4.2.1 Linear predictor in the known-mean case . 86
4.2.2 Linear predictor in the unknown-mean case 87

4.3 Practical implementation in the known-
mean case . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Matrix-free formulation of the problem . . . 87
4.3.2 Optimization framework . . . . . . . . . . . 89
4.3.3 Steepest gradient descent algorithm . . . . 90
4.3.4 Conjugate gradient algorithm . . . . . . . . 92
4.3.5 Note on preconditioning . . . . . . . . . . . 94

4.4 Practical implementation on the unknown-
mean case . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Matrix-free formulation of the problem . . . 95
4.4.2 Conjugate residual algorithm . . . . . . . . 95

4.5 Unified approach through quadratic pro-
gramming . . . . . . . . . . . . . . . . . . . . 97

79



80 4. Prediction of stationary stochastic graph signals

Résumé
Dans ce chapitre, nous nous intéressons au problème lié à l’estimation d’un signal sur

graphe stochastique stationnaire à partir de l’observation partielle et/ou bruitée d’une de ses
réalisation. Nous supposons par contre connue sa covariance. Nous présentons des estimateurs
adaptés à cette situation, ainsi que des algorithmes et des détails d’implémentation permettant
de les utiliser en pratique.

Introduction
Throughout this chapter, S denotes a shift operator of size n defined following Assumption 1.2,
meaning that S is a symmetric matrix that relates to the adjacency relations of a simple undi-
rected graph. We focus on the problem of predicting a S-stationary stochastic graph signal
(SGS) from its incomplete and possibly noisy observation. However, the parameters defining the
covariance of the SGS, namely the shift operator S and the spectral density, are assumed to be
known. The task of estimating them as well will be tackled in the next chapter.

Hence, our starting point is a vector of observed values derived from a single realization of
a S-stationary SGS through an affine transform: each observed value is a linear combination of
entries of the SGS to which an independent noise variable with known variance is added. The
goal is then to come up with a predictor of the realization that gave rise to the observation
vector.

To tackle this problem, an approach based on the geostatistical paradigm is adopted, meaning
that a predictor of the random signal given the observed data is built instead of trying to predict
directly the realization of this random signal (Chilès and Delfiner, 2012).

In the first two sections of this chapter, predictors are derived for the cases where the noise
affecting the observations is assumed to be entirely uncorrelated or arising from S-stationary
signals. The remaining of the chapter then focuses on algorithms used to compute these predic-
tors, and on their implementation. In particular, the same restrictions regarding computational
and storage costs as in the previous chapter still apply, meaning that a matrix-free approach is
once again adopted.

4.1 Prediction of a stationary graph signal
The problem answered in this section is the following. Let z ∈ Rn be a realization of a S-
stationary SGS Z with known spectral density f : R → R+. We aim at building a predictor of
z from its incomplete observation. Formally, we assume that we do not observe z directly, but
rather a vector zo ∈ Rq, linked to z by the relation

zo = Moz + τwo , (4.1)

where Mo ∈ Mq,n(R) is a known full-rank matrix called observation matrix, wo is a q-vector
composed of realizations of independent standard Gaussian variables, and τ ≥ 0 is a variance
parameter. Basically, it is assumed that the observed vector zo is a linear transform of the
original signal z to which a noise component of variance τ2 is added. Note that taking τ = 0
allows to consider a noise-free model.

In particular, the rather general formulation of Equation (4.1) includes the case where only a
few components of a SGS are observed and must be used to reconstruct the whole signal. Then
zo is the vector composed of the components of z that are actually observed, Mo is the matrix
that extracts the observed components from z and τ = 0. More precisely, Mo is the matrix
whose (k, j)-th element is one if zj is the k-th observed component of zo and 0 otherwise.

4.1.1 Kriging predictor in the zero-mean case
We aim at finding a predictor of a signal z, conditionally to the observation of zo. Hence,
following the geostatistical paradigm (Chilès and Delfiner, 2012), z and zo are seen as realizations
of random vectors Z and Zo that are linked through the relation

Zo = MoZ + τWo , (4.2)
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where Z is a S-stationary SGS with spectral density f ,W0 is a zero-mean Gaussian vector with
covariance matrix Iq and Mo and τ are defined as above. In particular, we call the random
vector Zo observation process. predictors of z are then built by considering the conditional
distribution of Z given Zo = zo.

Proposition 4.1.1. Let Z be a S-stationary SGS with spectral density f and letWo be a vector
of independent standard Gaussian variables.
Let Zo be the random vector defined by Equation (4.2) for some (deterministic) matrix Mo ∈
Mq,n(R) and variance parameter τ ≥ 0. Denote zo a particular realization of Zo.

Then,
[Z|Zo = zo] ∼ N (E[Z|zo],Var[Z|zo]) , (4.3)

where E[Z|zo] is the conditional expectation of Z given Zo = zo:

E[Z|zo] = f(S)MT
o

(
Mof(S)MT

o + τ2Iq
)−1

zo ; (4.4)

and Var[Z|zo] := E
[
(Z − E[Z|zo]) (Z − E[Z|zo])T |Zo = zo

]
is the conditional covariance ma-

trix of Z given Zo = zo:

Var[Z|zo] = f(S)− f(S)MT
o

(
Mof(S)MT

o + τ2Iq
)−1

Mof(S) . (4.5)

In particular, whenever f is non-zero on the set of eigenvalues of S and τ > 0, the conditional
expectation and covariance matrix of Z can also be expressed as

E[Z|zo] =
(
(τ2/f)(S) +MT

o Mo

)−1
MT

o zo , (4.6)

and
Var[Z|zo] = τ2 ((τ2/f)(S) +MT

o Mo

)−1
. (4.7)

Proof. See Appendix C.2.

Circling back to the initial prediction problem, the next proposition justifies why choosing
the conditional expectation E[Z|zo] as a predictor of Z given the observations zo is optimal in
some sense. We first introduce the notion of best linear unbiased predictor. Let Z ∈ Rn and
Zo ∈ Rq be two random vectors defined as in Proposition 4.1.1 and zo be a realization of Zo.
A vector z∗ ∈ Rn is the best linear unbiased predictor (BLUP) of a random vector Z given a
vector of observations zo if it is:

� Linear: There exists a n × q weight matrix, denoted K, and a vector µ ∈ Rn such
that z∗ = µ + Kzo. Hence each entry of Z is predicted by a linear combination of the
observations in zo.

� Unbiased: E[Z∗−Z] = 0 where Z∗ = µ+KZo, , i.e. the error term Z∗−Z is zero-mean.

� Minimal variance: K is the matrix that minimizes Var[Z∗−Z], i.e. the error term Z∗−Z
has minimal variance over all possible linear predictors of Z from Zo.

The next proposition then follows from Proposition 4.1.1.

Proposition 4.1.2. Let Z and Zo be two random vectors defined as in Proposition 4.1.1 and
zo be a realization of Zo, considered as an observation of Z.

The conditional expectation E[Z|zo] of Z given Zo = zo is the best unbiased linear predictor
of Z given zo.

Proof. See Appendix C.2.
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Hence, z∗ = E[Z|zo] is an optimal choice of linear predictor of Z given zo given that it is
unbiased and it ensures that the variance of the error is minimal. By analogy with the simple
kriging predictor used in Geostatistics, which is defined in the same manner (Chilès and Delfiner,
2012; Wackernagel, 2013), z∗ = E[Z|zo] is called kriging predictor of Z by zo.

Besides, note that Z∗ = E[Z|Zo] is the conditional expectation of Z with respect to the
random variable Zo. As such, it is also equal to the conditional expectation of Z with respect to
σ(Zo), the σ-algebra generated by Zo (Feller, 1971). Whenever Z and Zo are square-integrable
random variables, Z∗ defines an orthogonal projection of Z onto the space of σ(Zo)-measurable
functions, with respect to the inner product (X,Y ) 7→ E[XY ]. As such, Z∗ can be interpreted
as the projection of Z on the set of random variables that encapsulate information from Zo. In
this sense, Z∗ is the best representation of Z achievable by a prediction based on Zo.

In the next section, kriging predictors are derived for the case where Z is not necessarily
zero-mean.

4.1.2 Kriging predictor in the non-zero mean case
Recalling Definition 1.4.6, let us assume for this subsection that Z is a S-stationary SGS with
spectral density f and possibly non-zero mean (cf. Section 1.4.4). Hence, there exists a zero-
mean S-stationary SGS Y with spectral density f , an eigenvector v ∈ Rn of S and some m ∈ R
such that

Z = Y +mv . (4.8)

Once again, we aim at predicting Z ∈ Rn from a vector of observations zo ∈ Rq drawn from a
observation process Zo defined by Equation (4.2).

SGS with known mean

We first assume that both the mean eigenvector v and the mean value m in Equation (4.8) are
known.

Proposition 4.1.3. Let Z be a S-stationary SGS with spectral density f : R → R+ and with
mean mv where m ∈ R and v ∈ Rn is an eigenvector of S. Let us assume that both m and v
are known.
Then, the BLUP Z∗ of Z given a vector of observations zo given by Equation (4.1) is

Z∗ = E[Z|zo] = mv + f(S)MT
o

(
Mof(S)MT

o + τ2Iq
)−1 (zo −mMov) . (4.9)

In the case where f is non-zero on the set of eigenvalues of S and τ > 0, we have the
following equivalent formulation of the kriging predictor:

Z∗ = E[Z|zo] = mv +
(
(τ2/f)(S) +MT

o Mo

)−1
MT

o (zo −mMov) . (4.10)

Proof. See Appendix C.2.

Remark 4.1.1. Regarding the conditional covariance matrix, Var[Z|zo], simple calculations
show that Var[Z|zo] = Var[Y |yo], and therefore it keeps the same formula as in Equation (4.5)
and, when applicable, Equation (4.7).

SGS with unknown mean

We now assume that the mean parameter m is unknown. However the vector v carrying the
mean is assumed to be known. The BLUP of Z given zo then has the following expression.

Proposition 4.1.4. Let Z be a S-stationary SGS with spectral density f : R → R+ and mean
mv where m ∈ R and v ∈ Rn is an eigenvector of S. Let us assume that v is known but m is
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unknown.
Then, the BLUP Z∗ of Z given a vector of observations zo given by Equation (4.1) is

Z∗ =
(

f(S)MT
o v

)


Mof(S)MT
o + τ2Iq Mov

(Mov)T 0



−1
zo

0

 . (4.11)

Proof. See Appendix C.2.

This predictor introduced in the proposition above actually corresponds to the ordinary
kriging predictor encountered in Geostatistics (Wackernagel, 2013) and is the BLUP of Z.

4.1.3 Conditional simulations
The idea behind conditional simulations is to generate simulations of a stationary SGS that agree
with some observation data when the same observation process is applied to them. Considering
a S-stationary SGS Z and an observation process Zo defined by Equation (4.1), we assume that
we only observe a (single) realization zo of Z. We aim at generating a simulation zc of Z such
that

Mozc + τwoc = zo ,

for some realization of woc of Wo. This is actually equivalent to draw zc from the conditional
distribution of Z given Zo = zo. Hence, following Proposition 4.1.1,

zc ∼ N (E[Z|zo],Var[Z|zo]) , (4.12)

where E[Z|zo] and Var[Z|zo] are defined in Equations (4.4) to (4.7).
Conditional simulations are widely used in Geostatistics for uncertainty assessments when

studying complex (spatial) phenomena (Chilès and Delfiner, 2012; Lantuéjoul, 2013). The
premise is that each conditional simulation can be interpreted as a possible picture of the phe-
nomenon or an alternative version of the reality of the phenomenon, that is generated while
honoring the limited information gathered about it. Using conjointly all these alternative sce-
narios allows to assess which one of them might be problematic and therefore identify possible
outliers.

In the context of SGS, a possible use of conditional simulations would be to compute predic-
tions of non linear functions of Z, conditional to some observed data zo. Indeed, if z(1)

c , . . . ,z
(N)
c

denote a set of N > 0 independently generated conditional simulations of Z, then for any func-
tion F of Z, a prediction F (Z)∗ of F (Z) conditional to Z = zo is given using a Monte-Carlo
approach, via the relation

F (Z)∗ = 1
N

N∑
k=1

F (z(k)
c ) .

Direct approach to conditional simulations

Circling back to the generation of conditional simulations, a direct approach consists in noticing
that any conditional simulation zc following Equation (4.12) is a realization of a random vector
Zc that can be written

Zc = E[Z|zo] +Z0
nc , (4.13)

where Z0
nc is a zero-mean Gaussian vector with covariance matrix Var[Z|zo]. Hence, a condi-

tional simulation zc is obtained by adding the conditional expectation E[Z|zo] to a realization
of Z0

nc. Realizations of Z0
nc may be obtained by a factorization method (cf. Section 3.1.1) given

that their covariance matrix is known but does not exhibit any particular structure that could be
used to bypass this method (like for instance them being graph filters). Algorithm 4.1 outlines
this procedure.
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Algorithm 4.1: Conditional simulation using a direct approach.
Input: Observation matrix Mo, Variance parameter τ and observation vector zo.

Spectral density of the signal f of a zero-mean S-stationary SGS Z.
Output: A simulation of Z conditional to zo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compute E[Z|zo] using Equation (4.4) or Equation (4.6) ;
Find a matrix B ∈Mn(R) such that BBT = Var[Z|zo], where Var[Z|zo] can be
equivalently expressed as Equation (4.5) or Equation (4.7) ;
Compute z0

nc = Bε where ε is a vector with independent standard Gaussian entries;
Return zc = E[Z|zo] + z0

nc ;

The direct approach presented in Algorithm 4.1 has a huge bottleneck: the factorization of
Var[Z|zo]. Contrary to the case where the covariance matrix is a graph filter, the factorization
here supposes that first, Var[Z|zo] is formed and stored. Forming Var[Z|zo] involves to fully
form a graph filter which must be avoided as it is a costly operation (cf. Section 4.3.1 for more
details). Hence, the direct approach of Algorithm 4.1 is usually discarded when it comes to
generate conditional simulation.

Kriging approach to conditional simulations

This second approach for generating conditional simulations builds on the one presented above.
It allows to compute conditional simulations of SGSs as long as we know how to compute un-
conditional simulations of SGSs with known spectral density, and that we know how to compute
conditional expectations of these SGS. The former was addressed in Chapter 3. The latter is the
purpose of Sections 4.3 and 4.5. We therefore assume for this subsection that both tasks can be
performed.

Starting once gain with Equation (4.13), we aim at finding a more efficient way to generate
a simulation of Z0

nc, which is a Gaussian vector with mean 0 and covariance matrix Var[Z|zo].
The following proposition answers this question.

Proposition 4.1.5. Let Z be a S-stationary SGS with spectral density f . Let Zo be the random
vector defined from Z by Equation (4.2).
Denote E[Z|Zo] the conditional expectation of Z given Zo (which is the random vector obtained
by substituting zo to Zo in Equation (4.4)).

Then,
Z − E[Z|Zo] ∼ N (0,Var[Z|zo]) ,

where Var[Z|zo] is defined through Equation (4.5) and only depends on Mo, τ and f(S).

Proof. See Appendix C.2.

Remark 4.1.2. Given that the corresponding expressions are equivalent, E[Z|Zo] and Var[Z|zo]
in Proposition 4.1.5 can also be computed using respectively Equation (4.6) and Equation (4.7).

Consequently, a simulation of Z0
nc can be generated by computing a realization of the random

variable Z − E[Z|Zo], given that they both have the same distribution. This can be done in
three steps:

1. Generate a realization z′ of Z, which is a S-stationary SGS with spectral density f .

2. Compute the vector E[Z|z′o] which is obtained by replacing zo with z′o in Equation (4.4),
where

z′o = Moz
′ + τw′o , (4.14)

and w′o is a vector of independent standard Gaussian variables.

3. The actual simulation z0
nc of Z0

nc is given by z0
nc = z′ − E[Z|z′o].
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Equation (4.13) then gives the following expression for a conditional simulation zc of z:

zc = E[Z|zo] + z0
nc = E[Z|zo] + z′ − E[Z|z′o] .

In particular, noting that the expression of both E[Z|zo] and E[Z|z′o] are linear with respect to
zo and z′o, this last equation can be written as

zc = z′ + E[Z|zo − z′o] ,

where E[Z|zo − z′o] denotes the vector obtained by substituting zo by zo − z′o in Equation (4.4)
or Equation (4.6):

E[Z|zo − z′o] = f(S)MT
o

(
Mof(S)MT

o + τ2Iq
)−1 (zo − z′o)

=
(
(τ2/f)(S) +MT

o Mo

)−1
MT

o (zo − z′o) .
(4.15)

Equation (4.15) is used to derive the conditional simulation algorithm outlined in Algo-
rithm 4.2. This algorithm sums up this kriging approach to conditional simulations, that yields
a conditional simulation for the cost of an unconditional simulation and a linear prediction of
SGS by kriging. The user should note that the second equality in Equation (4.15) is defined
only if f is strictly positive over the eigenvalues of S and τ > 0.

Algorithm 4.2: Conditional simulation by kriging.
Input: Observation matrix Mo, Variance parameter τ and observation vector zo.

Spectral density of the signal f of a zero-mean S-stationary SGS Z.
Output: A simulation of Z conditional to zo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compute a unconditional simulation z′ of Z using one of the algorithms of Section 3.1 ;
Compute z′o using Equation (4.14) ;
Compute E[Z|zo − z′o] using Equation (4.15) ;
Return zc = z′ + E[Z|zo − z′o] ;

4.2 Extraction of a stationary graph signal
The prediction problem of Section 4.1 is now extended: correlated noises are indeed added in the
observation process. This situation arises naturally in Geostatistics, where the noise affecting
a spatial dataset can also presents spatial correlations that can be modeled. We transpose this
setting to stochastic graph signals.

Let Z ∈ Rn be once again a S-stationary SGS with known spectral density f : R → R+.
We aim at recovering a predictor of Z from its noisy observation. Formally, we assume that we
do not observe Z directly, but rather a vector zo ∈ Rq which is a realization of an observation
process Zo defined by:

Zo = MoZ +M1Z1 + · · ·+MpZp + τWo , (4.16)

where:

� Mo ∈Mq,n(R) andM1 ∈Mq,n1(R), . . . ,Mp ∈Mq,np(R) are known observation matrices.

� Z1 ∈ Rn1 , . . . ,Zp ∈ Rnp are p zero-mean independent stationary SGS. In particular,
∀k ∈ [[1, p]], Zk is assumed to be stationary with respect to a shift operator Sk and has
spectral density fk, both of which are known.

� Wo is a vector with q independent standard Gaussian entries.

� τ ≥ 0 is a variance parameter.
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We therefore aim at extracting a particular signal Z from the observation of a superposition of in-
dependent signals Z1, . . . ,Zp,Wo. In particular, we call structured noises the signals Z1, . . . ,Zp
and unstructured noise the vector W0 in order to introduce a distinction between them. The
observation process involves a modification of each structured noise through an observation
matrix.

This new problem is a direct generalization of the prediction problem of Section 4.1, which is
retrieved when p = 0, i.e. where the noise of Zo, defined as the difference Zo −MoZ, is purely
a measurement error. This parallel allows to derive linear predictors of Z in the same way as in
Section 4.1.

4.2.1 Linear predictor in the known-mean case
Let us assume for this section that Z is a S-stationary SGS with spectral density f and possibly
non-zero mean mv where m ∈ R and v ∈ Rn is an eigenvector of S. In particular Y := Z −mv
defines a zero-mean S-stationary SGS Y with spectral density f .

We aim at extracting Z ∈ Rn from a vector of observations zo ∈ Rq drawn from a observation
process Zo (defined by Equation (4.16)) by building a linear predictor of Z from zo. The
structured noises Z1, . . . ,Zp are still assumed to be zero-mean, as is the unstructured noiseWo.

Proposition 4.2.1. Let Z be a S-stationary SGS with spectral density f and known mean mv
where m ∈ R and v ∈ Rn is an eigenvector of S. Let zo ∈ Rq be a realization of an observation
process Zo defined by Equation (4.16).
Then, the BLUP Z∗ of Z given zo is the conditional expectation of Z given Zo = zo, that is

Z∗ = E[Z|zo]

= mv + f(S)MT
o

(
Mof(S)MT

o +
p∑
k=1

Mkfk(Sk)MT
k + τ2Iq

)−1

(zo −mMov) .
(4.17)

Besides, the conditional covariance matrix of Z given Zo = zo is given by

Var[Z|zo] = f(S)− f(S)MT
o

(
Mof(S)MT

o +
p∑
k=1

Mkfk(Sk)MT
k + τ2Iq

)−1

Mof(S) . (4.18)

Proof. See Appendix C.2.

Other formulations of the solution of the extraction problem can be formulated for the par-
ticular case where the spectral density f is non-zero over the set of eigenvalues of S and τ > 0.

Proposition 4.2.2. Let Z be a zero-mean S-stationary SGS with spectral density f and let
zo ∈ Rq be a realization of an observation process Zo defined by Equation (4.16).
Then, the BLUP Z∗ of Z given zo and the BLUPs Z∗1 , . . . ,Z∗p of Z1, . . . ,Zp given Zo = zo
satisfy

Z∗ −mv
Z∗1
...
Z∗p

 =


MT

o Mo + τ2

f (S) MT
o M1 . . . MT

o Mp

MT
1 Mo MT

1 M1 + τ2

f1
(S1) . . . MT

1 Mp

...
...

. . .
...

MT
p Mo MT

p M1 . . . MT
p Mp + τ2

fp
(Sp)



−1
MT

o (zo −mMov)
MT

1 (zo −mMov)
...

MT
p (zo −mMov)

 .

(4.19)
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Proof. See Appendix C.2.

4.2.2 Linear predictor in the unknown-mean case
Once again, we assume for this section that Z is a S-stationary SGS with spectral density f and
possibly non-zero mean mv where m ∈ R and v ∈ Rn is an eigenvector of S. However we now
assume that the mean value m is unknown and the mean eigenvector v is known. The BLUP of
Z given zo has the following expression.

Proposition 4.2.3. Let Z be a S-stationary SGS with spectral density f and mean mv where
m ∈ R and v ∈ Rn is an eigenvector of S. Let us assume that v is known but m is unknown.
Then, the BLUP Z∗ of Z given a vector of observations zo defined by Equation (4.16) is:

z∗ =
(
f(S)Mo v

)


Mof(S)MT
o +

p∑
k=1

Mkfk(Sk)MT
k + τ2Iq Mov

(Mov)T 0



−1 zo

0


(4.20)

Proof. See Appendix C.2.

In the next sections, we present numerical methods to effectively solve the prediction and
extraction problems that were introduced in the past two sections. As a matter of fact, given
that the prediction problem is the particular case of an extraction problem for which there are
no structured noises Z1, . . . ,Zp, only this last class of problems will actually be considered from
now on.

4.3 Practical implementation in the known-mean case
Let us assume that we aim at extracting a signal Z with known mean mv where m ∈ R and
v ∈ Rn is an eigenvector of S, from an observation vector zo arising from an observation process
Zo defined by Equation (4.16).

4.3.1 Matrix-free formulation of the problem
Propositions 4.2.1 and 4.2.2 provide expressions for the BLUP z∗ of Z given zo that share a
common formulation. Indeed, they can be written as:

z∗ = PK−1b , (4.21)

where:

� K is a symmetric positive-definite matrix defined from the covariance matrices f(S),
f1(S1), . . . , fp(Sp), the observation matricesMo,M1, . . . ,Mp and the variance parameter
τ . Let nK be its size.

� b is a nK-vector defined from zo and the observation matrices Mo,M1, . . . ,Mp.

� P is a n×nK matrix defined from the covariance matrix f(S) and the observation matrix
Mo.

More precisely, the matrices K, P and the vector b have the following expression (cf. Proposi-
tion 4.2.1):

K =
(
Mof(S)MT

o +
p∑
k=1

Mkfk(Sk)MT
k + τ2Iq

)
,

b = zo −mMov, P = f(S)MT
o .

(4.22)
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Whenever the spectral density f of the extracted signal is non-zero over the eigenvalues of S
and τ > 0, an alternative formulation is given by (cf. Proposition 4.2.2)

K =


MT

o Mo + τ2

f
(S) MT

o M1 . . . MT
o Mp

MT
1 Mo MT

1 M1 + τ2

f1
(S1) . . . MT

1 Mp

...
...

. . .
...

MT
p Mo MT

p M1 . . . MT
p Mp + τ2

fp
(Sp)

 ,

b =


MT

o

MT
1
...

MT
p

 (zo −mMov), P = I .

(4.23)

In that case, z∗ actually corresponds to the best linear predictor of the vector containing the
signal Z but also the p structured noise components Z1, . . . ,Zp.

Hence, a straightforward way to get the extracted signal z∗ would consist in building the
matrices P , K and b, and actually computing z∗ through Equation (4.21). This can be done in
two steps:

1. First, compute the term x∗ = K−1b by either inverting K and multiplying the inverse
with b or more generally by solving the linear system

Kx∗ = b , (4.24)

using any algorithm designed for this purpose.

2. Return z∗ = Px∗.

In practice, building and storing the matrices K and P in order to directly use them in
Equation (4.21) quickly becomes an intractable operation. To understand this, notice that the
expression of both matrices involves at least one graph filter. Hence computing and storing K
and P actually requires to compute and store at least one graph filter. This can be done using
the definition of graph filters, which involves the diagonalization of a shift operator. If the shift
operator has size n, this approach would therefore require O(n3) operations and a storage space
of order O(n2) given that the resulting matrix has no reason to be sparse.

Following the idea of Chebyshev filtering, we might think of computing a polynomial approx-
imation of the graph filter. However, doing so now involves matrix-matrix products between the
shift operator and a matrix of size n that becomes less and less sparse as the number of products
grows. The whole point of the Chebyshev approach would therefore be lost: only low-order
approximations would be considered otherwise the computation of the graph filter would be as
expensive as using the diagonalization method.

Even if we assume that we are able to build any graph filters, a storage problem arises. Take
for instance the case of the matrix K, whose computation seems inevitable to solve the system
of Equation (4.24). Storing K would require O(n2) storage space, as it is in general a dense
matrix.

Another approach should therefore be used to solve the system of Equation (4.24). Even
though computing directly the matrix K is prohibited, computing products between K and
vectors of the same size can be done in an efficient way using Chebyshev filtering. Assuming
the observation matrices are sparse, the computational and storage cost of computing a product
Kx can be brought down to roughly the cost of performing p+ 1 graph filtering operations.

In the case where K is defined as in Equation (4.22), a product Kx is given by

Kx = Mof(S)MT
o x+

p∑
k=1

Mkfk(Sk)MT
k x+ τ2x ,

where each term of the form Mof(S)MT
o x can be computed in three steps. First, the vector

MT
o x is computed (which is cheap as Mo is sparse). Then Chebyshev filtering is used on the

graph filter f(S) and the vector MT
o x. And finally, the resulting vector is multiplied by Mo.
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Similarly, in the case where K is defined as in Equation (4.23), we have

K


x

x1
...
xp

 =



MT
o

(
Mox+

p∑
k=1

Mkxk

)
+ τ2

f (S)x

MT
1

(
Mox+

p∑
k=1

Mkxk

)
+ τ2

f1
(S1)x1

...

MT
p

(
Mox+

p∑
k=1

Mkxk

)
+ τ2

fp
(Sp)xp


,

where each term of the form (τ2/f)(S)x is computed using Chebyshev filtering. Note also that
the term (Mox+

∑p
k=1Mkxk) can be computed once, stored, and used for every subvector of

the product.
Hence efficient programs based on Chebyshev filtering can be written to compute the product

Kx for any vector x, and do not require to actually build the matrix K. The idea is then to
use “matrix-free” solvers to solve Equation (4.24). Such solvers have the desirable properties
that they are able to solve linear systems using only products between vectors and the matrix
defining the linear system. In particular, they do not require to explicitly have access to elements
of this matrix and therefore to have them stored somewhere.

Note finally that if a method is found to efficiently solve Equation (4.24), then computing
the actual extracted signal is done by simply multiplying the obtained solution by the matrix
P . This last operation can once again be performed using Chebyshev algorithm and therefore
amounts to the cost of at most one graph filtering operation. In the following, we therefore focus
solely on the numerical resolution of Equation (4.24).

4.3.2 Optimization framework
Note that the solution x∗ of Equation (4.24) satisfies:

x∗ = argmin
x∈RnK

fopt(x), where fopt(x) = 1
2x

TKx− bTx . (4.25)

Indeed, given thatK is a positive definite matrix, the function fopt : RnK → R is called objective
function and is convex, and therefore its stationary point is its unique minimum. In particular,

∀x ∈ RnK , ∇fopt(x) = Kx− b ,

and therefore the (unique) stationary point of fopt is x∗ = K−1b. Computing x∗ is therefore
equivalent to solving the minimization problem defined by Equation (4.25).

Remark 4.3.1. Let us denote ‖ ·‖K the norm defined for any x ∈ RnK by ‖x‖K =
√
xTKx.

Then, ∀x ∈ RnK ,

‖x− x∗‖2K = (x)TKx− 2(x)TKx∗ + (x∗)TKx∗ .

And if we now define x∗ by x∗ = K−1b we have

fopt(x∗) = 1
2(x∗)TKx∗ − (x∗)T b = −1

2(x∗)T b .

Hence, by combining both equations we get

‖x− x∗‖2K = 2 (fopt(x)− fopt(x∗)) . (4.26)

We therefore retrieve the fact that the minimum of the objective function is reached by the
solution of the system Kx = b.

Besides, evaluating fopt or ∇fopt at any point x ∈ RnK only requires to be able to compute
the product Kx, and therefore can be done within a matrix-free approach. Hence a first-order
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optimization method, i.e. one that is based on the gradient of the objective function, can be
used to solve the problem and therefore get x∗ (Nocedal and Wright, 2006). We discard in a
first approach any second-order optimization method, which, even though they enjoy faster con-
vergence rates to the solution, require to compute the Hessian matrix of the objective (Nocedal
and Wright, 2006), which is here the matrix K.

We rather look at algorithms that minimize both computational and storage costs in a matrix-
free approach. Ideally, only a few vectors should be stored at any time during the optimization
process, and each iteration should require a number as small as possible of products between
vectors and the matrix K, the optimal number of products being of course 1 (to compute a
gradient). First order descent algorithms allow to check both boxes.

More generally, descent algorithms (Nocedal and Wright, 2006) iteratively build a sequence
x(0),x(1), . . . that converges to x∗ and whose terms follow the general recurrence relation:

x(k+1) = x(k) + αkd
(k), k ≥ 0 , (4.27)

where {d(k)}k≥0 is a family of vectors called descent directions and generally computed using
their own recurrence relation, which involves gradient computations and {αk}k≥0 is a family of
(positive) parameters called step sizes.

4.3.3 Steepest gradient descent algorithm
The simplest example of descent algorithm is the constant-step gradient descent algorithm (No-
cedal and Wright, 2006), which consists in choosing a constant step size for all updates in
Equation (4.27), and taking d(k) = −∇fopt(x(k)) which corresponds to the direction of greatest
decrease of fopt. Hence, we set a parameter α ∈ R+ and build the sequence:

x(k+1) = x(k) − α∇fopt(x(k)), k ≥ 0 . (4.28)

As one may suspect, a successful convergence of this sequence towards x∗ highly depends on the
choice of α: taking a value of α that is too large results in the divergence of the algorithm and
taking a value of α that is too small results in a very slow convergence (Nocedal and Wright,
2006). To avoid the hassle of setting the right parameters, the next algorithm is preferred.

The steepest gradient descent algorithm (Nocedal and Wright, 2006) is derived by choosing at
each iteration k of the gradient descent a step size αk = αSteep

k that yields the greatest decrease
of the objective function fopt. Hence,

αSteep
k = argmax

α∈R
fopt

(
x(k)

)
− fopt

(
x(k) − α∇fopt(x(k))

)
, k ≥ 0 .

Given that fopt is quadratic, this problem has a closed-form solution that is obtained by calcu-
lating the stationary point of the function α 7→ fopt

(
x(k)) − fopt

(
x(k) − α∇fopt(x(k))

)
. This

gives

αSteep
k = ∇fopt(x(k))T∇fopt(x(k))

∇fopt(x(k))TK∇fopt(x(k))
, k ≥ 0 .

The steepest gradient algorithm is outlined in Algorithm 4.3. It assumes that only a routine
allowing to compute matrix-vector products between K and any vector of size nK is known.
Besides, the iterations of the algorithm are carried out until “convergence is reached", which
means here that a good enough approximation of the solution was reached. To assess the quality
of a given iterate x(k), a stopping criterion is usually set by requiring that the (Euclidean) norm
of ∇fopt(x(k)), which is given by ‖∇fopt(x(k))‖ = ‖b−Kx(k)‖, is below a predefined threshold
(Nocedal and Wright, 2006). Other possible stopping criteria include checking the norm of the
difference between successive iterates or successive values taken by fopt.

The performance of the steepest gradient algorithm is determined by how fast or equivalently
how many iterations are needed for the k-th approximation x(k) of the solution x∗ generated by
the algorithm to reach a given approximation error, measured as a distance between x(k) and
x∗. For the steepest gradient descent algorithm, this convergence rate depends (only) on the
initial guess we have for x∗ and on the properties of K through a quantity called the condition
number of K (Nocedal and Wright, 2006; Saad, 2003).
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Algorithm 4.3: Steepest gradient algorithm.
Input: For a positive definite matrix K ∈MnK

(R) , a routine prodK(v) that returns
for any v ∈ RnK the vector Kv. A vector b ∈ RnK . An initial guess x(0)

Output: An approximation of x∗ = K−1b.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k = 0 ;
d(0) = −∇fopt(x(0)) = b−Kx(0) ;
while Convergence is not reached do

αk = (d(k))Td(k)

(d(k))TKd(k) ;
x(k+1) = x(k) + αkd

(k) ;
d(k+1) = d(k) − αk · prodK(d(k));
k ← k + 1;

Return x(k).

Let us denote by ‖ · ‖2 either the Euclidean norm of a vector or the matrix norm subordinate
to the Euclidean norm as defined for matrices of Mn(R) by

‖A‖2 := sup
x 6=0

‖Ax‖2
‖x‖2

= sup
x6=0

√
R(ATA,x) =

√
λmax(ATA), A ∈Mn(R) ,

where λmax(.) denotes the largest eigenvalue of a matrix and R(M ,v) denotes the Rayleigh
quotient of a Hermitian matrix M and a vector v (cf. Appendix A.2.1).

The condition number κ(A) of an invertible matrix A is then defined as:

κ(A) = ‖A‖2‖A−1‖2 .

Note that in the particular case of a (symmetric) positive definite matrixK, its condition number
can expressed as

κ(K) = λmax(K)
λmin(K) ,

where λmax(K) (resp. λmin(K)) denotes the largest (resp. lowest) eigenvalue of K.

Proposition 4.3.1. The sequence x(0),x(1), . . . generated by applying the steepest gradient al-
gorithm to the minimization problem of Equation (4.25) satisfies

∀k ≥ 0, ‖x(k) − x∗‖K ≤
(
κ(K)− 1
κ(K) + 1

)k
‖x(0) − x∗‖K ,

where κ(K) is the condition number of K and ‖ · ‖K is the norm defined for any x ∈ RnK by
‖x‖K =

√
xTKx.

In particular, ∀ε > 0,

k ≥ 1
log
(
κ(K)−1
κ(K)+1

) log
(
‖x(0) − x∗‖K

ε

)
⇒ ‖x(k) − x∗‖K ≤ ε .

Proof. See (Sun and Yuan, 2006, Theorem 3.1.5).

A similar result can be deduced about the convergence towards the global minimum of the
objective function fopt of the sequence {fopt(x(k))}k≥0.

Corollary 4.3.2. The sequence x(0),x(1), . . . generated by applying the steepest gradient algo-
rithm to the minimization problem of Equation (4.25) satisfies:

∀k ≥ 0,
(
fopt(x(k))− fopt(x∗)

)
≤
(
κ(K)− 1
κ(K) + 1

)2k (
fopt(x(0))− fopt(x∗)

)
,

where κ(K) is the condition number of K.
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Proof. This result is a direct consequence of Proposition 4.3.1 and Equation (4.26).

Hence, the convergence rate of the steepest gradient algorithm is greatly determined by the
condition number of the matrix K. For ill-conditioned problems, which correspond to the case
where κ(K) is large, convergence may be very slow. In fact, an disproportionate number of
iterations may be needed for the sequence {x(k)}k≥0 to reach the minimum x∗ (Nocedal and
Wright, 2006). However, this flaw is not shared by the algorithm that will be introduced in the
next subsection, which has the desirable property to converge in a finite number of iterations.

4.3.4 Conjugate gradient algorithm
The conjugate gradient algorithm (Nocedal and Wright, 2006) is an iterative method designed
to solve linear systems of the form of Equation (4.24) whereK ∈MnK

(R) is indeed a symmetric
positive definite matrix. It builds a sequence {x(k)}0≤k≤nK

of approximations of the solution
using the following principle.

Let x(0) be an initial guess for x∗. Recall from Section 3.3.1 that

x∗ − x(0) = K−1r(0) ,

where ∀k ≥ 0, r(k) denotes the vector defined by r(k) = b −Kx(k), called k-th residual vec-
tor. Hence, following Proposition 3.3.1, x∗ − x(0) lies in the Krylov subspace of dimension nK
generated by K and r(0), and denoted KnK

(K, r(0)) (cf. Section 3.3.1).
The conjugate gradient algorithm generates a sequence {x(k)}k≥0 such that ∀k ≥ 0, x(k) −

x(0) is the K-orthogonal projection of x∗ − x(0) onto the subspace Kk(K, r(0)) of dimension k
(Del Corso et al., 2015). Namely,

x(k) = x(0) + argmin
y∈Kk(K,r(0))

‖x∗ − x(0) − y‖K , k ≥ 0 , (4.29)

where ‖.‖K is the norm defined for any x ∈ RnK by ‖x‖K =
√
xTKx. In particular for k = nK ,

given that x∗−x(0) ∈ Kk(K, r(0)), the minimum in Equation (4.29) is reached for y = x∗−x(0),
and therefore

x(nK) = x(0) + (x∗ − x(0)) = x∗ .

Hence the conjugate gradient reaches the actual solution in (at most) nK iterations.

Remark 4.3.2. Note that, using Equation (4.26), Equation (4.29) can be written as:

x(k) = argmin
x∈x(0)+Kk(K,r(0))

‖x∗ − x‖K = argmin
x∈x(0)+Kk(K,r(0))

fopt(x) .

Hence, the conjugate algorithm actually computes at each iteration k the vector in the affine
space x(0) +Kk(K, r(0)) that minimizes the objective function fopt.

In particular, the conjugate gradient is a descent algorithm. Indeed, let (v1, . . . ,vnK
) be aK-

orthonormal basis of KnK
(K, r(0)), i.e. ∀i 6= j ∈ [[1, nK ]], ‖vi‖K = ‖vj‖K = 1 and vTi Kvj = 0.

Such a basis can be built using a Gram-Schmidt orthogonalization technique, similarly to the
Lanczos algorithm (cf. Algorithm 3.4). Doing so, it ensures that ∀1 ≤ k ≤ nK , v1, . . . ,vk is a
K-orthonormal basis of Kk(K, r(0)). Then, in particular, there exists c1, . . . , cnK

∈ R such that
x∗ − x(0) =

∑nK

j=1 cjvj which gives by definition of x(k), k ≥ 0, x(k) − x(0) =
∑k
j=1 cjvj . And

therefore,
x(k+1) = x(k) + ck+1vk+1, k ≥ 0 .

Computing iteratively the vectors v1, . . . ,vnK
using a Lanczos-like algorithm actually yields

recurrence relations that are used to compute the projections defining x(k) (Del Corso et al.,
2015). In fact, the conjugate gradient algorithm actually computes projections using the recur-
rence relation:

x(k+1) = x(k) + αkd
(k), k ≥ 0 ,
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where the descent directions d(k) follow their own recurrence relation:

d(k+1) = r(k+1) + βkd
(k), k ≥ 0 .

In particular, the descent directions are K-orthogonal and the residuals are orthogonal (with
respect to the Euclidean norm), which allows to derive closed-form expressions of the coefficients
αk, βk:

αk = (r(k))Tr(k)

(d(k))TKd(k) , βk = (r(k+1))Tr(k+1)

(r(k))Tr(k) .

The conjugate gradient algorithm is outlined in Algorithm 4.4.

Algorithm 4.4: Conjugate gradient algorithm.
Input: For a positive definite matrix K ∈MnK

(R) , a routine prodK(v) that returns
for any v ∈ RnK the vector Kv. A vector b ∈ RnK . An initial guess x(0)

Output: An approximation of x∗ = K−1b.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k = 0 ;
r(0) = b− prodK(x(0)); d(0) = r(0) ;
p(0) = prodK(d(0));
while Convergence is not reached do

αk = (r(k))T r(k)

(d(k))Tp(k) ;
x(k+1) = x(k) + αkd

(k) ;
r(k+1) = r(k) − αkp(k);
βk = (r(k+1))T r(k+1)

(r(k))T r(k) ;
d(k+1) = r(k+1) + βkd

(k);
p(k+1) = prodK(d(k+1)) ;
k ← k + 1;

Return x(k).

As mentioned earlier, the conjugate gradient algorithm reaches the solution of the linear
system in a finite number of iterations nK . In fact, the algorithm is stopped as soon as the
k-th residual is null, as this means that x(k) = x∗. In theory, this can happen for k < nK .
However that, in the worst case scenario, the k = nK which can be very large. Stopping the
algorithm beforehand, once the k-th iterate is close enough to the solution, seems once again
more adequate. Fortunately, the conjugate gradient algorithm enjoys a better convergence rate
than the steepest gradient algorithm.

Proposition 4.3.3. The sequence x(0),x(1), . . . generated by applying the conjugate gradient
algorithm to the minimization problem of Equation (4.25) satisfies

∀k ≥ 0, ‖x(k) − x∗‖K ≤

(√
κ(K)− 1√
κ(K) + 1

)k
‖x(0) − x∗‖K , (4.30)

where κ(K) is the condition number of K.
In particular, ∀ε > 0, ∀k ≥ 0,

k ≥ 1

log
(√

κ(K)−1√
κ(K)+1

) log
(
‖x(0) − x∗‖K

ε

)
⇒ ‖x(k) − x∗‖K ≤ ε .

Proof. See (Saad, 2003, Theorem 6.29 & Equation 6.128).
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Corollary 4.3.4. The sequence x(0),x(1), . . . generated by applying the conjugate gradient al-
gorithm to the minimization problem of Equation (4.25) satisfies:

∀k ≥ 0,
(
fopt(x(k))− fopt(x∗)

)
≤

(√
κ(K)− 1√
κ(K) + 1

)2k (
fopt(x(0))− fopt(x∗)

)

Proof. This result is a direct consequence of Proposition 4.3.3 and Equation (4.26).

Given that by definition, κ(K) ≥ 1, we have
√
κ(K) ≤ κ(K) and therefore, the conjugate

gradient benefits from a faster convergence rate than the steepest gradient descent (introduced
in the previous subsection). However, for some problems,

√
κ(K) can still be quite large. In

that case, preconditioning methods should be applied on top of the optimization algorithm to
speed up the convergence.

4.3.5 Note on preconditioning

The idea behind preconditioning is to replace the ill-conditioned system of Equation (4.24)
by another system, with a better condition number, and whose solution can easily be used to
compute the solution of the original system (Saad, 2003). In our case, Equation (4.24) is replaced
by

(PLKPR)u∗ = PLb and x∗ = PRu
∗ , (4.31)

where PL ∈ Mn(R) (resp. PR ∈ Mn(R)) is an invertible matrix called left-preconditioning
(resp. right-preconditioning) matrix and is chosen so that κ(PLKPR) < κ(K) and is as small
as possible.

Given the form of Equation (4.31), the algorithms presented in this section can be rewritten
to solve this new system without having to actually the matrix (PLKPR). Basically, products by
the preconditioning matrices are added at each iteration. Hence, PL ∈Mn(R) and PR ∈Mn(R)
are chosen so that matrix vector products involving them come at a small computational cost,
thus ensuring that the gains in terms of number of iterations to convergence are not overshadowed
by the fact that each iteration comes at a greater cost.

An optimal choice for these preconditioning matrices would satisfy κ(PLKPR) = 1, which is
the lowest value a condition number can have. This corresponds to the case when PLKPR = cI
for some c 6= 0, which gives K−1 = PRPL. Finding preconditioning matrices satisfying this
relation is actually equivalent to computing directly the inverse of K which is here out of the
question. Instead, the preconditioning matrices are chosen so that (PRPL)−1 is somewhat close
to K, which ensures in general that the condition number will be reduced (Saad, 2003).

Classical choices of preconditioning matrices include (Saad, 2003):

� the Jacobi preconditioner, for which PR = In and PL is taken to be the diagonal matrix
whose entries are the inverse of the diagonal entries of K.

� the Gauss-Seidel preconditioner, for which PR = In and PL is taken to be the inverse of
the lower triangular part of K. Products between PL and vectors are therefore computed
by solving a triangular system.

� incomplete factorization techniques that define P−1
R and P−1

L as incomplete factorizations
of K, which are cheaply computable.

In our particular context however,K is not actually known, and we only have a routine comput-
ing its product with vectors. Moreover, as the size of the vectors nK can be quite large, the calls
to this routine should be limited at a strict minimum. Hence many classical preconditioners, like
those mentioned above, cannot be used to accelerate the convergence of the descent algorithms
used to solve Equation (4.24).
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4.4 Practical implementation on the unknown-mean case
Let us now assume that we aim at extracting a signal Z with mean mv where m ∈ R is unknown
(but v ∈ Rn is a predefined eigenvector of S), still from an observation vector zo arising from
an observation process Zo defined by Equation (4.16).

4.4.1 Matrix-free formulation of the problem
The best unbiased linear solution z∗ of Z given the observation zo is now given by (cf. Propo-
sition 4.2.3)

z∗ = P̃ K̃−b̃ ,

where the matrices P̃ ∈Mn,nK+1(R), K̃ ∈MnK+1(R) and b̃ ∈MnK+1(R) are defined by

P̃ =
(

P v

)
, K̃ =

 K Mov

(Mov)T 0


−1

, b̃ =

 b

0

 , (4.32)

where K, P and b are defined by Equation (4.22) and therefore are the same as the ones used
for the problem of extraction of a signal with mean 0.

Once again, z∗ is computed in two steps:

1. First, compute the term x̃∗ = K−1b by solving the linear system:

K̃x̃∗ = b̃ . (4.33)

2. Return z∗ = P̃ x̃∗.

The same conclusions as in the known-mean case still holds here: a matrix-free approach, based
on Chebyshev filtering, must be considered to perform both tasks as they involve basically the
same matrices as the ones used in the known-mean case. Indeed, the matrix-vector products
involving P̃ and K̃ can easily be expressed in function of matrix-vector products involving the
matrices K and P in Equation (4.22) as

P̃

 x

ξ

 = Px+ ξv, K̃

 x

ξ

 =

 Kx+ ξMov

(Mov)Tx, x ∈ RnK , ξ ∈ R

 .

Even though the unknown-mean case seems quite similar to its known-mean counterpart,
there is a major difference that prevents us from using the solving methods: the matrix involved
in the linear system to be solved is no longer positive definite. Indeed, note for instance that if
λmax(K) denotes the largest eigenvalue of K, then Mov

−λmax(K)

T

K̃

 Mov

−λmax(K)

 = ‖Mov‖2
(

(Mov)TK(Mov)
‖Mov‖2

− 2λmax(K)
)

.

And this last quantity is strictly negative given that the Rayleigh quotient appearing in the right
side of the equation is upper bounded by λmax(K) > 0. Hence K̃ cannot be positive definite.
Solving Equation (4.33) using the steepest descent algorithm or the conjugate gradient algorithm
should therefore be avoided. The next section introduces an algorithm designed to tackle this
new problem.

4.4.2 Conjugate residual algorithm
The conjugate residual algorithm (Saad, 2003) aims at solving a system of the form Equa-
tion (4.33) in the case that it is only required that K̃ is symmetric. The idea behind this
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algorithm is to get back to the positive definite problem. Indeed, by multiplying Equation (4.33)
by K̃T = K̃ we get the equivalent linear system:

K̃T K̃x̃∗ = K̃T b̃ , (4.34)

where now, the matrix K̃T K̃ = K̃2 is positive definite. This system can therefore be solved
using either one of the solvers introduced in Section 4.3. In particular, it would be sufficient
to have a routine that computes the product between K̃ and vectors as the product between
K̃T K̃ = K̃2 and a vector can then be done by calling this routine twice. Note however that
this approach comes at a computational price: each iteration would now cost twice as much as
in the case where the system was positive definite.

Fortunately, the conjugate gradient algorithm can be cleverly rewritten to specifically solve
the system of Equation (4.34) while requiring at each iteration only a single product between
K̃ and a vector: this approach is outlined in Algorithm 4.5. Computationally, when compared
to a classical conjugate gradient algorithm, it comes at the price of storing an additional vector
throughout the procedure. Algorithm 4.5 generates a set of K̃T K̃-conjugate descent directions
and ensures that the residuals are K̃-conjugate (Saad, 2003).

Algorithm 4.5: Conjugate residual algorithm.
Input: For a symmetric matrix K̃ ∈MnK̃

(R) , a routine prodK̃(v) that returns for
any v ∈ RnK̃ the vector K̃v. A vector b̃ ∈ RnK̃ . An initial guess x̃(0)

Output: An approximation of x̃∗ = K̃−1b̃.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k = 0 ;
r(0) = b̃− prodK̃(x̃(0)); d(0) = r(0) ;
p(0) = prodK̃(d(0)); q(0) = p(0)(= prodK̃(r(0))) ;
while Convergence is not reached do

αk = (q(k))T q(k)

(p(k))Tp(k) = (r(k))T q(k)

(p(k))Tp(k) ;
x̃(k+1) = x̃(k) + αkd

(k) ;
r(k+1) = r(k) − αkp(k);
q(k+1) = prodK̃(r(k+1)) ;
βk = (q(k+1))T q(k+1)

(q(k))T q(k) = (r(k+1))T q(k+1)

(r(k))T q(k) ;
d(k+1) = r(k+1) + βkd

(k);
p(k+1) = q(k+1) + βkp

(k);
k ← k + 1;

Return ˜x(k).

Remark 4.4.1. Using the formalism of Equation (4.25), solving Equation (4.33), or equiva-
lently Equation (4.33), is equivalent to a least-square optimization problem, defined by:

x̃∗ = argmin
x̃∈RnK̃

f̃opt(x̃), where f̃opt(x̃) = 1
2‖K̃x̃− b̃‖

2
2 . (4.35)

And at each iteration k of the algorithm:

x̃(k) = argmin
x̃∈x̃(0)+Kk(K,r(0))

f̃opt(x̃) = argmin
x̃∈x̃(0)+Kk(K,r(0))

‖K̃x̃− b̃‖2 .

Hence, the conjugate residual algorithm actually computes at each iteration k the vector x̃ of
the affine space x̃(0) +Kk(K, r(0)) that minimizes the norm of the residual vector b̃− K̃x̃.

The convergence rate of the conjugate residual algorithm can be directly derived from the
convergence rate of the conjugate gradient algorithm.
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Proposition 4.4.1. The sequence x̃(0), x̃(1), . . . generated by applying the conjugate residual
algorithm to the minimization problem of Equation (4.35) satisfies

∀k ≥ 0, ‖K̃x̃(k) − b̃‖K ≤
(
κ(K̃)− 1
κ(K̃) + 1

)k
‖K̃x̃(0) − b̃‖2 ,

where κ(K̃) is the condition number of K̃.
In particular, ∀ε > 0, ∀k ≥ 0,

k ≥ 1
log
(
κ(K̃)−1
κ(K̃)+1

) log
(
‖K̃x̃(0) − b̃‖K

ε

)
⇒ ‖K̃x̃(k) − b̃‖2 ≤ ε .

Proof. Note that ‖K̃T K̃‖2 =
√
λmax

(
(K̃T K̃)2

)
= λmax(K̃T K̃) = ‖K̃‖22 and that similarly

‖(K̃T K̃)−1‖2 = ‖(K̃−1)(K̃−1)T ‖2 = ‖K̃−1‖22 gives:

κ(K̃T K̃) = κ(K̃)2 .

SubstitutingK in Proposition 4.3.3 by K̃T K̃ then gives the result by noticing that ‖ṽ‖K̃T K̃ =
‖K̃ṽ‖2, ∀ṽ ∈ RnK̃ .

4.5 Unified approach through quadratic programming
In this section the extraction problem in the known-mean case and in the unknown-mean case
are unified into a single optimization framework called quadratic programming. This opens a
lead to eventually use wide array of numerical solvers designed for this type of problems in order
to tackle the optimization tasks arising from the computation of the BLUP of a signal.

Quadratic programs (QP) with equality constraints are stated as follows (Nocedal and
Wright, 2006; Sun and Yuan, 2006). Let Q be a symmetric matrix of size N , d ∈ RN and
E ∈MM,N (R), e ∈ RM for some M ≥ 0. We aim at finding x∗ ∈ RN satisfying:

x∗ = argmin
x∈RN

fopt(x) = 1
2x

TQx− xTd

subject to Ex = e

. (4.36)

The equation Ex = e imposes a set of M linear equations, called equality constraints, that
must be satisfied by the solution x∗ of the problem. In particular, if M = 0, no constraints are
imposed while searching for a minimum of fopt (i.e. E and e are not defined) and Problem 4.36
is called unconstrained QP problem. If the matrix Q is positive semidefinite (resp. definite),
Problem 4.36 is called a convex QP (resp. strictly convex QP) as the function fopt to minimize
is convex (resp. strictly convex).

Clearly, as stated in Section 4.3.2, the solution x∗ of the linear system that arises from the
extraction of a known-mean signal is the solution of an unconstrained strictly convex QP defined
by the matrix Q = K and the vector d = b.

In the case where the signal to be extracted is of unknown mean, the following proposition
shows that the linear system can also be seen as a strictly convex QP, but now with an equality
constraint.

Proposition 4.5.1. Let x̃∗ be the solution of the linear system of Equation (4.33), where the
matrix K̃ and the vector b̃ are defined in Equation (4.32).
Then x̃∗ can be decomposed as x̃∗ = ( (x∗)T |µ)T where:

x∗ = argmin
x∈RnK

fopt(x) = 1
2x

TKx− xT b

subject to (Mov)Tx = 0
, (4.37)
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and
µ = (Mov)T (b−Kx∗)

‖Mov‖22
, (4.38)

where K and b are defined in Equation (4.22) (with m = 0).

Proof. Let N = nK . Let x̃∗ be decomposed as x̃∗ = ( x̂T , µ)T for some x̂ ∈ RN and
µ ∈ R. Let us show that x̂ = x∗ and that µ satisfies Equation (4.38).

Note that the equation K̃x̃ = b̃ implies that x̂ and µ must satisfy

Kx̂+ µMov = b and (Mov)T x̂ = 0 . (4.39)

In particular, by denoting L the function defined on RN × R by

L (y, ξ) = 1
2y

TKy − yT b+ ξ(Mov)Ty, y ∈ RN , ξ ∈ R ,

we get from Equation (4.39) that ∇h(x̂, µ) = 0 and therefore (x, µ) is a stationary point of
L . Noticing now that L is actually the Lagrangian function of the constrained minimization
problem of Equation (4.37), for which µ plays the role of a Lagrange multiplier, we get that
x̂ = x∗.

The expression of µ with respect to x̂ = x∗ follows from Equation (4.39) implying that
(Mov)T (Kx∗ + µMov) = (Mov)T b, which gives the result.

Consequently, solving the linear system arising from the extraction of a signal with unknown
mean can effectively be replaced by solving a strictly convex QP, defined by Equation (4.37)
with a single equality constraint. This QP is actually the same QP as the one arising in the
known mean case, but with an equality constraint.

Circling back to our matrix-free requirement, note that, for either one of the QPs presented
in this section, a routine that evaluates the objective function fopt or its gradient ∇fopt can
easily be derived from a routine prodK that computes the product by K and would require a
single call to prodK . Solving these QPs can actually be done by calling any optimization solver
designed for quadratic (or more generally non-linear) problems that takes as an input routines to
evaluate the objective function, its gradient and the constraint. This is the case for most of the
implementation of these methods (Nocedal and Wright, 2006; Saad, 2003). The only constraint
that we should keep in mind is to restrict the number of evaluations of the objective function
and its gradient that the solver performs at each iteration.

Implementations of such solvers are available in the R packages nloptr (Ypma, 2018) and
mize (Melville, 2019). Studying the characteristics and performances of the myriad of non-linear
solvers that exist today exceeds the scope of this work. However, it represents an actual lead to
find a solver that would perform better than the descent algorithms that we currently use.

Conclusion
In this chapter, the problem of predicting or extracting a SGS from its noisy observation was
tackled. In particular, the noises considered were either composed of uncorrelated elements
affecting each observation, or were a sum of linear transformations of independent stationary
signals. The predictors presented were directly inspired from the kriging predictors common in
Geostatistics, and are the best linear unbiased predictors.

