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Introduction

Context

Geostatistics is the branch of statistics attached to model spatial phenomena through proba-
bilistic models. Such phenomena are generally observed through measurements of their e�ects
across a spatial domain. Within the geostatistical paradigm, we assume that the spatial phe-
nomenon is described by a random �eld, that is a function that maps the points of the spatial
domain to random variables. The actual reality of the phenomenon is then considered to be
a particular realization of this random �eld, and the measurements are seen as evaluations of
the realization at the same locations. The premise is then to use the statistical properties of
the random �eld, somehow estimated from the measurements, to deduce information about the
underlying phenomenon.

In many cases, one can only assume that a single realization of the phenomenon/random
�eld is observed. Some assumptions are therefore made so that properties observed on this
single realization can be generalized to describe the statistical properties of the random �eld.
The most common one is assuming that the random �eld is Gaussian (Diggle et al., 1998), so
that it is su�cient to only characterize its �rst two moments:

� its mean function, which corresponds to the expectation of the random �eld at each point
of the domain;

� its covariance function, which corresponds to the function mapping a pair of locations on
the domain to the covariance of the random �eld at these points.

Three recurring objectives then occur when dealing with spatial data: the inference of the
parameters characterizing the mean and the covariance of a random �eld, the simulation of a
random �eld, and the estimation of a random �eld from a set of observations. Many methods
designed to perform these tasks require to build a covariance matrix between a given set of
points of the domain (Chilès and Del�ner, 2012; Diggle et al., 1998; Wackernagel, 2013). We
provide some examples. On one hand, the inference of the parameters characterizing a Gaussian
�eld using a likelihood-based approach involves covariance matrices at the observed locations.
On the other hand, simulations of Gaussian �elds on a set of locations of a domain can be
performed using the Cholesky factorization of the covariance matrix at these locations. Finally,
the estimation of a Gaussian �eld from its partial observation, using a kriging approach, requires
to invert the covariance matrix at the observed locations . Hence it is crucial to be able to
properly de�ne theses covariance matrices and to be able to work with them.

De�ning the covariance matrices

The nice particular case of stationary models

To facilitate the construction of the covariance matrices, it is fairly common to consider that the
random �eld is isotropic and second-order stationary, whenever the data lie in a nice, continuous
�chunk� of space. Within this assumption, which we simply call stationarity, the possible mean
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10 INTRODUCTION

and covariance functions of the random �eld are simpli�ed. On one hand, the mean function
is constant over the domain. On the other hand, the covariance function is a radial function,
meaning that the covariance between a pair of points willonly depend on the (Euclidean) distance
separating them.

In this context, the mean is usually estimated as the mean of the observed values and the
covariance function is estimated from the data points using variogram modeling or likelihood-
based approaches (Diggle et al., 1998; Wackernagel, 2013). Then, computing the covariance
matrices mentioned earlier simply comes down to apply the radial covariance function to the
entries of a distance matrix.

Unfortunately, as one may suspect, stationarity is a strong assumption that cannot be applied
to model any spatial dataset (Fouedjio, 2017). Dealing for instance with data lying in non-
Euclidean spaces, or with data for which the highly regular spatial structure implied by the
stationary assumption does not apply, requires more work.

Modeling the non-stationary covariance

In the non-stationary case, the covariance function can no longer be expressed as a simple
function of the distance between the points, but has an expression that depends on the location
and relative position of the considered pair of points. However, we assume here that some
prior structural information on the behavior of the random �eld across the domain is available.
Namely, we assume that the random �eld showslocal anisotropies. Then, around each point of
the domain, there is a preferential direction along which the range of highly correlated values is
maximal, whereas it is minimal in the cross-direction(s). In particular, the angles de�ning the
preferential directions are called anisotropy angles and the size of the ranges are called anisotropy
ranges.

A �rst challenge is to determine the expression of this covariance function from the observed
data, which is tackled by imposing that the random �eld can be modeled in a certain way.
Ideally, these models would allow to incorporate the prior structural information as it is directly
linked to the de�nition of the covariance function.

The usual methods to model the corresponding non-stationary random �elds all aim at
deriving an expression of the covariance function for any pairs of points in the domain. A
large review of the methods used to model non-stationary random �elds was done by Fouedjio
(2017). We present in the following the three more popular approaches typically encountered in
practice1.

Basis function approach The basis function approach relies on the Karhunen�Loève theorem
(Lindgren, 2012), which states that any Gaussian �eld on a bounded domain can be decomposed
as a weighted sum of orthogonal (deterministic) functions, called eigenfunctions. In particular,
the weights of the linear combination are independent Gaussian variables with decreasing vari-
ances. The eigenfunctions are solutions of a set of integral equations, called Fredholm equations,
which involve the expression of the covariance function. Conversely, the covariance function can
be expressed as a weighted sum involving these functions (Lindgren, 2012).

Without any particular assumption about the domain, the eigenfunctions are determined by
discretizing and solving the Fredholm equations. In this setting, the actual expression of the
covariance function is replaced by local approximations derived from the data (Huang et al.,
2001). This method assumes in particular that the data is composed of several realizations
of the non-stationary process to model. Solving the discretized problem then amounts to the
diagonalization of a matrix, which itself becomes a real computational bottleneck when its size
(or equivalently the number of data points) increases.

Space deformation A second approach to solve the modeling problem consists in considering
that a non-stationary variable observed across a spatial domain can be turned into a stationary
variable after applying a (non-linear) deformation to the domain. Within this space deformation

1 In this work, we only consider non-stationary covariances de�ned for spatial data. New challenges appear
when dealing with space-time data given that the non-stationarity can result from both anisotropies in the spatial
domain (that can change over time) and the fact that the time coordinate should generally be di�erentiated from
the space coordinates. We refer the reader to the work of Porcu et al. (2006, 2007), who proposed a method to
build models able to deal with such data.
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approach, the goal is then to characterize the deformation from the observed variable so that
the problem can be reformulated in a stationary framework in the deformed domain (Sampson
and Guttorp, 1992). This approach relies on the idea that the covariance function of the non-
stationary process can be written as the composition of a stationary (isotropic) covariance model
with a deformation function. Perrin and Senoussi (2000); Porcu et al. (2010) derived character-
izations of the covariance functions for which this so-called (isotropic) stationary reducibility is
admissible.

The multi-dimensional scaling algorithm (Kruskal, 1964) is leveraged in this context: this
algorithm associates to each data point a set of coordinates in a new, �deformed� space, so that
data points with similar (resp. dissimilar) values are close to (resp. distant from) each other in
the deformed space. The implementation of this method usually relies on the assumption that the
data set is composed of several realizations of the same random process, although alternatives to
circumvent this assumption have been proposed (Anderes and Stein, 2008; Fouedjio et al., 2015).
Another approach to determine the deformation consists in working with a set of parametrized
deformation functions which are �tted on the data by minimizing an objective function (Anderes
and Stein, 2011; Perrin and Monestiez, 1999). Both approaches reveal to be computationnally
expensive, which limit their applicability for large-scale datasets.

Besides, to the best of our knowledge, these space deformation models do not allow to
easily take into account prior structural information about the non-stationarity, namely local
anisotropy angles and ranges. Indeed, they all seek to directly (but approximately) characterize
the overall deformation while only considering the location (and the value) of the data points.
This is regrettable as these parameters are supposed to be a consequence of the (assumed) defor-
mation process and one could think that including them in the estimation of spatial deformation
would simplify the problem.

Convolution model A third approach to modeling non-stationary data is the convolution
model, introduced by Higdon et al. (1999). The idea is to model the value of the non-stationary
�eld at a given point of the domain as the result of the (spatial) convolution over the domain of
a deterministic function, called kernel function, with a white noise (i.e. a random process over
the domain whose values at any two distinct points are independent and identically distributed).
Considering di�erent kernel functions to compute the value of the random �eld at di�erent
locations of the domain then naturally yields a non-stationary �eld.

In order to derive a closed-form for the covariance function of the resulting �eld, Paciorek
and Schervish (2006), Pintore and Holmes (2004), Stein (2005) and Porcu et al. (2009) pro-
posed families of kernel functions which are parametrized at each point of the domain by the
local anisotropy parameters. In particular, they represent the anisotropy parameters as positive
de�nite matrices of the form RD 2R T , where R is a rotation matrix de�ned by the anisotropy
angle(s) andD is the diagonal matrix whose entries are the inverse of the anisotropy ranges.

The covariance between two points is then expressed by averaging the representation matrix
at both points, which ensures in particular that the anisotropy parameters are locally respected.
The downside of this expression may be that only the information of the anisotropy at both
points is taken into account in their covariance, and not the overall structure of the anisotropy,
which in practice might in�uence the covariance.

Random �elds on manifolds

Dealing with non-stationarity is not su�cient. Indeed, spatial data do not always occur on
nicely contiguous domains of Euclidean spaces. The simplest example might be data measured
across our planet, which arise naturally in applications such environmental science, geosciences
and cosmological data analysis (Marinucci and Peccati, 2011). The use of Euclidean distance to
model correlations between points of a random �eld de�ned on a sphere then becomes unrealistic.

De�ning and working with random �elds on a sphere is an extensively studied subject. Mar-
inucci and Peccati (2011) provided a review of the theory surrounding random �elds on a sphere.
In order to retrieve a framework similar to Euclidean spaces, most of the e�ort was attached
to characterize valid covariance functions on the sphere, that would model correlation between
points using the arc length distance between them (Gneiting, 2013; Huang et al., 2011).

Stationary Gaussian random �elds on a sphere are usually de�ned through their expansion
into a basis of known (deterministic) functions called spherical harmonics (Jones, 1963). In
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particular, this expansion can be seen as the counterpart of the expansion arising from the
Karhunen�Loève theorem, but for �elds de�ned on a sphere. This expansion is still being
exploited to derive for instance simulation methods and to characterize the covariance structure
of the resulting �elds (Emery and Porcu, 2019; Lang and Schwab, 2015; Lantuéjoul et al., 2019;
Marinucci and Peccati, 2011). Models have also been proposed to deal with both space-time
data (Porcu et al., 2016) and anisotropy (Estrade et al., 2019) on the sphere.

However, the work done for random �elds on a sphere hardly generalizes to other spatial
domains, as they heavily rely on the intrinsic properties of the sphere as a surface. What then
can be done if our spatial data lie on an arbitrary (smooth) surface of body? An answer to this
question is provided by the theory of random �elds de�ned on manifolds.

Basically, a manifold is a set that behaves locally like a Euclidean space. This mathematical
object generalizes in particular the notions of surface and arbitrary body lying in a Euclidean
space. Adler and Taylor (2009) provided a review of the theory de�ning such �elds. They mainly
focused on the geometry of their excursion sets, while dealing with brain mapping problems.

Working with covariance matrices: the big n problem

Knowing how to properly de�ne a covariance model suited for a given spatial dataset does not
guarantee that we will be able to actually use it. Indeed, a second drawback arises when trying
to build and then work with covariance matrices: the so-called bign problem. By de�nition,
the covariance matrix contains n � n covariance values that should be computed and stored,
where n is the number of points of interest. In practice, n may be the number of grid points
on which we desire to compute a simulation, or the number of data points. Hence,n can easily
become very large, and thus, building and storing the covariance matrix quickly becomes a task
requiring heavy computational and storage needs.

In fact, this problem is encountered in both the stationary and the non-stationary frameworks.
Numerous solutions have been proposed in the stationary case (See Sun et al. (2012) for a review).
We can for instance cite the use of compactly supported covariance functions (Gneiting, 2002)
and of covariance tapering (Furrer et al., 2006; Kaufman et al., 2008), which limit the number of
non-zero entries in the covariance matrix. Similarly, imposing that the considered random �eld is
Markovian ensures that the resulting precision matrix2 has a limited number of non-zero entries
(Rue and Held, 2005). The problems are then reformulated using the precision matrix instead
of the covariance matrix. If some of these solutions are transferable to the non-stationary case
(see for use of compactly supported non-stationary covariance models proposed by Liang and
Marcotte (2016)), they usually come at the price of a restriction on the models we can consider.

The SPDE approach, a starting place

A solution to both the modeling problem and the big n problem introduced above is proposed
by Lindgren et al. (2011), with their so-called stochastic partial di�erential equation (SPDE)
approach. The SPDE approach builds on a result from Whittle (1954) which states that Gaussian
random �elds Z on Rd with a Matérn covariance function, are the stationary solutions of the
SPDE given by

(� 2 � �) �= 2Z = � W ; (1)

where � > 0, � > d= 2, � > 0, (� 2 � �) �= 2 is a pseudo-di�erential operator (which can be seen
as a generalization of the Laplacian operator and is de�ned using the Fourier transform) andW
is a Gaussian white noise. In particular, for � = 2 , SPDE (1) rewrites � 2Z � � Z = � W where
� corresponds to the usual Laplacian operator.

In their approach, Lindgren et al. (2011) characterize Matérn �elds as solutions of SPDE
(1) rather than using their covariance function. They propose to formulate a solution for this
SPDE using the �nite element method: hence, the solution is expressed as a linear combination
of a �nite set of (user-de�ned) interpolation functions de�ned across the domain, weighted by
correlated Gaussian weights. They actually provide a closed form for the precision matrix of
these weights, in the case where� 2 N. The precision matrix is then given as a low-degree
matrix polynomial of a sparse matrix. This means in particular that solving the SPDE using
this method actually yields Markovian solutions.

2 i.e. the inverse of the covariance matrix
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This approach sparked a lot of interest for several reasons. On one hand, Matérn �elds are
widely used in applications of geostatistical models given its ability to �t various degrees of
regularity of the data with the same function by playing with a single parameter (Stein, 2012).
On the other hand, the precision matrix of the weights obtained by the SPDE approach being
sparse, it provides a practical solution to the bign problem when using this �exible covariance
model.

Lindgren et al. (2011) and then Fuglstad et al. (2015) o�er to tinker with SPDE (1) in order
to provide a practical answer to the two modeling problems raised above, in the case� = 2 . In
particular, their solutions conserve the desirable property that the precision matrix is sparse,
and therefore the computational gains associated with it.

� Regarding non-stationary models. They �rst propose to work with spatially varying pa-
rameters � and � in SPDE (1), which then creates globally non-stationary �elds with a
locally isotropic covariance.
A second approach they suggest is inspired by the space deformation model presented ear-
lier, and consists in de�ning SPDE (1) in the deformed space. Rewriting the SPDE in the
original domain using a change of variable then yields an expression of the SPDE that is
locally parametrized by the Jacobian of the deformation process, or equivalently by local
angles and ranges of anisotropy.

� Regarding models on general spatial domains. Building from the approach of Adler and
Taylor (2009), they propose to de�ne SPDE (1) directly on the general domain by seeing
it as a manifold. In particular, this amounts to replace the Laplacian operator by its gen-
eralization to manifolds, called the Laplace�Beltrami operator (Lee, 2012). The resulting
solution is still what is meant by a Matérn �eld, and is directly de�ned on the manifold.

Thesis statement

The starting point of our work is a simple question: can we go a little further with the solutions
proposed by Lindgren et al. (2011) and Fuglstad et al. (2015)? Precisely can we design an
approach

� to model both non-stationary �elds from local anisotropy information and �elds de�ned
on manifolds;

� that works with a larger class of covariance functions than Matérn covariance functions;

� and that can be applied to large datasets?

As it turns out, the answer is yes, and was actually suggested by these authors in their papers.
It relies on the notion of Riemannian manifold.

A Riemannian manifold is the association of a manifold with a locally de�ned metric. This
metric is an application that de�nes around each point of the manifold a notion of length and
of angles for in�nitely small vectors that would be attached to that point. Hence the metric
can be interpreted as an application that locally rede�nes the geometry of the manifold, and as
such, can be seen as describing a local deformation of the manifold at each one of its points.
Riemannian manifolds then seem particularly adapted to our problem, as the domain (i.e. the
manifold) on which the data lie is de�ned together with a set of local anisotropies that in turn
can be interpreted as resulting from local deformations3 (i.e. the metric).

To see how the SPDE model extensions proposed by Lindgren et al. (2011) and Fuglstad
et al. (2015) could be generalized, the focus is put not just on the solutions of the SPDE (1)
now de�ned on the Riemannian manifold, but rather on the general mathematical object that
can formally describe such solutions:generalized random �elds. Generalized random �elds are
the �random� counterpart of generalized functions (also called distributions), which are widely
used to formulate and derive the properties of solutions of partial derivative equations in the
deterministic case (Gelfand and Shilov, 1964).

Then, the modeling problem is settled as follows. The de�nition of a class of generalized
random �elds on the Riemannian manifold that includes naturally the solutions of SPDE (1)

3namely a rotation and dilatation corresponding to the anisotropy angles and ranges
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is introduced. Using the same principle as the �nite element method, their approximation by
a linear combination of prede�ned deterministic functions is derived, and an expression of the
covariance matrix of the weights, comparable to the one obtained by Lindgren et al. (2011)
in their particular case, is obtained. The fact that these �elds are de�ned on a Riemannian
manifold then ensures the applicability of the method for non-Euclidean domains (through the
speci�cation of the manifold) and for non-stationary �elds (through the speci�cation of the
metric).

Remains the computational problem. As it turns out, the expression of the covariance matrix
obtained in the previous step can be leveraged to derive scalable and memory-e�cient algorithms
for the simulation, prediction and inference of the corresponding weights. These algorithms rely
on an interpretation of the Gaussian vectors de�ned from these covariance matrices as stochastic
graph signals, that is random variables indexed by the vertices of a graph. Within this framework,
called graph signal processing, generalizations of classical signal processing notions and tools,
such as the Fourier transform, �ltering and translation operators, are leveraged to e�ciently
process data indexed on graphs (Shuman et al., 2013).

As the theory (through the model speci�cation) and the practice (through graph signal
processing algorithms) of generalized random �elds are laid out, we end with the concrete study
of stationary and non-stationary spatial data. In particular, the simulation, the mapping, the
�ltering and the inference of both synthetic and real data are performed to illustrate both the
�exibility and the applicability of the concepts introduced through the work.

Outline and main contributions

The dissertation is composed of two parts, re�ecting the two main components of this work.
Part I aims at introducing the graph signal processing framework, as well as the algorithms

that will later be used to study spatial data. In particular, we derive methods aiming at sim-
ulating stochastic graph signals, estimating their value when they are partially observed and
inferring their statistical properties.

We start by setting up the mathematical framework and the main notions necessary to work
with both deterministic and stochastic graph signals (Chapter 1). Following the usual graph
signal processing approach, these notions are de�ned by drawing a parallel with classical signal
processing, which we highlight throughout the chapter. Of particular interest is the concept of
stationarity for stochastic graph signals, for which we propose a de�nition.

Then, Chapter 2 focuses on algorithms designed to perform (the equivalent of) �ltering oper-
ations on graph signals. These operations play an essential role in the subsequent chapters, and
as such, we lay out an extensive comparison between several approaches. It results in the intro-
duction of the Chebyshev algorithm, which presents the best trade-o� between computational
cost and accuracy. This algorithm is actually the key element that ensures the scalability of the
solutions proposed in this work. Applications of this algorithm to some practical problems are
then presented.

Chapter 3 is devoted to the simulation of stationary graph signals. An algorithm based on
Chebyshev �ltering is proposed. Similar algorithms were already introduced in the literature
(Hammond et al., 2011; Higham, 2008; Susnjara et al., 2015). However, we provide a study of
the statistical properties of the output of this algorithm and use it to derive actionable criteria to
set up its parameters. Finally, we propose a description of the algorithm in the wider framework
of Krylov subspaces.

Chapter 4 then tackles the estimation of a stationary stochastic graph signal from its partial
and noisy observations. We propose to solve this problem using an approach inspired by kriging
theory. Two cases are treated. The �rst one can be interpreted as a mapping problem whereas
the second one is similar to a signal extraction problem. In both cases, we lay out practical
algorithms based on Chebyshev �ltering. Finally, we give a formulation of these problems in
a wider optimization framework, which can inspire further developments towards their e�cient
resolution.

Finally, Chapter 5 aims at introducing an approach to infer the statistical properties of a
stochastic graph signal from its partial and noisy observations. We derive algorithms based on
Chebyshev �ltering to answer this problem.

Now that the study of stochastic graph signals and their properties have been introduced,
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Part II aims at deriving the approximation result that allows to reduce the study of generalized
random �elds de�ned on a Riemannian manifold to the study of a stochastic graph signal.

First, a self-su�cient review of the main concepts and results of di�erential and Riemannian
geometry used in this work is proposed in Chapter 6. In particular, we clarify the rather intuitive
interpretation of Riemannian manifolds as locally deformed spaces.

Chapter 7 aims at actually presenting our solution to the modeling problem described above.
The class of generalized random �elds used to extend the results of Lindgren et al. (2011) is
introduced, and the approximation theorem which links them to stochastic graph signals is laid
out. Chapter 8 provides an application of this result when the approximation is performed using
the �nite element method, and a convergence result is derived.

Finally, Chapter 9 echoes the initial problem statement and illustrates the application of
the framework derived in this work to both synthetic and real data. In particular, examples of
simulation, mapping, �ltering and inference are presented.

Disclaimer

The work presented in this dissertation is interdisciplinary: indeed, we play with notions of graph
theory, classical and graph signal processing, di�erential and Riemannian geometry, function
approximation and generalized random �elds. Consequently, this dissertation was written with
the intention of providing the reader with as much understanding of these subjects as needed to
derive the results that are presented.

Hence, some parts of the dissertation can easily be skipped by more experienced readers.
In Chapter 1, Section 1.1 consists only in basic reminders of graph theory, and Section 1.2
of reminders of classical deterministic and stochastic signal processing. Readers familiar with
graph signal processing can skip Section 1.3. Readers familiar with di�erential and Riemannian
geometry can skip Chapter 6. Finally, readers familiar with the �nite element method can skip
Section 8.1.



Notations

M H Conjugate-Transpose of a matrixM

Cov[�; �] Covariance between two random variables or covariance matrix between two
random vectors

jM j or det M Determinant of a matrix M

Diag(v) Diagonal matrix whose entries are the entries of the vectorv

DCT [�] Discrete cosine transform of a vector

DFT[ �] Discrete Fourier transform of a vector

k � k2 Euclidean norm of a vector

E[�] Expectation of a random variable or vector

F [�] Fourier transform of a signal

GRF Gaussian Random Field

GRFLA Gaussian Random Field with Local Anisotropies

GeRF Generalized Random Field

GFT[ �] Graph Fourier transform of a graph signal

1A Indicator function of a set A

[[�; �]] Interval of all integers between two integers

spanf v1; : : : ; vn g Linear span of a set ofn � 1 vectors v1; : : : ; vn

P[�] Probability of an event

M p;q (R) Set of matrices with p rows and q columns, and with real coe�cients

M n (R) Set of square matrices of sizen with real coe�cients

SGS Stochastic Graph Signal

supp(�) Support of a function

Trace(�) Trace of a matrix

M T Transpose of a matrix M

Var[�] Variance of a random variable or covariance matrix of a vector
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Résumé
Dans ce chapitre, nous introduisons un cadre mathématique minimal permettant d'étudier le

traitement de signaux déterministes et stochastiques dé�nis sur des graphes. Nous commençons
par introduire les principales notions de théorie des graphes et de traitement du signal (au sens
classique du terme) nécessaires à la construction de la théorie entourant le traitement du sig-
nal sur graphe. Nous présentons ensuite cette dernière en suivant la même approche que celle
présente dans la littérature associée.

Introduction

Graphs are structures aiming at representing complex data as a set of objects, called vertices, and
pairwise relationships between them, the edges (Bondy and Murty, 1976). These relationships
usually encode a notion of similarity between the objects they connect. This type of data
structure arises in applications such as social, energy, transportation and neural networks, but
also biology, image processing and many more (Newman, 2010). In practice, two main scenarios
arise:

� either the focus is put on the structure of the graph itself, meaning that the graph is used
to model and study pairwise relationships a prede�ned set of objects,

� or these relationships are assumed to be known and the focus is put on modeling and
studying variables that are de�ned on the objects.

Graph signal processing is an emerging �eld focusing on developing tools to process data
arising from this last scenario (Shuman et al., 2013). These data are therefore modeled as
variables indexed by the vertices of a known graph, and named graph signals. The goal is then
to be able to perform on these graph signals common operations of continuous signal processing,
such as �ltering, denoising and completion.

Given that now the data domain is highly irregular, as it consists of a set of discrete vertices
on an arbitrary graph, all these operations had to be rede�ned in a uni�ed framework suited
for graph data. This framework was built by generalizing classical signal processing notions
and tools, like for instance the Fourier transform and translation operators, to graph signals
(Girault, 2015a; Ortega et al., 2018; Shuman et al., 2013). This everlasting parallel between
classical signal processing and graph signal processing is at the core of this new �eld.

This �rst chapter aims at introducing a minimal mathematical framework for deterministic
and stochastic graph signal processing. In the �rst two sections, the main notions of graph theory
and continuous and discrete signal processing useful to build this framework are introduced.
Then, in the subsequent sections, the graph signal processing framework is introduced following
the same approach as the one used by Shuman et al. (2013), Girault (2015a) and Marques et al.
(2017).

1.1 Mathematical framework for graphs

In this section we review some basic de�nitions and properties concerning the study of graphs.
We refer the reader to (Newman, 2010, Chapter 6) for a more complete overview of the mathe-
matical framework used in graph theory.

1.1.1 De�nitions and notations

A (directed) graph G is a structure amounting to a set of objects and pairwise relationships
between them. Formally it consists in a set ofvertices V representing the objects and a set of
edgesE � V � V that represents pairwise relationships as pairs of vertices. AsubgraphH of G
is a graph whose vertex setV0 is a subset ofV and whose edge set is a subset ofE \ (V0 � V 0).

In this work, only �nite graphs, i.e. with a �nite number of vertices n, are considered. In
this case, the set verticesV can be identi�ed with the set of integers [[1; n]] and therefore vertices
can be represented as integersi 2 [[1; n]]. A graph with n vertices will also be called an-graph.
They can be represented as in Figure 1.1a: each circle corresponds to a vertex and an arrow
from a vertex i to a vertex j is drawn whenever(i; j ) 2 E.
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(a) Directed graph.
(b) Undirected graph.

Figure 1.1: Representation of a directed and an undirected graph.

Figure 1.2: Representation of the neighborhood of order1 of a vertex (in green) and of a path
(in red). The neighborhood and the path start from vertex 1.

A weighted graph is a graph for which a weight (i.e. a real value) is associated to each one
of its edges. The functionW : V � V ! R that assigns to each pair of vertices(i; j ) its weight
W(i; j ) if (i; j ) 2 E and 0 otherwise is calledweight function. A weighted graph is therefore
characterized by the triplet (V; E; W). By convention, graphs with no weights are identi�ed with
weighted graphs for which all edges have a weight equal to1.

A graph is called undirected (or symmetric) if for any pair of vertices (i; j ) 2 V � V , we
have (i; j ) 2 E ) (j; i ) 2 E, and W(i; j ) = W(j; i ). In this case, whenever there is an an edge
between two verticesi and j , these vertices are calledadjacent (or connected) and denotedi � j .
Undirected graphs can be represented as in Figure 1.1b: each circle corresponds to a vertex and
a straight line between a vertex i and a vertex j is drawn wheneveri � j .

A loop is an edge between a vertex and itself. Amulti-edge is a set of two or more edges that
connect the same pair of vertices. A graph in which there are neither loops nor multi-edges is
called a simple graph.

A path on an (undirected) graph G from a vertex i 0 to a vertex i p is a sequence ofp + 1 � 1
vertices i 0; : : : ; i p of G such that 8k 2 [[0; p � 1]], i k and i k+1 are adjacent. p is called the length
of the path. In particular, paths of length 0 correspond to the vertices of the graph and paths
of length 1 correspond to its edges.

The neighborhoodof order k 2 N of a vertex i is the set of all vertices j such that there
exists a path of length at most k from i to j . It is denoted Nk (i ). Any j 2 N k (i ) is called a
neighbor (of order k) of i . Basically, any vertex in a neighborhood of orderk of a vertex i can
be reached fromi with at most k �hops� along the edges of the graph. Figure 1.2 illustrates
the neighborhood of order1 of a given vertex (in green) of an undirected simple graph and an
example of path of length5 (in red).



24 1. Deterministic and stochastic graph signal processing

An undirected graph Gis connectedif there exists a path between any pair of its vertices. More
generally, a connected componentof G is a connected subgraphH of G formed by vertices that
have no neighbor other than those present inH . It is easy to check that any graph is the disjoint
union of its connected components, where the union between two graphsG1 = ( V1; E1; W1)
and G2 = ( V2; E2; W2) with disjoint node sets and edge sets, is the graphG1 [ G 2 de�ned by
G1 [ G 2 = ( V1 [ V 2; E1 [ E 2; W12) whereW12 is de�ned so that its restriction to edges of E1 (resp.
E2) is W1 (resp. W2).

Two n-graphs G1 = ( V1; E1; W1) and G2 = ( V2; E2; W2) are isomorphic if there exits an
edge-preserving bijection� betweenV1 and V2 i.e. � is a bijection from V1 to V2 such that:

8i 1; j 1 2 V1;

8
>><

>>:

i 1 � j 1 , � (i 1) � � (j 1)

and

W1(i 1; j 1) = W2(� (i 1); � (j 1))

:

Thus, two isomorphic graphs have the same �structure�, meaning that they link their vertices
in the same way. In particular, if G1 and G2 are two subgraphs of a graphG then them being
isomorphic means a same layout of edges is observed at two parts ofG, thus implying that the
structure they create is repeated at two di�erent locations in G.

Assumption 1.1. In this work, only connected simple undirected �nite graphs are considered.

1.1.2 Matrix representations of graphs

In this section G = ( V; E; W) denotes a graph with n vertices de�ned according to Assump-
tion 1.1. Severaln-matrices encompassing information on the structure ofG are now introduced.

Adjacency matrix

Given that G is simple and undirected, for any pair of its vertices(i; j ), there exists at most one
edge between them. Theadjacency matrix W of G is de�ned as the n � n symmetric matrix
whose entry Wij is equal to the weight of the edge(i; j ) if it exits, and is zero otherwise:

Wij =

8
<

:
W(i; j ) if i � j

0 otherwise
:

Hence, the adjacency matrix summarizes all the relevant information about the graph structure:
the non-zero entries indicate the existence of an edge between two vertices and its weight.
Besides, ifG is composed of several connected components, then its adjacency matrixW can be
represented by a block matrix, where each block is the adjacency matrix of one of the connected
components. Indeed, the presence of a non-zero entry outside these blocks would imply that
there is an edge connecting two distinct connected components, which is impossible.

Remark 1.1.1. The fact that G is undirected gives that W is symmetric, and the fact that
it is simple ensures that the diagonal entries ofW are zero.

Getting back to the notion of graph isomorphism, the following result provides a link between
isomorphic graphs and their adjacency matrices.

Proposition 1.1.1. Let G1 and G2 be two isomorphicn-graphs with adjacency matricesW 1

and W 2. Then, there exists a permutation� of [[1; n]] such that

W 1 = P � 1
� W 2P � ;

where P � is the permutation matrix de�ned by [P � ]ij = � i� ( j ) . In other words,

8i; j 2 [[1; n]]; [W 1]ij = [ W 2]� ( i ) � ( j ) : (1.1)
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Proof. This result is a direct consequence of the de�nition of isomorphic graphs. Identifying
the sets of vertices ofG1 and G2 with [[1; n]], the bijection between them de�nes a permutation
that satis�es Equation (1.1).

In the particular case whereG1 and G2 are subgraphs of the same graphG, the result hereafter
follows.

Corollary 1.1.2. Let G be an-graph with adjacency matrix W and vertex setV.
Let G1 and G2 be two isomorphic subgraphs ofG, with vertex setsV1 � V and V2 � V .
Then there exists a permutation� of [[1; n]] such that

8i; j 2 V1; Wij = [ W ]� ( i ) � ( j ) : (1.2)

Proof. Following the de�nition of isomorphic graphs, consider b to be the bijection that sends
V1 to V2. Then any permutation � of [[1; n]] such that 8i 2 V1, � (i ) = b(i ) satis�es Equa-
tion (1.2).

Remark 1.1.2. Both Proposition 1.1.1 and Corollary 1.1.2 are applicable to isomorphic
subgraphs of a graphG. The di�erence is that in the latter case, the equation is satis�ed by
the adjacency matrix W of the graph containing G1 and G2, whereas in the former case, it
involves the adjacency matrices of both subgraphs (which corresponds to sub-matrices ofW ).

Degree matrix

The degreedi of a vertex i 2 V is de�ned as the sum of the weights of the edges to which it is
an endpoint. Hence, the degree of any vertexi can be computed from the adjacency matrixW
of G using the fact that

di =
nX

j =1
j � i

W(i; j ) =
nX

j =1

Wij = [ W 1n ]i ;

where1n is the n-vector of ones. Note that in the particular case were all edge weights are equal
to 1, di is equal to the number of neighbors of order1 of i .

The degree matrix D of G is then de�ned as the n � n diagonal matrix whose (diagonal)
entries are the degrees of each vertex of the graph:

D =

0

B
B
B
@

d1

. . .

dn

1

C
C
C
A

= Diag( W 1n ) :

Laplacian matrix

The Laplacian matrix (or graph Laplacian) L of G is a n � n matrix de�ned from its adjacency
and degree matrices as

L = D � W :

From its de�nition, the Laplacian matrix enjoys several interesting properties.

Proposition 1.1.3. Let L be the Laplacian matrix of a simple undirectedn-graph G with adja-
cency matrix W .

1. L is symmetric. Consequently,L is diagonalizable in a real orthonormal basis, and its
eigenvalues are real.
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2. The Hermitian form associated with L satis�es:

8u 2 Cn ; u H Lu =
1
2

nX

i =1

nX

j =1

Wij jui � uj j2 :

where u H is de�ned as u H := su T .

3. 0 is an eigenvalue ofL .

Proof.

1. Direct consequence of the the fact thatW is symmetric.

2. Let u 2 Cn . Then, u H Lu = u H Du � u H W u =
P

i di sui ui �
P

i

P
j Wij sui uj =P

i

P
j Wij ( sui ui � sui uj ). Hence, given that the indexesi and j play symmetric roles,

2u H Lu =
P

i

P
j Wij ( sui ui � sui uj ) +

P
j

P
i Wji ( suj uj � suj ui ).

Finally, using the fact that W is symmetric and by switching the two sums of the second
double sum, we get2u H Lu =

P
i

P
j Wij ( sui ui � sui uj + suj uj � suj ui ) =

P
i

P
j Wij (ui �

uj ) ‡(ui � uj ) =
P

i

P
j Wij jui � uj j2.

3. L 1n = D 1n � W 1n = 0n .

Of particular interest is the case where all edge weights are non-negative as it yields stronger
properties for the associated Laplacian matrix.

Proposition 1.1.4. Let L be the graph Laplacian of a simple undirected graphG whose weights
are non-negative. Then,

1. L is a positive semi-de�nite matrix.

2. The dimension of the null space ofL (or equivalently the multiplicity of its eigenvalue 0)
is equal to the number of connected components composingG.

3. The largest eigenvalue� max of L satis�es

� max � max
i 2 [[1;n ]]

q
2(d2

i + d̂i ) ;

where 8i 2 [[1; n]], di =
P n

k=1 Wik and d̂i =
P n

k=1 Wik dk .

Proof.

1. According to the second point of Proposition 1.1.3, the Hermitian form associated withL
is now positive, thus proving the result.

2. Denote A = f x 2 Cn : for any pair of vertices i; j connected inG; x i = x j g and let r be
the number of connected components.A is a vector space of dimensionr as it is spanned by
the set of r (linearly independent) vectors that are 1 on one of the connected components
of G and 0 elsewhere. We now prove thatA is the null space ofL .
Indeed, if x is in the null space of L , then in particular x H Lx = 0 and therefore using
Item 2 of Proposition 1.1.3, x 2 A. Conversely, it is straightforward to check that any
vector in A is in the null space ofL . Therefore, the null space ofL has dimensionr .

3. Let W be the adjacency matrix of G. Let (�; x ) be an eigenpair ofL . Then, Lx = � x
and so, 8i 2 [[1; n]], �x i =

P
k Wik (x i � xk ). Therefore, 8i; j 2 [[1; n]], � (x i � x j ) =P

k Wik (x i � xk ) �
P

k Wjk (x j � xk ), which gives:

8i; j 2 [[1; n]]; j� jj x i � x j j �
X

k

(Wik jx i � xk j + Wjk jx j � xk j) :
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Consider the couple(i m ; j m ) = argmax i;j jx i � x j j. Then,

j� j2jx i m � x j m j � j � j
X

k

(Wi m k jx i m � xk j + Wj m k jx j m � xk j)

�
X

k

Wi m k

X

l

(Wi m l jx i m � x l j + Wkl jxk � x l j)

+ Wj m k

X

l 0

(Wj m l 0jx j m � x l 0j + Wkl 0jxk � x l 0j) :

By dividing by jx i m � x j m j (which is non-zero otherwisex = 0) and using the fact that
jx i m � x j m j = max i;j jx i � x j j, we get:

j� j2 �
X

k

Wi m k

X

l

(Wi m l + Wkl ) + Wj m k

X

l 0

(Wj m l 0 + Wkl 0)

=
X

k

Wi m k (di m + dk ) + Wj m k (dj m + dk ) = d2
i m

+ d̂i m + d2
j m

+ d̂j m

� 2(max
i

d2
i + d̂i ) :

Given that this result is true for any eigenvalue of L , it is true for � max , which proves the
proposition.

Normalized Laplacian matrix

The normalized Laplacian matrix (or normalized graph Laplacian) ~L of G is de�ned for graphs
with strictly positive degrees as a scaled version of its Laplacian matrix:

~L = D � 1=2LD � 1=2 = I n � D � 1=2W D � 1=2 :

Its entries are therefore de�ned by

~L ij =

8
<

:

1 if i = j

� W ijp
di dj

otherwise
:

Proposition 1.1.5. Let ~L be the normalized Laplacian matrix of a simple undirected graphG
with adjacency matrix W .

1. ~L is symmetric. Consequently,L is diagonalizable in a real orthonormal basis, and its
eigenvalues are real.

2. The Hermitian form associated with ~L satis�es

8u 2 Cn ; u H ~Lu =
1
2

nX

i =1

nX

j =1

Wij

�
�
�
�
�

uip
di

�
ujp
dj

�
�
�
�
�

2

:

3. 0 is an eigenvalue of~L .

Proof.

1. By de�nition of its entries.

2. Simply notice that u H ~Lu =
�
D � 1=2u

� H
L

�
D � 1=2u

�
.

3. One can easily check that~L
� p

d1; : : : ;
p

dn
� T

= 0n .
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In the particular case where all edge weights are non-negative, the normalized Laplacian
enjoys the following additional properties:

Proposition 1.1.6. Let ~L be the normalized graph Laplacian of a simple undirected graphG
whose weights are non-negative. Then,

1. ~L is a positive semi-de�nite matrix.

2. The dimension of the null space of~L (or equivalently the multiplicity of its eigenvalue 0)
is equal to the number of connected components composingG.

3. The largest eigenvalues� max of ~L satis�es

� max � 2 :

Proof. 1. According to Proposition 1.1.5, the Hermitian form of L is now positive, thus
proving the result.

2. Notice that a vector x 2 Cn is in the null space of ~L iif D � 1=2x is in the null space ofL .
Consequently, the null space of~L is the image of the null space ofL under the isomorphism
represented byD � 1=2. Therefore, using the rank nullity theorem, both spaces have the
same dimension.

3. First, we show that the eigenvalues of~L and those ofD � 1L are the same. Indeed, the eigen-
values ofD � 1L are the roots of its characteristic polynomial de�ned by p(� ) = det( D � 1L �
� I n ). This polynomial satis�es p(� ) = det( D � 1=2( ~L � � I n )D 1=2) = det( D � 1=2) det( ~L �
� I n ) det(D 1=2) = det( ~L � � I n ) which is the characteristic polynomial of ~L , hence proving
the claim.
The matrix D � 1L can be seen as the Laplacian matrix of the graph whose adjacency ma-
trix is the non-symmetric matrix W 0 with elements areW 0

ij = Wij =di . Its degree matrix
is then I n (as the rows of W 0 all sum to 1). By noticing that the proof of item 3 of
Proposition 1.1.3 never uses the symmetry ofW , the bound obtained can be extended to
the non-symmetric case. In particular for D � 1L , this bound equals2 (as all degrees of the
corresponding graph are1). This concludes our proof.

1.2 Background: Some notions of deterministic and stochas-
tic signal processing

In this section, we turn to the second building block of the graph signal processing framework.
We lay out the main notions of classical and stochastic signal processing on which we will later
on build a mathematical framework for graph signal processing. In the remainder of this section
d � 1 denotes an integer.

1.2.1 Harmonic analysis of continuous signals

Most of the material covered in this section is detailed in (Stein and Weiss, 1971, Chapter 1).

Signals and energy A signal is a function x : Rd ! C. It is called integrable if
Z

Rd
jx(t )jdt < 1 :

The energy E(x) of a signal x is de�ned as the positive and possibly in�nite quantity

E(x) =
Z

Rd
jx(t )j2dt :

Signals with �nite energy therefore correspond to square-integrable functions onRd. In the
remainder of this section, only �nite-energy signals are considered.
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We denote L 2(Rd) the Hilbert space of square-integrable functions ofR equipped with the
natural inner product h�; �i L 2 (Rd ) de�ned by:

8x; y 2 L 2(Rd); hx; yi L 2 (Rd ) =
Z

Rd
sx(t )y(t )dt :

In particular, 8x 2 L 2(Rd), E (x) = hx; x i L 2 (Rd ) = kxk2
L 2 (Rd ) < 1 , where k � kL 2 (Rd ) is the norm

associated with the inner product h�; �i L 2 (Rd ) .

Fourier transform The Fourier transform (FT) F of an integrable signalx is the function
F [x] : Rd ! C de�ned by

F [x](� ) =
Z

Rd
x(t )e� i � T t dt ; � 2 Rd :

In this last equation, the variable t is referred to as belonging to the time domain whereas the
variable � is belongs to the frequency domain.

The FT is an invertible linear operator when applied to integrable functions whose FT is
itself integrable. The inverse FT F � 1 is then de�ned for integrable functions ~x on the frequency
domain (which is Rd) by

F � 1[~x](t ) =
1

(2� )d

Z

Rd
~x(� )ei t T � d� ; t 2 Rd :

Another way of obtaining the inverse FT is by letting (Stein and Weiss, 1971, Theorem 2.4):

F � 1[~x](t ) = F [~x](� t ); t 2 Rd : (1.3)

Plancherel's theorem (Stein and Weiss, 1971, Theorem 2.1) states that the FT conserves the
energy of an integrable signalx, i.e.

E (x) =
Z

Rd
jx(t )j2dt =

Z

Rd
jF [x](� )j2d� = E(F [x]) :

This result is used to extend the de�nition of the FT to any �nite energy signal x, as the limit
the FT of integrable signals with �nite energy converging to x. As such, the FT is a unitary
operator (Stein and Weiss, 1971, Theorem 2.3) onL 2(Rd), meaning that

8x; y 2 L 2(Rd); hx; yi L 2 (Rd ) = hF [x]; F [y]i L 2 (Rd ) :

As for the inverse FT, it can also be extended toL 2(Rd) through Equation (1.3).

Convolution The convolution product between two signalsx; y is the signal x � y : Rd ! C
de�ned by

(x � y)( t ) =
Z

Rd
x(u )y(t � u )du ; t 2 Rd :

The convolution theorem (Stein and Weiss, 1971, Theorem 2.6) links the notions of convolution
and FT by stating that the FT of a convolution product of two signals, one of which is integrable
and the other either integrable or with �nite energy, is the point-wise product of their Fourier
transforms:

F [x � y] = F [x]F [y] :

LTI operators See (Phillips et al., 2003, Chapter 3) for a more detailed approach. Letd = 1
for this particular de�nition. A linear and time-invariant (LTI) operator A is a map satisfying
the following properties:

� Linearity: if x1; x2 are two signals, andc1; c2 are two scalar values, thenA[c1x1 + c2x2] =
c1A[x1] + c2A[x2].

� Time invariance: A commutes with time shifts, i.e. 8� > 0, A[t 7! x(t � � )] = ( t 7!
A[x](t � � )) .



30 1. Deterministic and stochastic graph signal processing

A LTI operator A can be entirely characterized by a single functiona : R 7! C called impulse
responseand such that the action of the operator on a time signalx is the convolution (in the
time domain) of the impulse response and the signal:

A[x] = a � x :

Equivalently, following the convolution theorem, LTI operators can also be characterized by the
FT â = F [a] of their impulse response, calledtransfer function. Then the action of the operator
on a time signal is described as the product in the frequency domain of the transfer function
and the Fourier transform of the signal:

F [A[x]] = â � F [x] :

1.2.2 Harmonic analysis of discrete time signals

The material covered in this section is detailed in (Oppenheim et al., 2001, Chapter 2).
We assume that only a �nite number n of samples from a signal and taken at regular time

steps are observed and denotex1; : : : ; xn 2 C these samples. They are represented by the vector
x = ( x1; : : : ; xn )T .

Harmonic analysis was extended to this setting by replacing the notion of Fourier transform by
that of discrete Fourier transform. Both notions are linked as the discrete Fourier transform can
be seen as the Fourier transform of a signal de�ned as a periodic train ofn impulses corresponding
to the n observed samples.

Discrete Fourier transform The discrete Fourier transform (DFT) of a vector of samples
x 2 Cn is de�ned as the vector x̂ 2 Cn with entries

x̂k =
1

p
n

nX

j =1

x j e� i 2 �
n ( j � 1)( k � 1) ; k 2 [[1; n]] :

Each sample of x can be retrieved from the set of its DFT coe�cients using the following
inversion formula:

x j =
1

p
n

nX

k=1

x̂k ei 2 �
n ( j � 1)( k � 1) ; j 2 [[1; n]] :

The DFT can be seen as the projection of an input signal onto an orthonormal basis of
discrete and �nite signals. Indeed, let F be the matrix de�ned by

F =
1

p
n

h
ei 2 �

n ( j � 1)( k � 1)
i

1� j;k � n
: (1.4)

On one hand,F entirely de�nes the DFT as for any x 2 Cn :

x̂ = F H x and x = F x̂ :

On the other hand, F is a unitary matrix, i.e. F � 1 = F H . Its columns therefore form an
orthonormal basis of Cn for its canonical inner product h:; :i Cn :

hx ; y i Cn = x H y =
nX

k=1

„xk yk ; x ; y 2 Cn :

The DFT x̂ of vector x therefore corresponds to the coordinates ofx in this basis.
The DFT carries many of the properties of the Fourier transform. It is a linear, invertible

and unitary (for h:; :i Cn ) operator of Cn . In particular, Plancherel's theorem still holds.