We proposed algorithms to compute these predictors in a matrix-free approach while once
again relying on the Chebyshev filtering algorithm. These algorithms all come down to solving an
optimization problem, and the associated solving methods were presented. Finally, the prediction
problems of this chapter were formulated as quadratic programming problems, thus expanding
the possible means of solving the associated optimization problems.
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Résumé
Nous nous intéressons maintenant au même problème d’estimation que dans le chapitre

précédent, mais sans supposer cette fois que la covariance du signal est connue. Il s’agit donc
d’inférer les propriétés statistiques d’un signal partiellement observé et bruité, tout en l’estimant.
Nous présentons deux approches basées sur une maximisation de vraisemblance: la première
consiste à maximiser directement la vraisemblance en utilisant sa forme analytique, la seconde
fait recours à l’algorithme EM (“Expectation-Maximization”).

Introduction
Starting from the formalism of Section 4.1, let us assume that a zero-mean stationary SGS
Z ∈ Rn with respect to a shift operator S and with spectral density f , is observed through a
realization zo ∈ Rd of an observation process Zo ∈ Rd defined by

Zo = MoZ + τWo , (5.1)

where Mo ∈Md,n(R) is the observation matrix of the process, τ ≥ 0 is the variance parameter
and Wo ∈ Rd is a vector with d independent standard Gaussian entries.

We assume that the only known quantities of the problem are the observation matrix Mo

and of course the observation vector zo. This section aims at providing an algorithm designed
to predict conjointly the remaining quantities, namely S, f , τ and z, where z is the realization
of Z that gave rise to zo, i.e

zo = Moz + τwo ,

for some realization wo of Wo.
Chapter 4 provides a framework and algorithms for the case where the only quantity to

estimate is z. We now add to the unknowns of the problem the elements S, f , τ characterizing
the Gaussian distribution followed by Z. Let us assume that these elements are parametrized
by the entries of a vector θ ∈ RNP , where NP ≥ 1. This means that the estimators of S, f ,
τ will be chosen from families of matrices, functions and real numbers parametrized by θ. We
denote by Sθ, fθ, τθ the members of these families associated with the vector of parameters θ.

In this chapter we investigate two solutions to this inference problem, both based on the
maximization of the likelihood of the observed data. On one hand, the direct maximization of
this likelihood, through its analytical expression, is exposed. Then, an approach based on the
maximization of surrogate but more easily computable function is presented. It is based on the
Expectation-Maximization algorithm (Dempster et al., 1977). Finally, the particular case where
the shift operator is assumed to be known is looked into, as it yields several simplifications that
lighten the overall computational and storage costs of the inference process.

5.1 Inference by direct likelihood maximization

5.1.1 Principle of the direct likelihood maximization approach
Our starting point is that following Equation (5.1), Zo follows a Gaussian distribution with
mean 0 and covariance matrix Σ given by

Σ = Mof(S)MT
o + τ2Id . (5.2)

Hence, for a set of parameters θ ∈ RNP , we denote by Σθ the covariance matrix that Zo would
have had if its distribution were specified by Sθ, fθ, τθ instead of S, f , τ :

Σθ = Mofθ(Sθ)MT
o + τ2

θId . (5.3)

Then, the log-likelihood L(θ ; zo) of θ given zo, which is defined as the evaluation of the log of
the distribution function of Zo at Zo = zo, under the assumption that its is defined through Sθ,
fθ, τθ, can be expressed as

L(θ ; zo) = log πθ(Zo = zo) = −1
2
(
log |Σθ|+ zTo Σ−1

θ zo + d log 2π
)

. (5.4)
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A maximum likelihood approach consists in maximizing Equation (5.4) for θ. Finding an
analytical expression for the maximum seems unlikely. Hence we have to rely on a generic
optimization algorithm. Such algorithms require to be able to at least evaluate L(θ ; zo) for any
θ, or even better, to compute its gradient and Hessian matrix (Nocedal and Wright, 2006). In
the next subsections, we focus on the evaluation of the likelihood function L(θ ; zo) for any θ, as
it is the base of many optimization algorithms and can then be used to approximate gradients
and Hessian matrices through for instance finite difference approaches (Nocedal and Wright,
2006).

5.1.2 Evaluation of the likelihood function: the covariance approach
The sole evaluation of L(· ; zo) requires to compute the log-determinant of Σθ and the quadratic
term zTo Σ−1

θ zo. This should once again be done in a matrix-free approach, given that building
Σθ is out of the question (as it involves once again to build a graph filter).

The product between Σθ and any vector v ∈ Rd is given by Σθv = MT
o (fθ(Sθ)Mov) + τ2

θv
and is computable in three steps: first the vector v′ = Mov is formed, then the product y =
fθ(Sθ)v′ is calculated using Chebyshev filtering and finally the vector MT

o y + τ2
θv is returned.

This way, the matrix Σθ, and in fact any other matrix except Mo and Sθ, need not to actually
be formed to compute Σθv. This is in accordance with the matrix-free framework in which we
work.

In order to evaluate the log-determinant in Equation (5.4), the matrix Σθ, which is symmet-
ric and positive definite, is seen as shift operator. Notice then that, consequently to Proposi-
tion 2.3.2, its log-determinant can be written as

log |Σθ| = Trace(log(Σθ)) ,

and corresponds therefore to the trace of the graph filter log(Σθ). Algorithm 2.8 can therefore
yield an estimate of log |Σθ| based on the Chebyshev filtering of a predefined number of white
signals by the filter log(Σθ). In particular, only products between Σθ and vectors of Rd are
required to calculate this estimate.

In order to use Chebyshev filtering with Σθ as shift operator, bounds on its eigenvalues must
be known. However in this case, the shift operator is not explicitly formed: only its products
with vectors are. The following proposition provides an estimate of these bounds in function
of τθ, f , and the extremal eigenvalues of MT

o Mo and Sθ, which can be computed with more
classical approaches using for instance Theorem 2.2.2.

Proposition 5.1.1. Let n, d ≥ 1. Let f : R+ 7→ R∗+, τ > 0 and let S ∈Mn(R) be symmetric.
For an observation matrixMo ∈Md,n(R), we denote by Σ the matrix defined by Equation (5.2).

Then,
λmax(Σ) ≤ τ2 + λmax(MT

o Mo) max
λ∈[λmin(S),λmax(S)]

f(λ)

and
λmin(Σ) ≥ τ2 + λmin(MT

o Mo) min
λ∈[λmin(S),λmax(S)]

f(λ) ,

where λmax(·) (resp. λmin(·)) denotes the largest (resp. lowest) eigenvalue of a matrix.

Proof. See Appendix C.3.

The computation of the quadratic term is then performed in two steps. First, the linear
system

Σx∗ = zo

is solved for x∗, and then the quadratic term is given by zTo Σ−1
θ zo = zTo x

∗. Following from the
approach outlined for the log-determinant, x∗ can be computed using the results of Section 2.3.4
on the graph filter Id(Σθ), where Id denotes the identity map of R. Hence x∗ would be computed
by filtering zo with the graph filter h(Σθ), where of course h : x 7→ 1/x. Once again only products
between Σθ would be needed.

A second approach to compute x∗ consists in noticing that the linear system it satisfies
actually corresponds to the linear system in Equation (4.24) which is solved to compute the
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kriging estimate of Proposition 4.1.1 using the approach outlined in Section 4.3. The steepest
gradient or the conjugate gradient algorithm can therefore be used to solve it in a matrix-free
approach, and therefore yield x∗.

Algorithm 5.1: Covariance approach to the evaluation of the likehood function.
Input: Parameter vector θ ∈ RNP . A routine prodΣ(θ,v) that computes the product

Σθv for Σθ defined in Equation (5.3) and v ∈ Rd.
Output: An estimate of L(θ ; zo) as defined in Equation (5.4).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compute the bounds on the eigenvalues of Σθ that are given by Proposition 5.1.1 ;
Compute log |Σθ| using Algorithm 2.8 on the graph filter with shift operator Σθ and
transfer function x 7→ log(x) ;
Compute x∗ = Σ∗θzo using:

� Either the steepest gradient or the conjugate gradient algorithms described in Algorithms
4.3 and 4.4.

� Or Chebyshev filtering to compute the product h(Σθ)zo where h : x 7→ 1/x.

Return L(θ ; zo) = − 1
2
(
log |Σθ|+ zTo x∗ + d log 2π

)
.

Algorithm 5.1 sums up the method used to evaluate the likelihood of a particular parameter
vector θ. Plugging this function into an optimization algorithm that only requires evaluation of
the objective function will then yield the parameters θ∗ that actually maximizes L(· ; zo). Ex-
amples of such algorithms include the Nelder–Meade algorithm which only relies on evaluations
of the objective function, or gradient descent algorithms for which the gradients are numerically
approximated from function evaluations (Press et al., 2007).

It is hard to predict in advance the number of evaluations of the likelihood function that will
be necessary to find the maximum. In this regard, its cost of evaluation should be reduced at a
minimum. However, in Algorithm 5.1, each evaluation requires numerous products between the
covariance matrix Σθ and vectors in order to compute both the determinant and the solution
of the linear system. Each one of these products may be quite costly as it involves a Chebyshev
filtering step.

5.1.3 Evaluation of the likelihood function: the precision approach

In an attempt to save some computing time, an idea consists in working directly with the
precision matrix Qθ = Σ−1

θ instead of the covariance matrix Σθ. Indeed, the likelihood L(θ ; zo)
to maximize can be expressed in function of Qθ as

L(θ ; zo) = −1
2
(
− log |Qθ|+ zTo Qθzo + d log 2π

)
. (5.5)

So following, the same reasoning that led to Algorithm 5.1, evaluating L(θ ; zo) could be done
while relying only on products between Qθ and vectors. To do so, an expression of Qθ as a
function of the parametrized objects fθ, Sθ and τθ must be derived. Ideally, this expression
should be different than simply taking Qθ = Σ−1

θ =
(
Mofθ(Sθ)MT

o + τ2
θId
)−1 as otherwise,

we retrieve Algorithm 5.1.
Following from the proof of Proposition 4.1.1, we recall that the joint distribution of the

vectors Z and Zo, now under a parameter θ, is actually that of a zero-mean Gaussian vector
whose covariance matrix Σ̃θ can be expressed with respect to Σθ (cf. Equation (C.1)):

Σ̃θ =

 fθ(Sθ) fθ(Sθ)MT
o

Mofθ(Sθ) Σθ

 =

 In
Mo Id

fθ(Sθ)
τ2
θId

In MT
o

Id

 . (5.6)
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The inverse of this matrix, denoted by Q̃θ, is then given by

Q̃θ =

In −MT
o

Id

(1/fθ)(Sθ)
τ−2
θ Id

 In
Mo Id


=

(1/fθ)(Sθ) + τ−2
θ MT

o Mo −τ−2
θ MT

o

−τ−2
θ Mo τ−2

θ Id

 .

(5.7)

Hence, the inverse of Σθ, which is Qθ, can be expressed using a Schur complement of Q̃θ (cf.
Equation (A.6)) as

Qθ = Σ−1
θ = τ−2

θ

(
Id − τ−2

θ MoQ̂
−1
θ M

T
o

)
,

where Q̂θ is the matrix defined by

Q̂θ := (1/fθ)(Sθ) + τ−2
θ MT

o Mo . (5.8)

The quadratic term xTQθx in Equation (5.5) therefore involves the resolution of a linear system
in Q̂θ and can therefore be computed using the same approach as the one derived for the
computation of the quadratic term in Algorithm 5.1.

As for the log-determinant ofQθ that appears in Equation (5.5), given that |Q̃θ| = |(1/fθ)(Sθ)|·
|τ−2
θ Id|, it satisfies (cf. Equation (A.7))

log |Qθ| = −2d log τθ + log |(1/fθ)(Sθ)| − log |Q̂θ| .

In this expression, the term log |(1/fθ)(Sθ)| is the log-determinant of a graph filter defined
through the shift operator Sθ and can therefore be computed using the results of Section 2.3.3
using a method requiring only products between Sθ and vectors.

The term log |Q̂θ| can be computed using the same approach as the one outlined for the
computation of log |Σθ| in Algorithm 5.1, thus requiring products between the matrix Q̂θ and
vectors. The next proposition gives an estimate of the eigenvalue bounds of Q̂θ needed to use
this approach, which is summarized in Algorithm 5.2.

Proposition 5.1.2. Let n, d ≥ 1. Let f : R+ 7→ R∗+, τ > 0 and let S ∈Mn(R) be symmetric.
For an observation matrix Mo ∈Md,n(R), we denote by Q̂ the matrix defined by

Q̂ := (1/f)(S) + τ−2MT
o Mo .

Then,
λmax(Q̂) ≤ τ−2λmax(MT

o Mo) + max
λ∈[λmin(S),λmax(S)]

1
f(λ)

and
λmin(Q̂) ≥ τ−2λmin(MT

o Mo) + min
λ∈[λmin(S),λmax(S)]

1
f(λ) ,

where λmax(·) (resp. λmin(·)) denotes the largest (resp. lowest) eigenvalue of a matrix.

Proof. The proof of Proposition 5.1.1 can be directly adapted to prove this result.

Algorithms 5.1 and 5.2 both propose a similar approach to the evaluation of the likelihood
function. They both rely on the computation of the log-determinant and on the resolution of a
linear system involving a matrix (either Σθ or Q̂θ) that is not sparse a priori and whose products
with a vector require to perform Chebyshev filtering operations. In one case, the approximated
function is fθ (for Algorithm 5.1) and in the other case it is (1/fθ) (for Algorithm 5.2). Hence,
the choice between both algorithms should be made based on which one of fθ or (1/fθ) requires
less polynomials to be approximated by a Chebyshev series. This will ensure that we minimize
the cost of evaluation of the likelihood function and therefore the cost of the overall minimization
process.
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Algorithm 5.2: Precision approach to the evaluation of the likehood function.
Input: Parameter vector θ ∈ RNP . A routine prod

Q̂
(θ,v) that computes the product

Q̂θv for Q̂θ defined in Equation (5.8) and v ∈ Rd.
Output: An estimate of L(θ ; zo) as defined in Equation (5.5).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compute log |(1/fθ)(Sθ)| using an algorithm from Section 2.3.3;
Compute the bounds on the eigenvalues of Q̂θ that are given by Proposition 5.1.2 ;
Compute log |Q̂θ| using Algorithm 2.8 on the graph filter with shift operator Q̂θ and
transfer function x 7→ log(x) ;
Compute x∗ = Q̂−1

θ M
T
o zo using:

� Either the steepest gradient or the conjugate gradient algorithms described in
Algorithms 4.3 and 4.4.

� Or Chebyshev filtering to compute the product h(Q̂θ)MT
o zo where h : x 7→ 1/x.

Compute the quantity q corresponding to the quadratic term:

q = τ−2
θ

(
zTo zo − τ−2

θ (MT
o zo)Tx∗

)
.

Return L(θ ; zo) = − 1
2

(
2d log τθ − log |(1/fθ)(Sθ)|+ log |Q̂θ|+ q − d log 2π

)
.

5.2 Inference using the Expectation-Maximization approach

We now propose an alternative to the direct maximization of the “hard-to-evaluate" likelihood
function that is based on the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).

5.2.1 Formulation of the EM algorithm for SGS inference
Given a parameter vector θ, recall that the associated joint distribution of (Z,Zo) is that of a
zero-mean Gaussian vector with covariance matrix given by Σ̃θ. In particular, the log-likelihood
of θ given now a couple (Z = ζ,Zo = zo) with ξ ∈ Rn would therefore be

L̃(θ ; ζ, zo) = log πθ(Z = ζ,Zo = zo)

= −1
2

log |Σ̃θ|+

 ζ
zo

T

Σ̃−1
θ

 ζ
zo

+ (n+ d) log 2π

 ,
(5.9)

where Σ̃θ is given by Equation (5.6). This equation can be rewritten with respect to Q̃θ = Σ̃−1
θ ,

the precision matrix of (Z,Zo) under the set of parameters θ:

L̃(θ ; ζ, zo) = −1
2

− log |Q̃θ|+

 ζ
zo

T

Q̃θ

 ζ
zo

+ (n+ d) log 2π

 , (5.10)

where Q̃θ is given by Equation (5.6), and satisfies in particular

log |Q̃θ| = −2d log τθ + log |(1/fθ)(Sθ)| . (5.11)

Hence the likelihood L̃(θ ; ζ, zo) defined in Equation (5.10) is way cheaper to compute than its
counterpart L(θ ; zo) of Equation (5.4). Indeed, computing the log-determinant in L̃(θ ; ζ, zo)
through Equation (5.11) requires mainly to compute the log-determinant of the graph filter
defined through the shift operator Sθ. Using Chebyshev filtering to estimate this quantity
with the methods presented in Section 2.3.3, it requires only products between Sθ, which is
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generally sparse1, and vectors. In comparison, computing the log-determinant in Equation (5.4)
(resp. Equation (5.5)) required products between Σθ (resp. Q̂θ), and therefore fθ(Sθ) (resp.
(1/fθ)(Sθ)), and vectors.

As for the quadratic term in L̃(θ ; ζ, zo), it is computed with the cost of basically a Chebyshev
filtering operation with Sθ. Comparatively, the quadratic term in the expression of L(θ ; zo)
requires to solve a linear system defined by Σθ (or Q̂θ). This property is particularly interesting
when considering Markovian models. In this setting, conditional independence relations are
imposed between the entries of the modeled signal, which results in its precision matrix being
sparse (Rue and Held, 2005). In particular, models can easily be retrieved by imposing that
1/fθ is a low-degree polynomial.

The idea of the EM algorithm is to replace the maximization of L(· ; zo) with the maxi-
mization of an objective function defined through L(· ; ζ, zo) and which is hoped to be easier to
compute. To do so, note that the log-likelihood L(θ ; zo) = log πθ(Zo = zo) can be expressed as
the log of a marginal distribution of the joint distribution of (Zo,Z), and so,

L(θ ; zo) = log
∫
πθ(Z = ζ,Zo = zo)dζ = log

∫
exp L̃(θ ; ζ, zo)dζ .

The EM algorithm leverages this expression to maximize L(· ; zo) through an iterative approach.
A sequence {θ(k)}k≥0 converging to a local maximum of L(· ; zo) is generated through a recur-
rence that comprises two steps

� Expectation step: Find an expression for the expectation function Eθ(k) defined by

Eθ(k) : θ 7→ E
[
L̃(θ ; Zθ(k) , zo)

]
where Zθ(k) = [Z|Zo = zo ; θ(k)] . (5.12)

� Maximization step: Maximize the expectation function Eθ(k) :

θ(k+1) = argmax
θ∈RNP

Eθ(k)(θ) . (5.13)

Basically, to compute the value of the expectation function Eθ(k) at some θ, the observed data
Zo = zo are completed with a vector Z = Zθ(k) that is drawn from the conditional distribution
of Z given Zo = zo and under the current estimate θ(k) of the maximum. Then, Eθ(k)(θ) is
defined as the “average” over all completion vectors Zθ(k) drawn this way, of the log-likelihood
of θ with respect to the completed pair (Z = Zθ(k) ,Zo = zo).

In the next two subsections, we show two ways of performing the Expectation step of the
EM algorithm in our particular inference problem.

5.2.2 EM by trace approximation
First; note that Proposition 4.1.1 actually gives the distribution of Zθ(k) :

Zθ(k) = [Z|Zo = zo ; θ(k)] ∼ N
(
τ−2
θ(k)Q̂

−1
θ(k)M

T
o zo; Q̂−1

θ(k)

)
, (5.14)

where Q̂θ(k) is once again the matrix defined in Equation (5.8), but with θ = θ(k). We now
derive the expression of Eθ(k)(θ) from this observation. First, note that using the linearity of
the expectation, we have

Eθ(k)(θ) = −1
2

(
− log |Q̃θ|+

(
E
[
ZTθ(k)Q̂θZθ(k)

]
− 2
τ2
θ

zToMoE[Zθ(k) ] + 1
τ2
θ

zTo zo

))
+ C ,

where C is a constant. Note then that, following Proposition A.3.5, we have

E[(Zθ(k))T Q̂θZθ(k) ] = Trace(Q̂θVar[Zθ(k) ]) + E[Zθ(k) ]T Q̂θE[Zθ(k) ] .

1Recall indeed that Sθ is supposed to be a shift operator, and as such its sparsity pattern is directly linked
to the amount of “connections” in the graph it represents. In many real-world applications, and in particular in
the ones that will be presented in this work, these graphs are sparsely connected, and therefore yield sparse shift
operators.
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Injecting this relation in the previous equation then gives,

Eθ(k)(θ) = −1
2

(
− log |Q̃θ|+ Trace(Q̂θQ̂−1

θ(k)) + µTθ(k)Q̂θµθ(k)

− 2
τ2
θ

zToMoµθ(k) + 1
τ2
θ

zTo zo

)
+ C ,

(5.15)

where, following Equation (5.14),

µθ(k) := E[Zθ(k) ] = τ−2
θ(k)Q̂

−1
θ(k)M

T
o zo .

Thus, the steps of the EM algorithm come down to the computation of a sequence of pa-
rameters vectors θ(0),θ(1), . . . through the recurrence relation of the maximization step, i.e.
Equation (5.13), where Eθ(k)(θ) is given by Equation (5.15). In particular, by removing all
constant terms and all additive terms that do not depend on θ in Equation (5.15), and using
Equation (5.11), we get the following equivalent formulation of the recurrence relation:

θ(k+1) = argmin
θ∈RNP

(
Trace(Q̂θQ̂−1

θ(k)) + µTθ(k)Q̂θµθ(k) + 1
τ2
θ

zTo (zo − 2Moµθ(k))

+2d log τθ − log |(1/fθ)(Sθ)|
)

,

(5.16)

where µθ(k) does not depend on θ and can therefore be computed once and for all prior to the
minimization process of Equation (5.16), and so be used at each evaluation of the objective
function.

Evaluating the objective function in Equation (5.16) for a particular θ requires mainly to:

� Compute the log-determinant log |(1/fθ)(Sθ)| = − log |fθ(Sθ)| which is done through
Equation (5.11) and involves a limited number of Chebyshev filtering operations with
Sθ.

� Compute the quadratic term µT
θ(k)Q̂θµθ(k) , which requires a single product between Q̂θ

and µθ(k) , as µθ(k) is computed and stored once and for all. Hence, the cost of this
operation is basically that of a single Chebyshev filtering operation with Sθ.

� Compute the trace term Trace(Q̂θQ̂−1
θ(k)).

The trace term in Equation (5.16) poses a problem. Indeed, as building the matrices Q̂θ and
Q̂θ(k) is out of the question, this term should be approximated using an approach similar to the
one outlined for the trace of graph filters (cf. Section 2.3.1). Indeed, we can for instance write

Trace(Q̂θQ̂−1
θ(k)) = E[W T Q̂θQ̂

−1
θ(k)W ] = E[(Q̂θW )T Q̂−1

θ(k)W ] , (5.17)

whereW is a zero-mean random vector with covariance matrix In (cf. Proposition A.3.5). This
term can therefore be approximated using a Monte-Carlo estimate, similarly to what was done
for the trace of graph filters in Section 2.3.1. Precisely, if w(1), . . . ,w(N) denote N realizations
of W , then we write

Trace(Q̂θQ̂−1
θ(k)) ≈

1
N

N∑
i=1

(
Q̂θw

(i)
)T
Q̂−1
θ(k)w

(i) . (5.18)

In practice, as in Section 2.3.1, the entries of W are independent and identically distributed
variables following either a Gaussian or a Rademacher distribution. Hence the same conclusions
regarding the link between the sample size N and the approximation accuracy can be extended
to this case.

Computing the approximation in Equation (5.18) then requires to:

� Compute N products between Q̂θ and a vector: as seen earlier, such products amount to
the cost of a Chebyshev filtering operation with shift operator Sθ (and transfer function
(1/fθ)).
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� Solving N linear system defined by the matrix Q̂θ(k) : this can be done using a descent
algorithm (or eventually a Chebyshev filtering operation with shift operator Q̂θ(k) and
transfer function λ 7→ 1/λ).

When solving the minimization problem of Equation (5.16), given that the objective function
is evaluated several times, several evaluations of the trace term are performed for a fixed value of
θ(k) but varying values of θ. In this case, we can actually reuse the solutions of the linear system
from one evaluation to the other as they depend only on θ(k). Hence, they can be computed once
and for all at the beginning of the minimization process, thus reducing the cost of evaluating
the trace term to that of performing the products between Q̂θ and vectors. Algorithm 5.3
summarizes this approach of likelihood maximization by EM.

Algorithm 5.3: EM algorithm for likelihood maximization by trace approximations.
Input: An observation vector zo from a process defined by Equation (5.1).
Families of spectral densities {fθ}θ, variance parameters {τθ}θ and shift operators
{Sθ}θ parametrized by the same parameter vector θ ∈ RNP .
An initial guess of parameter vector θ(0).
Output: An estimate of the parameter vector maximizing the likelihood given zo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k = 0 ;
while Convergence is not achieved do

� Expectation step
Compute µθ(k) = τ−2

θ(k)Q̂
−1
θ(k)M

T
o zo (where Q̂−1

θ(k) is defined in Equation (5.8)) using a
descent algorithm (cf. Algorithm 4.3 or 4.4) ;
for i = 1, . . . , N do

Generate and store a vector w(i) ∈ Rn with independent zero-mean and
unit-variance entries ;
Compute and store x(i) = Q̂−1

θ(k)w
(i) using a descent algorithm (cf. Algorithm 4.3

or 4.4) ;

� Maximization step
Solve the following minimization problem (using a general-purpose optimization
algorithm):

θ(k+1) = argmin
θ∈RNP

(
1
N

N∑
i=1

(
x(i)

)T
Q̂θw

(i) + µTθ(k)Q̂θµθ(k) + 1
τ2
θ

zTo (zo − 2Moµθ(k))

+2d log τθ − log |(1/fθ)(Sθ)|
)
.

k ← k + 1 ;
Return θ(k).

Each iteration of Algorithm 5.3 can be decomposed into two steps:

� A preprocessing step that amounts to generate and store N random n-vectors, solving
N + 1 linear systems involving Q̂θ(k) and storing the results (which are n-vectors). Note
that each product between Q̂θ(k) and a vector involves a Chebyshev filtering operation and
that a total of 2N + 1 n-vectors need to be stored.

� An optimization step that consists in minimizing a function whose evaluation amounts to
N + 1 products between Q̂θ and vectors and a Chebyshev filtering operation.

The memory requirements of Algorithm 5.3 can be reduced by using a different approach to
the approximation of the trace term Trace(Q̂θQ̂−1

θ(k)) than the one presented in Equation (5.18).
Indeed, following Proposition A.4.11, we have

Cov[W T Q̂θW ,W T Q̂−1
θ(k)W ] = 2Trace(Q̂θQ̂−1

θ(k)) ,
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whereW is a zero-mean Gaussian vector with covariance matrix In. Using once again a Monte-
Carlo estimate, the trace term can therefore be approximated using a sequence w(1), . . . ,w(N)

of N independent realizations of W as the sample covariance of the set of pairs{(
(w(i))T Q̂θw(i), (w(i))T Q̂−1

θ(k)w
(i)
)}

i∈[[1,N ]]
.

Hence,

Trace(Q̂θQ̂−1
θ(k)) ≈

1
2(N − 1)

N∑
i=1

(
t
(i)
θ − t̄θ

)(
s

(i)
θ(k) − s̄θ(k)

)
= 1

2(N − 1)

N∑
i=1

t
(i)
θ

(
s

(i)
θ(k) − s̄θ(k)

)
(5.19)

where on one hand,

t
(i)
θ = (w(i))T Q̂θw(i) and t̄θ = 1

N

N∑
i=1

t
(i)
θ ,

and on the other hand,

s
(i)
θ(k) = (w(i))T Q̂−1

θ(k)w
(i) and s̄θ(k) = 1

N

N∑
i=1

s
(i)
θ(k) .

Computing the approximation in Equation (5.19) now requires to

� Compute t(i)θ for i ∈ [[1, N ]] by computing a product between between Q̂θ and a vector
(this be done for the cost of a Chebyshev filtering operation).

� Compute s(i)
θ(k) for i ∈ [[1, N ]] by solving a linear system defined by Q̂θ(k) and can be done

using for instance a descent algorithm.

The computational cost associated with this trace approximation is therefore basically the same
as the cost associated with the previous one (in Equation (5.18)). The difference between them
is in the quantities which are stored when several evaluations of the trace term are performed
for a fixed value of θ(k) but varying values of θ. In this case, note that we can now reuse the
coefficients s(i)

θ(k) , which only depend on θ(k). Hence, they can be computed once and for all at
the beginning of the minimization process, thus reducing the cost of evaluating the trace term
to that of computing the coefficients t(i)θ . Algorithm 5.4 summarizes this approach of likelihood
maximization by EM.

Each iteration of Algorithm 5.4 can be decomposed into two steps:

� A preprocessing step that amounts to generate and store N random n-vectors, solving
N + 1 linear systems involving Q̂θ(k) and storing one of these solutions and N + 1 scalar
values. Hence, we need to store N less n-vectors compared to Algorithm 5.3.

� An optimization step that consists in minimizing a function whose evaluation amounts to
N + 1 products between Q̂θ and vectors and a Chebyshev filtering operation.

Hence, for basically the same computational cost as Algorithm 5.3, Algorithm 5.4 allows to save
on the memory requirements by storing less vectors.

Let us quickly compare the direct maximization of L(· ; zo) through its evaluations with
Algorithm 5.1 with the minimization problem of Equation (5.16) induced by the EM approach.

On one hand, in Algorithms 5.3 and 5.4, heavy calculations requiring to solve a linear system
involving Q̂θ(k) , are precomputed once and for all so that the subsequent evaluations of the
objective function only require a limited number of Chebyshev filtering operations with Sθ.
In comparison, when L(· ; zo) is directly maximized, such systems have to be solved at each
evaluation of the objective function.

On the other hand it should be noted that within the EM approach, an optimization problem
must be solved at each iteration whereas a single optimization problem is solved in the likelihood
approach.
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Algorithm 5.4: Memory-saving EM algorithm for likelihood maximization by trace
approximations.
Input: An observation vector zo from a process defined by Equation (5.1).
Families of spectral densities {fθ}θ, variance parameters {τθ}θ and shift operators
{Sθ}θ parametrized by the same parameter vector θ ∈ RNP .
An initial guess of parameter vector θ(0).
Output: An estimate of the parameter vector maximizing the likelihood given zo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k = 0 ;
while Convergence is not achieved do

� Expectation step
Compute µθ(k) = τ−2

θ(k)Q̂
−1
θ(k)M

T
o zo (where Q̂−1

θ(k) is defined in Equation (5.8)) using a
descent algorithm (cf. Algorithm 4.3 or 4.4) ;
for i = 1, . . . , N do

Generate and store a vector w(i) ∈ Rn with independent zero-mean and
unit-variance entries ;
Compute x(i) = Q̂−1

θ(k)w
(i) using a descent algorithm (cf. Algorithm 4.3 or 4.4) ;

Store s(i)
θ(k) = (w(i))Tx(i) ;

Store s̄θ(k) = 1
N

∑N
i=1 s

(i)
θ(k) ;

� Maximization step
Solve the following minimization problem (using a general purpose optimization
algorithm):

θ(k+1) = argmin
θ∈RNP

(
1

2(N − 1)

N∑
i=1

(
s

(i)
θ(k) − s̄θ(k)

)
t
(i)
θ + µTθ(k)Q̂θµθ(k)

+ 1
τ2
θ

zTo (zo − 2Moµθ(k)) + 2d log τθ − log |(1/fθ)(Sθ)|
)

,

where t(i)θ = (w(i))T Q̂θw(i). ;
k ← k + 1;

Return θ(k).

5.2.3 EM by conditional simulations

Starting from the formulation of the EM algorithm through its two steps, another approach can
be taken to maximize the expectation function. Indeed, a Monte-Carlo estimate can be used
to directly approximate Eθ(k)(θ) using a set of conditional simulations of Z. The expectation
over [Z|zo ; θ(k)] in Eθ(k)(θ) is then replaced by an average over a set of of N realizations
z

(1)
θ(k) , . . . ,z

(N)
θ(k) of this random vector, namely:

Eθ(k)(θ) = E
[
L̃(θ ; Zθ(k) , zo)

]
≈ 1
N

n∑
i=1

L̃(θ ; z(i)
θ(k) , zo) .

This approach was introduced by Wei and Tanner (1990) and is called Monte-Carlo EM algo-
rithm.

Each conditional simulation z(i)
θ(k) is generated through Algorithm 4.2. They come at the

price of a Chebyshev filtering operation with Sθ(k) (for the non-conditional simulation) and the
solving of a linear system involving Q̂θ(k) (for the conditioning through kriging). Note that the
conditional simulations can be precomputed during the expectation step as they only depend on
the parameter θ(k), which is fixed during the maximization step. Then, the maximization step
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is reduced to the following optimization problem:

θ(k+1) = argmin
θ∈RNP

(
1
τ2
θ

zTo (zo − 2Moz̄θ(k)) + 1
N

n∑
i=1

(
z

(i)
θ(k)

)T
Q̂θz

(i)
θ(k)

+ 2d log τθ − log |(1/fθ)(Sθ)|
)

,

(5.20)

where z̄θ(k) denotes the mean of the conditional simulations:

z̄θ(k) = 1
N

n∑
i=1

z
(i)
θ(k) .

If the conditional simulations z(1)
θ(k) , . . . ,z

(N)
θ(k) are precomputed and stored, the evaluation of

the objective function in Equation (5.20) requires that of N quadratic forms defined by Q̂θ and
that of the log-determinant of the graph filter (1/fθ)(Sθ). Algorithm 5.5 summarizes this new
formulation of the EM algorithm.

Algorithm 5.5: EM algorithm for likelihood maximization by conditional simulations.
Input: An observation vector zo from a process defined by Equation (5.1).
Families of spectral densities {fθ}θ, variance parameters {τθ}θ and shift operators
{Sθ}θ parametrized by the same parameter vector θ ∈ RNP .
An initial guess of parameter vector θ(0).
Output: An estimate of the parameter vector maximizing the likelihood given zo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k = 0 ;
while Convergence is not achieved do

� Expectation step
for i = 1, . . . , N do

Generate a vector w ∈ Rn with independent standard Gaussian entries ;
Compute a non-conditional simulation of Z under θ(k) by computing the vector
z′ =

√
fθ(k)(Sθ(k))w ;

Generate a vector w′o ∈ Rd with independent standard Gaussian entries ;
Compute the residual kriging estimate, which is the solution x′ of the linear
system x′ = τ−2

θ(k)Q̂
−1
θ(k)M

T
o (zo − (Moz

′ + τθ(k)w′o)), (where Q̂−1
θ(k) is defined in

Equation (5.8)) using a descent algorithm (cf. Algorithm 4.3 or 4.4) ;
Store z(i)

θ(k) = z′ + x′ ;

Store z̄θ(k) = 1
N

∑N
i=1 z

(i)
θ(k) ;

� Maximization step
Solve the following minimization problem (using a general purpose optimization
algorithm):

θ(k+1) = argmin
θ∈RNP

(
1
τ2
θ

zTo (zo − 2Moz̄θ(k)) + 1
N

n∑
i=1

(
z

(i)
θ(k)

)T
Q̂θz

(i)
θ(k)

+ 2d log τθ − log |(1/fθ)(Sθ)|
)

k ← k + 1;
Return θ(k).

Each iteration of Algorithm 5.5 can be decomposed into two steps:

� A preprocessing step that amounts to generate and store N conditional simulations, and
therefore amounts to N Chebyshev filtering operations with shift operator Sθ(k) and trans-
fer function

√
fθ(k) ; and solving N linear systems defined by Q̂θ(k) . In total, we need to

store N + 1 n-vectors at this step.
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� An optimization step that consists in minimizing a function whose evaluation amounts to
N + 1 products between Q̂θ and vectors and a Chebyshev filtering operation.

Hence, Algorithms 5.4 and 5.5 basically operate with the same computational complexity and
storage needs. One advantage of Algorithm 5.5 over Algorithm 5.4 would be that at each iteration
of the algorithm, we actually compute estimators of the underlying field Z given the data zo,
which are given by the conditional simulations and their average. Hence, in a context where the
ultimate goal is SGS estimation, the estimators are readily available each step of the way using
Algorithm 5.5.

5.3 Particular case: Inference with a known shift operator
In this section, we look into the particular case when the shift operator is fixed to a single value
and known value S, i.e. ∀θ,Sθ = S. As we may see, several simplifications of the algorithms
introduced in the previous sections can be made to alleviate their computational and storage
costs.

5.3.1 General remark
Whenever the shift operator is fixed, the following trick can be used to lighten the computational
cost of the direct likelihood maximization relying on Algorithm 5.2 and Algorithms 5.3 to 5.5
based on the EM approach. Indeed, computational savings can be made for the evaluation
of the log-determinant term log |(1/fθ)(Sθ)| = − log |fθ(Sθ)| = log |(1/fθ)(S)| = − log |fθ(S)|
that appears systematically in the objective function of the associated optimization problems.

Following the method introduced in Section 2.3.3, we can compute the histogram of eigenval-
ues of S once and for all using Algorithm 2.9, and use it as an additional input of Algorithms 5.2
to 5.5. Then, the log-determinant log |(1/fθ)(S)| can be estimated for any fθ using Equa-
tion (2.14), and therefore requiring only direct evaluation of a function on points of R. Hence,
the evaluation of the log-determinant would now require no graph filtering operation at all, and
would in fact be totally inexpensive to compute compared to the other terms involved in the
objective function.

In particular, for the implementation of the EM approaches of Algorithms 5.3 to 5.5, using
this trick ensures that the cost of evaluation of the objective function in the optimization step
is reduced to that of a predefined number of quadratic forms defined by the matrix Q̂θ (given
in Equation (5.8)). This number is fixed by the user and corresponds to the degree of the
approximation of the Monte-Carlo estimates used in these implementations.

5.3.2 Particular case: Polynomial spectral densities
We still assume in this subsection that the shift operator S of Z is fixed and known, and we
aim at determining its spectral density f and the variance parameter of its observation process
τ using parametrized families of both of them. We assume in particular in this section that
the spectral density fθ, or rather its inverse, is chosen from a family of polynomial functions of
fixed degree and deduce desirable simplification for the implementation of the EM approaches
of Algorithms 5.3 to 5.5.

For a vector parameter θ = (θ1, . . . , θNP )T ∈ RNp we therefore fix:

1
fθ

=
(
NP−1∑
k=1

θkT̃k−1

)2

and 1
τθ

= eθNP , (5.21)

where T̃k−1 denotes the (k − 1)-th Chebyshev polynomial, shifted on an interval containing the
eigenvalues of S. Hence, we ensure that τθ > 0 and that fθ(S) defines a covariance matrix.

Remark 5.3.1. As mentioned earlier, taking 1/fθ to be a (low-degree) polynomial is actually
equivalent to assuming an underlying Markovian model between the entries of the resulting
SGS. This hypothesis is not unusual when working with Gaussian vectors. Indeed, the spar-
sity of the resulting precision matrices of their discretization allows for instance fast sample
computations and likelihood computations (Rue and Held, 2005).
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Denote by pθ the polynomial given by

pθ =
NP−1∑
k=1

θkT̃k−1 .

Hence (1/fθ) = p2
θ. Also, the matrix Q̂θ defined in Equation (5.8) and appearing in the expres-

sion of the objective functions of Algorithms 5.3 to 5.5 now writes

Q̂θ = p2
θ(Sθ) + τ−2

θ MT
o Mo =

(
NP−1∑
k=1

θkT̃k−1(S)
)2

+ e2θNPMT
o Mo .

Injecting Equation (5.21) in the expression of the objective functions of Algorithms 5.3 to 5.5
allows to actually derive an analytical expression for their gradients, and therefore to use for
instance descent algorithms without having to estimate the gradients from evaluations of the
function.

Indeed, note that these objective functions are the sum of four main types of terms: for
u,v vectors independent of θ, we have either quadratic terms of the form vT Q̂θv, or the log-
determinant (1/fθ)(S), or terms of the form τ−2

θ uTv or the log of τθ. Using the derivative
formulas by Petersen and Pedersen (2008), the gradient of these terms (with respect to θ ∈ RNp)
is then given by

∇(vT Q̂θv) = 2


vT T̃0(S)pθ(S)v

...
vT T̃NP−2(S)pθ(S)v
τ−2
θ vTMT

o Mov

 ,

∇(τ−2
θ uTv) = 2


0
...
0

τ−2
θ uTv

 , ∇(log τθ) =


0
...
0

−θNP

 ,

∇(log |(1/fθ)(S)|) = ∇(2 log |pθ(S)|) = 2


Trace

(
T̃0(S)pθ(S)−1)

...
Trace

(
T̃NP−2(S)pθ(S)−1)

0

 .

Assuming that the trick of Section 5.3.1 is used, computing the gradient ∇(log |(1/fθ)(S)|)
is as cheap as computing log |(1/fθ)(S)|. Indeed, simply note that the entries of this gradient
vector satisfy

∀j ∈ [[0, NP − 2]], Trace
(
T̃j(S)pθ(S)−1) =

n∑
i=1

Tj
pθ

(λi) ,

where λ1, . . . , λn denote the actual eigenvalues of S. This last sum can be approximated using
the precomputed histogram of eigenvalues of S in the same way as in Section 2.3.3. Hence, the
cost of computing the gradient of the objective function comes to that of evaluating the gradients
of the form ∇(vT Q̂θv). Such gradients can easily by computed using two runs of the Chebyshev
filtering with graph filter pθ(S) and the vector v:

� The first run is actually used to compute the product pθ(S)v and involves exactly NP − 2
products between (a matrix as sparse as) S and vectors.

� For the second run, instead of using them to form the vector pθ(S)v, each product T̃j(S)v,
0 ≤ j ≤ NP − 2, generated during the run is extracted and used to compute the (j + 1)-th
entry of ∇(vT Q̂θv).
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Thus, computing the gradient of the objective function comes roughly at the cost of evaluating
the objective function twice. Hence, optimization algorithms for non-linear problems using the
gradient (or more generally first-order derivatives) of the objective function can easily be used
to tackle the optimization task of Algorithms 5.3 to 5.5. We can for instance cite the gradient
descent and the conjugate gradient algorithms who both find adaptation in the context of non-
linear problems (Bertsekas, 1997).

Conclusion
In this chapter, we introduced two classes of algorithms designed to perform inference based on
a noisy and partial observation of a stationary SGS. On one hand, the likelihood of the vector
of observations was directly maximized using an optimization algorithm. The main drawback
of this approach is the high cost associated with the evaluation of the objective function of the
optimization problem. That is why an approach based on the EM algorithm was introduced as
a possible alternative.

Three implementations of the EM algorithm were proposed. They all iterate two steps:
a preprocessing step involving a predefined number of linear systems to solve, followed by an
optimization step where the cost of evaluating the objective function was drastically reduced
when compared to the direct approach. Finally simplifications and computational tricks were
presented for the cases where the shift operator is assumed to be known, and when a Markov
model is assumed on the graph signals.

This chapter actually concludes the first part of our work: practical solutions for the simula-
tion, the estimation and the inference of SGSs have been introduced. Now that our algorithmic
toolbox is complete, we turn to the motivation of this work: working with non-stationary Gaus-
sian fields and complex domains. The aim for the second part of this dissertation is to present
the framework and the results allowing to take on this challenge, and how they relate to the
graph signal processing framework.
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Résumé
Le but de ce chapitre est d’introduire des notions de géométrie différentielle et riemannienne

qui seront utilisées dans la suite du manuscrit. Il s’agit d’un mini-cours, basés sur plusieurs
ouvrages de référence, et cherchant à apporter au lecteur une bonne intuition sur ces sujets.

Introduction

Gaussian random fields (GRF) are widely used to model spatially correlated data in environ-
mental and earth sciences Chilès and Delfiner (2012); Lantuéjoul (2013); Wackernagel (2013).
These data usually correspond to samples of a regionalized variable z, i.e. a variable defined on
a spatial domain. Following the geostatistical paradigm, this regionalized variable is modeled
in a probabilistic framework by a GRF: z is then seen as a particular realization of a GRF Z.
Rather than characterizing directly the features of the regionalized variable z from its samples,
the focus is set on deducing from these samples some features of the GRF Z. Conditioning
methods are then used to revert back to the data and honor them in some sense.

Working with GRFs capable of modeling truthfully the particularities of the spatial data at
hand is instrumental to the use of geostatistical methods. In some applications, these data can
be defined on complex spatial domains such as arbitrary surfaces of a three-dimensional space,
or showcase preferential directions of high correlation (also called anisotropy directions) that
change over the domain. In both cases, the GRFs used in the geostatistical models should reflect
these particular features.

The objective of the second part of this dissertation is to provide a general framework that
can be used to define GRFs that account for the complex geometric features listed above. This
framework is actually summarized by the title of this dissertation: “Generalized random fields on
Riemannian manifolds”. The basic idea is to define GRFs (or rather generalized random fields)
on a mathematical object that allows to model both surfaces and local deformations on a spatial
domain (the so-called Riemannian manifold).

The outline of the second part of this dissertation is as follows.

� We first introduce the reader to basic notions of differential and Riemannian geometry
and to the central object they model: Riemannian manifolds. We show in particular
why Riemannian manifolds are suited to the modeling problem we are trying to tackle
(Chapter 6).

� Then, the framework allowing to work with (generalized) random fields on Riemannian
manifolds is studied. We prove a theorem which links these fields to stochastic graph sig-
nals, thus opening the way to work with them using the framework and the tools introduced
in the first part of this dissertation (Chapter 7).

� Next, this theorem is applied to derive finite element approximations of the modeled non-
stationary fields, similarly as what is proposed by (Lindgren et al., 2011), and the conver-
gence of this approximation is studied (Chapter 8).

� Finally, the power of this new framework is illustrated by applying it to practical problems
involving real and synthetic data (Chapter 9).

As mentioned above, this particular chapter aims at providing the reader with some basic
understanding of the notions of differential and Riemannian geometry used in this work. Several
concepts, such as the notions of orientability and connections were deliberately omitted in order
to focus the text on the key concepts that will actually be used in the next chapters. This
summary is intended to be self-sufficient and is a condensed version of textbooks on differential
and Riemannian geometry (listed hereafter).

For a more comprehensive understanding of the subject, the reader is referred to the books
used to write this chapter. For an introduction on differential geometry, see (Abraham et al.,
2012), (Lang, 2012), (Lee, 2012). For an introduction on Riemannian and spectral geometry, see
(Bérard, 2006), (Canzani, 2013), (Craioveanu et al., 2013),(Jost, 2008), (Lablée, 2015).
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6.1 Manifolds and differential geometry

6.1.1 Manifolds, charts, atlases and functions
A manifoldM of dimension d ≥ 1, also called d-manifold, is a topological space such that:

� M is a Hausdorff space: ∀p, q ∈ M, there exists open subsets Up, Uq of M such that
p ∈ Up, q ∈ Uq and Up ∩ Uq = ∅.

� M is second-countable, i.e. there exists a countable family U = {Ui}i∈N of open subsets
ofM such that any open subset U ⊂M can be written as the union of a subfamily of U .

� M is locally Euclidean of dimension d: every p ∈ M has a neighborhood homeomorphic
to an open set of Rd.

Assumption 6.1. All manifolds encountered in this work are assumed to be (topologically)
connected, i.e. they cannot be expressed as the disjoint union of two open sets.

Formally, for any point p ∈ M there exists an open set Up containing p and there exists
φ : Up → Ûp ⊂ Rn that maps Up towards a open subset Ûp of Rd, and such that φ is continuous,
bijective and its inverse is also continuous (hence, φ is a homeomorphism). Manifolds can be
seen as generalizations of the notions of curves and surfaces to higher dimensions. Each point of
a manifold can be seen as described by a set of d “coordinates" given by its image through the
homeomorphism φ.

Example 6.1.1. The simplest example of a d-manifold may be open domains of Rd. Indeed,
if B ⊂ Rd denotes an open domain of Rd, equipped with the same topology as Rd, then the
three requirements that define a manifold are clearly verified by B. In particular, the identity
map defines a homeomorphism between any open neighborhood of p ∈ B and an open set of
Rd.

In particular, Rd itself but also open balls of Rd of any (strictly positive) radius are d-
manifolds.

Example 6.1.2. Let S2 denote the unit sphere of R3 (equipped with its natural Euclidean
topology):

S2 = {p ∈ R3 : ‖p‖2 =
√
p2

1 + p2
2 + p2

3 = 1} .

S2 inherits a topology from R3: indeed, open sets of S2 can be defined as intersections of S2

with open sets of R3. Hence S2 is second-countable as R3 is. Besides, with this topology, S2

is Hausdorff. Indeed, for any distinct points p, q ∈ S2 we can find a small enough open ball of
R3 around each one of them such that the balls do not intersect. The open sets of S2 defined
as the intersection of these balls with S then satisfy the Hausdorff property.

Now let p ∈ S2 and consider the applications ψ,ψ′ defined over the open set

Û =]− π, π[×]− π

3 ,
π

3 [

by:

ψ : (θ, ξ) ∈ Û 7→


cos(θ) cos(ξ)
sin(θ) cos(ξ)

sin(ξ)

 , ψ̃ : (θ, ξ) ∈ Û 7→


sin(ξ)

sin(θ) cos(ξ)
cos(θ) cos(ξ)

 .

ψ and ψ̃ actually represent parametrizations of parts of a unit sphere using spherical coor-
dinates (cf. Figure 6.1). As such they define two diffeomorphisms from open sets of S2 that
cover S2, to open sets of R2. This proves that S2 is locally Euclidean of dimension 2.
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Figure 6.1: Illustration of the two parametrizations of S2 defined on Example 6.1.2. The figure
on the left corresponds to ψ and the figure on the right corresponds to ψ̃. Any point of S2 can

be retrieved by at least one of these diffeomorphisms.

Figure 6.2: Illustration of a transition map. Two subsets Uα (in yellow) and Uβ (in blue) of a
manifoldM and their intersection (in green) are represented.

More generally, if U is an open subset ofM and x : U → Rd a homeomorphism that maps
U to an open subset Û = x(U) of Rd, then the pair (U, x) is called a coordinate chart (or simply
chart). Following the definition of manifolds, any point p ∈ M is contained in the domain
U of some coordinate chart (U, x): we then say that the chart (U, x) contains the point p.
In particular, the coordinate functions of x, denoted x = (x1, . . . , xd) and such that ∀p ∈ U ,
x(p) = (x1(p), . . . , xd(p)) are called the local coordinates on U .

Let (U, x) and (U ′, y) denote two charts such that U ∩ U ′ 6= ∅. The application y ◦ x−1 :
U ∩ U ′ → Rd is called transition map (between U and U ′): it can actually be interpreted as
an application turning local coordinates on U into local coordinates on U ′, as illustrated in
Figure 6.2. Note that given that x and y are homeomorphisms, their associated transition
map y ◦ x−1 is also a homeomorphism, with inverse x ◦ y−1. If besides y ◦ x−1 and its inverse
are C k-differentiable, then by definition, y ◦ x−1 is a C k-diffeomorphism and the charts (U, x)
and (U ′, y) are said to be C k-compatible. In particular, C∞-compatible charts are also called
smoothly compatible charts.

An atlas A is a collection of coordinate charts A = {(U (α), x(α)) : α ∈ I} ofM indexed by
a set I and such that ∪α∈IU (α) =M. An atlas is said to be C k-differentiable if ∀α, β ∈ I such
that U (α)∩U (β) 6= ∅, the transition map x(β)◦(x(α))−1 is C k-differentiable. In particular, a C∞-
differentiable atlas is also called smooth atlas. Hence, a C k-differentiable (resp. smooth) atlas is
simply a collection of charts that are pairwise C k-compatible (resp. smoothly compatible).
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Figure 6.3: Illustration of a coordinate representation of a function.

Example 6.1.3. Following the notations of Example 6.1.2, denote x = ψ−1 and y = ψ̃−1.
Let then U (resp. Ũ) be the open subset of S2 defined by U = ψ(Û) (resp. U ′ = ψ̃(Û)). Then,
both (U, x) and (U ′y) are charts of S2.
Besides, A = {(U, x); (U ′, y)} defines an atlas of S2.

Two smooth atlases A1 and A2 are compatible if their union A1 ∪A2 is also a smooth atlas:
in particular, this means that any chart in A1 is smoothly compatible with all charts in A2 (and
vice-versa). One can check that atlas compatibility defines an equivalence relation.

Given some atlas of reference A, let CA be an equivalence class for this relation that contains
A, i.e. CA is the set of all atlases that are compatible with A. Then all atlases in CA are included
inside a single smooth atlas, called maximal smooth atlas, and such that it contains any chart
that is smoothly compatible with all charts in A. The notion of smooth manifold is then defined
as the association (M,A) of a manifoldM with a maximal smooth atlas A (or equivalently its
equivalence class of compatible atlases CA). The notion of C k-differentiable manifold is defined
similarly, by considering collections of C k-differentiable charts.

Let (M,A) be a smooth d-manifold and let k ≥ 1. A function f : M → Rk is a smooth
function if for any chart (U, x) ∈ A, the function f ◦ x−1, called coordinate representation of
f , is a smooth function of x(U) ⊂ Rd (cf. Figure 6.3). Of particular interest is the case where
k = 1, i.e. f is real-valued. The set of real-valued smooth functions ofM is denoted C∞(M).

6.1.2 Submanifolds of Rn

Let n ≥ 1. Of particular interest in this thesis are (embedded) submanifolds of Rn, which are
subsets of Rn having the defining properties of a manifold. They are embedded in Rn through the
inclusion map, meaning that the topology on submanifolds of Rn is actually the trace topology
of Rn. Hence, open sets of a submanifold of Rn are defined as the intersection of open sets of
Rn with the subset of Rn defining the submanifold.

Formally, for d ≤ n, a d-submanifold of Rn is a subset M ⊂ Rn such that ∀p ∈ M, there
exists an open neighborhood of p, denoted V (p) ⊂ Rn and a diffeomorphism φ : Rn → Rn such
that

φ(M∩ V (p)) = φ(V (p)) ∩
(
Rd × {0n−d}

)
Therefore, φ associates to any point q ∈ M∩ V (p), a unique set of d real values, which corre-
sponds to the first d entries of φ(q) ∈ Rn, the n−d remaining entries of this n-vector being always
zero. The pair (M∩ V (p), φ) hence corresponds to a chart as defined for abstract manifolds.

6.1.3 Tangent space
The notion of tangent space of a manifold generalizes that of tangent line of a parametrized curve:
a tangent space at a point p ∈ M can therefore be thought of as a “linear” approximation of
M in a small neighborhood of p. These notions are generalized to the rather abstract case of
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manifolds by defining tangent vectors (i.e. the elements of a tangent space) through their action
on smooth functions defined on the manifold, much like tangent vectors of R2 can be seen as
directional derivatives of smooth curves defined on this same domain.

A tangent vector of M at a point p ∈ M is a map tp : C∞(M) → R that satisfies the
following properties:

� Linearity: ∀f, g ∈ C∞(M), ∀α ∈ R: tp(αf + g) = αtp(f) + tp(g).

� Leibniz rule: ∀f, g ∈ C∞(M): tp(fg) = g(p)tp(f) + f(p)tp(g).

One can show (Lee, 2012, Corollary 3.3) that the set TpM of all tangent vectors at a point
p ∈M, which is called tangent space at p, is a vector space of dimension d defined by

TpM = span
{

∂

∂xi

∣∣∣∣
p

: i ∈ [[1, d]]
}

, (6.1)

where the tangent vectors ∂/∂xi|p, i ∈ [[1, d]] are called directional derivatives and are defined,
for a choice of chart (U, x) ∈ A containing p, by:

∀f ∈ C∞(M), ∂

∂xi

∣∣∣∣
p

(f) = ∂f

∂xi
(p) := ∂i(f ◦ x−1)(x(p))

Here, ∂i(f ◦ x−1)(x(p)) denotes the usual i-th partial derivative at the point x(p) ∈ Û of the
function f ◦ x−1 : Û ⊂ Rd → R:

∂i(f ◦ x−1)(x(p)) = lim
t→0

f ◦ x−1(x(p) + tei)− f ◦ x−1(x(p))
t

= lim
t→0

f ◦ x−1(x(p) + tei)− f(p)
t

Note that, given thatM is a smooth manifold, f ◦x−1 is a smooth function of Rd and therefore
this quantity is well defined.

Following Equation (6.1), any tangent vector tp ∈ TpM can be represented by a vector
txp ∈ Rd such that

tp =
d∑
i=1

[txp]i
∂

∂xi

∣∣∣∣
p

(6.2)

The vector txp ∈ Rd, called representative vector of tp with respect to the chart (U, x), simply
contains the coordinates of tp in the particular basis given in Equation (6.1). Conversely any
txp ∈ Rd, defines an element tp of TpM by Equation (6.2). Hence tangent vectors can be seen
as both directional derivatives and vectors of Rd attached to a particular point of the manifold.

Example 6.1.4. Let B ⊂ Rd be an open domain of Rd, seen as a d-manifold. The chart
(B, xEuc) where xEuc maps points of B to their Cartesian coordinates, covers the whole man-
ifold. Note that xEuc is actually the restriction to B of the identity map of Rd .