Convolution The convolution between two sequencesx ; y 2 Cn is the vector x � y with entries

[x � y ]k =
nX

j =1

x j y(( k � j )[ n ])+1 ; k 2 [[1; n]] ;
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where (k � j )[n] 2 [[0; n � 1]] is the remainder of the Euclidean division of (k � j ) by n. Its
k-th entry corresponds to the sum-product of the sequencex and a �wrapped� version of the
sequencey that starts with its k-th entry.

The convolution theorem still holds with discrete sequences of samples, using now the DFT:

DFT[ x � y ] = DFT[ x ] � DFT[ y ] ;

where � denotes the entry-wise product of two vectors.

Circular convolutive operators Circular convolutive operators are de�ned as linear oper-
ators A 2 M n (C) for which this matrix is a circulant matrix, i.e. there exists a sequence
a = ( a1; : : : ; an )T 2 Cn such that:

A =

0

B
B
B
B
B
B
B
B
B
@

a1 an : : : : : : a2

a2 a1 an
...

...
. . .

. . .
. . .

...
...

. . .
. . . an

an : : : : : : a2 a1

1

C
C
C
C
C
C
C
C
C
A

:

In particular, the action of a circular convolutive operator A on a sequence of samplesx can be
written

Ax =

2

4
nX

j =1

a(( k � j )[ n ])+1 x j

3

5

1� k � n

= a � x :

Such operators can be seen as the counterparts of LTI operators for �nite sequences of samples,
given that they share the same characterization using the convolution product.

Moreover, the notion of �time-invariance� can be extended to �nite sequences of regular sam-
ples x by once again identifying them to periodic signalsx composed of impulses corresponding
to each sample. Then shifting such a signal by the sampling time is equivalent to applying a cir-
cular shift to the sequence. This last operation can be seen as applying the following permutation
matrix to x :

J =

0

B
B
B
B
B
B
B
B
B
@

0 0 : : : 0 1

1 0 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 : : : 0 1 0

1

C
C
C
C
C
C
C
C
C
A

2 M n (R) : (1.5)

This last matrix, called circular shift matrix , can be used to decompose any circulant matrix as

A =
nX

k=1

ak J k � 1 ;

where J 0 = I by convention. Consequently, circular convolutive operators commute with the
matrix J and therefore with time shifts.

1.2.3 Some notions regarding stochastic processes

Let d � 1 and denoteB(Rd) the set of all Borel sets ofRd.

Weakly-stationary processes of Rd

Let X = f X (t )gt 2 Rd be a real-valuedstochastic processindexed by Rd, i.e. a family of real
random variables X (t ) indexed by t 2 Rd and all de�ned on the same probability space. X is
entirely characterized by the set of all joint distribution functions Ft 1 ;:::; t n de�ned by:

Ft 1 ;:::; t n : (x1; : : : ; xn ) 2 Rn 7! P[X (t 1) < x 1; : : : ; X (t n ) < x n ] ;
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for any integer n � 1 and any t 1; : : : ; t n 2 Rd (Parzen, 1999).
In practice, to catch a glimpse of the characteristics ofX , its �rst two moments are preferred

to the speci�cation of all these distributions (Stein, 2012). Its �rst moment, called expectation
of the process ormean function, is a function that assigns to any t 2 Rd the expectation of
X (t ). Its second moment, calledvariance function of the process, is a function that assigns to
any t 2 Rd the variance of X (t ). Of particular interest is the cross-moment of X , also called
covariance function and de�ned as a function that assigns to any t 1; t 2 2 Rd the covariance
X (t 1) and X (t 2).

The processX is called weakly stationary (or second-order stationary) if:

� its mean function is constant: 9� 2 R, 8t 2 Rd, E[X (t )] = � ,

� there exists a functionCX : Rd 7! R such that the covariance function satis�es: 8(t 1; t 2) 2
Rd � Rd, Cov[X (t 1); X (t 2)] = CX (t 2 � t 1).

Remark 1.2.1. Note that the variance of a weakly stationary process must consequently be
�nite and constant as 8t 2 Rd, Var[X (t )] = Cov[ X (t ); X (t )] = CX (0).

Remark 1.2.2. The condition satis�ed by the covariance function of a weakly stationary
process can be expressed using the Dirac delta function:

Cov[X (t 1); X (t 2)] = CX (t 2 � t 1) = CX � � t 1 (t 2); t 1; t 2 2 Rd :

A weakly stationary process X is called isotropic if its covariance function CX is radial,
i.e. there exists a function ~CX : R+ 7! R such that 8h 2 Rd; CX (h) = ~CX (khk). For sake of
simplicity, the same notation CX is from now on be used to denote both the covariance function
of X and when applicable its writing as a radial function ~CX .

Zero-mean weakly stationary processes admit a spectral representation (Stein, 2012, Section
2.5). Let X denote such a process. ThenX can be written as the inverse Fourier transform of
a complex random measure1 M X on Rd:

X (t ) =
1

(2� )d

Z

Rd
eih� ;t i M X (d� ) = F � 1[M X ](t ) ; (1.6)

where M X satis�es:

� 8B 2 B(Rd), E[M X (B )] = 0 .

� there exists a �nite positive measure FX on Rd such that: 8B 2 B(Rd), Var[M X (B )] =
FX (B ).

� 8B1; B2 2 B(Rd) such that B1 \ B2 = ; , Cov[M X (B1); M X (B2)] = 0 .

The measureFX is called thespectral measureof X . The spectral measure of a weakly stationary
processX is linked to its covariance function CX through the Fourier transform:

CX (h) = F � 1[FX ](h) =
1

(2� )d

Z

Rd
eih� ;h i F (d� )

The density f X of the spectral measureFX , when it exists, is called the spectral density of X
and satis�es:

CX (h) = F � 1[f X ](h) =
1

(2� )d

Z

Rd
eih� ;h i f X (� )d�

In particular, given that the Fourier transform of a radial function is also radial (Ormerod,
1979), the spectral density of an isotropic �eld will be a radial function. In particular, Ormerod

1A random measure can be considered as a stochastic process indexed by the elements of B(Rd ) and that
carries out the de�ning properties of a measure, namely the countable sigma-additivity and the null empty-set
property.
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(1979) even gives the formula linking a radial covariance functionC0 (which should be both
integrable and square-integrable onRd) and its associated spectral densityf 0:

f 0(k� k) =
1

(2� )d=2
k� k1� d=2

Z 1

0
C0(r )Jd=2� 1(k� kr )r d=2dr; � 2 Rd ; (1.7)

where Jd=2� 1 denotes the J-Bessel function with parameterd=2 � 1. Conversely, the expression
of the radial covariance function C0 can be retrieved from its radial spectral densityf 0 through

C0(khk) = (2 � )d=2khk1� d=2
Z 1

0
f 0(r )Jd=2� 1(khkr )r d=2dr; h 2 Rd : (1.8)

White noise

A particular generalization of stochastic processes onRd, which is of great interest in this
dissertation, is now introduced: the white noise. A random signed measureW on Rd is called a
white noise measure(or simply white noise) with variance � 2 > 0 if it satis�es (Carrizo Vergara,
2018; Lindgren et al., 2011):

� 8B 2 B(Rd), E[W(B )] = 0 .

� 8B1; B2 2 B(Rd), Cov[W(B1); W(B2)] = E[ ‡W(B1)W(B2)] = � 2Leb(B1 \ B2) where Leb
denotes here the Lebesgue measure of a Borel set.

The notion of spectral density can be extended to white noises by noticing that it admits
a spectral representation very similar to that of weakly stationary processes and introduced in
Equation (1.6).

Proposition 1.2.1. Let W denote a white noise measure with variance� 2 on Rd. Then there
exists a complex measureM W satisfying:

W(dt ) = dt
1

(2� )d

Z

Rd
eih� ;t i M W (d� ) ;

and such that:

� 8B 2 B(Rd), E[M W (B )] = 0 .

� 8B 2 B(Rd), Var[M W (B )] = (2 � )d � 2Leb(B ).

� 8B1; B2 2 B(Rd) such that B1 \ B2 = ; , Cov[M W (B1); M W (B2)] = 0 .

Proof. See Appendix C.1.

Similarly to stationary processes, the spectral measure of the white noise is de�ned as the
measure associated to the variance ofM W . Therefore, the spectral measure of the white noise
is the Lebesgue measure, scaled with a factor(2� )d � 2. This measure admits a density, which
de�nes the spectral density of the white noise and corresponds to the constant function equal to
(2� )d � 2. The white noise can therefore be seen as generalized stochastic process with a spectral
measure that is not �nite but rather admits a �density� that is constant across the frequency
domain.

Kernel representation of stationary processes

A representation of a class of weakly stationary stochastic processes ofRd using a convolution
product of a white noise is now presented (Higdon et al., 1999). Letk : Rd ! R denote a square-
integrable function, called kernel function, and introduce Z the stochastic process de�ned by:

Z (t ) =
Z

Rd
k(t � s)W(ds); t 2 Rd : (1.9)
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Then, Z is zero-mean and its covariance function satis�es:

Cov[Z (t 1); Z (t 2)] = E[Z (t 1)Z (t 2)] = E
� Z

Rd

Z

Rd
k(t 1 � u )k(t 2 � v)W(du)W(dv)

�

=
Z

Rd

Z

Rd
k(t 1 � u )k(t 2 � v)E [W(du)W(dv)]

=
Z

Rd
k(t 1 � u )k(t 2 � u )du =

Z

Rd
k(u )k(t 2 � t 1 + u)du ;

which is a function of the lag t 2 � t 1. Noticing, using the Cauchy�Schwartz inequality, that its
values are always �nite, we can conclude thatZ is a weakly stationary process with covariance
function:

CZ (h) =
Z

Rd
k(u )k(h + u)du =

Z

Rd
k(v � h)k(v)du = k � �k(h) ;

where �k denotes the re�ection of k i.e. 8t 2 Rd; �k(u ) = k(� u ). Moreover, it admits a spectral
density f Z satisfying:

f Z (� ) = F [CZ ](� ) = F [k](� )F [�k](� ) = jF [k](� )j2 ;

which clearly de�nes a positive �nite measure given that k is square-integrable.
Conversely, given a spectral densityf (i.e. a positive function de�ning a �nite measure), a

weakly process with spectral densityf can be generated using Equation (1.9) by takingk as the
function de�ned by:

k = F � 1[
p

f ] :

1.3 Graph signal processing in a nutshell

Now that the two building blocks necessary to its construction have been laid out, we introduce
the general framework used in graph signal processing. The notions presented in this section are
part of the standard framework used in the graph signal processing community. They are also
introduced in (Girault, 2015a; Ortega et al., 2018; Perraudin and Vandergheynst, 2017; Shuman
et al., 2013).

1.3.1 Signals on a graph

A graph signal x on a n-graph G = ( V; E; W) is a function x : V ! C that assigns to each vertex
i of G a complex numberx(i ). Any graph signal x can be represented by a vectorx such that
x i = x(i ). Hence, vectors ofCn are identi�ed with signals on a n-graph. A signal de�ned on a
graph G is called aG-signal.

Example 1.3.1 (Digital image processing). A digital image is a rectangular grid of adjacent
colored points, also called pixels. A simple undirected graphG can be associated to a given
digital image as follows: each pixel of the image is associated to a vertex ofG and adjacent
pixels de�ne adjacent vertices onG.

By de�nition, each pixel has a color. For black-and-white images, this color can be repre-
sented by a real value ranging from0 (for black) to 1 (for white) and corresponding to a shade
of grey. Hence, the function that associates to each pixel its shade of grey de�nes a signal on
the graph G.

The inner product of two signalsx ; y 2 Cn is de�ned as the inner product of the corresponding
vectors, and is denoted:

hx ; y i := hx ; y i Cn =
nX

i =1

sx i yi :

The energy E(x ) of a graph signalx 2 Cn is de�ned as the square of 2-norm:

E(x ) = kx k2 = hx ; x i =
nX

i =1

jx i j2
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These de�nitions are natural extensions of the de�nition of the inner product and energy of
continuous signals in classical signal processing.

1.3.2 Graph shift operators

A n � n matrix S is called ashift operator for the graph G if its entries satisfy

8i; j 2 [[1; n]]; Sij 6= 0 ) i � j or i = j :

Hence, the o�-diagonal non-zero entries of a shift operator indicate the existence of an edge
between two vertices ofG.

More generally, the non-zero entries of the iteratesSk ; k � 2 of S provide some knowledge
about the existence of a path of lengthk between two given vertices of the corresponding graph.
Indeed, notice that the entries of Sk can be deduced from the entries ofS by:

�
Sk �

ij =
nX

l 1 =1

Sil 1

�
Sk � 1�

l 1 j = � � � =
nX

l 1 =1

� � �
nX

l k � 1 =1

Sil 1 Sl 1 l 2 : : : Sl k � 1 j ; k � 2 :

Hence for
�
Sk

�
ij to be non-zero, at least one of the termsSil 1 Sl 1 l 2 : : : Sl k � 1 j must be non-zero,

meaning that there must exist a sequence ofk � 1 vertices l1; : : : ; lk � 1 such that this term is
non-zero. According to the de�nition of shift operators this actually means that the sequence
i; l 1; : : : ; lk � 1; j forms a path (of length k) between i and j , which consequently are linked by a
path of length k.

Shift operators can be seen as linear operators onCn whose action is de�ned by

S : u 2 Cn 7! Su 2 Cn :

The signal Su is then said to be shifted. Notice that, according to the non-zero pattern ofS,
the value of the shifted signalSu at a vertex i satis�es

8i 2 [[1; n]]; [Su ]i = Sii ui +
X

j 6= i
j � i

Sij uj :

Hence the value of the shifted signalSu at a vertex i is a weighted sum of the values ofu at i
and its adjacent vertices and therefore can be seen as a local transformation of the original signal
u . Another interpretation of shifted signals, which justi�es their name, consists in noticing that
to compute the value of Su at a vertex i , one needs to �shift� along the edges of the graph
and towards i the values taken by u at the adjacent vertices of i , and then compute a linear
combination of these values.

Example 1.3.2 (Adjacency matrix) . The adjacency matrix W of G is a possible choice shift
operator. Seen as an operator onCn , its action is de�ned as

W : u 2 Cn 7! W u =

2

4
nX

j =1

Wij uj

3

5

1� i � n

2 Cn :

Therefore, applying the adjacency matrix to a signal results in computing for each vertex the
weighted average of the values of the signal at its adjacent vertices, the weights being de�ned
as the edge weights.

Example 1.3.3 (Laplacian matrix) . The Laplacian matrix L of G is another possible choice
of shift operator. Seen as an operator onCn , its action is de�ned as

L : u 2 Cn 7! Lu =

2

4
nX

j =1

Wij (ui � uj )

3

5

1� i � n

2 Cn :
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Therefore, applying the Laplacian matrix to a signal results in computing for each vertex
the weighted average of the di�erences between the value of the signal at this vertex and
the values at its adjacent vertices. Hence, similarly to the discretization of the Laplacian
operator of functions of Rd in �nite di�erences, the graph Laplacian computes at each vertex
i a weighted sum of the di�erences between the value of a signal ati and the value it takes in
each direction. In the graph settings these directions are de�ned by the edges linked toi .

Note also that the inner product between a signalx and the shifted signal Lx satis�es

hx ; Lx i = hLx ; x i =
1
2

nX

i =1

nX

j =1

Wij jx i � x j j2

and can therefore be seen as a measure of the variations of the signalx along the edges of the
graph.

Example 1.3.4 (normalized Laplacian matrix) . Just like the Laplacian matrix, the normal-
ized Laplacian matrix ~L of G is also a possible shift operator. Seen as an operator onCn , its
action is de�ned as

~L : u 2 Cn 7! ~Lu =

2

4 1
p

di

nX

j =1

Wij

 
uip
di

�
ujp
dj

! 3

5

1� i � n

2 Cn ;

and can be seen as applying a graph Laplacian to a scaled version of the signal. The scaling
in question consists in scaling down the values of the signals corresponding to high degree
vertices. The inner product between a signalx and the shifted signal ~Lx now writes:

hx ; ~Lx i = h~Lx ; x i =
1
2

nX

i =1

nX

j =1

Wij

�
�
�
�
�

x ip
di

�
x jp
dj

�
�
�
�
�

2

and can therefore still be seen as a measure of the variations of the scaled signalD � 1=2x along
the edges of the graph.

In the remainder if this chapter, the following assumption is made on the shift operators that
will be considered.

Assumption 1.2. Only real, symmetric shift operators S are considered.
Consequently,S is diagonalizable by a unitary matrix and has real eigenvalues. Such a de-
composition is denoted as follows:

S = V

0

B
B
B
@

� 1

. . .

� n

1

C
C
C
A

V H ;

where

� � 1 � � � � � � n denote the real eigenvalues ofS, ordered in ascending order,

� V =
�
v (1) j : : : jv (n )

�
is a unitary matrix (i.e. V � 1 = V H )) whose columnsv (1) ; : : : ; v (n )

form an orthonormal basis of Cn composed of eigenvectors ofS such that:

8i 2 [[1; n]]; Sv ( i ) = � i v ( i ) :
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Remark 1.3.1. Note that V can be chosen to be a real matrix, i.e.v (1) ; : : : ; v (n ) can be
chosen to be a orthonormal basis ofRn composed of real vectors andV � 1 = V T .

1.3.3 Harmonic analysis of graph signals

A starting point: the ring graph

The ring graph of size n is the unweighted n-graph such that each vertex i 2 [[1; n]] is (only)
linked to the vertices i � 1 and i + 1 . By convention the label 0 corresponds to the vertexn and
the label n + 1 corresponds to the vertex1, hence the circular property.

The ring graph is an undirected simple graph. Its adjacency matrix is the symmetric matrix
W r de�ned as:

[W r ]ij =

(
1 if (i � j ) � � 1 (mod n)
0 otherwise

; 1 � i; j � n :

Equivalently, W r can be expressed using the circular permutation matrixJ (cf. Equation (1.5))
as

W r =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

0 1 0 : : : 0 1

1 0 1 0

0 1
. . .

. . .
...

...
. . .

. . . 1 0

0 1
. . . 1

1 0 : : : 0 1 0

1

C
C
C
C
C
C
C
C
C
C
C
C
A

= J + J T = J + J n � 1 :

The corresponding degree matrixD r is then given by:

D r = W r 1 = 2 I n :

Finally the Laplacian matrix L r of the ring graph is given by:

L r = D r � W r = 2 I n � J � J n � 1 :

Let Sr denote either the adjacency matrix or the Laplacian of the ring graph. S is in
particular a shift operator of this graph. In both cases, there exists a polynomialPr such that:

Sr = Pr (J )

Indeed, Pr is the polynomial X 7! X + X n � 1 if Sr = W r and X 7! 2 � X � X n � 1 if Sr = L r .
Recall that J is a diagonalizable matrix with n distinct eigenvalues which aren roots of unity

and an orthonormal eigenbasis given by the DFT matrix F (cf. Equation (1.4)):

J = F Diag
�
1; !; : : : ; ! n � 1�

F H ; F =
1

p
n

h
! ( j � 1)( k � 1)

i

1� j;k � n
;

where ! = ei 2 �
n and F satis�es F � 1 = F H . In particular, the shift operator Sr veri�es:

Sr = Pr (J ) = F Diag
�
Pr (1); Pr (! ); : : : ; Pr (! n � 1)

�
F H :

The DFT can therefore be seen as projection onto an eigenbasis of a shift operator of the ring
graph.

Getting back to general graph signals, let's recall that signals on an-graph can be identi�ed
with vectors of Cn and hence with sequences ofn samples. In particular for signals de�ned
on the ring graph, the DFT of the corresponding sequence of samples is exactly the projection
of the signal onto an eigenbasis of a shift operator of the graph on which it is de�ned. This
observation motivates the generalization of the notion of Fourier transform of signals on more
general graphs.
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Graph Fourier Transform

Following Assumption 1.2, the eigenvectors of a shift operator actually form an orthonormal
basis ofCn , thus meaning that any signal can be (uniquely) decomposed as a weighted sum of
these eigenvectors. This decomposition de�nes the notion of graph Fourier transform.

De�nition 1.3.1 . Let x 2 Cn be a signal on an-graph with shift operator S. The graph Fourier
transform (GFT) of x with respect to an orthonormal eigenbasisV of S is the vector GFT [ x ]
de�ned as:

GFT [ x ] = V H x =

0

B
B
B
@

hv (1) ; x i
...

hv (n ) ; x i

1

C
C
C
A

:

The GFT of a signal is therefore the vector containing its coordinates in the eigenbasis of
the shift operator:

x =
nX

i =1

hv ( i ) ; x i v ( i ) =
nX

i =1

[GFT [ x ]]i v ( i ) :

It can be seen as a signal indexed by the eigenvalues of the shift operator, thus motivating the
use of the termgraph frequencyto refer to the eigenvalues of the shift operator. The termgraph
modesthen refers to the corresponding eigenvectors.

Any signal therefore has two equivalent representations:

� in the vertex domain: the signal is seen as the assignment of a real value to each vertex

� in the frequency domain: the signal is seen as a linear combination of elementary signals
de�ned as the eigenvectors of a shift operator and is characterized by the weights involved
in the combination.

The GFT with respect to V is an invertible operation. The inverse GFT of a vector y 2 Cn

is de�ned as follows:
GFT � 1[y ] =

�
V H � � 1

y = V y :

1.3.4 Graph convolutions

The de�nition of the convolution of graph signals relies on an analogy with the classical signal
processing framework. Indeed, the convolution theorem states that the FT of the convolution of
two (continuous) signals equals the point-wise product of their FTs. To conserve this property in
the graph signal processing framework, theconvolution of two graph signalsx ; y 2 Cn is de�ned
as the graph signalx � y satisfying

x � y = GFT � 1 [GFT[ x ] � GFT[ y ]] = V
��

V H x
�

�
�
V H y

��
:

From its de�nition, the convolution product of graph signals carries several of the important
properties of the convolution of time signals. Namely, it is a commutative, associative and
bilinear operation.

Remark 1.3.2. The result of the convolution between two graph signals depends on the basis
V chosen to de�ne the GFT. Given that there is no uniqueness of eigendecomposition for a
given shift operator, setting a shift operator is not su�cient to set the framework necessary
to work with graph convolutions. The basis V should also be speci�ed.

Graph convolutions are used to de�ne graph translations, using an analogy with classical
signal processing. Indeed, translating time-wise a signal by a delay� is equivalent to convolution
this same signal with a Dirac impulse at time � . Both notions are now de�ned for the graph
signal processing framework.

De�nition 1.3.2 . [Dirac signal] Let G be a graph with set of verticesV. The Dirac signal of G
at vertex i 2 V is the G-signal � ( i ) de�ned by:

8k 2 V ; � ( i )
k = � ik
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De�nition 1.3.3 . [Graph translation] Let G be a graph with set of verticesV and let x be a
G-signal. The translation of x with respect to vertexi 2 V is the G-signal Ti x de�ned by:

T ( i ) x = � ( i ) � x

In particular, the translation operator T ( i ) that maps anyG-signal to its translation with respect
to i 2 V can be de�ned by:

T ( i ) = V Diag
�

V H � ( i )
�

V H

1.3.5 Graph �lters

A linear operator on graph signals is a linear mapping fromCn to itself. De�ned as such, it can
be represented by a matrixA 2 M n (C) whose columns correspond to the image of the canonical
basis ofCn . This operator is called real if its representative matrix is real. It can then be seen
as a linear mapping fromRn to itself.

Graph �lters are a class of linear operators on graph signals that act on the frequency content
of a signal. Through the GFT, any signal can be decomposed as a weighted sum of elementary
signals, each associated to a given graph frequency. Graph �lters aim at amplifying or attenuating
the weight of some of these signals on the overall decomposition. Such an operation can be
modeled using atransfer function A, which is a function that associates to each graph frequency
� a scaling factorA(� ) 2 C. Applying a graph �lter with transfer function A to a signal x yields
a signal y such that:

GFT[ y ]i = A(� i )GFT[ x ]i ; i 2 [[1; n]] :

Hence thei -th spectral component of the input signal x is now scaled by a factorA(� i ). Note
in particular that duplicated frequencies/eigenvalues are necessarily scaled by the same factor.

Applying the inverse GFT to both members of this last equation gives:

y = V

0

B
B
B
@

A(� 1)
. . .

A(� n )

1

C
C
C
A

V H x :

Graph �lters can therefore be represented by matrix functions A(S) of the shift operator S
de�ned by

A(S) := V

0

B
B
B
@

A(� 1)
. . .

A(� n )

1

C
C
C
A

V H 2 M n (C) :

Their action on a signal x is then y = A(S)x and this vector is called a�ltered signal .
Three ingredients seem necessary to de�ne a graph �lter:

� a choice of diagonalizable shift operatorS with eigenvalues� 1; : : : ; � n ,

� a set of valuesf A(� 1); : : : ; A(� n )g, called frequency responseof the graph �lter, and cor-
responding to the image of the set of eigenvalues ofS through a (transfer) function A,

� a choice of (orthonormal) basisV for the eigendecomposition ofS.

The following theorem proves that the third requirement is actually not necessary, meaning that
graph �lters can be de�ned independently from the choice of the eigenbasisV .

Theorem 1.3.1. Any graph �lter de�ned on a n-graph with shift operator S and transfer func-
tion A can be uniquely written as a matrix polynomial ofS of degree at mostn � 1, i.e., there
exists a unique set of coe�cients a0; : : : ; an � 1 2 C such that:

A(S) =
n � 1X

k=0

ak Sk

In particular the coe�cients a0; : : : ; an � 1 2 C are entirely de�ned by the frequency response of
the graph �lter.
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Proof. Let V denote any eigenbasis ofS. Let A(S) be a graph �lter de�ned through V and
with transfer function A and denote(A(� 1) : : : A(� n ))T 2 Cn its frequency response.

De�ne PA to be the Lagrange interpolation polynomial that assigns to each� i ; i 2 [[1; n]]
the value PA (� i ) = A(� i ). Let n� � n be the number of distinct eigenvalues ofS. According
to the unisolvence theorem,PA is the only polynomial of degree� n� � 1 that interpolates
A at points � 1; : : : ; � n . Denote a0; : : : ; an � 1 the coe�cients of this polynomial, some of which
possibly being zero. LetPA (S) be the graph �lter de�ned through V and with transfer
function PA .

On one hand,

PA (S) = V Diag (PA (� 1); : : : ; PA (� n )) V H = V Diag (A(� 1); : : : ; A(� n )) V H = A(S) :

On the other hand,

PA (S) = V

0

B
B
B
B
B
@

n � 1P

k=0
ak � k

1

. . .
n � 1P

k=0
ak � k

n

1

C
C
C
C
C
A

V H = V

0

B
B
B
@

n � 1X

k=0

ak

0

B
B
B
@

� k
1

. . .

� k
n

1

C
C
C
A

1

C
C
C
A

V H

=
n � 1X

k=0

ak V Diag
�
� k

1 ; : : : ; � k
n

�
V H :

It is straightforward to show by induction that, whatever the choice of orthonormal basis V ,

V Diag
�
� k

1 ; : : : ; � k
n

�
V H = Sk , which allows to conclude that PA (S) =

n � 1P

k=0
ak Sk .

Hence,PA is de�ned independently of a choice of eigenbasisV given that it is a polynomial
whose coe�cients are independent ofV . This concludes the proof asA(S) = PA (S).

Graph �lters are therefore uniquely speci�ed by a choice of shift operator S and a choice
of transfer function A which de�nes their frequency response. Note also that following Theo-
rem 1.3.1, all graph �lters can be seen as matrix polynomials, even though the associated transfer
function is not derived from a polynomial function. The action of a graph �lter A(S) on a signal
can then be expressed as:

yi = [ A(S)x ]i =
KX

k=0

ak [Sk x ]i =
KX

k=0

ak

nX

j =1

[Sk ]ij x j =
nX

j =1

x j

KX

k=0

ak [Sk ]ij ;

where K � n � 1 is the actual order of the polynomial representingA. Hence, the value of the
�ltered signal at a vertex i is a linear combination of the values taken by the input signal.

More precisely, recall that the non-zero pattern of the iterates of the shift operator re�ects
the existence of a path between pairs of vertices. In particular, whenever there is no path of
length lesser or equal toK between two verticesi and j , all elements[Sk ]ij ; 0 � k � K are zero
and thereforex j is not used to compute the value of the �ltered signal at vertex i . Formally this
means that the value of the �ltered signal at a vertex i is a linear combination of the values of
the input signal within a K -hop neighborhood aroundi .

We now circle back to our ongoing analogy with classical signal processing. Graph �lters are
the counterparts for graph signals of the notion of linear and time-invariant (LTI) operator de-
�ned for continuous 1D signals. Both operators are linear maps and commute with translations.
Indeed, for any graph signal x , any graph �lter A(S) and any vertex i 2 V , the translation
operator T ( i ) with respect to i satis�es:

T ( i ) A(S)x = V Diag
�

V H � ( i )
�

Diag (A(� 1); : : : ; A(� n )) V H x = A(S)T ( i ) x :

Hence translating a �ltered signal is the same as �ltering the translated input. This is what
de�ned time invariance for LTI operators on time signals.
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Note that the same representation of LTI operators by a convolution product holds for graph
�lters. Indeed, it is straightforward to see that:

A(S)x = a � x where a = V

0

B
B
B
@

A(� 1)
...

A(� n )

1

C
C
C
A

= GFT � 1

2

6
6
6
4

0

B
B
B
@

A(� 1)
...

A(� n )

1

C
C
C
A

3

7
7
7
5

;

where the convolution product and the vector a are de�ned using the same eigenbasisV .

1.4 Stochastic graph signals

Now that the framework for studying (deterministic) graph signals is in place, we turn to its
generalization to account for random graph signals. The aim is to provide some notions and tools
that will help us work with stochastic processes de�ned on the vertices of a graph. The notions
introduced will be compared to the existing literature on stochastic graph signal processing
throughout the section.

In this section, G denotes a simple undirectedn-graph and S denotes a shift operator ofG
following Assumption 1.2.

1.4.1 Stationary stochastic graph signals

A graph signal on a n-graph G is called stochastic if it assigns to each vertex ofG a random
variable. Stochastic graphs signals(SGS) on G can therefore be identi�ed with random vectors
of Cn . As such, the �rst two moments of a SGSX are:

� its expectation, which is the vector of Cn whose elements are the expectations of the
elements ofX : [E[X ]]i = E[X i ],

� its covariance matrix, which is the n � n matrix whose element (i; j ) is the covariance
betweenX i and X j : Var[X ] = E

�
(X � E[X ])(X � E[X ])H

�
.

Assumption 1.3. Unless otherwise speci�ed, the SGS considered in this work are zero-mean,
i.e. E[X ] = 0.

Based on this assumption, which will be discussed in Section 1.4.4, we introduce the notion
of stationary graph signal that we will use in this work. This de�nition will be motivated
in Section 1.4.2 and compared to existing de�nitions of stationary graph signals found in the
literature in Section 1.4.3.

De�nition 1.4.1 . Let S be a shift operator of G. A zero-mean SGSX on G is called S-
stationary if its covariance matrix Var[X ] is a graph �lter with a non-negative transfer function
f X : R ! R+ :

Var[X ] = f X (S) :

The transfer function de�ning the covariance matrix of a S-stationary SGS is called the spectral
density of the SGS.

As de�ned, the notion of stationarity depends on the shift operator S: the same SGS can
therefore be stationary or not according to the choice of shift operator. Of particular interest
however are white signals, that generalize to graph signals the notion of white noise and are
�shift�-independent.

Example 1.4.1 (White signal) . A white signal on Gis a zero-mean SGSW whose components
are independent zero-mean unit-variance random variables. Hence,W is a signal such that
E[W ] = 0 and Var[W ] = I n .

White signals are alwaysS-stationary, for any choice of shift operator S. The spectral
density f W of a white signal is the function satisfying f W (� ) = 1 for all � 2 R.
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Proposition 1.4.1. The GFT ~X = GFT[ X ] of a zero-meanS-stationary graph signal X with
spectral density f X is a zero-mean SGS with uncorrelated components. Its covariance matrix is
the diagonal matrix de�ned by:

Var[ ~X ] = V H Var[X ]V =

0

B
B
B
@

f X (� 1)
. . .

f X (� n )

1

C
C
C
A

:

Proof. By linearity of the expectation, ~X is zero-mean. AndVar[ ~X ] = Cov[ V H X ; V H X ] =
V H Var[X ]V = V H f X (S)V which yields the result by de�nition of the graph �lter f X (S).

Following the de�nition of the GFT, a zero-mean S-stationary graph signal X with spectral
density f X can be decomposed as:

X =
nX

i =1

~X i v ( i ) ;

where:

� The signals v (1) ; : : : ; v (n ) are deterministic and pairwise orthogonal (with respect to the
graph scalar product).

� The weights ~X 1; : : : ; ~X n are random and pairwise uncorrelated variables with variances
f X (� 1); : : : ; f X (� n ).

This decomposition is therefore the GSP analogous of the Karhunen�Loève expansion of stochas-
tic processes.

Remark 1.4.1. If f X cancels out at a given eigenvalue� i then the corresponding weight
X i is a zero-mean variable with a0 variance. It is therefore a deterministic constant set to
0, meaning that the corresponding SGS has no component alongv ( i ) . More generally, the
Karhunen�Loève expansion of a SGSX with spectral density f X therefore writes:

X =
X

i 2 [[1;n ]]: f X ( � i )6=0

~X i v ( i )

In particular, band-limited SGS can be de�ned by considering spectral densities that cancel
out across a given bandwidth.

As de�ned, the image of aS-stationary signal after application of a graph �lter also de�ned
through S, is S-stationary.

Theorem 1.4.2. Let X be aS-stationary SGS with spectral densityf X and let h(S) be a graph
�lter with transfer function h. Then the �ltered signal Y = h(S)X is S-stationary with spectral
density � 7! h(� )2f X (� ).

Proof. Clearly, Y is also a zero-mean SGS. Its covariance matrix is therefore given by:
Var[Y ] = E[Y Y H ] = E[h(S)XX H h(S)H ] = h(S)E[XX H ]h(S)H . Using the fact that
h(S) is a Hermitian matrix gives Var[Y ] = h(S)Var[ X ]h(S) = h(S)f X (S)h(S) and using
the fact that all these graph �lters are related to the same shift operator yields: Var[Y ] =
(hf X h)(S) = ( h2f X )(S).

A de�ning property of S-stationary signals is now introduced.
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Theorem 1.4.3. A (zero-mean) SGSX is S-stationary with spectral density f X iif there exists
a white signal W such that:

X =
p

f X (S)W :

Proof. Let X be a zero-meanS-stationary SGS with spectral density f X . Without loss of
generality, let us assume that for a givenp 2 [[0; n]], f (� 1) = 0 ; : : : ; f (� p) = 0 where by
convention the casep = 0 corresponds to the case where allf (� i ) are non-zero. Let ~X be the
GFT of X . Let W denote the zero-mean SGS de�ned by:

W = V

0

@

0

@ 0p;p

D n � p

1

A ~X +

0

@ � p

0n � p

1

A

1

A ;

whereD n � p is a (n � p) � (n � p) diagonal matrix with entries
�

1p
f X ( � p +1 )

; : : : ; 1p
f X ( � n )

�
and

� is a vector with p independent zero-mean unit-variance components. Then,W is a white
signal and satis�es

p
f X (S)W = X .

The second implication of the proposition is a direct consequence of Theorem 1.4.2.

1.4.2 Justi�cation of the de�nition of stationarity

As de�ned, the notion of S-stationarity for graph signals allows to draw direct parallels with the
notion of weak stationarity that is de�ned for stochastic processes onRd.

Spectral representation

The notion of measure can be extended to the Graph Signal Processing framework as follows.
A graph measure on the frequency domain is de�ned as a measure on the power setP(�) of the
(�nite) discrete set � = f � 1; : : : ; � n g composed of the graph Fourier frequencies ofS. A graph
measure� can be entirely characterized by the knowledge of the value of the measure of each
singleton composing� . Then, the measure of any subset ofP(�) is simply de�ned as:

8S 2 P (�) ; � (S) =
X

i 2 [[1;n ]]: � i 2 S

� (� i ) :

Hence a graph measure� can be represented by then-vector � = ( � (� 1); : : : ; � (� n ))T , which
can be seen as signal on the graph frequency domain.

Remark 1.4.2. Similarly a graph measure on the vertex domain is de�ned as a measure on
the power setP(V) of the (�nite) discrete set V composed of the vertices of the graph.

Proposition 1.4.4. Let X be a S-stationary SGS with spectral densityf X . Then there exists
a random graph measure� X such that:

X = GFT � 1 [� X ] = GFT � 1

2

6
6
6
4

0

B
B
B
@

� X (� 1)
...

� X (� n )

1

C
C
C
A

3

7
7
7
5

;

where � X satis�es:

� 8S 2 P (�) , E[� X (S)] = 0 .

� The positive graph measure de�ned from the spectral densityf X on � satis�es: 8S 2 P (�) ,
Var[� X (S)] = f X (S).

� 8S1; S2 2 P (�) such that S1 \ S2 = ; , Cov[� X (S1); � X (S2)] = 0 .
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Proof. Denote � X the measure de�ned by :

� X = GFT [ X ]

Clearly GFT � 1 [� X ] = X . According to Proposition 1.4.1 the vector � X is a zero-mean
random vector and has a diagonal covariance matrix with entries(f X (� 1); : : : ; f X (� n )) . Hence,
the corresponding graph measure is also zero-mean and satis�es8S1; S2 2 P (�) ,

Cov[� X (S1); � X (S2)] =
X

i 2 [[1;n ]] � i 2 S1

X

j 2 [[1;n ]]: � j 2 S2

Cov[� (� i ); � (� j )]

=
X

k2 [[1;n ]]: � k 2 S1 \ S2

f X (� k ) :

On one hand, if S1 \ S2 = ; , Cov[� X (S1); � X (S2)] = 0 . On the other hand, the spectral
density f X de�nes a positive graph measure that satis�es8S 2 P (�) , Var[� X (S)] = f X (S).

The conventions chosen to de�ne both notions of Fourier transform and stationarity for
graph signals yield a direct correspondence with the framework of weakly stationary processes.
Indeed, in both cases stationary signals can be represented as the inverse Fourier transform of
a zero-mean random measure which is uncorrelated over disjoint sets and whose variance is a
deterministic positive (�nite) measure. Moreover, in both frameworks, the spectral density of
the signal actually corresponds to the density of the spectral measure.

Convolution representation

Similarly as weakly stationary processes, aS-stationary SGS can be obtained by convolving a
white input with a kernel.

Proposition 1.4.5. A (zero-mean) SGS X is S-stationary with spectral density f X iif there
exists a white signalW such that:

X = k � W ; where k = GFT � 1

2

6
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6
4

0

B
B
B
@

p
f X (� 1)

...
p

f X (� n )

1

C
C
C
A

3

7
7
7
5

:

Proof. Following the notations of the proposition and the de�nition of the convolution product
of graph signals,

X = V
��

V H k
�

�
�
V H W

��
= V

0

B
B
B
@

0

B
B
B
@

p
f X (� 1)

...
p

f X (� n )

1

C
C
C
A

�
�
V H W

�

1

C
C
C
A

= V Diag
� p

f X (� 1); : : : ;
p

f X (� n )
�

V H W =
p

f X (S)W ;

which proves the result according to Theorem 1.4.3.

As it was the case with the framework of weakly stationary processes, stationary signals with
a known spectral density are obtained by convolving white input (white noise or white graph
signal) with a kernel function de�ned as the inverse Fourier transform of the square-root of the
spectral density.

In terms of covariance, the next proposition provides a characterization ofS-stationary SGS,
based on a convolution and similar to the one presented in Remark 1.2.2 for weakly stationary
random �elds.
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Proposition 1.4.6. A (zero-mean) SGS X is S-stationary with spectral density f X iif its
covariance satis�es:

Cov[X i ; X j ] = [ C � � i ]j ; (1.10)

whereC = GFT � 1
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4

0

B
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f X (� 1)
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f X (� n )

1
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C
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and � i is the Dirac signal at vertex i , that assigns the value

1 to vertex i and 0 to all other vertices.

Proof. Denote f X (� ) = ( f X (� 1); : : : ; f X (� n ))T . Then,

[C � � i ]j =
�
V

�
f X (� ) �

�
V H � i

���
j = [ f X (S)� i ]j = [Var[ X ]� i ]j

= [Cov[ X i ; X ]]j = Cov[ X i ; X j ] :

The graph spectral density plays the same role as the spectral density of weakly stationary
random �elds. Indeed, the covariance between a reference vertexi and any other vertex j can
be expressed as the convolution between a covariance "signal"C , de�ned as the inverse graph
Fourier Transform of the spectral density and the Dirac signal at vertex i .

Remark 1.4.3. In their work, Perraudin and Vandergheynst (2017) actually use Equa-
tion (1.10) to de�ne their notion of stationarity of graph signals, called graph wide-sense
stationarity, in the particular case where the shift operator is the Graph Laplacian. It is
therefore equivalent to our notion of S-stationarity according to Proposition 1.4.6. They mo-
tivate their choice by explaining that they obtain a covariance that is de�ned by a global
kernel function (our spectral density) and locally adapted to the structure of the graph to de-
rive covariance between vertices using a convolution with a localized signal, the Dirac signal.

1.4.3 Comparison with other de�nitions of stationarity

In this section, we compare our de�nition of a stationary SGS, given in De�nition 1.4.1 to existing
de�nitions of stationarity, and discuss the underlying assumptions made by choosing ours.

Comparison with the work of T. Espinasse

In his work, Espinasse (2011) de�nes a notion of stationarity for a stochastic process indexed by
the vertices of graph. It is based on the notion of invariant.

De�nition 1.4.2 . Let Sn be the set of all permutations off 1; : : : ; ng and for � 2 Sn denoteP �

the permutation matrix de�ned by [P � ]ij = � i� ( j ) . In particular, P � is invertible and its inverse
is P � 1

� = M � � 1 .
An invariant is a function � : Dom(�) � M n (R) ! M n (R) such that:

� 8A 2 Dom(�) , A T 2 Dom(�) and �( A T ) = �( A )T

� 8A 2 Dom(�) , 8� 2 Sn , P � 1
� AP � 2 Dom(�) and �( P � 1

� AP � ) = P � 1
� �( A )P �

The order of an invariant � is the smallest integerr � 0 such that 8A 2 Dom(�) , 8i; j 2 [[1; n]],
the value of[�( A )] ij only depends on the elementsf Akl : k; l are within r hops from either i or
j g.

The notion of stationary SGS is then de�ned as follows.

De�nition 1.4.3 . [(Espinasse, 2011, De�nition 3.7.3)] A SGS X on a graph G with shift
operator S is stationary of order r if its covariance matrix Var[X ] satis�es:

� Var[X ] is positive de�nite.
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� There exists an invariant � of order r such that:

Var[X ] = �( S) :

Similarly to the de�nition we introduced, this de�nition describes stationarity with respect
to a choice of shift operator. Actually, the de�nition we provided falls into the scope of the
de�nition proposed by Espinasse (2011). Simply notice that any polynomial of degreer is an
invariant of order r for the set of symmetric matrices.

This de�nition ensures that the covariance between two pairs of vertices associated to two
�large-enough� isomorphic parts of the graph stays the same, as stated by the following propo-
sition.

Proposition 1.4.7. Let (i 1; j 1) and (i 2; j 2) be two pairs of vertices of a graphG belonging to
two isomorphic subsetsV1 and V2 of vertices of G and such that i 2 (resp. j 2) is the image of i 1

(resp. j 1).
Then for any processX stationary of order r in the sense of De�nition 1.4.3, if V1 includes all
vertices within r hops of either i 1 or j 1, then

Cov[X i 1 ; X j 1 ] = Cov[ X i 2 ; X j 2 ] :

Proof. Let us denote W the adjacency matrix of G. Following Corollary 1.1.2, there exists
a permutation � such that � (i 1) = i 2, � (j 1) = j 2 and 8i; j 2 V1 , Wij = W� ( i ) � ( j ) =
[P � 1

� W P � ]ij .
Then, given that W is shift operator, it follows from De�nition 1.4.3 that

[Var[X ]]i 2 j 2 = [�( W )] i 2 j 2 = [�( W )] � ( i 1 ) � ( j 1 ) = [ P � 1
� �( W )P � ]i 1 j 1 :

And using the fact that � is an invariant,

[Var[X ]]i 2 j 2 = [�( P � 1
� W P � )] i 1 j 1 :

Hence, given that� is of order r , [Var[X ]]i 2 j 2 only depends on the elements ofk; l of P � 1
� W P �

that are within r hops of (i 1; j 1). If V1 is large enough to include these vertices, then these
elements are equal to those ofW and therefore,

[Var[X ]]i 2 j 2 = [�( W )] i 1 j 1 = [Var[ X ]]i 1 j 1 :

This result acts like a generalization for graphs of the invariance of the covariance of a
stationary process by translation and symmetry, both being, similarly to graph isomorphisms,
bijective transformations that preserve the structure of the objects they are applied to. This
property is kept with the de�nition of S-stationary we introduced as it is a particular case of
De�nition 1.4.3.

Comparison to the work of Marques et al.

In their work, Marques et al. (2017) provide three de�nitions of weak stationarity for a SGS.

De�nition 1.4.4 . [(Marques et al., 2017, De�nitions 1 and 2)] Let G be a n-graph with shift
operator S. A (zero-mean) SGS X is weakly stationary if it satis�es one the following require-
ment:

1. X can be written asX = h(S)W for a graph �lter h(S) and a white signalW .

2. Var[X ] and S are simultaneously diagonalizable.

3. For any integers a; b; c; d� 0 such that a + b = c + d:

E
h
(SaX )

�
SbX

� T
i

= E
h
(ScX )

�
SdX

� T
i

;

or equivalently,
SaVar[X ]Sb = ScVar[X ]Sd :
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Note that we proved in Theorem 1.4.3 that Requirement 1 is actually equivalent to our
de�nition of S-stationary, thus linking our notion of stationarity to that of this new de�nition.

Marques et al. (2017) show that Requirements 2 and 3 are in fact equivalent, and that
Requirement 1 implies 2 and 3. There is no equivalence between 1 and 2 as Requirement 1
implicitly imposes that the eigenspaces ofS and Var[X ] must be the same, which is not generally
the case if Var[X ] and S are just simultaneously diagonalizable. Indeed, letv (1) and v (2) be
two orthogonal eigenvectors belonging to the same eigenspace ofS, associated to a duplicated
eigenvalue� . Then for Requirement 1 to be satis�ed, the eigenvalues ofVar[X ] associated to
v (1) and v (2) must also be equal (toh2(� )) and therefore v (1) and v (2) are also in the same
eigenspace ofVar[X ].

Hence, de�ning stationarity through this Requirement 1 (or equivalently using our notion of
S-stationarity) yields a more restrictive notion than using the other two requirements. However,
both de�nitions become in fact equivalent when S has no duplicated eigenvalue.

Besides, de�ning stationarity using Requirement 1 allows to keep the properties given by
Requirements 2 and 3. In particular, Requirement 3 generalizes the invariance of the correlation
operator by application of shifts by imposing that as long as the total number of times that a
signal is shifted is constant, the covariance stays the same.

Comparison to the work of B. Girault

In his work, Girault (2015a) bases the de�nition of stationarity on an invariance of the covariance
by translation, similarly as in Requirement 3 of De�nition 1.4.4. But translations are now de�ned
as the application of the following (complex) operator to a graph signal:

TS = exp
�

� i
�

p
� S

p
S

�
;

where only symmetric positive semi-de�nite shift operators S are considered and� S is an upper
bound on the eigenvalues ofS.

Contrary to the de�nitions based on the shift operator or Dirac signals, this de�nition has
the particularity to conserve the energy of a graph signal which is de�ned as its norm. It is
therefore an isometric operator. Stationarity is then de�ned as follows:

De�nition 1.4.5 . [(Girault, 2015b, De�nition 3) ] Let G be an-graph with shift operator S. A
(zero-mean) SGSX is wide-sense stationary if its covariance matrix satis�es

Var[X ] = Var[ TSX ] :

Girault (2015b, Proposition 1) proves that wide-sense stationarity is equivalent to Require-
ment 2 of De�nition 1.4.4. The same comparison with the notion of S-stationarity therefore
holds: both de�nitions are equivalent only if the eigenvalues ofS are distinct. In the general
case, S-stationarity implies De�nition 1.4.5 and therefore yields a more restrictive notion of
stationarity.

1.4.4 A few words on the mean

Up until now, only zero-mean SGS were considered, i.e. SGS such that their mean vector is
zero. However, it does not constitute a requirement for random �elds to be weakly stationary.
Indeed, for a random �eld to be stationary, its mean function should be constant. The natural
counterpart of this requirement for graph signals would be to impose that the mean vector
of a stationary SGS should be constant, meaning that there exists a constantm such that
the expectation of a stationary SGSY at any vertex i is E[Yi ] = m. Hence aS stationary
SGS Y would be de�ned as the sum of a constant vectorm1 and a stationary zero-mean SGS
X = Y � E[Y ] = Y � m1.

If we were to de�ne stationary SGS like this, we would lose some of their properties, �rst of
which being the preservation of stationary after �ltering, as stated in Theorem 1.4.2. Indeed,
the mean of the �ltered signal h(S)Y is mh(S)1 which is a constant signal if and only if 1 is an
eigenvector ofS. This remark motivates the following de�nition of S-stationary for signals that
may not be zero-mean.
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De�nition 1.4.6 . A SGS Y is called S-stationary if there exists an constantm such that:

Y � mv is a zero-meanS-stationary SGS,

where v is an eigenvector ofS.

Note that whatever the choice of eigenvectorv of S, Theorem 1.4.2 is satis�ed. Besides,
in the particular case where S is the graph Laplacian, the constant signal1 is an admissible
candidate for v and therefore the mean of a stationary SGS can be considered as constant across
the vertices.

Conclusion

In this chapter, we presented the mathematical framework we will use to work with variables
indexed by the vertices of a (simple undirected) graph. Both the cases of deterministic and
random graph signals were considered, and their respective frameworks of study were built using
analogies with respectively classical signal processing theory and stochastic processes theory.

A key notion to keep in mind is that of shift operators, which are matrices aiming at repre-
senting the structure of the graph on which the signals are de�ned. These matrices are used to
de�ne all the key tools pertaining to both deterministic and stochastic graph signal processing.
Indeed, on one hand, the graph Fourier transform but also convolutions and �ltering of graph
signals were all de�ned while relying on the eigendecomposition of a shift operator. On the
other hand, the de�nition of stationary stochastic graph signals was also entirely based on a
shift operator. The next chapter introduces practical algorithms, once again based on the shift
operator, that will be used in the rest of our work.

Finally, we recall the working assumptions that will be assumed for in the remainder of this
work (unless speci�ed otherwise).

Assumption 1.1. In this work, only connected simple undirected �nite graphs are considered.

Assumption 1.2. Only real, symmetric shift operators S are considered.
Consequently,S is diagonalizable by a unitary matrix and has real eigenvalues. Such a decom-
position is denoted as follows:

S = V

0

B
B
B
@

� 1

. . .

� n

1

C
C
C
A

V H ;

where

� � 1 � � � � � � n denote the real eigenvalues ofS, ordered in ascending order,

� V =
�
v (1) j : : : jv (n )

�
is a unitary matrix (i.e. V � 1 = V H )) whose columnsv (1) ; : : : ; v (n )

form an orthonormal basis of Cn composed of eigenvectors ofS such that:

8i 2 [[1; n]]; Sv ( i ) = � i v ( i ) :

Assumption 1.3. Unless otherwise speci�ed, the SGS considered in this work are zero-mean,
i.e. E[X ] = 0.
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Résumé
Le but de ce chapitre est d'apporter au lecteur une boite à outils d'algorithmes de traitement

du signal sur graphe. Ces algorithmes sont tous basés sur des opérations de �ltrage de signaux
sur graphe. Ainsi, nous commençons par présenter et comparer di�érentes méthodes (exactes ou
approchées) de �ltrage de signaux sur graphe a�n de motiver le choix qui est fait dans ce travail de
ne recourir qu'à l'une d'entre elles: le �ltrage par approximation polynômiale de Tchebychev (ou
plus simplement ��ltrage de Tchebychev�). Nous exposons ensuite l'utilisation de cet algorithme
pour calculer trace, histogramme de valeur propres, log-déterminant et inverse de fonctions de
matrices.

Introduction

In the previous chapter, the mathematical framework surrounding graph signal processing was
put in place, while following a strict analogy with continuous and discrete signal processing.
In particular, the notion of signal �ltering on a graph G was introduced while relying on the
de�nition of a matrix representation of G through a matrix called shift operator.

Much like in classical processing, �ltering operations play a key role when processing graph
signals. As we will later see in Chapters 3 and 4, algorithms aiming at simulating and estimating
graph signals heavily rely on being able to compute e�cient graph �ltering operations. By
e�cient, we mean that the �ltering algorithm should minimize both computational and storage
costs when operated. The aim of this chapter is to introduce an approximate graph signal
�ltering algorithm, that we call Chebyshev �ltering, and that will be used throughout the rest
of this work.

The Chebyshev �ltering algorithm has already been used for graph �ltering purposes in the
graph signal processing community (Hammond et al., 2011; Susnjara et al., 2015), and before that
to compute approximations of matrix functions (Higham, 2008). The aim of this chapter really
is to provide a rigorous justi�cation of why it is the most appropriate algorithm in our context
of application using arguments based on approximation theory and computational complexity,
and also comparisons with other possible choices of algorithms1.

We refer the reader to Appendix B for recalls on the theory of function approximation and
interpolation, which are instrumental to graph �ltering operations. In the �rst section of this
chapter, we present and compare di�erent approaches to graph �ltering in order to motivate
the use of Chebyshev �ltering. This last algorithm is then introduced. Finally, applications of
Chebyshev �ltering to the computation of characteristics of graph �lters are presented. They
will play a key role when dealing with the inference of stochastic graph signals.

Throughout this chapter, let h : R ! R be a transfer function and h(S) be the associ-
ated graph �lter with respect to a symmetric shift operator S 2 M n (R) de�ned according to
Assumption 1.2.

2.1 Exact algorithms for graph �ltering

Let x 2 Rn denote a real graph signal on a graph associated withS. Our goal is to �lter x
by the graph �lter de�ned by h and S, or equivalently evaluating the product h(S)x . In this
section, algorithms are derived to compute this product exactly. Two assumptions are made:

� Evaluating h on any real value is possible and achievable with a negligible computational
complexity.

� The matrix S and the vector x are known and stored in memory.

The computational complexity of each proposed algorithm is derived as an order of magnitude
for the count of �oating-point operations performed by the algorithm. The memory requirements
are also evaluated, and are de�ned as the amount of memory needed by the algorithm to store
temporary variables used by the algorithm. They do not take into account the space used to
store S and x .

1Note however that we omit in this chapter any comparison with methods based on the Lanczos algorithm
(Golub and Van Loan, 1996b, Chapter 9), as this case will be treated later in Section 3.3.
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2.1.1 Filtering via eigendecomposition

A �rst solution to compute h(S)x consists in getting back to the de�nition of graph �lters.
Assuming that an orthonormal eigenbasis matrix V and the eigenvalues� 1; : : : ; � n of S have
been computed and stored, the vectorh(S)x can be expressed as

h(S)x = V Diag(h(� 1); : : : ; h(� n ))V H x :

Computing the product h(S)x can be done in three steps: compute a graph Fourier transform
(GFT) of x , multiply the components of this vector by h(� 1); : : : ; h(� n ) and take the inverse
GFT of the result. This �rst approach is summed up by Algorithm 2.1.

Algorithm 2.1: Graph �ltering via eigendecomposition.
Input: Shift operator S 2 M n (R). Vector x 2 Rn . Transfer function h : R ! R.
Output: The product y = h(S)x 2 Rn .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization: y = x ;

1. Full eigendecomposition ofS: Use a diagonalization algorithm to compute then
eigenvalues� 1; : : : ; � n and an orthonormal eigenbasisV 2 M n (C) of S, and store them.

2. Graph Fourier transform: y  V H y .

3. Frequency scaling: Compute a component-wise multiplication with the impulse response
vector (h(� 1) : : : h(� n ))T : 8i 2 [[1; n]], yi  h(� i )yi .

4. Inverse graph Fourier transform: y  V y

Return y .

The computational bottleneck of this approach resides on its �rst step: the full diagonal-
ization of the shift operator S. Indeed, on one hand, the matrix V (or at least subroutines
allowing to compute the products betweenV and a vector and betweenV T and a vector) must
be known to compute steps 2 and 4. On the other hand, all the eigenvalues ofS must be known
to compute the impulse response of the �lter needed in step 3 from the expression of the transfer
function h.

This full diagonalization of a n � n matrix is an expensive operation, computationally and
memory-wise. O(n3) operations are required to compute the full set of eigenpairs of a real
symmetric matrix, using for instance the Jacobi method or the Householder tridiagonalization
approach implemented in the LAPACK library (Press et al., 2007). And a storage space of order
O(n2) must be available to store then vectors of sizen that compose the eigenbasisV and the
n eigenvalues. Such requirements become intractable asn grows as both the computational cost
and the memory requirements would explode.

2.1.2 Particular case: Polynomial transfer function

A second solution for this graph �ltering problem is based on the observation that in the par-
ticular case where the transfer function h is a polynomial of degreeK < n with coe�cients
a0; : : : ; aK 2 R, the corresponding graph �lter h(S) is a matrix polynomial de�ned by:

h(S) =
KX

k=0

ak Sk :

Computing the product h(S)x can be done iteratively using Horner's scheme, as presented in
Algorithm 2.2.

Algorithm 2.2 only involves products betweenS and various vectors: no costly factorization
of the shift operator has to be applied �rst. In general, the computational cost of this algorithm
will therefore be of order O(Kn 2) i.e. K times the cost of a matrix-vector product. However
in the case whereS is sparse, the cost of the matrix-vector product can be reduced toO(dn)
whered � n is the mean number of non-zero entries ofS per row, thus yielding a graph �ltering
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Algorithm 2.2: Graph �ltering with a polynomial transfer function.
Input: Shift operator S 2 M n (R). Vector x 2 Rn . Coe�cients a0; : : : ; aK 2 R.

Output: The product y =
�

KP

k=0
ak Sk

�
x 2 Rn .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: y = aK x ;
if K > 0 then

for k from K � 1 to 0 do
y  ak x + Sy ;

Return y .

algorithm with computational complexity O(Kdn ). As for the storage requirements of this
algorithm, they are of order n to store the temporary vector y . Hence, they actually depend
neither on the shift operator, nor on the transfer function (assuming both are already known
and/or stored).

This last property is particularly interesting when considering the scalability of the algorithm:
as long asS and small (�xed) number of vectors can be stored, Algorithm 2.2 can be used for
graph �ltering. This was not the case with Algorithm 2.1. Moreover, if polynomials with degree
K � n are considered, the increase of computational costs with the sizen can be kept under
control as they grow at most quadratically with n. The same growth rate is cubic when using
Algorithm 2.1.

2.1.3 General case: Polynomial interpolation of graph �lters

What about the case whenh is not a polynomial function? According to Theorem 1.3.1, any
graph �lter h(S) can be expressed as a �lter whose transfer function is a polynomialPh of degree
at most n � 1. Computing the product h(S) could therefore be done using Algorithm 2.2 with
Ph . This approach supposes that the analytical expression ofPh was �rst derived from the sole
knowledge ofh and S. This is possible asPh is the unique polynomial of degree at mostn � 1
interpolating h at eigenvalues� 1; : : : ; � n 2 R of S.

Hence, to �nd Ph , the full set of eigenvalues of� 1; : : : ; � n of S must �rst be computed. This
represents once again a rather costly step asO(n3) operations are required. However, contrary
to the full diagonalization approach of Algorithm 2.1, there is no need to compute and store the
eigenbasis ofS: only the eigenvalues are needed. Less operations are in fact needed (even though
the number is still of order O(n3)) and the storage space needs are brought down toO(n) using
for instance a Lanczos method for the computation of eigenvalues (Press et al., 2007).

Once the eigenvalues� 1; : : : ; � n of S are computed, the interpolating polynomial Ph can be
obtained using one of the methods presented in Appendix B.1.

Keeping in mind that the expression of Ph is computed to be used in Algorithm 2.2, the
Vandermonde approach seems to be the way to go as it provides directly the monomial coe�cients
of Ph . However a linear system that involves a (full) Vandermonde matrix of sizen must be
solved to compute these coe�cients, which can be done inO(n2) operations while requiring a
storage space ofO(n). Besides, this system is known to be numerically unstable as it becomes
more and more ill-conditioned asn grows (Atkinson, 1989).

This last drawback is no longer a concern if the Newton approach is used. Indeed, computing
the coe�cients of Ph in the Newton polynomial basis can be done by either solving the triangular
system in Equation (B.3) or using a divided-di�erences approach (Atkinson, 1989). Both algo-
rithms are numerically stable and provide an exact solution inO(n2) operations while requiring
storage needs of orderO(n). Then, evaluating the product Ph (S)x can be done directly with the
Newton expansion ofPh by slightly modifying Horner's scheme of Algorithm 2.2, as presented
in Algorithm 2.3.

Finally, one can notice that the Lagrange approach o�ers the desirable advantage to require
no additional computations to get an expression forPh . However, evaluating the productPh (S)x
using Equation (B.4) is less straightforward than with the other two approaches. Indeed, com-
puting the monomial coe�cients of Ph from Equation (B.4) in order to use Algorithm 2.2 requires
O(n3) operations as each term of the sum must be expanded �rst. A less expensive alternative
consists in using Equation (B.4) directly to compute the product Ph (S)x . Indeed, each term
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Algorithm 2.3: Graph �ltering with a Newton polynomial transfer function.
Input: Shift operator S 2 M n (R). Vector x 2 Rn . A family of interpolation points

� 1; : : : ; � K de�ning a Newton basis f � k g1� k � K � 1. Coe�cients c0; : : : ; cK � 1 2 R.

Output: The product y =
�

K � 1P

k=0
ck � k (S)

�
x 2 Rn .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: y = aK � 1x ;
if K > 1 then

for k from K � 2 to 0 do
y  ak x + Sy � � k y ;

Return y .

of the sum can be computed usingn nested multiplications, much like Horner's scheme. The
resulting method is outlined in Algorithm 2.4. However, it comes at a computational cost of
order O(n2) as n products of n (shifted) monomials must be evaluated. On the other hand,
storage needs of onlyO(n) are required.

Algorithm 2.4: Graph �ltering with a Lagrange polynomial transfer function.
Input: Shift operator S 2 M n (R). Vector x 2 Rn . A family of interpolation points

� 1; : : : ; � K de�ning a Lagrange basisf lk g1� k � K . Coe�cients h1; : : : ; hk 2 R.

Output: The product y =
�

KP

k=1
hk lk (S)

�
x 2 Rn .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: u = 0, y = 0;
for k from 1 to K do

u  x ;
for j from 1 to K , j 6= k do

u  Su � � k u;
y  y + hk u

Return y .

2.1.4 Graph �ltering via polynomial interpolation

Algorithm 2.5 sums up the general approach to graph �ltering using interpolating polynomials.
First, the full set of eigenvalues of S is computed. Then, an expression of the polynomial
interpolating h at these eigenvalues is calculated. Finally, depending on the expression chosen
at the previous step, the product Ph (S)x is computed using an iterative algorithm requiring a
number of operations proportional to the size of the vectorsn and the degree of the polynomial.

Algorithm 2.5: Graph �ltering via polynomial interpolation.
Input: Shift operator S 2 M n (R). Vector x 2 Rn . Transfer function h : R ! R.
Output: The product y = h(S)x 2 Rn .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization: y = x ;

1. Eigenvalues ofS: Use a diagonalization algorithm to compute and store then
eigenvalues� 1; : : : ; � n of S.

2. Compute an expression of the polynomialPh interpolating h at � 1; : : : ; � n using either
the Vandermonde, the Newton or the Lagrange approach.

3. According to the expression ofPh chosen at step 2, compute the producty = Ph (S)x
using either Algorithm 2.2, Algorithm 2.3 or Algorithm 2.4.

Return y .
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Polynomial Full Polynomial interpolation

case Diagonalization Vandermonde Newton Legendre

Description Algorithm 2.2 Algorithm 2.1 Algorithm 2.5

Eigendecomposition - O(n3) O(n3)

Polynomial coe�cients 0 - O(n2) O(n2) 0

Product computations O(Kdn ) O(n2) O(Kdn ) O(Kdn ) O(dn2)

Storage needs O(n) O(n2) O(n) O(n) O(n)

Table 2.1: Comparison of exact algorithms for graph �ltering of a vector of sizen. For methods
involving a polynomial, its degree is denotedK (except for the Legendre approach, which has a

polynomial of degreen).

2.1.5 Comparison of exact graph �ltering algorithms

Table 2.1 provides a comparison of the computational and storage costs associated to the exact
graph �ltering algorithms presented up until now. The full diagonalization method of Algorithm
2.1 is compared to the polynomial interpolation method of Algorithm 2.5 and its three variants
(namely, the choice of the Vandermonde, the Newton or the Legendre approach to express the
interpolating polynomial).

The main computational bottleneck shared by these methods is the diagonalization of the
matrix S, which scales cubically with the size of the vectorsn. Once this diagonalization step is
performed, the full diagonalization approach o�ers the fastest way to evaluate the producth(S)x .
Indeed, polynomial interpolation approaches require either the computation of the coe�cients of
the polynomial or a tedious evaluation by nested multiplications. On the other hand, polynomial
interpolation approaches require much less storage space than the full diagonalization approach
given that the eigenbasis need not to be stored.

The particular case where the transfer function is polynomial yields the lowest overall com-
putational and storage requirements. Contrary to the polynomial interpolation approach, there
is no additional cost due the computation of interpolation points or more generally the diago-
nalization of S. This motivates a new approach to solving the e�cient graph �ltering problem,
namely �nding a polynomial Ph such that:

� Computing its expression will not require any costly preliminary operations as it is the
case with interpolation polynomials.

� Computing the product Ph (S)x can be done using an iterative scheme similar to those
introduced in Algorithms 2.2 and 2.3.

� The products approximate well the product h(S)x in some sense to be de�ned.

Hence we aim at replacing the polynomial interpolation ofh by its polynomial approximation,
hoping that the loss of accuracy will be compensated by the gains in computational e�ciency of
the algorithm. This approach is presented in the next section.

2.2 Approximate algorithm for graph �ltering: the Cheby-
shev algorithm

Following the considerations from the previous section, the idea is now to replace the costly exact
computation of the product h(S)x by that of a polynomial �lter Ph (S)x such that Ph (S)x �
h(S)x in some sense. In particular,Ph should be computed with minimal e�ort compared to
the diagonalization step that was preliminary to all the exact methods.

2.2.1 Derivation of the algorithm

The steps leading to the Chebyshev �ltering algorithm are now outlined.
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Computation of the approximation error

Let us �rst focus on the discrepancy betweenh(S)x and its approximation by Ph (S)x , also
referred to as approximation error. Both being vectors ofRn , it is naturally measured by the
distance separating them inRn . This distance can be de�ned by any norm onRn . Actually, the
choice of a norm is not important given that they are all equivalent in �nite dimensional spaces,
i.e. for any norms N1; N2 de�ned on Rn , there exists two constantsC1; C2 > 0 such that

8x 2 Rn ; C1N1(x ) � N 2(x ) � C2N1(x ) :

In particular, for the Euclidean norm, the approximation error is:

kh(S)x � Ph (S)x k2
2 = k (h(S) � Ph (S)) x k2

2 = x T (h(S) � Ph (S))2 x

=
x T (h(S) � Ph (S))2 x

x T x
� (x T x ) = R((h(S) � Ph (S))2 ; x )kx k2

2 ;

where the notation R(M ; x ) denotes the Rayleigh quotient of a Hermitian matrix M and a
vector x (cf. Appendix A.2.1). Given that both h(S) and Ph (S) are graph �lters with respect
to the same shift operatorS, it is straightforward to check that (h(S) � Ph (S))2 is also a graph
�lter with respect to S and that its eigenvalues are(h(� 1) � Ph (� 1))2; : : : ; (h(� n ) � Ph (� n ))2.
Hence,

min
k2 [[1;n ]]

(h(� k ) � Ph (� k ))2 � R ((h(S) � Ph (S))2 ; x ) � max
k2 [[1;n ]]

(h(� k ) � Ph (� k ))2 :

Therefore,

kh(S)x � Ph (S)x k2 �
�

max
k2 [[1;n ]]

jh(� k ) � Ph (� k )j
�

kx k2 : (2.1)

This proves a rather intuitive result: for Ph (S)x to approximate well h(S)x , it su�ces
that the function Ph approximates h well. More precisely, it su�ces that the values of Ph

are close to that of h on the set of eigenvalues� 1; : : : ; � n of S. In particular, if these values
coincide, exact graph �ltering by polynomial interpolation of Section 2.1.3 is retrieved as we get
kh(S)x � Ph (S)x k2 = 0 and henceh(S)x = Ph (S)x .

Choice of the polynomial approximation

Assume now that some approximation error is tolerated, i.e. we want for some threshold� 0 > 0:

kh(S)x � Ph (S)x k2 � � 0 :

Then, following Equation (2.1), this condition can be enforced by imposing

max
k2 [[1;n ]]

jh(� k ) � Ph (� k )j � � (x ); where � (x ) = � 0=kx k2 > 0 : (2.2)

Comparing directly the values of f h(� k ) : k 2 [[1; n]]g and f Ph (� k ) : k 2 [[1; n]]g to make sure
this last condition is satis�ed would lead to the same problem as the one encountered in the
interpolation approach: namely, the values of all the eigenvalues ofS must be known and
therefore S must be fully diagonalized.

However, in the context of approximation, a su�cient condition to get Equation (2.2) is if
max� 2 [a;b] jh(� ) � Ph (� )j � � (x ), where the interval [a; b] is such that � 1; : : : ; � n 2 [a; b]. Hence,
the enforcement of the condition in Equation (2.2) can be replaced by

max
� 2 [a;b]

jh(� ) � Ph (� )j � � (x ); where � (x ) = � 0=kx k2 > 0 and � 1; : : : ; � n 2 [a; b] : (2.3)

Finding a polynomial approximation Ph of a function h over a segment[a; b] can be done
very e�ciently using Chebyshev sumsas described in details and justi�ed in Appendix B.4. The
�rst step consists in moving the approximation problem from the interval [a; b] to [� 1; 1]. This
is done by considering the (invertible) a�ne transform � a;b de�ned by

� a;b : t 2 [a; b] 7!
2

b� a
(t � a) � 1 2 [� 1; 1] ; (2.4)
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and whose inverse is the linear mapping� � 1
a;b de�ned by

� � 1
a;b : t 2 [� 1; 1] 7! a +

b� a
2

(t + 1) 2 [a; b] : (2.5)

Hence, to approximateh over [a; b], we �nd a polynomial approximation Pĥ of the function

ĥ := h � � � 1
a;b

over [� 1; 1] and return the polynomial

Ph := Pĥ � � a;b :

Using Chebyshev sums, the polynomialPĥ is given as the truncation at a given order of
approximation m 2 N of the Chebyshev series of̂h. It is therefore written

Pĥ =
1
2

c0T0 +
mX

k=1

ck Tk ;

where Tk denotes thek-th Chebyshev polynomial, and each coe�cient ck , k 2 [[0; m]] is given by

ck =
2
�

Z �

0
ĥ(cos� ) cos(k� )d�; k 2 [[0; m]] : (2.6)

These coe�cients can be numerically computed either the Fast Fourier transform algorithm
(Cooley and Tukey, 1965) or an algorithm designed to compute the discrete cosine transform
(Chen et al., 1977; Makhoul, 1980) of a vector, as detailed in Algorithms B.1 and B.2. As for the
order of the polynomial approximation m, it should be chosen to ensure Equation (2.3). Checking
whether an order approximation m is large enough can be done numerically by evaluating the
di�erence between the resulting polynomial approximation Ph and h over a �ne discretization
of [a; b].

Remark 2.2.1. A restriction on the regularity of h over [a; b] must be considered to safely
apply the Chebyshev polynomial approximation: namely h should be at least of bounded
variation (cf. De�nition B.3.1) or Dini-Lipschitz continuous (cf. De�nition B.3.2), so that
any level of approximation error can be achieved by increasing the orderm of the polynomial
approximation (cf. Theorem B.4.4).

A method to deal with discontinuous functions is introduced in Appendix B.4.6.

Interval of approximation

The only remaining question is whether �nding an interval [a; b] containing all the eigenvalues
of S is possible without actually computing the eigenvalues or having recourse to operations
with similar computational complexities. The answer is yes and the following results provide
examples of such intervals.

Proposition 2.2.1. Let S 2 M n (R) be a symmetric matrix and denote� 1; : : : ; � n its eigenval-
ues. Then,

8i 2 [[1; n]]; j� i j �
p

Trace (S2) :

Hence, all the eigenvalues ofS are contained in the interval
h
�

p
Trace (S2);

p
Trace (S2)

i
.

Proof. This is a direct consequence of the fact thatS2 has eigenvalues� 2
1; : : : ; � 2

n and that
therefore Trace

�
S2

�
=

P n
j =1 � 2

j .

Theorem 2.2.2 (Gerschgorin circle theorem (Gerschgorin, 1931)). Any eigenvalue� of a sym-
metric matrix S 2 M n (R) satis�es:

� 2
[

i 2 [[1;n ]]

[Sii � r i ; Sii + r i ]; where r i =
X

j 6= i

jSij j :

Hence, all the eigenvalues ofS are contained in the interval
�

min
i 2 [[1;n ]]

(Sii � r i ); max
i 2 [[1;n ]]

(Sii + r i )
�
.
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Both Proposition 2.2.1 and Theorem 2.2.2 provide expressions of intervals containing the
eigenvalues of the shift operator that can be computed with a limited complexity. Indeed, in the
former case, given thatS is real and symmetric, the trace of its square is equal to the sum of
the square of all its elements:

Trace(S2) =
nX

j =1

nX

k=1

S2
ij :

Hence, it can be computed usingO(dn) operations, whered is at most n (when S is a full
matrix). The same computational complexity can be derived in the latter case.

Remark 2.2.2. Finer intervals can be derived by using additional characteristics the shift
operator may have. For instance, ifS is positive (semi)-de�nite, then 0 is a lower bound of
its eigenvalues. Consequently, the intervals proposed in Proposition 2.2.1 and Theorem 2.2.2
can be taken as h

0;
p

Trace (S2)
i

and
�
0; max

i 2 [[1;n ]]
(Sii + r i )

�
=

2

40; max
i 2 [[1;n ]]

nX

j =1

jSij j

3

5

(given that the diagonal elements ofS would then be non-negative).

2.2.2 Presentation of the algorithm

At this point, the approximating polynomial Ph is expressed as a Chebyshev sum and its co-
e�cients are computed. Computing the product Ph (S)x can be done iteratively by relying
on the recurrence relation between Chebyshev polynomials described in Equation (B.11). The
corresponding procedure is outlined in Algorithm 2.6.

Algorithm 2.6: Graph �ltering of a Chebyshev sum.
Input: Shift operator S 2 M n (R). Vector x 2 Rn . A set of Chebyshev coe�cients

c0; : : : ; cm 2 R.

Output: The product y =
�

1
2 c0T0(S) +

mP

k=1
ck Tk (S)

�
x 2 Rn .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization: u ( � 2) = u ( � 1) = u = y = 0;
for k from 0 to m do

if k = 0 then
u  1

2 x ;
else if k = 1 then

u  Sx
else

u  2Su ( � 1) � u ( � 2) ;

y  y + ck u ;
u ( � 2)  u ( � 1) ;
u ( � 1)  u ;

Return y .

To sum things up, approximate graph �ltering is performed in three steps. First, an interval
[a; b] that contains all the eigenvalues is derived. Then a polynomial approximation of the transfer
function of the �lter over [a; b] is derived using Chebyshev sums. Finally, the �ltering operation
is applied to this polynomial instead of the original transfer function, using an iterative method
that only involves matrix products by the shift operator. This approach is outlined in Algorithm
2.7.

Two remarks on the outline of Algorithm 2.7 can be formulated. First, in most applications
considered in this work, the transfer functionsh are smooth enough so that an order of approxi-
mation of at most 103 are su�cient to yield almost-zero approximation errors. Second, running
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Algorithm 2.7: Chebyshev �ltering algorithm for graph signals.
Parameters: Order of discretization N of integrals in Algorithm B.1 or B.2
Input: Shift operator S 2 M n (R). Vector x 2 Rn . Transfer function h : R ! R.

Approximation order m 2 N.
Output: An approximation of h(S)x .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization: y = 0;

1. Approximation interval:
Find an interval [a; b] that contains all the eigenvalues ofS. Examples are provided by
Proposition 2.2.1 and Theorem 2.2.2.

2. Coe�cients of the Chebyshev sum:
Using Algorithm B.1 or B.2, compute the coe�cients of the Chebyshev sum of orderm
of the function t 2 [� 1; 1] 7! h(� � 1

a;b (t)) where � � 1
a;b (t) denotes the linear mapping from

[� 1; 1] to [a; b] (cf. Equation (2.5)).

3. Filtering:
Use Algorithm 2.6 with the coe�cients obtained at the previous step and using
� a;b (S) = 2

b� a S � b+ a
b� a I as shift operator on the vectorx .

Store the result in y .

Return y .

Algorithm 2.6 with � a;b (S) as a shift operator can be done without having to actually compute
(and store) this matrix. Indeed, the only requirement this algorithm has for the shift operator
is the ability to compute its product with a n-vector. Yet, the product between � a;b (S) and a
n-vector u can be written:

� a;b (S)u =
2

b� a
Su �

b+ a
b� a

u (2.7)

Hence, any product by the shift operator in Algorithm 2.6 can e�ectively be replaced by the
combination of a product by S and a subtraction given by Equation (2.7).

Following from this last remark, the approach to graph �ltering of Algorithm 2.7 can be seen
as �matrix-free� algorithm. Indeed, it does not actually require the shift operator to be stored in
memory. Rather, it relies solely on being able to compute a product between the shift operator
and vectors. Hence, if all that was available was a function that computed this product (without
necessarily using a matrix stored in memory), the same would still apply.

This property is clearly desirable in a context where the size of the vectors and matrices may
be so large that any gain in memory is appreciated. In that case, exploiting the structure of
the shift operator to only keep in memory the values necessary to compute the matrix-vector
product may bring great savings in storage space. This is for instance the case for circulant
matrices for which just a few entries are necessary to compute a product with a vector.

2.2.3 Computational complexity of the algorithm

The computational complexity of Algorithm 2.7 is now explicitly calculated. Denote nnz the
number of non-zero entries ofS and d the mean number of non-zero entries of a row ofS:
nnz = d � n. Denote m the order of the Chebyshev approximation. The cost associated with
each step (ignoring additions and multiplications by non-stored zeros) is described as follows:

� Step 1 requiresO(dn) operations as mentioned earlier.

� Step 2 requires to apply fast Fourier transform or the discrete cosine transform algorithm
to a vector of length N . The cost of this operation is O(N logN ) (Chen et al., 1977;
Makhoul, 1980).

� Step 3 is composed of

� m + 1 updates of y that consists in multiplying the entries of a n-vector by a scalar
and adding them to another n-vector ! m � 2n operations
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� m updates of the vector u that consists in multiplying a n-vector by � a;b (S) and
subtracting another n-vector to the result ( ! n operations). Each product by � a;b (S)
actually corresponds to a product byS (! dn operations) that is scaled by constant
(! n operations) and followed by the subtraction (! n operations) of an-vector that
was also scaled by a constant (! n operations): ! m � (dn + 4n) operations.

Therefore, the overall cost of the Chebyshev �ltering algorithm is O(mdn + N logN ) operations.
Considering that in most of our applications2 N � n, we conclude that the actual complexity
of Algorithm 2.7 is of order O(mdn) .

And regarding the storage needs, aside fromS, x and the coe�cients which are assumed to
be stored by default, the algorithm only needs enough space to work with4 additional n-vectors.
The storage needs of this algorithm are therefore of orderO(n).

In conclusion, Algorithm 2.7 provides a solution to perform graph �ltering with a compu-
tational and storage costs of the same order of the minimal case of polynomial �ltering that
was introduced in Algorithm 2.2. Moreover, the user can trade computational time for accuracy
of the approximation using a single parameter: the orderm of the Chebyshev sum. Indeed,
asymptotically (when m grows to 1 ), the approximation error of the Chebyshev sums goes to
zero, and therefore, so does the approximation error of the vectors obtained using the Chebyshev
�ltering algorithm (cf. Equation (2.1)).

In the remaining of this work, the following assumption is made so that Chebyshev �ltering
can be applied.

Assumption 2.1. Whenever a graph �lter is considered, the associated transfer function
is assumed to be regular enough for its Chebyshev series to converge over an interval[a; b]
containing all the eigenvalues of the shift operator.

In practice, we will assume the transfer function to be Dini-Lipschitz continuous or continuous
of bounded variation.

2.3 Applications of the Chebyshev �ltering algorithm

In this section, a few useful algorithms designed to compute the trace, the log-determinant
and the histogram of eigenvalues of a graph �lter h(S) de�ned by a shift operator following
Assumption 1.2 and a transfer function h are presented. These algorithms will be particularly
useful when the inference of stochastic graph signals will be considered in Chapter 5, allowing
for instance to compute the likelihood of realizations of stochastic graph signals.

All the algorithms introduced in this section rely on the Chebyshev �ltering algorithm, and
aim at computing accurate estimates of some characteristics of a graph �lterh(S) in a matrix-
free approach. The need to use this approach comes from the fact we want to avoid actually
building and storing the graph �lter h(S), due to the high computational and storage costs
associated. Direct methods are therefore out of the question.

Remark 2.3.1. All the algorithms presented in this section can actually be applied to draw
estimates of these same characteristics for any real symmetric matrixM using the following
trick: we take S = M and set h : x 2 R ! x. Note however that if the algorithm requires h
to be strictly positive, then the matrix M should be positive de�nite.

2.3.1 Trace of a graph �lter

We present here an approach aiming at computing the trace of a graph �lter. It relies on the
following proposition.

2N actually corresponds to the order of approximation of the integrals de�ning the coe�cients of the Chebyshev
sum (cf. Equation (2.6)) as Riemann sums. N can be �xed at a few thousands in most cases. Hence it is therefore
safe to assume that N � n.
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Proposition 2.3.1. Let S 2 M n (R) be a real symmetric shift operator and leth(S) be a graph
�lter with respect to S with transfer function h : R 7! R.
Let W be a white signal, i.e. a vector composed ofn independent zero-mean and unit-variance
random variables.
Then W T h(S)W is an unbiased estimator of the trace ofh(S):

E
�
W T h(S)W

�
= Trace ( h(S)) : (2.8)

Proof. By linearity of the expectation: E
�
W T h(S)W

�
=

nP

k=1

nP

j =1
[h(S)]kj E [Wk Wj ]. By de�-

nition of W , E [Wk Wj ] = Cov [ Wk ; Wj ] is 1 if k = j and 0 otherwise. Hence,E
�
W T h(S)W

�
=

nP

k=1
[h(S)]kk = Trace ( h(S)) .

A stochastic approximation of the trace of a graph �lter is therefore given by taking a Monte-
Carlo estimate of the expectation in Equation (2.8):

Trace (h(S)) � SM with SM =
1

M

mX

j =1

w T
j h(S)w j ; (2.9)

where w1; : : : ; wM are M independent realizations ofW . The quadratic form in Equation (2.8)
can be computed in two steps: �rst the product u = h(S)w is calculated using the Chebyshev
�ltering algorithm, then the inner product w T u is returned. Hence, an approximation of the
trace can be computed through Equation (2.9) for a global computational cost of �ltering M
signals. This method is outlined in Algorithm 2.8.

Algorithm 2.8: Trace approximation by Chebyshev �ltering.
Parameters: Probability distribution D of a (real) random variable with mean 0 and

variance 1. Any additional parameters for Chebyshev �ltering.
Input: Shift operator S 2 M n (R). Transfer function h : R ! R. Approximation order

m 2 N of the transfer function. Number of realizations M .
Output: An approximation of Trace(h(S)) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization: y = 0 ;
for j from 1 to M do

Generatew 2 Rn with independent entries drawn from D ;
Compute u = h(S)w using Chebyshev �ltering at approximation order m ;
y  

�
(j � 1)y + w T u

�
=j ;

Return y.

Remark 2.3.2. In practice, the formulation of Algorithm 2.8 allows for a premature exit
from the �for� loop. Indeed, at the j -th iteration, the scalar y actually contains the average
over all white signals generated up until this point. Hence, one could imagine an additional
criterion on the evolution of the values of y that would provoke a loop break. For instance
we could stop the algorithm if, for several consecutive iterations, the di�erence between the
current and previous values ofy is below a given threshold.

Algorithm 2.8 hence provides a method to compute the trace of any graph �lter using Cheby-
shev �ltering. The computational cost of this method is dominated by the �ltering steps (as-
suming generating the random vectorsw is inexpensive and represents a cost of orderO(n)).
Hence, the computational cost of Algorithm 2.8 is of orderO(M � mdn) where d is the mean
number of non-zero entries in a row ofS and M is the number of realizations used to de�ned
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Rademacher Gaussian

Variance of the trace
estimator

2
M (Trace(A 2) �

P n
k=1 A2

kk ) 2
M Trace(A 2)

Bound on the number of
samples with central

limit theorem
2F � 1

N (1 � �= 2) 2

� 2 (Trace(A 2) �
P n

k=1 A2
kk ) 2F � 1

N (1 � �= 2) 2

� 2 Trace(A 2)

Bound on the number of
samples in the positive

semi-de�nite case
6Trace( A )2

� 2 log( 2
� rank(A )) 20Trace( A )2

� 2 log( 2
� )

Table 2.2: Properties of the estimatorSM of the trace of a graph �lter A = h(S), as de�ned in
Equation (2.9), with respect to the distribution chosen to generate the white signalsw . See

(Avron and Toledo, 2011) for proofs.

the stochastic estimators,m is the order of the Chebyshev approximation andn is the size ofS.
This should be compared to the huge computational cost of the exact approach that consists in
diagonalizing the graph �lter, involving then O(n3) operations.

Two questions remain unanswered: how to choose the distributionD de�ning the white sig-
nals and the number of realizationsM that should be generated. A natural criterion for these
choices consists in trying to minimize the variance of the estimatorSM in Equation (2.9). This
variance directly depends on both parameters, as it is given by� 2=M where� 2 = Var[ W T h(S)W ],
and is linked to the approximation error jTrace(h(S)) � SM j of SM .

Indeed, the central limit theorem states that asymptotically in M , the limiting distribution
of SM is normal with mean E[SM ] = Trace( h(S)) and variance� 2=M . Hence the approximation
error jTrace(h(S)) � SM j can be estimated using the cumulative distribution function (cdf) FN of
the standard Gaussian distribution. Namely, the probability that its value is below a threshold
� > 0 is given by

P[jTrace(h(S)) � SM j � � ] � 2FN

 
�

p
� 2=M

!

� 1 (as M ! 1 ):

Equivalently, using the inverse cdf F � 1
N of the standard Gaussian distribution (which is also its

quantile function), we have for any risk level 0 < � < 1:

P

"

jTrace(h(S)) � SM j �

r
� 2

M
F � 1

N (1 � �= 2)

#

� 1 � � (as M ! 1 ):

Two factors directly impact the approximation error of SM : the variance � 2 of the quadratic
forms and the number M of samples. In particular, minimizing the variance � 2 by choosing an
appropriate distribution D should lead to require less samples to keep the approximation error
below a small threshold with high probability. Hutchinson (1989, Proposition 1) shows that � 2

is minimal whenever the entries ofW follow a Rademacher distribution i.e. they take values
either +1 or � 1 with probability 1=2, placing this distribution as a premium candidate for D.

Going further down this road, Avron and Toledo (2011) estimated, in the particular case
where h(S) is also positive semi-de�nite, the actual number of samples needed for the approxi-
mation error to be below a threshold� with a probability 1� � (with the asymptotic requirement
of the central limit theorem). They showed that generating the entries of w using a standard
Gaussian distribution demands a lower number of samplesM to achieve the same accuracy (with
the same probability) as when a Rademacher distribution is used. Both distributions are hence
considered to run Algorithm 2.8. Table 2.2 compares them in terms of variance of the estimator,
and number of samples required in the asymptotic case and in the positive de�nite case.

2.3.2 Histogram of eigenvalues of a shift operator

Recall that we denote � 1; : : : ; � n 2 R the eigenvalues ofS. Computing a histogram of these
values over a interval [a; b] consists in partitioning this interval into a set of M b � 1 disjoint
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subintervals of size� = ( b � a)=Mb, also called bins, and counting the number of eigenvalues
falling into each one of the bins.

Formally, let n� : R 7! N be the counting function de�ned for � > 0 by:

n� (x) = Card
n

j 2 [[1; n]] : � j 2 [x �
�
2

; x +
�
2

[
o

; x 2 R : (2.10)

Then the histogram of f � 1; : : : ; � n g over an interval [a; b] � R containing them and with bin size
� is de�ned as the set of values:

�
n�

�
a +

�
m +

1
2

�
� )

�
: m 2 [[0;

�
b� a

�

�
� 1]]

�
:

Hence, being able to compute the histogram of eigenvalues of a shift operator is equivalent to
being able to compute values of the counting functionn� over the interval [a; b]. Doing so with
an e�cient algorithm is the object of this section.

Let us assume that the interval [a; b] is known (using for instance Proposition 2.2.1 or The-
orem 2.2.2) and let � > 0 be �xed. A naive way of computing n� (x); x 2 [a; b] consists in �rst
computing all the eigenvalues ofS and then counting how many of them fall into the bin of
size � centered at x. Doing so would be practically infeasible as the �rst step requires the full
diagonalization of S. So, for the same reasons as those presented in Section 2.1.1 to avoid graph
�ltering by eigendecomposition, this approach should not be considered. Instead, an approach
based on Chebyshev �ltering is proposed, based on the following result, already exploited by
Di Napoli et al. (2016).

Proposition 2.3.2. Let S be a real symmetric shift operator with eigenvalues� 1; : : : ; � n � R
and let h : [a; b] ! R be a function de�ned on an interval [a; b] containing all the eigenvalues of
S. Then,

E
�
W T h(S)W

�
=

nX

k=1

h(� k ) = Trace( h(S)) ; (2.11)

where W 2 Rn is a white signal.

Proof. This a a direct consequence of Proposition 2.3.1 that relies on the fact that by de�nition
of graph �lters and using the properties of the trace function:

Trace(h(S)) = Trace( V T Diag(h(� 1); : : : ; h(� n ))V ) = Trace(Diag( h(� 1); : : : ; h(� n ))V V T )

= Trace(Diag( h(� 1); : : : ; h(� n ))) =
nX

k=1

h(� k ) :

In particular, note that, for any x 2 [a; b], the counting function can be written using indicator
functions:

n� (x) =
nX

k=1

1[x � �= 2;x + �= 2[(� i ) ;

where 1[x � �= 2;x + �= 2[ denotes the indicator function of the interval [x � �=2; x + �=2[. Hence,
from Proposition 2.3.2,

8x 2 [a; b]; n� (x) = E
�
w T 1[x � �= 2;x + �= 2[(S)w

�
= Trace( 1[x � �= 2;x + �= 2[(S)) :

Following the results from Section 2.3.1, an idea would be to computen� (x) using Algorithm
2.8. However, the function t 7! 1[x � �= 2;x + �= 2[(t) is not even continuous over[a; b] as it has two
discontinuities at t = x � �=2. Consequently, the Chebyshev series of this function will not
converge uniformly and moreover, oscillations near the discontinuities will appear due to the
Gibbs phenomenon (cf. Appendix B.4.6).

Nonetheless, this problem is circumvented using the approach presented in Appendix B.4.6,
hence computing the coe�cients of the Chebyshev sums of the discontinuous function and down-
scaling them using a� -factor. This approach to compute the histogram is summed up in Algo-
rithm 2.9, that returns a table whose �rst column are the midpoints of a histogram and second
column contains an approximations of the counts in each bin centered at these midpoints.
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Algorithm 2.9: Histogram approximation by Chebyshev �ltering.
Parameters: Approximation order m 2 N of the counting function. Number of

realizations M used for the stochastic estimators. Probability
distribution D of a (real) zero-mean random variable with variance1.
Any additional parameters for Chebyshev �ltering.

Input: Shift operator S 2 M n (R). Interval [a; b] containing the eigenvalues ofS and on
which to compute the histogram. Bin size� .