Let p ∈ B. Then for every k ∈ [[1, d]], the directional derivative ∂/∂xEuc
k |p, corresponds

exactly to the application that maps a smooth function on B ⊂ Rd to its usual k-th partial
derivative at p: ∂/∂xEuc

k |p = ∂k|p.
Moreover for a tangent vector tp ∈ TpB with representative vector tEuc

p ∈ Rd with respect
to the chart (B, xEuc), we have

∀f ∈ C∞(B), tp(f) =
d∑
i=1

[tEuc
p ]i∂if(p) = ∇f(p)T tEuc

p = lim
h→0

f(p+ htEuc
p )− f(p)
h

,

where ∇f(p) denotes the gradient of f : B ⊂ Rd → R at p. Hence tp(f) is the (usual)
directional derivative of f at p along the direction tEuc

p .

Note that if another chart (U ′, y) is chosen to define the basis of Equation (6.1), then the
chain rule (cf. Theorem A.1.1) allows to conclude that the relation between both basis is given
by

∂

∂yi

∣∣∣∣
p

=
d∑
j=1

∂xj
∂yi

(p) ∂

∂xj

∣∣∣∣
p

, (6.3)
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Figure 6.4: Illustration of a map between manifolds.

where ∂xj/∂yi(p) is the image of the function p 7→ xj(p) through the tangent vector ∂/∂yi|p,
or equivalently the i-th partial derivative (with respect to the coordinate system (U ′, y) also
containing p) of the j-th component of the coordinate function x. In particular, applying this
relation to Equation (6.2) gives a link between the coordinates of a tangent vector tp in both
bases.

Proposition 6.1.1. LetM be a d-manifold and for p ∈M let tp ∈ TpM.
Then for any coordinate charts (U, x) and (U ′, y) containing p, the representative vectors of

tp denoted txp ∈ Rd in the basis of directional derivatives {∂/∂xk|p}1≤k≤d and typ ∈ Rd in the
basis of directional derivatives {∂/∂yk|p}1≤k≤d satisfy

txp = Jx◦y−1(y(p))typ ,

where Jx◦y−1(y(p)) denotes the Jacobian matrix of the application x ◦ y−1 : y(U ′) ⊂ Rd →
x(U) ⊂ Rd at the point y(p) ∈ Rd.

Finally, the tangent bundle ofM, denoted TM, is the disjoint union of all the tangent spaces
ofM:

TM =
⊔
p∈M

TpM (disjoint union) .

6.1.4 Maps and differentials
Let (M1,A1) be a smooth d1-manifold and (M2,A2) be a smooth d2-manifold. A map Φ :
M1 →M2 is a smooth map if:

� For all p ∈ M1 there exists a chart (U, x) ∈ A1 containing p and a chart (V, y) ∈ A2
containing Φ(p) such that Φ(U) ⊂ V .

� The composite map y ◦ Φ ◦ x−1 from Û = x(U) to V̂ = y(V ) is smooth.

An illustration of the different building blocks of a smooth map is provided in Figure 6.4. In
particular, smooth maps are continuous, and composition of smooth maps are also smooth.
Examples of smooth maps include constant maps (i.e. applications that map all p ∈M1 to the
same point q ∈M2) and the identity map (fromM1 toM1).

A map Φ :M1 →M2 is a diffeomorphism between manifolds if it is a bijective smooth map
whose inverse is also a smooth map. If such a map exists, then M1 and M2 are said to be
diffeomorphic. In particular, only manifolds having the same dimension can be diffeomorphic.

Let Φ : M1 → M2 be a smooth map. The differential of Φ at a point p ∈ M1 is the map
dΦp from the tangent space ofM1 at p to the tangent space ofM2 at Φ(p) ∈M2:

dΦp : TpM1 → TΦ(p)M2 ,

such that ∀tp ∈ TpM1, dΦp(tp) is the tangent vector ofM2 at Φ(p) defined by:

∀f ∈ C∞(M2), dΦp(tp)(f) = tp(f ◦ Φ) .
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In particular, this last equation is well-defined given that Φ is a smooth map and so, f ◦ Φ is a
smooth function fromM1 to R.

Two important properties of differentials of smooth maps should be kept in mind. First,
they define linear maps between tangent spaces. Second, whenever the smooth map Φ is a
diffeomorphism, then the differential at any point p ∈M1 is a bijective map that satisfies

(dΦp)−1 = d(Φ−1)Φ(p) : TΦ(p)M2 → TpM1 .

Hence, the inverse of the differential of Φ at p ∈ M1 is the differential of the inverse of Φ at
Φ(p) ∈M2 (and therefore is also linear).

The action of the differential dΦp on a tangent vector tp ∈ TpM1 can be made explicit
using directional derivatives and the notion of Jacobian matrix, which we now define. Consider
a chart (U, x) ∈ A1 containing p and a chart (V, y) ∈ A2 containing Φ(p). The Jacobian matrix
JΦ(p) ∈ Md2,d1(R) of Φ at p with respect to the charts (U, x) and (V, y), is defined as the
(usual) Jacobian matrix of the function Φ̂ = y ◦ Φ ◦ x−1 : x(U) ⊂ Rd1 → y(V ) ⊂ Rd2 at the
point x(p) ∈ Rd1 :

JΦ(p) := Jy◦Φ◦x−1(x(p)) =
[
∂j(y ◦ Φ ◦ x−1)i(x(p))

]
1≤i≤d2
1≤j≤d1

, p ∈M1 ,

where for 1 ≤ i ≤ d2, (y ◦Φ ◦ x−1)i denotes the i-th coordinate function of function y ◦Φ ◦ x−1.

Proposition 6.1.2. Let (M1,A1) be a smooth d-manifold, (M2,A2) a smooth d̃-manifold and
Φ :M1 →M2 a smooth map.
Let p ∈M1. Consider then a chart (U, x) ∈ A1 containing p and a chart (V, y) ∈ A2 containing
Φ(p).

Then, ∀tp ∈ TpM1, with representative vector txp ∈ Rd with respect to the chart (U, x), the
image of tp by the differential dΦp of Φ at p satisfies

dΦp(tp) =
d2∑
i=1

[JΦ(p)txp]i
∂

∂yi

∣∣∣∣
Φ(p)

∈ TΦ(p)M2 ,

where JΦ(p) ∈Md2,d1(R) is the Jacobian matrix of Φ at p with respect to the charts (U, x) and
(V, y).

Hence the differential dΦp maps the representative vector of a tangent vector of TpM1 to its
product with the Jacobian matrix of Φ at p.

Proof. This property is a direct consequence of the chain rule.

6.2 Riemannian manifolds
The notion of geometry is now introduced on smooth manifolds, while relying on the same
concepts as those used in Euclidean spaces. This seems a natural choice given that by definition,
manifolds are locally Euclidean. In particular, the notions of length and angles between vectors
“attached” to a point of a manifold are defined by introducing an inner product that is defined
on each tangent space of the manifold. These inner products are chosen so that they define a
“smooth” structure on the manifold called Riemannian metric, and the association of a manifold
with a Riemannian metric is called a Riemannian manifold.

Defining a Riemannian metric on a manifold allows to define familiar geometric concepts on
the manifold, such as lengths, angles and distances. The aim of this section is to introduce both
the concept of Riemannian metric and its use to define the aforementioned geometric concepts.
The next section will then focus on the development of an integration theory on (smooth)
manifold, while once again relying on Riemannian metrics.

6.2.1 Riemannian metric
LetM be a smooth d-manifold. A Riemannian metric g onM is an application that “smoothly”
associates to each point p ∈ M a symmetric positive definite bilinear form g(p) (also denoted
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gp) defined on its tangent space TpM. Namely, g associates to each p ∈ M an application gp
defined by

gp : TpM× TpM → R

(up, vp) 7→ gp(up, vp)
,

such that

� gp is symmetric bilinear: ∀up, vp, wp ∈ TpM, ∀λ ∈ R : gp(up, vp) = gp(vp, up), gp(up +
wp, vp) = gp(up, vp) + gp(wp, vp), gp(λup, vp) = λgp(up, vp)

� gp is positive definite: ∀up ∈ TpM, up 6= 0⇒ gp(up, up) > 0.

The association (M, g) of a smooth manifold M and a Riemannian metric g defined on this
manifold is then called a Riemannian manifold.

In particular, note that gp actually defines an inner product on the vector space TpM and
can be expressed using the local coordinates from a chart (U, x) containing p as

gp(up, vp) = (uxp)TGx(p)vxp =
d∑
i=1

d∑
j=1

Gxij(p)[uxp]i[vxp]j ,

where uxp,vxp are the representative vectors of up, vp ∈ TpM with respect to the chart (U, x) (as
defined in Equation (6.2)), and Gx(p) is a symmetric positive definite matrix of size d, called
representative matrix of the metric g at p ∈M with respect to the chart (U, x), and whose entries
are defined by

[Gx(p)]ij = Gxij(p) = gp

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
, 1 ≤ i, j ≤ d . (6.4)

The requirement that the Riemannian metric g “smoothly" maps points of the manifold to inner
products on their tangent spaces then corresponds to requiring that ∀k, j ∈ [[1, d]], the maps
p 7→ Gxkj(p) define smooth functions from U to R.

Note that the representative matrix of a metric actually depends on the considered chart
containing p ∈ M, as underlined by the superscript x in Equation (6.4). The following result
provides a link between representative matrices of the same metric for different charts.

Proposition 6.2.1. Let (M, g) be a Riemannian manifold and let p ∈M. Consider (U, x) and
(U ′, y) two charts ofM containing p. Then, the representative matrices of g with respect to both
charts, as defined in Equation (6.4), satisfy

Gy(p) = Jx◦y−1(y(p))TGx(p)Jx◦y−1(y(p)) , (6.5)

where Jx◦y−1(y(p)) denotes the (usual) Jacobian matrix of the function x ◦ y−1 : y(U ′) ⊂ Rd →
x(U) ⊂ Rd at the point y(p).

Proof. This result is a consequence of Proposition 6.1.1.

Example 6.2.1 (Euclidean Metric). Let B be an open domain of Rd. The chart (B, xEuc),
where xEuc is the inclusion map into Rd, covers the whole manifold. The Euclidean metric,
denoted gEuc, is the Riemannian metric on B defined as the bilinear form that associates to
any pair of tangent vectors of TpB (where p ∈ B) the dot product of their representative
vectors with respect to the canonical chart (B, xEuc). Hence, for any p ∈ B,

∀u,v ∈ Rd, gEuc
p

 d∑
i=1

[u]i
∂

∂xEuc
i

∣∣∣∣
p

,

d∑
j=1

[v]j
∂

∂xEuc
j

∣∣∣∣∣
p

 :=
d∑
i=1

[u]i[v]i = uTv .

In particular, the representative matrix of the Euclidean metric gEuc at p and with respect to
(B, xEuc) is the identity matrix.
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One way to define a Riemannian metric on a manifold is to inherit it from another manifold
equipped with its own metric, as detailed in the following result.

Proposition 6.2.2. Let M1 and M2 be two smooth manifolds, and let us assume that M2 is
equipped with a Riemannian metric g′.
Let us also assume that there exists a smooth map Φ :M1 →M2 such that its differential dΦp
at any point p ∈M1 is injective.
Then g′ and Φ induce a Riemannian metric Φ∗g′ onM which is defined as:

∀p ∈M,∀up, vp ∈ TpM1, (Φ∗g′)p(up, vp) = g′(dΦp(up), dΦp(vp))

Proof. The injectivity of dΦp ensures that (Φ∗g′)p defines an inner product on TpM1 and the
smoothness of g′ and Φ ensures the smoothness of the metric (Φ∗g′).

In particular, following the notations of Proposition 6.2.2, Φ∗g′ is called the pullback metric
of g′ by Φ and (M1,Φ∗g′) defines a Riemannian manifold. A consequence of the proposition
is that any smooth manifold M admits a Riemannian metric, that can be built by “gluing"
together pullback metrics of Euclidean metrics defined on domains of charts ofM.

Theorem 6.2.3. Every smooth manifold admits a Riemannian metric.

Proof. See (Lee, 2012, Proposition 13.3)

Hence, any smooth manifold can be seen as a Riemannian manifold, which is why we will
focus on Riemannian manifolds for the rest of this chapter.

6.2.2 A few geometric notions on Riemannian manifolds
The metric of a Riemannian manifold allows to locally define classical geometric notions on the
tangent space of each point of the manifold. Namely, if (M, g) denotes a Riemannian manifold,
and p ∈M:

� The length of a tangent vector tp ∈ TpM is defined as ‖tp‖gp =
√
gp(tp, tp). In particular,

∀vp ∈ TpM such that vp 6= 0, vp/
√
gp(vp, vp) has length 1.

� The angle θ between two tangent vectors up, vp ∈ TpM is defined as

cos θ = gp(up, vp)
‖up‖gp‖vp‖gp

.

� Two tangent vectors up, vp ∈ TpM are called orthogonal if gp(up, vp) = 0 i.e. if either one
of them is zero or the angle between them is π/2.

� Two tangent vectors up, vp ∈ TpM are called orthonormal if they are orthogonal and have
length 1.

The notion of distance between points of a manifold is also introduced thanks to the Rie-
mannian metric and the notion of curve along the manifold. A parametrized curve (resp. smooth
curve) γ ofM is a map from an open interval I ⊂ R toM that is continuous (resp. smooth).
This means that for any t0 ∈ I, the function t ∈]t0 − ε, t0 + ε[ 7→ x ◦ γ(t), defined for a chart
(U, x) containing γ(t) and a small enough ε > 0, is continuous (resp. smooth) at t = t0.

Let [a, b] ⊂ R be a segment of R. A map γ : [a, b] → M is called a curve segment from
γ(a) = p1 ∈ M to γ(b) = p2 ∈ M if, for some ε > 0, there exists a parametrized curve
γ̃ :]a− ε, b+ ε[→M that agrees with γ on [a, b]. In particular, γ is called smooth curve segment
if γ̃ is smooth, and piecewise smooth curve segment if there exits a subdivision of [a, b], denoted
t0 = a ≤ t1 ≤ · · · ≤ tN ≤ tN+1 = b, for which the restriction of γ to any segment [tk, tk+1] is a
smooth curve segment (from γ(tk) to γ(tk+1)).
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Then the length of a (piecewise) smooth curve segment ofM, parametrized by γ : [a, b]→M
is defined from the Riemannian metric g ofM as

Lg(γ) =
∫ b

a

‖γ′(t)‖gγ(t)dt ,

where γ′(t) ∈ Tγ(t)M is the tangent vector defined as:

∀f ∈ C∞(M), γ′(t)(f) = d(f ◦ γ)
dt

(t) .

This quantity is actually independent from the parametrization γ of the curve, i.e. ∀ψ : [c, d]→
[a, b] diffeomorphism, Lg(γ) = Lg(γ ◦ ψ).

The distance between two points p1,p2 ∈ M is finally defined as the infimum of the length
of piecewise smooth curve segments γ between p1 and p2:

dg(p1,p2) = inf
γ:[a,b]→M piecewise smooth

γ(a)=p1,γ(b)=p2

Lg(γ), p1,p2 ∈M . (6.6)

In particular, a Riemannian manifold (M, g) is a metric space with respect to the Riemannian
distance function dg, and the topology induced by this distance function is the same as the
original topology ofM. This means that open sets U ⊂ M defined in the original topology of
M are also open sets in the topology induced by dg, i.e. sets such that

∀p ∈ U, ∃ε > 0 such that ∀q ∈M : dg(p, q) < ε⇒ q ∈ U .

In other words, for any point of U there exists a (small enough) ball around that point that is
fully contained in U , where the notion of ball is defined through dg.

As a metric space, the notions of boundedness and completeness can be extended to a Rie-
mannian manifold (M, g). Any B ⊂ M is bounded if ∃C ≥ 0 ∀p1,p2 ∈ B, dg(p1,p2) ≤ C.
(M, g) is called complete if the metric space (M, dg) is complete, i.e. any Cauchy sequence of
M converges inM. Hence if (M, g) is complete and (pk)k∈N is a sequence of points ofM such
that:

∀ε > 0,∃N ∈ N such that ∀m,n ∈ N : m ≥ n ≥ N ⇒ dg(pm,pn) < ε

Then (pk)k∈N converges and its limit is a point ofM.

6.2.3 Geodesics
A geodesic on M is a smooth curve γ : [a, b] → M that minimizes the energy functional Eg
defined as

Eg(γ) = 1
2

∫ b

a

‖γ′(t)‖2gγ(t)
dt .

The expression of Eg has the following physical interpretation. Consider a particle of unit mass
moving freely on M and whose position at a time t is given by γ(t). To obtain the equation
of motion of this particle, the principle of least action can be applied. It consists in finding the
trajectory γ that minimizes the integral of the Lagrangian of the system, which in the case of
a free particle is reduced to its instantaneous kinetic energy 1/2‖γ′(t)‖2γ(t). Hence, as defined,
the geodesic γ represents the trajectory of a particle moving freely on the manifold from γ(a) to
γ(b).

The existence of geodesics between points sharing a chart is a consequence of the fact that
this minimization problem can be turned into a second order differential equation through the
Euler–Lagrange equations of functionals, as one would do in physics. This underlines the locality
of geodesics, that are not necessarily defined for any pair of points on the manifold.

Defined as such, geodesics have two noticeable properties. First, they have a constant velocity,
meaning that if γ : [a, b] → M is a geodesic, there exists a constant c such that ∀t ∈ [a, b],
‖γ′(t)‖γ(t) = c. Consequently, geodesics are parametrized by their length:

γ : [a, b]→M geodesic ⇒ ∀t ∈ [a, b] : Lg(γ|[a,t]) = c(t− a) .
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This property explains why geodesics on manifolds are sometimes referred as the generalization
of Euclidean “straight lines".

Second, geodesics locally minimize the distance between points along them:

γ : [a, b]→M geodesic ⇒ ∀t1, t2 ∈ [a, b] : Lg(γ|[t1,t2]) = dg(γ(t1), γ(t2)) ,

where dg denotes the distance defined in Equation (6.6). Hence geodesics locally defined paths
of minimal length on the manifold.

A theorem (Jost, 2008, Theorem 1.4.3) states that for any point p of a Riemannian manifold,
there exist a diffeomorphism, called exponential map of M at p that maps tangent vectors of
TpM of length less than some ε > 0 to an open neighborhood of p of size less than ε. Formally,
the exponential map expp yields a one-to-one correspondence between tangent vectors up ∈ TpM
such that ‖up‖gp < ε and points q ∈M such that dg(p, q) < ε. In particular, expp(up) is given
as the endpoint of the geodesic of length ‖up‖gp that starts at p in the direction up. Hence
small vectors in the tangent space of a point p can be seen, through the exponential map, as
small displacements from a p along the geodesics of the manifold.

6.3 Integration on Riemannian manifolds
As we saw in the previous section, endowing a smooth manifold with a Riemannian metric
allows to introduce geometric concepts on it, namely lengths, angles and distances. In this
section, integration theory on a manifold is defined using once again a Riemannian metric. In
particular, as we may see, a volume element can be introduced on manifolds, that corresponds
locally to the deformation of the Euclidean volume element induced by the metric. Integrals of
real functions defined on the manifold are then defined by “gluing” together integrals defined
using this volume measure on subsets covering the manifold.

6.3.1 Integrals on a Riemannian manifold
Let (M, g) be a Riemannian manifold. Let A ⊂ M be an open subset of M. A function
f : A → R is called measurable on A if for any chart (U, x) of M containing A the map
f ◦ x−1 : x(A) ⊂ Rd → R is measurable, i.e. if the preimage of any Borel set of R is a Borel set
of x(A). In this case, the integral of f over the open subset A ⊂ M is denoted1 ∫

A
fdVg and is

defined as the following Lebesgue integral over x(A):∫
A

fdVg : =
∫
x(A)

(
f ◦ x−1(x)

)
·
(
|Gx|1/2(x−1(x))

)
dx

=
∫
x(A)

(
f · |Gx|1/2

)
◦ x−1(x)dx ,

(6.7)

where |Gx|1/2 is the smooth function that maps any point of p ∈ U to the square-root of the
determinant of Gx(p), the representative matrix of g at p with respect to the chart (U, x) as
defined in Equation (6.4).

This quantity is independent from the choice of chart containing A. Indeed, if (U ′, y) denotes
another chart containing A, the change of coordinates formula of integrals on Rd yields∫

A

fdVg =
∫

(x◦y−1)◦y(A)

(
f · |Gx|1/2

)
◦ y−1 ◦ (y ◦ x−1)(x)dx

=
∫
y(A)

(
f · |Gx|1/2

)
◦ y−1(y)|Jx◦y−1(y)|dy

=
∫
x(A)

(
f ◦ y−1(y)

)
·
(
|Jx◦y−1(y)T | · |Gx(y−1(y))| · |Jx◦y−1(y)|

)1/2
dy .

Using the change of map formula of Equation (6.5), this last equation becomes∫
A

fdVg =
∫
x(A)

(
f · |Gx|1/2

)
◦ x−1(x)dx =

∫
y(A)

(
f · |Gy|1/2

)
◦ y−1(y)dy .

1For the moment, writing
∫
A

fdVg the integral of f over A should be purely taken as a notation. In the next
subsection, this notation will be justified by interpreting the term Vg as a measure on the manifold, and dVg as
the corresponding volume element.



6.3. Integration on Riemannian manifolds 129

Hence, as defined in Equation (6.7), the integral over A is independent of the choice of a coor-
dinate map over A.

The integral of a function f over a subset of a manifold can be seen as the integral of its
coordinate representation f ◦ x−1 through a chart x mapping A, scaled by a smooth function
|Gx|1/2 ( independent of f) that corrects the volume element so that it takes into account the
actual geometry of the manifold (as defined by its metric). Equivalently, it can also be seen
as the integral of f ◦ x−1 over x(A) ⊂ Rd with respect to a positive measure with density
x 7→ |Gx(x−1(x))|1/2 with respect to the Lebesgue measure.

To go from this local definition of integrals to integrals defined on the whole manifold M,
local integrals defined over subsets covering M are “glued" together using the notion of par-
tition of unity, which is now defined. Let A =

{
(U (α), x(α)) : α ∈ I

}
denote an atlas of M

(indexed by a set I). A partition of unity subordinate to the atlas A is a set of functions
{φα :M→ [0, 1] : α ∈ I} (also indexed by I) such that:

� ∀α ∈ I, suppφα ⊂ U (α), where suppφα is the support of φα, i.e. the closure of the set of
all points p ∈M such that φα(p) 6= 0. Note that consequently, φα is zero outside U (α).

� ∀p ∈M, φα(p) is non-zero only for a finite number of indexes α ∈ I.

� ∀p ∈M,
∑
α∈I φα(p) = 1.

Then, the integral of a function f :M→ R over the manifoldM is denoted
∫
M fdVg and is

defined as the sum over the covering open sets composing an atlas A ofM of local integrals of
f , weighted by a partition of unity:∫

M
fdVg =

∑
α∈I

∫
U(α)

φαfdVg . (6.8)

In particular, measurable functions on M are defined as functions that are measurable on any
chart of M, and therefore for which each integral in Equation (6.8) is defined. Note also that
the definition of the integral of a function over M is actually independent from the choices of
the atlas A and its subordinate partition of unity. This is due to the fact that the local integrals
are chart-invariant and that each function composing the partition of unity is zero outside an
open set ofM.

Hence, the integration of a function of M requires to choose an atlas and a subordinate
partition of unity, which may become a tedious task. However, in some cases, integrals over
a manifold can be expressed as usual Lebesgue integral over open sets of Rd and therefore be
calculated explicitly by classical methods.

Example 6.3.1 (Integration over an open set). Let us assume that the Riemannian manifold
(M, g) is such that M is diffeomorphic to an open set A ⊂ Rd and denote by x this diffeo-
morphism. Then the set A = {(A, x)} is an atlas for M composed of a single chart. This
situation is particularly desirable as the function mapping all points of A to 1 can be chosen
as a partition of unity. Hence the integral of a function f : M → R over M reduces to an
integral over A ⊂ Rd: ∫

M
fdVg =

∫
A

fdVg ,

which in turn is computed using Equation (6.7).
This case arises whenM is itself an open subset of Rd. Then, x can be chosen to be the

identity map and the integral over (M, g) is given by∫
M
fdVg =

∫
M
f(p) · |G(p)|1/2dp (M⊂ Rd open ) , (6.9)

where G is the representative matrix of the metric g with respect to the chart obtained by
considering the identity map (cf. Equation (6.4)). Hence, the integral of f over the Riemannian
manifold (M, g) is reduced to a “common” integral over a subset of Rd (which here isM) of
the function p 7→ f(p) · |G(p)|1/2.



130 6. Differential and Riemannian geometry

6.3.2 Measure on a Riemannian manifold
The integration of a measurable function over a subset of a manifold is defined using the definition
of the integral over the whole manifold. Indeed, the integral of f : M → R over any subset
M ⊂M is denoted

∫
M
fdVg and is given by∫

M

fdVg =
∫
M

(1M · f)dVg ,

where 1M : M→ R is the indicator function of the subset M . Similarly, a measure Vg can be
defined over subsets M ⊂M, as

Vg(M) =
∫
M
1MdVg =

∫
M

dVg .

It is straightforward to check that Vg is well-defined as a positive measure overM. It is called
the canonical measure associated to the Riemannian manifold (M, g). In particular,

Vg(M) =
∑
α∈I

∫
x(α)(U(α)∩M)

(
φα · |Gx(α)

|1/2
)
◦
(
x(α)

)−1
(x)dx .

M ⊂M is called a null set ofM whenever Vg(M) = 0. This is equivalent to imposing that
for any chart (U, x) of M, the set x(U ∩M) is a null set for the measure of Rd with density
x 7→ |Gx(x−1(x))|1/2 with respect to the Lebesgue measure. In particular, for any null set M
and for any measurable function f :M→ R:

M null set ⇒
∫
M

fdVg = 0 and
∫
M
fdVg =

∫
M\M

fdVg .

In practice, this last property can be used to compute integrals over manifolds, as they can be
reduced to a more easy to compute integral over a subset of the manifold by removing null sets
from the manifold. This is illustrated in the next example.

Example 6.3.2 (Integration on a sphere). Let us assume that the Riemannian manifold
(M, g) is such thatM is the sphere S2 ⊂ R3. Contrary to the previous example, M cannot
be covered entirely with a single chart. However, a chart covering S2 except for “negligible”
parts can easily be built, so that carrying out the integration over S2 without these parts is
the same as carrying out the integration over S2 entirely. Indeed, the map

φ : ]− π, π[×]− π
2 ,

π
2 [ → S2 \ {(0, 0, 1); (0, 0,−1)}

(θ, ξ) 7→ (cos θ cos ξ, sin θ cos ξ, sin ξ)
,

defines a diffeomorphism from an open set of R2 to the unit-sphere minus two poles. These
poles form a null set as their images by any coordinate chart will be isolated points in R3

which are null sets for the Lebesgue measure. Hence, integration over (S2, g) is given by:∫
S2
fdVg =

∫
]−π,π[

∫
]−π2 ,

π
2 [
f ◦ φ(θ, ξ)

√
|Gφ(φ(θ, ξ))|dξdθ (6.10)

where Gφ is the representative matrix of the metric g with respect to the chart obtained from
φ (cf. Equation (6.4)).

6.3.3 Integrability on a Riemannian manifold
We assume in this section thatM is a compact manifold.

A function f : M→ R is called integrable if
∫
M |f |dVg < ∞ and square-integrable if |f |2 is

integrable. Let L
2(M)∼ be the binary relation defined over the set of square-integrable functions

by
f1

L2(M)∼ f2 ⇔
∫
M

(f1 − f2)2dVg = 0, f1, f2 square-integrable . (6.11)
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In particular, L
2(M)∼ is an equivalence relation over the set of square-integrable functions ofM,

and the set of equivalence classes under L
2(M)∼ is denoted by L2(M).

Hence, any element of L2(M) actually corresponds to a set of square integrable functions
such that any pair of them satisfies Equation (6.11). However, using a common abuse of notation,
elements of L2(M) will also be called square-integrable functions of L2(M) and we will write

L2(M) =
{
f :M→ R measurable :

∫
M
f2dVg <∞

}
.

Hence the equivalence classes defining L2(M) are identified with the functions composing these
classes.

L2(M) can be equipped with the inner-product 〈·, ·〉L2(M) defined by

〈f1, f2〉L2(M) =
∫
M
f1f2dVg, f1, f2 ∈ L2(M) , (6.12)

with associated norm ‖ · ‖L2(M) given by

‖f‖L2(M) =
√
〈f, f〉L2(M), f2 ∈ L2(M) . (6.13)

L2(M) then defines a Hilbert space (Craioveanu et al., 2013).

Remark 6.3.1. The set L2(M) can equivalently be defined as the completion via Cauchy
sequences with respect to the norm ‖.‖L2(M) of the set of smooth functions with compact
support overM.

6.4 Manifolds with boundary
Manifolds with boundary are a generalization of manifolds as defined in the previous sections,
and called here ordinary manifolds. They allow to extend the notion of edge (or border) to
manifolds.

6.4.1 Definitions and first properties
Formally, the definition of a manifold with boundary is the same as the definition of an ordinary
manifold, except that it is now required that a neighborhood of any point of the manifold be
homeomorphic to either an open subset of Rd or an open subset of Hd = Rd−1×R+. In particular,
open subsets of Hd are defined as the intersection of open sets of Rd with Hd.

Hence, a coordinate chart (U, x) of a d-manifold with boundaryM is either

� a regular chart, i.e. x is a homeomorphism from U ⊂ M to an open subset of Rd. Then
x(U) is open set of Rd that is homeomorphic to an open subset U ofM,

� or a boundary chart, i.e. x is a homeomorphism from U ⊂ M to an open subset of Hd
which means that

∀p ∈ U, x(p) = (x1(p), . . . , xd(p)) ∈ Rd and xd(p) ≥ 0 .

Then x(U) is the intersection of an open set of Rd with Hd.

Then, a point p ∈ M is called an interior point if there exists a regular chart that contains p.
Otherwise, p is called a boundary point: in this case, if (U, x) is a boundary chart containing p,
then xd(p) = 0.

The set Int(M) of all interior points ofM is called the interior ofM and the set ∂M of all
boundary points of M is called the boundary of M. Basically, for a boundary point p ∈ ∂M,
we see that even an infinitesimal perturbations of its coordinates x(p) can push us off the “edge"
of the manifold: indeed, as soon as the d-th component of the perturbed coordinates is strictly
negative, its preimage by x will not fall intoM.
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For a d-manifold with boundaryM, we have:

M = Int(M) ∪ ∂M .

Ordinary manifolds are the particular case of manifolds with an empty boundary: that is why
they are also called manifolds without boundary. More generally, Int(M) is an ordinary d-
manifold and ∂M is an ordinary (d− 1)-manifold.

The other definitions introduced for ordinary manifolds still hold for manifolds with boundary,
as long as requirements on charts account for both regular and boundary charts, i.e. Rd can
be replaced by Hd as the mapping destination of coordinates charts. This is how notions like
smoothness of manifolds and maps or tangent spaces are naturally extended to manifolds with
boundaries.

Some particular points concerning tangent spaces should be noted. LetM denote a manifold
with boundary. On one hand, if p ∈ Int(M) then p can basically be seen as point of the ordinary
manifold Int(M) and TpM = TpInt(M). On the other hand, if p ∈ ∂M then two cases arise:

� either p is seen as a point of the d-manifold with boundary M and then its tangent
space TpM is also a d-dimensional vector space spanned by directional derivatives along
coordinate charts.

� or p is seen as a point of the (d− 1)-manifold without boundary ∂M and then its tangent
space Tp∂M can be seen as a restriction of TpM. Indeed, let (U, x) be a boundary chart
containing p, such that xd(p) = 0. Then, Tp∂M is spanned by {∂/∂x1, . . . , ∂/∂xd−1}.

Note in particular that Tp∂M is a vector subspace of dimension d − 1 of TpM, which is a
vector space of dimension d.

Manifolds defined by an implicit function are a particular case of manifold with boundary.
This is formalized in the next proposition.

Proposition 6.4.1. Let F : Rd 7→ R be a smooth function of Rd such that

{p ∈ Rd : F (p) = 0} 6= ∅

and such that
∀p ∈ Rd, F (p) = 0⇒ ∇F (p) 6= 0 ,

where ∇F (p) = (∂1F (p), . . . , ∂kF (p))T is the usual gradient of a function of Rd (with respect to
the Cartesian coordinates).

Then, the set
M = {p ∈ Rd : F (p) ≤ 0}

is a d-manifold with boundary such that

� its interior is IntM = {p ∈ Rd : F (p) < 0}, which is a d-manifold without boundary;

� its boundary is ∂M = {p ∈ Rd : F (p) = 0}, which is a (d− 1)-manifold without boundary;

� both IntM and ∂M are submanifolds of Rd.

Proof. Let M1 = {p ∈ Rd : F (p) < 0} and M2 = {p ∈ Rd : F (p) = 0}. Clearly, M =
M1 ∪M2.

First, the smoothness of F is used to prove thatM1 is an ordinary d-manifold, with the
usual topology of the Euclidean space Rd. Indeed, note that given that M1 is the preimage
by F of the open set ] −∞, 0[ of R, by continuity of F , F is an open set of Rd. And so as
such, it defines an (ordinary) d-submanifold of Rd.

Then, let p ∈ M2 and let us assume, without loss of generality, that ∂dF (p) 6= 0. The
implicit function theorem (Wilfred, 2002, Section 2.10) states that, as long as ∂dF (p) 6= 0,
there exists an open set U of Rd−1 containing (p1, . . . , pd−1) and a unique (smooth) map
φ : U → R such that

φ(p1, . . . , pd−1) = pd and ∀x ∈ U, F (x, φ(x)) = 0 .
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Note that in particular ∀x ∈ U , (x, φ(x)) ∈M2. Hence, φ defines a coordinate chart between
an open set ofM2 around p and an open set Rd−1. M2 is therefore a (d− 1)-submanifold of
Rd, and in particular an ordinary (d− 1)-manifold.

The set M = M1 ∪M2 then defines a manifold with boundary, with interior M1 and
boundaryM2.

Example 6.4.1. The unit ball B3 of R3 is defined as the set of points

B3 = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1} .

By denoting F : (x, y, z) ∈ R3 7→ x2+y2+z2−1, we have B3 = {(x, y, z) ∈ R3 : F (x, y, z) ≤ 0}.
In particular, F is a smooth function of R3 and satisfies ∇F (x, y, z) = (2x, 2y, 2z)T . Hence,
B3 is a 3-manifold with boundary and its boundary, given by {(x, y, z) ∈ R3 : F (x, y, z) = 0},
is the 2-sphere S2.

This result actually still holds for other dimensions: the unit-ball Bd of Rd is a d-manifold
with boundary and satisfies ∂Bd = Sd−1.

Remark 6.4.1. It should be noted that the boundary ∂M of a manifold with boundary
M generally differs from the boundary of M seen as a (subset of a) topological space. To
distinguish both notions we call ∂M the manifold boundary of M and we call topological
boundary the second kind of boundary. Both types of boundary are fundamentally different,
and thus,M can have (or not) a manifold boundary regardless of the fact that it has (or not)
a topological boundary.

To illustrate this point, consider the unit sphere S2 of R3. As we saw, it defines a manifold
without boundary. However, seen as a subset of (the topological space) R3, its topological
boundary is also S2 itself. Consider now the unit ball B3 of R3. As we saw, it defines a manifold
with boundary, whose manifold boundary S2 ⊂ R3. Seen as a subset of (the topological space)
R3, its topological boundary is also S2 ⊂ R3. But if now we see B3 as a subset of R4, its
topological boundary becomes B3 itself.

6.4.2 Riemannian manifolds with boundary
A manifold with boundary can also be equipped with a Riemannian metric and then defines a
Riemannian manifold with boundary. Indeed, the tangent spaces at any point of a manifold with
boundary have the same dimension, and the notion of Riemannian metric on a manifold with
boundary can then be naturally extended using the same definition as in the ordinary case.

Let then (M, g) denote a Riemannian manifold with boundary, and g its metric. Then the
boundary ∂M of M can be endowed with its own metric, inherited from the metric of M.
Indeed, given that ∀p ∈ ∂M, Tp∂M ⊂ TpM then the tensor field ∂g defined at any point
p ∈ ∂M by

∂gp : (up, vp) ∈ Tp∂M× Tp∂M 7→ ∂gp(up, vp) = gp(up, vp)

defines a Riemannian metric on ∂M. Hence, (∂M, ∂g) is a Riemannian ordinary (d−1)-manifold.
Integrating a function over a smooth d-manifold with boundary M that is equipped with

a Riemannian metric g is actually equivalent to integrating the same function over the interior
Int(M) seen as a Riemannian manifold also equipped with the metric g. Indeed, by definition
of the boundary of a manifold, the image of a point p ∈ ∂M will always lie in the boundary of
the domain of integration in the right side of Equation (6.7), and can therefore be discarded.

On the other hand, integration can be defined over just the boundary ∂M of a smooth d-
manifold with boundaryM. In this case, ∂M is seen a smooth (d− 1)-manifold equipped with
the Riemannian metric ∂g and we denote dSg the volume element of ∂M associated with ∂g:
dSg = dV∂g.

Both types of integrals intervene in Green’s theorem, which will be stated in Section 6.5.1,
and which plays a key role in the theory of analysis of functions on Riemannian manifolds.
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6.4.3 Normal vector at the boundary
Let (M, g) be a Riemannian manifold with boundary. The orthogonal subspace of Tp∂M in
TpM is defined by

Tp∂M⊥ = {up ∈ TpM : ∀vp ∈ Tp∂M, gp(up, vp) = 0} .

In particular, Tp∂M and Tp∂M⊥ are in direct sum, meaning tangent vectors in Tp∂M can
be uniquely decomposed as the sum of an element of Tp∂M and an element of Tp∂M⊥ and
vice-versa:

TpM = Tp∂M⊕ Tp∂M⊥ .

Any vector of Tp∂M⊥ is called a normal vector of ∂M at p.
Given that Tp∂M is a vector space of dimension d − 1 and that TpM is a vector space of

dimension d, Tp∂M⊥ is a vector space of dimension 1. It is therefore spanned by any non-zero
element it contains. Let then np ∈ TpM⊥ be the tangent vector such that gp(np, np) = 1 and
gp(np, ∂/∂xd) < 0 where (U, x) is a boundary chart containing p and such that xd(p) = 0. np
is called outward unit normal vector of ∂M at p and satisfies

Tp∂M⊥ = span {np} .

It can be shown that p 7→ np is a well-defined continuous vector field over ∂M, i.e. an application
that maps each point of a manifold to one of its tangent vector.

Normal vectors of a manifold with boundary defined as in Proposition 6.4.1 can be easily
deduced from the expression of their defining equation.

Proposition 6.4.2. Let (M, g) be a Riemannian manifold with boundary defined through a
smooth function F : Rd → R by:

M = {p ∈ Rd : F (p) ≤ 0} ,

where p 7→ ∇F (p) is non-zero on ∂M. Let us assume that M is equipped with the Euclidean
metric ḡ.

Then ∀p ∈ M, the unit outward normal vector np ∈ TpM at p ∈ ∂M is represented in the
basis of Cartesian directional derivatives {∂1|p, . . . , ∂d|p} by the vector

np = 1
‖∇F (p)‖2

∇F (p) .

Proof. See Appendix C.4.

Example 6.4.2. Following Proposition 6.4.2, the unit outward normal vector of the unit-ball
Bd at one of its point p ∈ Bd is given by

np = vp
‖vp‖2

, where vp = ∇F (p) = 2p .

6.4.4 Manifolds with corners
Geometric objects like rectangles, triangles, cubes or more generally polyhedrons of Rd often
arise as spatial domains on which a phenomenon is studied. Clearly, such subsets of Rd are
manifolds with boundary. However, they will not have a smooth structure due to the fact that
they have “corners”. That is why the notion of manifold with corners is introduced.

A d-manifold with corner is a d-manifold with boundary such that any of its coordinate
charts (U, x) is either

� a regular chart,

� a boundary chart,
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� or a chart with corners, i.e. x is a homeomorphism from U to an open subset2 of (R+)d,
which means

∀p ∈ U, x(p) ∈ {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0} .

As it is the case for manifolds with or without boundary, a manifold with corners is called smooth
if it can be covered by smoothly compatible charts with corners (cf. Section 6.1.1).

Let us assume from now on thatM is a smooth manifold with corners. If the image of p ∈M
through a chart with corner (U, x) falls on one of the “edges” of (R+)d, i.e. if x(p) has more
than one coordinate equal to zero, then p is called corner point ofM. In smooth manifolds with
corners, this property is actually independent from the choice of chart. As a quick reminder,
boundary points of M correspond to points of p for which exactly one coordinate vanishes.
Hence the image through a coordinate chart of a corner point of M lies on one the edges of
(R+)d.

Once again, the notions introduced for smooth manifolds with or without boundary, such as
smooth maps, partitions of unity, tangent vectors and Riemannian metrics, can be extended to
smooth manifolds with corners by considering now smoothly compatible charts with corners.

Regarding the integration of a function over a (Riemannian) manifold with corners, the same
definition as the one stated for manifold with boundary holds (cf. Section 6.4.2). Hence, ifM
is a smooth manifold with corners equipped with a metric g, then the integral of a function over
M can be reduced to the integral of the same function over Int(M) (also equipped with g).

And to integrate a function over the boundary ∂M ofM, one “chops up” the integral over
∂M into integrals over subsets of ∂M that can be considered as ordinary (d − 1)-manifolds or
d-manifolds with boundary, equipped with the metric ∂g. In particular, the boundary points of
M will lie in the boundaries of these chopped up pieces, and will effectively be discarded in the
integration process.

The results that will be presented in the remainder of this chapter and in the subsequent
ones rely on the so-called spectral theory of Riemannian manifolds. This branch of differential
geometry aims at deriving tools to work with functions defined over a Riemannian manifold
using their decomposition as a sum of fixed smooth functions satisfying a differential equation
(called eigenvalue problem). The next section aims at introducing these concepts.

Remark 6.4.2. In the remainder of this work, (smooth) manifolds with corners will be
identified with (smooth) manifolds with boundary. Indeed, the results of spectral theory that
will be used rely on boundary conditions being assumed on the considered functions, so that
their integral over the boundary is always discarded. Consequently, the presence of corners
on the boundary will have no effect on the derived results.

6.5 Differential operators
The gradient and the Laplacian of functions defined over a Riemannian manifold are now intro-
duced. The central piece of this section is the spectral theorem, which provides a decomposition
of any square-integrable function defined on a compact Riemannian manifold. This decomposi-
tion will later be used to define (generalized) random fields on a Riemannian manifold, which
can be considered for now as a randomized version of the notion of distribution that will also be
introduced in this section.

In the remainder of this section, (M, g) denotes a Riemannian manifold with or without
boundary and C∞(M) is the set of smooth functions ofM.

6.5.1 Gradient, Laplacian and Green’s theorem
Let f ∈ C∞(M). The gradient of f on M is the application ∇Mf : M 7→ TM such that
∀p ∈M, ∇Mf(p) ∈ TpM and

∀up ∈ TpM, gp(∇Mf(p), up) = up(f) .

2for the trace topology.
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In particular, ∇Mf is a vector field. In local coordinates of a chart (U, x) ofM the gradient is
given by

∇Mf(p) =
d∑
i=1

d∑
j=1

[Gx(p)−1]ij
∂f

∂xj
(p) ∂

∂xi

∣∣∣∣
p

, p ∈ U .

For p ∈ U , the representative vector of ∇Mf(p) with respect to the chart (U, x) is denoted by
∇xf and is given by

∇xf(p) = Gx(p)−1


∂f
∂x1

(p)
...

∂f
∂xd

(p)

 ∈ Rd .

The Laplace–Beltrami operator, simply called Laplacian here, is a generalization on Rie-
mannian manifolds of the Laplace operator (or Laplacian) of smooth functions of Rd. In lo-
cal coordinates of a chart (U, x) of M the Laplacian of f ∈ C∞(M) is the smooth function
∆Mf ∈ C∞(M) defined by

∆Mf(p) = 1√
|Gx(p)|

d∑
i=1

d∑
j=1

∂

∂xi

(√
|Gx|

[
(Gx)−1]

ij

∂f

∂xj

)∣∣∣∣
p

, p ∈ U .

Green’s theorem holds for integration on Riemannian manifolds. However it is required of
them that they are compact. A compact manifold is a manifold with possibly empty boundary
which is compact as a topological space. In particular submanifolds (with or without boundary)
of Rd that are topologically compact in Rd are compact manifolds.

We first introduce the following notations. Let f1, f2 ∈ C∞(M). We write∫
M
g (∇Mf1,∇Mf2) dVg :=

∫
M

(p 7→ gp (∇Mf1(p),∇Mf2(p))) dVg

and ∫
∂M

f1g(n,∇Mf2)dSg :=
∫
∂M

f1 · (p 7→ gp(np,∇Mf2(p))) dSg ,

where dSg denotes the restriction of the measure dVg of M on the boundary ∂M (cf. Sec-
tion 6.4.2) and ns denotes the unit outward normal vector at a point p ∈ ∂M.

Theorem 6.5.1 (Green’s theorem). Let (M, g) be a compact connected Riemannian manifold
with (or without) boundary and f1, f2 ∈ C∞(M).
Then, ∫

M
f1 ·∆Mf2dVg = −

∫
M
g (∇Mf1,∇Mf2) dVg +

∫
∂M

f1g(n,∇Mf2)dSg ,

where n denotes the vector field associating to each point s ∈ ∂M its unit outward normal vector.

Proof. See (Lang, 2012, Theorem 3.4).

This result still holds whenM is not compact but either f1 or f2 is a compactly supported
function of C∞(M) (Lang, 2012). Besides, there exist three cases for which Green’s theorem
simplifies and yields interesting results for functions of L2(M). These three cases are:

� Closed condition: M is a compact connected manifold without boundary.

� Dirichlet boundary conditions: M is a compact connected manifold with boundary ∂M.
f ∈ C∞(M) follows Dirichlet boundary conditions if

∀p ∈ ∂M, f(p) = 0 .
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� Neumann boundary conditions: M is a compact connected manifold with boundary ∂M.
f ∈ C∞(M) follows Neumann boundary conditions if

∀p ∈ ∂M, gp(np,∇Mf(p)) = 0 ,

where np denotes the unit normal vector at a point p ∈ ∂M.

In either one of these cases, the following corollary of Green’s theorem is valid.

Corollary 6.5.2. Let (M, g) be a compact connected Riemannian manifold and let f1, f2 ∈
C∞(M). If either ∂M = ∅ or ∂M 6= ∅ and f1, f2 follow Dirichlet or Neumann boundary
conditions then,

〈f1,−∆Mf2〉L2(M) = 〈∇Mf1,∇Mf2〉L2(M) = 〈−∆Mf1, f2〉L2(M) ,

where the notation 〈∇Mf1,∇Mf2〉L2(M) symbolizes the integral overM given by

〈∇Mf1,∇Mf2〉L2(M) =
∫
M
g (∇Mf1,∇Mf2) dVg .

Proof. This is a direct consequence of the fact that, within the requirement of this corollary,
the integral over ∂M that appears in Theorem 6.5.1 is zero.

Remark 6.5.1. Note that if ∇Mf2(p) and ∇Mf2(p) have support in a coordinate chart
(U, x) then

〈∇Mf1,∇Mf2〉L2(M) =
∫
U

∇xfT1 Gx∇xf2dVg =
∫
U


∂f1
∂x1
...
∂f1
∂xd


T

(Gx)−1


∂f2
∂x1
...
∂f2
∂xd

 dVg .

Consequently, whenever (M, g) be a compact connected Riemannian manifold, −∆M de-
fines a formally self-adjoint operator on functions of C∞(M) that satisfy appropriate boundary
conditions. Moreover, it is a positive semi-definite operator as ∀f ∈ C∞(M) with boundary
conditions when needed,

〈f,−∆Mf〉L2(M) = 〈∇Mf,∇Mf〉L2(M) ≥ 0 .

This result can be leveraged to prove the so-called spectral theorem that is introduced in the
next subsection.

6.5.2 Spectral theorem
The spectral theorem is a fundamental result of differential geometry. It relies on the notion of
eigenvalue problem that is now introduced.

Let (M, g) be a compact connected Riemannian manifold with (possibly empty) boundary
∂M . An eigenvalue problem answers the following question: find all pairs (λ, φ) where λ ∈ R
and φ ∈ C∞(M), φ 6= 0, such that

−∆Mφ = λφ , (6.14)

For such a pair (λ, φ) , λ is a called eigenvalue and φ is called eigenfunction associated to the
eigenvalue λ. In particular, for a given eigenvalue λ, the set of all eigenfunctions associated to
λ forms a vector space Eλ, called eigenspace of λ, and whose dimension is called multiplicity of
λ. The set of all eigenvalues corresponding to an eigenvalue problem is called spectrum of −∆M
(for this problem).

Different eigenvalue problems corresponds to different requirements on the value of the eigen-
functions on the boundary ∂M:
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� The closed eigenvalue problem consists in finding pairs (λ, φ) that are solutions of Equa-
tion (6.14) in the case where ∂M = ∅.

� The Dirichlet eigenvalue problem consists in finding pairs (λ, φ) that are solutions of Equa-
tion (6.14) and such that φ follows Dirichlet boundary conditions (in the case where
∂M 6= ∅).

� The Neumann eigenvalue problem consists in finding pairs (λ, φ) that are solutions of
Equation (6.14) and such that φ follows Neumann boundary conditions (in the case where
∂M 6= ∅).

The next theorem provides a result on solutions of these eigenvalue problems.

Theorem 6.5.3 (Spectral theorem). Let (M, g) be a compact connected Riemannian mani-
fold with (possibly empty) boundary ∂M. The following assertions are true for the closed, the
Dirichlet and the Neumann eigenvalue problems.

� The spectrum of −∆M is an infinite (countable) sequence of real values

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ . . . ,

where each eigenvalue is repeated in the sequence {λk}k∈N as many times as its multiplicity.
Besides, limk→∞ λk = +∞.

� Each eigenvalue has finite multiplicity and the eigenspaces corresponding to distinct eigenspaces
are L2(M)-orthogonal. Hence, for any eigenvalues λk, λj:

λk 6= λj ⇒ ∀fi ∈ Eλi , fj ∈ Eλj , 〈fi, fj〉L2(M) = 0 .

� Each eigenfunction is C∞-smooth and analytic, and the direct sum of all eigenspaces is
dense in L2(M) for the norm ‖.‖L2(M). Hence, there exists a L2(M)-orthonormal basis
{ek}k∈N of L2(M) such that ∀k ∈ N, ek ∈ C∞(M) is an eigenfunction associated to the
eigenvalue λk:

−∆Mek = λkek , ‖ek‖L2(M) = 1 and k 6= j ⇒ 〈ek, ej〉L2(M) = 0 .

In particular,

∀f ∈ L2(M),

∥∥∥∥∥f −∑
k∈N
〈ej , f〉L2(M)ej

∥∥∥∥∥
L2(M)

= 0 .

Proof. See (Lablée, 2015, Proposition 4.3.1 & Section 4.4) or (Jost, 2008, Theorem 3.2.1).

This theorem provides a decomposition of any function f ∈ L2(M) onto an orthonormal
basis {ek}k∈N of eigenfunctions of the negative Laplacian, as

f =
∑
k∈N
〈ej , f〉L2(M)ej ,

where the equality is understand in the L2-sense.
The next result gives an estimate of the growth rate of the eigenvalues of the Laplacian of a

compact Riemannian manifold.

Theorem 6.5.4 (Weyl asymptotic formula). Let (M, g) be a compact connected Riemannian
d-manifold with (possibly empty) boundary ∂M and let {λk}k∈N denote the eigenvalues of −∆M
as described in Theorem 6.5.3.

Then,

λk ∼
k→∞

(
(2π)d

βdVg(M)

)2/d

k2/d , (6.15)

where βd = πd/2/Γ(d/2 + 1) is the volume of the (usual) unit ball of Rd and Vg(M) =
∫
M dVg.
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Proof. See Section 7.6 of (Lablée, 2015).

In the next subsection, the domain of definition of the Laplace–Beltrami operator is extended
to a wider class of functions than just C∞(M). This extension relies on the notion of distribution
onM that will be introduced.

6.5.3 Sobolev spaces and distributions on a Riemannian manifold
In this section, the notion of distribution on a Riemannian manifold is introduced in order to
safely define the Laplacian of a non-smooth function of the manifold. This step is important as
many of the functions whose Laplacian will be considered in the remainder of this work will not
be smooth but merely piecewise differentiable (cf. Chapter 8).

Throughout this section, (M, g) denotes a compact connected Riemannian manifold with
(possibly empty) boundary ∂M. Let C∞0 (M) ⊂ C∞(M) be the set of smooth functions of M
with compact support in Int(M) =M\∂M.

Distributions on a Riemannian space

The notion of distribution onM is now introduced. Let D(M) denote either C∞(M) or C∞0 (M).
A distribution T with test function space D(M) is a linear map from D(M) to R which is
also continuous i.e. for any sequence {uk}k∈N of functions of D(M) converging to a function
u ∈ D(M), the sequence {T (uk)}k∈N converges to T (u).

In particular, given thatM is compact and that therefore D(M) ⊂ L2(M), we can associate
to any f ∈ L2(M) the distribution Tf with test function space D(M) defined by

Tf : u ∈ D(M) 7→ Tf (u) = 〈f, u〉L2(M) (6.16)

Note in particular that Equation (6.16) is actually defined for u ∈ L2(M) and that therefore Tf
can also be considered as a linear continuous map Tf : L2(M)→ R.

More generally, the fact that D(M) is dense in L2(M) (Bérard, 2006, Chapter III, Point
(13)) allows to extend the domain of definition of some distributions.

Lemma 6.5.5. Let f ∈ L2(M) and denote Tf the distribution with test function space D(M)
defined by Equation (6.16). Let T be any other distribution with test function space D(M).

If T and Tf agree on D(M) then T admits a continuous linear extension on L2(M) defined
by

∀φ ∈ L2(M), T (φ) := Tf (φ) = 〈f, φ〉L2(M) .

Proof. Let φ ∈ L2(M) and {φk}k∈N be a sequence of functions of D(M) converging to φ.
Define T (φ) := lim

k→∞
T (φk). Then,

lim
k→∞

T (φk) = lim
k→∞

Tf (φk) = lim
k→∞

〈f, φk〉L2(M) = 〈f, φ〉L2(M) := Tf (φ) ∈ R

Note in particular that Lemma 6.5.5 allows to actually identify arbitrary distributions with
(the distributions associated with) functions of L2(M), as long as they coincide on the test
function space.

Corollary 6.5.6. Let f1, f2 ∈ L2(M) and denote Tf1 , Tf2 the associated distributions defined
by Equation (6.16).

If Tf1 and Tf2 agree on D(M) then f1 = f2 in the L2-sense.

Corollary 6.5.6 allows to identify distributions and functions of L2(M) and will be leveraged
to extend the domain of definition of the Laplace operator.
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Sobolev spaces on a Riemannian space

We now introduced three subsets L2(M) onto which the definition of the Laplacian operator
can be extended. These sets of functions are referred to as Sobolev spaces ofM.

First, denote ‖.‖H1(M) the norm associated with the inner product 〈., .〉H1(M) on C∞(M)
defined by:

∀ϕ1, ϕ2 ∈ C∞(M), 〈ϕ1, ϕ2〉H1(M) = 〈ϕ1, ϕ2〉L2(M) + 〈∇Mϕ1,∇Mϕ2〉L2(M) .

The first Sobolev space we will be working with is H1(M).

Definition 6.5.1. H1(M) is defined as the closure of C∞(M) in L2(M) for the norm ‖.‖H1(M).

H1(M) is therefore the smallest closed subset of L2(M) containing C∞(M), and can be seen
as the set containing C∞(M) and the functions of L2(M) that are limit (with respect to the
norm ‖.‖H1(M)) of a sequence of elements of C∞(M). The elements of H1(M) are functions of
L2(M) whose first derivatives (in the sense of distributions) can be identified to elements L2(M)
(as in Lemma 6.5.5). In particular,

∀ϕ1, ϕ2 ∈ H1(M), 〈∇Mϕ1,∇Mϕ2〉L2(M) <∞ .

The second Sobolev space we will be working with is H1
0 (M).

Definition 6.5.2. H1
0 (M) is defined as the closure of C∞0 (M) in L2(M) for the norm ‖.‖H1(M).

The elements of H1
0 (M) correspond to the elements of H1(M) that follow Dirichlet boundary

conditions in the weak sense, i.e.

∀ϕ ∈ H1
0 (M),∀u ∈ C 0(M),

∫
∂M

u(s) · ϕ(s)ds = 0 .

Remark 6.5.2. Note that by definition, C∞(M) (resp. C∞0 (M)) is dense in H1(M) (resp.
H1

0 (M)) for the norm ‖.‖H1(M).

Extensions of the Laplacian operator

The definition of the Laplacian operator is extended to functions in Sobolev spaces ofM, at least
in the distribution sense, in a way that it coincides with the actual definition of the Laplacian
when the functions are regular enough. Three extensions of the Laplacian operators correspond-
ing to the three boundary conditions described earlier are now presented.

Closed Laplacian Let us assume thatM is a manifold without boundary, i.e. ∂M = ∅. For
ϕ ∈ H1(M) denote TCϕ the linear application defined by

TCϕ : H1(M) → R

u 7→ TCϕ (u) = 〈∇Mϕ,∇Mu〉L2(M)
(6.17)

Noting that C∞(M) ⊂ H1(M), TCϕ actually defines a distribution onM with test function space
C∞(M). In particular, if we assume that ϕ ∈ H1(M) is such that −∆Mϕ can be computed
from its current definition (cf. Section 6.5.1) and satisfies −∆Mϕ ∈ L2(M), we have from
Green’s theorem that

∀u ∈ C∞(M), TCϕ (u) = 〈−∆Mϕ, u〉L2(M) . (6.18)

thus giving that TCϕ coincides with −∆Mϕ in the sense of distributions. Note also that, using
the density of C∞(M) in L2(M), Equation (6.18) actually holds ∀u ∈ H1(M) ⊂ L2(M). Hence
TCϕ can be identified with the linear map u 7→ 〈−∆Mϕ, u〉L2(M) defined from the Laplacian of
ϕ.
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In the more general case where we only assume that ϕ ∈ H1(M), the Laplacian of ϕ is
directly defined as the linear map TCϕ given in Equation (6.17), and is then denoted −∆Mϕ so
that we can write

∀ϕ1, ϕ2 ∈ H1(M), 〈−∆Mϕ1, ϕ2〉L2(M) := TCϕ1
(ϕ2) .

Consequently we have ∀ϕ1, ϕ2 ∈ H1(M):

〈−∆Mϕ1, ϕ2〉L2(M) = 〈∇Mϕ1,∇Mϕ2〉L2(M) = 〈−∆Mϕ2, ϕ1〉L2(M) (6.19)

Dirichlet Laplacian Let us assume that M is a manifold with non-empty boundary ∂M.
For ϕ ∈ H1

0 (M) denote TDϕ the linear application defined by

TDϕ : H1
0 (M) → R

u 7→ TDϕ (u) = 〈∇Mϕ,∇Mu〉L2(M)
(6.20)

Note that the only difference between Equation (6.17) and Equation (6.20) is the domain of
definition of the map. The same reasoning as the one used in the closed case can therefore be
applied. It shows that TDϕ once again defines a distribution onM, but with test function space
C∞0 (M).

Hence, when ϕ ∈ H1
0 (M), the Laplacian of ϕ is directly defined as the linear map TDϕ

given in Equation (6.20), and is then denoted −∆Mϕ. In particular Equation (6.19) holds now
∀ϕ1, ϕ2 ∈ H1

0 (M).

Neumann Laplacian Let us assume that M is a manifold with non-empty boundary ∂M.
Let ϕ ∈ H1(M) such that ϕ follows Neumann boundary conditions in the L2-sense, meaning
that

∀u ∈ C 0(∂M),
∫
∂M

u(s) · gs(ns,∇Mϕ(s))ds = 0 (6.21)

Denote then TNϕ the linear application defined by

TNϕ : H1(M) → R

u 7→ TNϕ (u) = 〈∇Mϕ,∇Mu〉L2(M)
(6.22)

Note that this is actually the same definition as Equation (6.17): only the domain from which
the function ϕ was chosen changed. The same reasoning as in the “closed” case can then be
used to define the Laplacian of ϕ from the map TNϕ .

Namely, when ϕ ∈ H1(M) follows Neumann boundary conditions, the Laplacian of ϕ is
directly defined as the linear map TNϕ given in Equation (6.22), and is then denoted −∆Mϕ.

6.6 Riemannian geometry and local deformations
To conclude this chapter on Riemannian geometry, we reintroduce the main defining properties
of Riemannian manifolds using a “practical” and rather intuitive perspective. Indeed, as we
may now see, Riemannian manifolds are a mathematical object particularly suited to model
spatial domains undergoing local deformations. This parallel will be leveraged later in this work
to interpret (generalized) random fields defined on Riemannian manifolds as locally deformed
(generalized) random fields (cf. Chapter 7).

6.6.1 Link to Continuum mechanics
In this subsection, a parallel is drawn between the study of finite deformations in continuum me-
chanics and Riemannian manifolds, which provides an interpretation of the notion of Riemannian
metric as being linked to local deformations (Fiala, 2008; Simo and Marsden, 1984).

Let BR denote a body that occupies a portion of a spatial domain. Formally, BR can be seen
as a continuous and connected subset of Rd. Let us assume that the body BR is deformed from
its initial (reference) configuration BR into a deformed one BD ⊂ Rd. This process, which is
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assumed to be reversible, is called a finite deformation and can be modeled as a diffeomorphism
Φ : BR → Φ(BR) = BD that maps any point p ∈ BR in the reference configuration to its
position q = Φ(p) ∈ BD in the deformed configuration.

Let p ∈ BR and let q ∈ BD be its position in the deformed configuration. Let dp be an
infinitesimal displacement from p to a point (p+ dp) ∈ BR (infinitely close to p in BR). Then
the displacement dq between both points in the deformed body BD can be written as

dq = Φ(p+ dp)− Φ(p) .

Using a Taylor development of first order around p, this last equation gives

dq = Φ(p) + JΦ(p)dp+ o(‖dp‖)− Φ(p) = JΦ(p)dp+ o(‖dp‖) ,

where Jφ(p) denotes the Jacobian matrix of Φ at point p ∈ BR. Hence, if the terms of higher
order are neglected (due to the infinitesimal nature of dp), then the displacements in the reference
and in the deformed configurations are linked by

dq = F (p)dp ,

where F is a tensor field, called deformation gradient tensor field, that associates to any point
p in the reference configuration a tensor F (p) defined by

F (p) : dp 7→ F (p)dp = JΦ(p)dp .

In particular, to characterize length changes and angle changes around a point p ∈ BR after
the deformation process, it is useful to see how inner products between displacement vectors
vary. Let then dp1, dp2 be two displacement vectors from p and let dq1 and dq2 be their images
in the deformed configuration. We have

〈dq1, dq2〉 = 〈F (p)dp1,F (p)dp2〉 = dpT1C(p)dp2 ,

where C is a tensor field, called (right) Cauchy-Green deformation tensor, that associates to any
point p in the reference configuration a tensor C(p) defined by

C(p) : (dp1, dp2) 7−→ dpT1C(p)dp2 = dpT1 F (p)TF (p)dp2 .

The Cauchy-Green deformation tensor informs on how lengths and angles of small vectors
around a point p in the reference configuration are modified after the deformation process, and
therefore how the geometry around that point is modified. Indeed, for any vectors dp, dp1, dp2
around any point p in the reference configuration, the length dp and the angle θ between dp1
and dp2 are modified according to:

‖dp‖ becomes ‖dq‖ =
√
dpTC(p)dp ,

cos θ = dpT1 dp2
‖dp1‖‖dp2‖ becomes cos θ′ = (dp′1)T dp′2

‖dp′1‖‖dp′2‖
= dpT1 C(p)dp2√

dpT1 C(p)dp1
√
dpT2 C(p)dp2

.

Circling back to the subject of this section, Riemannian manifolds actually provide a natural
mathematical framework for the study of deformations. Indeed, consider now that BR and BD
are submanifolds of Rd, and that BD is equipped with the Euclidean metric, denoted gEuc. The
deformation diffeomorphism Φ therefore defines a smooth map between two smooth manifolds,
BR and BD. Hence, the pullback metric of gEuc by Φ defines a Riemannian metric on BR by:

∀p ∈M,∀up, vp ∈ TpBR, Φ∗gEuc(up, vp) = gEuc(dΦp(up), dΦp(vp)) ,

where dΦp denotes the differential of the map Φ : BR → BD at the point p ∈ B. Using the
definition of the Euclidean metric, this last equation becomes

Φ∗gEuc(up, vp) =
d∑
k=1

[JΦ(p)up]k[JΦ(p)vp]k = 〈JΦ(p)up, JΦ(p)vp〉 = uTpJΦ(p)TJΦ(p)vp .

Identifying (through the exponential map) the roles of the (representative) vectors up,vp
defined on the tangent space of BR seen as a manifold with the displacement vectors along the
body dp1, dp2 of the continuum mechanics approach, we retrieve the expression of the Cauchy-
Green deformation tensor. Hence the deformation tensor Φ simply corresponds to the pullback
metric of the Euclidean metric by the deformation diffeomorphism Φ, and therefore defines its
own Riemannian metric on the undeformed body BR. The geometry induced by a Riemannian
metric g = Φ∗gEuc on a manifold BR can be interpreted as the geometry that would exist on
the body BR after it has been deformed through Φ.
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6.6.2 Laplacian as a change of coordinates
In this subsection, the Laplace–Beltrami operator, which plays a central role in the spectral
analysis of Riemannian manifolds is reintroduced using the same formalism as the one used in
the previous subsection. We show that the Laplace–Beltrami operator defined in BR can be
identified to a classical Laplacian operator defined on BD through the change of coordinates
induced by the deformation transformation Φ. We assume that the functions considered in this
subsection follow Dirichlet boundary conditions, i.e. they are zero on the boundary of BR (or
BD)

Once again BD is purely seen as a domain of Rd (or equivalently as a d-submanifold of Rd
endowed with the Euclidean metric). Hence the definition of the gradient and the Laplacian of
functions of BD corresponds to the classical definition of such objects for functions of Rd, i.e.
using partial derivatives with respect to Cartesian coordinates. Denote then ∇Rd the gradient
operator and −∆Rd the negative Laplacian operator as defined on Rd.

The Laplacian of a (sufficiently smooth) function f : BD → R can also be defined as a distri-
bution with test function space C∞0 (BD) (i.e. the set of smooth functions of BD that are zero on
the boundary ∂BD). It then maps any u ∈ C∞0 (BD) to the scalar value 〈−∆Rdf, u〉L2(Rd) ∈ R
defined by

〈−∆Rdf, u〉L2(Rd) := 〈∇Rdf,∇Rdu〉L2(Rd) :=
d∑
k=1
〈 ∂f
∂qk

,
∂u

∂qk
〉L2(Rd), u ∈ C∞0 (BD) , (6.23)

where 〈., .〉L2(Rd) denotes the inner-product associated with square-integrable functions of Rd
(i.e. the Lebesgue integral of their product). In particular, if f ∈ C 2(BD), −∆Rdf ∈ C 0(BD)
and we have

〈−∆Rdf, u〉L2(Rd) =
∫
BD

(−∆Rdf)(q)u(q)dq, u ∈ C∞0 (BD) . (6.24)

Let u ∈ C∞0 (BD) and let f ∈ C 2(BD). We denote f̃ = f ◦ Φ : BR → R the function of BR
canonically associated with f through Φ. We therefore have f = f̃ ◦Φ−1 and the chain rule (cf.
Theorem A.1.1) gives an expression of the partial derivative of f with respect to those of f̃ :

∀k ∈ [[1, d]], ∂f

∂qk
(q) =

d∑
l=1

∂f̃

∂pl
(Φ−1(q))∂[Φ−1]l

∂qk
(q) .

Injecting this last equation in Equation (6.23) then gives

〈−∆Rdf, u〉L2(Rd) =
d∑
k=1

∫
BD

d∑
l=1

d∑
l′=1

∂f̃

∂pl
(Φ−1(q))∂[Φ−1]l

∂qk
(q) ∂ũ

∂pl′
(Φ−1(q))∂[Φ−1]l′

∂qk
(q)dq

=
∫
BD

d∑
l=1

d∑
l′=1

∂f̃

∂pl
(Φ−1(q)) ∂ũ

∂pl′
(Φ−1(q))

d∑
k=1

∂[Φ−1]l
∂qk

(q)∂[Φ−1]l′
∂qk

(q)dq

=
d∑

l′=1

∫
BD

∂ũ

∂pl′
(Φ−1(q))

d∑
l=1

∂f̃

∂pl
(Φ−1(q))[JΦ−1(q)JΦ−1(q)T ]ll′dq ,

where of course, ũ = u ◦ Φ and JΦ−1(q) denotes the Jacobian matrix of Φ−1 : BD → BR at the
point q ∈ BD. Operating a change of variables q = Φ(p) in the last equation then gives (cf.
Theorem A.1.2)

〈−∆Rdf, u〉L2(Rd) =
d∑

l′=1

∫
BR

∂ũ

∂pl′
(p)

d∑
l=1

∂f̃

∂pl
(p)[JΦ−1(Φ(p))JΦ−1(Φ(p))T ]ll′ |det JΦ(p)|dp ,

where JΦ(p) denotes the (usual) Jacobian matrix of Φ : BR → BD.
Note in particular that the chain rule also yields that ∀p ∈ BR, JΦ(p)−1 = JΦ−1(Φ(p)).

Hence, for any p ∈ BR, by denoting G(p) the matrix defined by

G(p) = JΦ(p)TJΦ(p), p ∈ BR , (6.25)
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we get

〈−∆Rdf, u〉L2(Rd) =
d∑

l′=1

∫
BR

∂ũ

∂pl′
(p)

d∑
l=1

∂f̃

∂pl
(p)[G(p)−1]ll′

√
detG(p)dp .

Finally, given that u ∈ C∞0 (BD), we have ũ ∈ C∞0 (BR) and so, the integration by parts formula
gives

〈−∆Rdf, u〉L2(Rd) = −
d∑

l′=1

∫
BR

ũ(p) ∂

∂pl′

(
√

detG
d∑
l=1

[G−1]ll′
∂f̃

∂pl

)
(p)dp

= −
∫
BR

ũ(p)divRd
(
√

detG
d∑
l=1

[G−1]ll′
∂f̃

∂pl

)
(p)dp ,

by definition of the divergence operator divRd acting on functions Rd.
On the other hand, a direct change of coordinates q = Φ(p) in Equation (6.24) gives

〈−∆Rdf, u〉L2(Rd) =
∫
BD

−∆Rdf(q)u(q)dq =
∫
BR

−∆Rdf(Φ(p))u(Φ(p))|det JΦ(p)|dp

= −
∫
BR

∆̃Rdf(p)
√

detG(p)ũ(p)dp ,

where ∆̃Rdf = (∆Rdf)◦Φ denotes the function of BR canonically associated with ∆Rdf through
Φ.

Identifying these two expressions of 〈−∆Rdf, u〉L2(Rd), which are true ∀u ∈ C∞0 (BD), then
gives

∆̃Rdf = (∆Rdf) ◦ Φ = 1√
detG

divRd
(
√

detG
d∑
l=1

[G−1]ll′
∂f ◦ Φ
∂pl

)
, f ∈ C 2(BD) . (6.26)

We recognize in the right member of the equation the expression (in local coordinates) of the
Laplace–Beltrami operator applied to the function f̃ = f ◦ Φ : BR → R, where BR is now seen
as a Riemannian d-manifold endowed with a metric g defined from the field of positive-definite
matrices {G(p)}p∈BR given by Equation (6.25). We therefore retrieve the same construction
of a Riemannian manifold from a body B through deformation transformation Φ, as the one
presented in Section 6.6.1.

Hence, applying the Laplace–Beltrami operator to a (sufficiently smooth) function f̃ of the
Riemannian manifold (BR, g) is equivalent to applying the classical Laplacian operator of Rd
on the function f̃ ◦ Φ−1 defined on the deformed body BD = Φ(BR). The Laplace–Beltrami
operator on (BR, g) can therefore be seen as a classical Laplacian operator on the deformed
configuration BD, seen through the change of coordinates induced by Φ.

Conclusion
In this chapter, we introduced basic notions of differential and Riemannian geometry. The focus
was set on (compact) Riemannian manifolds, which can be seen as locally Euclidean spaces for
which the geometry around each point is defined by a spatially varying inner product called
Riemannian metric. In particular, integration and differential calculus were reintroduced in
these spaces.

We provided a more “physical” interpretation of Riemannian manifolds, which actually re-
lates them the spatial deformation models used in Geostatistics to model non-stationary data
(Sampson and Guttorp, 1992). The Riemannian metric was then simply interpreted as an ap-
plication allowing to compute lengths and angles as if the spatial domain on which it is defined
was deformed.

The Laplace–Beltrami operator, which corresponds to the generalization of the Laplace op-
erator to Riemannian manifolds, was introduced. As we may see in the subsequent chapters, this
operator plays a key role when working with “functions” defined on the manifold. We indeed
stated the spectral theorem, which ensures that its eigenfunctions act like a decomposition basis
for any square-integrable function defined on the Riemannian manifold.
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The next chapter will build on this result to build a class of (generalized) random fields that
can be seen as the counterparts, on a Riemannian manifold, of isotropic stationary Gaussian
random fields of Rd. As we may see, working with these fields will answer the modeling problem
posed in this thesis.
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Résumé
Dans ce chapitre, nous présentons un cadre mathématique permettant de définir et de tra-

vailler avec des champs gaussiens définis sur des domaines complexes ou caractérisés par des
anisotropies locales. L’idée est d’étendre aux variétés riemanniennes la notion de champ gaussien
isotrope et stationnaire telle que définie sur des domaines euclidiens. Travailler sur des variétés
riemanniennes permet à la fois de modéliser des champs définis sur des domaines seulement lo-
calement euclidiens, mais aussi de modéliser des anisotropies locales en définissant une métrique
appropriée.

Nous commençons par introduire une classe de champs aléatoires généralisés définie à partir
des fonctions propres et des valeurs propres de l’opérateur de Laplace–Beltrami de la variété
riemannienne. Nous en étudions ensuite les propriétés statistiques, et plus particulièrement leur
covariance afin de montrer en quoi cette classe de champ répond à notre problématique initiale.
Enfin, nous proposons une discrétisation de Ritz–Galerkin de ces champs, qui sera destinée aux
application numériques.

Introduction
In this chapter we circle back to our initial modeling problem, that is defining a framework
that allows to easily work with Gaussian random fields defined on complex spatial domains or
characterized by local anisotropies. As it turns out, this problem is answered by transposing
the notion of isotropic stationary Gaussian random fields (as defined in Rd) to Riemannian
manifolds. Indeed, as we saw in the previous chapter, these objects can naturally represent
complex domains and local deformations of space.

We will propose a passage from the definition of random fields on Rd to Riemannian man-
ifolds using their characterization by a pseudo-differential operator (Lang and Potthoff, 2011).
This allows to redefine the notion of stationarity without involving a covariance function, and
therefore in a way that is independent of the actual geometry of the manifold. Doing otherwise
would indeed have forced us to find a counterpart to the notions of “invariance by translation and
rotation” that characterize the covariance of isotropic random fields in Rd, and which are obvi-
ously geometry-dependent. We therefore end up with a framework that can easily be transposed
to a wide range of domains.

However, the fact that we are working with pseudo-differential operators forces us to gener-
alize the notion of random field to more than just a stochastic process indexed by the spatial
domain. This is why the notion of generalized random field is introduced. It allows us to justify
the fact that we work with both pseudo-differential operators, and processes/fields that may not
be smooth.

The approach we present is similar to the approach used by Lindgren et al. (2011) to generalize
the definition of a class of stochastic partial differential equations to manifolds in order to define
Matérn field on them. Bolin et al. (2018) also used this approach to derive results on the
numerical approximation of solutions of SPDEs defined by a fractional power of an elliptic
differential operator on a bounded domain of Rd.

We extend both approaches to the case where the domain of study is a compact Riemannian
manifold. In particular, the generalized random fields that will be considered are defined by
leveraging the spectral theorem on compact Riemannian manifolds (cf. Theorem 6.5.3). As we
may see, this approach has several advantages:

� the proposed construction of generalized random fields holds for any compact connected
Riemannian manifold,

� the covariance properties of the resulting (generalized) random fields can easily be linked
to the covariance properties of usual random fields defined on Rd, and in particular those
that display local anisotropies,

� the resulting generalized random fields can be discretized using a very general approach
and doing so, can be numerically computed.

In a first section, we introduce the class of generalized random fields which will be used in
this work, and the surrounding framework. Our main contributions are presented in the two
subsequent sections.
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On one hand, we leverage the notion of metric to show how they can relate to the definition
of local anisotropies on the resulting random fields. This is done by looking into the covariance
properties of these generalized random fields.

On the other hand, a method of discretization of these generalized random fields, based
on the Ritz–Galerkin approximation approach, is presented: the generalized random fields are
approximated by a weighted sum of linearly independent (deterministic) functions defined on
the manifold and a theorem describing the statistical properties of the weights is stated (and
proven). As we may see, this discretization is linked to the notion of stochastic graph signal, and
will be leveraged in the subsequent chapters to numerically work with the generalized random
fields defined here.

Note however that the work presented in this chapter only concerns zero-mean Gaussian
fields.

Assumption 7.1. All (generalized) Gaussian fields in this work are assumed to be zero-mean.

7.1 Generalized random fields: mathematical framework
In this section, the mathematical framework leading to the definition of a particular class of
generalized random fields on a compact Riemannian manifold is presented.

7.1.1 Functions of the Laplacian
The aim of this subsection is to introduce a class of operators acting on L2(M), called functions
of the Laplacian, and derived from the spectral theorem (cf. Theorem 6.5.3). These operators
are classically used to express solutions of some differential equations and to prove the Weyl
asymptotic formula that was introduced in Theorem 6.5.4 (Bouclet, 2012). We will be using
these operators to define the class of generalized random fields with which we will be working.

Consider then γ : R+ 7→ R such that γ is bounded. We introduce γ(−∆M) the (linear)
operator on L2(M) whose action is defined by:

∀f ∈ L2(M), γ(−∆M)f =
∑
k∈N

γ(λk)〈ek, f〉L2(M)ek . (7.1)

γ(−∆M) is called function of the Laplacian. The next proposition details the action of this
operator.

Proposition 7.1.1. The operator γ(−∆M) defined in Equation (7.1) satisfies

γ(−∆M) : L2(M)→ L2(M) .

Besides, its definition does not depend on the orthonormal basis of eigenfunctions of −∆M used
in Equation (7.1).

Proof. γ is bounded, and therefore, so is γ2. Hence, there exists M ∈ R such that ∀λ ∈ R+,
γ(λ)2 < M . Take then f ∈ L2(M), and let {f̃p}p∈N be the sequence defined by

f̃p =
p∑
k=0

γ(λk)〈ek, f〉L2(M)ek, p ∈ N .

Note in particular that ∀p, q ∈ N such that q > p we have

‖f̃q − f̃p‖2L2(M) =
q∑

k=p+1
γ(λk)2〈ek, f〉2L2(M) ≤M

q∑
k=p+1

〈ek, f〉2L2(M) −→
p,q→+∞

0 ,

given that
∑
k∈N〈ek, f〉2L2(M) = ‖f‖2L2(M) < ∞. Hence {f̃p}p∈N is a Cauchy sequence of

L2(M). It is therefore convergent in L2(M) given that L2(M) is complete.
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Finally, simply notice that by definition,

γ(−∆M)f := lim
p→+∞

f̃p .

to conclude the proof.

γ(−∆M) defines a linear (and continuous) operator from L2(M) to L2(M), which basically
scales the coordinates of an input function f by the evaluation of γ on each corresponding
eigenvalue of −∆M.

γ(−∆M) can be seen as a generalization of pseudo-differential operators of Rd on the Rie-
mannian manifold (M, g). Indeed, a pseudo-differential operator P of Rd is an operator on
real-valued functions of Rd whose action on a particular function ϕ is defined by

Pϕ = F−1 [ξ ∈ Rd 7→ p(ξ) ·F [ϕ](ξ)
]

, (7.2)

where p is a smooth function called symbol of P , whose derivatives are required to be polyno-
mially bounded.

Dealing now with a Riemannian manifold (instead of Rd), the notion of Fourier transform can
be naturally extended by noticing that the Fourier transform of Rd actually corresponds to the
decomposition of a function into the continuously indexed set of functions {x ∈ Rd 7→ eixT ξ}ξ∈Rd .
It is straightforward to check that these functions actually are eigenfunctions of the negative
Laplacian of Rd, associated with eigenvalues {‖ξ‖2}ξ∈Rd . Hence the Fourier transform in Rd can
be interpreted as a decomposition of a function into a weighted “sum” of eigenfunctions of the
Laplacian.

Extending now this observation to Riemannian manifolds, the notion of Fourier transform can
hence be identified with the decomposition of a function into the countable basis of eigenfunctions
of the Laplace-Beltrami operator. Denote then FM : L2(M) → `2(N) the map that associates
to any f ∈ L2(M) its coordinates in the basis {ek}k∈N:

∀f ∈ L2(M), FM[f ] = {〈ek, f〉L2(M)}k∈N .

This operator is invertible and its inverse F−1
M : `2(N)→ L2(M) is given by:

∀{ck}k∈N ∈ `2(N), F−1
M [{ck}k∈N] =

∑
k∈N

ckek ∈ L2(M) .

Then the definition of the operator γ(−∆M) in Equation (7.1) can be written

γ(−∆M) = F−1
M
[
{γ(λk) · 〈ek, f〉L2(M)}k∈N

]
. (7.3)

Equation (7.3) presents a form similar in all aspects to Equation (7.2). The function γ in
Equation (7.3) plays the role of the symbol function in Equation (7.2), and functions defined on
the continuous space Rd are replaced by countable sequences.

This observation justifies the parallel that is drawn between pseudo differential operators
and the functional operators studied in this section. A more in-depth comparison between them
is carried out in Appendix D.1.1, in the case where the Riemannian manifold considered is a
bounded box of Rd.

7.1.2 Generalized random fields of L2(M)
General definitions and notions

A generalized random field (GeRF) Z onM is a linear and continuous functional that associates
to any ϕ ∈ C∞(M) a random variable Z(ϕ) ∈ R (Gelfand and Shilov, 1964). A GeRF Z is
characterized by its probability distribution, which is the set of all joint distributions Fϕ1,...,ϕm

defined by
Fϕ1,...,ϕm : (a1, . . . , am) ∈ Rm 7→ P [Z(ϕ1) ≤ a1, . . . ,Z(ϕm) ≤ am]

for any m ≥ 1 and ϕ1, . . . , ϕm ∈ C∞(M).
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The mean of Z is the linear and continuous functional µZ which associates to any ϕ ∈
C∞(M), the expectation of Z(ϕ):

µZ(ϕ) := E[Z(ϕ)], ϕ ∈ C∞(M) .

In particular Z is called zero-mean if ∀ϕ ∈ C∞(M), µZ(ϕ) = 0.
If the expectation of the product Z(ϕ1)Z(ϕ2) exists for any ϕ1, ϕ2 ∈ C∞(M) and is con-

tinuous in (ϕ1, ϕ2), then the covariance functional CZ : C∞(M) × C∞(M) → R of Z is the
positive definite functional defined as

CZ(ϕ1, ϕ2) := Cov[Z(ϕ1),Z(ϕ2)] = E[Z(ϕ1)Z(ϕ2)]− E[Z(ϕ1)]E[Z(ϕ2)], ϕ1, ϕ2 ∈ C∞(M) .

Finally, the characteristic functional ΨZ of Z is the functional that associates to any ϕ ∈
C∞(M) the value of the characteristic function of Z(ϕ) at 1, namely

ΨZ : ϕ ∈ C∞(M) 7→ E[eiZ(ϕ)] .

The characteristic function of a GeRF is continuous on C∞(M) and satisfies ΨZ(0) = 1. Besides,
Minlos’ theorem ensures that the characteristic functional of a GeRF entirely characterizes its
probability distribution (Gelfand and Shilov, 1964; Lang, 2007).

Gaussian GeRF and white noise

A GeRF Z is called Gaussian GeRF, or generalized Gaussian field (GeGF), if for any m ≥ 1
and any linearly independent ϕ1, . . . , ϕm ∈ C∞(M), the random vector (Z(ϕ1), . . . ,Z(ϕm))T
is a non-singular Gaussian vector. The characteristic functional of a zero-mean GeGF Z is then
given by (cf. Theorem A.4.4):

∀ϕ ∈ C∞(M), ΨZ(ϕ) = e−
1
2CZ(ϕ,ϕ) ,

where CZ is once again the covariance functional of Z. Conversely, given a continuous, symmetric
and positive-definite bilinear form Q on C∞(M)× C∞(M), the functional defined by

ϕ ∈ C∞(M) 7→ e−
1
2Q(ϕ,ϕ) ,

is the characteristic function of a GeGF with covariance functional Q (Gelfand and Shilov, 1964).
In particular, considering as bilinear form the inner product of L2(M), yields the functional

ϕ ∈ C∞(M) 7→ e−
1
2 〈ϕ,ϕ〉L2(M) . (7.4)

Any GeRF with characteristic function given by Equation (7.4) is a GeGF called Gaussian white
noise on M. A characterization of Gaussian white noises based on the Hilbert space L2(M) is
given by the following proposition.

Proposition 7.1.2. Let {Wj}j∈N be a sequence of independent, standard Gaussian variables.
Then, the linear functional W defined over L2(M) by

W : ϕ ∈ L2(M) 7→
∑
j∈N

Wj〈ϕ, ej〉L2(M) (7.5)

is a Gaussian white noise onM. In particular, it satisfies

∀ϕ ∈ L2(M), E [W(ϕ)] = 0 (7.6)

and
∀ϕ1, ϕ2 ∈ L2(M), Cov [W(ϕ1),W(ϕ2)] = 〈ϕ1, ϕ2〉L2(M) . (7.7)



152 7. Generalized random fields on Riemannian manifolds

Proof. Note that given that C∞(M) ⊂ L2(M), W can be seen as a GeRF onM.
Let ϕ ∈ C∞(M). Following from the mutual independence of the Wj , the characteristic
function of W satisfies:

ΨW(ϕ) = E
[
e

i
∑

j∈N
Wj〈ϕ,ej〉L2(M)

]
=
∏
j∈N

E
[
eiWj〈ϕ,ej〉L2(M)

]
=
∏
j∈N

ΨN (0,1)(〈ϕ, ej〉L2(M)) ,

where ΨN (0,1) denotes the characteristic function of the standard Gaussian distribution, which
is given by ΨN (0,1)(t) = e−t

2/2, ∀t ∈ R. Hence,

ΨW(ϕ) =
∏
j∈N

e
− 1

2 〈ϕ,ej〉
2
L2(M) = e

− 1
2

∑
j∈N
〈ϕ,ej〉2L2(M) = e

− 1
2 〈ϕ,ϕ〉

2
L2(M) ,

which is the characteristic function of a Gaussian white noise. Hence W is Gaussian white
noise.
Equations (7.6) and (7.7) then follow from the fact that the Gaussian white noise is a zero-
mean generalized random process with covariance functional 〈., .〉L2(M); and by density of
C∞(M) in L2(M).

Seen as the functional defined in Proposition 7.1.2, the Gaussian white noise has several prop-
erties related to L2(M). For one, it is defined on L2(M) and not only on C∞(M). Moreover,
for any m ≥ 1, and for any ϕ1, . . . , ϕm ∈ L2(M), we have:

W(ϕ1)
...

W(ϕm)

 ∼ N
0,


〈ϕ1, ϕ1〉L2(M) . . . 〈ϕ1, ϕm〉L2(M)

...
. . .

...
〈ϕn, ϕ1〉L2(M) . . . 〈ϕm, ϕm〉L2(M)


 ,

which means that (W(ϕ1) . . .W(ϕm))T defines a zero-mean Gaussian vector. Finally, note that

∀ϕ ∈ L2(M), Var[W(ϕ)] = E
[
|W(ϕ)|2

]
= ‖ϕ‖2L2(M) <∞ .

Hence all random variables W(ϕ) have a finite variance.

L2(M)-valued GeGF

We now introduce (and denote by) L2(Ω,M) the set of L2(M)-valued random variables defined
on a probability space (Ω,F ,P) and satisfying

∀Z ∈ L2(Ω,M), E[Z] = 0L2(M) and E[‖Z‖2L2(M)] <∞ . (7.8)

In particular, this means that any Z ∈ L2(Ω,M) is almost surely in L2(M). This condition is
actually enforced by Equation (7.8). Indeed, according to Markov’s inequality (Stewart, 2009,
Section 8.1), ∀N ≥ 1, P

[
‖Z‖2L2(M) ≥ N

]
≤ E[‖Z‖2L2(M)]/N . And taking the limit as N → ∞

then gives P
[
‖Z‖2L2(M) = +∞

]
= 1 − P

[
Z ∈ L2(M)

]
= 0. Consequently, any Z ∈ L2(Ω,M)

can be represented in the basis {ej}j∈N as

Z =
∑
j∈N

Zjej , (7.9)

where Z1, Z2, . . . are real-valued random variables satisfying E[Zj ] = 0 and E[Z2
j ] < ∞ (Tone,

2011).
L2(Ω,M) is a Hilbert space when equipped with the scalar product 〈., .〉L2(Ω,M) (and asso-

ciated norm ‖.‖L2(Ω,M)) defined by:

∀Z,Z ′ ∈ L2(Ω,M), 〈Z,Z ′〉L2(Ω,M) = E
[
〈Z,Z ′〉L2(M)

]
.

Note in particular that if Z and Z ′ are represented as in Equation (7.9), we have

〈Z,Z ′〉L2(Ω,M) =
∑
j∈N

E[ZjZ ′j ] and ‖Z‖2L2(Ω,M) =
∑
j∈N

E[Z2
j ] .
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The next result introduces a class of GeGFs defined through the white noise that can be
identified with elements of L2(Ω,M).

Theorem 7.1.3. Let {Wj}j∈N be a sequence of independent standard Gaussian variables defining
a Gaussian white noise W as in Proposition 7.1.2.
For γ : R+ 7→ R such that

∑
j∈N γ(λj)2 < ∞, denote γ(−∆M)W the GeGF of M defined on

L2(M) by
(γ(−∆M)W) (ϕ) :=W

(
γ(−∆M)ϕ), ϕ ∈ L2(M

)
, (7.10)

where γ(−∆M) is the function of the Laplacian defined in Equation (7.1).
Then, γ(−∆M)W can be identified with the element Z ∈ L2(Ω,M) defined by

Z =
∑
j∈N

Wjγ(λj)ej , (7.11)

through the linear functional of L2(M) defined by: ϕ ∈ L2(M) 7→ 〈Z, ϕ〉L2(M).

Proof. Clearly, Z is an element of L2(Ω,M) given that E[Z] = 0L2(M) and

‖Z‖2L2(Ω,M) = E
[
‖Z‖2L2(M)

]
=
∑
j∈N

γ(λj)2 <∞ .

We now show that the linear functional ϕ ∈ L2(M) 7→ 〈Z, ϕ〉L2(M) is equal to γ(−∆M)W.
Indeed, ∀ϕ ∈ L2(M), we have from Proposition 7.1.2:

(γ(−∆M)W)(ϕ) =W

∑
j∈N

γ(λj)〈ej , ϕ〉L2(M)ej


=
∑
j∈N

Wjγ(λj)〈ej , ϕ〉L2(M) = 〈Z, ϕ〉L2(M) ,

which concludes the proof.

From now on, GeGFs of the form γ(−∆M)W will be directly identified with their represen-
tation Z in L2(Ω,M), and we will write them as:

Z = γ(−∆M)W =
∑
j∈N

Wjγ(λj)ej , (7.12)

where {Wj}j∈N is a sequence of independent, standard Gaussian variables. As such, they are
considered as linear applications that map L2(M) to zero-mean Gaussian variables such that

∀ϕ ∈ L2(M), Z(ϕ) =
∑
j∈N

Wjγ(λj)〈ej , ϕ〉L2(M) ,

and

∀u, v ∈ L2(M), Cov[Z(u),Z(v)] = 〈γ(−∆M)u, γ(−∆M)v〉L2(M)

=
∑
j∈N

γ(λj)2〈ej , u〉L2(M)〈ej , v〉L2(M) . (7.13)

In particular, γ will be taken to be a non-negative square-integrable function on R+, to ensure
that Equation (7.12) is well-defined. In the next section, the statistical properties of such fields,
and in particular their covariance, are investigated and related to those of usual random fields.

7.2 Covariance properties of generalized Gaussian fields
The aim of this section is to show how the covariance properties of the GeGFs defined in the
previous section by Equation (7.12) relate to the usual description of the covariance properties of
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random fields of Rd. In particular, we show they can basically be seen as random fields defined
on the manifold, whose spectral density is given by γ and with local anisotropies defined by the
Riemannian metric.

To come up with these conclusions, we first consider the case where the Riemannian manifold
(M, g) is a compact domain of Rd endowed with the Euclidean metric (cf. Example 6.2.1). This
allows to draw a direct parallel between GeGFs defined on this trivial manifold and the so-called
Karhunen–Loève expansion of random fields. In particular, we deduce a practical interpretation
of γ. Then, this same manifold is endowed with a Riemannian metric to derive the conclusion
on local anisotropies.

7.2.1 Generalized random fields and Karhunen–Loève expansion
In this subsection, we draw a parallel between the definition of GeGFs we proposed in Sec-
tion 7.1.2 and the Karhunen–Loève expansion of Gaussian random fields in the particular case
where the domain we consider is a hypercube of Rd. We first recall the definition of this expan-
sion.

Let B denote the unit hypercube of Rd and let Z be a zero-mean Gaussian random field
defined on B. Denote cZ : B ×B → R the covariance function of Z, i.e.

∀x,y ∈ B, cZ(x,y) = Cov[Z(x), Z(y)] = E[Z(x)Z(y)] .

Denote by L2(B) the set of square-integrable functions of B. We can associate to the covari-
ance function cZ an operator CZ : L2(B)→ L2(B), called covariance operator, which maps any
ϕ ∈ L2(B) to a function CZ [ϕ] ∈ L2(B) given by

CZ [ϕ](x) =
∫
B

cZ(x,y)ϕ(y)dy . (7.14)

Similarly as what was done for the Laplacian (cf. Section 6.5.2), a function φ ∈ L2(B) is
called eigenfunction of CZ with associated eigenvalue η ∈ R if it satisfies

CZ [φ] = ηφ . (7.15)

The Karhunen–Loève theorem then states the following results (Lindgren, 2012).

Theorem 7.2.1 (Karhunen–Loève theorem). Let Z be a (continuous in quadratic mean) Gaus-
sian random field with covariance operator CZ , defined on the hypercube B.

On one hand, there exists a complete (countable) orthogonal1 basis of L2(B) consisting of
eigenfunctions {φk}k∈N of CZ .

On the other hand, if {ηk}k∈N denotes the eigenvalues associated with {φk}k∈N, then ∀k ∈ N,
ηk ≥ 0 and Z can be decomposed as

Z =
∑
k∈N

Wk
√
ηkφk , (7.16)

where {Wk}k∈N is a set of zero-mean uncorrelated (Gaussian) random variables with unit vari-
ance. Equation (7.16) is called the Karhunen–Loève expansion of Z.

Remark 7.2.1. Note that Z can be identified with a zero-mean GeGF2Z with covariance
functional CZ (cf. Section 7.1.2) given by:

∀u, v ∈ C∞(B), CZ(u, v) =
∫
B

cZ(x,y)u(x)v(y)dy .

Then the eigenfunctions φk and eigenvalues ηk of the covariance operator CZ also correspond
to eigenfunctions and eigenvalues of the covariance functional CZ in the sense that

∀u ∈ C∞(B), CZ(φk, u) = ηk〈φk, u〉L2(B) .

Hence, Theorem 7.2.1 can also be stated using the covariance functional instead of the covari-
ance operator.

1For the usual inner product on L2(B).
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We now circle back to the class of GeGFs considered in this work and characterized in
Theorem 7.1.3. We show in particular that the expansion in Equation (7.11) can be identified
with the Karhunen–Loève expansion of the GeGF.

Indeed, let Z be now a GeGF defined as in Equation (7.11). Then, ∀u ∈ C∞(B), the
eigenfunctions {ek}k∈N of the negative Laplace-Beltrami operator on B satisfy

CZ(ek, u) : = Cov[Z(ek),Z(u)] = 〈γ(−∆B)ek, γ(−∆B)u〉L2(B)

=
〈∑
l∈N

γ(λl)〈el, ek〉L2(B)el,
∑
l′∈N

γ(λl′)〈el′ , u〉L2(B)el′

〉
L2(B)

= γ(λk)2 〈ek, u〉L2(B) .

Hence, the eigenfunctions {ek}k∈N of the negative Laplace-Beltrami operator are eigenfunctions
of the covariance functional of Z with associated eigenvalues {γ(λk)2}k∈N. Then, following The-
orem 7.2.1, the expansion of Z in Equation (7.11) corresponds to a Karhunen–Loève expansion.

Hence, using the formalism of Karhunen–Loève expansions, we identify the GeGF Z with
the zero-mean random function series given by

Z(x) =
∑
j∈N

Wjγ(λj)ej(x), x ∈ BD ,

where {Wj}j∈N denotes a sequence of independent standard Gaussian variables, and {λj}j∈N
(resp. {ej}j∈N) are the eigenvalues (resp. eigenfunctions) of the Laplacian on BD. Its covariance
function is then obtained as

Cov[Z(x),Z(y)] =
∑
j∈N

∑
k∈N

E[WkWj ]γ(λj)γ(λk)ej(x)ek(y)), x,y ∈ BD .

which gives
Cov[Z(x),Z(y)] =

∑
j∈N

γ(λj)2ej(x)ej(y), x,y ∈ BD . (7.17)

In their work on Gaussian process regression, Solin and Särkkä (2014), show that away
from the boundary of BD, the covariance function defined by Equation (7.17) yields a good
approximation of the isotropic covariance function defined as the inverse Fourier transform of
the function γ2, which we denote C0:

C0 = F−1[γ2] . (7.18)

Another proof is provided by (Huang et al., 2001), and relies on the identification of the
Karhunen–Loève expansion of Z with the discretized spectral representation of a Gaussian ran-
dom field with covariance function C0.

Hence we have that for points x,y ∈ BD away from the boundaries,

Cov[Z(x),Z(y)] = C0(‖x− y‖2) . (7.19)

where C0 is given by Equation (7.18).

Remark 7.2.2. The link between our definition of GeGFs and the Karhunen–Loève expan-
sion exhibited in this subsection actually provides an additional justification to the fact the
Laplacian functions can be considered as the transposition of pseudo-differential operators to
compact domains of Rd (cf. Section 7.1.1).

Indeed, following a characterization from (Lang and Potthoff, 2011), a stationary field with
covariance C0 on Rd can be identified with a generalized random field of Rd defined by

Z = LγW , (7.20)

where once again C0 and γ2 are linked through Equation (7.18), Lγ denotes the pseudo-
differential with symbol function γ and W is a Gaussian white noise on Rd. In particular,
2This identification can actually be seen as (formally) defining the GeGF Z as the map Z : u ∈ C∞(B) 7→∫

B
u(x)Z(x)dx.
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Z is therefore seen as a linear application mapping C∞c (Rd) (the set of compactly-supported
smooth functions of Rd) to zero-mean Gaussian variables such that

∀u, v ∈ C∞(Rd), Cov[Z(u), Z(v)] = 〈Lγu,Lγv〉L2(Rd) . (7.21)

Comparing Equation (7.12) with Equation (7.20) and Equation (7.13) with Equation (7.21)
then allows to conclude that the definition Laplacian functions play the exact same role as
the pseudo-differential operators do when defining stationary fields.

7.2.2 Generalized random fields on a compact domain of Rd equipped
with a metric

In this subsection, we use the formalism presented in Section 6.6. BR ⊂ Rd denotes a compact
and connected set of Rd, with (piecewise) smooth boundary, called reference configuration.
Φ : BR → BD = Φ(B) denotes a diffeomorphism that maps any point p ∈ BR to a point
q = Φ(p) ∈ BD in the set BD ⊂ Rd, which is called deformed configuration.

In particular, the body BR is seen as a compact d-submanifold BR of Rd, equipped with
a Riemannian metric g, represented by a field of positive definite matrices {G(p)}p∈BR . In
particular, BD = Φ(BR), and we assume that Φ is linked to g through Equation (6.25). Let
then ∆BR be the Laplace-Beltrami operator on (BR, g).

Following Equation (7.12), we now define a GeGF ZR on BR through

ZR =
∑
k∈N

Wkγ(λRk )eRk ,

where {Wk}k∈N is a set of independent standard Gaussian variables, and {λRk }k∈N (resp. {eRk }k∈N)
are the eigenvalues (resp. eigenfunctions) of −∆BR .

Let −∆Rd denote the classical Laplacian of Rd, defined on functions of BD. Note that,
following Equation (6.26), the eigenfunctions of −∆BR satisfy

∀k ∈ N, −∆BRe
R
k =

(
−∆Rd(eRk ◦ Φ−1)

)
◦ Φ = λRk e

R
k .

And therefore the function eDk := eRk ◦Φ−1 is an eigenfunction of −∆Rd on BD, associated with
the eigenvalue λDk := λRk . Hence,

ZD := ZR ◦ Φ−1 =
∑
k∈N

Wkγ(λRk )eRk ◦ Φ−1 =
∑
k∈N

Wkγ(λDk )eDk

defines a GeGF on BD. In particular, following from Section 7.2.1, ZD can be seen as an
isotropic stationary random field with spectral density γ2 and covariance function satisfying
Equation (7.19).

Consider now two points p ∈ BR and p+dp ∈ BR separated by an infinitesimal displacement
vector dp ∈ Rd. Following the results of Section 6.6.1 we have,

Cov[ZR(p),ZR(p+ dp)] = Cov[ZD(Φ(p)),ZD(Φ(p+ dp))]

= C(‖Φ(p+ dp)− Φ(p)‖2) = C
(√

dpG(p)dp
)

.
(7.22)

Besides, G(p) being a positive-definite and symmetric matrix, it can be diagonalized as

G(p) = R(p)TDiag(ρ1(p), . . . , ρd(p))R(p) , (7.23)

where R(p) ∈ Md(R) is an orthogonal matrix (i.e. R(p)TR(p) = R(p)R(p)T = Id) and
ρ1(p), . . . , ρd(p) > 0. For d ∈ {2, 3}, whenever detR(p) = 1, R(p) represents a rotation
transformation3. In this case, Equation (7.22) becomes

Cov[ZR(p),ZR(p+ dp)] = C(‖Diag(1/
√
ρ1(p), . . . , 1/

√
ρd(p))R(p)dp‖2) . (7.24)

3If detR(p) = −1, R(p) represents a reflection transformation (Friedberg et al., 2003).
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Hence, the covariance of ZR around p ∈ BR acts basically like an isotropic field with covariance
C defined on a neighborhood of p deformed by the rotation induced by R(p) and dilatation with
factors 1/

√
ρ1(p), . . . , 1/

√
ρd(p) 4.

Conversely, given fields of axis lengths {1/
√
ρ1(p)}p∈BR , ..., {1/

√
ρd(p)}p∈BR and of rotation

matrices {R(p)}p∈BR and defined across a domain BR, a GeGF that behaves locally as in
Equation (7.22) can be generated and characterized as a GeGF defined on the Riemannian
manifold obtained by equipping BR with a Riemannian metric defined by Equation (7.23). This
idea will be discussed in Section 7.4.2 and leveraged to model a class of non-stationary fields
defined on BR, called Gaussian random fields with local anisotropies.

Note in particular, there is no need to actually specify the transformation deformation Φ that
was associated to the metric in our formalism, as it does not intervene in the characterization
of the metric or the pseudo-differential operators defining the fields once {G(p)}p∈BR is fixed.

7.3 Discretization of generalized Gaussian fields
In the last section, we showed how the covariance of the GeGFs defined through Equation (7.12)
could be linked to the covariance function of a field whose spectral density is γ2. Besides,
endowing a manifold with a Riemannian metric proved to be a natural way to define local
anisotropies on the manifold.

We now aim at computing numerical approximations of such fields using a discretization
of the functions of the Laplacian and of the resulting GeGFs we have been working with. It
leads to their approximation by a weighted sum of user-defined deterministic functions called
basis functions and defined on the manifold. The discretization we propose, based on the Ritz–
Galerkin approximation theory, can be seen as an extension to general functions of the Laplacians
and to Riemannian manifolds of the approach proposed by Bolin et al. (2018) to derive numerical
approximation results for fractional elliptic stochastic partial differential equations.

Our main contribution is the derivation of Theorem 7.3.5 which provides a complete charac-
terization of the weights of such an approximation. The study of the convergence properties of
these approximations is delayed to the next chapter, for a particular set of basis functions.

The following notations are adopted in this section. Let H(M) denote either H1(M) if a
closed or a Neumann Laplacian is considered, or H1

0 (M) if a Dirichlet Laplacian is considered
(cf. Section 6.5.3). Take n ≥ 1 and {ψk}1≤k≤n a family of linearly independent functions of
H(M). Vn ⊂ H(M) denotes its linear span:

Vn = span {ψk : k ∈ [[1, n]]} .

In particular, Vn is a n-dimensional vector space included in H(M).

7.3.1 Ritz–Galerkin discretization of functions of the Laplacian
Let ϕ ∈ H(M). Following the Ritz–Galerkin approximation approach (Brenner and Scott, 2007;
Strang and Fix, 1973), the discretization of −∆Mϕ over a n-dimensional space Vn ⊂ H(M) is
defined as the element of Vn, which we denote −∆nϕ ∈ Vn, that agrees with −∆Mϕ over Vn.
Formally, and following the definition of −∆Mϕ provided in Section 6.5.3, −∆nφ is defined as
the element of Vn satisfying:

∀v ∈ Vn, 〈−∆nφ, v〉L2(M) = 〈∇Mφ,∇Mv〉L2(M) . (7.25)

Consider now the operator −∆n that associates to any ϕ ∈ H(M) its discretization −∆nϕ ∈
Vn as defined by Equation (7.25). −∆n is called the Ritz–Galerkin approximation of the operator
−∆M. In particular, if {fk}1≤k≤n denotes any orthonormal basis of Vn (with respect to the
scalar product 〈·, ·〉L2(M)), −∆n satisfies

−∆n : Vn → Vn

ϕ 7→ −∆nϕ =
n∑
k=1
〈∇Mfk,∇Mϕ〉L2(M) fk

. (7.26)

4This is actually equivalent to saying that around p ∈ BR, ZR acts like a stationary field with geometric
anisotropy (Chilès and Delfiner, 2012)
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Let C and R be the n-matrices respectively called mass matrix and stiffness matrix, and
defined by

C =
[
〈ψk, ψl〉L2(M)

]
1≤k,l≤n ,

R =
[
〈∇Mψk,∇Mψl〉L2(M)

]
1≤k,l≤n .

(7.27)

Lemma 7.3.1. Let C and R be the matrices defined in Equation (7.27).
Then, C is a symmetric positive definite matrix and R is a symmetric positive semi-definite
matrix.

Proof. On one hand, note that C is symmetric since the functions {ψk}k are real-valued. Also,
∀x ∈ Rn,

xTCx =
n∑
k=1

n∑
l=1

xk〈ψk, ψl〉L2(M)xl = ‖
n∑
k=1

xkψk‖2L2(M) ≥ 0 .

Given that the functions {ψk}k are linearly independent, this quantity is zero only if x = 0.
Hence, C is positive definite.
On the other hand, R is symmetric by definition of its entries (cf. Corollary 6.5.2). And,
∀x ∈ Rn,

xTRx = 〈
n∑
k=1

xk∇Mψk,
n∑
l=1

xl∇Mψl〉L2(M) = ‖
n∑
k=1

xk∇Mψk‖2L2(M) ≥ 0

Hence G is positive semi-definite.

Remark 7.3.1. Following the proof of Lemma 7.3.1, note that R is positive definite (and
therefore invertible) whenever ∀ϕ ∈ Vn, ∇Mϕ = 0L2(M) ⇒ ϕ = 0L2(M) .

We denote by C1/2 the principal square-root5 of the mass matrix C. In particular, C1/2 is
invertible and we denote by C−1/2 its inverse. The following result provides a link between the
matrices C and R and the endomorphism −∆n of Vn.
Theorem 7.3.2. Let {ψk}1≤k≤n be a family of linearly independent functions of H(M), sat-
isfying Dirichlet or Neumann boundary conditions whenever ∂M 6= ∅. Let Vn denote its linear
span.

Then the endomorphism −∆n defined by Equation (7.26) is diagonalizable and its eigenvalues
are those of the matrix S defined by

S = C−1/2RC−1/2 , (7.28)

where the matrices C and R are defined in Equation (7.27) and C−1/2 is the inverse of the
principal square-root of C.
In particular, the application E : Rn → Vn, defined by

E : v ∈ Rn 7→
n∑
k=1

[C−1/2v]kψk , (7.29)

is an isometric isomorphism that maps the eigenvectors of S to the eigenfunctions of −∆n.

Proof. Note first that S is real symmetric and is therefore diagonalizable. Take then λ an
eigenvalue of S and denote v 6= 0 an associated eigenvector. Then,

Sv = C−1/2RC−1/2v = λv = λC1/2C−1/2v ,

and so, Ru = λCu where u = C−1/2v. Hence, using Equation (7.27),

∀k ∈ [[1, n]],
n∑
l=1
〈∇Mψk,∇Mψl〉L2(M)ul = λ

n∑
l=1
〈ψk, ψl〉L2(M) ul ,

5Hence, C1/2 is obtained by applying the square-root function to the eigenvalues of C, in the same way as
graph filters were defined (cf. Section 1.3.5).
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which gives using Equation (7.29),

∀k ∈ [[1, n]], 〈∇Mψk,∇ME(v)〉L2(M) = λ〈ψk, E(v)〉L2(M) . (7.30)

Note then that {ψk}k is also a basis of Vn as it is a family of linearly independent functions
spanning Vn. Denote then A ∈ Mn(R) the invertible change-of-basis matrix between {ψk}k
and the orthonormal basis {fk}k of Vn in Equation (7.26). In particular, A satisfies

∀k ∈ [[1, n]], ψk =
n∑
l=1

Aklfl .

Then Equation (7.30) can be written

A


〈∇Mf1,∇ME(v)〉L2(M)

...
〈∇Mfn,∇ME(v)〉L2(M)

 = λA


〈f1, E(v)〉L2(M)

...
〈fn, E(v)〉L2(M)

 .

Multiplying both members of this equality by A−1 then yields that

∀k ∈ [[1, n]], 〈∇Mfk,∇ME(v)〉L2(M) = λ〈fk, E(v)〉L2(M) .

And so, given that E(v) ∈ Vn,

−∆nE(v) =
n∑
k=1
〈∇Mfk,∇ME(v)〉L2(M)fk = λ

n∑
k=1
〈fk, E(v)〉L2(M)fk = λE(v) .

Therefore λ is an eigenvalue of −∆n and E maps the eigenvectors of S to the eigenfunctions
of −∆n.
Note then that, ∀x ∈ Rn,

‖E(x)‖2L2(M) =
n∑
k=1

n∑
l=1

[C−1/2x]k〈ψk, ψl〉L2(M)[C−1/2x]l =
(
C−1/2x

)T
CC−1/2x = ‖x‖22 .

Hence, given that it is also linear, E is an isometry between Rn (with the metric ‖.‖2) and
Vn (with the metric ‖.‖L2(M)). Consequently E is injective: indeed, ∀x ∈ Rn, E(x) = 0 ⇒
‖x‖22 = ‖E(x)‖2L2(M) = 0 and so, x = 0. And finally, using the rank–nullity theorem Friedberg
et al. (2003), E is bijective (as an injective application between two vector spaces with same
dimension).

Denote by {λk,n}1≤k≤n ⊂ R+ the eigenvalues of the matrix S in Theorem 7.3.2, and let
{vk}1≤k≤n ⊂ Rn be an orthonormal basis of Rn composed of real eigenvectors of S satisfying
∀k ∈ [[1, n]], Svk = λk,nvk. Denoting by V ∈Mn(R) the matrix

V = (v1| . . . |vn) ,

we then have

S = V


λ1,n

. . .

λn,n

V T , V TV = V V T = In . (7.31)

Given that the application E defined in Equation (7.29) is a linear isometry, it maps or-
thonormal sequences in Rn (with respect to 〈., .〉2) to orthonormal sequences in Vn (with respect
to 〈., .〉L2(M)). Hence, the sequence {ek,n}1≤k≤n ⊂ Vn, where

∀k ∈ [[1, n]], ek,n = E(vk) ,

is an orthonormal family of functions of Vn.
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Moreover, given that E is linear and bijective, {E(vk)}1≤k≤n is actually a basis of Vn since
{vk}1≤k≤n is a basis of Rn. Consequently, {ek,n}1≤k≤n defines an orthonormal basis of Vn
composed of eigenfunctions of −∆n.

Take γ : R+ → R. Following the definition of the discretized operator −∆n and analogously
to the definition of the operator γ(−∆M) from the operator −∆M, the discretization of the
operator γ(−∆M) on Vn is then defined as the endomorphism γ(−∆n) of Vn given by

γ(−∆n) : Vn → Vn

ϕ 7→ γ(−∆n)ϕ :=
n∑
k=1

γ(λk,n)〈ϕ, ek,n〉L2(M)ek,n .
(7.32)

Lemma 7.3.3. The definition of γ(−∆n) in Equation (7.32) does not depend on the choice
of orthonormal basis {ek,n}1≤k≤n of eigenfunctions of −∆n satisfying ∀k ∈ [[1, n]], −∆nek,n =
λk,nek,n.

Proof. Let {ek,n}1≤k≤n and {e′k,n}1≤k≤n denote two orthonormal basis of Vn such that ∀k ∈
[[1, n]], −∆nek,n = λk,nek,n and −∆ne

′
k,n = λk,ne

′
k,n. Assume that γ(−∆n) is defined by

Equation (7.32).
Let A ∈Mn(R) be the change-of-basis matrix between {ek,n}k and {e′k,n}k, i.e.