Output: An approximation of the histogram of eigenvalues ofS.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization: H 2 M d(b� a)=� e;2(R); x0 = 0 ; y = 0 ;
for k from 0 to (d(b� a)=� e � 1) do

x0  a + ( k + 1=2) � ;
Compute the coe�cients c0; : : : ; cm of the Chebyshev sum (or interpolant) of order
m of the function t 7! 1[x 0 � �= 2;x 0 + �= 2[(�

� 1
a;b (t)) using Algorithm B.1 or B.2. Note:

� � 1
a;b is the linear map de�ned in Equation (2.5). ;

y  0 ;
for j from 1 to M do

Generatew 2 Rn with independent entries drawn from D ;
Using Algorithm 2.6, compute the product

u =
mX

k=0

�
�

j
m

�
cj Tj (� a;b (S))w ;

where � is one of the� -factors of Equations (B.22) to (B.25) and � a;b is the
linear map de�ned in Equation (2.4).;

y  
�
(j � 1)y + w T u

�
=j ;

H k1 = x0; H k2 = y;
Return H .

The computational cost associated with Algorithm 2.9 is essentially the same as computing
d(b� a)=� e traces using Algorithm 2.8.

2.3.3 Log-determinant of a graph �lter

We assume in this subsection thath : R ! R�
+ is a continuous function taking strictly positive

values. We are interested in estimating the log-determinant of the graph �lter h(S). By de�nition
of graph �lters, it is straightforward to show that this quantity equals:

log deth(S) = log

 
nY

k=1

h(� k )

!

=
nX

k=1

log (h(� k )) : (2.12)

Following then Proposition 2.3.2, the log-determinant of the graph �lter h(S) can therefore be
expressed as:

log deth(S) = E
�
W T logh(S)W

�
= Trace(log h(S)) ; (2.13)

where w is any white signal.
Two methods therefore arise for computinglog deth(S). The �rst one consists in using

Equation (2.13) to notice that the log-determinant is equal to the trace of a graph �lter with
transfer function t 7! log(h(t)) . Hence, Algorithm 2.8 can be directly used onS and this transfer
function to yield an approximation of the log-determinant.

The second method starts from Equation (2.12) and consists in directly approximating the
sum over the eigenvalues ofS using their histogram. Indeed, let [a; b] be an interval containing
the eigenvalues ofS and let � > 0 be the bin size of a histogram of these eigenvalues. Let
n� denote the counting function that yields the number of eigenvalues falling into a bin of
size � centered at any point of [a; b], as de�ned in Equation (2.10). Then log deth(S) can be
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approximated by:

log deth(S) =
nX

k=1

log (h(� k )) �
d(b� a)=� e� 1X

j =0

n� (aj ) log (h(aj )) ; (2.14)

where aj = a +
�
j + 1

2

�
�; j 2 [[0; d(b� a)=� e � 1]] are the midpoints of the histogram. Basically,

the sum over all the eigenvalues is replaced by a sum over a discretization of the interval[a; b]
containing these eigenvalues, and weighted by the number of eigenvalues around each discretiza-
tion point. One can directly see that the smoother the variations of the function logh over [a; b]
are, the better this approximation is. In particular, the approximation is exact whenever h is
constant, i.e. has no variations.

Hence, an approximation oflog deth(S) can be obtained in two steps. First, use Algorithm
2.9 to compute a histogram of the eigenvalues ofS, more precisely an approximation of the
weights n� (aj ) in Equation (2.14). Then use these counts to compute the approximation of the
log-determinant as de�ned by Equation (2.14).

The computational cost associated with this approach is essentially that of the computation
of the histogram of eigenvalues. This cost is greater than the cost of computing a single trace,
as proposed in the �rst approach. However, once the histogram is computed, determinants for
any graph �lter de�ned through the same shift operator can be computed at virtually no cost:
we only need to reevaluate Equation (2.14) for the new transfer function. In the meantime,
with the �rst approach, changing the transfer function implies to recompute from scratch the
log-determinant. Both methods therefore have their advantages and the choice between them
should be made in regard with the context of use of these determinants.

2.3.4 Solving a linear system involving a graph �lter

Once again let S 2 M n (R) be a real symmetric shift operator with eigenvalues� 1; : : : ; � n and
let h : R ! R�

+ be a continuous function taking strictly positive values. We are now interested
in �nding an approximate solution of the linear system:

h(S)x = b ; (2.15)

where b 2 Rn .
h(S) is positive de�nite given that its transfer function takes only strictly positive values. It

is therefore invertible, with inverse being de�ned as the graph �lter also de�ned through S but
with transfer function 1=h. Hence the solutionx 2 Rn of Equation (2.15) is given by:

x =
1
h

(S)b :

An approximation of this vector can then be computed using Chebyshev �ltering with shift
operator S and transfer function 1=h.

Conclusion

In this chapter, we introduced the Chebyshev �ltering algorithm, designed to perform �ltering
operations on graph signals using a polynomial approximation of the transfer function of the
�lter. In particular, it generates approximations of the �ltered signals with a complexity that
grows linearly with the order of polynomial approximation and the size of the vectors. Increasing
the degree of the polynomial will improve the approximation as long as the following assumption
is met.

Assumption 2.1. Whenever a graph �lter is considered, the associated transfer function is
assumed to be regular enough for its Chebyshev series to converge over an interval[a; b] containing
all the eigenvalues of the shift operator.

In practice, we will assume the transfer function to be Dini-Lipschitz continuous or continuous
of bounded variation (cf. Theorem B.4.4).

The Chebyshev �ltering algorithm was then applied to compute characteristics of a graph
�lter, including its trace and log-determinant, while relying solely on products between the shift
operator de�ning the graph �lter and white signals.
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Résumé
Dans ce chapitre, nous présentons des algorithmes (exacts ou approchés) destinés à générer

des simulations non-conditionnelles de signaux sur graphe stochastiques de propriétés de covari-
ance connues. En particulier, nous présentons un algorithme approché de simulation basé sur le
�ltrage de Tchebychev, ainsi que les erreurs d'approximation numériques et statistiques qui en
découlent. Nous comparons également cet algorithme aux approches par sous-espaces de Krylov.

Introduction

In the �rst two chapters, the focus was put on presenting a framework to study stochastic graph
signals (SGS). In the next three chapters, we use this framework to perform classical tasks
associated with the study of stochastic processes, namely the simulation of a SGS, its estimation
from an incomplete observation and �nally the inference of the parameters de�ning its probability
distribution. In particular, we restrict ourselves to the study of stationary Gaussian SGSs, as
they will play a key role in the application of the graph signal processing framework to the
modeling of non-stationary Gaussian �elds, which will be laid out in the second part of this
dissertation.

Assumption 3.1. Only S-stationary Gaussian graph signals are considered, withS being a
shift operator de�ned according to Assumption 1.2.

In this chapter, algorithms to compute unconditional simulations of a SGS with known spec-
tral density are derived. By unconditional simulation, we mean that we only aim at generating
a zero-mean SGS whose covariance matrix is a graph �lter with a speci�ed positive transfer
function. Hence, the SGS is drawn from its full distribution.

Two types of algorithms are presented in this chapter, much like what was done for graph
�ltering. On one hand, direct and exact simulation algorithms, which generate simulations with
the desired statistical properties using matrix factorizations, are introduced. Then, an approxi-
mate simulation algorithm based on Chebyshev �ltering is presented. Our main contributions for
this part are the derivation of numerical and statistical approximation errors for the approximate
simulation algorithm (cf. Section 3.2) and its comparison with Krylov subspaces approaches (cf.
Section 3.3).

3.1 Simulation algorithms for Gaussian graph signals

Let S be a real symmetric shift operator, as de�ned in Assumption 1.2. Algorithms to compute
simulations of a S-stationary Gaussian SGS and the statistical properties of these algorithm
are derived in this section. By Gaussian SGS we understand a SGS whose components follow
a multivariate Gaussian distribution. In particular, its distribution and therefore statistical
properties are entirely de�ned by its �rst two moments:

� its expectation vector, which is assumed to be0.

� its covariance matrix, which in regard to the S-stationarity assumption, is a graph �lter
de�ned by a strictly positive function called spectral density.

Let � 1; : : : ; � n denote the eigenvalues ofS and let V be any (real or complex) orthonormal
eigenbasis ofS. Let assume that we aim at generating realizations of a Gaussian SGSx with
spectral density f : R ! R�

+ . Our goal therefore really is the simulation of a zero-mean vector
with (known) covariance matrix � = f (S). We �rst investigate some direct simulation algorithm
designed for this purpose.

3.1.1 Direct simulation of stationary graph signals

A direct method to generate samples of a Gaussian vector with known covariance matrix�
consists in forming vectorsx of the form (Tong, 2012)

x = Bw ;
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where w is a realization of a Gaussian white signal (i.e. a zero-mean Gaussian vector whose
covariance matrix is the identity matrix) and B is a matrix such that

BB H = � :

A natural candidate for such a matrix B is the Cholesky decomposition of� (Gentle, 2009).
Indeed, numerous linear algebra routines allow for the computation of this matrix factorization.
Algorithm 3.1 exposes this �rst approach to the simulation of a stationary SGS.

Algorithm 3.1: Simulation of stationary SGS by Cholesky factorization.
Input: Shift operator S 2 M n (R). Spectral density f : R 7! R+ .
Output: A S-stationary SGS with spectral density f .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization: x = 0;
Build the covariance matrix � = f (S) ;
Compute the Cholesky factor L of � ;
Generate a vectorw 2 Rn whose entries are independent standard Gaussian variables ;
x  Lw ;
Return x .

Two performance issues arise when using Algorithm 3.1. First, the covariance matrix must
be entirely built from the shift operator and the spectral density and stored in memory before
any Cholesky factorization algorithm may be applied to it. But building � using the de�nition
of graph �lters involves to diagonalize the shift operator: this is a very expensive operation,
computationally and memory-wise (cf. Section 2.1). Moreover the full covariance matrix, which
is generally dense, must be stored in memory, which represents an important storage cost for
large values ofn.

Similarly to Chebyshev �ltering (cf. Section 2.2), a cheaper alternative to diagonalization
would consist in replacingf (S) by a polynomial approximation, for instance by Sm [f ](S) where
Sm [f ] denotes the Chebyshev series of orderm of f . However, building the matrix Sm [f ](S)
from its polynomial expression would involvem matrix-matrix products involving S. The com-
putational cost of a single product is of orderO(n2d): n2 elements must be computed and each
element requires the scalar product of a row ofS which has in averaged non-zero elements, with
the column of another matrix. Hence the overall cost of buildingSm [f ](S) is of order O(mn2d).
This cost scales quadratically with the size of the vectorsn in the best case scenario (i.e. when
S is sparse with d � n) and grows linearly with the approximation order. As for the memory
requirements to store the result, the larger the orderm is, the less sparseSm [f ](S) is and the
more memory will be required. This can limit the order of approximation we can work with
regardless of the subsequent approximation errors.

Then, once� is computed, its Cholesky factorization must be computed. The computational
cost of this operation is of orderO(n3) whenever� is dense (Golub and Van Loan, 1996a). This
cost can be greatly reduced if� is sparse: the new cost then depends on the size of the vectors
n, the number of non zero entries of� and �nally, its sparsity pattern which explains why a
reordering of the rows and column of the matrix aiming at obtaining optimal patterns is applied
beforehand. Determining the best reordering is in itself a computationally hard problem, and
often the user must rely on heuristics and hope for the best (Luce and Ng, 2014).

Finally, even in the cases where the Cholesky factorization can be e�ciently applied, i.e.
whenever � is sparse and can easily be optimally reordered, the Cholesky factor must still be
stored in memory, which represents an additional memory cost.

Faced with the important computational and storage costs associated with the direct ap-
proach presented in this subsection, we now leverage the fact that the covariance is actually a
graph �lter to derive a new simulation algorithm based on graph �ltering.

3.1.2 Simulation of stationary graph signals by �ltering

A second approach to generate simulations of a stationary SGS with a given spectral density
relies on the statistical properties of stationary SGSs. Indeed, in Theorem 1.4.3, we showed
that a S-stationary SGS with spectral density f is the output of �ltering white signals with the
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graph �lter
p

f (S). Clearly, by de�nition of Gaussian vectors (cf. Appendix A.4.2), if the white
signal is Gaussian, so is its �ltered output given that it is a linear transformation of the white
signal. Hence, the problem of generating a sample of a stationary SGS is simply reduced to that
of graph �ltering. Using one of the exact �ltering algorithms presented in Section 2.1 to �lter
a vector with independent standard Gaussian entries therefore yields the desired simulation of
SGS. This approach is synthesized in Algorithm 3.2.

Algorithm 3.2: Simulation of a stationary SGS by exact graph �ltering.
Input: Shift operator S 2 M n (R). Spectral density f : R 7! R+ .
Output: A S-stationary SGS with spectral density f .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization: x = 0;
Generate a vectorw 2 Rn whose entries are independent standard Gaussian variables. ;
Compute x =

p
f (S)w using Algorithm 2.1 or 2.5. ;

Return x .

The computational cost of Algorithm 3.2 is essentially due to the exact �ltering step, which
makes it intractable in practice. Indeed, costs similar or higher to the Cholesky approach are to
be expected (cf. Section 2.1). Following then the results of Section 2.2, a workaround is provided
by Chebyshev �ltering, through which the exact computation of the �ltered signal

x =
p

f (S)w ; (3.1)

is replaced by that of the signal

x (m ) = Sm [
p

f ](S)w ; (3.2)

wherew is a realization of a (Gaussian) white signal andSm [
p

f ] is the polynomial corresponding
to the Chebyshev series of orderm of the function

p
f , over an interval containing the eigenvalues

of S. This approach, which we callChebyshev simulation, is outlined in Algorithm 3.3.

Algorithm 3.3: Chebyshev simulation of a stationary SGS.
Input: Shift operator S 2 M n (R). Spectral density f : R 7! R+ .
Output: A S-stationary SGS with spectral density f .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization: x = 0;
Generate a vectorw 2 Rn whose entries are independent standard Gaussian variables ;
Compute x =

p
f (S)w using Chebyshev �ltering ;

Return x .

Once again, the resulting vectorx (m ) is guaranteed to follow a zero-mean Gaussian distribu-
tion, as it is a linear transform of a zero-mean Gaussian vector. Its covariance matrix is given
by:

Var[x (m ) ] = Sm [
p

f ](S)
�

Sm [
p

f ](S)
� H

= Sm [
p

f ](S)2 ; (3.3)

which ensures thatx (m ) is a S-stationary SGS. However in generalVar[x (m ) ] is di�erent from the
target covariance matrix, f (S). Indeed the former is aS-�lter with transfer function Sm [

p
f ]2

whereas the latter has transfer functionf . The next section investigates the di�erence between
the resulting vectors x and x (m ) .

3.2 Approximation and statistical errors of Chebyshev sim-
ulations

In this section, we investigate the accuracy of the simulations generated by the Chebyshev
algorithm (cf. Algorithm 3.3). Two dimensions of the problem are considered. On one hand,
seeing the Chebyshev simulation algorithm as simply a graph �ltering problem that was answered
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using Chebyshev �ltering, a numerical approximation error is derived, in the same manner as
in Section 2.2. On the other hand, seeing the Chebyshev simulation algorithm as a simulation
algorithm in its own right, the statistical properties of its outputs are considered and compared
to the targeted ones.

3.2.1 Numerical approximation error of Chebyshev simulations

Let X =
p

f (S)W denote aS-stationary SGS with spectral density f , obtained from a Gaussian
white signal W . Chebyshev simulations basically replace samples ofX by samples of the SGS
X (m ) de�ned by (cf. Equation (3.2))

X (m ) = Sm [
p

f ](S)W ;

for some order of approximation m 2 N. The approximation error between both SGS can be
assessed using the same reasoning as in Section 2.2. Indeed, letEm denote this approximation
error, which is de�ned as

Em := kX � X (m ) k2 = k
� p

f (S) � S m [
p

f ](S)
�

W k2 :

where k � k2 denotes the Euclidean norm. In particular, Em is a (positive) random variable. Its
square can be expressed using the eigenvalues� 1; : : : ; � n of S as

E 2
m = k

� p
f � S m [

p
f ]

�
(S)W k2

2 =
nX

k=1

� p
f (� k ) � S m [

p
f ](� k )

� 2
fW 2

k ; (3.4)

where fW = V T W is the graph Fourier transform of W with respect to some real orthonormal
eigenbasis ofS. In particular, note that fW is also a white signal.

Following Equation (3.4), the expectation and variance ofE 2
m are given by:

8
>>>><

>>>>:

E[E 2
m ] =

nX

k=1

� p
f (� k ) � S m [

p
f ](� k )

� 2

Var[E 2
m ] = 2

nX

k=1

� p
f (� k ) � S m [

p
f ](� k )

� 4
: (3.5)

Hence asm ! 1 , both the expectation and the variance ofE 2
m go to zero, meaning that asymp-

totically the approximation error Em becomes zero. In particular, denote"m the approximation
error of Sm [

p
f ] over the interval [a; b] over which it is computed, i.e.

"m := max
� 2 [a;b]

j
p

f (� ) � S m [
p

f ](� )j :

Then, following Equation (3.5), we have E[E 2
m ] = O(n" 2

m ) and Var[E 2
m ] = O(n" 4

m ). Besides,
recall that Chebyshev's inequality (Stewart, 2009, Section 8.2) ensures that, for any con�dence
level � > 0:

8� > 0; P

"

jE 2
m � E[E 2

m ]j �

r
Var[E 2

m ]
�

#

� 1 � �; � > 0 : (3.6)

Hence, imposing a small enough approximation error"m on the Chebyshev su�ces to ensure
that with high probability, the approximation error Em of the Chebyshev simulation can be
made as small as we want.

A more practical concentration inequality can be derived by introducing the random variable
bEm associated toEm by

E 2
m =

nX

k=1

� p
f (� k ) � S m [

p
f ](� k )

� 2
fW 2

k =) bE 2
m := "2

m

nX

k=1

fW 2
k :

Then in particular, E 2
m � bE 2

m and so, for any � > 0,

P[Em � � ] = P
�
E 2

m � � 2�
� P

h
bE 2

m � � 2
i

= P

"
nX

k=1

fW 2
k �

� 2

"2
m

#

:



70 3. Simulation of stochastic graph signals

Given that fW1; : : : ; fWn are standard Gaussian variables,
P n

k=1
fW 2

k follows a chi-squared distri-
bution with n degrees of freedom, denoted� 2(n). Then,

P[Em � � ] � P
�
� 2(n) �

� 2

"2
m

�
= F� 2 (n )

�
� 2

"2
m

�
;

where F� 2 (n ) is the cumulative distribution function of � 2(n). Therefore, if a con�dence level
� > 0 is �xed, the approximation error satis�es

P
h
Em � "m

q
F � 1

� 2 (n ) (1 � � )
i

� 1 � �; � > 0 : (3.7)

This last expression can be made slightly more explicit by recalling that, according to the central
limit theorem, the distribution � 2(n) actually converges to a normal distribution with mean n
and variance 2n as n grows (Box et al., 2005). In practice, for n > 50, the di�erence between
both distributions can even be neglected (Box et al., 2005). Assuming we fall in this case, the
concentration inequality becomes

P

2

4Em � "m
p

n

s

1 +

r
2
n

F � 1
N (1 � � )

3

5 � 1 � �; � > 0 ; (3.8)

where FN denotes the cumulative distribution function of the standard Gaussian distribution.
Hence, with probability 1� � , the approximation error Em of a Chebyshev simulation is of order
O(� m

p
n), and is therefore entirely driven by the approximation error "m of the Chebyshev sum.

Equations (3.7) and (3.8) provide conditions on the approximation error of the Chebyshev
sum, and therefore on the order of approximationm that should be chosen, so that with high
probability the approximation error of a Chebyshev simulation is as close to0 as one may want.

Following this approach leads to regarding the Chebyshev simulation algorithm purely as
an algorithm used to approximate numerically a target SGSx , which is known to have the
right statistical properties (namely, Gaussian with covariance matrix f (S)). However, if the
algorithm were to yield a simulated SGSx (m ) with bad approximation error, but whose statistical
properties are so close to those ofx that they both �seem" drawn from the same distribution,
then x (m ) would still constitute a great output for our simulation purpose. This approach is
investigated in the next section.

3.2.2 Statistical error of Chebyshev simulations

The goal of a simulation algorithm is to generate random vectors with some prede�ned statistical
properties. In our case it comes down to generate zero-mean Gaussian vectors with covariance
matrix f (S). Once again,x (m ) denotes an output of the Chebyshev simulation algorithm, as
de�ned by Equation (3.2). In this section, the statistical properties of x (m ) are exploited in
order to derive a criterion on the approximation error of the Chebyshev sum that ensures that
x (m ) can �pass� for a zero-mean Gaussian vector with covariance matrixf (S).

Notice �rst that x (m ) is by de�nition a zero-mean Gaussian vector. The only statistical dif-
ference with x resides in the fact that the covariance matrix of x (m ) is Var[x (m ) ] = Sm [

p
f ]2(S)

(instead of f (S)). Hence, the question that should be answered really is: what criterion can be
�xed so that Gaussian vectors with covariance matrix Sm [

p
f ]2(S) become statistically indis-

cernible from their counterparts with covariance matrix f (S)? An approach based on statistical
tests on linear combinations obtained from both types of vectors is now outlined to answer this
interrogation.

Consider a sample ofNs independent zero-mean Gaussian vectors
�

x (m )
1 ; : : : ; x (m )

N s

�
with

covariance matrix Sm [
p

f ]2(S). Each one of these vectors can be seen as an independent output
of the Chebyshev simulation algorithm. Let's consider the following null hypothesis test:

H0 :
�

x (m )
1 ; : : : ; x (m )

N s

�
is a sample ofNs independent vectors with covariance matrix f (S) .

Recall that by de�nition (cf. Appendix A.4.2), a random vector z 2 Rn is a Gaussian vector
with covariance matrix � if and only if, for any deterministic (and arbitrary) set of coe�cients
c 2 Rn , cT z is a Gaussian variable with variancecT � c. Therefore, hypothesisH0 won't be
rejected if 8c 2 Rn , the hypothesis H c

0 de�ned by:
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H c
0 :

�
cT x (m )

1 ; : : : ; cT x (m )
N s

�
is a sample of zero-mean Gaussian variables with variance

cT f (S)c,

is not rejected.
The (two-sided) chi-square test for the variance (Snedecor and Cochran, 1989) is considered

to test the null hypothesis H c
0 for somec 2 Rn . Indeed, based on a sample from a population

of normally distributed data, this test is used to check whether the population variance is equal
to an hypothesized value. In our case, this hypothesized value iscT f (S)c and the sample is�

cT x (m )
1 ; : : : ; cT x (m )

N s

�
.

For a given c 2 Rn , the statistic t(c) of the chi-square test for the variance is

t(c) = ( Ns � 1)
S2(c)

cT f (S)c
;

where S2(c) is the (unbiased) sample variance de�ned as

S2(c) =
1

Ns � 1

N sX

k=1

�
cT x (m )

k � m(c)
� 2

; m(c) =
1

Ns

N sX

j =1

cT x (m )
j :

If the null hypothesis were to be true, i.e. if the population variance were to becT f (S)c then
the statistic t(c) would follow a chi-squared distribution with Ns � 1 degrees of freedom (denoted
� 2(Ns � 1)). Hence, to test whether or not to reject the null hypothesis, the actual value oft(c)
computed from the sample is compared to �typical� values a � 2(Ns � 1) variable should take.

Formally, we say that H c
0 is not rejected with signi�cance level � > 0 if t(c) satis�es

� 2
�
2 ;N s � 1 � t(c) � � 2

1� �
2 ;N s � 1 ; (3.9)

where � 2
p;N s � 1 is the p-th quantile of the � 2(Ns � 1) distribution. Recall in particular that

F� 2 (N s � 1) (� 2
p;N s � 1) = p. If Equation (3.9) is not satis�ed, we say that H c

0 is rejected (with
signi�cance level � ).

Note that a draw from a � 2(Ns � 1) variable would have a probability 1 � � to fall in the
interval [� 2

�
2 ;N s � 1; � 2

1� �
2 ;N s � 1] that appears in Equation (3.9). This means that whenever the

null hypothesis is rejected with signi�cance � , the probability that it was true after all, and
therefore that t(c) is a � 2(Ns � 1) variable, is less than� . � is also referred to as the type-I
error, i.e. the probability of wrongfully rejecting the null hypothesis.

Recall now that the sample
�

cT x (m )
1 ; : : : ; cT x (m )

N s

�
is generated from Chebyshev simula-

tions. Hence, the true population variance of the sample is known and is actually equal to
cT Sm [

p
f ]2(S)c. The testing procedure therefore really aims at determining whether a sample

from a population of Gaussian variables with variancecT Sm [
p

f ]2(S)c can be mistaken for a
sample from a population of Gaussian variables with variancecT f (S)c, in the sense that H c

0
will not be rejected.

In particular, the probability R� (c) that H c
0 is rejected with signi�cance � can be derived as

R� (c) = 1 � P
h
� 2

�
2 ;N � 1 � t(c) � � 2

1� �
2 ;N � 1

i
:

Note that, as described in the previous paragraph, in the case where the true population variance
is equal to the hypothesized one, this probability is equal to� . In the general case, the following
result links R� (c) to the accuracy of the polynomial approximation of f by Sm [

p
f ]2 using a

criterion that is actually independent of c.

Proposition 3.2.1. Let [a; b] be an interval containing all the eigenvalues ofS. Let b"m denote
the relative approximation error of the Chebyshev sum, de�ned by

b"m := max
� 2 [a;b]

�
�
�
�
f (� ) � S m [

p
f ](� )2

Sm [
p

f ](� )2

�
�
�
� : (3.10)

Let R� (c) denote the probability of rejecting, with signi�cance � > 0 in a chi-square test for the
variance, the null hypothesisH c

0 (de�ned for Ns samples).
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Then 8 > 0, there exists a threshold� � (Ns;  ) > 0 such that:

b"m � � � (Ns;  ) ) 8 c 2 Rn ; R� (c) � (1 +  )� : (3.11)

Proof. Let c 2 RN
s . Denote � 2(c) = cT Sm [

p
f ]2(S)c and � 2

0(c) = cT f (S)c. Then, R� (c) can
be written

R� (c) = 1 � P
�

� 2
0(c)

� 2(c)
� 2

�
2 ;N s � 1 � t0(c) �

� 2
0(c)

� 2(c)
� 2

1� �
2 ;N s � 1

�
;

where t0(c) is the statistic de�ned by

t0(c) =
� 2

0(c)
� 2(c)

t(c) = ( Ns � 1)
S2(c)
� 2(c)

:

By de�nition, the sample
�

cT x (m )
1 ; : : : ; cT x (m )

N s

�
is Gaussian with variance� 2(c). Hence,t0(c)

follows a � 2(Ns � 1) distribution. So, if � (c) denotes the ratio

� (c) =
� 2

0(c)
� 2(c)

:

Then,

R� (c) = 1 �
�

F� 2 (N s � 1)

�
� 2

1� �
2 ;N s � 1� (c)

�
� F� 2 (N s � 1)

�
� 2

�
2 ;N s � 1� (c)

��
:

The probability R� (c) only depends on the ratio � (c) (and the parameters of the test,
namely Ns and � ). Considering it as a function of the ratio � 2 [0; + 1 [, several properties
of R� can be derived. First, given that 8� 2 R+ , R� (� ) is a probability, 0 � R� (� ) � 1.
Besides, from the fact that that F� 2 (N s � 1) is a continuous cumulative distribution function,
we get that R� is also continuous (and even di�erentiable) and that:

lim
� ! 0

R� (� ) = 1 = lim
� ! + 1

R� (� ) : (3.12)

Finally, from the study of the sign of its derivative (which can easily be expressed using the
distribution function of � 2(Ns � 1)), we get that R� admits a unique global minimum on R+

for the following value � min of � :

� min =
Ns � 1

� 2
1� �

2 ;N s � 1 � � 2
�
2 ;N s � 1

log

 
� 2

1� �
2 ;N s � 1

� 2
�
2 ;N s � 1

!

:

In particular, R� is strictly decreasing on[0; � min [ and strictly increasing on ]� min ; + 1 [.
Consequently the intermediate value theorem ensures thatR� de�nes a bijection between

]0; � min ] and [R� (� min ); 1[, but also between[� min ; + 1 [ and [R� (� min ); 1[.
Consider now > 0 such that (1 +  )� < 1. Notably, we have

1 > (1 +  )� > � (= R� (1)) � R� (� min ) :

Hence, the equationR� (� ) = (1 +  )� admits exactly two solutions � (1)
 2]0; � min [ and � (2)

 2
]� min ; + 1 [. Moreover, considering the variations ofR� , we have 8� 2 [� (1)

 ; � (2)
 ], R� (� ) �

(1 +  )� and also1 2]� (1)
 ; � (2)

 [. Introduce then the threshold

� � (Ns;  ) = min f 1 � � (1)
 ; � (2)

 � 1g :

Given that by de�nition of � � (Ns;  ), [1 � � � (Ns;  ); 1 + � � (Ns;  )] � [� (1)
 ; � (2)

 ], we have

8� > 0 such that j� � 1j � � � (Ns;  ); R� (� ) � (1 +  )� : (3.13)

Notice now that for a any c 2 Rn , the quantity j� (c) � 1j can be expressed as

j� (c) � 1j =

�
�
�
�
� 2

0(c) � � 2(c)
� 2(c)

�
�
�
� =

�
�
�
�
cT (f (S) � S m [

p
f ]2(S))c

cT Sm [
p

f ]2(S)c

�
�
�
� =

�
�
�
�
cT (f (S) � S m [

p
f ]2(S))c

kSm [
p

f ](S)ck2
2

�
�
�
� :
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Introducing the vector bc = Sm [
p

f ](S)c and using the de�nition of graph �lters, we get

j� (c) � 1j =

�
�
�
�
�

�
bc

kbck2

� T �
Sm [

p
f ](S)

� � 1 �
f (S) � S m [

p
f ]2(S)

� �
Sm [

p
f ](S)

� � 1
�

bc
kbck2

� �
�
�
�
�

=

�
�
�
�
�

�
bc

kbck2

� T ��
f � S m [

p
f ]2

Sm [
p

f ]2

�
(S)

� �
bc

kbck2

� �
�
�
�
�

:

Hence j� (c) � 1j can be expressed as the modulus of the Rayleigh quotient of a matrix
with respect to a vector depending onc. It can therefore be upper-bounded, for anyc 2 Rn ,
by the eigenvalue of this matrix that has the largest magnitude. In our case, this gives

8c 2 Rn ; j� (c) � 1j � max
k2 [[1;n ]]

�
�
�
�
f (� k ) � S m [

p
f ](� k )2

Sm [
p

f ](� k )2

�
�
�
� ;

where � 1; : : : ; � n denote the eigenvalues ofS. Hence by imposing for an interval [a; b] con-
taining all the eigenvalues ofS, the condition b"m � � � (Ns;  ) we will get in particular that

maxk2 [[1;n ]]

�
�
�
�

f ( � k ) �S m [
p

f ]( � k )2

Sm [
p

f ]( � k )2

�
�
�
� � � � (Ns;  ) and therefore that for any c 2 Rn , j� (c) � 1j �

� � (Ns;  ) which concludes the proof according to Equation (3.13).

Therefore, if Equation (3.11) is satis�ed, then, for any c, hypothesis H c
0 is actually rejected

(with signi�cance � ) with a probability less than (1 +  )� . This probability would have been
equal to � if the samples were generated using the right covariance matrix. Therefore, the
parameter  represents relative increase of the rejection probability due to the fact that the
samples are generated using an approximation of the target distribution.

As detailed in the proof, the bound � � (Ns;  ) solely depends on the speci�cation of the
characteristics of the statistical test: the sample sizeNs, the signi�cance level � and the tolerated
increase of probability of rejection  . Namely, it is given by:

� � (Ns;  ) = min f 1 � � (1)
 ; � (2)

 � 1g ;

where � (1)
 and � (2)

 are the two solutions of the equation:

1 �
�

F� 2 (N s � 1)

�
� 2

1� �
2 ;N s � 1�

�
� F� 2 (N s � 1)

�
� 2

�
2 ;N s � 1�

��
= (1 +  )� : (3.14)

Hence, onceNs, � and  are �xed, � � (Ns;  ) can be numerically computed by solving Equa-
tion (3.14) using any root �nding algorithm such as the bisection method or even better Newton's
method given that the derivative of the function can be analytically computed (Press et al., 2007).
Besides, the fact that the disjoint intervals on which each one of the solutions lies are known
can be used to ease the root �nding process. Tables 3.1 and 3.2 give values of the tolerance
� � (Ns;  ) produced this way, for various sample sizesNs and thresholds  . The signi�cance is
�xed at � = 0 :05 for Table 3.1 and � = 0 :01 for Table 3.2.

Finally, note that given that Sm [
p

f ] is de�ned as the truncation of a Chebyshev series
at an order m, this order can be determined by specifying the parameters of the statistical
test the user would want its simulations to pass, along with a tolerated error in variance. These
parameters would in turn yield a value of � � (Ns;  ) and therefore set a bound for the polynomial
approximation error b"m . The order of truncation m is then chosen so thatb"m � � � (Ns;  ). This
approach will be used in Section 9.1, when dealing with explicit examples of functionsf .

This section therefore provided an actual criterion that can be used to set the order of
approximation in the �ltering step of the Chebyshev simulation algorithm (cf. Algorithm 3.3),
so that the resulting simulations have �good enough� statistical properties. In the next section,
we link the Chebyshev simulation algorithm to Krylov subspace approaches, thus providing a
new insight on this algorithm.
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Sample sizeNs

50 100 500 1000 5000 10000

0.1% 6.40e-04 6.20e-04 5.40e-04 4.80e-04 3.00e-04 2.40e-04

1% 5.44e-03 4.80e-03 3.04e-03 2.36e-03 1.20e-03 8.60e-04

5% 1.89e-02 1.51e-02 8.06e-03 5.94e-03 2.82e-03 2.02e-03

10% 3.00e-02 2.33e-02 1.18e-02 8.64e-03 4.02e-03 2.88e-03

20% 4.59e-02 3.48e-02 1.71e-02 1.24e-02 5.74e-03 4.08e-03

50% 7.66e-02 5.71e-02 2.75e-02 1.98e-02 9.08e-03 6.46e-03

100% 1.10e-01 8.12e-02 3.89e-02 2.80e-02 1.28e-02 9.10e-03

Table 3.1: Values of the precision threshold� � (Ns;  ) for di�erent values of sample sizeNs and
of degradation of the type I error  . The signi�cance of the test is � = 0 :05.


Sample sizeNs

50 100 500 1000 5000 10000

0.1% 4.00e-04 4.00e-04 3.60e-04 3.20e-04 2.20e-04 1.80e-04

1% 3.56e-03 3.24e-03 2.20e-03 1.74e-03 9.20e-04 6.60e-04

5% 1.33e-02 1.09e-02 6.06e-03 4.52e-03 2.18e-03 1.56e-03

10% 2.16e-02 1.71e-02 9.00e-03 6.62e-03 3.12e-03 2.24e-03

20% 3.36e-02 2.59e-02 1.31e-02 9.54e-03 4.44e-03 3.18e-03

50% 5.67e-02 4.28e-02 2.10e-02 1.52e-02 7.00e-03 5.00e-03

100% 8.11e-02 6.07e-02 2.94e-02 2.12e-02 9.76e-03 6.96e-03

Table 3.2: Values of the precision threshold� � (Ns;  ) for di�erent values of sample sizeNs and
of degradation of the type I error  . The signi�cance of the test is � = 0 :01

3.3 Relation to Krylov subspace methods

3.3.1 Background: Krylov subspace approach

Krylov subspaces provide a framework for the study of some of the most used iterative algorithms
used to solve eigenvalue problems and linear systems involving a matrixA 2 M n (R) (Del Corso
et al., 2015). The idea behind such algorithms is to iteratively generate a sequence of approximate
solutions of the problem while relying at each iteration on recurrence relations based on matrix-
vector products involving A . The approximate solution obtained at the m-th iteration step
lies in the subspaceKm (A ; z) de�ned for some problem-dependentz 2 Rn and called Krylov
subspace of dimensionm generated byA and z:

Km (A ; z) = spanf z; Az ; : : : ; A m � 1zg = f � (A )z : � polynomial of degree < m g :

In particular, Km (A ; z) is a vector space of dimension at mostn, the size of the matrix A .
An orthonormal basis of Km (A ; z) can be constructed using the Lanczos algorithm (Del Corso
et al., 2015; Golub and Van Loan, 1996b), which implements a Gram�Schmidt orthogonalization
technique, as outlined in Algorithm 3.4.

In Algorithm 3.4 note that if 9j < m such that � j +1 = 0 , the algorithm stops meaning that
Km (A ; z) has dimensionj with [v1j : : : jv j ] as an orthonormal basis. Besides, the orthogonality
of the vectors f v j g gives:

V T
m Vm = I m and V T

m vm +1 = 0 :

Finally, using the intermediate coe�cients computed during the Lanczos algorithm, the resulting
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Algorithm 3.4: Lanczos algorithm.
Input: A symmetric matrix A 2 M n (R), a vector z 2 Rn with kzk2 = 1 , m � n.
Output: An orthonormal basis of Km (A ; z).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initialization: v0 = 0, v1 = z, � 1 = 0 ;
for j from 1 to m do

h  Av j � � j v j � 1 ;
 j = hT v j ;
k  h �  j v j ;
� j +1 = kkk2;
v j +1 = k=� j +1 ;

Return Vm = [ v1j : : : jvm ] 2 M n;m (R).

basisVm satis�es the following relation

AV m = Vm Tm + � m +1 vm +1 eT
m ;

where Tm is the tridiagonal matrix de�ned by

Tm =

0

B
B
B
B
B
B
@

 1 � 2

� 2  2
. . .

. . .
. . . � m

� m  m

1

C
C
C
C
C
C
A

:

In particular, using the orthogonality of Vm , this relation becomes

V T
m AV m = Tm :

This last relation can be used to show that eigenvalues ofA are well-approximated by those of
Tm as m grows, starting from the extremal ones (Golub and Van Loan, 1996b).

Krylov subspaces arise naturally when studying iterative algorithms designed to solve linear
systems of the form:

Ax = b ; (3.15)

where A 2 M n (R) is assumed to be invertible andb 2 Rn . The following proposition details
this relation.

Proposition 3.3.1. Let A 2 M n (R) be an invertible matrix. Then there exists a polynomial�
of degree at mostn such that:

A � 1 = � (A ) :

Proof. Let PA be the characteristic polynomial of A , i.e. the polynomial de�ned by the
relation:

PA (X ) = jX I n � A j :

In particular, PA is a polynomial of degreen, whosen-th order coe�cient is 1 and 0-th order
coe�cient is PA (0) = j � A j = ( � 1)n jA j 6= 0 . Hence, there existsc1; : : : ; cn � 1 2 R such that
PA (X ) = X n + cn � 1X n � 1 + � � � + c1X + ( � 1)n jA j. The Cayley-Hamilton theorem states that
PA (A ) = 0 (Friedberg et al., 2003, Theorem 5.23). Hence,

(� 1)n � 1

jA j
(A n � 1 + cn � 1A n � 2 + � � � + c1I n )A = I n :

Denoting � the polynomial of degree n � 1 de�ned by � (X ) = (( � 1)n � 1=jA j)(X n � 1 +
cn � 1X n � 2 + � � � + c1) then gives � (A )A = A � (A ) = I n and therefore � (A ) = A � 1.



76 3. Simulation of stochastic graph signals

Consequently, the solutionx � = A � 1b of Equation (3.15) can also be written asx � = � (A )b
for a polynomial � of degree (at most) n � 1 and therefore x � lies in the Krylov subspace
Kn (A ; b). In particular, if x (0) denotes an initial guess forx � :

x � � x (0) = A � 1(b � Ax (0) ) = � (A )r (0) 2 K n (A ; r (0) ) ;

where r (0) = b � Ax (0) denotes a vector called initial residual. A whole class of iterative
algorithms, called projection methods, build on this observation to produce approximations of
the solution x � starting from an initial guess by computing orthogonal projections on Krylov
subspaces of growing dimension (Saad, 2003). Among them, the generalized minimal residual
(GMRES) algorithm and the conjugate gradient algorithm, designed to solve linear systems
where A is respectively any invertible square matrix or symmetric positive de�nite matrix.

3.3.2 Link to the Chebyshev simulation algorithm

In this section, the relation between the Chebyshev simulation algorithm and Krylov subspaces is
exposed, and a comparison with a more standard Krylov subspace approach to generate samples
from a S-stationary SGS with known spectral density is presented.

Recall that Section 3.1.2 provides a direct way to generate samples of stationary SGS with
spectral density f . Denote x such a vector:

x =
p

f (S)w ; (3.16)

wherew is a realization of a white signal. On the other hand, the Chebyshev simulation algorithm
yields, for an order of approximation m 2 N, a vector x (m ) given by

x (m )
C = Sm [

p
f ](S)w ; (3.17)

whereS[
p

f ] is a polynomial of degreem de�ned as the Chebyshev sum (or interpolant) of order
m of the function x 7!

p
f (x) on an interval [a; b] containing the eigenvalues ofS.

Note consequently that x (m )
C 2 K m +1 (S; w ). Besides, the Chebyshev simulation algorithm

can basically be seen as an iterative algorithm. Indeed, to computex (m )
C for any given m every

x (k )
C for 0 � k < m is successively computed and is simply updated to generatex (k+1)

C . This
justi�es the fact that Chebyshev simulations can be considered as a Krylov subspace approach.

A standard approach using Krylov subspaces to generate samples from a Gaussian vector
with known covariance (or precision) matrix uses the Lanczos algorithm to come up with an
approximation of x (Simpson et al., 2008). Indeed, in exact arithmetic, this algorithm can
provide an orthonormal basis of Km +1 (S; " ) (Golub and Van Loan, 1996b). x can then be
approximated by (Frommer and Simoncini, 2008; Simpson et al., 2008)

x (m )
L = kwk2Vm +1

p
f (Tm +1 )e1 ; (3.18)

wheree1 = (1 0 : : : 0)T 2 Rn , Tm +1 is a tridiagonal (symmetric) matrix of size m +1 and Vm +1

is a matrix containing the m + 1 vectors of the orthonormal basis ofKm +1 (S; w ), both matrices
being products of the Lanczos algorithm.

The cost associated with computingx (m )
L can be decomposed as follows :

� Run the Lanczos algorithm for m iterations: this represents a cost ofO(mdnz n) operations,
where dnz is the mean number of non-zero values in a row ofS (cf. Algorithm 3.4).

� Then, compute Equation (3.18): this involves the full diagonalization of the symmetric
tridiagonal matrix Tm +1 , which is an O((m + 1) 3) operation using for instance LAPACK's
eigensolvers (Demmel et al., 2008). Apply then a matrix-vector product withVm +1 . Hence,
the overall cost of this step isO((m + 1) 3 + nm) operations.

Computing x (m )
L therefore comes at an overall cost ofO(mdnz n + m3) operations. Regarding

the storage needs of this process, the matrixVm +1 and the eigendecomposition ofTm +1 need to
be stored, which requires a storage need ofO(mn + m2).

From Section 2.2, it is clear that the Chebyshev simulation algorithm requires less operations
and storage space to generate an approximation ofx from the same Krylov subspace. But on
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Lanczos Chebyshev

Computational cost O(mdnz n + m3) O(mdnz n)

Storage needs O(mn + m2) O(n)

Approximation error O(� m ) O(� m logm)

Table 3.3: Comparison between the Lanczos algorithm and our Chebyshev algorithm afterm
iterations, for the simulation of a sample from stationary SGS.

the other hand, at the same approximation orderm, the quality of the approximation obtained
using the Lanczos algorithm will be better than the one using the Chebyshev algorithm. Indeed,
in the Lanczos case (still in exact arithmetic) this approximation error satis�es (Musco et al.,
2017)

kx � x (m )
L k2 � 2kwk2� m ; � m = min

� polynomial
of degree � m

max
x 2 [� min ;� max ]

j
p

f (x) � � (x)j ;

where � min (resp. � max ) denotes the smallest (resp. largest) eigenvalue ofS. Thus it yields
in the Lanczos case an error of orderO(� m ). In the Chebyshev case, the approximation error
satis�es

kx � x (m )
C k2

2 = k
� p

f (S) � S m [
p

f ](S)
�

wk2
2 =

w T
� p

f (S) � S m [
p

f ](S)
�

w
kwk2

2
kwk2

2 :

Noting the Rayleigh equation in this last expression, we can upper-bound it by the largest
eigenvalue of the matrix from which it is de�ned. Hence, by taking the square-root,

kx � x (m )
C k2 � k wk2 max

k2 [[1;n ]]
j
p

f (� k ) � S m [
p

f ](� k )j

� k wk2 max
� 2 [� min ;� max ]

j
p

f (� ) � S m [
p

f ](� )j :

This last estimate can be bounded using� m and the Lebesgue constant� m , thus giving for
the Chebyshev approximation an error of orderO(� m � m ) = O(� m logm) (Mason and Hand-
scomb, 2002). The results of the comparison between the Lanczos algorithm and our Chebyshev
algorithm are summed up in Table 3.3.

For small values of m the Lanczos algorithms is more adequate as it provides an approxi-
mation with a lower error. Its main �aw resides in the fact that, contrary to our Chebyshev
algorithm, the storage needs grow linearly with the order of approximation. Hence for large prob-
lems (i.e. whenn is large), a restriction on the order of approximation has to be set according
to the storage space available to the user.

In order to tackle this storage problem, some adjustments can be made to the original Lanczos
algorithm (Aune et al., 2013). For instance, restarting procedures allow to work with a �xed
number of stored basis vectors of the Krylov space. However, these methods result in a loss of
approximation accuracy and push to use complex preconditioning techniques in order to improve
the convergence speed of the algorithm, which in turn increases the overall computational cost
(Simpson et al., 2008). The Chebyshev simulation algorithm doesn't share this storage �aw,
allowing it to make up for its relative lack of precision by the possibility to work with much
higher orders of approximation without the headache of �nding the right variation of Lanczos
algorithm1 to use.

Another attractive feature of the Chebyshev algorithm is the statistical stopping criterion
derived in Section 3.2.2. This criterion was established by using the fact thatx (m )

C could be
written as x (m )

C = � m (S)" where the coe�cients de�ning � m are deterministic (which in our
case means that they are not linked tow) and that therefore x (m )

C is a Gaussian vector with
known covariance.

1Note also that the comparison is carried out under the assumption of exact arithmetic. In �oating points
computations, a loss of orthogonality of Vm +1 is observed as m grows, leading to larger approximation errors
(Musco et al., 2017) and forcing the user to adapt the algorithm using workarounds such as re-orthogonalization
techniques or restart techniques (thus increasing the overall complexity of the algorithm).
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This is no longer the case when considering the Lanczos algorithm given that these same
coe�cients would e�ectively depend on the entries of w as this vector is used to compute the
matrices Vm +1 and Tm +1 used to de�ne x (m )

L . The only available stopping criteria for the
Lanczos algorithm are therefore linked to the actual numerical approximation errorkx � x (m )

L k
and not the statistical properties of the vector we wish to simulate. Moreover, given that in
practice x is not available, the stopping criteria actually rely on the link between the Lanczos
algorithm and the Conjugate Gradient algorithm, using the residuals of the latter as a bound
on the approximation error (Aune et al., 2013).

Conclusion

In this section, algorithms to generate simulations of a stationary SGS were introduced. The
focus was put on an approximate simulation algorithm, which we called Chebyshev simulation
algorithm, and that was based on Chebyshev graph �ltering operations.

The numerical approximation error of the simulations generated by the Chebyshev algorithm
were computed, and led to concentration inequalities linking the accuracy of the polynomial
approximation used in the �ltering step and the error between the simulation vector and a
vector that is known to have the right statistical properties.

Going then a step further, the statistical properties of the simulated vectors were directly
derived and compared to the targeted ones through an approach based on statistical tests. This
yielded criteria on the accuracy of the polynomial approximation used in the �ltering step so
that the simulated vectors could �pass� for vectors with the targeted statistical properties.

Finally, the Chebyshev simulation algorithm was presented as a Krylov subspace approach,
and compared to a more standard method of simulation from this class of algorithms, based
on the Lanczos algorithm. Both methods produce an estimate of the simulated output using a
polynomial approximation of prede�ned degree. At the same degree, the Lanczos approach will
yield a better estimate when considering numerical approximation error. However, the use of
Chebyshev simulations is justi�ed by their cheap computational and storage costs, the ability
to evaluate statistical errors, and the guarantee that the simulations produced by the algorithm
are Gaussian vectors.
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Résumé
Dans ce chapitre, nous nous intéressons au problème lié à l'estimation d'un signal sur

graphe stochastique stationnaire à partir de l'observation partielle et/ou bruitée d'une de ses
réalisation. Nous supposons par contre connue sa covariance. Nous présentons des estimateurs
adaptés à cette situation, ainsi que des algorithmes et des détails d'implémentation permettant
de les utiliser en pratique.

Introduction

Throughout this chapter, S denotes a shift operator of sizen de�ned following Assumption 1.2,
meaning that S is a symmetric matrix that relates to the adjacency relations of a simple undi-
rected graph. We focus on the problem of predicting aS-stationary stochastic graph signal
(SGS) from its incomplete and possibly noisy observation. However, the parameters de�ning the
covariance of the SGS, namely the shift operatorS and the spectral density, are assumed to be
known. The task of estimating them as well will be tackled in the next chapter.

Hence, our starting point is a vector of observed values derived from a single realization of
a S-stationary SGS through an a�ne transform: each observed value is a linear combination of
entries of the SGS to which an independent noise variable with known variance is added. The
goal is then to come up with a predictor of the realization that gave rise to the observation
vector.

To tackle this problem, an approach based on the geostatistical paradigm is adopted, meaning
that a predictor of the random signal given the observed data is built instead of trying to predict
directly the realization of this random signal (Chilès and Del�ner, 2012).

In the �rst two sections of this chapter, predictors are derived for the cases where the noise
a�ecting the observations is assumed to be entirely uncorrelated or arising fromS-stationary
signals. The remaining of the chapter then focuses on algorithms used to compute these predic-
tors, and on their implementation. In particular, the same restrictions regarding computational
and storage costs as in the previous chapter still apply, meaning that a matrix-free approach is
once again adopted.

4.1 Prediction of a stationary graph signal

The problem answered in this section is the following. Letz 2 Rn be a realization of a S-
stationary SGS Z with known spectral density f : R ! R+ . We aim at building a predictor of
z from its incomplete observation. Formally, we assume that we do not observez directly, but
rather a vector zo 2 Rq, linked to z by the relation

zo = M oz + � wo ; (4.1)

where M o 2 M q;n (R) is a known full-rank matrix called observation matrix, wo is a q-vector
composed of realizations of independent standard Gaussian variables, and� � 0 is a variance
parameter. Basically, it is assumed that the observed vectorzo is a linear transform of the
original signal z to which a noise component of variance� 2 is added. Note that taking � = 0
allows to consider a noise-free model.

In particular, the rather general formulation of Equation (4.1) includes the case where only a
few components of a SGS are observed and must be used to reconstruct the whole signal. Then
zo is the vector composed of the components ofz that are actually observed, M o is the matrix
that extracts the observed components fromz and � = 0 . More precisely, M o is the matrix
whose(k; j )-th element is one if zj is the k-th observed component ofzo and 0 otherwise.

4.1.1 Kriging predictor in the zero-mean case

We aim at �nding a predictor of a signal z, conditionally to the observation of zo. Hence,
following the geostatistical paradigm (Chilès and Del�ner, 2012),z and zo are seen as realizations
of random vectorsZ and Z o that are linked through the relation

Z o = M oZ + � W o ; (4.2)
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whereZ is a S-stationary SGS with spectral density f , W 0 is a zero-mean Gaussian vector with
covariance matrix I q and M o and � are de�ned as above. In particular, we call the random
vector Z o observation process. predictors of z are then built by considering the conditional
distribution of Z given Z o = zo.

Proposition 4.1.1. Let Z be aS-stationary SGS with spectral densityf and let W o be a vector
of independent standard Gaussian variables.
Let Z o be the random vector de�ned by Equation(4.2) for some (deterministic) matrix M o 2
M q;n (R) and variance parameter� � 0. Denote zo a particular realization of Z o.

Then,
[Z jZ o = zo] � N (E[Z jzo]; Var[Z jzo]) ; (4.3)

where E[Z jzo] is the conditional expectation ofZ given Z o = zo:

E[Z jzo] = f (S)M T
o

�
M of (S)M T

o + � 2I q
� � 1

zo ; (4.4)

and Var[Z jzo] := E
h
(Z � E[Z jzo]) (Z � E[Z jzo])T jZ o = zo

i
is the conditional covariance ma-

trix of Z given Z o = zo:

Var[Z jzo] = f (S) � f (S)M T
o

�
M of (S)M T

o + � 2I q
� � 1

M of (S) : (4.5)

In particular, whenever f is non-zero on the set of eigenvalues ofS and � > 0, the conditional
expectation and covariance matrix ofZ can also be expressed as

E[Z jzo] =
�
(� 2=f )(S) + M T

o M o
� � 1

M T
o zo ; (4.6)

and
Var[Z jzo] = � 2 �

(� 2=f )(S) + M T
o M o

� � 1
: (4.7)

Proof. See Appendix C.2.

Circling back to the initial prediction problem, the next proposition justi�es why choosing
the conditional expectation E[Z jzo] as a predictor of Z given the observationszo is optimal in
some sense. We �rst introduce the notion of best linear unbiased predictor. LetZ 2 Rn and
Z o 2 Rq be two random vectors de�ned as in Proposition 4.1.1 andzo be a realization of Z o.
A vector z � 2 Rn is the best linear unbiased predictor(BLUP) of a random vector Z given a
vector of observationszo if it is:

� Linear: There exists a n � q weight matrix, denoted K , and a vector � 2 Rn such
that z � = � + Kz o. Hence each entry ofZ is predicted by a linear combination of the
observations in zo.

� Unbiased: E[Z � � Z ] = 0 whereZ � = � + KZ o, , i.e. the error term Z � � Z is zero-mean.

� Minimal variance: K is the matrix that minimizes Var[Z � � Z ], i.e. the error term Z � � Z
has minimal variance over all possible linear predictors ofZ from Z o.

The next proposition then follows from Proposition 4.1.1.

Proposition 4.1.2. Let Z and Z o be two random vectors de�ned as in Proposition 4.1.1 and
zo be a realization ofZ o, considered as an observation ofZ .

The conditional expectation E[Z jzo] of Z given Z o = zo is the best unbiased linear predictor
of Z given zo.

Proof. See Appendix C.2.
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Hence, z � = E[Z jzo] is an optimal choice of linear predictor of Z given zo given that it is
unbiased and it ensures that the variance of the error is minimal. By analogy with the simple
kriging predictor used in Geostatistics, which is de�ned in the same manner (Chilès and Del�ner,
2012; Wackernagel, 2013),z � = E[Z jzo] is called kriging predictor of Z by zo.

Besides, note that Z � = E[Z jZ o] is the conditional expectation of Z with respect to the
random variable Z o. As such, it is also equal to the conditional expectation ofZ with respect to
� (Z o), the � -algebra generated byZ o (Feller, 1971). WheneverZ and Z o are square-integrable
random variables,Z � de�nes an orthogonal projection of Z onto the space of� (Z o)-measurable
functions, with respect to the inner product (X; Y ) 7! E[XY ]. As such, Z � can be interpreted
as the projection of Z on the set of random variables that encapsulate information fromZ o. In
this sense,Z � is the best representation ofZ achievable by a prediction based onZ o.

In the next section, kriging predictors are derived for the case whereZ is not necessarily
zero-mean.

4.1.2 Kriging predictor in the non-zero mean case

Recalling De�nition 1.4.6, let us assume for this subsection thatZ is a S-stationary SGS with
spectral density f and possibly non-zero mean (cf. Section 1.4.4). Hence, there exists a zero-
meanS-stationary SGS Y with spectral density f , an eigenvectorv 2 Rn of S and somem 2 R
such that

Z = Y + mv : (4.8)

Once again, we aim at predictingZ 2 Rn from a vector of observationszo 2 Rq drawn from a
observation processZ o de�ned by Equation (4.2).

SGS with known mean

We �rst assume that both the mean eigenvectorv and the mean valuem in Equation (4.8) are
known.

Proposition 4.1.3. Let Z be a S-stationary SGS with spectral densityf : R ! R+ and with
mean mv where m 2 R and v 2 Rn is an eigenvector ofS. Let us assume that bothm and v
are known.
Then, the BLUP Z � of Z given a vector of observationszo given by Equation(4.1) is

Z � = E[Z jzo] = mv + f (S)M T
o

�
M of (S)M T

o + � 2I q
� � 1

(zo � mM ov) : (4.9)

In the case wheref is non-zero on the set of eigenvalues ofS and � > 0, we have the
following equivalent formulation of the kriging predictor:

Z � = E[Z jzo] = mv +
�
(� 2=f )(S) + M T

o M o
� � 1

M T
o (zo � mM ov) : (4.10)

Proof. See Appendix C.2.

Remark 4.1.1. Regarding the conditional covariance matrix, Var[Z jzo], simple calculations
show that Var[Z jzo] = Var[ Y jyo], and therefore it keeps the same formula as in Equation (4.5)
and, when applicable, Equation (4.7).

SGS with unknown mean

We now assume that the mean parameterm is unknown. However the vectorv carrying the
mean is assumed to be known. The BLUP ofZ given zo then has the following expression.

Proposition 4.1.4. Let Z be aS-stationary SGS with spectral densityf : R ! R+ and mean
mv where m 2 R and v 2 Rn is an eigenvector ofS. Let us assume thatv is known but m is
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unknown.
Then, the BLUP Z � of Z given a vector of observationszo given by Equation(4.1) is

Z � =
�

f (S)M T
o v

�

0

B
B
B
B
B
@

M of (S)M T
o + � 2I q M ov

(M ov)T 0

1

C
C
C
C
C
A

� 1 0

B
B
B
B
B
@

zo

0

1

C
C
C
C
C
A

: (4.11)

Proof. See Appendix C.2.

This predictor introduced in the proposition above actually corresponds to the ordinary
kriging predictor encountered in Geostatistics (Wackernagel, 2013) and is the BLUP ofZ .

4.1.3 Conditional simulations

The idea behind conditional simulations is to generate simulations of a stationary SGS that agree
with some observation data when the same observation process is applied to them. Considering
a S-stationary SGS Z and an observation processZ o de�ned by Equation (4.1), we assume that
we only observe a (single) realizationzo of Z . We aim at generating a simulation zc of Z such
that

M ozc + � woc = zo ;

for some realization ofwoc of W o. This is actually equivalent to draw zc from the conditional
distribution of Z given Z o = zo. Hence, following Proposition 4.1.1,

zc � N (E[Z jzo]; Var[Z jzo]) ; (4.12)

where E[Z jzo] and Var[Z jzo] are de�ned in Equations (4.4) to (4.7).
Conditional simulations are widely used in Geostatistics for uncertainty assessments when

studying complex (spatial) phenomena (Chilès and Del�ner, 2012; Lantuéjoul, 2013). The
premise is that each conditional simulation can be interpreted as a possible picture of the phe-
nomenon or an alternative version of the reality of the phenomenon, that is generated while
honoring the limited information gathered about it. Using conjointly all these alternative sce-
narios allows to assess which one of them might be problematic and therefore identify possible
outliers.

In the context of SGS, a possible use of conditional simulations would be to compute predic-
tions of non linear functions of Z , conditional to some observed datazo. Indeed, if z (1)

c ; : : : ; z (N )
c

denote a set ofN > 0 independently generated conditional simulations ofZ , then for any func-
tion F of Z , a prediction F (Z ) � of F (Z ) conditional to Z = zo is given using a Monte-Carlo
approach, via the relation

F (Z ) � =
1
N

NX

k=1

F (z(k )
c ) :

Direct approach to conditional simulations

Circling back to the generation of conditional simulations, a direct approach consists in noticing
that any conditional simulation zc following Equation (4.12) is a realization of a random vector
Z c that can be written

Z c = E[Z jzo] + Z 0
nc ; (4.13)

where Z 0
nc is a zero-mean Gaussian vector with covariance matrixVar[Z jzo]. Hence, a condi-

tional simulation zc is obtained by adding the conditional expectation E[Z jzo] to a realization
of Z 0

nc . Realizations ofZ 0
nc may be obtained by a factorization method (cf. Section 3.1.1) given

that their covariance matrix is known but does not exhibit any particular structure that could be
used to bypass this method (like for instance them being graph �lters). Algorithm 4.1 outlines
this procedure.
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Algorithm 4.1: Conditional simulation using a direct approach.
Input: Observation matrix M o, Variance parameter � and observation vectorzo.

Spectral density of the signalf of a zero-meanS-stationary SGS Z .
Output: A simulation of Z conditional to zo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compute E[Z jzo] using Equation (4.4) or Equation (4.6) ;
Find a matrix B 2 M n (R) such that BB T = Var[ Z jzo], where Var[Z jzo] can be
equivalently expressed as Equation (4.5) or Equation (4.7) ;

Compute z0
nc = B" where " is a vector with independent standard Gaussian entries;

Return zc = E[Z jzo] + z0
nc ;

The direct approach presented in Algorithm 4.1 has a huge bottleneck: the factorization of
Var[Z jzo]. Contrary to the case where the covariance matrix is a graph �lter, the factorization
here supposes that �rst, Var[Z jzo] is formed and stored. Forming Var[Z jzo] involves to fully
form a graph �lter which must be avoided as it is a costly operation (cf. Section 4.3.1 for more
details). Hence, the direct approach of Algorithm 4.1 is usually discarded when it comes to
generate conditional simulation.

Kriging approach to conditional simulations

This second approach for generating conditional simulations builds on the one presented above.
It allows to compute conditional simulations of SGSs as long as we know how to compute un-
conditional simulations of SGSs with known spectral density, and that we know how to compute
conditional expectations of these SGS. The former was addressed in Chapter 3. The latter is the
purpose of Sections 4.3 and 4.5. We therefore assume for this subsection that both tasks can be
performed.

Starting once gain with Equation (4.13), we aim at �nding a more e�cient way to generate
a simulation of Z 0

nc , which is a Gaussian vector with mean0 and covariance matrix Var[Z jzo].
The following proposition answers this question.

Proposition 4.1.5. Let Z be aS-stationary SGS with spectral densityf . Let Z o be the random
vector de�ned from Z by Equation (4.2).
Denote E[Z jZ o] the conditional expectation ofZ given Z o (which is the random vector obtained
by substituting zo to Z o in Equation (4.4)).

Then,
Z � E[Z jZ o] � N (0; Var[Z jzo]) ;

where Var[Z jzo] is de�ned through Equation (4.5) and only depends onM o, � and f (S).

Proof. See Appendix C.2.

Remark 4.1.2. Given that the corresponding expressions are equivalent,E[Z jZ o] and Var[Z jzo]
in Proposition 4.1.5 can also be computed using respectively Equation (4.6) and Equation (4.7).

Consequently, a simulation ofZ 0
nc can be generated by computing a realization of the random

variable Z � E[Z jZ o], given that they both have the same distribution. This can be done in
three steps:

1. Generate a realizationz0 of Z , which is a S-stationary SGS with spectral density f .

2. Compute the vector E[Z jz0
o] which is obtained by replacing zo with z0

o in Equation (4.4),
where

z0
o = M oz0+ � w 0

o ; (4.14)

and w 0
o is a vector of independent standard Gaussian variables.

3. The actual simulation z0
nc of Z 0

nc is given by z0
nc = z0 � E[Z jz0

o].
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Equation (4.13) then gives the following expression for a conditional simulationzc of z:

zc = E[Z jzo] + z0
nc = E[Z jzo] + z0 � E[Z jz0

o] :

In particular, noting that the expression of both E[Z jzo] and E[Z jz0
o] are linear with respect to

zo and z0
o, this last equation can be written as

zc = z0+ E[Z jzo � z0
o] ;

where E[Z jzo � z0
o] denotes the vector obtained by substituting zo by zo � z0

o in Equation (4.4)
or Equation (4.6):

E[Z jzo � z0
o] = f (S)M T

o

�
M of (S)M T

o + � 2I q
� � 1

(zo � z0
o)

=
�
(� 2=f )(S) + M T

o M o
� � 1

M T
o (zo � z0

o) :
(4.15)

Equation (4.15) is used to derive the conditional simulation algorithm outlined in Algo-
rithm 4.2. This algorithm sums up this kriging approach to conditional simulations, that yields
a conditional simulation for the cost of an unconditional simulation and a linear prediction of
SGS by kriging. The user should note that the second equality in Equation (4.15) is de�ned
only if f is strictly positive over the eigenvalues ofS and � > 0.

Algorithm 4.2: Conditional simulation by kriging.
Input: Observation matrix M o, Variance parameter � and observation vectorzo.

Spectral density of the signalf of a zero-meanS-stationary SGS Z .
Output: A simulation of Z conditional to zo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compute a unconditional simulation z0 of Z using one of the algorithms of Section 3.1 ;
Compute z0

o using Equation (4.14) ;
Compute E[Z jzo � z0

o] using Equation (4.15) ;
Return zc = z0+ E[Z jzo � z0

o] ;

4.2 Extraction of a stationary graph signal

The prediction problem of Section 4.1 is now extended: correlated noises are indeed added in the
observation process. This situation arises naturally in Geostatistics, where the noise a�ecting
a spatial dataset can also presents spatial correlations that can be modeled. We transpose this
setting to stochastic graph signals.

Let Z 2 Rn be once again aS-stationary SGS with known spectral density f : R ! R+ .
We aim at recovering a predictor of Z from its noisy observation. Formally, we assume that we
do not observeZ directly, but rather a vector zo 2 Rq which is a realization of an observation
processZ o de�ned by:

Z o = M oZ + M 1Z 1 + � � � + M pZ p + � W o ; (4.16)

where:

� M o 2 M q;n (R) and M 1 2 M q;n 1 (R); : : : ; M p 2 M q;n p (R) are known observation matrices.

� Z 1 2 Rn 1 ; : : : ; Z p 2 Rn p are p zero-mean independent stationary SGS. In particular,
8k 2 [[1; p]], Z k is assumed to be stationary with respect to a shift operatorSk and has
spectral density f k , both of which are known.

� W o is a vector with q independentstandard Gaussian entries.

� � � 0 is a variance parameter.
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We therefore aim at extracting a particular signal Z from the observation of a superposition of in-
dependent signalsZ 1; : : : ; Z p; W o. In particular, we call structured noises the signalsZ 1; : : : ; Z p

and unstructured noise the vector W 0 in order to introduce a distinction between them. The
observation process involves a modi�cation of each structured noise through an observation
matrix.

This new problem is a direct generalization of the prediction problem of Section 4.1, which is
retrieved when p = 0 , i.e. where the noise ofZ o, de�ned as the di�erence Z o � M oZ , is purely
a measurement error. This parallel allows to derive linear predictors ofZ in the same way as in
Section 4.1.

4.2.1 Linear predictor in the known-mean case

Let us assume for this section thatZ is a S-stationary SGS with spectral density f and possibly
non-zero meanmv where m 2 R and v 2 Rn is an eigenvector ofS. In particular Y := Z � mv
de�nes a zero-meanS-stationary SGS Y with spectral density f .

We aim at extracting Z 2 Rn from a vector of observationszo 2 Rq drawn from a observation
processZ o (de�ned by Equation (4.16)) by building a linear predictor of Z from zo. The
structured noisesZ 1; : : : ; Z p are still assumed to be zero-mean, as is the unstructured noiseW o.

Proposition 4.2.1. Let Z be aS-stationary SGS with spectral densityf and known meanmv
where m 2 R and v 2 Rn is an eigenvector ofS. Let zo 2 Rq be a realization of an observation
processZ o de�ned by Equation (4.16).
Then, the BLUP Z � of Z given zo is the conditional expectation ofZ given Z o = zo, that is

Z � = E[Z jzo]

= mv + f (S)M T
o

 

M of (S)M T
o +

pX

k=1

M k f k (Sk )M T
k + � 2I q

! � 1

(zo � mM ov) :
(4.17)

Besides, the conditional covariance matrix ofZ given Z o = zo is given by

Var[Z jzo] = f (S) � f (S)M T
o

 

M of (S)M T
o +

pX

k=1

M k f k (Sk )M T
k + � 2I q

! � 1

M of (S) : (4.18)

Proof. See Appendix C.2.

Other formulations of the solution of the extraction problem can be formulated for the par-
ticular case where the spectral densityf is non-zero over the set of eigenvalues ofS and � > 0.

Proposition 4.2.2. Let Z be a zero-meanS-stationary SGS with spectral densityf and let
zo 2 Rq be a realization of an observation processZ o de�ned by Equation (4.16).
Then, the BLUP Z � of Z given zo and the BLUPs Z �

1 ; : : : ; Z �
p of Z 1; : : : ; Z p given Z o = zo

satisfy
0

B
B
B
B
B
@

Z � � mv

Z �
1
...

Z �
p

1

C
C
C
C
C
A

=

0

B
B
B
B
B
@

M T
o M o + � 2

f (S) M T
o M 1 : : : M T

o M p

M T
1 M o M T

1 M 1 + � 2

f 1
(S1) : : : M T

1 M p

...
...

. . .
...

M T
p M o M T

p M 1 : : : M T
p M p + � 2

f p
(Sp)

1

C
C
C
C
C
A

� 1 0

B
B
B
B
B
@

M T
o (zo � mM ov)

M T
1 (zo � mM ov)

...

M T
p (zo � mM ov)

1

C
C
C
C
C
A

:

(4.19)



4.3. Practical implementation in the known-mean case 87

Proof. See Appendix C.2.

4.2.2 Linear predictor in the unknown-mean case

Once again, we assume for this section thatZ is a S-stationary SGS with spectral density f and
possibly non-zero meanmv where m 2 R and v 2 Rn is an eigenvector ofS. However we now
assume that the mean valuem is unknown and the mean eigenvectorv is known. The BLUP of
Z given zo has the following expression.

Proposition 4.2.3. Let Z be aS-stationary SGS with spectral densityf and meanmv where
m 2 R and v 2 Rn is an eigenvector ofS. Let us assume thatv is known but m is unknown.
Then, the BLUP Z � of Z given a vector of observationszo de�ned by Equation (4.16) is:

z � =
�

f (S)M o v
�

0

B
B
B
B
B
@

M o f (S)M T
o +

pP

k =1

M k f k (Sk )M T
k + � 2 I q M ov

(M ov)T 0

1

C
C
C
C
C
A

� 1 0

B
B
B
B
@

zo

0

1

C
C
C
C
A

(4.20)

Proof. See Appendix C.2.

In the next sections, we present numerical methods to e�ectively solve the prediction and
extraction problems that were introduced in the past two sections. As a matter of fact, given
that the prediction problem is the particular case of an extraction problem for which there are
no structured noisesZ 1; : : : ; Z p, only this last class of problems will actually be considered from
now on.

4.3 Practical implementation in the known-mean case

Let us assume that we aim at extracting a signalZ with known mean mv where m 2 R and
v 2 Rn is an eigenvector ofS, from an observation vectorzo arising from an observation process
Z o de�ned by Equation (4.16).

4.3.1 Matrix-free formulation of the problem

Propositions 4.2.1 and 4.2.2 provide expressions for the BLUPz � of Z given zo that share a
common formulation. Indeed, they can be written as:

z � = P K � 1b ; (4.21)

where:

� K is a symmetric positive-de�nite matrix de�ned from the covariance matrices f (S),
f 1(S1); : : : ; f p(Sp), the observation matricesM o; M 1; : : : ; M p and the variance parameter
� . Let nK be its size.

� b is a nK -vector de�ned from zo and the observation matricesM o; M 1; : : : ; M p.

� P is a n � nK matrix de�ned from the covariance matrix f (S) and the observation matrix
M o.

More precisely, the matricesK , P and the vector b have the following expression (cf. Proposi-
tion 4.2.1):

K =
�

M of (S)M T
o +

pP

k=1
M k f k (Sk )M T

k + � 2I q

�
;

b = zo � mM ov; P = f (S)M T
o :

(4.22)
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Whenever the spectral density f of the extracted signal is non-zero over the eigenvalues ofS
and � > 0, an alternative formulation is given by (cf. Proposition 4.2.2)

K =

0

B
B
B
B
B
@

M T
o M o + � 2

f (S) M T
o M 1 : : : M T

o M p

M T
1 M o M T

1 M 1 + � 2

f 1
(S1) : : : M T

1 M p

...
...

. . .
...

M T
p M o M T

p M 1 : : : M T
p M p + � 2

f p
(Sp )

1

C
C
C
C
C
A

;

b =

0

B
B
B
B
B
@

M T
o

M T
1

...

M T
p

1

C
C
C
C
C
A

(zo � mM ov); P = I :

(4.23)

In that case, z � actually corresponds to the best linear predictor of the vector containing the
signal Z but also the p structured noise componentsZ 1; : : : ; Z p.

Hence, a straightforward way to get the extracted signalz � would consist in building the
matrices P , K and b, and actually computing z � through Equation (4.21). This can be done in
two steps:

1. First, compute the term x � = K � 1b by either inverting K and multiplying the inverse
with b or more generally by solving the linear system

Kx � = b ; (4.24)

using any algorithm designed for this purpose.

2. Return z � = P x � .

In practice, building and storing the matrices K and P in order to directly use them in
Equation (4.21) quickly becomes an intractable operation. To understand this, notice that the
expression of both matrices involves at least one graph �lter. Hence computing and storingK
and P actually requires to compute and store at least one graph �lter. This can be done using
the de�nition of graph �lters, which involves the diagonalization of a shift operator. If the shift
operator has sizen, this approach would therefore requireO(n3) operations and a storage space
of order O(n2) given that the resulting matrix has no reason to be sparse.

Following the idea of Chebyshev �ltering, we might think of computing a polynomial approx-
imation of the graph �lter. However, doing so now involves matrix-matrix products between the
shift operator and a matrix of size n that becomes less and less sparse as the number of products
grows. The whole point of the Chebyshev approach would therefore be lost: only low-order
approximations would be considered otherwise the computation of the graph �lter would be as
expensive as using the diagonalization method.

Even if we assume that we are able to build any graph �lters, a storage problem arises. Take
for instance the case of the matrixK , whose computation seems inevitable to solve the system
of Equation (4.24). Storing K would require O(n2) storage space, as it is in general a dense
matrix.

Another approach should therefore be used to solve the system of Equation (4.24). Even
though computing directly the matrix K is prohibited, computing products between K and
vectors of the same size can be done in an e�cient way using Chebyshev �ltering. Assuming
the observation matrices are sparse, the computational and storage cost of computing a product
Kx can be brought down to roughly the cost of performingp + 1 graph �ltering operations.

In the case whereK is de�ned as in Equation (4.22), a product Kx is given by

Kx = M of (S)M T
o x +

pX

k=1

M k f k (Sk )M T
k x + � 2x ;

where each term of the formM of (S)M T
o x can be computed in three steps. First, the vector

M T
o x is computed (which is cheap asM o is sparse). Then Chebyshev �ltering is used on the

graph �lter f (S) and the vector M T
o x . And �nally, the resulting vector is multiplied by M o.
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Similarly, in the case whereK is de�ned as in Equation (4.23), we have

K

0

B
B
B
B
B
@

x

x 1

...

x p

1

C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
@

M T
o

�
M ox +

pP

k=1
M k x k

�
+ � 2

f (S)x

M T
1

�
M ox +

pP

k=1
M k x k

�
+ � 2

f 1
(S1)x 1

...

M T
p

�
M ox +

pP

k=1
M k x k

�
+ � 2

f p
(Sp)x p

1

C
C
C
C
C
C
C
C
C
A

;

where each term of the form(� 2=f )(S)x is computed using Chebyshev �ltering. Note also that
the term (M ox +

P p
k=1 M k x k ) can be computed once, stored, and used for every subvector of

the product.
Hence e�cient programs based on Chebyshev �ltering can be written to compute the product

Kx for any vector x , and do not require to actually build the matrix K . The idea is then to
use �matrix-free� solvers to solve Equation (4.24). Such solvers have the desirable properties
that they are able to solve linear systems using only products between vectors and the matrix
de�ning the linear system. In particular, they do not require to explicitly have access to elements
of this matrix and therefore to have them stored somewhere.

Note �nally that if a method is found to e�ciently solve Equation (4.24), then computing
the actual extracted signal is done by simply multiplying the obtained solution by the matrix
P . This last operation can once again be performed using Chebyshev algorithm and therefore
amounts to the cost of at most one graph �ltering operation. In the following, we therefore focus
solely on the numerical resolution of Equation (4.24).

4.3.2 Optimization framework

Note that the solution x � of Equation (4.24) satis�es:

x � = argmin
x 2 Rn K

f opt (x ); where f opt (x ) =
1
2

x T Kx � bT x : (4.25)

Indeed, given that K is a positive de�nite matrix, the function f opt : Rn K ! R is calledobjective
function and is convex, and therefore its stationary point is its unique minimum. In particular,

8x 2 Rn K ; r f opt (x ) = Kx � b ;

and therefore the (unique) stationary point of f opt is x � = K � 1b. Computing x � is therefore
equivalent to solving the minimization problem de�ned by Equation (4.25).

Remark 4.3.1. Let us denotek �kK the norm de�ned for any x 2 Rn K by kx kK =
p

x T Kx .
Then, 8x 2 Rn K ,

kx � x � k2
K = ( x )T Kx � 2(x )T Kx � + ( x � )T Kx � :

And if we now de�ne x � by x � = K � 1b we have

f opt (x � ) =
1
2

(x � )T Kx � � (x � )T b = �
1
2

(x � )T b :

Hence, by combining both equations we get

kx � x � k2
K = 2 ( f opt (x ) � f opt (x � )) : (4.26)

We therefore retrieve the fact that the minimum of the objective function is reached by the
solution of the systemKx = b.

Besides, evaluatingf opt or r f opt at any point x 2 Rn K only requires to be able to compute
the product Kx , and therefore can be done within a matrix-free approach. Hence a �rst-order
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optimization method, i.e. one that is based on the gradient of the objective function, can be
used to solve the problem and therefore getx � (Nocedal and Wright, 2006). We discard in a
�rst approach any second-order optimization method, which, even though they enjoy faster con-
vergence rates to the solution, require to compute the Hessian matrix of the objective (Nocedal
and Wright, 2006), which is here the matrix K .

We rather look at algorithms that minimize both computational and storage costs in a matrix-
free approach. Ideally, only a few vectors should be stored at any time during the optimization
process, and each iteration should require a number as small as possible of products between
vectors and the matrix K , the optimal number of products being of course1 (to compute a
gradient). First order descent algorithms allow to check both boxes.

More generally, descent algorithms (Nocedal and Wright, 2006) iteratively build a sequence
x (0) ; x (1) ; : : : that converges to x � and whose terms follow the general recurrence relation:

x (k+1) = x (k ) + � k d(k ) ; k � 0 ; (4.27)

where f d(k ) gk � 0 is a family of vectors called descent directions and generally computed using
their own recurrence relation, which involves gradient computations andf � k gk � 0 is a family of
(positive) parameters called step sizes.

4.3.3 Steepest gradient descent algorithm

The simplest example of descent algorithm is theconstant-step gradient descent algorithm(No-
cedal and Wright, 2006), which consists in choosing a constant step size for all updates in
Equation (4.27), and taking d(k ) = �r f opt (x (k ) ) which corresponds to the direction of greatest
decrease off opt . Hence, we set a parameter� 2 R+ and build the sequence:

x (k+1) = x (k ) � � r f opt (x (k ) ); k � 0 : (4.28)

As one may suspect, a successful convergence of this sequence towardsx � highly depends on the
choice of� : taking a value of � that is too large results in the divergence of the algorithm and
taking a value of � that is too small results in a very slow convergence (Nocedal and Wright,
2006). To avoid the hassle of setting the right parameters, the next algorithm is preferred.

The steepest gradient descent algorithm(Nocedal and Wright, 2006) is derived by choosing at
each iteration k of the gradient descent a step size� k = � Steep

k that yields the greatest decrease
of the objective function f opt . Hence,

� Steep
k = argmax

� 2 R
f opt

�
x (k )

�
� f opt

�
x (k ) � � r f opt (x (k ) )

�
; k � 0 :

Given that f opt is quadratic, this problem has a closed-form solution that is obtained by calcu-
lating the stationary point of the function � 7! f opt

�
x (k )

�
� f opt

�
x (k ) � � r f opt (x (k ) )

�
. This

gives

� Steep
k =

r f opt (x (k ) )T r f opt (x (k ) )
r f opt (x (k ) )T K r f opt (x (k ) )

; k � 0 :

The steepest gradient algorithm is outlined in Algorithm 4.3. It assumes that only a routine
allowing to compute matrix-vector products between K and any vector of sizenK is known.
Besides, the iterations of the algorithm are carried out until �convergence is reached", which
means here that a good enough approximation of the solution was reached. To assess the quality
of a given iterate x (k ) , a stopping criterion is usually set by requiring that the (Euclidean) norm
of r f opt (x (k ) ), which is given by kr f opt (x (k ) )k = kb � Kx (k ) k, is below a prede�ned threshold
(Nocedal and Wright, 2006). Other possible stopping criteria include checking the norm of the
di�erence between successive iterates or successive values taken byf opt .

The performance of the steepest gradient algorithm is determined by how fast or equivalently
how many iterations are needed for thek-th approximation x (k ) of the solution x � generated by
the algorithm to reach a given approximation error, measured as a distance betweenx (k ) and
x � . For the steepest gradient descent algorithm, this convergence rate depends (only) on the
initial guess we have forx � and on the properties ofK through a quantity called the condition
number of K (Nocedal and Wright, 2006; Saad, 2003).
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Algorithm 4.3: Steepest gradient algorithm.
Input: For a positive de�nite matrix K 2 M n K (R) , a routine prodK (v) that returns

for any v 2 Rn K the vector Kv . A vector b 2 Rn K . An initial guess x (0)

Output: An approximation of x � = K � 1b.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k = 0 ;
d(0) = �r f opt (x (0) ) = b � Kx (0) ;
while Convergence is not reacheddo

� k = (d ( k ) )T d ( k )

(d ( k ) )T Kd ( k ) ;

x (k+1) = x (k ) + � k d(k ) ;
d(k+1) = d(k ) � � k � prodK (d(k ) );
k  k + 1 ;

Return x (k ) .

Let us denote byk � k2 either the Euclidean norm of a vector or the matrix norm subordinate
to the Euclidean norm as de�ned for matrices ofM n (R) by

kA k2 := sup
x 6= 0

kAx k2

kx k2
= sup

x 6= 0

q
R(A T A ; x ) =

q
� max (A T A ); A 2 M n (R) ;

where � max (:) denotes the largest eigenvalue of a matrix andR(M ; v) denotes the Rayleigh
quotient of a Hermitian matrix M and a vector v (cf. Appendix A.2.1).

The condition number � (A ) of an invertible matrix A is then de�ned as:

� (A ) = kA k2kA � 1k2 :

Note that in the particular case of a (symmetric) positive de�nite matrix K , its condition number
can expressed as

� (K ) =
� max (K )
� min (K )

;

where � max (K ) (resp. � min (K )) denotes the largest (resp. lowest) eigenvalue ofK .

Proposition 4.3.1. The sequencex (0) ; x (1) ; : : : generated by applying the steepest gradient al-
gorithm to the minimization problem of Equation (4.25) satis�es

8k � 0; kx (k ) � x � kK �
�

� (K ) � 1
� (K ) + 1

� k

kx (0) � x � kK ;

where � (K ) is the condition number of K and k � kK is the norm de�ned for any x 2 Rn K by
kx kK =

p
x T Kx .

In particular, 8� > 0,

k �
1

log
�

� (K ) � 1
� (K )+1

� log
�

kx (0) � x � kK

�

�
) k x (k ) � x � kK � � :

Proof. See (Sun and Yuan, 2006, Theorem 3.1.5).

A similar result can be deduced about the convergence towards the global minimum of the
objective function f opt of the sequencef f opt (x (k ) )gk � 0.

Corollary 4.3.2. The sequencex (0) ; x (1) ; : : : generated by applying the steepest gradient algo-
rithm to the minimization problem of Equation (4.25) satis�es:

8k � 0;
�

f opt (x (k ) ) � f opt (x � )
�

�
�

� (K ) � 1
� (K ) + 1

� 2k �
f opt (x (0) ) � f opt (x � )

�
;

where � (K ) is the condition number of K .
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Proof. This result is a direct consequence of Proposition 4.3.1 and Equation (4.26).

Hence, the convergence rate of the steepest gradient algorithm is greatly determined by the
condition number of the matrix K . For ill-conditioned problems, which correspond to the case
where � (K ) is large, convergence may be very slow. In fact, an disproportionate number of
iterations may be needed for the sequencef x (k ) gk � 0 to reach the minimum x � (Nocedal and
Wright, 2006). However, this �aw is not shared by the algorithm that will be introduced in the
next subsection, which has the desirable property to converge in a �nite number of iterations.

4.3.4 Conjugate gradient algorithm

The conjugate gradient algorithm (Nocedal and Wright, 2006) is an iterative method designed
to solve linear systems of the form of Equation (4.24) whereK 2 M n K (R) is indeed a symmetric
positive de�nite matrix. It builds a sequence f x (k ) g0� k � n K of approximations of the solution
using the following principle.

Let x (0) be an initial guess forx � . Recall from Section 3.3.1 that

x � � x (0) = K � 1r (0) ;

where 8k � 0, r (k ) denotes the vector de�ned by r (k ) = b � Kx (k ) , called k-th residual vec-
tor. Hence, following Proposition 3.3.1,x � � x (0) lies in the Krylov subspace of dimensionnK

generated byK and r (0) , and denotedKn K (K ; r (0) ) (cf. Section 3.3.1).
The conjugate gradient algorithm generates a sequencef x (k ) gk � 0 such that 8k � 0, x (k ) �

x (0) is the K -orthogonal projection of x � � x (0) onto the subspaceKk (K ; r (0) ) of dimension k
(Del Corso et al., 2015). Namely,

x (k ) = x (0) + argmin
y 2K k (K ;r (0) )

kx � � x (0) � ykK ; k � 0 ; (4.29)

wherek:kK is the norm de�ned for any x 2 Rn K by kx kK =
p

x T Kx . In particular for k = nK ,
given that x � � x (0) 2 K k (K ; r (0) ), the minimum in Equation (4.29) is reached fory = x � � x (0) ,
and therefore

x (n K ) = x (0) + ( x � � x (0) ) = x � :

Hence the conjugate gradient reaches the actual solution in (at most)nK iterations.

Remark 4.3.2. Note that, using Equation (4.26), Equation (4.29) can be written as:

x (k ) = argmin
x 2 x (0) + K k (K ;r (0) )

kx � � x kK = argmin
x 2 x (0) + K k (K ;r (0) )

f opt (x ) :

Hence, the conjugate algorithm actually computes at each iterationk the vector in the a�ne
spacex (0) + Kk (K ; r (0) ) that minimizes the objective function f opt .

In particular, the conjugate gradient is a descent algorithm. Indeed, let(v1; : : : ; vn K ) be aK -
orthonormal basis of Kn K (K ; r (0) ), i.e. 8i 6= j 2 [[1; nK ]], kv i kK = kv j kK = 1 and vT

i Kv j = 0 .
Such a basis can be built using a Gram-Schmidt orthogonalization technique, similarly to the
Lanczos algorithm (cf. Algorithm 3.4). Doing so, it ensures that 81 � k � nK , v1; : : : ; vk is a
K -orthonormal basis ofKk (K ; r (0) ). Then, in particular, there exists c1; : : : ; cn K 2 R such that
x � � x (0) =

P n K
j =1 cj v j which gives by de�nition of x (k ) , k � 0, x (k ) � x (0) =

P k
j =1 cj v j . And

therefore,
x (k+1) = x (k ) + ck+1 vk+1 ; k � 0 :

Computing iteratively the vectors v1; : : : ; vn K using a Lanczos-like algorithm actually yields
recurrence relations that are used to compute the projections de�ningx (k ) (Del Corso et al.,
2015). In fact, the conjugate gradient algorithm actually computes projections using the recur-
rence relation:

x (k+1) = x (k ) + � k d(k ) ; k � 0 ;
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where the descent directionsd(k ) follow their own recurrence relation:

d(k+1) = r (k+1) + � k d(k ) ; k � 0 :

In particular, the descent directions are K -orthogonal and the residuals are orthogonal (with
respect to the Euclidean norm), which allows to derive closed-form expressions of the coe�cients
� k ; � k :

� k =
(r (k ) )T r (k )

(d(k ) )T Kd (k )
; � k =

(r (k+1) )T r (k+1)

(r (k ) )T r (k )
:

The conjugate gradient algorithm is outlined in Algorithm 4.4.

Algorithm 4.4: Conjugate gradient algorithm.
Input: For a positive de�nite matrix K 2 M n K (R) , a routine prodK (v) that returns

for any v 2 Rn K the vector Kv . A vector b 2 Rn K . An initial guess x (0)

Output: An approximation of x � = K � 1b.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k = 0 ;
r (0) = b � prodK (x (0) ); d(0) = r (0) ;
p(0) = prodK (d(0) );
while Convergence is not reacheddo

� k = ( r ( k ) )T r ( k )

(d ( k ) )T p ( k ) ;

x (k+1) = x (k ) + � k d(k ) ;
r (k+1) = r (k ) � � k p(k ) ;

� k = ( r ( k +1) )T r ( k +1)

( r ( k ) )T r ( k ) ;

d(k+1) = r (k+1) + � k d(k ) ;
p(k+1) = prodK (d(k+1) ) ;
k  k + 1 ;

Return x (k ) .

As mentioned earlier, the conjugate gradient algorithm reaches the solution of the linear
system in a �nite number of iterations nK . In fact, the algorithm is stopped as soon as the
k-th residual is null, as this means that x (k ) = x � . In theory, this can happen for k < n K .
However that, in the worst case scenario, thek = nK which can be very large. Stopping the
algorithm beforehand, once thek-th iterate is close enough to the solution, seems once again
more adequate. Fortunately, the conjugate gradient algorithm enjoys a better convergence rate
than the steepest gradient algorithm.

Proposition 4.3.3. The sequencex (0) ; x (1) ; : : : generated by applying the conjugate gradient
algorithm to the minimization problem of Equation (4.25) satis�es

8k � 0; kx (k ) � x � kK �

 p
� (K ) � 1

p
� (K ) + 1

! k

kx (0) � x � kK ; (4.30)

where � (K ) is the condition number of K .
In particular, 8� > 0, 8k � 0,

k �
1

log
� p

� (K ) � 1p
� (K )+1

� log
�

kx (0) � x � kK

�

�
) k x (k ) � x � kK � � :

Proof. See (Saad, 2003, Theorem 6.29 & Equation 6.128).
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Corollary 4.3.4. The sequencex (0) ; x (1) ; : : : generated by applying the conjugate gradient al-
gorithm to the minimization problem of Equation (4.25) satis�es:

8k � 0;
�

f opt (x (k ) ) � f opt (x � )
�

�

 p
� (K ) � 1

p
� (K ) + 1

! 2k �
f opt (x (0) ) � f opt (x � )

�

Proof. This result is a direct consequence of Proposition 4.3.3 and Equation (4.26).

Given that by de�nition, � (K ) � 1, we have
p

� (K ) � � (K ) and therefore, the conjugate
gradient bene�ts from a faster convergence rate than the steepest gradient descent (introduced
in the previous subsection). However, for some problems,

p
� (K ) can still be quite large. In

that case, preconditioning methods should be applied on top of the optimization algorithm to
speed up the convergence.

4.3.5 Note on preconditioning

The idea behind preconditioning is to replace the ill-conditioned system of Equation (4.24)
by another system, with a better condition number, and whose solution can easily be used to
compute the solution of the original system (Saad, 2003). In our case, Equation (4.24) is replaced
by

(PL KP R ) u � = PL b and x � = PR u � ; (4.31)

where PL 2 M n (R) (resp. PR 2 M n (R)) is an invertible matrix called left-preconditioning
(resp. right-preconditioning) matrix and is chosen so that � (PL KP R ) < � (K ) and is as small
as possible.

Given the form of Equation (4.31), the algorithms presented in this section can be rewritten
to solve this new system without having to actually the matrix (PL KP R ). Basically, products by
the preconditioning matrices are added at each iteration. Hence,PL 2 M n (R) and PR 2 M n (R)
are chosen so that matrix vector products involving them come at a small computational cost,
thus ensuring that the gains in terms of number of iterations to convergence are not overshadowed
by the fact that each iteration comes at a greater cost.

An optimal choice for these preconditioning matrices would satisfy� (PL KP R ) = 1 , which is
the lowest value a condition number can have. This corresponds to the case whenPL KP R = cI
for some c 6= 0 , which gives K � 1 = PR PL . Finding preconditioning matrices satisfying this
relation is actually equivalent to computing directly the inverse of K which is here out of the
question. Instead, the preconditioning matrices are chosen so that(PR PL ) � 1 is somewhat close
to K , which ensures in general that the condition number will be reduced (Saad, 2003).

Classical choices of preconditioning matrices include (Saad, 2003):

� the Jacobi preconditioner, for which PR = I n and PL is taken to be the diagonal matrix
whose entries are the inverse of the diagonal entries ofK .