∀k ∈ [[1, n]], ek,n =
n∑
l=1

Akle
′
l,n .

The orthonormality of {ek,n}k and {e′k,n}k gives that

∀k, k′ ∈ [[1, n]], 〈ek,n, ek′,n〉L2(M) =
n∑
l=1

n∑
l′=1

Akl〈e′l,n, e′l′,n〉L2(M)Ak′l′ =
n∑
l=1

n∑
l′=1

Aklδll′Ak′l′

=
n∑
l=1

AklAk′l = [AAT ]kk′ = δkk′ .

Hence, AAT = In = ATA.
On the other hand, the fact that {ek,n}k and {e′k,n}k are eigenfunctions of −∆n gives ∀k ∈
[[1, n]], −∆nek,n =

∑n
l=1Akl(−∆ne

′
l,n) =

∑n
l=1 λl,nAkle

′
l,n = λk,nek,n = λk,n

∑n
l=1Akle

′
l,n.

Hence,
∀k, l ∈ [[1, n]], λk,nAkl = λl,nAkl

Consequently, note that ∀k, l ∈ [[1, n]], γ(λk,n)Akl = γ(λl,n)Akl still holds (this can be verified
with a simple proof by contradiction). Therefore, we have

γ(Λ)A = Aγ(Λ), where γ(Λ) :=


γ(λ1,n)

. . .

γ(λn,n)

 .

Finally, note that ∀ϕ ∈ Vn ,

γ(−∆n)ϕ =
∑
k

γ(λk,n)
〈
ϕ,
∑
l

Akle
′
l,n

〉
L2(M)

∑
l′

Akl′e
′
l′,n

=
∑
k,l,l′

γ(λk,n)AklAkl′
〈
ϕ, e′l,n

〉
L2(M) e

′
l′,n

=
∑
l,l′

[AT γ(Λ)A]ll′
〈
ϕ, e′l,n

〉
L2(M) e

′
l′,n =

∑
l,l′

[ATAγ(Λ)]ll′
〈
ϕ, e′l,n

〉
L2(M) e

′
l′,n

=
∑
l,l′

[Inγ(Λ)]ll′
〈
ϕ, e′l,n

〉
L2(M) e

′
l′,n =

∑
l

γ(λl,n)
〈
ϕ, e′l,n

〉
L2(M) e

′
l,n ,

which proves the result.
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7.3.2 Ritz–Galerkin discretization of GeGFs
Let Wn be the Vn-valued random variable defined by

Wn =
n∑
k=1

Wkek,n , (7.33)

where W1, . . . ,Wn are independent standard Gaussian variables. Then, Wn is called white
noise on Vn. This definition of white noise is coherent with the characterization of Gaus-
sian white noises introduced in Proposition 7.1.2. Indeed, the linear functional ϕ ∈ Vn 7→
〈Wn, ϕ〉L2(M) =

∑n
k=1Wk〈ek,n, ϕ〉L2(M) maps elements of Vn to Gaussian variables satisfying

∀ϕ ∈ Vn, E[〈Wn, ϕ〉L2(M)] = 0 and ∀ϕ1, ϕ2 ∈ Vn,

Cov[〈Wn, ϕ〉L2(M), 〈Wn, ϕ〉L2(M)] =
n∑
k=1
〈ek,n, ϕ1〉L2(M)〈ek,n, ϕ2〉L2(M) = 〈ϕ1, ϕ2〉L2(M) .

In particular, by independence of the Wk, the characteristic function of this functional is

ϕ ∈ Vn 7→ E[ei〈Wn,ϕ〉L2(M) ] =
n∏
k=1

ΨN (0,1)(〈ek,n, ϕ〉L2(M)) = e−
1
2 〈ϕ,ϕ〉L2(M) ,

which is the expected form defined in Equation (7.4).

Proposition 7.3.4. Let Wn be a white noise on Vn.
Then Wh can be written

Wn =
n∑
k=1

W̃kψk , (7.34)

where the weights W̃1 . . . W̃n for a Gaussian vector defined by (W̃1 . . . W̃n)T ∼ N (0,C−1).

Proof. Using the linearity of the map E defined in Theorem 7.3.2, the definition ofWn ∈ Vn in
Equation (7.33) can be writtenWn =

∑n
k=1WkE(vk) = E (

∑n
k=1Wkvk) = E

(
V (W1, . . . ,Wn)T

)
where (W1, . . . ,Wn)T ∼ N (0, I).
But also, denoting W̃1, . . . , W̃n the coordinates of Wn in the basis {ψk}k, we get from Equa-
tion (7.29), Wn =

∑n
k=1 W̃kψi = E

(
C1/2(W̃1 . . . W̃n)T

)
. Hence, using the fact that E is

bijective, we get (W̃1 . . . W̃n)T = C−1/2V (W1 . . .Wn)T which proves the result.

Theorem 7.3.5. Let Zn be the Vn-valued random variable defined by

Zn = γ(−∆n)Wn , (7.35)

where γ(−∆n) is the mapping of Equation (7.32) and Wn is a Gaussian white noise on Vn.
Then, Zn can be decomposed in the basis {ψk}1≤k≤n as

Zn =
n∑
k=1

Zkψk , (7.36)

The weights Z1, . . . , Zn form a Gaussian vector Z = (Z1, . . . , Zn)T with mean 0 and covariance
matrix

Var[Z] = C−1/2γ2(S)C−1/2 , (7.37)

where C and S are defined in Equations (7.27) and (7.28) , C−1/2 is the inverse of the principal
square-root of C and γ2(S) denotes the graph filter with shift operator S and transfer function
λ 7→ γ(λ)2.

Proof. Notice that Zn ∈ Vn, hence there exists some random vector Z ∈ Rn such that
Zn =

∑n
k=1 Zkψk. And following Equation (7.29), Zn = E

(
C1/2Z

)
.
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But also, following the definition of Wn in Equation (7.33) and the linearity of E, Zn =
γ(−∆n)Wn =

∑n
k=1 γ(λk,n)WkE(vk) = E (

∑n
k=1 γ(λk,n)Wkvk) which gives,

Zn = γ(−∆n)Wn = E

(
V

(
γ(λ1,n)

. . .
γ(λn,n)

)(
W1
...
Wn

))
.

Therefore, given that E is bijective,

Z = C−1/2V

(
γ(λ1,n)

. . .
γ(λn,n)

)(
W1
...
Wn

)
,

where (W1 . . .Wn)T ∼ N (0, I), which proves the result.

Theorem 7.3.5 provides an explicit expression for the the covariance matrix of the weights
of Vn-valued random variables. Consequently, generating realizations of such random functions
can easily be done by simulating a zero-mean Gaussian vector of weights with covariance matrix
given in Equation (7.37) and then building the weighted sum Equation (7.36). More generally,
the statistical properties of such fields are entirely specified by those of its random weights.

Following Equation (7.37), note that the vector

X = C1/2Z

is a zero-mean Gaussian vector with covariance matrix γ2(S). It can therefore be seen as a
S-stationary stochastic graph signal with spectral density γ2, on a n-graph G for which S can
be a shift operator. This means in particular that the two vertices i, j of G such that i 6= j should
be adjacent whenever Sij = [C−1/2RC−1/2]ij 6= 0. The results and algorithms presented in the
first two parts of this work can therefore be applied to X seen as a graph signal. For instance
the simulation algorithm of Section 3.1 can be used to generate realizations of X and therefore
of Z = C−1/2X.

Of particular interest is the case where the matrix S is sparse, as then the graph filtering al-
gorithms become computationally efficient. In the next chapter, a particular family of subspaces
Vn of L2(M) yielding sparse shift operators S is presented: the subspaces arising from the finite
element method. Convergence results of the discretization of a GeGF onto such subspaces are
derived.

7.4 Discussion

7.4.1 Comparison with the Karhunen–Loève expansion
In Section 7.2.1 we provided a link between our construction of GeGFs and Karhunen–Loève
expansions. The latter are classically used to derive numerical approximations of a Gaussian
field by truncating at a given order the expansion in Equation (7.16). The main drawback of this
approach is the determination of the eigenfunctions (and eigenvalues) of the covariance operator
defining the expansion.

For some simple domains, the analytical expression of the eigenfunctions is known, and the
Karhunen–Loève expansion becomes an efficient modeling tool for isotropic fields defined on
them (Solin and Särkkä, 2014). In the general case however, the determination of approxima-
tion eigenfunctions can easily require heavy computations: the integral (eigenvalue) problem of
Equations (7.14) and (7.15) is indeed discretized, and the resulting matrix eigenvalue problem
is solved by diagonalization (Huang et al., 2001).

On the other hand, with our description of GeGFs, no problem-specific diagonalization is ac-
tually needed. Indeed, the weights of the (Ritz–Galerkin) discretization of any (isotropic) GeGF
are given by Theorem 7.3.5 and can be leveraged using the graph signal processing techniques
presented in the early chapters of this work. Moreover, the extension to more complex domains
(i.e. arbitrary smooth submanifolds of Rd) and to fields with local anisotropies is straightfor-
ward using our approach: it only affects the definition of the entries of the mass and stiffness
matrices in Theorem 7.3.5. Doing the same with Karhunen–Loève expansions would suppose
first to define the covariance operator, which is far from trivial for these problems.
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7.4.2 Accounting for local anisotropies
We assume for this subsection that B denotes a compact connected domain of Rd and that
d ∈ {2, 3}. The goal of this section is to highlight how our characterization of GeGFs on
Riemannian manifolds relates to a particular class of non-stationary Gaussian random fields on
B.

Namely, we call Gaussian random field with local anisotropies6 (GRFLA) on B any non-
stationary Gaussian random field Z defined on B such that its covariance function satisfies

∀p ∈ B, Cov[Z(p), Z(p+ h)] ∼
h→0

C0(‖A(p)h‖2) = C0

(√
hTA(p)TA(p)h

)
, (7.38)

where A(p) ∈Md(R) is an invertible matrix and C0 is an isotropic covariance function. Hence,
Z corresponds to a random field that can be made locally isotropic around each point p ∈ B by
the linear change of variable h → h′ = A(p)h. In particular, the matrix A(p)TA(p) is called
anisotropy matrix and is symmetric positive definite.

The anisotropy matrices defining a GRFLA actually have a geometric interpretation. Indeed,
for d ∈ {2, 3}, the anisotropy matrices can be written as the composition of a rotation matrix,
a diagonal matrix and the inverse of rotation matrix (cf. Appendix A.2.3). Around each point
of the domain, the covariance of Z then acts like the covariance of a stationary field with
geometric anisotropy defined by these matrices. Hence, working with GRFLA allows to handle
a large spectrum of non-stationary random fields, as the local behavior of the resulting fields
is parametrized by interpretable geometric parameters, namely a rotation and scalings along
principal coordinate axes.

Following the results of Section 7.2.2, building a GeGF on B that acts like a GRFLA can be
done by endowing B with a Riemannian metric. Then if a field of local anisotropy parameters
(namely rotation angles θ, θ1, θ2, θ3 and ranges ρ1, ρ2, ρ3 for the scalings) are defined across a
domain B, we can endow B with the metric defined by

G(p) =
{
Vθ(p)Diag

(
1/ρ1(p)2, 1/ρ2(p)2)V T

θ(p) if d = 2
Vθ1(p),θ2(p),θ3(p)Diag

(
1/ρ1(p)2, 1/ρ2(p)2, 1/ρ3(p)2)V T

θ1(p),θ2(p),θ3(p) if d = 3
,

(7.39)
where V∗ denotes a two(or-three)-dimensional rotation matrix (cf. Appendix A.2.3). Then our
construction of GeGFs using the Laplace-Beltrami operator associated with this metric will yield
a random field on B which respects the prescribed local anisotropies.

The advantage of this method is that it allows to easily incorporate into the model of a
non-stationary random field information about its local behavior, as described geometrically by
the anisotropy parameters. In the remainder of this subsection, we draw parallels between this
approach and other approaches aiming at modeling non-stationary random fields. A complete
review of such models can be found in (Fouedjio, 2017).

Space deformation

Within the space deformation approach, a non-stationary field Z defined on B is modeled as

∀p ∈ B, Z(p) = Y (Φ(p)) , (7.40)

where Φ is a deterministic non-linear smooth bijective function defined over B and Y is an
isotropic random field on Φ(B) which covariance function is denoted by C. The covariance
function of Z then satisfies

∀p1,p2 ∈ B, Cov[Z(p1), Z(p2)] = C(‖Φ(p1)− Φ(p2)‖2) (7.41)

A first-order Taylor approximation of Equation (7.41) allows to retrieve Equation (7.38) where
A(p) is set to be the Jacobian matrix of Φ at p. Hence, Z is a GRFLA.

In practice, problems involving Z are transposed to the isotropic field Y by determining the
transformation Φ from observations of Z, which can be done using a multi-dimensional scaling
algorithm (Kruskal, 1964). This approach is detailed in (Sampson and Guttorp, 1992).

6This notion corresponds, in the zero-mean case, to the notion of locally stationary field introduced by (Math-
eron, 1971).
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Following the results of Sections 6.6 and 7.2.2, the random fields defined by Equation (7.40)
can be directly interpreted as instances of one of our GeGFs, defined on B equipped with the
Riemannian metric defined from the Jacobian matrix of Φ (cf. Equation (6.25)). In a context
where the anisotropy parameters are known, using the formalism of GeRFs on Riemannian
manifolds rather than the space deformation representation of Equation (7.40) allows to actually
work with Z without having to specify the deformation transformation Φ, that actually may not
exist7. Indeed, we simply set the metric on B using Equation (7.39) and then use Theorem 7.3.5
to characterize (numerical approximations) of the resulting GeGF.

Convolution model

Within the convolution approach (Higdon et al., 1999), a non-stationary field Z defined on B
is modeled at each point p ∈ B as the result of a (stochastic) convolution on Rd of a so-called
kernel function qp with a Gaussian white noise W:

∀p ∈ B, Z(p) =
∫
B

qp(x)W(dx) . (7.42)

Note that the non-stationarity of Z is a consequence of the fact that we allow the kernel functions
{qp}p∈B to vary with p ∈ B.

In the case where a field of anisotropy parameters is defined on B, Paciorek and Schervish
(2006) proposed to set qp as the density of a multivariate Gaussian distribution centered at p
and with covariance matrix G(p), as given by Equation (7.39). This yields a closed-form for the
covariance function of the resulting field Z:

Cov[Z(p1), Z(p2)] = 1
πd/2

√
detA(p1,p2)

e−(p2−p1)TA(p1,p2)−1(p2−p1), p1,p2 ∈ B (7.43)

where
A(p1,p2) := G(p1) +G(p2)

2 .

Hence, Z can be seen as GRFLA if we consider that, for any p ∈ B, if we take h → 0 then
detA(p,p + h) can be considered as constant. In particular, Z then corresponds to a non-
stationary Gaussian covariance function. Generalizations of Equation (7.43) have been proposed
for Matérn and Cauchy covariance functions (Stein, 2005). They yield the same forms of covari-
ance function as in Equation (7.43), except that the Gaussian covariance function is replaced by
the appropriate one.

Contrary to the space deformation approach, taking field of anisotropies into account is done
readily when setting the kernel functions through {G(p)}p∈B in Equation (7.39). However,
when considering the expression of the resulting covariance function, we see that the covariance
between two points depends only “what is happening” at these two points specifically. Indeed,
the covariance between Z(p1) and Z(p2) in Equation (7.43) can be seen as the covariance,
between p1 ∈ B and p2 ∈ B, of a random function on B with (global) geometric anisotropy
defined by the averaged anisotropy matrix A(p1, b2). Hence, the structure of the anisotropy
field between p1 and p2 is not taken into account in Equation (7.43).

This property is not shared by the space deformation approach, which in this sense is more
flexible. Indeed, the deformation process Φ in Equation (7.41), makes it so that the covariance
between any two points of the domain B depends on the overall structure of the anisotropy field.
This is due to the fact that this structure is actually defined by the function Φ.

Hence, our GeGFs on Riemannian manifolds allow to take the best of the two approaches
presented in this discussion. They ally the ease of taking into account fields of local anisotropies
(of the convolution model) to the definition of covariance functions that assimilate them as a
whole (as space deformation models do). In summary, the GeGF approach allows to easily
take into account local anisotropies in a global model of covariance. However, we lose the
closed-form expression of the covariance model, which can only be computed numerically using
Theorem 7.3.5.

7At least if we consider transformations Φ from Rd to Rd.... However, Perrin and Meiring (2003) showed that
a non-stationary field (with moments at least of order 2) defined on Rd can always be seen as a stationary field
defined R2d, which points towards considering deformations into space with higher dimensions.
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7.4.3 Link to stochastic partial differential equation approach
In this subsection, we show how the class of GeGFs we introduced relates to the stochastic partial
differential equation (SPDE) approach introduced by Lindgren et al. (2011).

Within the SPDE approach, stationary Gaussian random fields Z on Rd with a Matérn
covariance function, are characterized as the stationary solutions of the SPDE defined in Rd by

(κ2 −∆)α/2Z = τW (7.44)

where κ > 0, α > d/2, τ > 0, (κ2 − ∆)α/2 is the pseudo-differential operator with symbol
function p(ξ) = κ2 +‖ξ‖2 (cf. Equation (7.2)) andW is a Gaussian white noise (Whittle, 1954).
Hence, Equation (7.44) can actually be seen as a particular case of the more general set of SPDEs
defined as

LpZ =W , (7.45)

where p is a strictly positive radial function of Rd, i.e. for some p0 : R+ → R∗+,

∀ξ ∈ Rd, p(ξ) = p0(‖ξ‖2) ,

and Lp is the pseudo-differential operator of Rd with symbol function p. In particular, the
equality is here understood in the second-order sense, meaning that Z is seen as a generalized
random field and both sides have the same covariance functional.

The class of SPDEs defined by Equation (7.45) was extensively studied by (Carrizo Vergara
et al., 2018), who derived conditions on the symbol function p for the existence (and uniqueness)
of stationary solutions. Precisely, they show that existence and uniqueness of a stationary
solutions are guaranteed if p0 is a continuous non-negative function satisfying the following
conditions:

� p0 is polynomially upper-bounded,

� p0 is lower-bounded by the inverse of a strictly positive polynomial,

� ∃N > 0,
∫
Rd |p0(‖ω‖2)|−2(1 + ‖ω‖2)−Ndω <∞.

They show that the solution is the obtained as the generalized random field Z of Rd defined by

Z = L1/pW ,

where L1/p is the pseudo-differential operator with symbol function 1/p (Carrizo Vergara et al.,
2018, Theorem 1 & Remark 2). In particular, Z is defined as in Remark 7.2.2.

Following Remark 7.2.2, we conclude that the class of GeGFs we have been working with
includes the solutions of Equation (7.45) (when transposed to the manifold) and therefore the
solutions of the SPDE in Lindgren et al. (2011), which are retrieved by taking

p0(‖ξ‖2) = 1
τ

(κ2 + ‖ξ‖2)α/2, .

In particular one may notice that the expressions of the covariance matrix of the weights of the
finite element approximation of Matérn fields proposed by Lindgren et al. (2011) are retrieved
by setting γ = 1/p0 in Theorem 7.3.5.

Conclusion
Generalized random fields on Riemannian manifolds were introduced as a tool allowing to model
Gaussian fields on complex spatial domains and with local anisotropies. They can be seen as the
transposition of isotropic stationary random fields of Rd to compact Riemannian manifolds. They
were defined using a general approach based on the properties of the Laplace-Beltrami operator
associated with the Riemannian manifold: this operator actually takes on the “transposition”
process mentioned above given that it accounts for both the geometry of the manifold and
the eventual presence of anisotropies (through the Riemannian metric used to define it). The
approach presented in this section can therefore be applied on any compact Riemannian manifold
to define non-stationary field from the expression of a (radial) spectral density.
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The discretization of these generalized random fields was then tackled. Given a set of deter-
ministic “basis” functions defined on the domain, we looked for approximations that would be
written as a weighted sum of the basis functions. We derived a theorem that entirely charac-
terizes the random weights of this linear combination, thus providing a numerical model for the
generalized random fields.

In the next section, we apply this decomposition theorem to the basis functions obtained
from the finite element method and derive a convergence result for the approximation.



8
Finite element approximation
of generalized Gaussian fields

Contents
8.1 Introduction to the finite element method 168

8.1.1 Mathematical construction of finite elements 168
8.1.2 Finite element method . . . . . . . . . . . . 174
8.1.3 Triangulation of non-polyhedral sets . . . . 175
8.1.4 Triangulation of surfaces of R3 . . . . . . . 176

8.2 Generalized random field approximation . 177
8.2.1 Accounting for boundary conditions . . . . 177
8.2.2 Error analysis of the finite element approx-

imation . . . . . . . . . . . . . . . . . . . . 178
8.3 Example of construction of a finite element

approximation . . . . . . . . . . . . . . . . . 180
8.3.1 Construction of the mass matrix . . . . . . 180
8.3.2 Construction of the stiffness matrix . . . . . 181
8.3.3 Particular case: constant anisotropy on a 2D

grid . . . . . . . . . . . . . . . . . . . . . . 183

167



168 8. Finite element approximation of generalized Gaussian fields

Résumé
Dans ce chapitre, nous proposons de discrétiser les champs gaussiens généralisés introduits

au chapitre précédent à l’aide de la méthode des éléments finis, en nous basant sur les résultats
d’approximation de Ritz–Galrkin déjà obtenus.

Nous commençons par introduire la méthode des éléments finis et à en présenter des exemples
de mise en œuvre. Puis nous appliquons cette méthode à la discrétisation de champs gaussiens
généralisés, en prenant soin de détailler le problème des conditions limites. Nous présentons
également une analyse d’erreur de l’approximation obtenue, débouchant sur un résultat de con-
vergence de l’approximation vers le champ lorsque la taille de maillage se réduit. Enfin, nous
donnons un exemple complet de construction de cette approximation afin de mettre en évidence
l’intérêt de travailler avec des éléments finis.

Introduction
The aim of this chapter is to build from the results of Theorem 7.3.5, and provide an example of
construction of a discretization of a generalized random field defined on a Riemannian manifold.
The set of basis functions used to define the approximation are derived from the finite element
method, and we start by recalling its principle. Convergence results of the finite element ap-
proximation are then exposed. Finally, the full construction of this approximation is carried out
on a simple example.

8.1 Introduction to the finite element method
In this section, we recall the principle of the finite element method and the mathematical objects
it involves. We refer the reader to (Brenner and Scott, 2007; Raviart et al., 1998; Strang and
Fix, 1973) for a complete review of the method and its main convergence properties.

8.1.1 Mathematical construction of finite elements
Definition of a finite element

Let K ⊂ Rd be a compact and connected set, with a non-empty interior. Let X = {x(i)}Ni=1 be
a set of N points of K: x(i) ∈ K. Finally, let P be a finite-dimensional vector space of functions
mapping K to R. The triplet (K,X,P ) is called a Lagrange finite element if ∀α ∈ Rd, there
exists a unique element p ∈ P such that ∀j ∈ [[1, N ]], p(x(j)) = αj . In this case, we say that
the set X is P -unisolvent. Hence, all elements of P are uniquely defined by the values they take
over the points of K constituting X.

From now on (K,X,P ) denotes a Lagrange finite element. Consider then the family {p(i)}Ni=1
of functions of P defined by:

∀i ∈ [[1, N ]], ∀j ∈ [[1, N ]], p(i)(x(j)) = δij .

The functions {p(i)}Ni=1 are called shape functions of the finite element. They define a basis of
the vector space P as any element p ∈ P can be uniquely written as

p =
N∑
i=1

p(x(i))p(i), p ∈ P .

More generally, consider the operator ΠK that associates to any v : K → R the element of P
defined by

ΠKv =
N∑
i=1

v(x(i))p(i) ∈ P (8.1)

and called P -interpolator associated with the finite element (K,X,P ). In particular, ΠKv is
called P -interpolate of v: ΠKv is indeed the unique element of P that interpolates v over the
set of points X.

Starting from the definition of a single Lagrange finite element, the next proposition is used
to build a whole family of finite elements.
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Proposition 8.1.1. Let (K,X,P ) be a Lagrange finite element.
Then for any bijective function F : K → K̂ = F (K) ⊂ Rd, the triplet (K̂, X̂, P̂ ) defined by

K̂ = F (K), X̂ = F (X) = {F (x(i))}Ni=1, P̂ = P ◦ F−1 = {p ◦ F−1 : p ∈ P} (8.2)

is also a Lagrange finite element.
In particular, (K,X,P ) and (K̂, X̂, P̂ ) are said to be equivalent. If besides, F is an affine

function, then (K,X,P ) and (K̂, X̂, P̂ ) are called affine-equivalent.

Proof. By definition, X̂ is a set of N = Card X points of K̂ and P̂ is a vector space of functions
mapping K̂ to R which has the same dimension as P . We now show that X̂ is P̂ -unisolvent.

Let α ∈ Rd and assume that there exists p̂1, p̂2 ∈ P̂ such that ∀j ∈ [[1, N ]], p̂1(F (x(j))) =
p̂2(F (x(j))) = αj . By definition of P̂ , there exists p1, p2 ∈ P such p̂1 = p1 ◦ F−1 and
p̂2 = p2 ◦ F−1. Hence, ∀j ∈ [[1, N ]], p1(x(j)) = p2(x(j)) = αj , and so, by given that X is
P -unisolvent, p1 = p2. This then gives, p̂1 = p̂2, ans so, X̂ is P̂ -unisolvent.

Therefore, (K̂, X̂, P̂ ) defines a Lagrange finite element.

Finite elements defined from simplices

We now restrict ourselves to the case where the compact set K is a d-simplex, which we denote
T . Namely, T is the convex hull of (d+1) points {a(i)}d+1

i=1 of Rd such that there is no hyperplane
of Rd containing all of them. T is a polyhedron and particular, for d = 2, T is a triangle and for
d = 3, T is a tetrahedron.

It can be shown that, given that the points {a(i)}d+1
i=1 of Rd do not lie in a single hyperplane

of Rd, the matrix A ∈Md+1(R) defined by

A =


a(1) . . . a(d+1)

1 . . . 1

 =


a

(1)
1 a

(d+1)
1

... . . .
...

a
(1)
d a

(d+1)
d

1 . . . 1

 (8.3)

is invertible. Indeed, ∀y ∈ Rd+1, Ay = 0 ⇒
∑d+1
k=1 yka

(k) = 0 and
∑d+1
k=1 yk = 0, which gives∑d

k=1 yk(a(k) − a(d+1)) = 0 and so otherwise To any point x ∈ Rd we can therefore associate a
set of (d + 1) coefficients gathered in a vector b(x) = (b1(x), . . . , bd+1(x))T ∈ Rd+1 defined as
the solution of the system

Ab(x) =

 x

1

 . (8.4)

These coefficients are called barycentric coordinates of x with respect to T and can be seen as
the unique set of coefficients b1(x), . . . , bd+1(x) ∈ R such that

x =
d+1∑
i=1

bi(x)a(i), with
d+1∑
i=1

bi(x) = 1, x ∈ Rd . (8.5)

In particular, ∀i ∈ [[1, d+ 1]], the barycentric coordinates of a(i) are given by the i-th canonical
basis vector of Rd+1: bj(a(i)) = δij , 1 ≤ i, j ≤ d+ 1.

The barycentric coordinates b of a simplex T provide a characterization of the points it
contains:

T = {x ∈ Rd : ∀i ∈ [[1, d+ 1]], bi(x) ∈ [0, 1]}

=
{
d+1∑
i=1

cia
(i) :

d+1∑
i=1

ci = 1 and ∀i ∈ [[1, d+ 1]], ci ∈ [0, 1]
}

.
(8.6)

In particular, Figure 8.1 provides a graphical interpretation of the barycentric coordinates of a
triangle (i.e. a 2-simplex).
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Figure 8.1: Illustration of the barycentric coordinates of a triangle. The i-th barycentric
coordinate bi of a point lying inside the triangle is equal to the ratio between the corresponding

colored area and the total area of the triangle.

For 1 ≤ i ≤ d + 1 and a d-simplex T with barycentric coordinates b, the subset Ui ⊂ T
defined by

Ui = {x ∈ T : bi(x) = 0} (8.7)
is called a face of T . In particular, Ui is one of the faces of the polyhedron of Rd defined by T .
Note also that, following Equation (8.6), Ui is actually a (d − 1)-simplex defined by the points
{a(k)}k∈[[1,d+1]]\{i} using the characterization of simplices given by Equations (8.5) and (8.6).
The barycentric coordinates with respect to a face Ui ⊂ T of a point x ∈ Ui are therefore equal
to its barycentric coordinates with respect to T , where the i-th barycentric coordinate (which is
zero) is omitted.

For m ≥ 0, let Pm be the set of all polynomial functions from Rd to R with degree at most
m. Hence, any element p ∈ Pm can be written as

p(x) =
∑

k∈Nd,|k|≤m

ckx
k, x ∈ Rd ,

where xk :=
∏d
j=1 x

kj
j , |k| :=

∑d
j=1 |kj | and the coefficients ck ∈ R are indexed by the index

vectors k ∈ Nd, |k| ≤ m. In particular, Pk is a vector space of dimension

N = dim(Pm) =
(
d+m

m

)
= (d+m)!

m!d! .

Note that we will also denote the restrictions of Pm to subsets of Rd with non-empty interior by
Pm.

Let then Xm be the set of points of a d-simplex T defined from their barycentric coordinates
b by

Xm =
{
x ∈ Rd : ∀j ∈ [[1, d+ 1]], bj(x) ∈

{
0, 1
m
, . . . ,

m− 1
m

, 1
}}

, (8.8)

and for the particular case where m = 0, take,

X0 =
{
x ∈ Rd : ∀j ∈ [[1, d+ 1]], bj(x) = 1

d+ 1

}
. (8.9)

Note that Xm is therefore composed of N = dim(Pm) points. Indeed, for any x ∈ Xm can be
uniquely identified by the vector b′(x) = m(b1(x) · · · bd(x))T which satisfies b′(x) ∈ Nd and
|b′(x)| = m

∑d
j=1 bj(x) = m(1 − bd+1(x)) ≤ m. Hence b′(x) is the multi-index of a monomial

in Pk, which proves the statement.
Consequently, using an extension of Lagrange interpolation to the multivariate case (Saniee,

2008), we can deduce that the polynomial of Pm interpolating a function v : T 7→ R over the
points of Xm is uniquely defined. Hence, Xm is Pm-unisolvent and the triplet (T,Xm, Pm)
defines a Lagrange finite element called d-simplex of type (m).
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Figure 8.2: Illustration of the standard d-simplices for d = 2 (left) and d = 3 (right).

Remark 8.1.1. If we restrict the functions of Pm on one of the faces Ui of T , then Xm∩Ui is
Pm|Ui-unisolvent, meaning that the values a function p ∈ Pm takes at the points of Xm that lie
on a face Ui uniquely define the values p takes on the whole face. This is a direct consequence
of the fact that Xm ∩ Ui actually defines the interpolating set (as defined in Equation (8.8))
of the (d− 1)-simplex of type (m) associated with the face Ui.

A very useful property of simplices is that if T and T̂ denote two d-simplices, then their
associated d-simplices of type (m) are equivalent finite elements. Indeed, the application F that
maps any point x ∈ T with barycentric coordinates (with respect to T ) b(x) ∈ Rd+1 to the
point of x̂ = F (x) ∈ T̂ with barycentric coordinates (with respect to T̂ ) b̂(x̂) = b(x) ∈ Rd+1

is a bijective transform sending T to T̂ . Following Proposition 8.1.1, it is then straightforward
to check that the Lagrange finite element defined by Equation (8.2) actually corresponds to the
d-simplex of type (m) built from T̂ .

In particular, following the definition of barycentric coordinates as solution of the linear
system in Equation (8.4), the points x ∈ T and x̂ = F (x) ∈ T̂ satisfy x̂

1

 = Âb̂(x̂) = Âb(x) = ÂA−1

 x

1

 , (8.10)

where the matrices A and Â are given by Equation (8.3) using the vertices defining the simplices
T and T̂ . This gives the relation

x̂ = F (x) = Mx+ c ,

where M ∈Md(R) is the matrix containing the d first rows and columns of ÂA−1 and c ∈ Rd

is the vector containing the d first entries of the last column of ÂA−1. Hence, the d-simplices
of type (m) associated with T and T̂ are in fact affine-equivalent.

In conclusion, all d-simplices of type (m) are in bijection with one another, through an affine
transform. In practice, they are all defined from a single reference d-simplex of type (m) which
is now defined.

Construction of the standard finite element

Let T0 be the d-simplex defined from the following points of Rd: a(1)
0 = (1, 0, . . . , 0), a(2)

0 =
(0, 1, 0, . . . , 0), ..., a(d)

0 = (0, . . . , 0, 1) and a(d+1)
0 = (0, 0, . . . , 0). T0 is called the standard d-

simplex (cf. Figure 8.2) .
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In particular, the barycentric coordinates b0 of a standard d-simplex satisfy for any x ∈ Rd
the relation A0b0(x) = (xT |1)T where

A0 =

 Id 0d
1Td 1

 .

Equivalently, the barycentric coordinates with respect to T0 are given by

∀x ∈ Rd, b0i (x) = xi ∀i ∈ [[1, d]] and b0d+1(x) = 1−
d∑
i=1

xi . (8.11)

Hence, the first d barycentric coordinates of a point x ∈ Rd with respect to T0 correspond to its
actual Cartesian coordinates.

The d-simplex of type (m) defined from T0 is called the standard d-simplex of type (m) and is
denoted (T0, X

0
m, Pm). In particular, following Equations (8.8) and (8.11), we have (for m ≥ 1)

X0
m =

x ∈ Rd :

 ∀j ∈ [[1, d]], xj ∈
{

0, 1
m , . . . ,

m−1
m , 1

}
1−

∑d
j=1 xj ∈

{
0, 1

m , . . . ,
m−1
m , 1

}
 ,

and we denote p(i)
0 , i ∈ [[1,Card X0

m]] the shape functions of (T0, X
0
m, Pm).

Any d-simplex of type (m) can be deduced from (T0, X
0
m, Pm) using their affine equivalence.

Using Equation (8.10) and the particular form of A0, the (bijective) affine map FT that sends
T0 to a given d-simplex T (while conserving its barycentric coordinates) is given by

FT : x0 ∈ T0 7→ x = F (x0) = a(d+1) +Mx0 ∈ T , (8.12)

where M ∈Md(R) is the (invertible) matrix defined by

M =

 a(1) − a(d+1) . . . a(d) − a(d+1)

 . (8.13)

The inverse of F , which maps T to T0 is therefore given by

F−1
T : x ∈ T 7→ x0 = FT (x) = M−1(x− a(d+1)) ∈ T0 . (8.14)

In particular, note that given that FT maintains the barycentric coordinates and following Equa-
tion (8.11), F−1

T simply corresponds to the function that maps x ∈ T to its first d barycentric
coordinates (with respect to T ). These transformations are illustrated in Figure 8.3.

Any d-simplex of type (m) (T,Xm, Pm) can then be retrieved from (T0, X
0
m, Pm) through

T = FT (T0), Xm = FT (X0
m), Pm = span

{
p(i) = p

(i)
0 ◦ F

−1
T : i ∈ [[1,Card Xm]]

}
, (8.15)

where p(i)
0 , i ∈ [[1,Card Xm]] denote the shape functions of (T0, X

0
m, Pm), i.e. the polynomial

of Pm satisfying which is 1 at the i-th point of X0
m and 0 at any other point of X0

m. We can
therefore restrict ourselves to the study of the standard d-simplex of type (m).

In the particular case where m ≤ 2, we now derive the expression of the shape functions of
(T0, X

0
m, Pm). First, we introduce the following notations:

a
(0)
0 = 1

d+ 1

d+1∑
i=1

a
(i)
0 = 1

d+ 11d ,

a
(ij)
0 = 1

2(a(i)
0 + a(j)

0 ), 1 ≤ i < j ≤ d+ 1 ,

where once again {a(i)
0 }

d+1
i=1 denotes the (d + 1) points whose convex hull defines the d-simplex

T0, and given by
∀i ∈ [[1, d+ 1]], ∀j ∈ [[1, d]], [a(i)

0 ]j = δij .
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Figure 8.3: Illustration of the affine transformation from a general 2-simplex T to the standard
2-simplex T0. b1, b2, b3 denote the barycentric coordinate functions of T .

Figure 8.4: Illustration of the possible interpolation points from a general 2-simplex T (left)
and for the standard 2-simplex T0 (right).
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Interpolating points X0
m Shape functions Number

m = 0 {a(0)
0 } p

(0)
0 (x) = 1 1

m = 1 {a(i)
0 }1≤i≤d+1

p
(i)
0 (x) = xi

where xd+1 := 1−
∑d
i=1 xi

d+ 1

m = 2 {a(i)
0 }1≤i≤d+1 ∪ {a(ij)

0 }1≤i<j≤d+1

p
(i)
0 (x) = xi(2xi − 1)

p
(ij)
0 (x) = 4xixj

where xd+1 := 1−
∑d
i=1 xi

(d+1)(d+2)
2

Table 8.1: Interpolating points X0
m and associated shape functions for the standard d-simplex

of type m with d ≥ 1 and 0 ≤ m ≤ 2.

Then, for m ≤ 2, the points in X0
m are taken from {a(0)

0 } ∪ {a
(i)
0 }1≤i≤d+1 ∪ {a(ij)

0 }1≤i<j≤d+1.
These interpolation points are illustrated in Figure 8.4 for d = 2.

Table 8.1 then gives the expression of the points composing X0
m and the corresponding shape

functions of T0 for m ≤ 3. We denote by p(∗)
0 the shape function associated with the point

a
(∗)
0 ∈ X0

m.

Remark 8.1.2. As we may see in the subsequent sections of this chapter, the finite element
method relies on the computation of integrals defined on simplices. The relations in Equa-
tion (8.15) are then used to express integrals over arbitrary d-simplices as integrals on the
standard d-simplex, through a change of variable (cf. Theorem A.1.2).

Indeed, if ϕ : T → R is a measurable function on a d-simplex T , then its integral over T
can be written as an integral over the standard d-simplex T0 as∫

T

ϕ(x)dx = |M |
∫
T0

ϕ ◦ F (x0)dx0 ,

where |M | is the determinant of the matrix M defined in Equation (8.13). In particular,
this determinant actually corresponds to twice the surface (resp. 6 times the volume) of the
triangle (resp. tetrahedron) T when d = 2 (resp. d = 3).

8.1.2 Finite element method
We first assume thatM⊂ Rd is a compact polyhedral set, i.e. M is a compact set formed by a
finite union of polyhedrons of Rd. A triangulation Th ofM is a finite decomposition ofM

M =
⋃
T∈Th

T ,

such that:

� Each element T ∈ Th is a d-simplex.

� Two distinct simplices of Th have disjoint interiors.

� Any face of a simplex T1 ∈ Th is either the face of a distinct simplex T2 ∈ Th or is part of
the boundary ofM.

In particular, note that the intersection of two distinct simplices of Th is either empty or it is a
common face or a common vertex. The index h is called the size of the triangulation and denotes
the largest diameter hT of an element T ∈ Th:

h = max
T∈Th

hT , where hT := sup
p1,p2∈T

d(p1,p2) .

For a d-simplex T , let ρT be the radius of the largest ball of Rd that can be contained in
T , and let hT be the diameter of T . A family of triangulations {Th}h∈H , where H ⊂]0,+∞[, is



8.1. Introduction to the finite element method 175

called shape regular if there exists a constant C > 0 such that ∀h ∈ H, ∀T ∈ Th, ρT ≥ ChT .
Besides, {Th}h∈H is called quasi-uniform if there exists a constant C ′ > 0 such that ∀h ∈ H,
∀T ∈ Th, hT ≥ Ch.

Let m ≥ 0. We associate to each T ∈ Th a Lagrange finite element (T,Xm, Pm) which is a d-
simplex of type (m). Consider then the set Xh ⊂M defined as the union of all the interpolating
sets Xm corresponding to the finite elements of the triangulation Th:

Xh =
⋃

(T,Xm,Pm)
T∈Th

Xm .

The elements of Xh are points ofM called nodes of the triangulation Th.
Note that if we consider two of such finite elements (T,Xm, Pm) and (T̂ , X̂m, Pm) such that

T and T̂ have a common face U , then the interpolating points of Xm and X̂m that lie in U
coincide, i.e. Xm∩U = X̂m∩U . Indeed, this is a direct consequence of the definition of Xm and
X̂m (cf. Equation (8.8)) and of the fact that the barycentric coordinates of a point of U are the
same whether they are considered with respect to T or T̂ . Using then the fact that Xm ∩U and
X̂m ∩ U are Pm|U -unisolvent, we deduce that the functions of Pm defined on T or T̂ coincide
along any common face U = T ∩ T̂ as long as they coincides on the points Xm ∩ U = X̂m ∩ U .

Let then Πhϕ be the function defined for any square-integrable function ϕ :M→ R by

∀T ∈ Th, ∀x ∈ T, Πhϕ(x) = ΠTϕ(x) ,

where ΠT is the Pm-interpolator associated with the finite element (T,Xm, Pm), as defined in
Equation (8.1). Πh is therefore well-defined (including along the faces of the simplices of Th) and
is a continuous function ofM. Besides, on each simplex T ∈ Th with associated finite element
(T,Xm, Pm), it coincides with the Pm-interpolate of ϕ.

We now introduce the set Vh of (continuous) functions ofM defined by

Vh = {Πhϕ : ϕ ∈ L2(M)} .

Then Vh is a vector subspace of L2(M) of dimension Nh = |Xh|, and is called finite element
space. Indeed, if we denote

Xh = {x(j)}1≤j≤Nh ,

then a basis for Vh is provided by the set of functions {ψj}1≤j≤Nh ⊂ Vh where for each j ∈
[[1, Nh]], the function ψj is defined by the relation:

∀k ∈ [[1, Nh]], ψj(x(k)) = δjk . (8.16)

Hence we have
Vh = span {{ψj}1≤j≤Nh} , (8.17)

where ψj is the unique function of Vh that is 1 at the node x(j) ∈ Xh and 0 at any other node
of the triangulation. In particular,

∀v ∈ Vh, v =
Nh∑
j=1

v(x(j))ψj .

Note that the basis functions {ψj}1≤j≤Nh have a limited support: indeed if x(j) ∈ T then ψj
coincides with the shape function associated with the interpolating point x(j) of T (cf. for
instance Table 8.1), and otherwise ψj is zero over T . Hence the support of ψj is limited to the
simplices that contain x(j).

8.1.3 Triangulation of non-polyhedral sets
In this section, we no longer assume thatM is a compact polyhedral set of Rd. Instead, we now
takeM to be a compact subset of Rd with a (piecewise) smooth boundary ∂M. The idea is to
approximateM by a polyhedral setMh such that any vertex on the boundary ofMh is a point
of ∂M. Then, Mh is triangulated as described above by a triangulation Th, according to the
boundary conditions prescribed by the problem.
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Figure 8.5: Triangulation of a non-polyhedral setM (delimited by the black boundary). The
approximating polyhedral setMh is represented in blue and the skinM\Mh in red.

In the general case where M has a curved boundary, the set M\Mh, also called “skin”,
will be non-empty (cf. Figure 8.5). To account for the fact that the skin is not part of the
triangulation, small adjustments can be made to extend the definition of the basis functions to
the skin.

In the Dirichlet case, given that the value of the basis functions is zero on the boundary of
Mh and that we also want them to be zero on ∂M, we may simply set the value of all basis
functions over the skin to be zero (Strang and Fix, 1973).

Using the same approach for the Neumann case however would result in a discontinuity of the
basis functions across ∂Mh. Instead, when linear shape functions are considered (m = 1), we
may for instance extend into each piece of the skin the shape functions of the adjacent simplex
(Strang and Fix, 1973). Given that their derivatives are piecewise constant, their values on the
faces of ∂Mh will be “propagated” on the skin.

Another possible method to account for curved boundaries consists in deforming the simplices
approximating M on its boundary so that their faces that lie on ∂Mh are themselves curved
(Strang and Fix, 1973). Such elements are called isoparametric and are defined through a
bijective transformation that maps the standard d-simplex T0 to a deformed d-simplex T̃ . In
particular, the faces of the deformed simplex T̃ are polynomial surfaces defined using the same
shape functions as the one used to build the finite elements.

8.1.4 Triangulation of surfaces of R3

We now consider the case where M is a smooth surface embedded in R3, and defined either
parametrically or implicitly. M can therefore be seen as 2-submanifold of R3. TriangulatingM
consists in defining a locally planar surfaceMh composed of triangles T ⊂Mh that approximate
locallyM, in the sense that ∀p ∈ T , dist(p,M) ≤ ε, for some threshold ε > 0 fixed in advance.
Hence, we can write

Mh =
⋃
T∈Th

T ,

where Th denotes the triangulation of M, i.e. the set of triangles defining Mh. In particular,
the triangles of Th must satisfy the following requirements:

� Given that each triangle T ∈ Th can be seen as a 2-simplex defined by 3 points {a(i)}1≤i≤3
of R3, we impose that these points lie in the original surfaceM : a(i) ∈M.

� ∀T, T ′ ∈ Th, either T = T ′, or T ∩ T ′ = ∅, or T ∩ T ′ is a common edge or vertex of T and
T ′.

The notions of shape regular and quasi-uniform are directly extended from the case of the
triangulation of compact sets of Rd.
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It can be showed that, for a small enough mesh size, each triangle T ∈ Th can be mapped
to a curved triangle T̃ ⊂ M, where curved triangles are defined as the image of the standard
2-simplex through a bijective application that maps it toM. This is a consequence of the local
coordinate mappings defining the surfaceM. Conversely, in order to avoid double coverings, the
triangulation Th is built so that each point ofM can be associated to (at most) and one point
of Th, meaning that theM andMh are in bijection.

Hence functions defined on M can be seen as defined on Mh and vice versa, using the
bijection between both surfaces. Indeed, if a : T → T̃ denotes the mapping that sends T ∈ Th
to its curved counterpart T̃ ∈ M, then we can associate to any ϕ : T → R the function
ṽ = v ◦ a−1 : T̃ → R. Consequently the function space Vh on Th, which is defined in the same
manner as it would be defined for the triangulation of a compact set of R2, can be seen as a set
of functions defined onM.

Finally, note that each triangle T ∈ Th ⊂ R3 in the triangulation of Mh is actually in
bijection with the standard 2-simplex T0 ⊂ R2. If x(1),x(2),x(3) ∈ R3 denote the three vertices
of T and M denotes the matrix defined by

M =
(
x(1) − x(3) x(2) − x(3)

)
∈M3,2(R) ,

then the application F defined by

FT : y ∈ T0 7→ F (y) = x(3) +My ∈ T (8.18)

is a bijective map sending T0 ⊂ R2 to T ⊂ R3. Its inverse is given by

F−1
T : x ∈ T 7→ F−1(x) = (MTM)−1MT (x− x(3)) ∈ T0 . (8.19)

In particular, F−1
T sends a point of T to its first two barycentric coordinates as defined by

Equation (8.5). Hence finite elements can be built on Mh using the fact that all triangles are
affine-equivalent to the standard 2-simplex.

8.2 Generalized random field approximation
Circling back to the discretization problem introduced in Section 7.3, finite element spaces are
used to define the set of approximating functions Vn used to discretize generalized Gaussian
fields (GeGFs) on a compact manifoldM. In particular, in the remainder of this chapter, these
sets of function will rather be denoted by Vh where h will correspond to the mesh size of the
triangulation, as the latter is directly linked to the dimension of the set.

8.2.1 Accounting for boundary conditions
The sets of basis functions Vh arising from finite element spaces are used to approximate GeGFs
defined on the domain M. The boundary conditions defining the eigenvalue problems on M
should be accounted for as they are a key building block of the construction of GeGFs. In
particular the set of approximating functions should be chosen as a subset of the domain of
definition of the Laplacian. For the Dirichlet Laplacian/boundary conditions, this set is H1

0 (M)
and for the closed and Neumann case, the set is H1(M).

The closed eigenvalue problem arises whenM is a manifold without boundary. In particular,
this is the case when M is a closed surface, i.e. a surface that is topologically compact but
has no boundary as a manifold (ex: sphere, torus). In that case, the set Vh arising from the
triangulation ofM can directly be used as a set of approximating functions of the problem given
that no restriction is required and that it is a subset of H1(M).

The Dirichlet eigenvalue problem can be considered when M is a compact manifold with
non-empty boundary. This is the case when M is a topological compact of Rd (with smooth
boundary). Approximation functions reflecting this boundary condition should be used: hence,
the approximation function should also be zero on the boundary of M so that they can lie in
H1

0 (M). Consequently, the set of approximating function that should be chosen is:

V 0
h = {ϕ ∈ Vh : ϕ|∂M = 0} ,
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where Vh is the set of basis functions defined by the triangulation of M. In particular, V 0
h is

a vector subspace of Vh, whose dimension is equal to the number of unconstrained nodes of
the triangulation, i.e. the number of nodes that are not on the boundary of M (or rather the
boundary of the the polyhedron formed by the simplices of the triangulation). Indeed, V 0

h is
spanned by the basis functions of Vh (defined by Equation (8.16)) associated with these nodes
(and only these nodes). Besides, V 0

h ⊂ H1
0 (M).

As for the Neumann eigenvalue problem, it can be considered for the same types of domains
M as the Dirichlet problem. The set of approximation functions can be taken to be the whole set
of basis functions Vh, which is a subset of H1(M). The boundary conditions will be implicitly
enforced by definition of the Neumann Laplacian.

8.2.2 Error analysis of the finite element approximation
In this section, a convergence result of the finite element approximation of a GeGF is exposed.
This result is simply an extension of Theorem 2.10 in (Bolin et al., 2018), and is proved in the
exact same way.

First, we recall some notations. Let (Vh)h∈]0,1] be a family of finite element spaces indexed
by a mesh size h over a domain M ⊂ Rd. In particular, following the previous subsection,
the finite element spaces are defined so that they account for boundary conditions. We denote
nh = dim(Vh) the number of basis functions associated with the triangulation1 ofM with mesh
size h.

Let −∆M denote the Laplace-Beltrami operator, defined over L2(M), and let −∆h denote
its discretization over Vh, as defined in Equation (7.26). Let {λj}j∈N and {λk,h}1≤k≤nh be the
eigenvalues of −∆M and −∆h, listed in non-decreasing order.

Let γ : R+ → R such that
∑
j∈N γ(λj)2 <∞.

The following assumptions are considered to derive an error bound between a GeGF Z defined
by Equation (7.12) and its finite element approximation defined by Equation (7.36).

Assumption 8.1 (Growth of the eigenvalues of −∆M). There exist three constants α > 0,
cλ > 0 and Cλ > 0 such that the eigenvalues {λj}j∈N satisfy

∀j ∈ N, λj > 0⇒ cλj
α ≤ λj ≤ Cλjα .

Assumption 8.2 (Derivative of γ). γ : R+ → R is derivable on R+, and there exist CDeriv > 0
and a ≥ 0 such that

∀x > 0, |γ′(x)| ≤ CDeriv

xa
.

Assumption 8.3 (Asymptotic behavior of γ). There exists a constant β > 0 such that
γ : R+ → R satisfies |γ(λ)| = O

λ→+∞

(
λ−β

)
, i.e.

∃Cγ > 0,∃Rγ > 0, λ ≥ Rγ ⇒ |γ(λ)| ≤ Cγλ−β .

Assumption 8.4 (Dimension of the finite element space). There exist two constants d̃ > 0,
CFES > 0 such that

nh = dim(Vh) = CFESh
−d̃ .

Assumption 8.5 (Mesh size). The mesh size h shall satisfy:

h ≤

(
1

CFES

⌈(
Rγ
cλ

)1/α
⌉)−1/d̃

,

1In particular nh is equal to either the total number of interpolation points (for closed and Neumann boundary
conditions) or the number of interpolation points that do not lie on the boundary of the domain (for Dirichlet
boundary conditions).
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where CFES, Rγ , α and cλ are the constants defined in Assumptions 8.1, 8.3 and 8.4.
In particular, following Assumptions 8.1 and 8.4, for all j ≥ nh, λj ≥ Rγ .

Assumption 8.6 (Eigenvalues and eigenvectors of −∆h). There exist constants H0 ∈]0, 1[,
C1, C2 > 0, and exponents r, s, q > 0 such that

∀h ∈]0, H0[, ∀k ∈ [[1, nh]],
{

0 ≤ λk,h − λk ≤ C1h
rλqj

‖ek,h − ek‖2L2(M) ≤ C2h
2sλqk

,

where {λk,h}1≤k≤nh and {ek,h}1≤k≤nh are the eigenvalues and eigenvectors of the discretized
operator −∆h associated with a mesh size h.

Following the notations of the previous sections, let Z and Zh be the random fields defined
by:

Z = γ(L)W =
∑
j∈N

Wjγ(λj)ej (8.20)

and

Zh = γ(Lh)Wh =
nh∑
k=1

Wkγ(λk,h)ek,h , (8.21)

where {Wj}j∈N is a sequence of independent standard Gaussian variables. The expected ap-
proximation error of Z by Zh is then defined by :

‖Z − Zh‖L2(Ω;M) =
√
E
[
‖Z − Zh‖2L2(M)

]
(8.22)

and can be bounded using the following result.

Theorem 8.2.1. Let Vh, γ, −∆M and −∆h satisfying Assumptions 8.1 to 8.6.
Assume that the function γ is such that a < q + β in Assumption 8.2 and that the growth of
eigenvalues α, defined in Assumption 8.1, satisfies

1
2β < α ≤ min

{
2s
qd̃

; r

(q + β − a)d̃

}
. (8.23)

Then, for h > 0 sufficiently small, the approximation error of the GeGF Z (defined by Equa-
tion (8.20)) by its finite element discretization Zn (defined by Equation (8.21)) is bounded by

‖Z − Zh‖L2(Ω;M) ≤Mhmin{s; d̃(αβ−1/2); r} , (8.24)

where M > 0 is a constant independent of h.

Proof. See Appendix D.2 for a proof of this theorem.

In the applications that will be presented in the next chapter, Assumptions 8.1 to 8.6 are
satisfied and therefore, Theorem 8.2.1 applies. Indeed,

� Assumption 8.1 is a direct consequence of the Weyl asymptotic formula (cf. Theorem 6.5.4),
and will be satisfied as long as a compact connected Riemannian manifold is considered;

� Assumptions 8.2 and 8.3 depend only on a suitable choice of spectral density (or equiva-
lently covariance function) of the random fields with which we work;

� Assumptions 8.4 and 8.5 depend only on the size of the triangulation, which is also set by
the user;

� Assumption 8.6 is a consequence of (Strang and Fix, 1973, Theorems 6.1 & 6.2) for fine
enough triangulations.

In particular, we refer the reader to the work of Bolin et al. (2018) for an example of possible
values taken by the parameters defined in these assumptions.
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8.3 Example of construction of a finite element approxi-
mation

We assume in this section that a GeGF Z is built from a Neumann Laplacian on a compact
2-manifold M. We assume that a finite element space Vh = span {ψj : j ∈ [[1, Nh]]} has been
built on M from shape functions taken in P1. Hence the functions in Vh are piecewise-linear
and continuous functions of R2.

We seek to built the discretization ZNh of Z described in Theorem 7.3.5. This comes down to
building the matrices S and C defining the covariance matrix of the weights in Equation (7.36),
through the relation in Equation (7.37).

Recall first that each basis function ψj is related to the node x(j) of the triangulation through
Equation (8.17). In particular, on each triangle containing x(j), ψj coincides with the basis
function associated with x(j); and on the triangles that do not contain x(j), ψj is zero.

To each triangle T ∈ Th we associate a set (j1, . . . , jd+1) ∈ [[1, Nh]]d+1 such that the points
x(j1), . . . ,x(jd+1) are the vertices of T . In particular, if T0 denotes the standard d-simplex, the
map

FT : y ∈ T0 7→ FT (y) = x(jd+1) +MTy ∈ T , (8.25)

where
MT =

(
x(j1) − x(jd+1)| . . . |x(jd) − x(jd+1)

)
is a bijective map that sends T0 to T . Note that F−1

T is given by

F−1
T : x ∈ T 7→ F−1

T (x) = PT

(
x− x(j3)

)
∈ T0 , (8.26)

where PT = M−1
T if M is a d-submanifold of Rd (for instance a polyhedral set of Rd) and

PT = (MT
TMT )−1MT

T if M is a d-submanifold of Rd+1 (for instance a surface in R3). Then,
F−1
T maps any point of T to its first two barycentric coordinates.
Given a point x(j) ∈ Xh, we denote

T (j)
h = {T ∈ Th : x(j) is one the vertices of T} . (8.27)

Consider then some T = (j1, . . . , jd+1) ∈ T (j)
h and denote kj ∈ [[1, d + 1]] the index such that

j = jkj . Then the restriction of ψj to T is given by

ψj |T = p
(kj)
0 ◦ F−1

T ,

where the expression of the function p(kj)
0 is given in Table 8.1. As for the gradient of ψj on T

it is therefore given by
∀x ∈ T, ∇ψj(x) = P T

T ckj ,

where ∀k ∈ [[1, d]], ck denotes the k-th canonical basis vector of Rd and we set

cd+1 = −
d∑
k=1

ck = −1d

As expected, note that the gradient of ψj is constant over each triangle of the triangulation.