� the Gauss-Seidel preconditioner, for whichPR = I n and PL is taken to be the inverse of
the lower triangular part of K . Products betweenPL and vectors are therefore computed
by solving a triangular system.

� incomplete factorization techniques that de�ne P � 1
R and P � 1

L as incomplete factorizations
of K , which are cheaply computable.

In our particular context however, K is not actually known, and we only have a routine comput-
ing its product with vectors. Moreover, as the size of the vectorsnK can be quite large, the calls
to this routine should be limited at a strict minimum. Hence many classical preconditioners, like
those mentioned above, cannot be used to accelerate the convergence of the descent algorithms
used to solve Equation (4.24).
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4.4 Practical implementation on the unknown-mean case

Let us now assume that we aim at extracting a signalZ with mean mv wherem 2 R is unknown
(but v 2 Rn is a prede�ned eigenvector ofS), still from an observation vector zo arising from
an observation processZ o de�ned by Equation (4.16).

4.4.1 Matrix-free formulation of the problem

The best unbiased linear solutionz � of Z given the observationzo is now given by (cf. Propo-
sition 4.2.3)

z � = ~P ~K � ~b ;

where the matrices ~P 2 M n;n K +1 (R), ~K 2 M n K +1 (R) and ~b 2 M n K +1 (R) are de�ned by

~P =
�

P v
�

; ~K =

0

B
B
B
B
@

K M ov

(M ov)T 0

1

C
C
C
C
A

� 1

; ~b =

0

B
B
B
B
@

b

0

1

C
C
C
C
A

; (4.32)

where K , P and b are de�ned by Equation (4.22) and therefore are the same as the ones used
for the problem of extraction of a signal with mean 0.

Once again,z � is computed in two steps:

1. First, compute the term ~x � = K � 1b by solving the linear system:

~K ~x � = ~b : (4.33)

2. Return z � = ~P ~x � .

The same conclusions as in the known-mean case still holds here: a matrix-free approach, based
on Chebyshev �ltering, must be considered to perform both tasks as they involve basically the
same matrices as the ones used in the known-mean case. Indeed, the matrix-vector products
involving ~P and ~K can easily be expressed in function of matrix-vector products involving the
matrices K and P in Equation (4.22) as

~P

0

@ x

�

1

A = P x + � v; ~K

0

@ x

�

1

A =

0

@ Kx + � M ov

(M ov)T x ; x 2 Rn K ; � 2 R

1

A :

Even though the unknown-mean case seems quite similar to its known-mean counterpart,
there is a major di�erence that prevents us from using the solving methods: the matrix involved
in the linear system to be solved is no longer positive de�nite. Indeed, note for instance that if
� max (K ) denotes the largest eigenvalue ofK , then

0

@ M ov

� � max (K )

1

A

T

~K

0

@ M ov

� � max (K )

1

A = kM ovk2
�

(M ov)T K (M ov)
kM ovk2 � 2� max (K )

�
:

And this last quantity is strictly negative given that the Rayleigh quotient appearing in the right
side of the equation is upper bounded by� max (K ) > 0. Hence ~K cannot be positive de�nite.
Solving Equation (4.33) using the steepest descent algorithm or the conjugate gradient algorithm
should therefore be avoided. The next section introduces an algorithm designed to tackle this
new problem.

4.4.2 Conjugate residual algorithm

The conjugate residual algorithm (Saad, 2003) aims at solving a system of the form Equa-
tion (4.33) in the case that it is only required that ~K is symmetric. The idea behind this
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algorithm is to get back to the positive de�nite problem. Indeed, by multiplying Equation (4.33)
by ~K T = ~K we get the equivalent linear system:

~K T ~K ~x � = ~K T ~b ; (4.34)

where now, the matrix ~K T ~K = ~K 2 is positive de�nite. This system can therefore be solved
using either one of the solvers introduced in Section 4.3. In particular, it would be su�cient
to have a routine that computes the product between ~K and vectors as the product between
~K T ~K = ~K 2 and a vector can then be done by calling this routine twice. Note however that

this approach comes at a computational price: each iteration would now cost twice as much as
in the case where the system was positive de�nite.

Fortunately, the conjugate gradient algorithm can be cleverly rewritten to speci�cally solve
the system of Equation (4.34) while requiring at each iteration only a single product between
~K and a vector: this approach is outlined in Algorithm 4.5. Computationally, when compared

to a classical conjugate gradient algorithm, it comes at the price of storing an additional vector
throughout the procedure. Algorithm 4.5 generates a set of~K T ~K -conjugate descent directions
and ensures that the residuals are~K -conjugate (Saad, 2003).

Algorithm 4.5: Conjugate residual algorithm.

Input: For a symmetric matrix ~K 2 M n ~K
(R) , a routine prod ~K (v) that returns for

any v 2 Rn ~K the vector ~Kv . A vector ~b 2 Rn ~K . An initial guess ~x (0)

Output: An approximation of ~x � = ~K � 1~b.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k = 0 ;
r (0) = ~b � prod ~K ( ~x (0) ); d(0) = r (0) ;
p(0) = prod ~K (d(0) ); q(0) = p(0) (= prod ~K (r (0) )) ;
while Convergence is not reacheddo

� k = (q ( k ) )T q ( k )

(p ( k ) )T p ( k ) = ( r ( k ) )T q ( k )

(p ( k ) )T p ( k ) ;

~x (k+1) = ~x (k ) + � k d(k ) ;
r (k+1) = r (k ) � � k p(k ) ;
q(k+1) = prod ~K (r (k+1) ) ;

� k = (q ( k +1) )T q ( k +1)

(q ( k ) )T q ( k ) = ( r ( k +1) )T q ( k +1)

( r ( k ) )T q ( k ) ;

d(k+1) = r (k+1) + � k d(k ) ;
p(k+1) = q(k+1) + � k p(k ) ;
k  k + 1 ;

Return ~x (k ) .

Remark 4.4.1. Using the formalism of Equation (4.25), solving Equation (4.33), or equiva-
lently Equation (4.33), is equivalent to a least-square optimization problem, de�ned by:

~x � = argmin
~x 2 Rn ~K

~f opt ( ~x ); where ~f opt ( ~x ) =
1
2

k ~K ~x � ~bk2
2 : (4.35)

And at each iteration k of the algorithm:

~x (k ) = argmin
~x 2 ~x (0) + K k (K ;r (0) )

~f opt ( ~x ) = argmin
~x 2 ~x (0) + K k (K ;r (0) )

k ~K ~x � ~bk2 :

Hence, the conjugate residual algorithm actually computes at each iterationk the vector ~x of
the a�ne space ~x (0) + Kk (K ; r (0) ) that minimizes the norm of the residual vector ~b � ~K ~x .

The convergence rate of the conjugate residual algorithm can be directly derived from the
convergence rate of the conjugate gradient algorithm.
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Proposition 4.4.1. The sequence~x (0) ; ~x (1) ; : : : generated by applying the conjugate residual
algorithm to the minimization problem of Equation (4.35) satis�es

8k � 0; k ~K ~x (k ) � ~bkK �
�

� ( ~K ) � 1

� ( ~K ) + 1

� k

k ~K ~x (0) � ~bk2 ;

where � ( ~K ) is the condition number of ~K .
In particular, 8� > 0, 8k � 0,

k �
1

log
�

� ( ~K ) � 1
� ( ~K )+1

� log
�

k ~K ~x (0) � ~bkK

�

�
) k ~K ~x (k ) � ~bk2 � � :

Proof. Note that k ~K T ~K k2 =
q

� max
�
( ~K T ~K )2

�
= � max ( ~K T ~K ) = k ~K k2

2 and that similarly

k( ~K T ~K ) � 1k2 = k( ~K � 1)( ~K � 1)T k2 = k ~K � 1k2
2 gives:

� ( ~K T ~K ) = � ( ~K )2 :

Substituting K in Proposition 4.3.3 by ~K T ~K then gives the result by noticing that k~vk ~K T ~K =
k ~K ~vk2, 8~v 2 Rn ~K .

4.5 Uni�ed approach through quadratic programming

In this section the extraction problem in the known-mean case and in the unknown-mean case
are uni�ed into a single optimization framework called quadratic programming. This opens a
lead to eventually use wide array of numerical solvers designed for this type of problems in order
to tackle the optimization tasks arising from the computation of the BLUP of a signal.

Quadratic programs (QP) with equality constraints are stated as follows (Nocedal and
Wright, 2006; Sun and Yuan, 2006). Let Q be a symmetric matrix of size N , d 2 RN and
E 2 M M;N (R), e 2 RM for someM � 0. We aim at �nding x � 2 RN satisfying:

x � = argmin
x 2 R N

f opt (x ) =
1
2

x T Qx � x T d

subject to Ex = e
: (4.36)

The equation Ex = e imposes a set ofM linear equations, called equality constraints, that
must be satis�ed by the solution x � of the problem. In particular, if M = 0 , no constraints are
imposed while searching for a minimum off opt (i.e. E and e are not de�ned) and Problem 4.36
is called unconstrained QP problem. If the matrix Q is positive semide�nite (resp. de�nite),
Problem 4.36 is called a convex QP (resp. strictly convex QP) as the functionf opt to minimize
is convex (resp. strictly convex).

Clearly, as stated in Section 4.3.2, the solutionx � of the linear system that arises from the
extraction of a known-mean signal is the solution of an unconstrained strictly convex QP de�ned
by the matrix Q = K and the vector d = b.

In the case where the signal to be extracted is of unknown mean, the following proposition
shows that the linear system can also be seen as a strictly convex QP, but now with an equality
constraint.

Proposition 4.5.1. Let ~x � be the solution of the linear system of Equation(4.33), where the
matrix ~K and the vector~b are de�ned in Equation (4.32).
Then ~x � can be decomposed as~x � = ( ( x � )T j� )T where:

x � = argmin
x 2 R n K

f opt (x ) =
1
2

x T Kx � x T b

subject to (M ov)T x = 0
; (4.37)
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and

� =
(M ov)T (b � Kx � )

kM ovk2
2

; (4.38)

where K and b are de�ned in Equation (4.22) (with m = 0 ).

Proof. Let N = nK . Let ~x � be decomposed as~x � = ( bx T ; � )T for some bx 2 RN and
� 2 R. Let us show that bx = x � and that � satis�es Equation (4.38).

Note that the equation ~K ~x = ~b implies that bx and � must satisfy

K bx + � M ov = b and (M ov)T bx = 0 : (4.39)

In particular, by denoting L the function de�ned on RN � R by

L (y ; � ) =
1
2

y T Ky � y T b + � (M ov)T y ; y 2 RN ; � 2 R ;

we get from Equation (4.39) that r h( bx ; � ) = 0 and therefore (x; � ) is a stationary point of
L . Noticing now that L is actually the Lagrangian function of the constrained minimization
problem of Equation (4.37), for which � plays the role of a Lagrange multiplier, we get that
bx = x � .

The expression of� with respect to bx = x � follows from Equation (4.39) implying that
(M ov)T (Kx � + � M ov) = ( M ov)T b, which gives the result.

Consequently, solving the linear system arising from the extraction of a signal with unknown
mean can e�ectively be replaced by solving a strictly convex QP, de�ned by Equation (4.37)
with a single equality constraint. This QP is actually the same QP as the one arising in the
known mean case, but with an equality constraint.

Circling back to our matrix-free requirement, note that, for either one of the QPs presented
in this section, a routine that evaluates the objective function f opt or its gradient r f opt can
easily be derived from a routineprodK that computes the product by K and would require a
single call to prodK . Solving these QPs can actually be done by calling any optimization solver
designed for quadratic (or more generally non-linear) problems that takes as an input routines to
evaluate the objective function, its gradient and the constraint. This is the case for most of the
implementation of these methods (Nocedal and Wright, 2006; Saad, 2003). The only constraint
that we should keep in mind is to restrict the number of evaluations of the objective function
and its gradient that the solver performs at each iteration.

Implementations of such solvers are available in the R packagesnloptr (Ypma, 2018) and
mize (Melville, 2019). Studying the characteristics and performances of the myriad of non-linear
solvers that exist today exceeds the scope of this work. However, it represents an actual lead to
�nd a solver that would perform better than the descent algorithms that we currently use.

Conclusion

In this chapter, the problem of predicting or extracting a SGS from its noisy observation was
tackled. In particular, the noises considered were either composed of uncorrelated elements
a�ecting each observation, or were a sum of linear transformations of independent stationary
signals. The predictors presented were directly inspired from the kriging predictors common in
Geostatistics, and are the best linear unbiased predictors.

We proposed algorithms to compute these predictors in a matrix-free approach while once
again relying on the Chebyshev �ltering algorithm. These algorithms all come down to solving an
optimization problem, and the associated solving methods were presented. Finally, the prediction
problems of this chapter were formulated as quadratic programming problems, thus expanding
the possible means of solving the associated optimization problems.
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Résumé
Nous nous intéressons maintenant au même problème d'estimation que dans le chapitre

précédent, mais sans supposer cette fois que la covariance du signal est connue. Il s'agit donc
d'inférer les propriétés statistiques d'un signal partiellement observé et bruité, tout en l'estimant.
Nous présentons deux approches basées sur une maximisation de vraisemblance: la première
consiste à maximiser directement la vraisemblance en utilisant sa forme analytique, la seconde
fait recours à l'algorithme EM (�Expectation-Maximization�).

Introduction

Starting from the formalism of Section 4.1, let us assume that a zero-mean stationary SGS
Z 2 Rn with respect to a shift operator S and with spectral density f , is observed through a
realization zo 2 Rd of an observation processZ o 2 Rd de�ned by

Z o = M oZ + � W o ; (5.1)

where M o 2 M d;n (R) is the observation matrix of the process,� � 0 is the variance parameter
and W o 2 Rd is a vector with d independent standard Gaussian entries.

We assume that the only known quantities of the problem are the observation matrixM o

and of course the observation vectorzo. This section aims at providing an algorithm designed
to predict conjointly the remaining quantities, namely S, f , � and z, where z is the realization
of Z that gave rise to zo, i.e

zo = M oz + � wo ;

for some realizationwo of W o.
Chapter 4 provides a framework and algorithms for the case where the only quantity to

estimate is z. We now add to the unknowns of the problem the elementsS, f , � characterizing
the Gaussian distribution followed by Z . Let us assume that these elements are parametrized
by the entries of a vector � 2 RN P , where NP � 1. This means that the estimators of S, f ,
� will be chosen from families of matrices, functions and real numbers parametrized by� . We
denote by S� , f � , � � the members of these families associated with the vector of parameters� .

In this chapter we investigate two solutions to this inference problem, both based on the
maximization of the likelihood of the observed data. On one hand, the direct maximization of
this likelihood, through its analytical expression, is exposed. Then, an approach based on the
maximization of surrogate but more easily computable function is presented. It is based on the
Expectation-Maximization algorithm (Dempster et al., 1977). Finally, the particular case where
the shift operator is assumed to be known is looked into, as it yields several simpli�cations that
lighten the overall computational and storage costs of the inference process.

5.1 Inference by direct likelihood maximization

5.1.1 Principle of the direct likelihood maximization approach

Our starting point is that following Equation (5.1), Z o follows a Gaussian distribution with
mean 0 and covariance matrix � given by

� = M of (S)M T
o + � 2I d : (5.2)

Hence, for a set of parameters� 2 RN P , we denote by� � the covariance matrix that Z o would
have had if its distribution were speci�ed by S� , f � , � � instead of S, f , � :

� � = M of � (S� )M T
o + � 2

� I d : (5.3)

Then, the log-likelihood L(� ; zo) of � given zo, which is de�ned as the evaluation of the log of
the distribution function of Z o at Z o = zo, under the assumption that its is de�ned through S� ,
f � , � � , can be expressed as

L(� ; zo) = log � � (Z o = zo) = �
1
2

�
log j� � j + zT

o � � 1
� zo + d log 2�

�
: (5.4)
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A maximum likelihood approach consists in maximizing Equation (5.4) for � . Finding an
analytical expression for the maximum seems unlikely. Hence we have to rely on a generic
optimization algorithm. Such algorithms require to be able to at least evaluateL(� ; zo) for any
� , or even better, to compute its gradient and Hessian matrix (Nocedal and Wright, 2006). In
the next subsections, we focus on the evaluation of the likelihood functionL(� ; zo) for any � , as
it is the base of many optimization algorithms and can then be used to approximate gradients
and Hessian matrices through for instance �nite di�erence approaches (Nocedal and Wright,
2006).

5.1.2 Evaluation of the likelihood function: the covariance approach

The sole evaluation ofL (� ; zo) requires to compute the log-determinant of� � and the quadratic
term zT

o � � 1
� zo. This should once again be done in a matrix-free approach, given that building

� � is out of the question (as it involves once again to build a graph �lter).
The product between � � and any vector v 2 Rd is given by � � v = M T

o (f � (S� )M ov) + � 2
� v

and is computable in three steps: �rst the vector v0 = M ov is formed, then the product y =
f � (S� )v0 is calculated using Chebyshev �ltering and �nally the vector M T

o y + � 2
� v is returned.

This way, the matrix � � , and in fact any other matrix except M o and S� , need not to actually
be formed to compute� � v. This is in accordance with the matrix-free framework in which we
work.

In order to evaluate the log-determinant in Equation (5.4), the matrix � � , which is symmet-
ric and positive de�nite, is seen as shift operator. Notice then that, consequently to Proposi-
tion 2.3.2, its log-determinant can be written as

log j� � j = Trace(log( � � )) ;

and corresponds therefore to the trace of the graph �lter log(� � ). Algorithm 2.8 can therefore
yield an estimate of log j� � j based on the Chebyshev �ltering of a prede�ned number of white
signals by the �lter log(� � ). In particular, only products between � � and vectors of Rd are
required to calculate this estimate.

In order to use Chebyshev �ltering with � � as shift operator, bounds on its eigenvalues must
be known. However in this case, the shift operator is not explicitly formed: only its products
with vectors are. The following proposition provides an estimate of these bounds in function
of � � , f , and the extremal eigenvalues ofM T

o M o and S� , which can be computed with more
classical approaches using for instance Theorem 2.2.2.

Proposition 5.1.1. Let n; d � 1. Let f : R+ 7! R�
+ , � > 0 and let S 2 M n (R) be symmetric.

For an observation matrix M o 2 M d;n (R), we denote by� the matrix de�ned by Equation (5.2).
Then,

� max (� ) � � 2 + � max (M T
o M o) max

� 2 [� min (S ) ;� max (S )]
f (� )

and
� min (� ) � � 2 + � min (M T

o M o) min
� 2 [� min (S ) ;� max (S )]

f (� ) ;

where � max (�) (resp. � min (�)) denotes the largest (resp. lowest) eigenvalue of a matrix.

Proof. See Appendix C.3.

The computation of the quadratic term is then performed in two steps. First, the linear
system

� x � = zo

is solved forx � , and then the quadratic term is given by zT
o � � 1

� zo = zT
o x � . Following from the

approach outlined for the log-determinant, x � can be computed using the results of Section 2.3.4
on the graph �lter Id( � � ), whereId denotes the identity map of R. Hencex � would be computed
by �ltering zo with the graph �lter h(� � ), where of courseh : x 7! 1=x. Once again only products
between� � would be needed.

A second approach to computex � consists in noticing that the linear system it satis�es
actually corresponds to the linear system in Equation (4.24) which is solved to compute the
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kriging estimate of Proposition 4.1.1 using the approach outlined in Section 4.3. The steepest
gradient or the conjugate gradient algorithm can therefore be used to solve it in a matrix-free
approach, and therefore yieldx � .

Algorithm 5.1: Covariance approach to the evaluation of the likehood function.

Input: Parameter vector � 2 RN P . A routine prod � (� ; v) that computes the product
� � v for � � de�ned in Equation (5.3) and v 2 Rd.

Output: An estimate of L (� ; zo) as de�ned in Equation (5.4).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compute the bounds on the eigenvalues of� � that are given by Proposition 5.1.1 ;
Compute log j� � j using Algorithm 2.8 on the graph �lter with shift operator � � and
transfer function x 7! log(x) ;

Compute x � = � �
� zo using:

� Either the steepest gradient or the conjugate gradient algorithms described in Algorithms
4.3 and 4.4.

� Or Chebyshev �ltering to compute the product h(� � )zo where h : x 7! 1=x.

Return L(� ; zo) = � 1
2

�
log j� � j + zT

o x � + d log 2�
�
.

Algorithm 5.1 sums up the method used to evaluate the likelihood of a particular parameter
vector � . Plugging this function into an optimization algorithm that only requires evaluation of
the objective function will then yield the parameters � � that actually maximizes L(� ; zo). Ex-
amples of such algorithms include the Nelder�Meade algorithm which only relies on evaluations
of the objective function, or gradient descent algorithms for which the gradients are numerically
approximated from function evaluations (Press et al., 2007).

It is hard to predict in advance the number of evaluations of the likelihood function that will
be necessary to �nd the maximum. In this regard, its cost of evaluation should be reduced at a
minimum. However, in Algorithm 5.1, each evaluation requires numerous products between the
covariance matrix � � and vectors in order to compute both the determinant and the solution
of the linear system. Each one of these products may be quite costly as it involves a Chebyshev
�ltering step.

5.1.3 Evaluation of the likelihood function: the precision approach

In an attempt to save some computing time, an idea consists in working directly with the
precision matrix Q � = � � 1

� instead of the covariance matrix� � . Indeed, the likelihood L(� ; zo)
to maximize can be expressed in function ofQ � as

L(� ; zo) = �
1
2

�
� log jQ � j + zT

o Q � zo + d log 2�
�

: (5.5)

So following, the same reasoning that led to Algorithm 5.1, evaluatingL(� ; zo) could be done
while relying only on products between Q � and vectors. To do so, an expression ofQ � as a
function of the parametrized objects f � , S� and � � must be derived. Ideally, this expression
should be di�erent than simply taking Q � = � � 1

� =
�
M of � (S� )M T

o + � 2
� I d

� � 1
as otherwise,

we retrieve Algorithm 5.1.

Following from the proof of Proposition 4.1.1, we recall that the joint distribution of the
vectors Z and Z o, now under a parameter � , is actually that of a zero-mean Gaussian vector
whose covariance matrix e� � can be expressed with respect to� � (cf. Equation (C.1)):

e� � =

0

@ f � (S� ) f � (S� )M T
o

M of � (S� ) � �

1

A =

0

@I n

M o I d

1

A

0

@f � (S� )

� 2
� I d

1

A

0

@I n M T
o

I d

1

A : (5.6)



5.1. Inference by direct likelihood maximization 103

The inverse of this matrix, denoted by eQ � , is then given by

eQ � =

0

@I n � M T
o

I d

1

A

0

@(1=f � )(S� )

� � 2
� I d

1

A

0

@I n

M o I d

1

A

=

0

@(1=f � )(S� ) + � � 2
� M T

o M o � � � 2
� M T

o

� � � 2
� M o � � 2

� I d

1

A :

(5.7)

Hence, the inverse of� � , which is Q � , can be expressed using a Schur complement ofeQ � (cf.
Equation (A.6)) as

Q � = � � 1
� = � � 2

�

�
I d � � � 2

� M o
bQ � 1

� M T
o

�
;

where bQ � is the matrix de�ned by

bQ � := (1 =f � )(S� ) + � � 2
� M T

o M o : (5.8)

The quadratic term x T Q � x in Equation (5.5) therefore involves the resolution of a linear system
in bQ � and can therefore be computed using the same approach as the one derived for the
computation of the quadratic term in Algorithm 5.1.

As for the log-determinant of Q � that appears in Equation (5.5), given that j eQ � j = j(1=f � )(S� )j�
j� � 2

� I d j, it satis�es (cf. Equation (A.7))

log jQ � j = � 2d log � � + log j(1=f � )(S� )j � log j bQ � j :

In this expression, the term log j(1=f � )(S� )j is the log-determinant of a graph �lter de�ned
through the shift operator S� and can therefore be computed using the results of Section 2.3.3
using a method requiring only products betweenS� and vectors.

The term log j bQ � j can be computed using the same approach as the one outlined for the
computation of log j� � j in Algorithm 5.1, thus requiring products between the matrix bQ � and
vectors. The next proposition gives an estimate of the eigenvalue bounds ofbQ � needed to use
this approach, which is summarized in Algorithm 5.2.

Proposition 5.1.2. Let n; d � 1. Let f : R+ 7! R�
+ , � > 0 and let S 2 M n (R) be symmetric.

For an observation matrix M o 2 M d;n (R), we denote by bQ the matrix de�ned by

bQ := (1 =f )(S) + � � 2M T
o M o :

Then,

� max ( bQ) � � � 2� max (M T
o M o) + max

� 2 [� min (S ) ;� max (S )]

1
f (� )

and
� min ( bQ) � � � 2� min (M T

o M o) + min
� 2 [� min (S ) ;� max (S )]

1
f (� )

;

where � max (�) (resp. � min (�)) denotes the largest (resp. lowest) eigenvalue of a matrix.

Proof. The proof of Proposition 5.1.1 can be directly adapted to prove this result.

Algorithms 5.1 and 5.2 both propose a similar approach to the evaluation of the likelihood
function. They both rely on the computation of the log-determinant and on the resolution of a
linear system involving a matrix (either � � or bQ � ) that is not sparse a priori and whose products
with a vector require to perform Chebyshev �ltering operations. In one case, the approximated
function is f � (for Algorithm 5.1) and in the other case it is (1=f � ) (for Algorithm 5.2). Hence,
the choice between both algorithms should be made based on which one off � or (1=f � ) requires
less polynomials to be approximated by a Chebyshev series. This will ensure that we minimize
the cost of evaluation of the likelihood function and therefore the cost of the overall minimization
process.
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Algorithm 5.2: Precision approach to the evaluation of the likehood function.

Input: Parameter vector � 2 RN P . A routine prod bQ (� ; v) that computes the product
bQ � v for bQ � de�ned in Equation (5.8) and v 2 Rd.

Output: An estimate of L (� ; zo) as de�ned in Equation (5.5).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compute log j(1=f � )(S� )j using an algorithm from Section 2.3.3;
Compute the bounds on the eigenvalues ofbQ � that are given by Proposition 5.1.2 ;
Compute log j bQ � j using Algorithm 2.8 on the graph �lter with shift operator bQ � and
transfer function x 7! log(x) ;

Compute x � = bQ � 1
� M T

o zo using:

� Either the steepest gradient or the conjugate gradient algorithms described in
Algorithms 4.3 and 4.4.

� Or Chebyshev �ltering to compute the product h( bQ � )M T
o zo where h : x 7! 1=x.

Compute the quantity q corresponding to the quadratic term:

q = � � 2
�

�
zT

o zo � � � 2
� (M T

o zo)T x � �
:

Return L(� ; zo) = � 1
2

�
2d log � � � log j(1=f � )(S� )j + log j bQ � j + q � d log 2�

�
.

5.2 Inference using the Expectation-Maximization approach

We now propose an alternative to the direct maximization of the �hard-to-evaluate" likelihood
function that is based on the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).

5.2.1 Formulation of the EM algorithm for SGS inference

Given a parameter vector � , recall that the associated joint distribution of (Z ; Z o) is that of a
zero-mean Gaussian vector with covariance matrix given bye� � . In particular, the log-likelihood
of � given now a couple(Z = � ; Z o = zo) with � 2 Rn would therefore be

eL(� ; � ; zo) = log � � (Z = � ; Z o = zo)

= �
1
2

0

B
@log j e� � j +

0

@�

zo

1

A

T

e� � 1
�

0

@�

zo

1

A + ( n + d) log 2�

1

C
A ;

(5.9)

where e� � is given by Equation (5.6). This equation can be rewritten with respect to eQ � = e� � 1
� ,

the precision matrix of (Z ; Z o) under the set of parameters� :

eL (� ; � ; zo) = �
1
2

0

B
@� log j eQ � j +

0

@�

zo

1

A

T

eQ �

0

@�

zo

1

A + ( n + d) log 2�

1

C
A ; (5.10)

where eQ � is given by Equation (5.6), and satis�es in particular

log j eQ � j = � 2d log � � + log j(1=f � )(S� )j : (5.11)

Hence the likelihoodeL(� ; � ; zo) de�ned in Equation (5.10) is way cheaper to compute than its
counterpart L (� ; zo) of Equation (5.4). Indeed, computing the log-determinant in eL(� ; � ; zo)
through Equation (5.11) requires mainly to compute the log-determinant of the graph �lter
de�ned through the shift operator S� . Using Chebyshev �ltering to estimate this quantity
with the methods presented in Section 2.3.3, it requires only products betweenS� , which is
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generally sparse1, and vectors. In comparison, computing the log-determinant in Equation (5.4)
(resp. Equation (5.5)) required products between� � (resp. bQ � ), and therefore f � (S� ) (resp.
(1=f � )(S� )), and vectors.

As for the quadratic term in eL(� ; � ; zo), it is computed with the cost of basically a Chebyshev
�ltering operation with S� . Comparatively, the quadratic term in the expression of L (� ; zo)
requires to solve a linear system de�ned by� � (or bQ � ). This property is particularly interesting
when considering Markovian models. In this setting, conditional independence relations are
imposed between the entries of the modeled signal, which results in its precision matrix being
sparse (Rue and Held, 2005). In particular, models can easily be retrieved by imposing that
1=f � is a low-degree polynomial.

The idea of the EM algorithm is to replace the maximization of L (� ; zo) with the maxi-
mization of an objective function de�ned through L(� ; � ; zo) and which is hoped to be easier to
compute. To do so, note that the log-likelihoodL(� ; zo) = log � � (Z o = zo) can be expressed as
the log of a marginal distribution of the joint distribution of (Z o; Z ), and so,

L (� ; zo) = log
Z

� � (Z = � ; Z o = zo)d� = log
Z

exp eL(� ; � ; zo)d� :

The EM algorithm leverages this expression to maximizeL(� ; zo) through an iterative approach.
A sequencef � (k ) gk � 0 converging to a local maximum ofL(� ; zo) is generated through a recur-
rence that comprises two steps

� Expectation step: Find an expression for the expectation functionE � ( k ) de�ned by

E � ( k ) : � 7! E
h

eL(� ; Z � ( k ) ; zo)
i

where Z � ( k ) = [ Z jZ o = zo ; � (k ) ] : (5.12)

� Maximization step: Maximize the expectation function E � ( k ) :

� (k+1) = argmax
� 2 RN P

E � ( k ) (� ) : (5.13)

Basically, to compute the value of the expectation functionE � ( k ) at some� , the observed data
Z o = zo are completed with a vectorZ = Z � ( k ) that is drawn from the conditional distribution
of Z given Z o = zo and under the current estimate � (k ) of the maximum. Then, E � ( k ) (� ) is
de�ned as the �average� over all completion vectors Z � ( k ) drawn this way, of the log-likelihood
of � with respect to the completed pair (Z = Z � ( k ) ; Z o = zo).

In the next two subsections, we show two ways of performing the Expectation step of the
EM algorithm in our particular inference problem.

5.2.2 EM by trace approximation

First; note that Proposition 4.1.1 actually gives the distribution of Z � ( k ) :

Z � ( k ) = [ Z jZ o = zo ; � (k ) ] � N
�

� � 2
� ( k )

bQ � 1
� ( k ) M

T
o zo; bQ � 1

� ( k )

�
; (5.14)

where bQ � ( k ) is once again the matrix de�ned in Equation (5.8), but with � = � (k ) . We now
derive the expression ofE � ( k ) (� ) from this observation. First, note that using the linearity of
the expectation, we have

E � ( k ) (� ) = �
1
2

�
� log j eQ � j +

�
E

h
Z T

� ( k )
bQ � Z � ( k )

i
�

2
� 2

�
zT

o M oE[Z � ( k ) ] +
1
� 2

�
zT

o zo

��
+ C ;

where C is a constant. Note then that, following Proposition A.3.5, we have

E[(Z � ( k ) )T bQ � Z � ( k ) ] = Trace( bQ � Var[Z � ( k ) ]) + E[Z � ( k ) ]T bQ � E[Z � ( k ) ] :

1Recall indeed that S� is supposed to be a shift operator, and as such its sparsity pattern is directly linked
to the amount of �connections� in the graph it represents. In many real-world applications, and in particular in
the ones that will be presented in this work, these graphs are sparsely connected, and therefore yield sparse shift
operators.
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Injecting this relation in the previous equation then gives,

E � ( k ) (� ) = �
1
2

�
� log j eQ � j + Trace( bQ �

bQ � 1
� ( k ) ) + � T

� ( k )
bQ � � � ( k )

�
2
� 2

�
zT

o M o� � ( k ) +
1
� 2

�
zT

o zo

�
+ C ;

(5.15)

where, following Equation (5.14),

� � ( k ) := E[Z � ( k ) ] = � � 2
� ( k )

bQ � 1
� ( k ) M

T
o zo :

Thus, the steps of the EM algorithm come down to the computation of a sequence of pa-
rameters vectors � (0) ; � (1) ; : : : through the recurrence relation of the maximization step, i.e.
Equation (5.13), where E � ( k ) (� ) is given by Equation (5.15). In particular, by removing all
constant terms and all additive terms that do not depend on � in Equation (5.15), and using
Equation (5.11), we get the following equivalent formulation of the recurrence relation:

� (k+1) = argmin
� 2 RN P

�
Trace( bQ �

bQ � 1
� ( k ) ) + � T

� ( k )
bQ � � � ( k ) +

1
� 2

�
zT

o (zo � 2M o� � ( k ) )

+2d log � � � log j(1=f � )(S� )j
�

;

(5.16)

where � � ( k ) does not depend on� and can therefore be computed once and for all prior to the
minimization process of Equation (5.16), and so be used at each evaluation of the objective
function.

Evaluating the objective function in Equation (5.16) for a particular � requires mainly to:

� Compute the log-determinant log j(1=f � )(S� )j = � log jf � (S� )j which is done through
Equation (5.11) and involves a limited number of Chebyshev �ltering operations with
S� .

� Compute the quadratic term � T
� ( k )

bQ � � � ( k ) , which requires a single product betweenbQ �

and � � ( k ) , as � � ( k ) is computed and stored once and for all. Hence, the cost of this
operation is basically that of a single Chebyshev �ltering operation with S� .

� Compute the trace term Trace( bQ �
bQ � 1

� ( k ) ).

The trace term in Equation (5.16) poses a problem. Indeed, as building the matricesbQ � and
bQ � ( k ) is out of the question, this term should be approximated using an approach similar to the
one outlined for the trace of graph �lters (cf. Section 2.3.1). Indeed, we can for instance write

Trace( bQ �
bQ � 1

� ( k ) ) = E[W T bQ �
bQ � 1

� ( k ) W ] = E[( bQ � W )T bQ � 1
� ( k ) W ] ; (5.17)

whereW is a zero-mean random vector with covariance matrixI n (cf. Proposition A.3.5). This
term can therefore be approximated using a Monte-Carlo estimate, similarly to what was done
for the trace of graph �lters in Section 2.3.1. Precisely, if w (1) ; : : : ; w (N ) denote N realizations
of W , then we write

Trace( bQ �
bQ � 1

� ( k ) ) �
1
N

NX

i =1

�
bQ � w ( i )

� T
bQ � 1

� ( k ) w
( i ) : (5.18)

In practice, as in Section 2.3.1, the entries ofW are independent and identically distributed
variables following either a Gaussian or a Rademacher distribution. Hence the same conclusions
regarding the link between the sample sizeN and the approximation accuracy can be extended
to this case.

Computing the approximation in Equation (5.18) then requires to:

� Compute N products between bQ � and a vector: as seen earlier, such products amount to
the cost of a Chebyshev �ltering operation with shift operator S� (and transfer function
(1=f � )).
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� Solving N linear system de�ned by the matrix bQ � ( k ) : this can be done using a descent
algorithm (or eventually a Chebyshev �ltering operation with shift operator bQ � ( k ) and
transfer function � 7! 1=� ).

When solving the minimization problem of Equation (5.16), given that the objective function
is evaluated several times, several evaluations of the trace term are performed for a �xed value of
� (k ) but varying values of � . In this case, we can actually reuse the solutions of the linear system
from one evaluation to the other as they depend only on� (k ) . Hence, they can be computed once
and for all at the beginning of the minimization process, thus reducing the cost of evaluating
the trace term to that of performing the products between bQ � and vectors. Algorithm 5.3
summarizes this approach of likelihood maximization by EM.

Algorithm 5.3: EM algorithm for likelihood maximization by trace approximations.
Input: An observation vector zo from a process de�ned by Equation (5.1).
Families of spectral densitiesf f � g� , variance parametersf � � g� and shift operators
f S� g� parametrized by the same parameter vector� 2 RN P .
An initial guess of parameter vector � (0) .
Output: An estimate of the parameter vector maximizing the likelihood givenzo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k = 0 ;
while Convergence is not achieveddo

� Expectation step
Compute � � ( k ) = � � 2

� ( k )
bQ � 1

� ( k ) M T
o zo (where bQ � 1

� ( k ) is de�ned in Equation (5.8)) using a
descent algorithm (cf. Algorithm 4.3 or 4.4) ;
for i = 1 ; : : : ; N do

Generate and store a vectorw ( i ) 2 Rn with independent zero-mean and
unit-variance entries ;
Compute and storex ( i ) = bQ � 1

� ( k ) w ( i ) using a descent algorithm (cf. Algorithm 4.3
or 4.4) ;

� Maximization step
Solve the following minimization problem (using a general-purpose optimization
algorithm):

� (k+1) = argmin
� 2 RN P

�
1
N

NX

i =1

�
x ( i )

� T
bQ � w ( i ) + � T

� ( k )
bQ � � � ( k ) +

1
� 2

�
zT

o (zo � 2M o� � ( k ) )

+2d log � � � log j(1=f � )(S� )j
�

:

k  k + 1 ;

Return � (k ) .

Each iteration of Algorithm 5.3 can be decomposed into two steps:

� A preprocessing step that amounts to generate and storeN random n-vectors, solving
N + 1 linear systems involving bQ � ( k ) and storing the results (which are n-vectors). Note
that each product between bQ � ( k ) and a vector involves a Chebyshev �ltering operation and
that a total of 2N + 1 n-vectors need to be stored.

� An optimization step that consists in minimizing a function whose evaluation amounts to
N + 1 products between bQ � and vectors and a Chebyshev �ltering operation.

The memory requirements of Algorithm 5.3 can be reduced by using a di�erent approach to
the approximation of the trace term Trace( bQ �

bQ � 1
� ( k ) ) than the one presented in Equation (5.18).

Indeed, following Proposition A.4.11, we have

Cov[W T bQ � W ; W T bQ � 1
� ( k ) W ] = 2Trace( bQ �

bQ � 1
� ( k ) ) ;
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whereW is a zero-meanGaussianvector with covariance matrix I n . Using once again a Monte-
Carlo estimate, the trace term can therefore be approximated using a sequencew (1) ; : : : ; w (N )

of N independent realizations ofW as the sample covariance of the set of pairs

n�
(w ( i ) )T bQ � w ( i ) ; (w ( i ) )T bQ � 1

� ( k ) w
( i )

�o

i 2 [[1;N ]]
:

Hence,

Trace( bQ �
bQ � 1

� ( k ) ) �
1

2(N � 1)

NX

i =1

�
t ( i )
� � �t �

� �
s( i )

� ( k ) � �s� ( k )

�
=

1
2(N � 1)

NX

i =1

t ( i )
�

�
s( i )

� ( k ) � �s� ( k )

�

(5.19)
where on one hand,

t ( i )
� = ( w ( i ) )T bQ � w ( i ) and �t � =

1
N

NX

i =1

t ( i )
� ;

and on the other hand,

s( i )
� ( k ) = ( w ( i ) )T bQ � 1

� ( k ) w
( i ) and �s� ( k ) =

1
N

NX

i =1

s( i )
� ( k ) :

Computing the approximation in Equation (5.19) now requires to

� Compute t ( i )
� for i 2 [[1; N ]] by computing a product between between bQ � and a vector

(this be done for the cost of a Chebyshev �ltering operation).

� Compute s( i )
� ( k ) for i 2 [[1; N ]] by solving a linear system de�ned by bQ � ( k ) and can be done

using for instance a descent algorithm.

The computational cost associated with this trace approximation is therefore basically the same
as the cost associated with the previous one (in Equation (5.18)). The di�erence between them
is in the quantities which are stored when several evaluations of the trace term are performed
for a �xed value of � (k ) but varying values of � . In this case, note that we can now reuse the
coe�cients s( i )

� ( k ) , which only depend on� (k ) . Hence, they can be computed once and for all at
the beginning of the minimization process, thus reducing the cost of evaluating the trace term
to that of computing the coe�cients t ( i )

� . Algorithm 5.4 summarizes this approach of likelihood
maximization by EM.

Each iteration of Algorithm 5.4 can be decomposed into two steps:

� A preprocessing step that amounts to generate and storeN random n-vectors, solving
N + 1 linear systems involving bQ � ( k ) and storing one of these solutions andN + 1 scalar
values. Hence, we need to storeN lessn-vectors compared to Algorithm 5.3.

� An optimization step that consists in minimizing a function whose evaluation amounts to
N + 1 products between bQ � and vectors and a Chebyshev �ltering operation.

Hence, for basically the same computational cost as Algorithm 5.3, Algorithm 5.4 allows to save
on the memory requirements by storing less vectors.

Let us quickly compare the direct maximization of L (� ; zo) through its evaluations with
Algorithm 5.1 with the minimization problem of Equation (5.16) induced by the EM approach.

On one hand, in Algorithms 5.3 and 5.4, heavy calculations requiring to solve a linear system
involving bQ � ( k ) , are precomputed once and for all so that the subsequent evaluations of the
objective function only require a limited number of Chebyshev �ltering operations with S� .
In comparison, when L(� ; zo) is directly maximized, such systems have to be solved at each
evaluation of the objective function.

On the other hand it should be noted that within the EM approach, an optimization problem
must be solved at each iteration whereas a single optimization problem is solved in the likelihood
approach.
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Algorithm 5.4: Memory-saving EM algorithm for likelihood maximization by trace
approximations.

Input: An observation vector zo from a process de�ned by Equation (5.1).
Families of spectral densitiesf f � g� , variance parametersf � � g� and shift operators
f S� g� parametrized by the same parameter vector� 2 RN P .
An initial guess of parameter vector � (0) .
Output: An estimate of the parameter vector maximizing the likelihood givenzo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k = 0 ;
while Convergence is not achieveddo

� Expectation step
Compute � � ( k ) = � � 2

� ( k )
bQ � 1

� ( k ) M T
o zo (where bQ � 1

� ( k ) is de�ned in Equation (5.8)) using a
descent algorithm (cf. Algorithm 4.3 or 4.4) ;
for i = 1 ; : : : ; N do

Generate and store a vectorw ( i ) 2 Rn with independent zero-mean and
unit-variance entries ;
Compute x ( i ) = bQ � 1

� ( k ) w ( i ) using a descent algorithm (cf. Algorithm 4.3 or 4.4) ;

Store s( i )
� ( k ) = ( w ( i ) )T x ( i ) ;

Store �s� ( k ) = 1
N

P N
i =1 s( i )

� ( k ) ;

� Maximization step
Solve the following minimization problem (using a general purpose optimization
algorithm):

� (k+1) = argmin
� 2 RN P

�
1

2(N � 1)

NX

i =1

�
s( i )

� ( k ) � �s� ( k )

�
t ( i )
� + � T

� ( k )
bQ � � � ( k )

+
1
� 2

�
zT

o (zo � 2M o� � ( k ) ) + 2 d log � � � log j(1=f � )(S� )j
�

;

where t ( i )
� = ( w ( i ) )T bQ � w ( i ) . ;

k  k + 1 ;

Return � (k ) .

5.2.3 EM by conditional simulations

Starting from the formulation of the EM algorithm through its two steps, another approach can
be taken to maximize the expectation function. Indeed, a Monte-Carlo estimate can be used
to directly approximate E � ( k ) (� ) using a set of conditional simulations ofZ . The expectation
over [Z jzo ; � (k ) ] in E � ( k ) (� ) is then replaced by an average over a set of ofN realizations
z (1)

� ( k ) ; : : : ; z (N )
� ( k ) of this random vector, namely:

E � ( k ) (� ) = E
h

eL(� ; Z � ( k ) ; zo)
i

�
1
N

nX

i =1

eL(� ; z ( i )
� ( k ) ; zo) :

This approach was introduced by Wei and Tanner (1990) and is calledMonte-Carlo EM algo-
rithm .

Each conditional simulation z ( i )
� ( k ) is generated through Algorithm 4.2. They come at the

price of a Chebyshev �ltering operation with S� ( k ) (for the non-conditional simulation) and the
solving of a linear system involving bQ � ( k ) (for the conditioning through kriging). Note that the
conditional simulations can be precomputed during the expectation step as they only depend on
the parameter � (k ) , which is �xed during the maximization step. Then, the maximization step
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is reduced to the following optimization problem:

� (k+1) = argmin
� 2 RN P

�
1
� 2

�
zT

o (zo � 2M o �z � ( k ) ) +
1
N

nX

i =1

�
z ( i )

� ( k )

� T
bQ � z ( i )

� ( k )

+ 2d log � � � log j(1=f � )(S� )j
�

;

(5.20)

where �z � ( k ) denotes the mean of the conditional simulations:

�z � ( k ) =
1
N

nX

i =1

z ( i )
� ( k ) :

If the conditional simulations z (1)
� ( k ) ; : : : ; z (N )

� ( k ) are precomputed and stored, the evaluation of

the objective function in Equation (5.20) requires that of N quadratic forms de�ned by bQ � and
that of the log-determinant of the graph �lter (1=f � )(S� ). Algorithm 5.5 summarizes this new
formulation of the EM algorithm.

Algorithm 5.5: EM algorithm for likelihood maximization by conditional simulations.
Input: An observation vector zo from a process de�ned by Equation (5.1).
Families of spectral densitiesf f � g� , variance parametersf � � g� and shift operators
f S� g� parametrized by the same parameter vector� 2 RN P .
An initial guess of parameter vector � (0) .
Output: An estimate of the parameter vector maximizing the likelihood givenzo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k = 0 ;
while Convergence is not achieveddo

� Expectation step
for i = 1 ; : : : ; N do

Generate a vectorw 2 Rn with independent standard Gaussian entries ;
Compute a non-conditional simulation of Z under � (k ) by computing the vector
z0 =

p
f � ( k ) (S� ( k ) )w ;

Generate a vectorw 0
o 2 Rd with independent standard Gaussian entries ;

Compute the residual kriging estimate, which is the solutionx 0 of the linear
system x 0 = � � 2

� ( k )
bQ � 1

� ( k ) M T
o (zo � (M oz0+ � � ( k ) w 0

o)) , (where bQ � 1
� ( k ) is de�ned in

Equation (5.8)) using a descent algorithm (cf. Algorithm 4.3 or 4.4) ;

Store z ( i )
� ( k ) = z0+ x 0 ;

Store �z � ( k ) = 1
N

P N
i =1 z ( i )

� ( k ) ;

� Maximization step
Solve the following minimization problem (using a general purpose optimization
algorithm):

� (k+1) = argmin
� 2 RN P

�
1
� 2

�
zT

o (zo � 2M o �z � ( k ) ) +
1
N

nX

i =1

�
z ( i )

� ( k )

� T
bQ � z ( i )

� ( k )

+ 2d log � � � log j(1=f � )(S� )j
�

k  k + 1 ;

Return � (k ) .

Each iteration of Algorithm 5.5 can be decomposed into two steps:

� A preprocessing step that amounts to generate and storeN conditional simulations, and
therefore amounts toN Chebyshev �ltering operations with shift operator S� ( k ) and trans-
fer function

p
f � ( k ) ; and solving N linear systems de�ned by bQ � ( k ) . In total, we need to

store N + 1 n-vectors at this step.
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� An optimization step that consists in minimizing a function whose evaluation amounts to
N + 1 products between bQ � and vectors and a Chebyshev �ltering operation.

Hence, Algorithms 5.4 and 5.5 basically operate with the same computational complexity and
storage needs. One advantage of Algorithm 5.5 over Algorithm 5.4 would be that at each iteration
of the algorithm, we actually compute estimators of the underlying �eld Z given the data zo,
which are given by the conditional simulations and their average. Hence, in a context where the
ultimate goal is SGS estimation, the estimators are readily available each step of the way using
Algorithm 5.5.

5.3 Particular case: Inference with a known shift operator

In this section, we look into the particular case when the shift operator is �xed to a single value
and known value S, i.e. 8� ; S� = S. As we may see, several simpli�cations of the algorithms
introduced in the previous sections can be made to alleviate their computational and storage
costs.

5.3.1 General remark

Whenever the shift operator is �xed, the following trick can be used to lighten the computational
cost of the direct likelihood maximization relying on Algorithm 5.2 and Algorithms 5.3 to 5.5
based on the EM approach. Indeed, computational savings can be made for the evaluation
of the log-determinant term log j(1=f � )(S� )j = � log jf � (S� )j = log j(1=f � )(S)j = � log jf � (S)j
that appears systematically in the objective function of the associated optimization problems.

Following the method introduced in Section 2.3.3, we can compute the histogram of eigenval-
ues ofS once and for all using Algorithm 2.9, and use it as an additional input of Algorithms 5.2
to 5.5. Then, the log-determinant log j(1=f � )(S)j can be estimated for any f � using Equa-
tion (2.14), and therefore requiring only direct evaluation of a function on points of R. Hence,
the evaluation of the log-determinant would now require no graph �ltering operation at all, and
would in fact be totally inexpensive to compute compared to the other terms involved in the
objective function.

In particular, for the implementation of the EM approaches of Algorithms 5.3 to 5.5, using
this trick ensures that the cost of evaluation of the objective function in the optimization step
is reduced to that of a prede�ned number of quadratic forms de�ned by the matrix bQ � (given
in Equation (5.8)). This number is �xed by the user and corresponds to the degree of the
approximation of the Monte-Carlo estimates used in these implementations.

5.3.2 Particular case: Polynomial spectral densities

We still assume in this subsection that the shift operator S of Z is �xed and known, and we
aim at determining its spectral density f and the variance parameter of its observation process
� using parametrized families of both of them. We assume in particular in this section that
the spectral density f � , or rather its inverse, is chosen from a family of polynomial functions of
�xed degree and deduce desirable simpli�cation for the implementation of the EM approaches
of Algorithms 5.3 to 5.5.

For a vector parameter � = ( � 1; : : : ; � N P )T 2 RN p we therefore �x:

1
f �

=

 
N P � 1X

k=1

� k ~Tk � 1

! 2

and
1
� �

= e� N P ; (5.21)

where ~Tk � 1 denotes the(k � 1)-th Chebyshev polynomial, shifted on an interval containing the
eigenvalues ofS. Hence, we ensure that� � > 0 and that f � (S) de�nes a covariance matrix.

Remark 5.3.1. As mentioned earlier, taking 1=f � to be a (low-degree) polynomial is actually
equivalent to assuming an underlying Markovian model between the entries of the resulting
SGS. This hypothesis is not unusual when working with Gaussian vectors. Indeed, the spar-
sity of the resulting precision matrices of their discretization allows for instance fast sample
computations and likelihood computations (Rue and Held, 2005).
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Denote by p� the polynomial given by

p� =
N P � 1X

k=1

� k ~Tk � 1 :

Hence(1=f � ) = p2
� . Also, the matrix bQ � de�ned in Equation (5.8) and appearing in the expres-

sion of the objective functions of Algorithms 5.3 to 5.5 now writes

bQ � = p2
� (S� ) + � � 2

� M T
o M o =

 
N P � 1X

k=1

� k ~Tk � 1(S)

! 2

+ e2� N P M T
o M o :

Injecting Equation (5.21) in the expression of the objective functions of Algorithms 5.3 to 5.5
allows to actually derive an analytical expression for their gradients, and therefore to use for
instance descent algorithms without having to estimate the gradients from evaluations of the
function.

Indeed, note that these objective functions are the sum of four main types of terms: for
u ; v vectors independent of� , we have either quadratic terms of the formvT bQ � v, or the log-
determinant (1=f � )(S), or terms of the form � � 2

� u T v or the log of � � . Using the derivative
formulas by Petersen and Pedersen (2008), the gradient of these terms (with respect to� 2 RN p )
is then given by

r (vT bQ � v) = 2

0

B
B
B
B
B
@

vT ~T0(S)p� (S)v
...

vT ~TN P � 2(S)p� (S)v

� � 2
� vT M T

o M ov

1

C
C
C
C
C
A

;

r (� � 2
� u T v) = 2

0

B
B
B
B
B
@

0
...

0

� � 2
� u T v

1

C
C
C
C
C
A

; r (log � � ) =

0

B
B
B
B
B
@

0
...

0

� � N P

1

C
C
C
C
C
A

;

r (log j(1=f � )(S)j) = r (2 log jp� (S)j) = 2

0

B
B
B
B
B
@

Trace
� ~T0(S)p� (S) � 1

�

...

Trace
� ~TN P � 2(S)p� (S) � 1

�

0

1

C
C
C
C
C
A

:

Assuming that the trick of Section 5.3.1 is used, computing the gradientr (log j(1=f � )(S)j)
is as cheap as computinglog j(1=f � )(S)j. Indeed, simply note that the entries of this gradient
vector satisfy

8j 2 [[0; NP � 2]]; Trace
� ~Tj (S)p� (S) � 1�

=
nX

i =1

Tj

p�
(� i ) ;

where � 1; : : : ; � n denote the actual eigenvalues ofS. This last sum can be approximated using
the precomputed histogram of eigenvalues ofS in the same way as in Section 2.3.3. Hence, the
cost of computing the gradient of the objective function comes to that of evaluating the gradients
of the form r (vT bQ � v). Such gradients can easily by computed using two runs of the Chebyshev
�ltering with graph �lter p� (S) and the vector v:

� The �rst run is actually used to compute the product p� (S)v and involves exactly NP � 2
products between (a matrix as sparse as)S and vectors.

� For the second run, instead of using them to form the vectorp� (S)v, each product ~Tj (S)v,
0 � j � NP � 2, generated during the run is extracted and used to compute the(j + 1) -th
entry of r (vT bQ � v).
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Thus, computing the gradient of the objective function comes roughly at the cost of evaluating
the objective function twice. Hence, optimization algorithms for non-linear problems using the
gradient (or more generally �rst-order derivatives) of the objective function can easily be used
to tackle the optimization task of Algorithms 5.3 to 5.5. We can for instance cite the gradient
descent and the conjugate gradient algorithms who both �nd adaptation in the context of non-
linear problems (Bertsekas, 1997).

Conclusion

In this chapter, we introduced two classes of algorithms designed to perform inference based on
a noisy and partial observation of a stationary SGS. On one hand, the likelihood of the vector
of observations was directly maximized using an optimization algorithm. The main drawback
of this approach is the high cost associated with the evaluation of the objective function of the
optimization problem. That is why an approach based on the EM algorithm was introduced as
a possible alternative.

Three implementations of the EM algorithm were proposed. They all iterate two steps:
a preprocessing step involving a prede�ned number of linear systems to solve, followed by an
optimization step where the cost of evaluating the objective function was drastically reduced
when compared to the direct approach. Finally simpli�cations and computational tricks were
presented for the cases where the shift operator is assumed to be known, and when a Markov
model is assumed on the graph signals.

This chapter actually concludes the �rst part of our work: practical solutions for the simula-
tion, the estimation and the inference of SGSs have been introduced. Now that our algorithmic
toolbox is complete, we turn to the motivation of this work: working with non-stationary Gaus-
sian �elds and complex domains. The aim for the second part of this dissertation is to present
the framework and the results allowing to take on this challenge, and how they relate to the
graph signal processing framework.
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Résumé
Le but de ce chapitre est d'introduire des notions de géométrie di�érentielle et riemannienne

qui seront utilisées dans la suite du manuscrit. Il s'agit d'un mini-cours, basés sur plusieurs
ouvrages de référence, et cherchant à apporter au lecteur une bonne intuition sur ces sujets.

Introduction

Gaussian random �elds (GRF) are widely used to model spatially correlated data in environ-
mental and earth sciences Chilès and Del�ner (2012); Lantuéjoul (2013); Wackernagel (2013).
These data usually correspond to samples of a regionalized variablez, i.e. a variable de�ned on
a spatial domain. Following the geostatistical paradigm, this regionalized variable is modeled
in a probabilistic framework by a GRF: z is then seen as a particular realization of a GRFZ .
Rather than characterizing directly the features of the regionalized variablez from its samples,
the focus is set on deducing from these samples some features of the GRFZ . Conditioning
methods are then used to revert back to the data and honor them in some sense.

Working with GRFs capable of modeling truthfully the particularities of the spatial data at
hand is instrumental to the use of geostatistical methods. In some applications, these data can
be de�ned on complex spatial domains such as arbitrary surfaces of a three-dimensional space,
or showcase preferential directions of high correlation (also called anisotropy directions) that
change over the domain. In both cases, the GRFs used in the geostatistical models should re�ect
these particular features.

The objective of the second part of this dissertation is to provide a general framework that
can be used to de�ne GRFs that account for the complex geometric features listed above. This
framework is actually summarized by the title of this dissertation: �Generalized random �elds on
Riemannian manifolds�. The basic idea is to de�ne GRFs (or rather generalized random �elds)
on a mathematical object that allows to model both surfaces and local deformations on a spatial
domain (the so-called Riemannian manifold).

The outline of the second part of this dissertation is as follows.

� We �rst introduce the reader to basic notions of di�erential and Riemannian geometry
and to the central object they model: Riemannian manifolds. We show in particular
why Riemannian manifolds are suited to the modeling problem we are trying to tackle
(Chapter 6).

� Then, the framework allowing to work with (generalized) random �elds on Riemannian
manifolds is studied. We prove a theorem which links these �elds to stochastic graph sig-
nals, thus opening the way to work with them using the framework and the tools introduced
in the �rst part of this dissertation (Chapter 7).

� Next, this theorem is applied to derive �nite element approximations of the modeled non-
stationary �elds, similarly as what is proposed by (Lindgren et al., 2011), and the conver-
gence of this approximation is studied (Chapter 8).

� Finally, the power of this new framework is illustrated by applying it to practical problems
involving real and synthetic data (Chapter 9).

As mentioned above, this particular chapter aims at providing the reader with some basic
understanding of the notions of di�erential and Riemannian geometry used in this work. Several
concepts, such as the notions of orientability and connections were deliberately omitted in order
to focus the text on the key concepts that will actually be used in the next chapters. This
summary is intended to be self-su�cient and is a condensed version of textbooks on di�erential
and Riemannian geometry (listed hereafter).

For a more comprehensive understanding of the subject, the reader is referred to the books
used to write this chapter. For an introduction on di�erential geometry, see (Abraham et al.,
2012), (Lang, 2012), (Lee, 2012). For an introduction on Riemannian and spectral geometry, see
(Bérard, 2006), (Canzani, 2013), (Craioveanu et al., 2013),(Jost, 2008), (Lablée, 2015).
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6.1 Manifolds and di�erential geometry

6.1.1 Manifolds, charts, atlases and functions

A manifold M of dimension d � 1, also calledd-manifold, is a topological space such that:

� M is a Hausdor� space: 8p; q 2 M , there exists open subsetsUp ; Uq of M such that
p 2 Up , q 2 Uq and Up \ Uq = ; .

� M is second-countable, i.e. there exists a countable familyU = f Ui gi 2 N of open subsets
of M such that any open subsetU � M can be written as the union of a subfamily ofU.

� M is locally Euclidean of dimensiond: every p 2 M has a neighborhood homeomorphic
to an open set ofRd.

Assumption 6.1. All manifolds encountered in this work are assumed to be (topologically)
connected, i.e. they cannot be expressed as the disjoint union of two open sets.

Formally, for any point p 2 M there exists an open setUp containing p and there exists
� : Up ! bUp � Rn that maps Up towards a open subsetbUp of Rd, and such that � is continuous,
bijective and its inverse is also continuous (hence,� is a homeomorphism). Manifolds can be
seen as generalizations of the notions of curves and surfaces to higher dimensions. Each point of
a manifold can be seen as described by a set ofd �coordinates" given by its image through the
homeomorphism� .

Example 6.1.1. The simplest example of ad-manifold may be open domains ofRd. Indeed,
if B � Rd denotes an open domain ofRd, equipped with the same topology asRd, then the
three requirements that de�ne a manifold are clearly veri�ed by B . In particular, the identity
map de�nes a homeomorphism between any open neighborhood ofp 2 B and an open set of
Rd.

In particular, Rd itself but also open balls of Rd of any (strictly positive) radius are d-
manifolds.

Example 6.1.2. Let S2 denote the unit sphere ofR3 (equipped with its natural Euclidean
topology):

S2 = f p 2 R3 : kpk2 =
q

p2
1 + p2

2 + p2
3 = 1g :

S2 inherits a topology from R3: indeed, open sets ofS2 can be de�ned as intersections ofS2

with open sets ofR3. HenceS2 is second-countable asR3 is. Besides, with this topology, S2

is Hausdor�. Indeed, for any distinct points p; q 2 S2 we can �nd a small enough open ball of
R3 around each one of them such that the balls do not intersect. The open sets ofS2 de�ned
as the intersection of these balls withS then satisfy the Hausdor� property.

Now let p 2 S2 and consider the applications ;  0 de�ned over the open set

bU =] � �; � [� ] �
�
3

;
�
3

[

by:

 : (�; � ) 2 bU 7!

0

B
B
@

cos(� ) cos(� )

sin(� ) cos(� )

sin(� )

1

C
C
A ; ~ : (�; � ) 2 bU 7!

0

B
B
@

sin(� )

sin(� ) cos(� )

cos(� ) cos(� )

1

C
C
A :

 and ~ actually represent parametrizations of parts of a unit sphere using spherical coor-
dinates (cf. Figure 6.1). As such they de�ne two di�eomorphisms from open sets ofS2 that
cover S2, to open sets ofR2. This proves that S2 is locally Euclidean of dimension 2.
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Figure 6.1: Illustration of the two parametrizations of S2 de�ned on Example 6.1.2. The �gure
on the left corresponds to and the �gure on the right corresponds to ~ . Any point of S2 can

be retrieved by at least one of these di�eomorphisms.

Figure 6.2: Illustration of a transition map. Two subsets U� (in yellow) and U� (in blue) of a
manifold M and their intersection (in green) are represented.

More generally, if U is an open subset ofM and x : U ! Rd a homeomorphism that maps
U to an open subsetbU = x(U) of Rd, then the pair (U; x) is called acoordinate chart (or simply
chart). Following the de�nition of manifolds, any point p 2 M is contained in the domain
U of some coordinate chart (U; x): we then say that the chart (U; x) contains the point p.
In particular, the coordinate functions of x, denoted x = ( x1; : : : ; xd) and such that 8p 2 U,
x(p) = ( x1(p); : : : ; xd(p)) are called the local coordinateson U.

Let (U; x) and (U0; y) denote two charts such that U \ U0 6= ; . The application y � x � 1 :
U \ U0 ! Rd is called transition map (between U and U0): it can actually be interpreted as
an application turning local coordinates on U into local coordinates on U0, as illustrated in
Figure 6.2. Note that given that x and y are homeomorphisms, their associated transition
map y � x � 1 is also a homeomorphism, with inversex � y� 1. If besidesy � x � 1 and its inverse
are C k -di�erentiable, then by de�nition, y � x � 1 is a C k -di�eomorphism and the charts (U; x)
and (U0; y) are said to beC k -compatible. In particular, C1 -compatible charts are also called
smoothly compatiblecharts.

An atlas A is a collection of coordinate chartsA = f (U( � ) ; x ( � ) ) : � 2 I g of M indexed by
a set I and such that [ � 2 I U( � ) = M . An atlas is said to be C k -di�erentiable if 8�; � 2 I such
that U( � ) \ U( � ) 6= ; , the transition map x ( � ) � (x ( � ) ) � 1 is C k -di�erentiable. In particular, a C1 -
di�erentiable atlas is also called smooth atlas. Hence, aC k -di�erentiable (resp. smooth) atlas is
simply a collection of charts that are pairwiseC k -compatible (resp. smoothly compatible).
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Figure 6.3: Illustration of a coordinate representation of a function.

Example 6.1.3. Following the notations of Example 6.1.2, denotex =  � 1 and y = ~ � 1.
Let then U (resp. ~U) be the open subset ofS2 de�ned by U =  ( bU) (resp. U0 = ~ ( bU)). Then,
both (U; x) and (U0y) are charts of S2.
Besides,A = f (U; x); (U0; y)g de�nes an atlas of S2.

Two smooth atlasesA 1 and A 2 are compatible if their union A 1 [ A 2 is also a smooth atlas:
in particular, this means that any chart in A 1 is smoothly compatible with all charts in A 2 (and
vice-versa). One can check that atlas compatibility de�nes an equivalence relation.

Given some atlas of referenceA, let CA be an equivalence class for this relation that contains
A , i.e. CA is the set of all atlases that are compatible withA . Then all atlases inCA are included
inside a single smooth atlas, called maximal smooth atlas, and such that it contains any chart
that is smoothly compatible with all charts in A . The notion of smooth manifold is then de�ned
as the association(M ; A) of a manifold M with a maximal smooth atlas A (or equivalently its
equivalence class of compatible atlasesCA ). The notion of C k -di�erentiable manifold is de�ned
similarly, by considering collections ofC k -di�erentiable charts.

Let (M ; A) be a smoothd-manifold and let k � 1. A function f : M ! Rk is a smooth
function if for any chart (U; x) 2 A , the function f � x � 1, called coordinate representation of
f , is a smooth function of x(U) � Rd (cf. Figure 6.3). Of particular interest is the case where
k = 1 , i.e. f is real-valued. The set of real-valued smooth functions ofM is denotedC1 (M ).

6.1.2 Submanifolds of Rn

Let n � 1. Of particular interest in this thesis are (embedded) submanifolds ofRn , which are
subsets ofRn having the de�ning properties of a manifold. They are embedded inRn through the
inclusion map, meaning that the topology on submanifolds ofRn is actually the trace topology
of Rn . Hence, open sets of a submanifold ofRn are de�ned as the intersection of open sets of
Rn with the subset of Rn de�ning the submanifold.

Formally, for d � n, a d-submanifold of Rn is a subsetM � Rn such that 8p 2 M , there
exists an open neighborhood ofp, denoted V (p) � Rn and a di�eomorphism � : Rn ! Rn such
that

� (M \ V (p)) = � (V (p)) \
�
Rd � f 0n � dg

�

Therefore, � associates to any pointq 2 M \ V (p), a unique set ofd real values, which corre-
sponds to the �rst d entries of � (q) 2 Rn , the n� d remaining entries of thisn-vector being always
zero. The pair (M \ V (p); � ) hence corresponds to a chart as de�ned for abstract manifolds.

6.1.3 Tangent space

The notion of tangent space of a manifold generalizes that of tangent line of a parametrized curve:
a tangent space at a pointp 2 M can therefore be thought of as a �linear� approximation of
M in a small neighborhood ofp. These notions are generalized to the rather abstract case of
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manifolds by de�ning tangent vectors (i.e. the elements of a tangent space) through their action
on smooth functions de�ned on the manifold, much like tangent vectors ofR2 can be seen as
directional derivatives of smooth curves de�ned on this same domain.

A tangent vector of M at a point p 2 M is a map tp : C1 (M ) ! R that satis�es the
following properties:

� Linearity: 8f; g 2 C1 (M ), 8� 2 R: tp (�f + g) = �t p (f ) + tp (g).

� Leibniz rule: 8f; g 2 C1 (M ): tp (fg ) = g(p)tp (f ) + f (p)tp (g).

One can show (Lee, 2012, Corollary 3.3) that the setTp M of all tangent vectors at a point
p 2 M , which is called tangent space atp, is a vector space of dimensiond de�ned by

Tp M = span

(
@

@xi

�
�
�
�
p

: i 2 [[1; d]]

)

; (6.1)

where the tangent vectors@=@xi jp ; i 2 [[1; d]] are called directional derivatives and are de�ned,
for a choice of chart (U; x) 2 A containing p, by:

8f 2 C1 (M );
@

@xi

�
�
�
�
p

(f ) =
@f
@xi

(p) := @i (f � x � 1)(x(p))

Here, @i (f � x � 1)(x(p)) denotes the usuali -th partial derivative at the point x(p) 2 bU of the
function f � x � 1 : bU � Rd ! R:

@i (f � x � 1)(x(p)) = lim
t ! 0

f � x � 1(x(p) + tei ) � f � x � 1(x(p))
t

= lim
t ! 0

f � x � 1(x(p) + tei ) � f (p)
t

Note that, given that M is a smooth manifold, f � x � 1 is a smooth function of Rd and therefore
this quantity is well de�ned.

Following Equation (6.1), any tangent vector tp 2 Tp M can be represented by a vector
t x

p 2 Rd such that

tp =
dX

i =1

[t x
p ]i

@
@xi

�
�
�
�
p

(6.2)

The vector t x
p 2 Rd, called representative vector of tp with respect to the chart (U; x), simply

contains the coordinates oftp in the particular basis given in Equation (6.1). Conversely any
t x

p 2 Rd, de�nes an element tp of Tp M by Equation (6.2). Hence tangent vectors can be seen
as both directional derivatives and vectors ofRd attached to a particular point of the manifold.

Example 6.1.4. Let B � Rd be an open domain ofRd, seen as ad-manifold. The chart
(B; x Euc ) where xEuc maps points ofB to their Cartesian coordinates, covers the whole man-
ifold. Note that xEuc is actually the restriction to B of the identity map of Rd .

Let p 2 B . Then for every k 2 [[1; d]], the directional derivative @=@xEuc
k jp , corresponds

exactly to the application that maps a smooth function on B � Rd to its usual k-th partial
derivative at p: @=@xEuc

k jp = @k jp .
Moreover for a tangent vector tp 2 Tp B with representative vector t Euc

p 2 Rd with respect
to the chart (B; x Euc ), we have

8f 2 C1 (B ); tp (f ) =
dX

i =1

[t Euc
p ]i @i f (p) = r f (p)T t Euc

p = lim
h! 0

f (p + ht Euc
p ) � f (p)

h
;

where r f (p) denotes the gradient of f : B � Rd ! R at p. Hence tp (f ) is the (usual)
directional derivative of f at p along the direction t Euc

p .

Note that if another chart (U0; y) is chosen to de�ne the basis of Equation (6.1), then the
chain rule (cf. Theorem A.1.1) allows to conclude that the relation between both basis is given
by

@
@yi

�
�
�
�
p

=
dX

j =1

@xj
@yi

(p)
@

@xj

�
�
�
�
p

; (6.3)
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Figure 6.4: Illustration of a map between manifolds.

where @xj =@yi (p) is the image of the function p 7! x j (p) through the tangent vector @=@yi jp ,
or equivalently the i -th partial derivative (with respect to the coordinate system (U0; y) also
containing p) of the j -th component of the coordinate function x. In particular, applying this
relation to Equation (6.2) gives a link between the coordinates of a tangent vectortp in both
bases.

Proposition 6.1.1. Let M be ad-manifold and for p 2 M let tp 2 Tp M .
Then for any coordinate charts (U; x) and (U0; y) containing p, the representative vectors of

tp denoted t x
p 2 Rd in the basis of directional derivativesf @=@xk jp g1� k � d and t y

p 2 Rd in the
basis of directional derivativesf @=@yk jp g1� k � d satisfy

t x
p = Jx � y � 1 (y(p)) t y

p ;

where Jx � y � 1 (y(p)) denotes the Jacobian matrix of the applicationx � y� 1 : y(U0) � Rd !
x(U) � Rd at the point y(p) 2 Rd.

Finally, the tangent bundleof M , denotedTM , is the disjoint union of all the tangent spaces
of M :

TM =
G

p2M

Tp M (disjoint union) :

6.1.4 Maps and di�erentials

Let (M 1; A 1) be a smooth d1-manifold and (M 2; A 2) be a smooth d2-manifold. A map � :
M 1 ! M 2 is a smooth mapif:

� For all p 2 M 1 there exists a chart (U; x) 2 A 1 containing p and a chart (V; y) 2 A 2

containing �( p) such that �( U) � V .

� The composite mapy � � � x � 1 from bU = x(U) to bV = y(V ) is smooth.

An illustration of the di�erent building blocks of a smooth map is provided in Figure 6.4. In
particular, smooth maps are continuous, and composition of smooth maps are also smooth.
Examples of smooth maps include constant maps (i.e. applications that map allp 2 M 1 to the
same point q 2 M 2) and the identity map (from M 1 to M 1).

A map � : M 1 ! M 2 is a di�eomorphism between manifoldsif it is a bijective smooth map
whose inverse is also a smooth map. If such a map exists, thenM 1 and M 2 are said to be
di�eomorphic. In particular, only manifolds having the same dimension can be di�eomorphic.

Let � : M 1 ! M 2 be a smooth map. Thedi�erential of � at a point p 2 M 1 is the map
d� p from the tangent space ofM 1 at p to the tangent space ofM 2 at �( p) 2 M 2:

d� p : Tp M 1 ! T�( p ) M 2 ;

such that 8tp 2 Tp M 1, d� p (tp ) is the tangent vector of M 2 at �( p) de�ned by:

8f 2 C1 (M 2); d� p (tp )( f ) = tp (f � �) :
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In particular, this last equation is well-de�ned given that � is a smooth map and so,f � � is a
smooth function from M 1 to R.

Two important properties of di�erentials of smooth maps should be kept in mind. First,
they de�ne linear maps between tangent spaces. Second, whenever the smooth map� is a
di�eomorphism, then the di�erential at any point p 2 M 1 is a bijective map that satis�es

(d� p ) � 1 = d(� � 1) �( p ) : T�( p ) M 2 ! Tp M 1 :

Hence, the inverse of the di�erential of � at p 2 M 1 is the di�erential of the inverse of � at
�( p) 2 M 2 (and therefore is also linear).

The action of the di�erential d� p on a tangent vector tp 2 Tp M 1 can be made explicit
using directional derivatives and the notion of Jacobian matrix, which we now de�ne. Consider
a chart (U; x) 2 A 1 containing p and a chart (V; y) 2 A 2 containing �( p). The Jacobian matrix
J � (p) 2 M d2 ;d1 (R) of � at p with respect to the charts (U; x) and (V; y), is de�ned as the
(usual) Jacobian matrix of the function b� = y � � � x � 1 : x(U) � Rd1 ! y(V ) � Rd2 at the
point x(p) 2 Rd1 :

J � (p) := Jy � � � x � 1 (x(p)) =
�
@j (y � � � x � 1) i (x(p))

�
1� i � d2
1� j � d1

; p 2 M 1 ;

where for 1 � i � d2, (y � � � x � 1) i denotes thei -th coordinate function of function y � � � x � 1.

Proposition 6.1.2. Let (M 1; A 1) be a smoothd-manifold, (M 2; A 2) a smooth ~d-manifold and
� : M 1 ! M 2 a smooth map.
Let p 2 M 1. Consider then a chart (U; x) 2 A 1 containing p and a chart (V; y) 2 A 2 containing
�( p).

Then, 8tp 2 Tp M 1, with representative vector t x
p 2 Rd with respect to the chart (U; x), the

image of tp by the di�erential d� p of � at p satis�es

d� p (tp ) =
d2X

i =1

[J � (p)t x
p ]i

@
@yi

�
�
�
�
�( p )

2 T�( p ) M 2 ;

where J � (p) 2 M d2 ;d1 (R) is the Jacobian matrix of � at p with respect to the charts(U; x) and
(V; y).

Hence the di�erential d� p maps the representative vector of a tangent vector ofTp M 1 to its
product with the Jacobian matrix of � at p.

Proof. This property is a direct consequence of the chain rule.

6.2 Riemannian manifolds

The notion of geometry is now introduced on smooth manifolds, while relying on the same
concepts as those used in Euclidean spaces. This seems a natural choice given that by de�nition,
manifolds are locally Euclidean. In particular, the notions of length and angles between vectors
�attached� to a point of a manifold are de�ned by introducing an inner product that is de�ned
on each tangent space of the manifold. These inner products are chosen so that they de�ne a
�smooth� structure on the manifold called Riemannian metric, and the association of a manifold
with a Riemannian metric is called a Riemannian manifold.

De�ning a Riemannian metric on a manifold allows to de�ne familiar geometric concepts on
the manifold, such as lengths, angles and distances. The aim of this section is to introduce both
the concept of Riemannian metric and its use to de�ne the aforementioned geometric concepts.
The next section will then focus on the development of an integration theory on (smooth)
manifold, while once again relying on Riemannian metrics.

6.2.1 Riemannian metric

Let M be a smoothd-manifold. A Riemannian metric g on M is an application that �smoothly�
associates to each pointp 2 M a symmetric positive de�nite bilinear form g(p) (also denoted
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gp ) de�ned on its tangent space Tp M . Namely, g associates to eachp 2 M an application gp

de�ned by

gp : Tp M � Tp M ! R

(up ; vp ) 7! gp (up ; vp )
;

such that

� gp is symmetric bilinear: 8up ; vp ; wp 2 Tp M , 8� 2 R : gp (up ; vp ) = gp (vp ; up ); gp (up +
wp ; vp ) = gp (up ; vp ) + gp (wp ; vp ); gp (�u p ; vp ) = �g p (up ; vp )

� gp is positive de�nite: 8up 2 Tp M , up 6= 0 ) gp (up ; up ) > 0.

The association (M ; g) of a smooth manifold M and a Riemannian metric g de�ned on this
manifold is then called a Riemannian manifold.

In particular, note that gp actually de�nes an inner product on the vector spaceTp M and
can be expressed using the local coordinates from a chart(U; x) containing p as

gp (up ; vp ) = ( u x
p )T G x (p)vx

p =
dX

i =1

dX

j =1

Gx
ij (p)[u x

p ]i [vx
p ]j ;

whereu x
p ; vx

p are the representative vectors ofup ; vp 2 Tp M with respect to the chart (U; x) (as
de�ned in Equation (6.2)), and G x (p) is a symmetric positive de�nite matrix of size d, called
representative matrix of the metric g at p 2 M with respect to the chart(U; x), and whose entries
are de�ned by

[G x (p)] ij = Gx
ij (p) = gp

 
@

@xi

�
�
�
�
p

;
@

@xj

�
�
�
�
p

!

; 1 � i; j � d : (6.4)

The requirement that the Riemannian metric g �smoothly" maps points of the manifold to inner
products on their tangent spaces then corresponds to requiring that8k; j 2 [[1; d]], the maps
p 7! Gx

kj (p) de�ne smooth functions from U to R.
Note that the representative matrix of a metric actually depends on the considered chart

containing p 2 M , as underlined by the superscriptx in Equation (6.4). The following result
provides a link between representative matrices of the same metric for di�erent charts.

Proposition 6.2.1. Let (M ; g) be a Riemannian manifold and letp 2 M . Consider (U; x) and
(U0; y) two charts of M containing p. Then, the representative matrices ofg with respect to both
charts, as de�ned in Equation (6.4), satisfy

G y (p) = Jx � y � 1 (y(p))T G x (p)Jx � y � 1 (y(p)) ; (6.5)

where Jx � y � 1 (y(p)) denotes the (usual) Jacobian matrix of the functionx � y� 1 : y(U0) � Rd !
x(U) � Rd at the point y(p).

Proof. This result is a consequence of Proposition 6.1.1.

Example 6.2.1 (Euclidean Metric) . Let B be an open domain ofRd. The chart (B; x Euc ),
where xEuc is the inclusion map into Rd, covers the whole manifold. TheEuclidean metric,
denoted gEuc , is the Riemannian metric on B de�ned as the bilinear form that associates to
any pair of tangent vectors of Tp B (where p 2 B ) the dot product of their representative
vectors with respect to the canonical chart(B; x Euc ). Hence, for anyp 2 B ,

8u ; v 2 Rd; gEuc
p

0

@
dX

i =1

[u ]i
@

@xEuc
i

�
�
�
�
p

;
dX

j =1

[v ]j
@

@xEuc
j

�
�
�
�
�
p

1

A :=
dX

i =1

[u ]i [v ]i = u T v :

In particular, the representative matrix of the Euclidean metric gEuc at p and with respect to
(B; x Euc ) is the identity matrix.
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One way to de�ne a Riemannian metric on a manifold is to inherit it from another manifold
equipped with its own metric, as detailed in the following result.

Proposition 6.2.2. Let M 1 and M 2 be two smooth manifolds, and let us assume thatM 2 is
equipped with a Riemannian metricg0.
Let us also assume that there exists a smooth map� : M 1 ! M 2 such that its di�erential d� p

at any point p 2 M 1 is injective.
Then g0 and � induce a Riemannian metric � � g0 on M which is de�ned as:

8p 2 M ; 8up ; vp 2 Tp M 1; (� � g0)p (up ; vp ) = g0(d� p (up ); d� p (vp ))

Proof. The injectivity of d� p ensures that(� � g0)p de�nes an inner product on Tp M 1 and the
smoothness ofg0 and � ensures the smoothness of the metric(� � g0).

In particular, following the notations of Proposition 6.2.2, � � g0 is called the pullback metric
of g0 by � and (M 1; � � g0) de�nes a Riemannian manifold. A consequence of the proposition
is that any smooth manifold M admits a Riemannian metric, that can be built by �gluing"
together pullback metrics of Euclidean metrics de�ned on domains of charts ofM .

Theorem 6.2.3. Every smooth manifold admits a Riemannian metric.

Proof. See (Lee, 2012, Proposition 13.3)

Hence, any smooth manifold can be seen as a Riemannian manifold, which is why we will
focus on Riemannian manifolds for the rest of this chapter.

6.2.2 A few geometric notions on Riemannian manifolds

The metric of a Riemannian manifold allows to locally de�ne classical geometric notions on the
tangent space of each point of the manifold. Namely, if(M ; g) denotes a Riemannian manifold,
and p 2 M :

� The length of a tangent vectortp 2 Tp M is de�ned as ktp kgp =
p

gp (tp ; tp ). In particular,
8vp 2 Tp M such that vp 6= 0 , vp =

p
gp (vp ; vp ) has length 1.

� The angle � between two tangent vectorsup ; vp 2 Tp M is de�ned as

cos� =
gp (up ; vp )

kup kgp kvp kgp

:

� Two tangent vectors up ; vp 2 Tp M are calledorthogonal if gp (up ; vp ) = 0 i.e. if either one
of them is zero or the angle between them is�= 2.

� Two tangent vectors up ; vp 2 Tp M are calledorthonormal if they are orthogonal and have
length 1.

The notion of distance between points of a manifold is also introduced thanks to the Rie-
mannian metric and the notion of curve along the manifold. A parametrized curve(resp. smooth
curve)  of M is a map from an open interval I � R to M that is continuous (resp. smooth).
This means that for any t0 2 I , the function t 2]t0 � �; t 0 + � [7! x �  (t), de�ned for a chart
(U; x) containing  (t) and a small enough� > 0, is continuous (resp. smooth) att = t0.

Let [a; b] � R be a segment ofR. A map  : [a; b] ! M is called a curve segmentfrom
 (a) = p1 2 M to  (b) = p2 2 M if, for some � > 0, there exists a parametrized curve
~ :]a � �; b + � [! M that agrees with  on [a; b]. In particular,  is called smooth curve segment
if ~ is smooth, andpiecewise smooth curve segmentif there exits a subdivision of [a; b], denoted
t0 = a � t1 � � � � � tN � tN +1 = b, for which the restriction of  to any segment[tk ; tk+1 ] is a
smooth curve segment (from (tk ) to  (tk+1 )).
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Then the length of a (piecewise) smooth curve segmentof M , parametrized by  : [a; b] ! M
is de�ned from the Riemannian metric g of M as

L g( ) =
Z b

a
k 0(t)kg ( t ) dt ;

where  0(t) 2 T ( t ) M is the tangent vector de�ned as:

8f 2 C1 (M );  0(t)( f ) =
d(f �  )

dt
(t) :

This quantity is actually independent from the parametrization  of the curve, i.e. 8 : [c; d] !
[a; b] di�eomorphism, L g( ) = L g( �  ).

The distance between two pointsp1; p2 2 M is �nally de�ned as the in�mum of the length
of piecewise smooth curve segments betweenp1 and p2:

dg(p1; p2) = inf
 :[a;b]!M piecewise smooth

 (a)= p 1 ; (b)= p 2

L g( ); p1; p2 2 M : (6.6)

In particular, a Riemannian manifold (M ; g) is a metric space with respect to the Riemannian
distance function dg, and the topology induced by this distance function is the same as the
original topology of M . This means that open setsU � M de�ned in the original topology of
M are also open sets in the topology induced bydg, i.e. sets such that

8p 2 U; 9� > 0 such that 8q 2 M : dg(p; q) < � ) q 2 U :

In other words, for any point of U there exists a (small enough) ball around that point that is
fully contained in U, where the notion of ball is de�ned through dg.

As a metric space, the notions of boundedness and completeness can be extended to a Rie-
mannian manifold (M ; g). Any B � M is bounded if 9C � 0 8p1; p2 2 B , dg(p1; p2) � C.
(M ; g) is called complete if the metric space (M ; dg) is complete, i.e. any Cauchy sequence of
M converges inM . Hence if (M ; g) is complete and(pk )k2 N is a sequence of points ofM such
that:

8� > 0; 9N 2 N such that 8m; n 2 N : m � n � N ) dg(pm ; pn ) < �

Then (pk )k2 N converges and its limit is a point of M .

6.2.3 Geodesics

A geodesicon M is a smooth curve  : [a; b] ! M that minimizes the energy functional Eg

de�ned as

Eg( ) =
1
2

Z b

a
k 0(t)k2

g ( t )
dt :

The expression ofEg has the following physical interpretation. Consider a particle of unit mass
moving freely on M and whose position at a time t is given by  (t). To obtain the equation
of motion of this particle, the principle of least action can be applied. It consists in �nding the
trajectory  that minimizes the integral of the Lagrangian of the system, which in the case of
a free particle is reduced to its instantaneous kinetic energy1=2k 0(t)k2

 ( t ) . Hence, as de�ned,
the geodesic represents the trajectory of a particle moving freely on the manifold from (a) to
 (b).

The existence of geodesics between points sharing a chart is a consequence of the fact that
this minimization problem can be turned into a second order di�erential equation through the
Euler�Lagrange equations of functionals, as one would do in physics. This underlines the locality
of geodesics, that are not necessarily de�ned for any pair of points on the manifold.

De�ned as such, geodesics have two noticeable properties. First, they have a constant velocity,
meaning that if  : [a; b] ! M is a geodesic, there exists a constantc such that 8t 2 [a; b],
k 0(t)k ( t ) = c. Consequently, geodesics are parametrized by their length:

 : [a; b] ! M geodesic ) 8 t 2 [a; b] : L g( j[a;t ]) = c(t � a) :
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This property explains why geodesics on manifolds are sometimes referred as the generalization
of Euclidean �straight lines".

Second, geodesics locally minimize the distance between points along them:

 : [a; b] ! M geodesic ) 8 t1; t2 2 [a; b] : L g( j[t 1 ;t 2 ]) = dg( (t1);  (t2)) ;

where dg denotes the distance de�ned in Equation (6.6). Hence geodesics locally de�ned paths
of minimal length on the manifold.

A theorem (Jost, 2008, Theorem 1.4.3) states that for any pointp of a Riemannian manifold,
there exist a di�eomorphism, called exponential mapof M at p that maps tangent vectors of
Tp M of length less than some� > 0 to an open neighborhood ofp of size less than� . Formally,
the exponential mapexpp yields a one-to-one correspondence between tangent vectorsup 2 Tp M
such that kup kgp < � and points q 2 M such that dg(p; q) < � . In particular, expp (up ) is given
as the endpoint of the geodesic of lengthkup kgp that starts at p in the direction u p . Hence
small vectors in the tangent space of a pointp can be seen, through the exponential map, as
small displacements from ap along the geodesics of the manifold.

6.3 Integration on Riemannian manifolds

As we saw in the previous section, endowing a smooth manifold with a Riemannian metric
allows to introduce geometric concepts on it, namely lengths, angles and distances. In this
section, integration theory on a manifold is de�ned using once again a Riemannian metric. In
particular, as we may see, a volume element can be introduced on manifolds, that corresponds
locally to the deformation of the Euclidean volume element induced by the metric. Integrals of
real functions de�ned on the manifold are then de�ned by �gluing� together integrals de�ned
using this volume measure on subsets covering the manifold.

6.3.1 Integrals on a Riemannian manifold

Let (M ; g) be a Riemannian manifold. Let A � M be an open subset ofM . A function
f : A ! R is called measurable on A if for any chart (U; x) of M containing A the map
f � x � 1 : x(A) � Rd ! R is measurable, i.e. if the preimage of any Borel set ofR is a Borel set
of x(A). In this case, the integral of f over the open subsetA � M is denoted1

R
A fdVg and is

de�ned as the following Lebesgue integral overx(A):
Z

A
fdVg : =

Z

x (A )

�
f � x � 1(x )

�
�
�

jG x j1=2(x � 1(x ))
�

dx

=
Z

x (A )

�
f � jG x j1=2

�
� x � 1(x )dx ;

(6.7)

where jG x j1=2 is the smooth function that maps any point of p 2 U to the square-root of the
determinant of G x (p), the representative matrix of g at p with respect to the chart (U; x) as
de�ned in Equation (6.4).

This quantity is independent from the choice of chart containing A. Indeed, if (U0; y) denotes
another chart containing A, the change of coordinates formula of integrals onRd yields

Z

A
fdVg =

Z

(x � y � 1 ) � y (A )

�
f � jG x j1=2

�
� y� 1 � (y � x � 1)(x )dx

=
Z

y(A )

�
f � jG x j1=2

�
� y� 1(y )jJx � y � 1 (y )jdy

=
Z

x (A )

�
f � y� 1(y )

�
�
�
jJx � y � 1 (y )T j � j G x (y� 1(y )) j � j Jx � y � 1 (y )j

� 1=2
dy :

Using the change of map formula of Equation (6.5), this last equation becomes
Z

A
fdVg =

Z

x (A )

�
f � jG x j1=2

�
� x � 1(x )dx =

Z

y(A )

�
f � jG y j1=2

�
� y� 1(y )dy :

1For the moment, writing
R

A
fdV g the integral of f over A should be purely taken as a notation. In the next

subsection, this notation will be justi�ed by interpreting the term Vg as a measure on the manifold, and dVg as
the corresponding volume element.
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Hence, as de�ned in Equation (6.7), the integral overA is independent of the choice of a coor-
dinate map over A.

The integral of a function f over a subset of a manifold can be seen as the integral of its
coordinate representation f � x � 1 through a chart x mapping A, scaled by a smooth function
jG x j1=2 ( independent of f ) that corrects the volume element so that it takes into account the
actual geometry of the manifold (as de�ned by its metric). Equivalently, it can also be seen
as the integral of f � x � 1 over x(A) � Rd with respect to a positive measure with density
x 7! j G x (x � 1(x )) j1=2 with respect to the Lebesgue measure.

To go from this local de�nition of integrals to integrals de�ned on the whole manifold M ,
local integrals de�ned over subsets coveringM are �glued" together using the notion of par-
tition of unity, which is now de�ned. Let A =

�
(U( � ) ; x ( � ) ) : � 2 I

	
denote an atlas of M

(indexed by a set I ). A partition of unity subordinate to the atlas A is a set of functions
f � � : M ! [0; 1] : � 2 I g (also indexed byI ) such that:

� 8� 2 I , supp� � � U( � ) , where supp� � is the support of � � , i.e. the closure of the set of
all points p 2 M such that � � (p) 6= 0 . Note that consequently, � � is zero outsideU( � ) .

� 8p 2 M , � � (p) is non-zero only for a �nite number of indexes� 2 I .

� 8p 2 M ,
P

� 2 I � � (p) = 1 .

Then, the integral of a function f : M ! R over the manifold M is denoted
R

M fdVg and is
de�ned as the sum over the covering open sets composing an atlasA of M of local integrals of
f , weighted by a partition of unity:

Z

M
fdVg =

X

� 2 I

Z

U ( � )
� � fdVg : (6.8)

In particular, measurable functions on M are de�ned as functions that are measurable on any
chart of M , and therefore for which each integral in Equation (6.8) is de�ned. Note also that
the de�nition of the integral of a function over M is actually independent from the choices of
the atlas A and its subordinate partition of unity. This is due to the fact that the local integrals
are chart-invariant and that each function composing the partition of unity is zero outside an
open set ofM .

Hence, the integration of a function of M requires to choose an atlas and a subordinate
partition of unity, which may become a tedious task. However, in some cases, integrals over
a manifold can be expressed as usual Lebesgue integral over open sets ofRd and therefore be
calculated explicitly by classical methods.