8.3.1 Construction of the mass matrix
Recall the expression of the elements of the mass matrix C ∈ MNh(R) in Equation (7.27). It
is a common practice to actually replace the matrix C by a diagonal matrix (also denoted C)
with entries given by

∀j ∈ [[1, Nh]], Cjj = 〈ψj , 1〉L2(M) .

This approach, called mass lumping, bears negligible effects on the outcome of the approximation
while bringing major simplifications (Chen and Thomée, 1985; Lindgren et al., 2011). Indeed,
the matrix C being now diagonal, its (inverse) principal square-root is given with no extra
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computational effort by taking the (inverse) square-root of its diagonal entries. This property
will be particularly useful when computing the scaled stiffness matrix S.

Mass lumping is applied in the following. The elements Cjj are defined by integrals over
(M, g). Given that the triangulation of M is a partition of this set, the integral over M can
be split into a sum of integrals over each simplex T ∈ Th. On each simplex T , assuming that
there exists a coordinate chart (UT , xT ) containing T , the integral can be expressed using local
coordinates, thus giving

Cjj =
∫
M
ψjdVg =

∑
T∈Th

∫
T

ψjdVg =
∑
T∈Th

∫
xT (T )

ψj ◦ x−1
T (t)

√
|gxT |(x−1

T (t))dt ,

where xT (T ) ⊂ Rd is the image of T through xT and |gxT | denotes the determinant of the
representative matrix of the metric g with respect to the coordinate chart (UT , xT ) at any point
of T ⊂ UT . In particular, given that the simplices T are portions of Rd, we can choose xT to be
the identity mapping Id and UT to be a small enough open set ofM containing T . This gives

Cjj =
∑
T∈Th

∫
T

ψj(p)
√
|g|(p)dp =

∑
T∈T (j)

h

∫
T

ψj(p)
√
|g|(p)dp ,

where T (j)
h is defined in Equation (8.27) for any p ∈ T , |g|(p) now denotes the determinant of

the representative matrix G(p) of the metric g with respect to the chart (UT , Id). In particular,
G(p) can be seen as a matrix defining local anisotropies over T through Equation (7.23).

Finally, a change of variable y = FT (p) in these integrals allows to express them as integrals
over the same domain T0

Cjj =
∑

T∈T (j)
h

∫
T0

ψj ◦ FT (y)
√
|g| ◦ FT (y)

√
det JFT (y)TJFT (y)dy ,

where JFT denotes the Jacobian matrix of FT . This gives the following expression of FT and ψj :

Cjj =
∑

T∈T (j)
h

√
detMT

TMT

∫
T0

p
(kj)
0 (y)

√
|g| ◦ FT (y)dy , (8.28)

where kj ∈ [[1, d + 1]] is the vertex index of the triangulation node x(j) in T ∈ T (j)
h and the

expression of p(∗)
0 is given in Table 8.1.

In practice, the computation of these elements is eased by assuming that the field of matrices
G(p) is constant across each triangle:

∀T ∈ Th, ∀p ∈ T, G(p) = GT ,

for some (symmetric) positive definite matrix GT . For fine triangulation and smoothly varying
matrices G(p) this approximation is valid and we usually take GT to be the value of G(p) at
the center of gravity of T or the mean of the values G(p) at the vertices of T . Hence,

Cjj =
∑

T∈T (j)
h

√
detMT

TMT

√
detGT

∫
T0

p
(kj)
0 (y)dy ,

where the remaining integral is actually the volume of the d + 1 standard simplex (cf. (Stein,
1966)). Hence,

Cjj = 1
(d+ 1)!

∑
T∈T (j)

h

√
detMT

TMT

√
detGT . (8.29)

8.3.2 Construction of the stiffness matrix
Following Equation (7.27), the elements of the stiffness matrix R are given by

∀i, j ∈ [[1, Nh]], Rij = 〈∇Mψi,∇Mψj〉L2(M) .
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Once again the integral over M is decomposed as a sum of integrals over each simplex of the
triangulation, thus giving

Rij =
∑
T∈Th

∫
T

∇ψi(p)TG(p)−1∇ψj(p)
√
|g|(p)dp ,

where G and |g| are defined as in the previous section. Using the fact that the gradients have
limited support, we get

Rij =
∑

T∈T (i)
h
∩T (j)

h

∫
T

∇ψi(p)TG(p)−1∇ψj(p)
√
|g|(p)dp .

Applying once again the change of variable y = FT (p) finally gives,

Rij =
∑

T∈T (i)
h
∩T (j)

h

√
detMT

TMT

∫
T0

cTkiPTG(FT (y))−1P T
T ckj

√
|g|(FT (y))dy

or equivalently
Rij =

∑
T∈T (i)

h
∩T (j)

h

√
detMT

TMT · cTkiPTHTP
T
T ckj , (8.30)

where HT is the matrix defined by

HT =
∫
T0

√
|g|(FT (y))G(FT (y))−1dy ,

and the integral of a matrix is understood as the integral of its entries. Note that if we once
gain assume that the matrices G(p) are constant on each triangle the coefficients Rij would be
given by

Rij = 1
d!

∑
T∈T (i)

h
∩T (j)

h

√
detMT

TMT

√
detGT · cTkiPTG

−1
T P

T
T ckj . (8.31)

For the element Rij to be non-zero, the nodes x(i) ∈ Xh and x(j) ∈ Xh must be the vertices
of at least one common simplex T . This means that x(i) and x(j) must form the edge of one
of the triangles (or tetrahedron) of the triangulation. Thus, the number of non-zero entries of
R is equal to the number of simplex edges in the triangulation, thus yielding the fact that the
matrix R will be sparse.

Recall now the concluding remarks of Section 7.3, which pointed out the link between ap-
proximation weights and graph signals. The particular form of Equation (8.31) actually allows
to specify the graph on which the signal lies. Indeed, denote by Gh the graph whose vertices are
the nodes of the triangulation Xh and such that i ∼ j whenever x(i) and x(j) form the edge of
one of the simplices of the triangulation. In particular, Gh is an undirected simple graph. Then
R is a shift operator of Gh. The following proposition even goes a step further.

Proposition 8.3.1. Let Gh be the graph defined from the vertices of the triangulation of a
domain M (as described above) with linear basis functions {ψj}j∈[[1,Nh]]. Let assume that each
edge (i, j) of Gh has weight wij given by

wij = −〈∇Mψi,∇Mψj〉L2(M), i ∼ j .

Then the stiffness matrix R defined from the basis functions is the graph Laplacian of Gh.

Proof. Note that ∀i 6= j vertices of the graph/triangulation, wii = 0 and wij = −Rij . Note
then that the degree di of the vertex i of Gh is given by

di =
n∑
j=1

wij = −
n∑
j=1
j 6=i

∑
T∈T (i)

h
∩T (j)

h

√
detMT

TMT · cTkiPTHTP
T
T ckj

= −
∑

T∈T (i)
h

∑
j∈Xh∩T
j 6=i

√
detMT

TMT · cTkiPTHTP
T
T ckj .
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Noting then that
∑
j∈Xh∩T ckj = 0 by definition of the vectors ck and of the indices kj , we

get
n∑
j=1

wij = −
∑

T∈T (i)
h

√
detMT

TMT · cTkiPTHTP
T
T (−cki) = Rii .

Hence the off-diagonal entries of R are minus the weights of Gh and the diagonal entries of R
are the degrees of the vertices of Gh. R is therefore the graph Laplacian of Gh.

Note that, given that C is taken diagonal, the scaled stiffness matrix S = C−1/2SC−1/2

is also a shift operator Gh and is a sparse matrix. Using graph filtering algorithms for the
simulations, prediction and inference of the approximation weights is therefore expected to yield
good computational and storage performances.

8.3.3 Particular case: constant anisotropy on a 2D grid
In this section, we look into the particular case where:

� The domain of studyM is a rectangular domain of R2.

� The coefficients of the metric are constant, meaning that the field of matrices {G(p)}p∈M
is constant overM. We then denote by G its value.

As we may see, we can leverage the redundancy of the entries of the stiffness matrix for storage
and computational gains.

The triangulation M is performed in two steps. First, a regular grid, with steps (l1, l2) is
defined over M. Then each rectangle dx × dy is divided into two triangles by cutting them
along the same diagonal. We assume here that all rectangles were cut along their top-left to
bottom-right. We call T rh this “grid” triangulation ofM.

To each triangle T ∈ T rh , we associate the vertex indices (j1, j2, j3) such that x(j3) is the
corner of T and x(j1) (resp x(j2)) is the vertex of T horizontally (resp. vertically) aligned with
x(j3). Then, by definition of the matrices MT we have

∀T ∈ T rh , MT = M = ε

l1
l2

 , ε ∈ {−1, 1}

The matrices MT = M , and PT = M−1
T = M−1 = P , are therefore independent of T .

Leveraging the fact that the metric coefficients are constant, the expressions of the coefficients
Cjj and Rij are therefore simplified to

Cjj = 1
6
∑

T∈T (j)
h

l1l2
√

detG = l1l2
6
√

detGCard
{
T ∈ T rh : x(j) ∈ T

}
, j ∈ [[1, Nh]] (8.32)

and
Rij = 1

2
∑

T∈T (i)
h
∩T (j)

h

l1l2
√

detG · cTkiPG
−1P T ckj , i, j ∈ [[1, Nh]] . (8.33)

Note that we now have ∀i, j ∈ [[1, Nh]],

Rij =
∑

T∈T (i)
h
∩T (j)

h

cTkiH̃ckj

where
H̃ = 1

2 l1l2
√

detG · PG−1P T .

These coefficients are non-zero only if i = j or i and j form the edge of one of the triangles of
the grid triangulation, i.e. i and j must be adjacent vertices in the triangulation graph. For a
triangulation point x(i), denote (i1, i2) ∈ [[1, n1]]× [[1, n2]] its grid coordinates. The only possible
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neighbors of x(i) are the points x(j) with grid coordinates (j1, j2) such that j1 − i1 ∈ {−1, 0, 1}
and j2 − i2 ∈ {−1, 0, 1}\{j1 − i1}.

Let us look at the different cases that arise. If j1 = i1 + 1 and j2 = i2, then the number of
triangles containing i and j is equal to:

� 0 whenever x(i) is on the right border of the grid,

� 1 whenever x(i) is either on the top or the bottom border,

� 2 in any other case.

When such triangles exist, (i, j) is their edge along the direction x1. Each triangle yields either
ki = 3 and kj = 1 or ki = 3 and kj = 1, meaning finally that Rij = δi1n1(2 − δi21 − δi2n2) ×
cT1 H̃c3 = −δi1n1(2− δi21 − δi2n2)× (H̃11 + H̃12).

The same reasoning gives:

� If j1 = i1 − 1 and j2 = i2, Rij = −(1− δi11)(2− δi21 − δi2n2)× (H̃11 + H̃12)

� If j1 = i1 and j2 = i2 + 1, Rij = −(1− δi2n2)(2− δi11 − δi1n1)× (H̃22 + H̃12)

� If j1 = i1 and j2 = i2 − 1, Rij = −(1− δi21)(2− δi11 − δi1n1)× (H̃22 + H̃12)

� If j1 = i1 + 1 and j2 = i2 − 1, Rij = 2(1− δi1n1)(1− δi21)H̃12

� If j1 = i1 − 1 and j2 = i2 + 1, Rij = 2(1− δi2n2)(1− δi11)H̃12

The graph filtering algorithms we plan to use to compute for instance simulations of the ap-
proximation weights heavily rely on products between the scaled stiffness matrix S = C−1/2RC−1/2

and vectors u. Such products are computed in three steps. First, the product v = C−1/2u is
computed, and amounts to the entry-wise multiplication of the entries of u by the diagonal ele-
ments of C. Then the product Rv is computed. And finally the result is once again multiplied
by C−1/2.

Following the particular expression of the elements of R, the product Rv can actually be
identified with the application of a convolution on an image with n1 × n2 pixels and where the
value at a pixel (i1, i2) is vi (at least if we disregard the borders of the image). In particular,
the convolution matrix of this operation is

2H̃12 −2(H̃22 + H̃12) 0
−2(H̃11 + H̃12) 4(H̃11 + H̃12 + H̃22) −2(H̃11 + H̃12)

0 −2(H̃22 + H̃12) 2H̃12

and is constant across the image. Hence, the actual computation of the product Rv can be
replaced in this case by an optimized image convolution algorithm, and the matrix R becomes
useless as the convolution matrix is entirely defined by the entries of H̃. Some minor adjustment
will be needed for the entries corresponding to border nodes but can be done a posteriori.

Conclusion
We introduced in this chapter an implementation of the discretization of GeGFs presented in
Section 7.3. The finite element method was presented and used to derive a finite-dimensional
vector space of basis functions on which GeGFs defined on a compact Riemannian manifold can
be approximated. In particular, these so-called finite element spaces consist of (deterministic)
interpolation functions attached to the nodes of a triangulation of the manifold. Computing the
weights using Theorem 7.3.5 then yields a numerical approximation of the GeGF, which can
then be used for simulation, estimation and inference purposes (cf. Chapters 3 to 5). This will
be illustrated in the next chapter.

A result of convergence of the finite element discretization of a GeGF was also introduced
and proven. As one way expect it, the convergence rate of the discretization towards the GeGF
depends mainly on the mesh size of the triangulation and on the regularity and speed of decrease
of the spectral density (and its derivative) defining the GeGF.
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Résumé
Dans ce chapitre, nous illustrons comment les champs généralisés définis sur des variétés

riemanniennes que nous avons introduit dans ce travail nous permettent de répondre aux prob-
lématiques de modélisation que nous nous posons, à savoir travailler sur des domaines spatiaux
complexes et avec des anisotropies locales.

Nous nous intéressons à trois tâches classiquement rencontrées en Géostatistique: la simula-
tion de champs gaussiens, leur estimation à partir de l’observation incomplète et bruitée d’une
réalisation et enfin l’inférence de leur propriétés de covariance dans le même cas. Nous mon-
trons comment notre cadre permet d’aborder ces trois tâches avec une approche “sans matrice”
qui ouvre le champ à des implémentations capables de travailler avec des grands jeux de données
tout en minimisant coûts computationels et coûts de mémoire (grâce à l’algorithme de filtrage de
Tchebychev). Nous présentons des exemples synthétiques ainsi que des exemples issus de données
réelles et répondant à des problématiques posées par la société ESTIMAGES.

Introduction
In this chapter we illustrate how the framework of generalized random fields on Riemannian
manifolds introduced in this dissertation allows to take on the two challenges that motivated our
work, that is the extension of classical isotropic Gaussian random fields of Rd to complex (and
bounded) domains and the definition of random fields with predefined local anisotropies.

On one hand, as long as the complex domain can be described as a d-manifold, our approach
is applicable. Hence, using a triangulation of the domain, a finite element approximation of a
generalized random field with spectral density γ2 can be defined from the functions of a finite
element space using Equation (7.36). On the other hand, when dealing with local anisotropies,
we saw how they could be used to define a Riemannian metric, which in turn would ensure that
the resulting random field respects them.

In this context three classical tasks in Geostatistics are performed: the simulation of Gaussian
random fields, their estimation from an incomplete (and possibly noisy) observation and the
inference of the covariance parameters from once again an incomplete observation of the field.
Concrete case studies are presented, using both synthetic and real data. In particular, the case
studies on real data come from the ongoing application of the modeling approach (and of the
algorithms) presented in this work within the activities of the ESTIMAGES company.

9.1 Simulation
In this section, we leverage our construction of generalized random fields on manifolds to yield
simulations of Gaussian random fields on various domains. More precisely, simulations of the
finite element approximation of our generalized random fields, defined by Equation (7.36), are
computed. Such simulations simply amount to the simulation of the Gaussian weights Z =
(Z1, . . . , Znh) through which they are defined. Given that the vector U = C1/2Z can be seen
as S-stationary graph signal (on the triangulation graph), we use the simulation algorithms of
Section 3.1 to generate a realization u of U and then obtain a realization of Z with the vector
z = C−1/2u.

It should be noted that using the Chebyshev filtering algorithm to generate the weights
turns the simulation process into a convolution process, with a possibly spatially varying kernel.
Indeed, note first that, given that linear finite elements are used, each weight zi actually corre-
sponds to the value taken by the realization of the finite element approximation Znh at the i-th
triangulation node. Besides, through Chebyshev filtering, zi can be expressed as

zi = 1√
Cii

ui = 1√
Cii

[
Sm[γ2](S)w

]
i

,

where w is a realization of a Gaussian white signal and Sm[γ2] is the Chebyshev approximation
polynomial of γ2 at some order of approximation m. Sm[γ2](S) being a polynomial graph filter,
its non-zero entries [Sm[γ2](S)]ij on its i-th row correspond to the vertices j of the grid that
are within a m-hop neighborhood around i. Hence zi is given as a linear combination of the
values of w at the vertices within a neighborhood of size m of i, and the weights are given by
the entries of the i-th row of Sm[γ2].
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Figure 9.1: Illustration of a grid triangulation. Each cell of a regular grid is split along its
diagonal to yield a triangulation of the domain initially covered by the grid.

In particular if we work with a triangulated grid (cf. Figure 9.1), the i-th entry of any nh-
vector can be seen as the value of the i-th pixel of an image having the same dimension as the
grid. In that case, zi can be seen as the result of applying at the i-th pixel of the image whose
pixel values are determined by w, the convolution kernel of size m with coefficients given by
the entries the i-th row of Sm[γ2]. In the following we will represent some of these convolution
kernels in the stationary case as then, the kernel matrix is identical for all nodes far enough from
the borders of the image.

9.1.1 Simulation of stationary Matérn models
Presentation of the model

The Matérn model is a widely used covariance model in Geostatistics due to its great flexibility
(Stein, 2012). For a lag distance h ∈ R+, its isotropic formulation is (Chilès and Delfiner, 2012):

C(h) = σ2

2ν−1Γ(ν)

(
h

φ

)ν
Kν

(
h

φ

)
,

where σ2 > 0 is the marginal variance, φ > 0 is a scaling parameter, ν > 0 is a shape parameter
andKν is the modified Bessel function of the second kind of order ν. The parameter ν can be seen
as a "smoothness" parameter as the underlying process is bνc-time mean-square differentiable.

Following the results from Whittle (1954), Gaussian random fields defined over Rd and with a
Matérn covariance can be seen as solutions of the following stochastic partial differential equation
(SPDE):

(κ2 −∆)α/2Z = τW , (9.1)

with W a spatial Gaussian white noise and κ > 0, τ > 0, α > d/2 and the pseudo-differential
operator (κ2 −∆)α/2 is defined by

(κ2 −∆)α/2[.] = F−1
[
w 7→ (κ2 + ‖ω‖2)α/2F [.](ω)

]
.

The parameters of the SPDE are linked to the parameters of the covariance function through

κ = 1/φ, α = ν + d/2, τ = σκν
√

(4π)d/2Γ(ν + d/2)/Γ(ν) .

Consequently, their spectral density is given by (Lang and Potthoff, 2011):

f(w) = τ2

(κ2 + ‖w‖2)α . (9.2)

We can therefore generate simulations of such fields using the finite element approximation given
in Theorem 7.3.5. All that is required is to generate a set of coefficients from a multivariate
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normal distribution with covariance matrix in Equation (7.37). Note that Lindgren et al. (2011)
defined a Markovian approximation of the same field using also the finite element method to
solve the SPDE (9.1) in the case where α is an integer. Their formula for the covariance matrix
of the weights actually coincides with ours.

We generate simulations of Gaussian random fields with a Matérn covariance function (which
we simply call Matérn fields in the following) using two methods for comparison purposes.
On one hand the Cholesky factorisation algorithm applied to the expression of the covariance
matrix in Equation (7.37) is used to generate the approximation weights, and on the other hand
the Chebyshev filtering algorithm is used. Only Matérn fields on a two-dimensional grid are
generated in this section, and with integer smoothing parameters ν, in order to facilitate the
comparison with the Cholesky method. Indeed, in this case, the precision matrix of the weights
will be sparse, rendering the Cholesky factorization tractable.

Order of the polynomial approximation

First, the effect of the order of the polynomial approximation on the resulting simulation is
investigated. To do so, simulations of a Matérn field are generated on a 200x200 grid, with range
25, sill 1 and smoothness parameter 1, and with a growing order. In Figure 9.3, simulations
obtained for degree values of 1, 5, 20 and 100 and the associated variogram (averaged over
50 simulations) are displayed. As a comparison, the same model simulated using the classical
Cholesky factorisation algorithm is displayed in Figure 9.2.

As noticed in Figure 9.3, increasing the order of the polynomial tends to add smoothness
and structure to the simulation. This is expected from a convolution algorithm as the size
of the kernel, which is directly linked to the order of the polynomial, grows (center images in
Figure 9.3). Moreover, there seems to be a point from which adding more polynomials does
not change the simulation, meaning that the Chebyshev polynomial approximation basically
converged.

Note also that the variogram of the simulations in Figure 9.3 tends to be respected as the
order of the polynomial grows. This fact was predictable and is due to the fact that the proposed
algorithm ensures that any linear combinations of the vectors generated by the algorithm have
the right variance within a given tolerance. Consequently, this will ensure that the variogram is
respected given that its value at particular lag h is just the variance of the difference between two
particular entries of the simulated vector that correspond to nodes of the triangulation separated
by an Euclidean distance of h.

Influence of the model

The influence of the covariance model parameters on the resulting approximations is now inves-
tigated. To do so, simulations of Matérn fields with different values of range and smoothness
parameters are generated (cf. Figure 9.4). For each set of parameters, the order of approxima-
tion is set so that the probability of rejection on the statistical tests with significance a = 0.05 is

Figure 9.2: (Left) Simulations of a Matérn model with range 25, sill 1 and smoothness
parameter 1 on a 200x200 grid using Cholesky factorisation. (Right) Mean variograms over 50

simulations (solid line) and model (dotted line).
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(a) Order of approximation =1.

(b) Order of approximation = 10.

(c) Order of approximation = 50.

(d) Order of approximation = 100.

Figure 9.3: (Left) Simulations of a Matérn model with range 25, sill 1 and smoothness
parameter 1 on a 200x200 grid using Chebyshev approximation with growing order. (Center)

Convolution kernels associated with the simulation. (Right) Mean variograms over 50
simulations (solid line) and model (dotted line).



190 9. Applications

(a) Range = 25, Smoothness = 1. Order of approximation = 76.

(b) Range = 50, Smoothness = 1. Order of approximation = 166.

(c) Range = 25, Smoothness = 3. Order of approximation = 84.

Figure 9.4: (Left) Simulations using Chebyshev approximation of a Matérn field on a 200x200
grid with various model parameters. (Center) Convolution kernels associated with the

simulation. (Right) Mean variograms over 50 simulations (solid line) and model (dotted line).

equal to (1+10%)a. Following the results of Section 3.2.2, this choice corresponds to a threshold
on the approximation error of 3.0e-02 (cf. Table 3.1).

The order of approximation used for each simulation is reported in Figure 9.4. It can be
noticed that increasing the range results in significantly higher orders of approximation to achieve
the same accuracy, whereas the effect of the smoothness parameters seems more limited. This
is just another consequence of the “convolution” nature of the algorithm, as explained at the
beginning of the section. The larger the range is, the larger the size of the kernel used to
generate the simulation from a white noise image should be as larger "spots" must be created,
and therefore the larger the order of approximation is. On the other hand, the smoothness
parameter mainly affects the smoothness of the kernel, not its size.

9.1.2 Simulation of general covariance models
In the previous subsection, only Matérn fields with integer smoothing parameters were con-
sidered. However, our simulation approach does not change at all if non-integer smoothing
parameters are considered. All we need is the expression of the (radial) spectral density of the
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field we wish to simulate. In particular, this expression is given by Equation (9.2) for the Matérn
covariance. Simulations of Matérn fields on a 2D grid with non-integer smoothing parameters
are displayed in Figure 9.5. Note in particular that, contrary to the integer case, such fields are
not Markovian.

As an illustration of the flexibility of the method, Figure 9.6 displays simulations of Matérn
fields for various spectral densities.

Note in particular the simulation of the spherical model, which is a covariance model with
compact support. Its covariance function (in the case where scale parameter and variance pa-
rameter are both set to 1) is defined by

C(h) = 1B ∗ 1B(h) ,

where 1B denotes the indicator function of the ball of radius 1/2 of R2, centered at 0. Its
spectral density is given by

f(ξ) = 1
π‖ξ‖2

J1

(
‖ξ‖
2

)2
, (9.3)

where J1 denotes here the J-Bessel function with parameter 1 (Lantuéjoul, 2013).
Besides, we also simulated oscillating Matérn models, which were introduced in (Lindgren

et al., 2011, Section 3.3) as solution of an oscillatory SPDE. Their spectral density is given by

f(ξ) = 1
(2π)2

(
κ4 + 2 cos(πθ)κ2‖ξ‖2 + ‖ξ‖4

)α/2
, (9.4)

where κ > 0 is a scale parameter, θ ∈ [0, 1[ is a parameter linked to the oscillation frequency and
α > 1 is parameter playing a role similar to the shape parameters of ordinary Matérn fields. In
particular for α = 2, the covariance function (in R2) of this model is given by

C(h) = 1
4iπ sin(πθ)κ2

(
K0

(
κ‖h‖e−iπθ2

)
−K0

(
κ‖h‖eiπθ2

))
.
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(a) Matérn with smoothness parameter ν = π/4.
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(b) Matérn with smoothness parameter ν = e1.

Figure 9.5: Simulations on a 400x400 grid of Matérn fields with real smoothness parameters
using the spectral density expression in Equation (9.2) and associated mean variograms over 50

simulations (solid line) and model (dotted line).
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(a) Spectral density : Equation (9.3).
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(b) Spectral density : Equation (9.4) with κ = 0.1, θ = 0.8, α = 1.
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(c) Spectral density : Equation (9.4) with κ = 0.1, θ = 0.95, α = π.

Figure 9.6: Simulations on a 400x400 grid of random fields with integrable spectral densities
expression and associated mean variograms over 50 simulations (solid line) and model when

available (dotted line).

We generated simulations for α = 1.5 and α = π, for which we could not find an expression of the
associated covariance function. However, in order to check the validity of the simulation obtained
by our algorithm, we computed it numerically using the Fourier transform of the spectral density.

9.1.3 Simulation on manifold
Figure 9.7 displays examples of simulations of Matérn fields on (smooth) surfaces of R2. The
simulation process doesn’t change from the previous examples. Only the triangulation step,
which is now carried out on the manifold, changes. Starting from a triangulation of each one
of these surfaces, the mass and stiffness matrices were built (using the Euclidean metric while
integrating on each triangle) and the weights were simulated using Chebyshev filtering. The
covariance model is the same for all these simulations, and consists of a Matérn model with
shape parameter ν = 3 and scale parameter φ = 0.12R where R is the size of the smallest ball
containing the surface.

The meshes of the sphere and the hyperboloid were generated using the mesh processing
software MeshLab (Cignoni et al., 2008). As for the mesh of the duck and the cow surfaces, they
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are part of the Keenan Crane’s 3D model repository (Crane, 2019).
Our simulation approach generalizes easily to three-dimensional domains: only the formulas

used to compute the mass and the stiffness matrices change. This is illustrated in Figure 9.8,
where a Matérn field with shape parameter ν = 1 was simulated on a solid torus.

(a) Sphere. (b) Hyperboloid.

(c) Toroidal duck. (d) Cow.

Figure 9.7: Simulations of Matérn fields on smooth two-dimensional surfaces.

Figure 9.8: Simulation of a Matérn field on a solid torus (Left) and slices of the same torus
(Right).
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9.1.4 Simulation of fields with local anisotropy
Following the approach described in the introduction of this section, a metric was defined from
fields of anisotropy defined on each domain. Then the simulation process was carried out in the
same manner as in the other cases. Hence, accounting for local anisotropies only impacts the
construction of the mass matrix and the stiffness matrix.

(a) Anisotropy field.

(b) Simulation.

Figure 9.9: Simulation of a non-stationary Matérn field with global range 150 and sill 1, and
local anisotropies, carried out on a “geological layer” with overall extension 500x200.

(a) Circular anisotropies.

(b) Arbitrary field of anisotropy.

Figure 9.10: Simulations on a 400x400 grid of Matérn fields with local anisotropies. (Left) Map
giving the principal direction of the anisotropy (Right) Resulting simulation.
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Figure 9.9 displays a simulation carried out on a domain resembling a geological layer. The
direction of the anisotropies follows the curvature of the layer and the anisotropy ratio is locally
proportional to the thickness of the layer (with a maximum value of 1.5).

Figure 9.10 displays Matérn fields with shape parameter ν = 1 and range 50, generated on
a grid in which local anisotropies were specified. The directions of the major axes of anisotropy
are represented as straight lines in each case, and the anisotropy ratio, i.e. the ratio between
the lengths of the two main directions of anisotropy, are kept constant in these examples (and
equal to 1/5).

9.2 Prediction of non-stationary fields
In this section, we apply our framework for modeling random fields with local anisotropies to
mapping and filtering tasks using kriging estimates. The main limitations in usual applications
come from the construction of covariance matrices relating to covariance models that would take
into account the local anisotropies. Besides, such matrices are doomed to be full in general,
rendering this approach hardly scalable.

Our approach answers both problems. On one hand, we showed that building the model from
the Laplace-Beltrami operator defined from the local anisotropies ensures that the covariance is
locally anisotropic. As the model is defined globally across the domain, through the eigenfunc-
tions of the Laplace-Beltrami operator, the global coherence of the model is ensured. On the
other hand, the Chebyshev trick allows to render calculations scalable.

9.2.1 Kriging estimate of non-stationary fields
First, we look into the mapping problem. Namely, we assume that we observe the value of a
random field Z on a domainM at no locations and aim at building an estimator of Z overM
from these observations. We also assume that Z displays local anisotropies that are known at any
point ofM, and that the parameters defining the covariance model of Z are also known. Finally
we assume that the observations are tainted by a measurement noise, modeled by independent
zero-mean Gaussian variables with standard deviation τ .

The estimator we choose to answer this problem is the kriging estimate, as it is the best
unbiased linear estimator we can build using the observation data. Denoting p1, . . . ,pn the
observation points, and assuming a Gaussian model, the kriging estimator at a point p is given
by (Wackernagel, 2013):

Z∗(p) = E[Z(p)|Z(p1), . . . , Z(pno)], p ∈M .

If we now assume that Z is the finite element approximation of a generalized random field,
we can write

Z(p) =
nh∑
k=1

Zkψ(p), p ∈M (9.5)

where {ψk}1≤k≤nh is the set of nh interpolating functions defined from the triangulation ofM
(cf. Section 8.1), Z1, . . . , Znh is a collection of correlated Gaussian weights whose covariance
matrix is given by Theorem 7.3.5.

We can then rewrite the kriging estimate as

Z∗(p) = E[ψTpZ|MoZ + τWo] = ψTpE[Z|MoZ + τWo], p ∈M , (9.6)

where Wo is a vector of no independent standard Gaussian variables, Z = (Z1, . . . , Znh)T ,
∀p ∈M, ψp := (ψ1(p), . . . , ψnh(p))T and in particular

Mo =


ψTp1

...
ψTpno

 . (9.7)

Hence, the kriging estimate of Z at any point p is obtained as a weighted sum of the entries of
the conditional expectation of the vector Z.
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The kriging estimate in Equation (9.6) is computed as follows. The weights ψp are entirely
determined by the location of p ∈M and the basis functions of the finite element space. Regard-
ing then the computation of the conditional expectation, recall that, following Theorem 7.3.5, Z
can be seen as a (linear transform of a) stochastic graph signal with covariance matrix given by
Equation (7.37). In particular, Z is a stationary stochastic graph signal having the same spectral
density as the Gaussian field Z. Hence, the conditional expectation in Equation (9.6) can be
computed using the algorithms presented in Section 4.1, which concludes the computation of the
kriging estimate.

This approach to kriging is now tested in two situations, using synthetic and real data.

Synthetic data

We first apply this method to synthetic data. We generated a simulation of a Matérn field on
a grid, following a specific anisotropy pattern (cf. Figure 9.11a). Then we sampled the field
using two strategies: on one hand the samples were chosen equidistant on the grid at a rather

(a) Simulation a non-stationary field, and associated local anisotropies.
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(b) Kriging estimate with regular sampling.
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(c) Kriging estimate with uniform sampling.

Figure 9.11: Kriging estimate from simulated data. For (b) and (c): the sampled points are
represented in the left figure, the kriging estimate in the middle figure and the right figure

represents a density plot of the correlation between the estimate and the original (simulated)
field. High densities are in red.
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dense frequency, and on the other hand, 200 uniform points were drawn from the grid. The two
kriging estimates are presented in Figures 9.11b and 9.11c.

In both cases we can observe the smoothing effect of the kriging estimate, which is due to
the fact that it is basically a linear estimator (Wackernagel, 2013). Also, even with a sparse
sampling, the estimate has no trouble recreating the local anisotropies of the field. Hence, the
kriging procedure presented here seems particularly appropriate to efficiently take into account
anisotropy-related information in mapping problems.

Real data

The anisotropic mapping method presented in this work was put to test on real geological data.
When trying to locate an oil reservoir in the subsurface of a field, a go-to method consists in
using seismic imaging. Through this process, an echography of the subsurface is obtained by
“shooting” acoustic waves into the subsurface, and then studying their reflection on the different
geological interfaces composing the subsurface. In particular, complex processing methods are
performed to turn the detected times of arrival of these waves after reflection on a given interface
into the actual depth of this surface.

In this case study, our starting point is a map {Zs(p) : p ∈ D} of the depth of an interface
across a field D, which was obtained by processing seismic data (cf. Figure 9.12 for an example).
In general, small disparities are observed between the depth obtained after processing the seismic
data and the actual depth of an interface, which is observed while digging wells. Hence, a step
of calibration of the “seismic” depths is performed so that both depths agree at the points where
well data are available.

(a) Representation of the geological interface obtained from the
seismic data, as a 3D surface.

(b) Depth map obtained from seismic data. The continuous
lines represent level sets, and the black dots represent well

locations.

Figure 9.12: Representations of the seismic data from the ODA field.



198 9. Applications

Denote by {Zw(xi) : i ∈ [[1, Nw]]} the depths observed on the wells dug at the locations
x1, . . . ,xNw ∈ D. The calibration step is carried out by kriging over the field D the residuals
R(xi) = Zw(xi)− Zs(xi), i ∈ [[1, Nw]] computed at the well locations. Indeed, the interpolating
nature of the resulting kriging estimate {R∗(p) : p ∈ D} will ensure that the corrected depth Zc
defined by

Zc(p) = Zs(p) +R∗(p), p ∈ D,

coincides with the well depths at the well locations.
Outside the grid locations, the kriging estimate R∗ corrects the seismic depths by spatializing

the residuals. It was observed in practice that these residuals tend to vary smoothly along the
level sets of the seismic depths: the same is therefore expected for their spatialization. Hence,
performing the kriging step using an isotropic covariance model would not yield satisfying results.

Instead, a locally anisotropic mapping is performed using the method presented in this sec-
tion. First, a map of local anisotropies over D is defined from the level sets of the seismic data Zs:
basically, these local anisotropies correspond at each p ∈ D to the angles defining the tangent to
the level set of Zs passing through p. These angles can be determined using image processing
algorithms based on gradient computations (Rahmat and Harris-Birtill, 2018).

Then the kriging step is performed by considering that the residuals are samples from a
Gaussian random field displaying these local anisotropies. As seen earlier, the spatialization of
the residual resulting from the kriging estimate will then recreate the shape of the level sets of
the seismic data, thus answering our concern.

As part of a study conducted for SPIRIT ENERGY, this workflow was applied on seismic
and well data from the the ODA field (cf. Figure 9.13), which is located in the Norwegian North
Sea (licence PL405). The results are presented in Figure 9.13. The proposed correction was
later validated by a new campaign of well digging.

(a) Local anisotropies on the field and location of
the observation points.

(b) Kriging estimate.

Figure 9.13: Kriging estimate of residual points between well and seismic data from the ODA
field.

9.2.2 Filtering of non-stationary fields
Geostatistical filtering relies on the assumption that a complex regionalized phenomenon can be
seen as a superposition of independent simpler phenomena, each characterized by its own range
of influence and its own spatial structure (Hoeber et al., 2003; Piazza et al., 2015). Formally, this
means that an observed complex signal Z can be decomposed as a sum of independent (Gaussian)
random fields, each characterized by its own variogram and anisotropy models. Filtering then
consists in extracting one of these components, denoted Zs, from an observation of Z that can
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be expressed as
Z = Zs + Z(1)

n + · · ·+ Z(m)
n , (9.8)

where Z(1)
n , . . . , Z

(m)
n denote the m independent noise fields that compose Z together with the

“true” (unspoiled) signal Zs.
The Factorial Kriging (FKr) method, proposed by Matheron (1982), solves this problem by

estimating the value of the true signal using the observed noisy signal in a kriging approach
(Wackernagel, 2013). Formally, if Z(p1), . . . , Z(pno) denote the observations of the noisy signal
at no locations p1, . . . ,pno , then estimates Z∗s (p1), . . . , Z∗s (pno) of the true signal at a location
p are given by

Z∗s (p) = σs(p)T
(
Σs + Σ(1)

n + · · ·+ Σ(p)
n

)−1


Z(p1)

...
Z(pno)

 , (9.9)

where σs(p) ∈ Rno denotes the vector containing covariances of the true signal Zs between p
and each data location and Σ(1)

n , . . . ,Σ(m)
n denote the covariance matrices of the noise fields

Z
(1)
n , . . . , Z

(m)
n .

We propose to use the characterization of random fields on manifolds presented in our work
to perform geostatistical filtering, while relying on graph filtering algorithms. Indeed, the same
approach as the one outlined in Section 9.2.1 can be followed. The true signal and the noises are
both written as finite element approximations (cf. Equation (9.5)). We assume that the observed
values of the noisy signal are affected by a small measurement error modeled by independent
(zero-mean) Gaussian variables with variance τ2.

Then, using the same notions as for Equation (9.5), Equation (9.9) can be rewritten as

Z∗s (p) = ψTpE[Z|MsZs +M1Z
(1)
n + · · ·+MmZ

(m)
n + τWo], p ∈M , (9.10)

where the vector Zs (resp. Z(1)
n , . . . ,Z

(m)
n ) contains the weight of the finite element represen-

tation of Zs (resp. Z
(1)
n , . . . , Z

(m)
n ) and the matrix Ms (resp. M1, . . . ,Mm) is defined as in

Equation (9.7) using the basis functions associated with Zs (resp. Z(1)
n , . . . , Z

(m)
n ). Finally, Wo

is once again a vector with no independent standard Gaussian entries.
Hence, as it was the case for the kriging estimate in Section 9.2.1, the factorial kriging

estimate can be estimated using the fact that Zs,Z(1)
n , . . . ,Z

(m)
n is interpreted as independent

stochastic graph signals. This time, the results of Section 4.2 are used to compute the conditional
expectation in Equation (9.10). Then the factorial kriging estimate at any point p of the domain
is given as a linear combination of the entries of this conditional expectation vector, weighted by
the vector ψp. This approach is now applied to two case studies using synthetic and real data.

Synthetic data

In this first case study, we simulated two Matérn fields on a 400x400 grid, some of which pre-
senting local anisotropies, and added them to define our input (noisy) signal (cf. Figure 9.14).
Precisely, the noisy signal to be filtered is composed of:

� A non-stationary field defined by a Matérn covariance function with smoothness parameter
3, ranges 100 and 20 along its principal directions, and sill 1. It has local anisotropies that
describe a vortex-like shape. This field is the true signal we want to extract.

� A non-stationary field defined by an exponential covariance function with ranges 25 and
8 along its principal directions, and sill 0.4. It has local anisotropies that describe a “X”
shape.

The filtering process was launched on the noisy image. The covariance parameters and the
angles defining the anisotropies of the true signal and of the noise were used to compute the
factorial kriging estimate of Equation (9.10) at each point of the grid. The output obtained
from the filtering process is presented in Figure 9.15. As we see, the filtering process successfully
extracted the true signal from the noisy observation. However we seem to obtain a smoothed
version of the input: this is a consequence of the fact that the true signal is estimated through
a kriging approach, which tends to yield smoothed outputs (Wackernagel, 2013).
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(a) Simulated “signal” and
associated local anisotropies.

(b) Simulated “noise” and
associated local anisotropies.

(c) Noisy signal.

Figure 9.14: Simulated data for the filtering test. The noisy signal (c) is the sum of the
simulated “signal” (a) and the simulated “noise” (b).

(a) Filtered output. (b) Original signal.
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(c) Density scatter plot.

Figure 9.15: Results of the filtering algorithm applied to the simulated data.

Real dataset

Once again, the methods developed in this work were tested on real geological data. This
time, the idea is to filter out noises from the seismic data. Such noises are a consequence of
the methods applied to acquire the seismic data. If not removed, they make it difficult to
identify zones of interest in the subsurface from the seismic data. These noises tend to be
spatially correlated inside the “seismic” cube, which is the three-dimensional volume formed by
the domain of acquisition D and the seismic depth. That is why geostatistical filtering is a good
choice of algorithm, as it allows to specify spatially correlated models for the data.

In particular, using the approach presented in this section to perform geostatistical filtering
allows to easily specify the local directions of the noise as local anisotropies. They will then
naturally be taken into account in the filtering process. In particular, these directions can be
identified on the data using image processing techniques.

The case study corresponds to the application of the geostatistical filtering on a vintage 2D
seismic line located in the Amadeus basin (onshore Australia), and provided by the Australian
company CENTRAL PETROLEUM. The data was originally acquired in 1966, reprocessed in
1984 and vectorized from a hardcopy in 2010. It is displayed in Figure 9.16. As one may notice,
the image is very noisy due to its long history. Moreover, in some parts of the image, the signal
is almost completely attenuated by the noise: this is the case in high dip areas, where the high
slope of the geological interface made it hard to retrieve a satisfying level of signal from the
seismic measurements.

The first step was to derive a generic variogram model composed of the signal and noise struc-
tures. Random and linear noises were identified and characterized through stationary covariance
functions. This was done following the same approach as the one described by Magneron et al.
(2009). In particular, a smooth component corresponding to the true signal was identified, and
5 additional noisy components characterized by global geometric anisotropies were identified.
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This work was done by expert geophysicists, who used their prior knowledge of the dataset to
separate what is supposed to be the noise from the signal (during the variogram modeling step).

Then, local dips were assigned to the signal to be consistent with the geological structure.
This was done using the PaleoscanTM software from the French company ELIIS, which allows to
identify the global shape of some geological interfaces from noisy seismic images (cf. Figure 9.17).
The angles describing locally these interfaces were extracted and interpolated on the whole
domain. They serve as local anisotropy angles defining the signal to extract with the filtering
process.

Thus, with local anisotropies defined, the geostatistical filtering approach allowed the filtering

Figure 9.16: Input seicmic data from the Amedeus basin (Courtesy of CENTRAL
PETROLEUM). The data form a 2778x1001 grid.

Figure 9.17: Identification of some geological interfaces from the noisy data of the Amadeus
basin using the PaleoscanTM software.
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out of noise while preserving the true signal. This is clearly demonstrated in Figure 9.18 where
there is no obvious signal remaining in the noise image. More impressive was the restoration of
the signal in the high dip areas, which was only possible using our filtering approach, since the
linear noise interferes strongly with the signal in these parts of the image.

The results were validated by CENTRAL PETROLEUM, and it was proposed to use this
approach of geostatistical filtering solution as a valid alternative to expensive full seismic repro-
cessing of seismic lines.

(a) Filtered output.

(b) Noise extracted.

Figure 9.18: Results obtained from the filtering process to the noisy data of the Amadeus basin.



9.3. Inference of non-stationary fields 203

9.3 Inference of non-stationary fields
Following the work presented in the last two sections, we describe here how the problem of
inferring the covariance parameters of a non-stationary Gaussian field or of a field defined on a
smooth surface, can be linked to the inference of the covariance parameters of a stochastic graph
signal.

Let us assume that a non-stationary Gaussian random field Z is observed at no locations
p1, . . . ,pno of a domain M (which can be a smooth surface). The idea is to once again model
Z through the finite element representation given by Equation (9.5). Then, following the same
approach as in Section 9.2.1, we get 

Z(p1)
...

Z(pno)

 = MoZ

whereMo is given by Equation (9.7) and Z is a stochastic graph signal having the same spectral
density as the Gaussian field Z. In particular, Z is S-stationary where S is the scaled stiffness
matrix in Theorem 7.3.5 and is therefore defined by the triangulation of the domain and the
field of local anisotropies.

By assuming that the observed values of Z are affected by a measurement error modeled
by independent zero-mean Gaussian variables with variance τ2, the inference problem of Z falls
under the scope of the inference of stochastic graph signals studied in Chapter 5. Hence, using
parametrized families of spectral densities, measurement error variances and fields of anisotropies
(which in turn can define parametrized families of shift operators), the algorithms presented in
Chapter 5 could tackle the inference linked to non-stationary fields and to fields defined on
complex domains.

We now present an implementation of this inference paradigm on a simple case. We generate
and then sample a simulation of a non-stationary field on a 200x200 grid (cf. Figure 9.19). We
assume that the local anisotropies are known, as well as the measurement error variance (which
was set to a negligible value). Only the parameters of the covariance function/spectral density
of the field are therefore estimated. We therefore fall into the scope of Section 5.3 and an EM
approach is used (and in particular the one described in Algorithm 5.5).

Following the advice of Section 5.3, the inference is performed while using the Markovian
assumption, meaning that the inverse of the spectral density is parametrized as a polynomial.
Besides, the shift operator was computed and stored once and for all, and its eigenvalues were
computed once and for all to ease all determinant computations. The quality of this approxi-
mation is actually evaluated in Figures 9.20 and 9.21.

Figure 9.19: Simulated field used for the inference study. Matérn field with smoothness
parameter π/4, ranges along the two principal axes of 50 and 10, sill 1, and local anisotropies

distributed along concentric circles.
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Figure 9.20: Comparison of the true histogram (black) and the one estimated using the
approach of Section 2.3.2 (red). For computational reasons (due to the fact that the real
eigenvalues are computed), this study was performed on a 100x100 grid with the same

anisotropies as in Figure 9.19.

Figure 9.21: Evolution, with the number of breaks, of the mean proportion approximated
eigenvalues that are missclassified in histogram bins. For computational reasons (due to the

fact that the real eigenvalues are computed), this study was performed on a 100x100 grid with
the same anisotropies as in Figure 9.19.

The results obtained from the inference are displayed in Figure 9.22. In particular, given that
Algorithm 5.5 is used, the kriging estimate and conditional simulations are byproducts of the
inference task. They are also displayed in Figure 9.22 (for the last iteration of the algorithm).
Hence, the spectral density of the field is perfectly reconstituted when a small number of points
are removed from the simulation. However the quality of the approximation deteriorates quickly
when more points are removed. In particular, we observe that when only a third of the grid
points are left, the algorithm does not yield an accurate estimate. We think that this is due
to the fact that the sampling does not provide enough information to recreate the covariance
structure.

Conclusion
We showed in this chapter how the link between, on one hand, non-stationary random fields and
fields defined on complex domains, and on the other hand stochastic graph signal processing
could be leveraged to yield new approaches to the simulation, the prediction and the inference of
such fields. This link comes from the identification of the Gaussian fields to generalized random
fields defined on an appropriate Riemannian manifold, and then discretizing these generalized
random fields using for instance the finite element method.
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(a) Points removed.

(b) Kriging estimate.

(c) Example of conditional simulation.

(d) Spectral density obtained.

Figure 9.22: Results from the inference process. The left images correspond to the case where
10% of the grid points were removed and the right image to the case where 50% of the grid

points were removed.
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Hence the tasks of simulating, predicting and inferring these complex Gaussian random fields
were reduced to performing the same tasks on stochastic graph signals. The methods introduced
in Chapters 3 to 5 were then applied in this context. Examples of applications to both synthetic
and real data were showcased.

The approach for modeling Gaussian random fields presented in this work is promising.
Within the same framework both complex domains and local anisotropies are treated, which
frees the user from wondering which type of approach to use. Moreover the ability to accurately
and easily incorporate prior information on the structure of a Gaussian field into its model offers
a great flexibility to the practitioner, as illustrated in the case studies.



Conclusion

Summary and contributions
This work aimed at designing an approach to circumvent two problems often encountered when
dealing with spatial data:

� Finding a model suited to complex geostatistical data: by complex we mean data that
either lie on a space that cannot be considered as a “chunk” of Euclidean space (eg. a
smooth surface in R3) or has to be modeled with a non-stationary model.

� The big n problem: building the covariance matrices necessary to perform simulations,
prediction and inference based on the spatial data becomes untractable in large-scale set-
tings.

Let Z denote a zero-mean Gaussian random field that we which to use to model our spatial
data, as described above. We assume that if Z is non-stationary, its covariance is characterized
by a known field of local anisotropy parameters. Hence, the proposed modeling approach should
allow to take in this information as smoothly as possible.

To solve the problems stated above, we propose to redefine the Gaussian fields used to model
the spatial data within the framework of Riemannian manifolds, using the notion of generalized
random field. Let us first recall quickly these notions.

A Riemannian manifold is the association of a manifoldM with a Riemannian metric g. On
one hand, the manifold M is a set that can locally be considered as Euclidean. On the other
hand, the Riemannian metric g is an application that smoothly associates to each point p ∈M
an inner product on the tangent space ofM at p. In particular, g can be represented by a field
of positive definite matrices {G(p)}p∈M defining these inner products.

Hence, the two components that define a Riemannian manifold (M, g) are particularly suited
to answer the modeling question asked in this work. Indeed, the manifoldM is used to represent
the domain on which the data lie. If Z is non-stationary, the Riemannian metric g is used to
model the local anisotropies defining the non-stationary model. In particular, for p ∈ M, the
matrix G(p) defining the metric is built as

G(p) = R(p)D(p)2R(p)T ,

where R(p) is the rotation matrix defined from the anisotropy angle(s) at p and D(p) is the
diagonal matrix whose entries are the inverse of the anisotropy ranges (cf. Section 7.4.2).

On this problem-dependent Riemannian manifold, we propose to work with a class of gener-
alized random fields defined from the Laplace-Beltrami operator of (M, g) and which satisfies

Z =
∑
j∈N

γ(λj)Wjej , (9.11)

where

� {λj}j∈N (resp. {ej}j∈N) is the set of eigenvalues (resp. eigenvectors) of the negative
Laplace-Beltrami operator of (M, g),

207
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� γ is the square-root of the spectral density of an isotropic covariance function C.

As defined, Z is the counterpart on the Riemannian manifold of an isotropic random field
with covariance C = F−1[γ2]. Hence, Z answers the modeling problem initially posed. On one
hand, the fact that it is defined from a manifold-dependent operator ensures that it is adapted to
geometry of the manifold (and therefore of the domain on which the data lie). On the other hand,
the local geometry induced by the Riemannian metric ensures that the field of local anisotropies
is honored (cf. Section 7.2.2).

Working directly with Equation (9.11) would require to compute the eigenfunctions and
eigenvalues of the Laplace-Beltrami operator. We rather propose to approximate Z by a weighted
sum of user-defined deterministic and n linearly independent functions {ψk}1≤k≤n. Finally, we
use this sum to characterize the field Z we wished to model from the start, thus giving:

Z =
n∑
k=1

Zkψk , (9.12)

where Z1, . . . , Zn is a set of zero-mean (correlated) Gaussian weights.
In order to characterize Z, we derived in Theorem 7.3.5 the expression of the covariance

matrix of the weights in Equation (9.12). This result gives that Z = (Z1, . . . , Zn) forms a
Gaussian vector with covariance matrix

Var[Z] = C−1/2γ2(S)C−1/2 , (9.13)

where C is a diagonal matrix with entries Cii = 〈ψi, 1〉L2(M) > 0 and S is a symmetric positive
semi-definite matrix with entries Sij = 〈∇Mψi,∇Mψj〉L2(M)/

√
CiiCjj . Note in particular that

the entries of the matrices C and S are defined using the inner product (and the gradient
operator) defined on the Riemannian manifold, and therefore account for the local anisotropies
through the metric.

At this point the modeling problem stated at the beginning of this conclusion is solved.
Tackling the big n problem is then done in two steps.

First, we propose to set the functions {ψk}1≤k≤n in Equation (9.12) to be the basis functions
of the finite element method. Hence the domainM is triangulated and each ψk is attached to
one of the nodes of the triangulation and has a support limited to the triangles to which the
node belongs. Consequently, the resulting matrix S in Equation (9.13) is sparse. The idea is
then to look for so-called matrix-free approaches, that would allow to work with the covariance
matrix of Equation (9.13) without actually having to build it. In particular, the approach we
end up proposing only relies on product by S, which sparse. Hence both computational and
storage costs are saved.

Indeed, we note that Z is in fact entirely determined by the weight vector Z, which in turn
can be deduced from the vector X defined by

X = C1/2Z .

Hence, the inference, simulation and prediction tasks we wish to perform on Z can be transferred
to X, which is a Gaussian vector with covariance matrix given by

Var[X] = γ2(S) .

As defined, the vector X can be interpreted as a (stationary) stochastic graph signal on the
graph whose vertices and edges are the vertices and edges of the triangulation of M. Using
the framework of graph signal processing, we introduced the Chebyshev filtering algorithm,
which aims at computing (an approximation of) products by a matrix function h(S) (for a real
function h). This algorithm basically replaces a product h(S) by a product by a polynomial
matrix, defined from the Chebyshev series approximation of h over the set of eigenvalues of S.
Then the product by the polynomial matrix is performed with a linear complexity through an
iterative approach that only involves products by S.

We proposed methods based on the Chebyshev filtering algorithm to perform simulations,
estimations and inference of stochastic graph signals (cf. Chapters 3 to 5). The derived algo-
rithms can all be considered as matrix-free algorithms and as such, are highly scalable. These



209

algorithms were derived while keeping in mind that they would be used as proxies to perform
the same tasks on a Gaussian field Z defined by Equation (9.12).

For the simulation algorithm, we evaluated both the numerical and the statistical errors in-
duced by using the approximations of the Chebyshev filtering algorithm. In particular we derived
criteria on the approximation error of the polynomial approximation so that the resulting simu-
lation would be statistically indiscernible from simulations performed with an exact algorithm.
The estimation problems were formulated to echo the kriging (and the factorial kriging) esti-
mates classically encountered in Geostatistics. As for the inference problem, approaches based
on likelihood maximization and on the EM algorithm were proposed.

Circling back to our initial problem, we applied the modeling approach introduced in this
work to several case studies involving both real and synthetic data (cf. Chapter 9). It showed
how the method was able to accurately account for non-stationary models and for the geometry
of the domain. Hence this new approach provides new tools to better model spatial data, and
easily take into account prior structural information about the field we wish to model.

Future work

Estimation of local anisotropies
A first extension of this work concerns the inference of non-stationary fields. Indeed, in this work,
we assumed that the field of local anisotropies characterizing the random field was known. If we
drop this assumption, then the field of anisotropies must also be inferred from the data. The
inference algorithms introduced in Chapter 5 actually account for this case. Indeed, they assumed
that the shift operator, which is defined from the local anisotropies, could also parametrized.
Hence, we just need to define a parametrization of the local anisotropies across the domain. For
a two-dimensional domain, Fuglstad et al. (2015) proposed to represent the local anisotropies as
a vector field, defined as the gradient of a real-valued sinusoidal function of R2. This idea could
be generalized to more general functions.

Another idea to model local anisotropies consists in estimating the field of values of each
parameter directly across the domain. In an inference context, given an anisotropy parameter
θ, we could set up a number of “anchor” points across the domain, and define the value of θ at
each point of the domain from the values of θ at the anchor points. This can be done using for
instance splines or Gaussian processes.

Finally, we could once again identify the field of local anisotropies with a Riemannian metric
defined across the domain and try to directly estimate the metric from the data. Indeed, some
approaches aiming to estimate the metric of a Riemannian manifold, given the observation
of some data points in this manifold, have been introduced in Machine Learning applications
(Lebanon, 2002; Peltonen et al., 2004), and might represent an alternative to the inference
process proposed above.

Spatio-temporal models
A second extension of the work presented in this dissertation would be spatio-temporal modeling.
A starting point could be to consider non-separable space-time models defined from transport
and diffusion stochastic partial differential equations (SPDEs) (Lindgren et al., 2011). These
models were extensively studied by Carrizo Vergara (2018). They naturally generalize SPDEs
used to define spatial random fields, to a spatio-temporal framework. In particular, we propose
to consider (generalized) random fields defined on a Riemannian manifold (M, g) as solutions of
a SPDE of the form

∂Z

∂t
(t,p) + f(−∆M)Z(t,p) = E(t,p) (9.14)

where f is a function of the real line (with appropriate regularity) and E is a stochastic spatio-
temporal noise field. Such SPDEs are the counterparts on Riemannian manifolds of the evo-
lutions models introduced by Carrizo Vergara (2018) (using the analogy between functions of
Laplacian and pseudo-differential operators).

Such models can be numerically solved through a discretization of the equation using an
Euler or a Crank-Nicholson scheme associated with a spatial finite element approach (Lindgren
et al., 2011; Thomas, 2013). In particular, the solutions obtained at each time step then depend
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on the stiffness matrix defined from the finite element approach, and would therefore open the
path to using matrix-free algorithms to ensure the scalability of the procedure.

Another idea to deal with Equation (9.14) would be to try to solve it directly. Indeed, notice
that by setting E = 0 and f to be the identity map, Equation (9.14) reduces to the heat equation
defined on (M, g). Extensive literature exists on the characterization of the solutions of the heat
equation on a Riemannian manifold, as they are directly linked to the eigendecomposition of the
Laplacian −∆M (cf. (Craioveanu et al., 2013)). Extending the resolution method of the heat
equation to the “generalized” version proposed in Equation (9.14) could provide a starting point
to derive solutions of Equation (9.14).

Finally, note that working with a Riemannian manifold (M, g) would once again offer a way
to define fields on M with local anisotropies by setting the metric g accordingly. Moreover,
transport terms can also be introduced by adjusting the metric appropriately. Indeed, if (M, g)
is a Riemannian d-manifold, with Laplace-Beltrami operator ∆M and gradient ∇M, and if
a ∈ C∞(M) such that a is strictly positive, then g′ = a · g also defines a Riemannian metric on
M and the Laplace-Beltrami operator ∆′M associated with (M, g′) satisfies (Craioveanu et al.,
2013, Equation 2.21):

∆′M = 1
a

∆M +
(

1− d

2

)
1
a2∇Ma ,

where ∇Ma is defined in Section 6.5.1 and can therefore be interpreted as a transport vector.



A
Mathematical toolbox

A.1 Differential calculus

Let f : A ⊂ Rd → R be a differentiable function defined on a set A ⊂ Rd. The gradient of f at
a point x ∈ A, is the vector ∇f(x) ∈ Rd defined by

[∇f(x)]i = ∂if(x), i ∈ [[1, d]] ,

where, ∀i ∈ [[1, d]], ∂if(x) denotes the i-th partial derivative of f at the point x, i.e.

∂i(f)(x) = lim
t→0

f(x+ tci)− f(x)
t

,

where ci ∈ Rd is the i-th vector of the canonical base of Rd: ∀k ∈ [[1, d]], [ci]k = δik.
Let φ : D(φ) ⊂ Rd → Rn be a differentiable function defined on a set D(φ) ⊂ Rd. In

particular, φ can be written as φ = (φ1, . . . , φn) where φ1, . . . , φn are real-valued differentiable
functions defined on D(φ) called coordinate functions of φ and satisfying:

∀x ∈ D(φ), φ(x) = (φ1(x), . . . , φn(x))T ∈ Rn .

The Jacobian matrix of φ at a point x ∈ Rd is the matrix Jφ(x) ∈Mn,d(R) defined by

∀i ∈ [[1, n]], j ∈ [[1, d]], [Jφ(x)]ij = ∂jφi(x) .

In particular, Jφ(x) is the matrix whose rows are the gradients of each coordinate function of φ.
Let then introduce a second differentiable function ψ : D(ψ) ⊂ Rn → Rm defined on a domain

D(ψ) ⊂ Rn that contains the image of D(φ) by φ, i.e. φ (D(φ)) ⊂ D(ψ). Then, the composition
ψ ◦ φ : D(φ) → Rm is well-defined. The following theorem, called chain rule, expresses the
derivatives of ψ ◦ φ in function of the derivatives of φ and ψ.

Theorem A.1.1 (Chain rule). Let φ : D(φ) ⊂ Rd → Rn and ψ : D(ψ) ⊂ Rn → Rm be two
differentiable functions defined as above.

Then, the Jacobian matrix of ψ ◦ φ satisfies

∀x ∈ D(φ), Jψ◦φ(x) = Jψ (φ(x)) Jφ(x) .

Hence, we have ∀x ∈ D(φ), and ∀i ∈ [[1,m]], j ∈ [[1, d]],

∂j(ψ ◦ φ)i(x) =
n∑
k=1

∂kψi(φ(x)) · ∂jφk(x) .

Proof. See (Wilfred, 2002, Sections 2.8 & 2.9).
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Theorem A.1.2 (Change of variable). Let U, V be open sets in Rn, Φ : U → V be a diffeomor-
phism and f : V → R a continuous function. Then for any compact A ⊂ U ,∫

A

f ◦ Φ(y)|det Jφ(y)|dy =
∫

Φ(A)
f(z)dz

where det Jφ(y) is the Jacobian matrix of Φ at y.

A.2 Linear algebra

A.2.1 Rayleigh quotient
Let n ∈ N∗. Let M = (Mij)i,j∈[[1,n]] be a real symmetric n× n matrix. M is diagonalizable in
an orthonormal basis. Denote λmin = λ1 ≤ · · · ≤ λn = λmax its eigenvalues, and (v(1), . . . ,v(n))
the corresponding eigenvectors (forming the orthonormal basis).

Definition A.2.1. The Rayleigh quotient R(M ,x) associated with M and x ∈ (Rn)∗ is the
ratio:

R(M ,x) = xTMx

xTx
=
(
x

‖x‖

)T
M

(
x

‖x‖

)
Proposition A.2.1. ∀x ∈ (Rn)∗, λmin ≤ R(M ,x) ≤ λmax

Proof. Simply notice that x can be decomposed in the orthonormal basis (v(1), . . . ,v(n)) as:
x =

∑n
i=1 αiv

(i) for some (α1, . . . , αn)T ∈ (Rn)∗. Then,

R(M ,x) =
∑n
i=1 λiα

2
i∑n

j=1 α
2
j

=
n∑
i=1

λi
α2
i∑n

j=1 α
2
j

which is just a weighted sum of the eigenvalues with positive weights.

A.2.2 Block matrices
Let n ≥ 1 and k ∈ [[1, n− 1]]. For a vector b ∈ Rn we denote

b =

 bk

b−k


the partition ofA such that bk ∈ Rk corresponds to its k first entries and b−k ∈ Rn−k corresponds
to the remaining ones. For a matrix A ∈Mn(R). We denote

A =

 Ak,k Ak,−k

A−k,k A−k,−k

 (A.1)

the partition of A such that Ak,k ∈Mk(R) corresponds to its first k rows and first k columns;
A−k,k ∈Mn−k,k(R) corresponds to its last n− k rows and first k columns; Ak,−k ∈Mk,n−k(R)
corresponds to its first k rows and last k columns; A−k,−k ∈ Mn−k(R) corresponds to its last
n− k rows and last n− k columns of A.

Let A ∈ Mn(R) be an invertible matrix. Denote B = A−1 its inverse, which we partition
as:

B =

 Bk,k Bk,−k

B−k,k B−k,−k

 (A.2)

The Schur complement of the block Ak,k of A is the matrix [A|Ak,k] ∈Mn−k(R) defined by:

[A|Ak,k] = A−k,−k −A−k,kA−1
k,kAk,−k

Similarly, the Schur complement of the block A−k,−k of A is the matrix [A|A−k,−k] ∈Mk(R)
defined by:

[A|A−k,−k] = Ak,k −Ak,−kA
−1
−k,−kA−k,k
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The Schur complements can be used to provide a factorization of a square matrix as

A =

 I

A−k,kA
−1
k,k I

Ak,k

[A|Ak,k]

I A−1
k,kAk,−k

I


=

I Ak,−kA
−1
−k,−k

I

[A|A−k,−k]
A−k,−k

 I

A−1
−k,−kA−k,k I

 (A.3)

Hence, the determinant of A can be expressed in function of those of its Schur complements:

|A| = |[A|Ak,k]| · |Ak,k| = |[A|A−k,−k]| · |A−k,−k| (A.4)

As for the inverse of A, it can be also be factorized using Shur complements, yielding the
relation

A−1 =

I −A−1
k,kAk,−k

I

A−1
k,k

[A|Ak,k]−1

 I

−A−k,kA−1
k,k I


=

 I

−A−1
−k,−kA−k,k I

[A|A−k,−k]−1

A−1
−k,−k

I −Ak,−kA
−1
−k,−k

I

 (A.5)

This gives in particular the following correspondence between the blocks of B = A−1 and Schur
complements:

A−1 = B =

 Bk,k Bk,−k

B−k,k B−k,−k

 =

 [A|A−k,−k]−1 −A−1
k,kAk,−k[A|Ak,k]−1

−[A|Ak,k]−1A−k,kA
−1
k,k [A|Ak,k]−1


=

 [A|A−k,−k]−1 −[A|A−k,−k]−1Ak,−kA
−1
−k,−k

−A−1
−k,−kA−k,k[A|A−k,−k]−1 [A|Ak,k]−1


(A.6)

In particular, this relation provides an alternative expression for Equation (A.4):

|A| = |Ak,k|
|B−k,−k|

= |A−k,−k|
|Bk,k|

(A.7)

A.2.3 Geometric interpretation of positive-definite matrices
Let B be a domain of Rd and let {G(p)}p∈BR be a set of positive definite symmetric matrices
indexed by the points of B. Let Z be a random field defined on B such that

∀p ∈ B, Cov[Z(p), Z(p+ h)] ∼
h→0

C0(
√
hTG(p)h) (A.8)

where C0 denotes an isotropic covariance function.
For d = 2, given that the matrix G(p), p ∈ B, is positive definite and symmetric, its

diagonalization in an orthonormal basis can be written as

G(p) = Vθ(p)

1/ρ1(p)2

1/ρ2(p)2

V T
θ(p), Vθ(p) =

cos θ(p) − sin θ(p)
sin θ(p) cos θ(p)


where θ(p) ∈]π/2, π/2] and ρ1(p), ρ2(p) > 0. Note that Vθ(p) is a rotation matrix, and that
V T
θ(p) = V −1

θ(p) = V−θ(p). Hence the change of coordinates

h′ =

1/ρ1(p)
1/ρ2(p)

V T
θ(p)h (A.9)
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yields Cov[Z(p), Z(p+ h)] = C0(‖h′‖). Thus the non-stationary covariance model of Z, which
satisfies Equation (A.8) in the reference coordinate system, is locally turned into an isotropic
model through the transformation of Equation (A.9). In particular, the parameters θ(p) and
ρ1(p), ρ2(p) can be interpreted as follows

� θ(p) and θ(p) + π/2 define the main directions of anisotropy, i.e. the two directions along
which the covariance function C behaves like an isotropic model. Hence, along one of these
directions vθ(p), we have ∀h ∈ R, C(hvθ(p)) = C0(|h|/ρ) where ρ = ρ1(p) (resp. ρ = ρ2(p))
if vθ(p) is the first (resp. second) column of Vθ(p).

� ρ1(p) and ρ2(p) define the ranges of the covariance model C along these two directions,
once multiplied by the range of the covariance model C0 of the .

In practice these three parameters are used to describe the anisotropy at a point p, and are
often graphically represented by an ellipse with semi-major axis along the direction θ(p) and
axis lengths ρ1(p) and ρ2(p).

The extension to the case d = 3 is done by considering a supplementary range parameter
ρ3(p) and using a three-dimensional rotation matrix. Such matrices are characterized by the
three Euler angles θ1(p), θ2(p), θ3(p), which describe rotation around each one of the Carte-
sian coordinates axes of R3. In particular, the expression of the corresponding rotation matrix
Vθ1(p),θ2(p),θ3(p) is:

Vθ1(p),θ2(p),θ3(p) =cos θ3(p) − sin θ3(p) 0
sin θ3(p) cos θ3(p) 0

0 0 1


cos θ2(p) 0 − sin θ2(p)

0 1 0
sin θ2(p) 0 cos θ2(p)


1 0 0

0 cos θ1(p) − sin θ1(p)
0 sin θ1(p) cos θ1(p)


The local anisotropies are now characterized by ellipsoids with axes of lengths ρ1(p), ρ2(p), ρ3(p)
along the directions defined by the columns of Vθ1(p),θ2(p),θ3(p).

A.3 Random vector
A random vector of size n ≥ 1 is a collection of (real) n random variables defined on the same
probability space. They are denoted as vectorsX ∈ Rn whose entriesX1, . . . , Xn are (univariate)
random variables. A random vector is entirely defined by its probability distribution, which is
the joint distribution of its entries.

The mean and the covariance matrix of a random vector X ∈ Rn are respectively the vector
E[X] ∈ Rn and the n× n matrix Var[X] defined by:

E[X] =


E[X1]
E[X2]

...
E[Xn]

 and Var[X] =


Cov[X1, X1] Cov[X1, X2] . . . Cov[X1, Xn]

Cov[X2, X1]
. . .

...
...

. . .

Cov[Xn, X1] Cov[Xn, X2] . . . Cov[Xn, Xn]


In particular note that the covariance matrix is by definition symmetric and satisfies

Var[X] = E[XXT ]− E[X]E[X]T

Also, by bilinearity of the covariance,

∀c ∈ Rn, cTVar[X]c = Cov[cTX, cTX] = Var[cTX] ≥ 0

Hence, the covariance matrix of a random vector is also positive semi-definite.

Proposition A.3.1. Let X ∈ Rn be a random vector with mean vector µX and covariance
matrix ΣX and for k ≥ 1, let b ∈ Rk and C ∈Mk,n(R).
Then the random vector Y = b+CX of size k has µY and covariance matrix ΣY given by

µY = b+CµX and ΣY = CΣXCT
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Proof. This is a direct consequence of the linearity of the expectation and the bilinearity of
the covariance.

The characteristic function of a random vector X is the function ψX : Rn → C defined by:

ψX(t) = E
[
eitTX

]
Characteristic functions play an important role in the study of random vector: indeed, a charac-
teristic function determines uniquely the distribution of a random vector (and vice-versa). The
following propositions follow directly from the definition of characteristic functions.

Proposition A.3.2. Let X ∈ Rn be a random vector with characteristic function ψX . For
k ≥ 1, let b ∈ Rk and C ∈Mk,n(R).

Then the characteristic function ψY of the random vector Y = b + CX of size k is given
by

∀t ∈ Rk, ψY (t) = eitT bψX(CT t)

Proposition A.3.3. Let X1 ∈ Rn and X2 ∈ Rk be two independent random vectors.
Then the characteristic function ψY of Y = (XT

1 XT
2 )T ∈ Rn+k satisfies:

∀t ∈ Rn+k, ψY (t) = ψX1(t1)ψX2(t2)

where t was decomposed as t = (tT1 tT2 )T with t1 ∈ Rn, t2 ∈ Rk; and for j ∈ {1, 2}, ψXj
is the

characteristic function of Xj.

Proof. Simply note that ψY (t) = E[ei(tT1 X1+tT2 X2)] = E[eitT1 X1 ] · E[eitT2 X2 ] since X1 and X2 are
independent.

The result below follows immediately (by induction).

Corollary A.3.4. Let X ∈ Rn be a random vector whose entries X1, . . . , Xn are (pairwise)
independent random variables.
Then the characteristic function ψX of X satisfies:

∀t ∈ Rn, ψX(t) =
n∏
j=1

ψXj (tj)

where ψXj is the (univariate) characteristic function of the random variable Xj.

Example A.3.1. LetW ∈ Rn be a random vector whose entries are n independent standard
Gaussian random variables. Then W has mean 0, covariance matrix In and characteristic
function ψW defined by:

∀t ∈ Rn, ψW (t) =
n∏
j=1

ψWj
(tj) =

n∏
j=1

e−
1
2 t

2
j = e−

1
2 t
T t

Proposition A.3.5. Let X ∈ Rn be a random vector and let A ∈ Mn(R) be a deterministic
matrix.
Then, E [AX] = AE [X] and

E
[
XTAX

]
= Trace (AVar[X]) + E [X]T AE [X]
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Proof. The linearity of the expectation yields E [AX] = AE [X]. Then, using the properties
of the trace of matrix and once again the linearity of the expectation

E
[
XTAX

]
= E

[
Trace

(
XTAX

)]
= E

[
Trace

(
AXXT

)]
= Trace

(
AE

[
XXT

])
= Trace(A(Var[X] + E[X]E[X]T )) = Trace(A(Var[X]) + Trace(AE[X]E[X]T )
= Trace(A(Var[X]) + (E[X]TAE[X])

A.4 Gaussian vectors

A.4.1 Gaussian distribution
The Gaussian distribution is a univariate probability distribution defined by the following den-
sity:

fµ;σ2 = 1√
2πσ2

e−
(x−µ)2

2σ2

It is entirely defined by two parameters: its mean µ ∈ R and its variance σ2 > 0. If X is
a random variable following a Gaussian distribution with mean µ and variance σ2 is called a
Gaussian variable and is denoted X ∼ N (µ;σ2). In that case, E[X] = µ and Var[X] = σ2. In
particular, if XN (0, 1) we say that X is a standard Gaussian variable.

The characteristic function fX of X ∼ N (µ;σ2) is given by:

∀t ∈ R, ψX(t) = E
[
eitX] = eiµt− 1

2σ
2t2

and provides an alternative definition of Gaussian variables. In particular, if σ2 = 0, this
expression is still defined and actually corresponds to the characteristic function of a constant
equal to µ. That is why deterministic constants can be seen as Gaussian variables with variance
0.

Note that all Gaussian variables can be derived from standard Gaussian ones. Indeed if
X ∼ N (0, 1) then Y = µ + σX ∼ N (µ, σ2). This fact can easily be proved with an argument
based on characteristic functions.

Proposition A.4.1. Let X ∼ N (0, 1). Then, E[X] = 0, E[X2] = 1, E[X3] = 0 and E[X4] = 3.

Proposition A.4.2. Let X1, X2, X3, X4 be four independent standard Gaussian variables and
let X = (X1 X2 X3 X4)T ∈ R4. Then, ∀i, j, k, l ∈ [[1, 4]],

E[XiXjXkXl] = δijδkl + δikδjl + δilδjk

where δij denotes the Kronecker symbol: δij = 1 if i = j and 0 otherwise.

Proof. Given that ∀m ∈ [[1, 4]], E[Xm] and thatX1, X2, X3, X4 are independent, E[XiXjXkXl]
is zero as soon as one of the indexes i, j, k, l ∈ [[1, 4]] is not repeated. Hence, for E[XiXjXkXl]
to be non-zero, the set of indexes {i, j, k, l} must be separable into two (disjoint) sets of two
indexes having the same value in [[1, 4]].
Note that there exists exactly three possible separations of {i, j, k, l} into two sets of cardinal
2: {i, j, k, l} = {i, j} ∪ {k, l} = {i, k} ∪ {j, l} = {i, l} ∪ {j, k}. We therefore require that, given
one of these partitions, the indexes in each subset be equal. Let m and m′ be the common
value of the indexes of each subset. Then two cases arise:

� if m = m′, i.e. if i = j = k = l = m, then E[XiXjXkXl] = E[X4
m] = 3, as the fourth

moment of a standard Gaussian variable.

� if m 6= m′, i.e. if either (i = j = m)&(k = l = m′) or (i = k = m)&(j = l = m′) or
(i = l = m)&(j = k = m′), then E[XiXjXkXl] = E[X2

mX
2
m′ ] = E[X2

m]E[X2
m′ ] = 1.

Using Kronecker symbols to enforce these cases then gives the result.
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The Gaussian distribution plays an important role in the study of natural phenomena thanks
to the central limit theorem.

Theorem A.4.3 (Central Limit Theorem). Let Z1, . . . , Zn be a sequence of independent and
identically distributed random variables with mean µ and variance σ2. Let Sn denote the sample
mean of this sequence:

Sn = 1
n

n∑
k=1

Zk

Then, the random variable
√
n(Sn − µ) converges in probability towards N (0, σ2) as n→∞.

Finally, of particular interest for statistical tests is the chi-square distribution which is defined
as the distribution of the sum of the square of independent standard Gaussian variables. Namely,
the chi-square distribution with n ≥ 1 degrees of freedom, denoted χ2(n), is the probability
distribution the the variable Qn defined by

Qn =
n∑
k=1

X2
k

where X1, . . . , Xn is a sequence of independent standard Gaussian variables.

A.4.2 Gaussian vectors
We call Gaussian vector any random vector X ∈ Rn such that for some r ∈ [[1, n]] there exists a
n× r real matrix Cr of rank r, and a (deterministic) vector µ ∈ Rn such that:

X = µ+CrWr (A.10)

where Wr ∈ Rr is a random vector with r independent standard Gaussian variables. The mean
of a Gaussian vector defined by Equation (A.10) is µ and its covariance matrix is Σ = CrC

T
r ,

which is a symmetric and positive semi-definite matrix of rank r.
Gaussian vectors can be alternatively defined by their characteristic function.

Theorem A.4.4. X ∈ Rn is a Gaussian vector if and only if there exists a vector µ ∈ Rn and
a positive semi-definite matrix Σ ∈ Mn(R) such that the characteristic function of X is given
by

ψX(t) = E
[
eitTX

]
= eitTµ−tTΣt (A.11)

In particular, µ is the mean vector of X and Σ its covariance matrix.

Proof. Assume that X is a Gaussian vector. Then Equation (A.11) follows directly from
Corollary A.3.4 and proposition A.3.2 and Example A.3.1.
Conversely, assume X is a random vector with characteristic function defined by Equa-
tion (A.11). Σ ≥ 0 is symmetric, and therefore diagonalizable in an orthonormal basis
v1, . . . ,vn associated with eigenvalues λ1, . . . , λn. Let r ≤ n be the rank of Σ, we can assume
that without loss of generality, λ1 > 0, . . . , λr > 0 and the remaining eigenvalues (if their are
any) are zero.
Denoting

V = [v1| . . . |vn] =

Vr,r Vr,r̄

Vr̄,r Vr̄,r̄


and Λr = Diag(λ1, . . . , λr) we have

Σ = V

Λr

0n−r

V T =

Vr,r
Vr̄,r

Λr

Vr,r
Vr̄,r

T

= Vn,rΛrV
T
n,r

where Vn,r is the matrix containing the r-first columns of V and Vr̄,r is the matrix containing
its remaining columns. In particular, V T

n,rVn,r = Ir and that V T
n,rVn,r = 0.
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Let X̃r ∈ Rr and X̃r̄ ∈ Rn−r be the random vectors defined by X̃r = V T
n,r(X − µ) and

X̃r̄ = V T
n,r̄(X − µ). Note that

X − µ = V V T (X − µ) = V

X̃r

X̃r̄

 = Vn,rX̃r + Vn,r̄X̃r̄

On one hand, following Corollary A.3.4 and proposition A.3.2, the characteristic function of
X̃r is given by

ψX̃r
(t) = e−

1
2 t
TV Tn,rΣVn,rt = e−

1
2 t
TΛrt

which is the characteristic function of a random vector with r independent zero-mean Gaussian
entries with variances λ1, . . . , λr. Hence, we can write X̃r = Diag(

√
λ1, . . . ,

√
λr)Wr where

Wr is a random vector with r independent standard Gaussian entries.
On the other hand, the characteristic function of X̃r̄ is given by

ψX̃r̄
(t) = e−

1
2 t
TV Tr̄,rΣVr̄,rt = e−

1
2 ·0 = 1

which is the characteristic function of a random vector with r constant entries equal to zero.
Hence, we can write X̃r = 0.
Consequently, we have:

X = µ+ Vn,rDiag(
√
λ1, . . . ,

√
λr)Wr

which proves that X is a Gaussian vector as Vn,r is of rank r. Note in particular that the
mean of X therefore is E[X] = µ and its covariance matrix is

Var[X] = Vn,rDiag(
√
λ1, . . . ,

√
λr)(Vn,rDiag(

√
λ1, . . . ,

√
λr))T = Σ

If X is a Gaussian vector of size n with mean µ and covariance Σ ≥ 0, we denote X ∼
Nn(µ; Σ). Note indeed that a mean vector µ and a covariance matrix Σ are sufficient to
characterize a Gaussian vector as they determine its characteristic function.

A Gaussian vector is called non-singular if r = n, i.e. if Cr = Cn (or equivalently Σ)
is an invertible n × n matrix. Otherwise, a Gaussian vector is called singular. Non-singular
Gaussian vectors follow a non-degenerate multivariate distribution of mean µ and covariance
matrix Σ > 0, which is defined by the following density function:

fµ;Σ(x) = 1
(2π)n/2|Σ|1/2

exp
(
−1

2(x− µ)Σ−1(x− µ)
)

Another defining property of Gaussian vectors is given in the following proposition.

Proposition A.4.5. Let µ ∈ R and Σ ∈ Mn(R) be a symmetric and positive semi-definite
matrix.
X ∈ Rn is a Gaussian vector with mean µ and covariance matrix Σ if and only if ∀c ∈ Rn,
cTX is a Gaussian variable with mean cTµ and variance cTΣc.

Proof. Simply notice that ∀t ∈ R, ∀c ∈ Rn, ψcTX(t) = E[eitcTX ] = ψX(tc) and identify the
characteristic functions to conclude.

Gaussian vectors stay Gaussian after a linear transform.

Proposition A.4.6. Let X ∼ N (µ; Σ). Let A ∈Mk,n(R) and b ∈ Rk. Then,

[b+AX] ∼ N (b+Aµ;AΣAT )
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Proof. Direct consequence of Proposition A.3.2.

The concatenation of two independent Gaussian vectors is also a Gaussian vector.

Proposition A.4.7. Let X1 ∈ Rn and X2 ∈ Rk be two independent Gaussian vectors such that
X1 ∼ N (µ1; Σ1) and X2 ∼ N (µ2; Σ2). Then,X1

X2

 ∼ N
µ1

µ2

 ;

Σ1

Σ22


Proof. Direct consequence of Proposition A.3.3.

The finite sum of independent Gaussian vectors is also Gaussian.

Proposition A.4.8. Let n1, . . . , np ≥ 1. Let X1 ∈ Rn1 , . . . ,Xp ∈ Rnp be p independent
Gaussian vectors with respective means µ1, . . . ,µp and covariance matrices Σ1, . . . ,Σp.
Then for any k ≥ 1, any b ∈ Rk and any matrices A1 ∈Mk,n1(R), . . . ,Ap ∈Mk,np(R),

[b+A1X1 + · · ·+ApXp] ∼ N (b+A1µ1 + · · ·+Apµp; A1Σ1A
T
1 + · · ·+ApΣpA

T
p )

Proof. Direct consequence of Propositions A.4.6 and A.4.7 by noticing that Y = b +A1X1 +
· · ·+ApXp can be written:

Y = b+AX where A =


A1

. . .

Ap

 , X =


X1

...
Xp



The marginal distribution of a subvector of a Gaussian vector is a multivariate Gaussian
distribution.

Proposition A.4.9. Let X ∈ Rn such that X ∼ N (µ; Σ) with Σ > 0 and let k ∈ [[1, n − 1]].
Consider the following partition of X, µ, Σ and Q = Σ−1:

X =

Xk

Xk̄

 , µ =

µk
µk̄

 , Σ =

Σk,k Σk,k̄

Σk̄,k Σk̄,k̄

 , Q =

Qk,k Qk,k̄

Qk̄,k Qk̄,k̄

 (A.12)

Then the marginal distribution of Xk is:

Xk ∼ N (µk; Σk,k) (A.13)

where in particular, Σk,k is also given by Σk,k = (Qk,k −Qk,k̄Q
−1
k̄,k̄
Qk̄,k)−1.

Proof. Consequence of Proposition A.4.6 given that Xk =
(
Ik 0k,n−k

)
X.

The conditional distribution of a subvector of a Gaussian vector given the remaining entries
is a multivariate Gaussian distribution.

Proposition A.4.10. Let X ∈ Rn such that X ∼ N (µ; Σ) with Σ > 0 and let k ∈ [[1, n− 1]].
Consider the following partition of X, µ, Σ and Q = Σ−1 given by Equation (A.12).
Then the conditional distribution of Xk given Xk̄ = xk̄ for some xk̄ ∈ Rn−k is:

[Xk|Xk̄ = xk̄] ∼ N (µk|k̄; Σk|k̄) (A.14)

where
µk|k̄ = µk + Σk,k̄Σ

−1
k̄,k̄

(xk̄ − µk̄) = µk −Q−1
k,kQk,k̄(xk̄ − µk̄) (A.15)

and
Σk|k̄ = Σkk −Σk,k̄Σ

−1
k̄k̄

Σk̄,k = Q−1
k,k (A.16)
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Proof. See (Tong, 2012, Theorem 3.3.4).

Remark A.4.1. Note in particular that

µk|k̄ = E[Xk|Xk̄ = xk̄]

is the conditional expectation of Xk given Xk̄ = xk̄ and

Σk|k̄ = Var[Xk|Xk̄ = xk̄] = E
[(
Xk − µk|k̄

)(
Xk − µk|k̄

)T ∣∣∣∣Xk̄ = xk̄

]
is the conditional covariance matrix of Xk given Xk̄ = xk̄. Actually, the value of the latter does
not depend on the conditioning data xk̄.

Quadratic form evaluated on Gaussian vectors are directly linked to the trace function.

Proposition A.4.11. Let A and B be two symmetric matrices of size d ≥ 1 and let W ∈ Rd
be a random vector composed of d independent and identically distributed standard Gaussian
variables.
Then, E[W TAW ] = Trace(A), E[W TBW ] = Trace(B) and

Cov[W TAW ,W TBW ] = 2Trace(AB)

Proof. Note that by definition of W , E[W ] = 0 and Var[W ] = E[WW T ] = I. Proposi-
tion A.3.5 therefore yields E[W TAW ] = Trace(A) and E[W TBW ] = Trace(B).
Consequently, note that

Cov[W TAW ,W TBW ] = E[W TAW ·W TBW ]− E[W TAW ] · E[W TBW ]
= E[W TAW ·W TBW ]− Trace(A) · Trace(B)

And, E[W TAW ·W TBW ] = E[Trace(W TAW ·W TBW )] = E[Trace(AVWBVW )] where
VW = WW T . Developing this last expression gives,

E[W TAW ·W TBW ] =
d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

AikBjlE[WiWjWkWl]

where, following Proposition A.4.2, E[WiWjWkWl] = δijδkl+δikδjl+δilδjk. Hence, by switch-
ing some of sums,

E[W TAW ·W TBW ] =
d∑
i=1

d∑
j=1

δij

d∑
k=1

Aik

d∑
l=1

Bjlδkl +
d∑
i=1

d∑
k=1

Aikδik

d∑
j=1

d∑
l=1

Bjlδjl

+
d∑
l=1

d∑
i=1

δil

d∑
k=1

Aik

d∑
j=1

Bjlδjk

And finally,

E[W TAW ·W TBW ] =
d∑
i=1

d∑
k=1

AikBik +
d∑
i=1

Aii

d∑
j=1

Bjj +
d∑
l=1

d∑
k=1

AlkBkl

= Trace(ABT ) + Trace(A)Trace(B) + Trace(AB)
= 2Trace(AB) + Trace(A)Trace(B)

Therefore, Cov[W TAW ,W TBW ] = 2Trace(AB).
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A.5 Multivariate Fourier series and transform

Let g(x) be a 2π-periodic function of Rd, i.e. g is 2π-periodic with respect to each variable
x1, . . . , xd and suppose that g ∈ L2([−π, π]d). Then g can be represented as the limit on L2 of
its Fourier series Sf [g] defined by (Osborne, 2010):

g
L2([−π,π]d)= SF [g](x) =

∑
j∈Zd

cj(g)eij
Tx

where j = (j1 . . . jd) ∈ Zd is a multi-index. The coefficients cj(g) in this expression are given by:

cj(g) = 1
(2π)d

∫
[−π,π]d

e−ij
Txg(x)dx, j ∈ Zd

The Fourier transform of g is then defined from its Fourier series as a train of impulses (corre-
sponding to the Fourier transform of each term of Fourier series):

F [g] := F [SF [g]] = (2π)d
∑
j∈Zd

cj(g)δj (A.17)

where F denotes the Fourier transform operator (as defined on Rd) and δj denotes the Dirac
function at j and is a distribution with test function space C∞c (Rd), the set of compactly
supported smooth functions of Rd. In particular, ∀j ∈ Zd,

∀u ∈ C∞c (Rd), δj(u) = u(j)

Hence, the Fourier transform of g is a distribution whose action on functions of C∞c (Rd) is given
by

∀u ∈ C∞c (Rd), F [g](u) = (2π)d
∑
j∈Zd

cj(g)u(j)

Note that the inverse Fourier transform of a distribution T̂ is well-defined as the distribution
F−1

[
T̂
]
acting on functions of C∞c (Rd) by

∀u ∈ C∞c (Rd), F−1
[
T̂
]

(u) = T̂ (F−1[u])

Note in particular that for g defined as above we have

F−1 [F [g]] = SF [g]

where the equality stands in the sense of distributions, i.e.

∀u ∈ C∞c (Rd), F−1 [F [g]] (u) =
∫
Rd
SF [g](x)u(x)dx





B
Interpolation and

approximation of functions
We recall in this appendix some basic definitions and theorems regarding the interpolation and
the approximations of real-valued functions over a closed interval of R. We refer the reader to
(Atkinson, 1989; Mason and Handscomb, 2002; Trefethen, 2013) for a complete overview of the
subject.

Throughout this appendix, h will denote a real function defined on interval [a, b] ⊂ R and
m ∈ N. Pm will denote the set of polynomials with real coefficients and with degree at most m.

B.1 Interpolation of functions
The polynomial interpolation problem consists in building a polynomial finding a polynomial of
Pm that interpolates h over a set of m + 1 distinct points t0, . . . , tm sampled from [a, b]. Such
a polynomial is called an interpolant of degree m of h and is denoted Ph. This problem can be
formulated as:

Find Ph ∈Pm such that ∀j ∈ [[0,m]], Ph(tj) = h(tj) . (B.1)

For a given set of distinct interpolation points t0, . . . , tm this problem has a unique solution,
according to the unisolvence theorem (Atkinson, 1989, Theorem 3.1). This solution can be
retrieved using either one of the following approaches (Atkinson, 1989):

� Vandermonde approach. Ph is written as

Ph(t) =
m∑
k=0

akt
k, t ∈ R ,

where the coefficients a0, . . . , am are the solution of the linear system obtained by enforcing
the (m+1) equalities of (B.1). This last problem can be formulated using the Vandermonde
matrix: 

1 t0 . . . tm0

1 t1 . . . tm1
...

...
...

1 tm . . . tmm




a0

a1
...
am

 =


h(t0)
h(t1)
...

h(tm)

 . (B.2)

� Newton approach. Ph is written as:

Ph(t) =
m∑
k=0

bkηk(t), t ∈ R ,

223
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where ηk denotes the k-th Newton polynomial, defined for k ∈ [[0,m]] by

ηk(t) =
{

1 if k = 0∏k−1
j=0 (t− tj) if 1 ≤ k ≤ m

.

By once again enforcing the (m+ 1) equalities of (B.1), the coefficients b0, . . . , bm are the
solution of the following (lower-)triangular system:

η0(t0)
η0(t1) η1(t1)
η0(t2) η1(t2) η2(t2)

...
...

...
. . .

η0(tm) η1(tm) η2(tm) . . . ηm(tm)





c0

c1

c2
...
cm


=



h(t0)
h(t1)
h(t2)
...

h(tn)


. (B.3)

� Lagrange approach. Ph is directly written as:

Ph(t) =
m∑
k=0

h(tk)lk(t), t ∈ R , (B.4)

where lk denotes the k-th Lagrange polynomial, defined for k ∈ [[0,m]] by

lk(t) =
m∏
j=0
j 6=k

t− tj
tk − tj

, 0 ≤ k ≤ m .

In the subsequent, we turn to the problem of approximating a function over a closed interval,
building partly from the interpolation results introduced above.

B.2 Approximation theory
Let h : [a, b]→ R be defined over a subset [a, b] ⊂ R. Unless otherwise specified, h is assumed to
be continuous over [a, b]. The goal is to find a polynomial Ph of fixed degree (at most) m that
approximates h over [a, b]. Formally, we seek a polynomial of degree at most m such that it has
a “small” approximation error, defined as the infinite norm over [a, b] of the difference h − Ph,
i.e.:

‖h− Ph‖∞ = max
t∈[a,b]

|h(x)− Ph(x)| .

In particular the polynomial that minimizes this last norm, denoted P ∗h , exists and is unique
(Atkinson, 1989, Theorem 4.10):

P ∗h = argmin
P∈Pm

‖h− P‖∞ . (B.5)

Computing P ∗h is in general a difficult task. In practice, a near-optimal polynomial is preferred
to Ph, i.e. a polynomial whose approximation error is close to that of P ∗h .

Let Am denote a linear operator from C ([a, b]) to Pm that associates to any h ∈ C ([a, b]) a
polynomial Ph = Am[h] ∈Pm, and such that h ∈Pm ⇒ Am[h] = h (hence, Am is a projector
on Pm). In particular, we think of Am[h] as a polynomial approximation of degree at most m
of h.

The accuracy of the polynomial approximations delivered by Am are assessed by its Lebesgue
constant Λ(Am), which is its operator norm of Am with respect to the uniform norm:

Λ(Am) = sup
h∈C ([a,b])

‖Am[h]‖∞
‖h‖∞

.

The Lebesgue constant therefore quantifies the discrepancy between the magnitude of the vari-
ations of an arbitrary continuous function and its approximation by Am.
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In particular, the Lebesgue constant links the approximation error of the polynomial derived
from Am to the approximation error of the best approximation of h in Pm, as defined in
Equation (B.5) (Trefethen, 2013, Theorem 15.1):

∀h ∈ C ([a, b]), ‖h− P ∗h‖∞ ≤ ‖h−Am[h]‖∞ ≤ (1 + Λ(Am)) ‖h− P ∗h‖∞ .

The Lebesgue constant quantifies how much the error of the approximation Am[h] of an ar-
bitrary continuous function h can be far from the minimal error achievable by a polynomial
of same degree. In the remainder of this section several approaches to compute a polynomial
approximation of a continuous function over a segment are considered, and arguments based on
their Lebesgue constants are provided to compare them.

For sake of simplicity, in the remainder of this section, we consider that the interval [a, b] on
which the function h is approximated is [−1, 1]. More general intervals [a, b] can be retrieved by
using the (bijective) linear mapping φa,b from [a, b] to [−1, 1]:

φa,b : t ∈ [a, b] 7→ 2
b− a

(t− a)− 1 ∈ [−1, 1] ,

whose inverse is the linear mapping φ−1
a,b from [−1, 1] to [a, b] given by:

φ−1
a,b : t ∈ [−1, 1] 7→ a+ b− a

2 (t+ 1) ∈ [a, b] .

Hence, to approximate a function h over [a, b], one can find an approximation ĥ of the function
h ◦ φ−1

a,b over [−1, 1] and return the function ĥ ◦ φa,b.

B.3 Approximation by interpolation
A first approach to obtain a polynomial approximation of h ∈ C ([−1, 1]) consists in building an
interpolant of h of degree m over a predefined set of m+ 1 (distinct) points t0, . . . , tm sampled
from [−1, 1].

Choosing the right sampling is instrumental to the quality of approximation of the resulting
interpolant. For instance, regularly spaced points over [a, b] are known to be a poor choice as the
resulting interpolant may lead to high approximation errors, even for smooth functions. This is
formalized in the following theorem.

Theorem B.3.1 (Lebesgue constant for interpolation at equispaced points). Let Qm denote
the linear operator that associates to any h ∈ C ([−1, 1]) the polynomial Qm[h] ∈ Pm that
interpolates h at m+ 1 equispaced points in [−1, 1].
The Lebesgue constant Λ(Qm) satisfies:

Λ(Qm) > 2m−2

m2 and Λ(Qm) ∼
m→∞

2m+1

em logm , (B.6)

where e = exp(1) denotes Euler’s number.

Proof. The inequality was derived by Trefethen and Weideman (1991) and the asymptotic
equivalence is a result independently discovered by Turetskii (1940) and Schönhage (1961).

Hence, the Lebesgue constant of polynomial interpolation at equispaced points grows expo-
nentially with the number of the interpolation points, showing the limits of the derived inter-
polants. Indeed, Qm[h] is not a good substitute for P ∗h given that for a fixed order of polynomials
m, its approximation error can be very large compared to that of P ∗h .

On top of that, this discrepancy intensifies exponentially as m grows, thus showing that
adding more interpolation points may worsen things instead of helping correct the problem. An
illustration of these flaws is provided by the Runge phenomenon, as illustrated in Figure B.1: the
equispaced interpolants of a smooth function can exhibit large oscillations near the endpoints
of the approximation interval. Moreover the magnitude of these oscillations tends to grow with
the number of interpolating points.
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(a) 5 interpolation points. (b) 10 interpolation points.

(c) 15 interpolation points. (d) 20 interpolation points.

(e) 50 interpolation points. (f) 75 interpolation points.

Figure B.1: Runge phenomenon. The Runge function (plotted in black), defined over [−1, 1] by
t 7→ 1/(1 + 25t2), is interpolated using equispaced points (plotted in red). Figures (a) to (f)

represent different numbers of interpolation points.
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Value of m Value of Λ∗

102 3.453
103 4.919
104 6.385
105 7.851
106 9.316

Table B.1: Values of the lower-bound Λ∗ of the Lebesgue constant of an interpolator over m
distinct points.

Can the approximation accuracy of polynomial interpolation be improved by a better choice
of interpolation points? Compared to equispaced points, the answer is yes. However, whatever
the sampling of the approximation interval, one should not expect polynomial interpolators to
perform well on any continuous function, as formalized by the next theorem.

Theorem B.3.2 (Lebesgue constant for interpolation at distinct points). Let t0, . . . , tm denote
m+1 (arbitrary) distinct points from [−1, 1] and let Atm denote the linear operator that associates
to any h ∈ C ([−1, 1]) the polynomial Atm[h] ∈Pm that interpolates h at t0, . . . , tm.
The Lebesgue constant Λ(Atm) satisfies

Λ(Atm) ≥ Λ∗ with Λ∗ := 2
π

log(m+ 1) + C , (B.7)

where C = (2/π)(γ + log(4/π)) and γ ≈ 0.57722 is the Euler–Mascheroni constant.

Proof. Erdős (1961) proved the inequality and Brutman (1978) provided the expression of the
constant.

Hence, for any choice of interpolation points, the Lebesgue constant of the associated inter-
polator grows at least logarithmically with the number of points. Assuming we have found an
set of interpolating points t0, . . . , tm such that Λ(Atm) = Λ∗, the growth rate of Λ(Atm with m
would be quite slow. Even for relatively large values of m, its value would be relatively small,
as illustrated in Table B.1.

Unfortunately, there is no general approach to find the interpolation points that would lead
to this minimal Lebesgue constant. An excellent and readily available substitute are Chebyshev
nodes. Given a number of points m + 1, the Chebyshev nodes are the m + 1 points of [−1, 1]
defined as

tj = cos
((

j + 1
2

)
π

m+ 1

)
, j ∈ [[0,m]] . (B.8)

They can be interpreted as the projection on the real axis of a set of m + 1 points regularly
distributed points over a unit half-circle, as illustrated in Figure B.2.

Interpolants built from Chebyshev nodes generally have much better approximation qualities
than equispaced interpolants, as stated by the following theorem.

Theorem B.3.3 (Lebesgue constant for interpolation at Chebyshev nodes). Let Im denote the
linear operator that associates to any h ∈ C ([−1, 1]) the polynomial Im[h] ∈Pm that interpolates
h at m+ 1 Chebyshev nodes of [−1, 1] (defined in Equation (B.8)).
The Lebesgue constant Λ(Im) satisfies:

Λ(Im) ≤ 2
π

log(m+ 1) + 1 and Λ(Im) ∼
m→∞

2
π

logm . (B.9)

Proof. The inequality is derived from (Ehlich and Zeller, 1966, Theorem 4) and the asymptotic
equivalence then follows from Theorem B.3.2.
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Figure B.2: Regularly spaced points on a unit half-circle and link to Chebyshev nodes. Two
consecutive points on the circle are separated by an arc of length π/(m+ 1) rad, where m+ 1
is the total number of points (here, m = 15). The projection of these points onto the horizontal

axis defines the Chebyshev nodes over [−1, 1].

In particular, given that Λ(Im) ≥ Λ∗, we have

0 ≤ Λ(Im)− Λ∗ ≤ 1− C ≈ 0.4787 ,

where C is the constant defined in Theorem B.3.2. Hence, Chebyshev nodes can be considered
as a nearly optimal choice of interpolation points given that the Lebesgue constants of the
corresponding interpolator is consistently close to the best interpolator over the set of continuous
functions.

Moreover, using Chebyshev nodes to approximate a function h over an interval [a, b] actually
ensures that the approximation error of Im[h] goes to zero as m grows, provided that the
function h is “slightly” more than continuous over [a, b]. Consequently, adding more interpolation
points improves the approximation, until the interpolant coincides with the function. This result
is formalized by the notions of bounded variation and Dini-Lipschitz continuity that are now
introduced.

Definition B.3.1. [Variations of a continuous function] Let h ∈ C ([−1, 1]). The total variation
Vh of h over [−1, 1] is the quantity defined by:

Vh = sup
N∈N∗

−1=x0<x1<···<xN−1<xN=1

N−1∑
k=0
|h(xk)− h(xk+1)| .

h is said to be of bounded variation if Vh <∞.

To get a grip on what the total variation of a function represents, imagine that a point travels
along the curve of a continuous function h, starting at the point (−1, h(−1)) and ending up at
the point (1, h(1)). The total variation h corresponds to the length of the path traveled by the
projection of that point on the y-axis. In other words, it is the cumulative sum of the heights
of the ups and downs of the curve. Imposing that h is of bounded total variation on [−1, 1]
actually prevents h from displaying an infinite amount of oscillations.

Definition B.3.2. [Modulus of continuity and Dini-Lipschitz continuity] Let h : [−1, 1] → R.
The modulus of continuity wh of h is defined for any δ > 0 by:

wh(δ) = sup
t1,t2∈[−1,1]
|t1−t2|<δ

|h(t1)− h(t2)|, δ > 0 .

If wh(δ) log(δ)−→
δ→0

0, then h is said to be Dini-Lipschitz continuous over [−1, 1].
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The condition on the Dini-Lipschitz continuity is a slightly stronger assumption on the ap-
proximated function h than continuity, as it imposes some restriction on the difference between
the values of h at two infinitely close points of [−1, 1]: namely if δ → 0 is the distance separating
these points, the difference should go to 0 faster than log δ goes to −∞. In particular, Lipschitz-
continuous functions, but also derivable functions over [−1, 1] are Dini-Lipschitz continuous as
they both have moduli of continuity of order O(δ).

Theorem B.3.4 (Convergence of Chebyshev interpolants). Let h ∈ C ([−1, 1]) be either of
bounded variation or Dini-Lipschitz continuous.
Let Im[h] ∈Pm be the polynomial that interpolates h at m+1 Chebyshev nodes of [−1, 1]. Then,

‖h− Im[h]‖∞ →
m→∞

0 .

Proof. See Theorem 5.7 in (Mason and Handscomb, 2002) for a proof. Also, the result on
Dini-Lipschitz continuity is a direct consequence of Theorems 1.4 and 4.1 in (Rivlin, 1969).

Theorem B.3.4 hence ensures that if a sufficiently large amount of interpolation points are
chosen, the resulting Chebyshev interpolation can yield an approximation of a function that is
of bounded variation or Dini-Lipschitz continuous at any level of accuracy. This results explains
the renown of Chebyshev interpolants in approximation theory as they successfully approximate
a large class of functions.

Finally the rate of convergence of Chebyshev interpolants towards the approximated function
h are now derived. These rates of convergence essentially depend on the regularity of h: the
more regular it is, the faster the convergence.

Theorem B.3.5. Let ν ≥ 1 be an integer. If h : R→ R is such that its derivatives h, h′, . . . , h(ν−1)

are continuous and that h(ν) is of bounded variation.
Let Im[h] ∈Pm be the polynomial that interpolates h at m+ 1 Chebyshev nodes of [−1, 1].

Then,
∀m > ν, ‖h− Im[h]‖∞ ≤

4V
πν(m− ν)ν ,

where V denotes the total variation of h(ν).
Besides if there exists ρ > 1 such that the complex function z ∈ C 7→ h(z) is holomorphic

inside the ellipse Eρ centered at 0, with foci z = ±1 and semi-major (resp. semi-minor) axis of
length (ρ+ ρ−1)/2 (resp. (ρ− ρ−1)/2), then:

∀m ≥ 0, ‖h− Im[h]‖∞ ≤
4M

ρm(ρ− 1) ,

where M = supz∈Eρ |h(z)|.

Proof. Mason and Handscomb (2002, Section 5.7) provides a proof of this theorem.

Hence, whenever h is continuously differentiable, the Chebyshev interpolants (Im[h])m≥0
converge polynomially to h and the order of convergence is equal to its degree of differentiability.
Besides, if h is even smoother, quicker rates of convergence can be achieved. Indeed, if h is
holomorphic on a ellipse with foci z = ±1, then in particular it is infinitely differentiable over
[−1, 1]. A geometric convergence with rate depending on the size of this ellipse is achieved.

B.4 Approximation by projection
A second approach to polynomial approximation of a continuous function h consists in looking
for a polynomial Ph that is expressed as a weighted sum of polynomials taken from a family
that has “suitable" properties. These properties should allow to easily find an expression for
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Figure B.3: First 5 Chebyshev polynomials over [−1, 1].

the weights that fit best h. This notion of fit is usually understood in the least-square sense,
meaning that the weights are chosen so that they minimize a weighted integral of the square of
the difference h− Ph over the approximation interval.

Chebyshev polynomials are an example of family of polynomials widely used for polynomial
approximation in this context (Trefethen, 2013). Other families, such as Legendre and Hermite
polynomials could also be considered. However Chebyshev polynomials present a double ad-
vantage: they yield minimal approximation errors and the weights of the decomposition of the
approximators can be computed very efficiently for any function of [−1, 1] using highly optimized
algorithms (Mason and Handscomb, 2002; Trefethen, 2013). Hence, the focus of this section will
remain on them.

B.4.1 Chebyshev polynomials
The Chebyshev polynomials (of the first kind) are the family (Tk)k∈N of polynomials defined
over [−1, 1] by:

∀k ∈ N, ∀θ ∈ [−π, π], Tk(cos θ) = cos(kθ) , (B.10)
or equivalently via the recurrence relation:

T0(t) = 1, T1(t) = t, Tk+1(t) = 2tTk(t)− Tk−1(t) k ≥ 1 , (B.11)

For instance, the explicit expressions of the first five Chebyshev polynomials are:

T0(t) = 1, T1(t) = t, T2(t) = 2t2 − 1,
T3(t) = 4t3 − 3t, T4(t) = 8t4 − 8t2 + 1.

A graphical representation of these polynomials is provided in Figure B.3.
Several properties of Chebyshev polynomials can be derived directly from Equations (B.10)

and (B.11) and are now listed. For any k ∈ N, Tk is a polynomial of degree k. Besides, Tk is an
even (resp. odd) polynomial if k is even (resp. odd). Also, ∀t ∈ [−1, 1], |Tk(t)| ≤ 1. Tk actually
has exactly k + 1 extrema, that are either −1 or +1 and are located at the following points:{

cos
(
j
π

k

)
: j ∈ [[0, k]]

}
,

Finally, Tk has exactly k distinct roots, whose expressions are:{
cos
((

j + 1
2

)
π

k

)
: j ∈ [[0, k − 1]]

}
,
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In particular, note that for m ≥ 0, the Chebyshev nodes t0, . . . , tm defined in Equation (B.8)
are exactly the roots of Tm+1.

B.4.2 Orthogonality of Chebyshev polynomials and Chebyshev sums
An important property of Chebyshev polynomials, directly linked to the context of least-square
approximation, is now exposed. Let L2

c([−1, 1]) be the set of functions of [−1, 1] that are square-
integrable with respect to the weight function t 7→ (1− t2)−1/2:

L2
c([−1, 1]) = {f : [−1, 1]→ R such that

∫ 1

−1
f(t)2 dt√

1− t2
<∞} .

L2([−1, 1] is a Hilbert space when equipped with the inner product 〈., .〉c (and associated norm
‖.‖c) defined by:

〈f, g〉c =
∫ 1

−1
f(t)g(t) dt√

1− t2
, f, g ∈ L2

c([−1, 1]) ,

‖f‖c =
√
〈f, f〉c, f ∈ L2

c([−1, 1]) .

In particular, the Chebyshev polynomials (Tk)k∈N are in L2
c([−1, 1]) and satisfy

∀i, j ∈ N, 〈Ti, Tj〉c =


π if i = j = 0
π/2 if i = j 6= 0
0 if i 6= j

.

Therefore, the Chebyshev polynomials form a family of orthogonal polynomials of L2
c([−1, 1]),

with respect to its inner product. As such, the Chebyshev sum (of order m) of any function
f ∈ L2

c([−1, 1]) can be defined as the polynomial of degree (at most) m given by:

Sm[f ](t) = 1
2c0T0(t) +

m∑
k=0

ckTk(t), t ∈ [−1, 1] ,

where the coefficients ck are defined by:

ck = 2
π

∫ 1

−1
f(t)Tk(t) 1√

1− t2
dt . (B.12)

Hence the Chebyshev sum of order m of f is the sum of the polynomials Tk, k ∈ [[0,m]], weighted
by the coefficients 〈f, Tk〉c/〈Tk, Tk〉c, and can thus be interpreted as an orthogonal projection of
f onto the first m+ 1 Chebyshev polynomials.

B.4.3 Chebyshev sums as approximators
The Chebyshev sums of a function f ∈ L2

c([−1, 1]) converge to f in the L2
c-sense as m goes to

infinity, as stated by the following theorem.
Theorem B.4.1 (L2

c-convergence of Chebyshev sum). The Chebyshev sums of any square-
integrable function of [−1, 1] (with respect to the weight function t 7→ (1−t2)−1/2) are convergent
in the L2

c-sense to the function itself:

∀f ∈ L2
c([−1, 1]), ‖f − Sm[f ]‖2c =

∫ 1

−1
(f(t)− Sm[f ](t))2 dt√

1− t2
−→
m→∞

0 .

Proof. Mason and Handscomb (2002, Section 5.3.1) provides a proof of this theorem based on
an analogy between Fourier series and Chebyshev sums.

Chebyshev sums hence provide a least-square polynomial approximation of any square-
integrable function (with respect to the weight function t 7→ (1 − t2)−1/2). However it is not
guaranteed that a Chebyshev sum of order m of a function of L2

c([−1, 1] provides a good approx-
imation of the function itself. Indeed, the value Sm[f ](t), t ∈ [−1, 1] may not even converge as
m→∞. Results on the point-wise and uniform convergence of Chebyshev sums can be derived,
but come at a price: restrictions on the regularity of the considered functions.
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Theorem B.4.2 (Point-wise convergence of Chebyshev sums). The Chebyshev sums of any
continuous function of [−1, 1] are point-wise convergent to the function itself:

∀f ∈ C ([−1, 1]), ∀t ∈ [−1, 1], Sm[f ](t) −→
m→∞

f(t) .

Proof. See Mason and Handscomb (2002, Section 5.3.2) for a proof based on an analogy
between Fourier series and Chebyshev sums.

Following this result, the notion of Chebyshev series can be defined. The Chebyshev series
S[f ] of a function f ∈ C ([a, b]) is the function of [−1, 1] such that

∀x ∈ [−1, 1], S[f ](x) = lim
m→∞

Sm[f ](x) = 1
2c0T0(x) +

∞∑
k=0

ckTk(x) .

Chebyshev series can be seen as orthogonal projections of functions of [−1, 1] over the entire
family of Chebyshev polynomials (Tk)k≥0. In particular, following Theorem B.4.2, S[f ] = f for
any f ∈ C ([−1, 1]).

Moreover, Theorem B.4.2 ensures that for any point x in the approximation interval [a, b],
the value of the Chebyshev sum of a continuous function f at x will converge to f(x). Hence,
the Chebyshev sums approximate the function at each point. Considered as approximations
of continuous functions, Chebyshev sums can be compared to interpolants introduced in the
previous section in terms of Lebesgue constants.

Theorem B.4.3 (Lebesgue constant for Chebyshev sums). Let Sm denote the linear operator
that associates to any f ∈ C ([−1, 1]) its Chebyshev sum of order m, Sm[f ] ∈Pm.
The Lebesgue constants Λ(Sm), m ≥ 0 satisfy

Λ(Sm) < 4
π2 log(m+ 1) + 3 and Λ(Sm) ∼

m→∞

4
π2 logm . (B.13)

Proof. The inequality is derived from Lemma 2.2 in (Rivlin, 1969) and the asymptotic equiv-
alence was established by Fejér (1910).

Comparing this last result to Theorems B.3.2 and B.3.3, Chebyshev sums have asymptotically
lower Lebesgue constants than interpolants, by a factor (2/π).

However, as it was the case for Chebyshev interpolants, there is no guarantee that low
approximation errors can be achieved using Chebyshev sums to approximate arbitrary continuous
functions. Indeed, the convergence rate of Sm[f ](x) towards f(x) can be arbitrary fast or slow
depending on the point x. In other words, Sm[f ](x) can approximate f at each individual point
x ∈ [−1, 1] (for different values of m depending on x), but there is no guarantee that for given
a m, Sm[f ] can approximate f over [−1, 1]. Uniform convergence is needed to ensure it.

Theorem B.4.4 (Uniform convergence of Chebyshev sums). The Chebyshev sums {Sm[f ]}m≥0
of any function f of [−1, 1] that is of bounded variation or Dini-Lipschitz continuous converge
uniformly to the function itself, i.e.

‖f − Sm[f ]‖∞ −→
m→∞

0 .

Proof. See once again Mason and Handscomb (2002, Section 5.3.2) for a proof based on an
analogy between Fourier series and Chebyshev sums.
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Hence, provided some mild additional assumptions on a continuous function (namely that it
is of bounded variation or Dini-Lipschitz continuous), Chebyshev sums provide a great approx-
imation tool, as Theorem B.4.4 ensures that the approximation error of sum of order m goes
to 0 as m grows. Approximation at any desired accuracy can therefore be obtained by taking
an order m large enough. Note that it is the same result as the one obtained for Chebyshev
interpolants in Theorem B.3.4.

Finally the rate of convergence of Chebyshev sums towards the approximated function h
is described. Similarly to Chebyshev interpolants, these rates of convergence depend on the
regularity of h.

Theorem B.4.5. Let ν ≥ 1 be an integer. If h : R→ R is such that its derivatives h, h′, . . . , h(ν−1)

are continuous and that h(ν) is of bounded variation, then:

∀m ≥ ν, ‖h− Sm[h]‖∞ ≤
2V

πν(m− ν)ν ,

where V denotes the total variation of h(ν).
Besides if there exists ρ > 1 such that the complex function z ∈ C 7→ h(z) is holomorphic

inside the ellipse Eρ centered at 0 and with foci z = ±1 and semi-major (resp. semi-minor) axis
of length (ρ+ ρ−1)/2 (resp. (ρ− ρ−1)/2), then:

∀m ≥ 0, ‖h− Sm[h]‖∞ ≤
2M

ρm(ρ− 1) ,

where M = supz∈Eρ |h(z)|.

Proof. Mason and Handscomb (2002, Section 5.7) provides a proof of this theorem.

Hence, the same rates of convergence as Chebyshev interpolants hold for Chebyshev sums,
up to a multiplication factor (equal to 2). Note that these rates of convergence are directly
linked to the rate of decrease of the coefficients of the Chebyshev sums as m grows, as stated in
the following theorem.

Theorem B.4.6. Let ν ≥ 1 be an integer. If h : R→ R is such that its derivatives h, h′, . . . , h(ν−1)

are continuous and that h(ν) is of bounded variation, then the coefficients (cm)m≥0 of the Cheby-
shev sums of h satisfy

∀m ≥ ν + 1, |cm| ≤
2V

π(m− ν)ν+1 ,

where V denotes the total variation of h(ν).
Besides if there exists ρ > 1 such that the complex function z ∈ C 7→ h(z) is holomorphic

inside the ellipse Eρ centered at 0 and with foci z = ±1 and semi-major (resp. semi-minor) axis
of length (ρ+ ρ−1)/2 (resp. (ρ− ρ−1)/2), then

∀m ≥ 1, |cm| ≤
2M
ρm

,

where M = supz∈Eρ |h(z)|.

Proof. Trefethen (2013, Theorems 7.1 & 8.1) provides a proof of this theorem.

B.4.4 Computation of Chebyshev sums and link to Chebyshev inter-
polants

Computing the coefficients of the Chebyshev sum of a function h ∈ C ([−1, 1]) consists in evalu-
ating integrals defined by Equation (B.12). Applying the change of variable t → cos θ to these
integrals gives

∀k ∈ [[0,m]], ck = 2
π

∫ π

0
h(cos θ) cos(kθ)dθ . (B.14)
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An analytical expression of Equation (B.14) is seldom available. Instead, the coefficients ck
are numerically evaluated by discretizing the integral in Equation (B.14) using Riemann sums.
Hence, first the interval of integration [0, π] is discretized into an number N of equispaced points,
denoted θ0, . . . , θN and given by

θj = j
π

N
, j ∈ [[0, N ]] .

If the Left rule is used, the integral of a function f defined over [0, π] is approximated by
the integral of a piecewise constant function, taking the value f(θj) in any interval [θj , θj+1[,
for 0 ≤ j ≤ N − 1. Getting back to Equation (B.14), this means that the coefficients ck are
approximated by coefficients c(L)

k defined by

c
(L)
k = 2

π

N−1∑
j=0

(θj+1 − θj)h(cos θj) cos(kθj) = 2
N

N−1∑
j=0

h
(

cos
(
j
π

N

))
cos
(
kj
π

N

)
, k ∈ [[0,m]] .

Distinguishing the case where k is even (k = 2p) or odd (k = 2p+ 1) gives the following set
of equations:

p ∈ [[0, bm/2c]],

∣∣∣∣∣∣∣∣∣∣∣∣

c
(L)
2p = 2

N
Re

N−1∑
j=0

h
(

cos
(
j
π

N

))
e−i 2π

N pj


c
(L)
2p+1 = 2

N
Re

N−1∑
j=0

e−i πN jh
(

cos
(
j
π

N

))
e−i 2π

N pj

 , (B.15)

where Re denotes the real part of a complex number. Assuming that p < N , the sums in
Equation (B.15) are the expressions of (p + 1)-th component of the discrete Fourier transform
(DFT) of two vectors of CN (cf. Section 1.2.2):

c
(L)
2p = 2

N
Re
(

DFT [he]p+1

)
and c

(L)
2p+1 = 2

N
Re
(

DFT [ho]p+1

)
, p ∈ [[0, bm/2c]] ,

(B.16)
where he,ho ∈ CN are the vectors define by:

∀j ∈ [[0, N − 1]],

∣∣∣∣∣∣∣
[he]j+1 = h

(
cos
(
j
π

N

))
[ho]j+1 = e−i πN jh

(
cos
(
j
π

N

)) . (B.17)

The DFT appearing in Equation (B.16) can be computed using the fast Fourier transform
(FFT) algorithm of Cooley and Tukey (1965). This algorithm, widely used in signal processing
applications, computes the DFT of any (complex) vector of size N at a computational complexity
of O(N logN). Algorithm B.1 sums up this first approach to compute Chebyshev coefficients.

Algorithm B.1: Computation of Chebyshev coefficients by FFT
Input: A function h ∈ L2

c([−1, 1]). A number (m+ 1) of coefficients to be computed.
An order of approximation of the integrals N > m.

Output: Approximations of the coefficients of the Chebyshev sum of order m of h.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: c(L)

0 , . . . , c
(L)
m = 0;

1. Compute the vectors he,ho ∈ CN defined by Equation (B.17).
2. Compute the discrete Fourier transforms ye,yo ∈ CN of both vectors using the FFT
algorithm: ye = DFT[he] and yo = DFT[ho].
3. for p from 0 to bm/2c do

c
(L)
2p ← 2

NRe([ye]p+1);
c
(L)
2p+1 ← 2

NRe([yo]p+1);

Return c
(L)
0 , . . . , c

(L)
m .
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Another possible way to numerically compute the coefficients of a Chebyshev sums consists
in approximating the integral in Equation (B.14) using the Midpoint rule. In that case the
integral of a function f defined over [0, π] is once again approximated by the integral of a
piecewise constant function, taking now the value f((θj + θj+1))/2) in any interval [θj , θj+1[, for
0 ≤ j ≤ N − 1. Getting back to Equation (B.14), this means that the coefficients ck are now
approximated by coefficients c(M)

k defined by

c
(M)
k = 2

N

N−1∑
j=0

h

(
cos
((

j + 1
2

)
π

N

))
cos
(
k

(
j + 1

2

)
π

N

)
, k ∈ [[0,m]] . (B.18)

If we denote h ∈ RN the vector defined by

[h]j+1 = h

(
cos
((

j + 1
2

)
π

N

))
, j ∈ [[0, N − 1]] , (B.19)

then Equation (B.18) is the expression of k-th component of the discrete cosine transform (of
type II, which we denote DCT) (Oppenheim et al., 2001) of h.

Note in particular that the expression of the vector h in Equation (B.19) corresponds to
the evaluation of the function h at the Chebyshev nodes (of order N) t0, . . . , tN−1 as defined in
Equation (B.8), or equivalently at the zeros of TN . In short, the approximation of the Chebyshev
coefficients using a Midpoint rule are given by

c
(M)
0
...

c
(M)
m

 = 2
N

[DCT [h]]1:(m+1) = 2
N

DCT




h(t0)
...

h(tN−1)





1:(m+1)

, (B.20)

where tj = cos
((
j + 1

2
)
π
N

)
, j ∈ [[0, N − 1]] and the notation [x]1:(m+1) stands for the restriction

of a vector x to its first (m+ 1) components.
DCTs can be computed using FFT algorithms at the cost some pre-processing and post-

processing steps applied to the vectors which are similar to those presented in Algorithm B.1
(Chen et al., 1977; Makhoul, 1980). Other algorithms specially designed for DCTs also allow to
compute these sums with an improved complexity with respect to adaptations of the FFT (Chen
et al., 1977). Algorithm B.2 sums up this second approach to the computation of Chebyshev
coefficients.

Algorithm B.2: Computation of Chebyshev coefficients by discrete cosine transform.
Input: A function h ∈ L2

c([−1, 1]). A number (m+ 1) of coefficients to be computed .
An order of approximation of the integrals N > m.

Output: Approximations of the coefficients of the Chebyshev sum of order m of h.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: c(M)

0 , . . . , c
(M)
m = 0;

1. Compute the vectors h ∈ RN defined by Equation (B.19).
2. Compute the discrete cosine transform y ∈ RN of this vector using a suitable
algorithm: y = DCT[h].
3. for k from 0 to m do

c
(M)
k ← 2

N [y]k+1;

Return c
(M)
0 , . . . , c

(M)
m .

B.4.5 Link between Chebyshev sums an Chebyshev interpolant
In this subsection, we highlight the fundamental that exists between Chebyshev sums and inter-
polants.

Let h ∈ C ([−1, 1]) and let Im[h] be its Chebyshev interpolant of order m. Im[h] can be
written in the basis of Chebyshev polynomials as:

Im[h](t) = 1
2c

(I)
0 T0(t) +

m∑
k=1

c
(I)
k Tk(t) .
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The expression of the coefficients c(I)k is obtained by enforcing for any j ∈ [[0,m]] that Im[h](tj) =
h(tj) where tj denote the Chebyshev nodes, or equivalently, the zeros of Tm+1. This gives:

h(tj) = 1
2c

(I)
0 T0(tj) +

m∑
k=0

c
(I)
k Tk(tj) = 1

2c
(I)
0 +

m∑
k=0

c
(I)
k cos

(
k

(
j + 1

2

)
π

m+ 1

)
.

This last sum is the expression of the j-th component of the DCT of type III, which corresponds
to the inverse of the DCT of type II, of the vector (c(I)0 , . . . , c

(I)
m )T ∈ Rm+1. Hence, this last

vector is given by taking the DCT of the vector (h(t0), . . . , h(tm))T . In short, the coefficients of
the decomposition of the Chebyshev interpolant into the Chebyshev polynomial basis are

c
(I)
0
...
c
(I)
m

 = 2
m+ 1DCT



h(t0)
...

h(tm)


 : tj = cos

((
j + 1

2

)
π

m+ 1

)
, j ∈ [[0,m]] . (B.21)

This last equation is extremely similar to Equation (B.20), which is used to approximate
the coefficients of the Chebyshev series of h using the Midpoint rule. In fact, if the order of
discretization of integrals N is taken so that N = m + 1, both equations coincide. Hence, the
(m + 1) coefficients of the Chebsyhev interpolant Im[h] in the Chebyshev basis can be viewed
as approximations of the (m+ 1) coefficients of the Chebyshev sum Sm[h] using a Midpoint rule
with discretization order N = m+ 1.

Hence, the Chebyshev interpolant of order m of a function is an approximation of its Cheby-
shev sum of order m obtained by replacing the coefficients of the Chebyshev sum (cf. Equa-
tion (B.14)) by their approximation using a Midpoint rule with exactly m + 1 points. This
explains the great similarity between the asymptotic properties of both approximators, as stated
in Theorems B.3.3 and B.4.3 but also Theorems B.3.4 and B.4.4. Indeed, the larger the order
of approximation m, the closer the discretization of the integral is to the actual integral. In
particular, the discrepancy between these two sets of coefficients is of order O(1/m2).

In practice thought, the order N of discretization of the integrals , which is one of the
parameters of Algorithm B.2 (and Algorithm B.1) is chosen almost independently from the
number of desired coefficients m. Indeed, N can be chosen quite large given that the algorithms
computing the Chebyshev coefficients are very cheap: they have computational complexities of
order O(N logN). Rather than sticking to the Chebyshev interpolant by choosing N = m+ 1,
one can aim at directly computing highly accurate approximations of the coefficients of the
Chebyshev sums using larger values of N .

B.4.6 Chebyshev sums of discontinuous functions
Until this subsection, only continuous functions h : [−1, 1] 7→ R were considered. This restriction
allowed for Chebyshev sums (and interpolants) to benefit from point-wise convergence properties,
but also uniform convergence by requiring slightly more than continuity. In this section, we
investigate what tools are at hand when h is discontinuous over [−1, 1], more precisely when h
has a finite number of step discontinuities over [−1, 1] and is continuous otherwise.

Theorem B.4.7. Let h : [−1, 1] → R such that there exists Nd ≥ 1 and t1, . . . , tNd ∈ [−1, 1]
such that

∀j ∈ [[1, Nd]], h(t−j ) := lim
t→tj
t<tj

h(t) 6= h(t+j ) := lim
t→tj
t>tj

h(t) ,

and such that h is continuous in any subinterval of [−1, 1] that does not contain any of the points
t1, . . . , tNd . Then, the Chebyshev sums of h satisfy

∀t ∈ [−1, 1], lim
m→∞

Sm[h](t) =
{
h(t−

j
)+h(t+

j
)

2 if t = tj for some j ∈ [[1, Nd]]
h(t) otherwise

.

Proof. Mason and Handscomb (2002, Section 5.3.2) provides a proof of this statement.
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(a) Order 23. (b) Order 24.

(c) Order 25. (d) Order 26.

(e) Order 27. (f) Order 28.

Figure B.4: Gibbs phenomenon. The sign function (plotted in black), defined over [−1, 1] is
approached by Chebyshev sums at various orders (plotted in red in Figures (a) to (f)).

This theorem therefore states that the Chebyshev sums actually converge point-wise even
though the function has a finite number of discontinuities. At these points of discontinuity it
converges to the mean of the right and left limits of the function. The notion of Chebyshev series
is therefore still well defined as a function of [−1, 1].

However, using the Chebyshev sums (or interpolants) as approximators of such functions will
not work out due to what is referred to the so-called Gibbs phenomenon. Indeed, near a discon-
tinuity, the Chebyshev sums exhibit oscillations that fade out starting from the discontinuity.
As the order of the sum increases, the oscillations fade out quicker but their magnitude near
the discontinuity does not die out, and rather tends to a fixed constant (Trefethen, 2013). In
particular, due to these oscillations, the value of the maximum of the Chebyshev sum near the
discontinuity function will be higher than that of the function itself, even as the order grows to
infinity. The Gibbs phenomenon is illustrated in Figure B.4 for the case of the sign function sg
being approached by Chebyshev sums. Recall that the sign function is defined over [−1, 1] by

sg(t) =


1 if t > 0
0 if t = 0
−1 otherwise

.

In that case, as the order of the sums goes to infinity, the magnitude of the oscillations tends to
a value of around 1.179 for Chebyshev sums, 1.282 for Chebyshev interpolants with odd orders,
and 1.066 for Chebyshev interpolants with even orders (Trefethen, 2013, Theorems 9.1 & 9.2).

In order to reduce the oscillation of the Gibbs phenomenon when dealing with Chebyshev
approximations of discontinuous functions, Lanczos (1988) introduced the use of σ-factors. A
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(a) Comparative of plots of σ-factors over
[0, 1].

(b) Lanczos σ-factor elevated at various
powers ν.

(c) Exponential σ-factors for various values of
p.

Figure B.5: σ-factors over [0, 1].

σ-factor is a continuous functions σ defined over [0, 1] that is used to downscale the coefficients
of a Chebyshev sum. More precisely, the j-th coefficient of a sum of order m is multiplied by a
factor σ(j/m). σ-factors are chosen so that high order coefficients are more affected than low
order ones, namely σ(t) ≈ 1 if t ≈ 0 and σ(t) ≈ 0 if t ≈ 1. A σ-approximation Sσm[h] of a
Chebyshev sum Sm[f ] is the sum of Chebyshev polynomials defined as follows:

if Sm[f ](t) =
m∑
k=0

ckTk(t), then Sσm[f ](t) =
m∑
k=0

σ

(
k

m

)
ckTk(t) .

To understand why σ-approximations represent a smooth version of their associated Cheby-
shev sums, recall that a Chebyshev polynomial Tj oscillates j + 1 times between the values +1
and −1. Hence the higher j is, the more oscillations Tj exhibits. In a Chebyshev sum, having
polynomials Tj associated to relatively high coefficients cj may therefore lead to a Chebyshev
sum that also displays the same high-frequency oscillations as Tj : this is the origin of the Gibbs
phenomenon.

In the σ-approximation, the scaling of the coefficients cj corresponding to high values of j
by a factor near zero ensures that the highly oscillatory Chebyshev polynomial will not impact
the overall behavior of the sum. However, the reduction of the oscillatory behavior comes at a
price: an increase of the approximation error near the discontinuity.

Usual choices of σ-factors include (Di Napoli et al., 2016; Gelb and Gottlieb, 2007):

� the Lanczos σ-factor defined by

σ(t) = sin(πt)
πt

, t ∈ [0, 1] , (B.22)

� the Raised cosine σ-factor defined by

σ(t) = 1
2(1 + cos(πt)), t ∈ [0, 1] , (B.23)

� the Jackson σ-factor defined by

σ(t) = (1− t) cos(πt) + sin(πt)
π

, t ∈ [0, 1] , (B.24)
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(a) Order 23. (b) Order 24.

(c) Order 25. (d) Order 26.

(e) Order 27. (f) Order 28.

Figure B.6: Lanczos correction for the sign function. The sign function (plotted in black),
defined over [−1, 1] is approached by σ-approximations of Chebyshev sums at various orders
(plotted in blue in Figures (a) to (f)). The σ-factor that was used is the Lanczos σ-factor.

� The Exponential σ-factor defined by

σ(t) = e−αt
ν

, t ∈ [0, 1] , (B.25)

where α is fixed so that σ(1) = e−α ≈ 0 (for instance to the machine accuracy) and p is
an additional parameter controlling the speed of decay to zero of the parameter σ.

Note that the first three σ-factors can also be elevated at a given power ν ≥ 1 so as to
increase the speed at which the factor goes to zero when t→ 1. Indeed, it can easily be showed
that elevating one of these factors at higher and higher powers ν yields functions that decrease
from 1 to a near-zero values faster and faster. This is actually the same effect as one observes
when taking smaller an smaller values of p for Exponential σ-factors. All these factors and the
effect of the parameters ν and p are illustrated in Figure B.5. An illustration of the effect of
Lanczos σ-factors on the approximation of the sign function is presented in Figure B.6.

In conclusion, this subsection exposed the adjustments that should be made when dealing
with piecewise continuous functions (with a finite number of discontinuities). Chebyshev sums
(and interpolants) can still be used as approximators of such functions. However, no uniform
convergence of the sums towards the function should be expected and oscillations near the
discontinuities will appear. To overcome this last issue, the coefficients of the sum should be
downscaled using a σ-factor so as to reduce the impact of high order Chebyshev polynomials.
The resulting σ-approximation is basically a smoothed version of its oscillatory counterpart.
However the gain in smoothness is paid by a higher approximation error as the σ-approximation
does not approximate the discontinuous function anymore, but rather a smoothed version of this
function.





C
Proofs

C.1 Chapter 1

Proposition 1.2.1

Proof. Let MW be the complex random measure defined from W by:

MW(dξ) = dξ

∫
Rd
e−i〈ξ,t〉W(dt) .

On one hand, for any B ∈ B(Rd),∫
B

dt
1

(2π)d

∫
Rd
ei〈ξ,t〉MW(dξ) = 1

(2π)d

∫
B

∫
Rd

∫
Rd
ei〈ξ,t−u〉W(du)dξdt

= 1
(2π)d

∫
B

∫
Rd

(2π)dδt−uW(du)dt =
∫
B

W(dt) .

On the other hand, for any B,B1, B2 ∈ B(Rd), MW satisfies E[MW(B)] = 0 and

Cov[MW(B1),MW(B2)] = E[MW(B1)MW(B2)∗]

=
∫
B1

∫
B2

∫
Rd

∫
Rd
e−i〈ξ1,t1〉ei〈ξ2,t2〉E[W(dt2)W(dt1)]dξ2dξ1

=
∫
B1

∫
B2

∫
Rd
e−i〈ξ1−ξ2,t1〉σ2dt1dξ2dξ1 .

Denoting then δξ the Dirac delta function concentrated at ξ ∈ Rd, we get:

Cov[MW(B1),MW(B2)] = σ2
∫
B1

∫
B2

(2π)dδξ1−ξ2dξ2dξ1

= (2π)dσ2
∫
B1∩B2

dξ1 = (2π)dσ2Leb(B1 ∩B2) .

On one hand, if B1∩B2 = ∅, Cov[MW(B1),MW(B2)] = 0. On the other hand, Var[MW(B)] =
(2π)dσ2Leb(B).

241
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C.2 Chapter 4

Proposition 4.1.1

Proof. First, note that the vector (Z,Wo) defines a Gaussian vector as it is the concatenation
of two (independent) Gaussian vectors. In particular, Z

Wo

 ∼ N
0,

Var[Z]
Id

 .

Denote then Z̃ the random vector obtained by concatenating Z and Zo and let A be the
matrix defined by

A =

 In 0n,d
Mo τId

 .

In particular, Z̃ satisfies

Z̃ =

Z
Zo

 = A

 Z

Wo


and therefore also defines a Gaussian vector (as a linear transform of a Gaussian vector). Its
covariance matrix is given by

Var[Z̃] = AVar

 Z

Wo

AT =

 f(S) f(S)MT
o

Mof(S) Mof(S)MT
o + τ2Id

 . (C.1)

Hence, the conditional distribution of [Z|Zo = zo] can be seen as the conditional distribution of
a subset of components of Z̃ given its remaining components. Hence (cf. Proposition A.4.10),

[Z|Zo = zo] ∼ N (E[Z|zo],Var[Z|zo]) ,

where E[Z|zo], Var[Z|zo] are given by Equations (4.4) and (4.5).
Finally, whenever f is non-zero on the set of eigenvalues of S and τ > 0, the precision

matrix of Z̃, is well-defined and given by

Var[Z̃]−1 =
(
A−1)T (1/f)(S)

Id

A−1 where A−1 =

 In 0n,d
−τ−1Mo τ−1Id

 .

This gives

Var[Z̃]−1 =

(1/f)(S) + τ−2MT
o Mo −τ−2MT

o

−τ−2Mo τ−2Id


= τ−2

(τ2/f)(S) +MT
o Mo −MT

o

−Mo Id

 ,

(C.2)

from which we deduce Equations (4.6) and (4.7) (cf. Proposition A.4.10).

Proposition 4.1.2

Proof. Let i ∈ [[1, n]] and let k ∈ Rd. Let z∗i be a estimator of Zi (the i-th entry of Z) defined
by z∗i = kTzo. Let Z∗i be the randomization of z∗i , defined by Z∗i = kTZo.

The estimation error Z∗i − Zi has mean zero: indeed, E[Z∗i − Zi] = kTE[Zo]− E[Zi] = 0.
Using the fact that Z and Wo are independent, its variance can be seen as a function v :
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Rn → R of k given by

v(k) = Var[Z∗i − Zi] = Var[kT (MoZ + τWo)− Zi]
= Var[kTMoZ] + Var[τkTWo] + Var[Zi]− 2Cov[kTMoZ, Zi]
= kTMoΣMT

o k + τ2kTk − 2kTMoσi + Var[Zi] ,

where Σ = Var[Z] = f(S) and σi = Cov(Z, Zi) is also the i-th column of Σ. Finding the set
of vectors k that minimize v(k) is then done by finding a stationary point ki of v:

∇v(ki) = 2
(
MoΣMT

o ki + τ2ki −Moσi
)

= 0 ,

which gives ki = (MoΣMT
o + τ2Id)−1Moσi. As defined, ki therefore minimizes the variance

of the estimation error of Zi by kTi Zo.
Let K be the n× d matrix whose rows are the vectors kTi . Then clearly,

K = ΣMT
o (MoΣMT

o + τ2Id)−1 ,

and the estimator Z∗ = KZo is the best linear estimator of Z given Zo. Finally, notice that
Z∗ = E[Z|Zo] according to Equation (4.4).

Proposition 4.1.3

Proof. Using the linearity of the (conditional) expectation, Equation (4.8) gives

E[Z|zo] = E[Y +mv|Mo(Y +mv) + τWo = zo] = mv + E[Y |Yo = yo] ,

where Y = Z −mv is a zero-mean S-stationary SGS and the vectors Yo and yo are defined
by

yo = zo −mMov, and Yo = Zo −mMov = MoY + τWo . (C.3)

Note in particular that Y , Yo and yo follow all the requirements of Propositions 4.1.1
and 4.1.2. Hence, the best unbiased linear estimator of Y given yo is

y∗ = E[Y |yo] = f(S)MT
o

(
Mof(S)MT

o + τ2Id
)−1

yo ,

and therefore, E[Z|zo] satisfies Equation (4.9).
In the case where f is non-zero on the set of eigenvalues of S and τ > 0, the same arguments

gives Equation (4.10) as a consequence of Equation (4.6) in Proposition 4.1.1.
Let Z∗ = E[Z|Zo]. We now show that Z∗ is indeed the BLUE of Z given Zo. Clearly, Z∗

is a linear estimator. Besides, E[Z∗ −Z] = E[mv+Y ∗ − (Y +mv)] = E[Y ∗ −Y ] = 0 which
proves the unbiasedness. Similarly, note that Var[Z∗ − Z] = Var[Y ∗ − Y ] and therefore is
minimal by definition of Y ∗.

Proposition 4.1.4

Proof. Let z∗i = kTzo be a linear estimator of Zi by z and let Z∗i = kTzo be the associated
randomized estimator. Following Equations (4.2) and (4.8), the unbiasedness requirement
now writes:

E[Z∗i − Zi] = E[Z∗i ]− E[Zi] = kTE[Zo]− E[Zi] = kTE[Mo(Y +mv) + τWo]−mvi = 0 ,

which gives the relation:
m(kTMov − vi) = 0 .

Given thatm is unknown, this relation should hold whatever the actual value ofm to guarantee
that Z∗i is an unbiased estimator. This is achieved by imposing the following constraint on
the vector of coefficients k ∈ Rd:

kTMov = vi . (C.4)
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Hence, the variance minimization requirement now becomes a constrained minimization
problem: finding the vector k that minimizes the estimation error Var[Z∗i − Zi] under the
constraint of Equation (C.4). Note in paricular that,

Var[Z∗i − Zi] = Var[kT (MoZ + τWo)− Zi]
= Var[kTYo − Yi +mkTMov −mvi] = Var[kTYo − Yi] ,

where Y and Yo are defined as in Equations (4.8) and (C.3). Noting that Y and Yo follow
the requirements of Proposition 4.1.2, we can conclude that Var[Z∗i − Z] = Var[Y ∗i − Yi] can
be computed using the same formula as the one derived in the proof of Proposition 4.1.2.

Hence, the vector ki defining the BLUE of Zi by zo is

ki = argmin
k∈Rd

(Mov)Tk=vi

kT (MoΣMT
o + τ2Id)k − 2kTMoσi , (C.5)

where Σ = Var[Z] = f(S) and σi = Cov(Z, Zi) is the i-th column of Σ. This minimization
problem can be solved using a Lagrange multiplier to enforce the constraint. Namely, if ki is
given by Equation (C.5), then there exists some µi ∈ R such that (ki, µi) is a stationary point
of the Lagrange function L defined by

L(k, µ) = kT (MoΣMT
o + τ2Id)k − 2kTMoσi + 2µ

(
(Mov)Tk − vi

)
, (k, µ) ∈ Rd × R .

Requiring that (ki, µi) be a stationary point of this new objective function then gives the
following equations (when taking the derivatives with respect to k and µ): 2((MoΣMT

o + τ2Id)ki −Moσi + µiMov) = 0
2((Mov)Tki − vi) = 0

.

Hence (ki, µi) is the solution of the following linear system: (MoΣMT
o + τ2Id) Mov

(Mov)T 0

 ki

µi

 =

 Moσi

vi

 . (C.6)

All vectors ki, i ∈ [[1, n]] are now consolidated into one matrix K whose lines are the
vectors kTi , as done in the proof of Proposition 4.1.2, so that multiplying K by zo yields a
vector whose entries are BLUEs of the entries of Z. Hence Z∗ = Kzo will be the BLUE of
Z given zo. Equation (C.6) can then be used to derive a linear system satisfied by K: (MoΣMT

o + τ2Id) Mov

(Mov)T 0

 KT

µT

 =

 MoΣ

vT

 , (C.7)

where µ = (µ1 . . . µn)T ∈ Rn is a vector whose entries are the Lagrange multipliers of each
vector ki. Hence,

(
K µ

)
=
(

ΣMT
o v

) (MoΣMT
o + τ2Id) Mov

(Mov)T 0

−1

.

Finally, Equation (4.11) is obtained by noticing that Z∗ = Kzo can also be written Z∗ =
(K|µ)

(
zo
0
)
.
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Proposition 4.1.5

Proof. Following Equation (4.5), let K be the matrix defined by

K = f(S)MT
o

(
Mof(S)MT

o + τ2Id
)−1

.

Then, Z−E[Z|Zo] = Z−KZo = (I −KMo)Z+ τKWo. Hence, E[Z|Zo] is the sum of two
independent Gaussian vectors. So it is a Gaussian vector whose mean is the sum of their means
and whose covariance matrix is the sum of their covariance matrices (cf. Proposition A.4.8).
This gives that Z − E[Z|Zo] is a zero-mean Gaussian vector with covariance matrix Σ given
by

Σ = (I −KMo)f(S)(I −KMo)T + τ2KKT .

Developing this last expression then gives Σ = Var[Z|zo].

Proposition 4.2.1

Proof. We first consider that Z is zero-mean, i.e. m = 0. Equations (4.17) and (4.18) are
proved in the exact same way as Equations (4.4) and (4.5) in Proposition 4.1.1, except that
the vector Z̃ = (Z Zo)T now has covariance matrix:

Var[Z̃] =

 f(S) f(S)MT
o

Mof(S) Mof(S)MT
o +

p∑
k=1

Mkfk(Sk)MT
k + τ2Id

 .

This is a direct consequence of the fact that Zo is a sum of independent Gaussian vectors (cf.
Proposition A.4.8). Similarly, the fact that Z∗ is the BLUE of Z by zo is proved using the
same reasoning as the one used for Proposition 4.1.2.

The case m 6= 0 is then proved in the exact same way Equation (4.9) is proved in Propo-
sition 4.1.3.

Proposition 4.2.2

Proof. Equation (4.19) is proved in the exact same way as Equation (4.6) in Proposition 4.1.1,
except that the vector Z̃ is now defined as:

Z̃ =



Z

Z1
...
Zp

Zo


= A



Z

Z1
...
Zp

Wo


where A =



Mo

M1
. . .

Mp

Mo M1 . . . Mp τId


.

Proposition 4.2.3

Proof. The same proof as the one used for Proposition 4.1.4 can be used to prove this result.
Simply notice that the random vector W̃o = M1Z1 + · · · + MpZp + τWo is a zero-mean
Gaussian vector with covariance matrix Σ̃ =

∑p
k=1Mkfk(Sk)MT

k + τ2Id. Replacing Wo by
W̃o in the proof of Proposition 4.1.4 then gives the result.
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C.3 Chapter 5

Proposition 5.1.1

Proof. Following from the bounds of its Rayleigh quotients, any symmetric matrix A satisfies
for any vector v of appropriate size vTAv ∈ [λmin(A)vTv, λmax(A)vTv].
Note then that ∀v ∈ Rd, we have vTΣv = (Mov)T f(S)(Mov)+ τ2vTv. Hence, on one hand,

vTΣv ≤ λmax(f(S))(Mov)T (Mov) + τ2vTv ≤ (λmax(f(S))λmax(MT
o Mo) + τ2)vTv ,

and on the other hand,

vTΣv ≥ λmin(f(S))(Mov)T (Mov) + τ2vTv ≥ (λmin(f(S))λmin(MT
o Mo) + τ2)vTv .

Let lmin = λmin(f(S))λmin(MT
o Mo) + τ2 and lmax = λmax(f(S))λmax(MT

o Mo) + τ2. Then
the Rayleigh quotient R(Σ,v) satisfies R(Σ,v) ∈ [lmin, lmax]. Given that λmax(Σ) (resp.
λmin(Σ)) is the supremum (resp. infimum) of R(Σ,v) over v ∈ Rd with v 6= 0, we therefore
get λmax(Σ) ≤ lmax and λmin(Σ) ≥ lmin.
Finally noting that following the definition of graph filters,

λmin(f(S)) ≥ min
λ∈[λmin(S),λmax(S)]

f(λ) and λmax(f(S)) ≤ max
λ∈[λmin(S),λmax(S)]

f(λ) ,

gives the result stated in the proposition.

C.4 Chapter 6

Proposition 6.4.2

Proof. Let p = (p1, . . . , pd)T ∈ ∂M ⊂ Rd. In particular F (p) = 0 and the implicit function
theorem ensures that there exists a neighborhood V ⊂ Rd−1 of (p1, . . . , pd−1)T ∈ Rd−1 and a
map φ : V → R satisfying:

pd = φ(p1, . . . , pd−1) = and ∀y ∈ V 7→ (y, φ(y))T ∈ ∂M .

Moreover, the (Cartesian) partial derivatives of φ (as a function of Rd−1) satisfy

∀x ∈ V, ∂jφ(x) = − 1
∂dF (x, φ(x))∂jF (x, φ(x)), 1 ≤ j ≤ d− 1

A coordinate chart (U, x) between a neighborhood U of p inM and V ×R+ can then be
built by:

∀q ∈ U, x(q) = (x1(q) = q1, . . . , xd−1(q) = qd−1, xd(q) = ε(φ(q1, . . . , qd−1)− qd)) , ,

where ε ∈ {±1} has its sign determined by whether perturbing positively the d-th coordinate
of a point of ∂M near p pushes us outside ofM or not. In particular, ε = sign(∂dF (p)). The
inverse ψ of x on x(U) is then given by

∀q′ ∈ x(U), ψ(q′) =
(
ψ1(q′) = q′1, . . . , ψd−1(q′) = q′d−1, ψd(q′) = φ(q′1, . . . , q′d−1)− εq′d

)
.

(U, x) is a coordinate chart containing p and such that xd(p) = 0. Hence,

Tp∂M = span
{

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xd−1

∣∣∣∣
p

}
.

Let f ∈ C∞(M). The action of one of these tangent vectors on f can be rewritten using the
chain rule for 1 ≤ j ≤ d− 1 as

∂f

∂xj

∣∣∣∣
p

= ∂j(f ◦ψ)(x(p)) =
d∑
k=1

∂kf |ψ(x(p))∂jψk|x(p) = ∂jf |p+∂jφ|x(p)∂df |p, 1 ≤ j ≤ d− 1 .
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Hence these tangent vectors can be decomposed in the basis {∂1, . . . , ∂d} of the directional
derivatives of the Cartesian coordinates of Rd as

∂

∂xj

∣∣∣∣
p

= ∂j |p + ∂jφ|x(p)∂d|p = ∂j |p −
1

∂dF (p)∂jF (p)∂d|p, 1 ≤ j ≤ d− 1 .

Consider now the vector vp ∈ TpM defined as

vp =
d∑
k=1

∂kF (p)∂k|p .

Then, for all 1 ≤ j ≤ d− 1, we have

ḡp(vp,
∂

∂xj

∣∣∣∣
p

) = ∂jF (p)× 1 + ∂dF (p)×
(
− 1
∂dF (p)∂jF (p)

)
= 0 .

Hence vp ∈ Tp∂M⊥.
Notice finally that the tangent vector ∂/∂xd can also be decomposed using the Chain rule:

∂

∂xd

∣∣∣∣
p

= −ε∂d|p .

Hence,

ḡp

(
vp,

∂

∂xd

∣∣∣∣
p

)
= −ε∂dF (p) < 0 .

Hence the vector vp/
√
ḡp(vp, vp) = np satisfies all the requirements of a unit normal vector

at p.





D
Pseudo-differential operators

and Laplacian

D.1 Laplacian and Fourier transform

D.1.1 Generalized random fields and pseudo-differential operators

We first consider the caseM = [0, π]d. We assume thatM is equipped with the Euclidean metric,
making it a Riemannian manifold. The eigenvalues {λk}k∈Nd and eigenfunctions {ek}k∈Nd of
the Laplacian −∆M on M, when Dirichlet boundary conditions are considered, are given by
(Grebenkov and Nguyen, 2013):

∀k ∈ Nd, ∀x ∈M, ek(x) =
(

2
π

)d d∏
l=1

sin(klxl), λk =
d∑
l=1

k2
l (D.1)

Proposition D.1.1. Let f ∈ L2(M) and define f̃ : Rd → R by:
f̃(x) = f(x), ∀x ∈ [0, π]d

f̃(x1, . . . ,−xk, . . . , xd) = −f̃(x1, . . . , xk, . . . , xd) ∀x ∈ Rd, 1 ≤ k ≤ d
f̃(x+ 2πn) = f̃(x), ∀x ∈ Rd,n ∈ Zd

(D.2)

Then the coefficients cj(f̃) of the Fourier series of f̃ satisfy ∀j ∈ Zd:

cj(f̃) = 1
(2i)d ε(j)〈f, e|j|〉L

2(M) (D.3)

where ε(j) =
∏d
l=1 sign(jl), |j| := (|j1| . . . |jd|)T ∈ Nd and e|j| is an eigenfunction of −∆M on

M = [0, π]d with Dirichlet boundary conditions, as defined in (D.1). (Note : sign denotes the
sign function sign : x ∈ R 7→ 1 if x ≥ 0, −1 otherwise)
In particular, the Fourier series of f̃ (restricted to [0, π]d) is equal (up to a normalization con-
stant) to the development of f in the eigenbasis of the Laplacian.

Proof.

cj(f̃) = 1
(2π)d

∫
[−π,π]d

e−ij
Txf̃(x)dx = 1

(2π)d

∫
[−π,π]d−1

e
−i

d−1∑
k=1

jlxl ∫
[−π,π]

e−ijdxd f̃(x)dx

249
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And,∫
[−π,π]

e−ijdxd f̃(x)dxd =
∫

[−π,0]
e−ijdxd f̃(x)dxd +

∫
[0,π]

e−ijdxd f̃(x)dxd

=
∫

[0,π]
(−eijdxd + e−ijdxd)f̃(x)dxd = −2i

∫
[0,π]

sin(jdxd)f̃(x)dxd

So,

cj(f̃) = −2i
(2π)d

∫
[−π,π]d−1

e
−i

d−1∑
l=1

jlxl ∫
[0,π]

sin(jdxd)f̃(x)dx

By induction, the same process yields,

cj(f̃) = (−2i)d

(2π)d

∫
[0,π]d

d∏
l=1

sin(jlxl)f̃(x)dx = 1
(iπ)d

∫
[0,π]d

d∏
l=1

sin(jlxl)f(x)dx

= 1
(iπ)d

∫
[0,π]d

d∏
l=1

sin(sign(jl)|jl|xl)f(x)dx = 1
(iπ)d

∫
[0,π]d

ε(j)
d∏
l=1

sin(|jl|xl)f(x)dx

= 1
(iπ)d ε(j)

∫
[0,π]d

(π
2

)d
e|j|(x)f(x)dx = 1

(2i)d ε(j)〈f, e|j|〉L
2(M)

Besides, since f ∈ L2(M), it can be decomposed in the orthonormal basis of eigenfunctions
{ek}k∈Nd of the Laplacian −∆M. In particular,

f =
∑
k∈Nd
〈f, ek〉L2(M)ek

where the equality is understood in the L2 sense. Note that using Euler’s formula, it is quite
straightforward to derive an alternative expression of the eigenfunctions {ek}k∈Nd :

∀k ∈ Nd,∀x ∈M, ek(x) =
(

2
π

)d d∏
l=1

sin(klxl) =
(

2
π

)d
· 1

(2i)d
∑

j∈Zd:|j|=k

ε(j)eij
Tx

Therefore, ∀x ∈M,∑
k∈Nd
〈f, ek〉L2(M)ek(x) = 1

(iπ)d
∑
k∈Nd
〈f, ek〉L2(M)

∑
j∈Zd:|j|=k

ε(j)eij
Tx

= 1
(iπ)d

∑
j∈Zd

ε(j)〈f, e|j|〉L2(M)e
ijTx = (2i)d

(iπ)d
∑
j∈Zd

cje
ijTx

=
(

2
π

)d
SF [f̃ ](x)

It is therefore possible to define the Fourier transform of a function of f ∈ L2(M) as the
Fourier transform of its associated 2π-periodic function (of Rd) f̃ defined as in (D.2). Using this
convention, the Fourier transform F [f ] of f ∈ L2(M) is the distribution given by:

F [f ] = (2π)d
∑
j∈Zd

cj(f̃)δj = (−iπ)d
∑
j∈Zd

ε(j)〈f, e|j|〉L2(M)δj (D.4)

Proposition D.1.2. Let γ : R+ 7→ R.
Let φ ∈ L2(M) such that γ(−∆M)φ ∈ L2(M), where γ(−∆M) is the operator defined in
Equation (7.1).
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Then, the Fourier series representation γ(−∆M)φ is equal F−1 [(w 7→ γ(‖w‖2)) ·F [φ]
]
in the

sense of distributions, where F is the Fourier transform operator.

Proof. On one hand, by definition of γ(−∆M),

γ(−∆M)φ =
∑
k∈Nd

γ(λk)〈φ, ek〉L2(M)ek

where λk and ek are defined in Equation (D.1). Hence, following Equation (D.4),

F [γ(−∆M)φ] = (−iπ)d
∑
j∈Zd

ε(j)γ(λ|j|)〈φ, e|j|〉L2(M)δj

On the other hand, consider the distribution Tγ,φ defined as the product of the function
w 7→ γ(‖w‖2) with F [φ], i.e.

∀u ∈ C∞c (Rd), Tγ,φ(u) := F [φ](γ · u) = (−iπ)d
∑
j∈Zd

ε(j)〈φ, e|j|〉L2(M)γ(‖j‖2)u(j)

Then, by definition of the λj ,

∀u ∈ C∞c (Rd), Tγ,φ(u) = (−iπ)d
∑
j∈Zd

ε(j)〈φ, e|j|〉L2(M)γ(λ|j|)u(j)

= F [γ(−∆M)φ] (u)

Therefore, Tγ,φ = F [γ(−∆M)φ] in the sense of distributions, which proves the result.

Hence, in the particular case of the manifold M = [0, π]d, the operator γ(−∆M) acts on
L2(M) exactly as a pseudo-differential operator.

D.2 Convergence of finite element approximations of gen-
eralized random fields

In this section, the proof of the convergence result of Theorem 8.2.1 is exposed. First, two
lemmas used in the proof are introduced.

Lemma D.2.1. Let m ∈ R such that m 6= −1 and let n ∈ N, n ≥ 1.

1
1 +m

(
1− 1

n1+m

)
+ 1
nmax{1,m+1} ≤

1
n

n∑
k=1

(
k

n

)m
≤ 1

1 +m

(
1− 1

n1+m

)
+ 1
nmin{1,m+1}

Proof. Let n ≥ 1 and let Sn denote the sum Sn =
∑n
k=1

(
k
n

)m.
First, assume that m ≤ 0. Then,

∀k ∈ [[1, n]],∀t ∈
[
k

n
,
k + 1
n

]
,

(
k + 1
n

)m
≤ tm ≤

(
k

n

)m
Integrating both inequalities between over the their segment of definition and then summing
them for 1 ≤ k ≤ n− 1 gives:

1
n

(
Sn −

1
nm

)
≤ In ≤

1
n

(Sn − 1)

where
In =

∫ 1

1/n
tmdt = 1

1 +m

(
1− 1

n1+m

)
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Hence, we have
In + 1

n
≤ 1
n
Sn ≤ In + 1

nm+1

Similarly, if m ≥ 0 we get,
In + 1

nm+1 ≤
1
n
Sn ≤ In + 1

n

Hence, ∀m 6= −1, we have,

In + 1
nmax{1,m+1} ≤

1
n
Sn ≤ In + 1

nmin{1,m+1}

Lemma D.2.2. Let m ∈ R such that m > 1 and let J ∈ N, J ≥ 1.

1
(m− 1)(J + 1)m−1 ≤

∑
j>J

j−m ≤ 1
(m− 1)Jm−1 (D.5)

Proof. This result can easily be derived by upper-bounding and lower-bounding the integrals∫ J
1 t−mdt,

∫ J+1
1 t−mdt and

∫ +∞
J+1 t

−mdt.

The proof of Theorem 8.2.1 is now derived. The proof follows directly the approach outlined
in the proof of Theorem 2.10 in (Bolin et al., 2018).

Proof. Let Z(nh) be the random field defined as the truncation of Z after nh terms:

Z(nh) =
nh∑
k=1

Wjγ(λj)ej .

Then, from the triangle inequality,

‖Z − Zh‖L2(Ω;M) ≤ ‖Z − Z(nh)‖L2(Ω;M) + ‖Z(nh) −Zh‖L2(Ω;M) . (D.6)

Truncation error term ‖Z − Z(nh)‖L2(Ω;M)

‖Z − Z(nh)‖2L2(Ω;M) = E

‖∑
j>nh

Wjγ(λj)ej‖2L2(M)

 = E

∑
j>nh

W 2
j γ(λj)2

 =
∑
j>nh

γ(λj)2 .

Then from Assumptions 8.1, 8.3 and 8.5 and Equation (D.5), we have

‖Z − Z(nh)‖2L2(Ω;M) ≤ C
2
γ

∑
j>nh

λ−2β
j ≤ C2

γc
−2β
λ

∑
j>nh

j−2αβ ≤
C2
γc
−2β
λ

(2αβ − 1) ×
1

n2αβ−1
h

.

Finally, Assumption 8.4 yields

‖Z − Z(nh)‖2L2(Ω;M) ≤
C2
γc
−2β
λ

(2αβ − 1)C2αβ−1
FES

× hd̃(2αβ−1) . (D.7)



D.2. Convergence of finite element approximations of generalized random fields 253

Finite element discretization error ‖Z(nh) −Zh‖L2(Ω;M)
From the triangular identity,

‖Z(nh) −Zh‖L2(Ω;M) =

∥∥∥∥∥
nh∑
k=1

Wkγ(λk)ek −
nh∑
k=1

Wkγ(λk,h)ej,h

∥∥∥∥∥
L2(Ω;M)

≤

∥∥∥∥∥
nh∑
k=1

Wkγ(λk)ek −
nh∑
k=1

Wkγ(λk)ek,h

∥∥∥∥∥
L2(Ω;M)︸ ︷︷ ︸

:=(I)

+

∥∥∥∥∥
nh∑
k=1

Wkγ(λk)ek,h −
nh∑
k=1

Wkγ(λk,h)ek,h

∥∥∥∥∥
L2(Ω;M)︸ ︷︷ ︸

:=(II)

.

On one hand, using the independence of the weight {Wk}k,

(I)2 =

∥∥∥∥∥
nh∑
k=1

Wkγ(λk)(ek − ek,h)

∥∥∥∥∥
2

L2(Ω;M)

=
nh∑
k=1

nh∑
l=1

γ(λk)γ(λl)E [WkWl] 〈ek − ek,h, el − el,h〉L2(M)

=
nh∑
k=1

γ(λk)2‖ek − ek,h‖2L2(M) .

So, following Assumption 8.6, (I)2 ≤ C2h
2s∑nh

k=1 γ(λk)2λqk.

Let then K0 be the integer defined by K0 =
⌈(

Rγ
cλ

)1/α
⌉
. According to Assumptions 8.4

and 8.5, nh ≥ K0. Hence, we can write (I)2 ≤ C2h
2s (S0 +

∑nh
k=K0

γ(λk)2λqk
)
where S0 is the

constant defined by S0 =
∑K0−1
k=1 γ(λk)2λqk.

Finally, by definition of K0 and according to Assumption 8.1, we have k ≥ K0 ⇒ λk ≥ Rγ
and therefore, following Assumptions 8.1 and 8.3,

(I)2 ≤ C2h
2s

(
S0 + C2

γ

nh∑
k=K0

λ−2β
k λqk

)
≤ C2h

2s

(
S0 + C2

γĈ
q−2β
λ

nh∑
k=K0

kα(q−2β)

)
, (D.8)

where Ĉλ = Cλ if q − 2β > 0 and Ĉλ = cλ otherwise. Note in particular that:

nh∑
k=K0

kα(q−2β) ≤
nh∑
k=1

kα(q−2β) = n
α(q−2β)+1
h

1
nh

nh∑
k=1

(
k

n

)α(q−2β)
.

If α(q − 2β) > 0, we have directly

nh∑
k=K0

kα(q−2β) ≤ nα(q−2β)+1
h

1
nh

nh∑
k=1

1 = n
1+α(q−2β)
h .

And if α(q − 2β) ≤ 0, we use Lemma D.2.1 to derive

nh∑
k=K0

kα(q−2β) ≤ 1
1 + α(q − 2β)

(
n
α(q−2β)+1
h − 1

)
+ 1 .

Hence in both cases we can write
nh∑

k=K0

kα(q−2β) ≤ B1n
α(q−2β)+1
h +B2 , (D.9)
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where B1 and B2 are two constants depending solely on the parameters α, β, q. Injecting this
last expression in Equation (D.8) anthen gives,

(I)2 ≤ C2h
2s
(
S0 + C2

γĈ
q−2β
λ B2 + C2

γĈ
q−2β
λ B1n

α(q−2β)+1
h

)
.

And from Assumption 8.4 we get,

(I)2 ≤C2

(
S0 + C2

γĈ
q−2β
λ B2

)
· h2s

+
(
C2C

2
γĈ

q−2β
λ B1C

α(q−2β)+1
FES

)
· h(2s−d̃αq)+d̃(2αβ−1) .

(D.10)

On the other hand,

(II)2 =

∥∥∥∥∥
nh∑
k=1

(γ(λk)− γ(λk,h))Wkek,h

∥∥∥∥∥
L2(Ω;M)

= E

[
nh∑
k=1

(γ(λk)− γ(λk,h))2W 2
k

]
=

nh∑
k=1

(γ(λk)− γ(λk,h))2 .

(D.11)

In particular, using the mean value theorem, for all 1 ≤ k ≤ nh there exists lk ∈ [λk, λk,h]
such that:

γ(λk)− γ(λk,h) = γ′(lk)(λk,h − λk) .

So, using Assumption 8.2,

|γ(λk)− γ(λk,h)| = |γ′(lk)||λk,h − λk| ≤
CDeriv

lak
|λk,h − λk| ≤

CDeriv

λak
|λk,h − λk| .

And using Assumptions 8.1 and 8.6,

|γ(λk)− γ(λk,h)| ≤ CDeriv

(cλkα)aC1h
r(Cλkα)q .

Therefore, injecting this last expression in Equation (D.11) gives

(II)2 ≤
(
CDerivc

−a
λ C1C

q
λ

)2 · h2r
nh∑
k=1

k2α(q−a) .

Note that using the fact that α(q − a+ β) ≤ r/d̃ (cf. Equation (8.23)), we have
nh∑
k=1

k2α(q−a) =
nh∑
k=1

k2α(q−a+β) · k−2αβ ≤
nh∑
k=1

k2r/d̃ · k−2αβ .

Using the same reasoning as the one used to derive Equation (D.9), we then get
nh∑
k=1

k2α(q−a) ≤ B′1n
2r/d̃−2αβ+1
h +B′2 ,

where B′1 and B′2 are two constants depending only on α, q, a. Injecting this observation in
Equation (D.11) and using Assumption 8.4 finally gives

(II)2 ≤
(
CDerivc

−a
λ C1C

q
λ

)2 (
B′2 · h2r +B′1C

2(r/d̃−αβ)+1
FES · h2d̃αβ−d̃

)
. (D.12)

Combining the terms (I) and (II) finally gives:

‖Z(nh) −Zh‖L2(Ω;M) ≤
√
M1 · h2s +M2 · h(2s−d̃αq)+d̃(2αβ−1)

+
√
M3 · h2r +M4 · h2d̃(αβ−1/2) ,

(D.13)

where M1,M2,M3,M4 are constants independent of h.
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Total error Using the fact that h < 1, the bounds in Equations (D.7) and (D.13) can
actually be simplified by noticing that all the terms hu (u ≥ 0) can be bounded by the one
with the smallest exponent. This gives

‖Z − Zh‖L2(Ω;M) ≤Mhmin{s,s−d̃qα/2+d̃(αβ−1/2),r,d̃(αβ−1/2)} ,

where M is a constant independent of h. And finally, using the fact that s − d̃qα/2 ≥ 0 (cf.
Equation (8.23)) we have

‖Z − Zh‖L2(Ω;M) ≤Mhmin{s,r,d̃(αβ−1/2)} .
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MOTS CLÉS

Champ aléatoire généralisé, Variété riemannienne, Traitement du signal sur graphe, Equation aux dérivées
partielles stochastique, Méthode des éléments finis

RÉSUMÉ

La géostatistique est la branche des statistiques s’intéressant à la modélisation des phénomènes ancrés dans l’espace au
travers de modèles probabilistes. En particulier, le phénomène en question est décrit par un champ aléatoire (générale-
ment gaussien) et les données observées sont considérées comme résultant d’une réalisation particulière de ce champ
aléatoire. Afin de faciliter la modélisation et les traitements géostatistiques qui en découlent, il est d’usage de supposer
ce champ comme stationnaire et donc de supposer que la structuration spatiale des données se répète dans le domaine
d’étude.
Cependant, lorsqu’on travaille avec des jeux de données spatialisées complexes, cette hypothèse devient inadaptée. En
effet, comment définir cette notion de stationnarité lorsque les données sont indexées sur des domaines non euclidiens
(comme des sphères ou autres surfaces lisses)? Quid également du cas où les données présentent structuration spatiale
qui change manifestement d’un endroit à l’autre du domaine d’étude? En outre, opter pour des modèles plus complexes,
lorsque cela est possible, s’accompagne en général d’une augmentation drastique des coûts opérationnels (calcul et
mémoire), fermant alors la porte à leur application à de grands jeux de données.
Dans ce travail, nous proposons une solution à ces problèmes s’appuyant sur la définition de champs aléatoires général-
isés sur des variétés riemanniennes. D’une part, travailler avec des champs aléatoires généralisés permet d’étendre
naturellement des travaux récents s’attachant à tirer parti d’une caractérisation des champs aléatoires utilisés en géo-
statistique comme des solutions d’équations aux dérivées partielles stochastiques. D’autre part, travailler sur des variétés
riemanniennes permet à la fois de définir des champs sur des domaines qui ne sont que localement euclidiens, et sur
des domaines vus comme déformés localement (ouvrant donc la porte à la prise en compte du cas non stationnaire).
Ces champs généralisés sont ensuite discrétisés en utilisant une approche par éléments finis, et nous en donnons une
formule analytique pour une large classe de champs généralisés englobant les champs généralement utilisés dans les
applications. Enfin, afin de résoudre le problème du passage à l’échelle pour les grands jeux de données, nous pro-
posons des algorithmes inspirés du traitement du signal sur graphe permettant la simulation, la prédiction et l’inférence
de ces champs par des approches "matrix-free".

ABSTRACT

Geostatistics is the branch of statistics attached to model spatial phenomena through probabilistic models. In particular,
the spatial phenomenon is described by a (generally Gaussian) random field, and the observed data are considered
as resulting from a particular realization of this random field. To facilitate the modeling and the subsequent geostatistical
operations applied to the data, the random field is usually assumed to be stationary, thus meaning that the spatial structure
of the data replicates across the domain of study.
However, when dealing with complex spatial datasets, this assumption becomes ill-adapted. Indeed, how can the notion
of stationarity be defined (and applied) when the data lie on non-Euclidean domains (such as spheres or other smooth
surfaces)? Also, what about the case where the data clearly display a spatial structure that varies across the domain?
Besides, using more complex models (when it is possible) generally comes at the price of a drastic increase in operational
costs (computational and storage-wise), rendering them impossible to apply to large datasets.
In this work, we propose a solution to both problems, which relies on the definition of generalized random fields on
Riemannian manifolds. On one hand, working with generalized random fields allows to naturally extend ongoing work that
is done to leverage a characterization of random fields used in Geostatistics as solutions of stochastic partial differential
equations. On the other hand, working on Riemannian manifolds allows to define such fields on both (only) locally
Euclidean domains and on locally deformed spaces (thus yielding a framework to account for non-stationary cases). The
discretization of these generalized random fields is undertaken using a finite element approach, and we provide an explicit
formula for a large class of fields comprising those generally used in applications. Finally, to solve the scalability problem,
we propose algorithms inspired from graph signal processing to tackle the simulation, the estimation and the inference of
these fields using matrix-free approaches.

KEYWORDS

Generalized random field, Riemannian manifold, Graph signal processing, Stochastic partial differential equa-
tion, Finite element method
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