Example 6.3.1 (Integration over an open set). Let us assume that the Riemannian manifold
(M ; g) is such that M is di�eomorphic to an open set A � Rd and denote by x this di�eo-
morphism. Then the set A = f (A; x )g is an atlas for M composed of a single chart. This
situation is particularly desirable as the function mapping all points of A to 1 can be chosen
as a partition of unity. Hence the integral of a function f : M ! R over M reduces to an
integral over A � Rd: Z

M
fdVg =

Z

A
fdVg ;

which in turn is computed using Equation (6.7).
This case arises whenM is itself an open subset ofRd. Then, x can be chosen to be the

identity map and the integral over (M ; g) is given by
Z

M
fdVg =

Z

M
f (p) � jG(p)j1=2dp (M � Rd open ) ; (6.9)

where G is the representative matrix of the metric g with respect to the chart obtained by
considering the identity map (cf. Equation (6.4)). Hence, the integral of f over the Riemannian
manifold (M ; g) is reduced to a �common� integral over a subset ofRd (which here is M ) of
the function p 7! f (p) � jG(p)j1=2.
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6.3.2 Measure on a Riemannian manifold

The integration of a measurable function over a subset of a manifold is de�ned using the de�nition
of the integral over the whole manifold. Indeed, the integral of f : M ! R over any subset
M � M is denoted

R
M fdVg and is given by

Z

M
fdVg =

Z

M
(1M � f )dVg ;

where 1M : M ! R is the indicator function of the subset M . Similarly, a measureVg can be
de�ned over subsetsM � M , as

Vg(M ) =
Z

M
1M dVg =

Z

M
dVg :

It is straightforward to check that Vg is well-de�ned as a positive measure overM . It is called
the canonical measure associated to the Riemannian manifold(M ; g). In particular,

Vg(M ) =
X

� 2 I

Z

x ( � ) (U ( � ) \ M )

�
� � � jG x ( � )

j1=2
�

�
�

x ( � )
� � 1

(x )dx :

M � M is called anull set of M wheneverVg(M ) = 0 . This is equivalent to imposing that
for any chart (U; x) of M , the set x(U \ M ) is a null set for the measure ofRd with density
x 7! j G x (x � 1(x )) j1=2 with respect to the Lebesgue measure. In particular, for any null setM
and for any measurable functionf : M ! R:

M null set )
Z

M
fdVg = 0 and

Z

M
fdVg =

Z

Mn M
fdVg :

In practice, this last property can be used to compute integrals over manifolds, as they can be
reduced to a more easy to compute integral over a subset of the manifold by removing null sets
from the manifold. This is illustrated in the next example.

Example 6.3.2 (Integration on a sphere). Let us assume that the Riemannian manifold
(M ; g) is such that M is the sphereS2 � R3. Contrary to the previous example, M cannot
be covered entirely with a single chart. However, a chart coveringS2 except for �negligible�
parts can easily be built, so that carrying out the integration over S2 without these parts is
the same as carrying out the integration overS2 entirely. Indeed, the map

� : ] � �; � [� ] � �
2 ; �

2 [ ! S2 n f (0; 0; 1); (0; 0; � 1)g

(�; � ) 7! (cos� cos�; sin � cos�; sin � )
;

de�nes a di�eomorphism from an open set ofR2 to the unit-sphere minus two poles. These
poles form a null set as their images by any coordinate chart will be isolated points inR3

which are null sets for the Lebesgue measure. Hence, integration over(S2; g) is given by:
Z

S2
fdVg =

Z

]� �;� [

Z

]� �
2 ; �

2 [
f � � (�; � )

q
jG � (� (�; � )) jd�d� (6.10)

whereG� is the representative matrix of the metric g with respect to the chart obtained from
� (cf. Equation (6.4)).

6.3.3 Integrability on a Riemannian manifold

We assume in this section thatM is a compact manifold.
A function f : M ! R is called integrable if

R
M jf jdVg < 1 and square-integrableif jf j2 is

integrable. Let
L 2 (M )

� be the binary relation de�ned over the set of square-integrable functions
by

f 1
L 2 (M )

� f 2 ,
Z

M
(f 1 � f 2)2dVg = 0 ; f 1; f 2 square-integrable: (6.11)
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In particular,
L 2 (M )

� is an equivalence relation over the set of square-integrable functions ofM ,

and the set of equivalence classes under
L 2 (M )

� is denoted by L 2(M ).
Hence, any element ofL 2(M ) actually corresponds to a set of square integrable functions

such that any pair of them satis�es Equation (6.11). However, using a common abuse of notation,
elements ofL 2(M ) will also be called square-integrable functions ofL 2(M ) and we will write

L 2(M ) =
�

f : M ! R measurable :
Z

M
f 2dVg < 1

�
:

Hence the equivalence classes de�ningL 2(M ) are identi�ed with the functions composing these
classes.

L 2(M ) can be equipped with the inner-producth�; �i L 2 (M ) de�ned by

hf 1; f 2i L 2 (M ) =
Z

M
f 1f 2dVg; f 1; f 2 2 L 2(M ) ; (6.12)

with associated normk � kL 2 (M ) given by

kf kL 2 (M ) =
q

hf; f i L 2 (M ) ; f 2 2 L 2(M ) : (6.13)

L 2(M ) then de�nes a Hilbert space (Craioveanu et al., 2013).

Remark 6.3.1. The set L 2(M ) can equivalently be de�ned as the completion via Cauchy
sequences with respect to the normk:kL 2 (M ) of the set of smooth functions with compact
support over M .

6.4 Manifolds with boundary

Manifolds with boundary are a generalization of manifolds as de�ned in the previous sections,
and called here ordinary manifolds. They allow to extend the notion of edge (or border) to
manifolds.

6.4.1 De�nitions and �rst properties

Formally, the de�nition of a manifold with boundary is the same as the de�nition of an ordinary
manifold, except that it is now required that a neighborhood of any point of the manifold be
homeomorphic to either an open subset ofRd or an open subset ofHd = Rd� 1 � R+ . In particular,
open subsets ofHd are de�ned as the intersection of open sets ofRd with Hd.

Hence, a coordinate chart(U; x) of a d-manifold with boundary M is either

� a regular chart, i.e. x is a homeomorphism fromU � M to an open subset ofRd. Then
x(U) is open set ofRd that is homeomorphic to an open subsetU of M ,

� or a boundary chart, i.e. x is a homeomorphism fromU � M to an open subset ofHd

which means that

8p 2 U; x(p) = ( x1(p); : : : ; xd(p)) 2 Rd and xd(p) � 0 :

Then x(U) is the intersection of an open set ofRd with Hd.

Then, a point p 2 M is called an interior point if there exists a regular chart that contains p.
Otherwise, p is called aboundary point: in this case, if (U; x) is a boundary chart containing p,
then xd(p) = 0 .

The set Int(M ) of all interior points of M is called the interior of M and the set @M of all
boundary points of M is called the boundary of M . Basically, for a boundary point p 2 @M ,
we see that even an in�nitesimal perturbations of its coordinatesx(p) can push us o� the �edge"
of the manifold: indeed, as soon as thed-th component of the perturbed coordinates is strictly
negative, its preimage byx will not fall into M .
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For a d-manifold with boundary M , we have:

M = Int (M ) [ @M :

Ordinary manifolds are the particular case of manifolds with an empty boundary: that is why
they are also called manifolds without boundary. More generally, Int(M ) is an ordinary d-
manifold and @M is an ordinary (d � 1)-manifold.

The other de�nitions introduced for ordinary manifolds still hold for manifolds with boundary,
as long as requirements on charts account for both regular and boundary charts, i.e.Rd can
be replaced byHd as the mapping destination of coordinates charts. This is how notions like
smoothness of manifolds and maps or tangent spaces are naturally extended to manifolds with
boundaries.

Some particular points concerning tangent spaces should be noted. LetM denote a manifold
with boundary. On one hand, if p 2 Int (M ) then p can basically be seen as point of the ordinary
manifold Int (M ) and Tp M = Tp Int (M ). On the other hand, if p 2 @M then two cases arise:

� either p is seen as a point of thed-manifold with boundary M and then its tangent
spaceTp M is also ad-dimensional vector space spanned by directional derivatives along
coordinate charts.

� or p is seen as a point of the(d � 1)-manifold without boundary @M and then its tangent
spaceTp @M can be seen as a restriction ofTp M . Indeed, let (U; x) be a boundary chart
containing p, such that xd(p) = 0 . Then, Tp @M is spanned byf @=@x1; : : : ; @=@xd� 1g.

Note in particular that Tp @M is a vector subspace of dimensiond � 1 of Tp M , which is a
vector space of dimensiond.

Manifolds de�ned by an implicit function are a particular case of manifold with boundary.
This is formalized in the next proposition.

Proposition 6.4.1. Let F : Rd 7! R be a smooth function ofRd such that

f p 2 Rd : F (p) = 0 g 6= ;

and such that
8p 2 Rd; F (p) = 0 ) r F (p) 6= 0 ;

wherer F (p) = ( @1F (p); : : : ; @k F (p))T is the usual gradient of a function ofRd (with respect to
the Cartesian coordinates).

Then, the set
M = f p 2 Rd : F (p) � 0g

is a d-manifold with boundary such that

� its interior is Int M = f p 2 Rd : F (p) < 0g, which is a d-manifold without boundary;

� its boundary is @M = f p 2 Rd : F (p) = 0 g, which is a (d � 1)-manifold without boundary;

� both Int M and @M are submanifolds ofRd.

Proof. Let M 1 = f p 2 Rd : F (p) < 0g and M 2 = f p 2 Rd : F (p) = 0 g. Clearly, M =
M 1 [ M 2.

First, the smoothness ofF is used to prove that M 1 is an ordinary d-manifold, with the
usual topology of the Euclidean spaceRd. Indeed, note that given that M 1 is the preimage
by F of the open set] � 1 ; 0[ of R, by continuity of F , F is an open set ofRd. And so as
such, it de�nes an (ordinary) d-submanifold of Rd.

Then, let p 2 M 2 and let us assume, without loss of generality, that@dF (p) 6= 0 . The
implicit function theorem (Wilfred, 2002, Section 2.10) states that, as long as@dF (p) 6= 0 ,
there exists an open setU of Rd� 1 containing (p1; : : : ; pd� 1) and a unique (smooth) map
� : U ! R such that

� (p1; : : : ; pd� 1) = pd and 8x 2 U; F (x ; � (x )) = 0 :
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Note that in particular 8x 2 U, (x ; � (x )) 2 M 2. Hence,� de�nes a coordinate chart between
an open set ofM 2 around p and an open setRd� 1. M 2 is therefore a(d � 1)-submanifold of
Rd, and in particular an ordinary (d � 1)-manifold.

The set M = M 1 [ M 2 then de�nes a manifold with boundary, with interior M 1 and
boundary M 2.

Example 6.4.1. The unit ball B3 of R3 is de�ned as the set of points

B3 = f (x; y; z) 2 R3 : x2 + y2 + z2 � 1g :

By denoting F : (x; y; z) 2 R3 7! x2+ y2+ z2 � 1, we haveB3 = f (x; y; z) 2 R3 : F (x; y; z) � 0g.
In particular, F is a smooth function of R3 and satis�es r F (x; y; z) = (2 x; 2y; 2z)T . Hence,
B3 is a 3-manifold with boundary and its boundary, given by f (x; y; z) 2 R3 : F (x; y; z) = 0 g,
is the 2-sphereS2.

This result actually still holds for other dimensions: the unit-ball Bd of Rd is a d-manifold
with boundary and satis�es @Bd = Sd� 1.

Remark 6.4.1. It should be noted that the boundary @M of a manifold with boundary
M generally di�ers from the boundary of M seen as a (subset of a) topological space. To
distinguish both notions we call @M the manifold boundary of M and we call topological
boundary the second kind of boundary. Both types of boundary are fundamentally di�erent,
and thus, M can have (or not) a manifold boundary regardless of the fact that it has (or not)
a topological boundary.

To illustrate this point, consider the unit sphere S2 of R3. As we saw, it de�nes a manifold
without boundary. However, seen as a subset of (the topological space)R3, its topological
boundary is alsoS2 itself. Consider now the unit ball B3 of R3. As we saw, it de�nes a manifold
with boundary, whose manifold boundary S2 � R3. Seen as a subset of (the topological space)
R3, its topological boundary is also S2 � R3. But if now we see B3 as a subset ofR4, its
topological boundary becomesB3 itself.

6.4.2 Riemannian manifolds with boundary

A manifold with boundary can also be equipped with a Riemannian metric and then de�nes a
Riemannian manifold with boundary. Indeed, the tangent spaces at any point of a manifold with
boundary have the same dimension, and the notion of Riemannian metric on a manifold with
boundary can then be naturally extended using the same de�nition as in the ordinary case.

Let then (M ; g) denote a Riemannian manifold with boundary, and g its metric. Then the
boundary @M of M can be endowed with its own metric, inherited from the metric of M .
Indeed, given that 8p 2 @M , Tp @M � Tp M then the tensor �eld @gde�ned at any point
p 2 @M by

@gp : (up ; vp ) 2 Tp @M � Tp @M 7! @gp (up ; vp ) = gp (up ; vp )

de�nes a Riemannian metric on@M . Hence,(@M ; @g) is a Riemannian ordinary(d� 1)-manifold.
Integrating a function over a smooth d-manifold with boundary M that is equipped with

a Riemannian metric g is actually equivalent to integrating the same function over the interior
Int (M ) seen as a Riemannian manifold also equipped with the metricg. Indeed, by de�nition
of the boundary of a manifold, the image of a pointp 2 @M will always lie in the boundary of
the domain of integration in the right side of Equation (6.7), and can therefore be discarded.

On the other hand, integration can be de�ned over just the boundary @M of a smooth d-
manifold with boundary M . In this case, @M is seen a smooth(d � 1)-manifold equipped with
the Riemannian metric @gand we denotedSg the volume element of@M associated with @g:
dSg = dV@g.

Both types of integrals intervene in Green's theorem, which will be stated in Section 6.5.1,
and which plays a key role in the theory of analysis of functions on Riemannian manifolds.
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6.4.3 Normal vector at the boundary

Let (M ; g) be a Riemannian manifold with boundary. The orthogonal subspace ofTp @M in
Tp M is de�ned by

Tp @M ? = f up 2 Tp M : 8vp 2 Tp @M ; gp (up ; vp ) = 0 g :

In particular, Tp @M and Tp @M ? are in direct sum, meaning tangent vectors inTp @M can
be uniquely decomposed as the sum of an element ofTp @M and an element ofTp @M ? and
vice-versa:

Tp M = Tp @M � Tp @M ? :

Any vector of Tp @M ? is called a normal vector of@M at p.
Given that Tp @M is a vector space of dimensiond � 1 and that Tp M is a vector space of

dimension d, Tp @M ? is a vector space of dimension1. It is therefore spanned by any non-zero
element it contains. Let then np 2 Tp M ? be the tangent vector such that gp (np ; np ) = 1 and
gp (np ; @=@xd) < 0 where (U; x) is a boundary chart containing p and such that xd(p) = 0 . n p

is called outward unit normal vector of @M at p and satis�es

Tp @M ? = span f n p g :

It can be shown that p 7! np is a well-de�ned continuous vector �eld over @M , i.e. an application
that maps each point of a manifold to one of its tangent vector.

Normal vectors of a manifold with boundary de�ned as in Proposition 6.4.1 can be easily
deduced from the expression of their de�ning equation.

Proposition 6.4.2. Let (M ; g) be a Riemannian manifold with boundary de�ned through a
smooth function F : Rd ! R by:

M = f p 2 Rd : F (p) � 0g ;

where p 7! r F (p) is non-zero on @M . Let us assume thatM is equipped with the Euclidean
metric �g.

Then 8p 2 M , the unit outward normal vector np 2 Tp M at p 2 @M is represented in the
basis of Cartesian directional derivativesf @1jp ; : : : ; @d jp g by the vector

n p =
1

kr F (p)k2
r F (p) :

Proof. See Appendix C.4.

Example 6.4.2. Following Proposition 6.4.2, the unit outward normal vector of the unit-ball
Bd at one of its point p 2 Bd is given by

n p =
vp

kvp k2
; where vp = r F (p) = 2 p :

6.4.4 Manifolds with corners

Geometric objects like rectangles, triangles, cubes or more generally polyhedrons ofRd often
arise as spatial domains on which a phenomenon is studied. Clearly, such subsets ofRd are
manifolds with boundary. However, they will not have a smooth structure due to the fact that
they have �corners�. That is why the notion of manifold with corners is introduced.

A d-manifold with corner is a d-manifold with boundary such that any of its coordinate
charts (U; x) is either

� a regular chart,

� a boundary chart,
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� or a chart with corners, i.e. x is a homeomorphism fromU to an open subset2 of (R+ )d,
which means

8p 2 U; x(p) 2 f x 2 Rd : x1 � 0; : : : ; xd � 0g :

As it is the case for manifolds with or without boundary, a manifold with corners is calledsmooth
if it can be covered by smoothly compatible charts with corners (cf. Section 6.1.1).

Let us assume from now on thatM is a smooth manifold with corners. If the image ofp 2 M
through a chart with corner (U; x) falls on one of the �edges� of (R+ )d, i.e. if x(p) has more
than one coordinate equal to zero, thenp is calledcorner point of M . In smooth manifolds with
corners, this property is actually independent from the choice of chart. As a quick reminder,
boundary points of M correspond to points of p for which exactly one coordinate vanishes.
Hence the image through a coordinate chart of a corner point ofM lies on one the edges of
(R+ )d.

Once again, the notions introduced for smooth manifolds with or without boundary, such as
smooth maps, partitions of unity, tangent vectors and Riemannian metrics, can be extended to
smooth manifolds with corners by considering now smoothly compatible charts with corners.

Regarding the integration of a function over a (Riemannian) manifold with corners, the same
de�nition as the one stated for manifold with boundary holds (cf. Section 6.4.2). Hence, ifM
is a smooth manifold with corners equipped with a metricg, then the integral of a function over
M can be reduced to the integral of the same function over Int(M ) (also equipped with g).

And to integrate a function over the boundary @M of M , one �chops up� the integral over
@M into integrals over subsets of@M that can be considered as ordinary(d � 1)-manifolds or
d-manifolds with boundary, equipped with the metric @g. In particular, the boundary points of
M will lie in the boundaries of these chopped up pieces, and will e�ectively be discarded in the
integration process.

The results that will be presented in the remainder of this chapter and in the subsequent
ones rely on the so-called spectral theory of Riemannian manifolds. This branch of di�erential
geometry aims at deriving tools to work with functions de�ned over a Riemannian manifold
using their decomposition as a sum of�xed smooth functions satisfying a di�erential equation
(called eigenvalue problem). The next section aims at introducing these concepts.

Remark 6.4.2. In the remainder of this work, (smooth) manifolds with corners will be
identi�ed with (smooth) manifolds with boundary. Indeed, the results of spectral theory that
will be used rely on boundary conditions being assumed on the considered functions, so that
their integral over the boundary is always discarded. Consequently, the presence of corners
on the boundary will have no e�ect on the derived results.

6.5 Di�erential operators

The gradient and the Laplacian of functions de�ned over a Riemannian manifold are now intro-
duced. The central piece of this section is the spectral theorem, which provides a decomposition
of any square-integrable function de�ned on a compact Riemannian manifold. This decomposi-
tion will later be used to de�ne (generalized) random �elds on a Riemannian manifold, which
can be considered for now as a randomized version of the notion of distribution that will also be
introduced in this section.

In the remainder of this section, (M ; g) denotes a Riemannian manifold with or without
boundary and C1 (M ) is the set of smooth functions ofM .

6.5.1 Gradient, Laplacian and Green's theorem

Let f 2 C1 (M ). The gradient of f on M is the application r M f : M 7! TM such that
8p 2 M , r M f (p) 2 Tp M and

8up 2 Tp M ; gp (r M f (p); up ) = up (f ) :

2 for the trace topology.
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In particular, r M f is a vector �eld. In local coordinates of a chart (U; x) of M the gradient is
given by

r M f (p) =
dX

i =1

dX

j =1

[G x (p) � 1]ij
@f
@xj

(p)
@

@xi

�
�
�
�
p

; p 2 U :

For p 2 U, the representative vector of r M f (p) with respect to the chart (U; x) is denoted by
r x f and is given by

r x f (p) = G x (p) � 1

0

B
B
B
@

@f
@x1

(p)
...

@f
@xd

(p)

1

C
C
C
A

2 Rd :

The Laplace�Beltrami operator , simply called Laplacian here, is a generalization on Rie-
mannian manifolds of the Laplace operator (or Laplacian) of smooth functions ofRd. In lo-
cal coordinates of a chart (U; x) of M the Laplacian of f 2 C1 (M ) is the smooth function
� M f 2 C1 (M ) de�ned by

� M f (p) =
1

p
jG x (p)j

dX

i =1

dX

j =1

@
@xi

� p
jG x j

�
(G x ) � 1�

ij

@f
@xj

� �
�
�
�
p

; p 2 U :

Green's theorem holds for integration on Riemannian manifolds. However it is required of
them that they are compact. A compact manifold is a manifold with possibly empty boundary
which is compact as a topological space. In particular submanifolds (with or without boundary)
of Rd that are topologically compact in Rd are compact manifolds.

We �rst introduce the following notations. Let f 1; f 2 2 C1 (M ). We write

Z

M
g(r M f 1; r M f 2) dVg :=

Z

M
(p 7! gp (r M f 1(p); r M f 2(p))) dVg

and Z

@M
f 1g(n; r M f 2)dSg :=

Z

@M
f 1 � (p 7! gp (np ; r M f 2(p))) dSg ;

where dSg denotes the restriction of the measuredVg of M on the boundary @M (cf. Sec-
tion 6.4.2) and ns denotes the unit outward normal vector at a point p 2 @M .

Theorem 6.5.1 (Green's theorem). Let (M ; g) be a compact connected Riemannian manifold
with (or without) boundary and f 1; f 2 2 C1 (M ).
Then,

Z

M
f 1 � � M f 2dVg = �

Z

M
g(r M f 1; r M f 2) dVg +

Z

@M
f 1g(n; r M f 2)dSg ;

wheren denotes the vector �eld associating to each points 2 @M its unit outward normal vector.

Proof. See (Lang, 2012, Theorem 3.4).

This result still holds when M is not compact but either f 1 or f 2 is a compactly supported
function of C1 (M ) (Lang, 2012). Besides, there exist three cases for which Green's theorem
simpli�es and yields interesting results for functions of L 2(M ). These three cases are:

� Closed condition: M is a compact connected manifold without boundary.

� Dirichlet boundary conditions: M is a compact connected manifold with boundary@M .
f 2 C1 (M ) follows Dirichlet boundary conditions if

8p 2 @M ; f (p) = 0 :
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� Neumann boundary conditions: M is a compact connected manifold with boundary@M .
f 2 C1 (M ) follows Neumann boundary conditions if

8p 2 @M ; gp (np ; r M f (p)) = 0 ;

where np denotes the unit normal vector at a point p 2 @M .

In either one of these cases, the following corollary of Green's theorem is valid.

Corollary 6.5.2. Let (M ; g) be a compact connected Riemannian manifold and letf 1; f 2 2
C1 (M ). If either @M = ; or @M 6= ; and f 1; f 2 follow Dirichlet or Neumann boundary
conditions then,

hf 1; � � M f 2i L 2 (M ) = hr M f 1; r M f 2i L 2 (M ) = h� � M f 1; f 2i L 2 (M ) ;

where the notationhr M f 1; r M f 2i L 2 (M ) symbolizes the integral overM given by

hr M f 1; r M f 2i L 2 (M ) =
Z

M
g(r M f 1; r M f 2) dVg :

Proof. This is a direct consequence of the fact that, within the requirement of this corollary,
the integral over @M that appears in Theorem 6.5.1 is zero.

Remark 6.5.1. Note that if r M f 2(p) and r M f 2(p) have support in a coordinate chart
(U; x) then

hr M f 1; r M f 2i L 2 (M ) =
Z

U
r x f T

1 G x r x f 2dVg =
Z

U

0

B
B
B
@

@f1
@x1
...

@f1
@xd

1

C
C
C
A

T

(G x ) � 1

0

B
B
B
@

@f2
@x1
...

@f2
@xd

1

C
C
C
A

dVg :

Consequently, whenever(M ; g) be a compact connected Riemannian manifold,� � M de-
�nes a formally self-adjoint operator on functions of C1 (M ) that satisfy appropriate boundary
conditions. Moreover, it is a positive semi-de�nite operator as 8f 2 C1 (M ) with boundary
conditions when needed,

hf; � � M f i L 2 (M ) = hr M f; r M f i L 2 (M ) � 0 :

This result can be leveraged to prove the so-called spectral theorem that is introduced in the
next subsection.

6.5.2 Spectral theorem

The spectral theorem is a fundamental result of di�erential geometry. It relies on the notion of
eigenvalue problem that is now introduced.

Let (M ; g) be a compact connected Riemannian manifold with (possibly empty) boundary
@M . An eigenvalue problemanswers the following question: �nd all pairs (�; � ) where � 2 R
and � 2 C1 (M ), � 6= 0 , such that

� � M � = �� ; (6.14)

For such a pair (�; � ) , � is a called eigenvalueand � is called eigenfunction associated to the
eigenvalue� . In particular, for a given eigenvalue � , the set of all eigenfunctions associated to
� forms a vector spaceE � , called eigenspaceof � , and whose dimension is calledmultiplicity of
� . The set of all eigenvalues corresponding to an eigenvalue problem is calledspectrum of � � M

(for this problem).
Di�erent eigenvalue problems corresponds to di�erent requirements on the value of the eigen-

functions on the boundary @M :
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� The closed eigenvalue problemconsists in �nding pairs (�; � ) that are solutions of Equa-
tion (6.14) in the case where@M = ; .

� The Dirichlet eigenvalue problemconsists in �nding pairs (�; � ) that are solutions of Equa-
tion (6.14) and such that � follows Dirichlet boundary conditions (in the case where
@M 6= ; ).

� The Neumann eigenvalue problemconsists in �nding pairs (�; � ) that are solutions of
Equation (6.14) and such that � follows Neumann boundary conditions (in the case where
@M 6= ; ).

The next theorem provides a result on solutions of these eigenvalue problems.

Theorem 6.5.3 (Spectral theorem). Let (M ; g) be a compact connected Riemannian mani-
fold with (possibly empty) boundary@M . The following assertions are true for the closed, the
Dirichlet and the Neumann eigenvalue problems.

� The spectrum of � � M is an in�nite (countable) sequence of real values

0 � � 1 � � 2 � � � � � � k � : : : ;

where each eigenvalue is repeated in the sequencef � k gk2 N as many times as its multiplicity.
Besides,lim k !1 � k = + 1 .

� Each eigenvalue has �nite multiplicity and the eigenspaces corresponding to distinct eigenspaces
are L 2(M )-orthogonal. Hence, for any eigenvalues� k ; � j :

� k 6= � j ) 8 f i 2 E � i ; f j 2 E � j ; hf i ; f j i L 2 (M ) = 0 :

� Each eigenfunction is C1 -smooth and analytic, and the direct sum of all eigenspaces is
dense in L 2(M ) for the norm k:kL 2 (M ) . Hence, there exists aL 2(M )-orthonormal basis
f ek gk2 N of L 2(M ) such that 8k 2 N, ek 2 C1 (M ) is an eigenfunction associated to the
eigenvalue� k :

� � M ek = � k ek , kek kL 2 (M ) = 1 and k 6= j ) h ek ; ej i L 2 (M ) = 0 :

In particular,

8f 2 L 2(M );






f �

X

k2 N

hej ; f i L 2 (M ) ej







L 2 (M )

= 0 :

Proof. See (Lablée, 2015, Proposition 4.3.1 & Section 4.4) or (Jost, 2008, Theorem 3.2.1).

This theorem provides a decomposition of any functionf 2 L 2(M ) onto an orthonormal
basis f ek gk2 N of eigenfunctions of the negative Laplacian, as

f =
X

k2 N

hej ; f i L 2 (M ) ej ;

where the equality is understand in theL 2-sense.
The next result gives an estimate of the growth rate of the eigenvalues of the Laplacian of a

compact Riemannian manifold.

Theorem 6.5.4 (Weyl asymptotic formula) . Let (M ; g) be a compact connected Riemannian
d-manifold with (possibly empty) boundary@M and let f � k gk2 N denote the eigenvalues of� � M

as described in Theorem 6.5.3.
Then,

� k �
k !1

�
(2� )d

� dVg(M )

� 2=d

k2=d ; (6.15)

where � d = � d=2=�( d=2 + 1) is the volume of the (usual) unit ball ofRd and Vg(M ) =
R

M dVg.
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Proof. See Section 7.6 of (Lablée, 2015).

In the next subsection, the domain of de�nition of the Laplace�Beltrami operator is extended
to a wider class of functions than justC1 (M ). This extension relies on the notion of distribution
on M that will be introduced.

6.5.3 Sobolev spaces and distributions on a Riemannian manifold

In this section, the notion of distribution on a Riemannian manifold is introduced in order to
safely de�ne the Laplacian of a non-smooth function of the manifold. This step is important as
many of the functions whose Laplacian will be considered in the remainder of this work will not
be smooth but merely piecewise di�erentiable (cf. Chapter 8).

Throughout this section, (M ; g) denotes a compact connected Riemannian manifold with
(possibly empty) boundary @M . Let C1

0 (M ) � C 1 (M ) be the set of smooth functions ofM
with compact support in Int (M ) = Mn @M .

Distributions on a Riemannian space

The notion of distribution on M is now introduced. Let D (M ) denote eitherC1 (M ) or C1
0 (M ).

A distribution T with test function space D (M ) is a linear map from D (M ) to R which is
also continuous i.e. for any sequencef uk gk2 N of functions of D (M ) converging to a function
u 2 D (M ), the sequencef T(uk )gk2 N converges toT(u).

In particular, given that M is compact and that thereforeD (M ) � L 2(M ), we can associate
to any f 2 L 2(M ) the distribution Tf with test function space D (M ) de�ned by

Tf : u 2 D (M ) 7! Tf (u) = hf; u i L 2 (M ) (6.16)

Note in particular that Equation (6.16) is actually de�ned for u 2 L 2(M ) and that therefore Tf

can also be considered as a linear continuous mapTf : L 2(M ) ! R.
More generally, the fact that D (M ) is dense inL 2(M ) (Bérard, 2006, Chapter III, Point

(13)) allows to extend the domain of de�nition of some distributions.

Lemma 6.5.5. Let f 2 L 2(M ) and denoteTf the distribution with test function space D (M )
de�ned by Equation (6.16). Let T be any other distribution with test function spaceD (M ).

If T and Tf agree onD (M ) then T admits a continuous linear extension onL 2(M ) de�ned
by

8� 2 L 2(M ); T(� ) := Tf (� ) = hf; � i L 2 (M ) :

Proof. Let � 2 L 2(M ) and f � k gk2 N be a sequence of functions ofD (M ) converging to � .
De�ne T(� ) := lim

k !1
T(� k ). Then,

lim
k !1

T(� k ) = lim
k !1

Tf (� k ) = lim
k !1

hf; � k i L 2 (M ) = hf; � i L 2 (M ) := Tf (� ) 2 R

Note in particular that Lemma 6.5.5 allows to actually identify arbitrary distributions with
(the distributions associated with) functions of L 2(M ), as long as they coincide on the test
function space.

Corollary 6.5.6. Let f 1; f 2 2 L 2(M ) and denoteTf 1 ; Tf 2 the associated distributions de�ned
by Equation (6.16).

If Tf 1 and Tf 2 agree onD (M ) then f 1 = f 2 in the L 2-sense.

Corollary 6.5.6 allows to identify distributions and functions of L 2(M ) and will be leveraged
to extend the domain of de�nition of the Laplace operator.
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Sobolev spaces on a Riemannian space

We now introduced three subsetsL 2(M ) onto which the de�nition of the Laplacian operator
can be extended. These sets of functions are referred to asSobolev spacesof M .

First, denote k:kH 1 (M ) the norm associated with the inner product h:; :i H 1 (M ) on C1 (M )
de�ned by:

8' 1; ' 2 2 C1 (M ); h' 1; ' 2i H 1 (M ) = h' 1; ' 2i L 2 (M ) + hr M ' 1; r M ' 2i L 2 (M ) :

The �rst Sobolev space we will be working with is H 1(M ).

De�nition 6.5.1 . H 1(M ) is de�ned as the closure ofC1 (M ) in L 2(M ) for the norm k:kH 1 (M ) .

H 1(M ) is therefore the smallest closed subset ofL 2(M ) containing C1 (M ), and can be seen
as the set containingC1 (M ) and the functions of L 2(M ) that are limit (with respect to the
norm k:kH 1 (M ) ) of a sequence of elements ofC1 (M ). The elements ofH 1(M ) are functions of
L 2(M ) whose �rst derivatives (in the sense of distributions) can be identi�ed to elementsL 2(M )
(as in Lemma 6.5.5). In particular,

8' 1; ' 2 2 H 1(M ); hr M ' 1; r M ' 2i L 2 (M ) < 1 :

The second Sobolev space we will be working with isH 1
0 (M ).

De�nition 6.5.2 . H 1
0 (M ) is de�ned as the closure ofC1

0 (M ) in L 2(M ) for the norm k:kH 1 (M ) .

The elements ofH 1
0 (M ) correspond to the elements ofH 1(M ) that follow Dirichlet boundary

conditions in the weak sense, i.e.

8' 2 H 1
0 (M ); 8u 2 C0(M );

Z

@M
u(s) � ' (s)ds = 0 :

Remark 6.5.2. Note that by de�nition, C1 (M ) (resp. C1
0 (M )) is dense inH 1(M ) (resp.

H 1
0 (M )) for the norm k:kH 1 (M ) .

Extensions of the Laplacian operator

The de�nition of the Laplacian operator is extended to functions in Sobolev spaces ofM , at least
in the distribution sense, in a way that it coincides with the actual de�nition of the Laplacian
when the functions are regular enough. Three extensions of the Laplacian operators correspond-
ing to the three boundary conditions described earlier are now presented.

Closed Laplacian Let us assume thatM is a manifold without boundary, i.e. @M = ; . For
' 2 H 1(M ) denote TC

' the linear application de�ned by

TC
' : H 1(M ) ! R

u 7! TC
' (u) = hr M '; r M ui L 2 (M )

(6.17)

Noting that C1 (M ) � H 1(M ), TC
' actually de�nes a distribution on M with test function space

C1 (M ). In particular, if we assume that ' 2 H 1(M ) is such that � � M ' can be computed
from its current de�nition (cf. Section 6.5.1) and satis�es � � M ' 2 L 2(M ), we have from
Green's theorem that

8u 2 C1 (M ); TC
' (u) = h� � M '; u i L 2 (M ) : (6.18)

thus giving that TC
' coincides with � � M ' in the sense of distributions. Note also that, using

the density of C1 (M ) in L 2(M ), Equation (6.18) actually holds 8u 2 H 1(M ) � L 2(M ). Hence
TC

' can be identi�ed with the linear map u 7! h� � M '; u i L 2 (M ) de�ned from the Laplacian of
' .
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In the more general case where we only assume that' 2 H 1(M ), the Laplacian of ' is
directly de�ned as the linear map TC

' given in Equation (6.17), and is then denoted� � M ' so
that we can write

8' 1; ' 2 2 H 1(M ); h� � M ' 1; ' 2i L 2 (M ) := TC
' 1

(' 2) :

Consequently we have8' 1; ' 2 2 H 1(M ):

h� � M ' 1; ' 2i L 2 (M ) = hr M ' 1; r M ' 2i L 2 (M ) = h� � M ' 2; ' 1i L 2 (M ) (6.19)

Dirichlet Laplacian Let us assume that M is a manifold with non-empty boundary @M .
For ' 2 H 1

0 (M ) denote TD
' the linear application de�ned by

TD
' : H 1

0 (M ) ! R

u 7! TD
' (u) = hr M '; r M ui L 2 (M )

(6.20)

Note that the only di�erence between Equation (6.17) and Equation (6.20) is the domain of
de�nition of the map. The same reasoning as the one used in the closed case can therefore be
applied. It shows that TD

' once again de�nes a distribution onM , but with test function space
C1

0 (M ).
Hence, when ' 2 H 1

0 (M ), the Laplacian of ' is directly de�ned as the linear map TD
'

given in Equation (6.20), and is then denoted� � M ' . In particular Equation (6.19) holds now
8' 1; ' 2 2 H 1

0 (M ).

Neumann Laplacian Let us assume thatM is a manifold with non-empty boundary @M .
Let ' 2 H 1(M ) such that ' follows Neumann boundary conditions in the L 2-sense, meaning
that

8u 2 C0(@M );
Z

@M
u(s) � gs (ns ; r M ' (s))ds = 0 (6.21)

Denote then TN
' the linear application de�ned by

TN
' : H 1(M ) ! R

u 7! TN
' (u) = hr M '; r M ui L 2 (M )

(6.22)

Note that this is actually the same de�nition as Equation (6.17): only the domain from which
the function ' was chosen changed. The same reasoning as in the �closed� case can then be
used to de�ne the Laplacian of ' from the map TN

' .
Namely, when ' 2 H 1(M ) follows Neumann boundary conditions, the Laplacian of' is

directly de�ned as the linear map TN
' given in Equation (6.22), and is then denoted� � M ' .

6.6 Riemannian geometry and local deformations

To conclude this chapter on Riemannian geometry, we reintroduce the main de�ning properties
of Riemannian manifolds using a �practical� and rather intuitive perspective. Indeed, as we
may now see, Riemannian manifolds are a mathematical object particularly suited to model
spatial domains undergoing local deformations. This parallel will be leveraged later in this work
to interpret (generalized) random �elds de�ned on Riemannian manifolds as locally deformed
(generalized) random �elds (cf. Chapter 7).

6.6.1 Link to Continuum mechanics

In this subsection, a parallel is drawn between the study of �nite deformations in continuum me-
chanics and Riemannian manifolds, which provides an interpretation of the notion of Riemannian
metric as being linked to local deformations (Fiala, 2008; Simo and Marsden, 1984).

Let BR denote a body that occupies a portion of a spatial domain. Formally,BR can be seen
as a continuous and connected subset ofRd. Let us assume that the bodyBR is deformed from
its initial (reference) con�guration BR into a deformed oneBD � Rd. This process, which is
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assumed to be reversible, is called a �nite deformation and can be modeled as a di�eomorphism
� : BR ! �( BR ) = BD that maps any point p 2 BR in the reference con�guration to its
position q = �( p) 2 BD in the deformed con�guration.

Let p 2 BR and let q 2 BD be its position in the deformed con�guration. Let dp be an
in�nitesimal displacement from p to a point (p + dp) 2 BR (in�nitely close to p in BR ). Then
the displacementdq between both points in the deformed bodyBD can be written as

dq = �( p + dp) � �( p) :

Using a Taylor development of �rst order around p, this last equation gives

dq = �( p) + J � (p)dp + o(kdpk) � �( p) = J � (p)dp + o(kdpk) ;

where J � (p) denotes the Jacobian matrix of � at point p 2 BR . Hence, if the terms of higher
order are neglected (due to the in�nitesimal nature ofdp), then the displacements in the reference
and in the deformed con�gurations are linked by

dq = F (p)dp ;

where F is a tensor �eld, called deformation gradient tensor �eld, that associates to any point
p in the reference con�guration a tensorF (p) de�ned by

F (p) : dp 7! F (p)dp = J � (p)dp :

In particular, to characterize length changes and angle changes around a pointp 2 BR after
the deformation process, it is useful to see how inner products between displacement vectors
vary. Let then dp1; dp2 be two displacement vectors fromp and let dq1 and dq2 be their images
in the deformed con�guration. We have

hdq1; dq2i = hF (p)dp1; F (p)dp2i = dpT
1 C (p)dp2 ;

whereC is a tensor �eld, called (right) Cauchy-Green deformation tensor, that associates to any
point p in the reference con�guration a tensorC(p) de�ned by

C(p) : (dp1; dp2) 7�! dpT
1 C (p)dp2 = dpT

1 F (p)T F (p)dp2 :

The Cauchy-Green deformation tensor informs on how lengths and angles of small vectors
around a point p in the reference con�guration are modi�ed after the deformation process, and
therefore how the geometry around that point is modi�ed. Indeed, for any vectorsdp; dp1; dp2

around any point p in the reference con�guration, the length dp and the angle � between dp1

and dp2 are modi�ed according to:

kdpk becomes kdqk =
p

dpT C (p)dp ;

cos� = dp T
1 dp 2

kdp 1 kk dp 2 k becomes cos� 0 = (dp 0
1 )T dp 0

2
kdp 0

1 kk dp 0
2 k = dp T

1 C (p)dp 2p
dp T

1 C (p)dp 1

p
dp T

2 C (p)dp 2
:

Circling back to the subject of this section, Riemannian manifolds actually provide a natural
mathematical framework for the study of deformations. Indeed, consider now thatBR and BD

are submanifolds ofRd, and that BD is equipped with the Euclidean metric, denotedgEuc . The
deformation di�eomorphism � therefore de�nes a smooth map between two smooth manifolds,
BR and BD . Hence, the pullback metric ofgEuc by � de�nes a Riemannian metric on BR by:

8p 2 M ; 8up ; vp 2 Tp BR ; � � gEuc (up ; vp ) = gEuc (d� p (up ); d� p (vp )) ;

where d� p denotes the di�erential of the map � : BR ! BD at the point p 2 B. Using the
de�nition of the Euclidean metric, this last equation becomes

� � gEuc (up ; vp ) =
dX

k=1

[J � (p)u p ]k [J � (p)vp ]k = hJ � (p)u p ; J � (p)vp i = u T
p J � (p)T J � (p)vp :

Identifying (through the exponential map) the roles of the (representative) vectors u p ; vp

de�ned on the tangent space ofBR seen as a manifold with the displacement vectors along the
body dp1; dp2 of the continuum mechanics approach, we retrieve the expression of the Cauchy-
Green deformation tensor. Hence the deformation tensor� simply corresponds to the pullback
metric of the Euclidean metric by the deformation di�eomorphism � , and therefore de�nes its
own Riemannian metric on the undeformed bodyBR . The geometry induced by a Riemannian
metric g = � � gEuc on a manifold BR can be interpreted as the geometry that would exist on
the body BR after it has been deformed through� .
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6.6.2 Laplacian as a change of coordinates

In this subsection, the Laplace�Beltrami operator, which plays a central role in the spectral
analysis of Riemannian manifolds is reintroduced using the same formalism as the one used in
the previous subsection. We show that the Laplace�Beltrami operator de�ned in BR can be
identi�ed to a classical Laplacian operator de�ned on BD through the change of coordinates
induced by the deformation transformation � . We assume that the functions considered in this
subsection follow Dirichlet boundary conditions, i.e. they are zero on the boundary ofBR (or
BD )

Once againBD is purely seen as a domain ofRd (or equivalently as a d-submanifold of Rd

endowed with the Euclidean metric). Hence the de�nition of the gradient and the Laplacian of
functions of BD corresponds to the classical de�nition of such objects for functions ofRd, i.e.
using partial derivatives with respect to Cartesian coordinates. Denote thenr Rd the gradient
operator and � � Rd the negative Laplacian operator as de�ned onRd.

The Laplacian of a (su�ciently smooth) function f : BD ! R can also be de�ned as a distri-
bution with test function space C1

0 (BD ) (i.e. the set of smooth functions ofBD that are zero on
the boundary @BD ). It then maps any u 2 C1

0 (BD ) to the scalar value h� � Rd f; u i L 2 (Rd ) 2 R
de�ned by

h� � Rd f; u i L 2 (Rd ) := hr Rd f; r Rd ui L 2 (Rd ) :=
dX

k=1

h
@f
@qk

;
@u
@qk

i L 2 (Rd ) ; u 2 C1
0 (BD ) ; (6.23)

where h:; :i L 2 (Rd ) denotes the inner-product associated with square-integrable functions ofRd

(i.e. the Lebesgue integral of their product). In particular, if f 2 C2(BD ), � � Rd f 2 C0(BD )
and we have

h� � Rd f; u i L 2 (Rd ) =
Z

B D

(� � Rd f )(q)u(q)dq; u 2 C1
0 (BD ) : (6.24)

Let u 2 C1
0 (BD ) and let f 2 C2(BD ). We denote ~f = f � � : BR ! R the function of BR

canonically associated withf through � . We therefore havef = ~f � � � 1 and the chain rule (cf.
Theorem A.1.1) gives an expression of the partial derivative off with respect to those of ~f :

8k 2 [[1; d]];
@f
@qk

(q) =
dX

l =1

@~f
@pl

(� � 1(q))
@[� � 1]l

@qk
(q) :

Injecting this last equation in Equation (6.23) then gives

h� � Rd f; u i L 2 (Rd ) =
dX

k=1

Z

B D

dX

l =1

dX

l 0=1

@~f
@pl

(� � 1(q))
@[� � 1]l

@qk
(q)

@~u
@pl 0

(� � 1(q))
@[� � 1]l 0

@qk
(q)dq

=
Z

B D

dX

l =1

dX

l 0=1

@~f
@pl

(� � 1(q))
@~u
@pl 0

(� � 1(q))
dX

k=1

@[� � 1]l
@qk

(q)
@[� � 1]l 0

@qk
(q)dq

=
dX

l 0=1

Z

B D

@~u
@pl 0

(� � 1(q))
dX

l =1

@~f
@pl

(� � 1(q))[J � � 1 (q)J � � 1 (q)T ]ll 0dq ;

where of course,~u = u � � and J � � 1 (q) denotes the Jacobian matrix of� � 1 : BD ! BR at the
point q 2 BD . Operating a change of variablesq = �( p) in the last equation then gives (cf.
Theorem A.1.2)

h� � Rd f; u i L 2 (Rd ) =
dX

l 0=1

Z

B R

@~u
@pl 0

(p)
dX

l =1

@~f
@pl

(p)[J � � 1 (�( p))J � � 1 (�( p))T ]ll 0j det J � (p)jdp ;

where J � (p) denotes the (usual) Jacobian matrix of� : BR ! BD .
Note in particular that the chain rule also yields that 8p 2 BR , J � (p) � 1 = J � � 1 (�( p)) .

Hence, for anyp 2 BR , by denoting G(p) the matrix de�ned by

G(p) = J � (p)T J � (p); p 2 BR ; (6.25)
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we get

h� � Rd f; u i L 2 (Rd ) =
dX

l 0=1

Z

B R

@~u
@pl 0

(p)
dX

l =1

@~f
@pl

(p)[G(p) � 1]ll 0

p
det G(p)dp :

Finally, given that u 2 C1
0 (BD ), we have~u 2 C1

0 (BR ) and so, the integration by parts formula
gives

h� � Rd f; u i L 2 (Rd ) = �
dX

l 0=1

Z

B R

~u(p)
@

@pl 0

 
p

det G
dX

l =1

[G � 1]ll 0
@~f
@pl

!

(p)dp

= �
Z

B R

~u(p)divRd

 
p

det G
dX

l =1

[G � 1]ll 0
@~f
@pl

!

(p)dp ;

by de�nition of the divergence operator divRd acting on functions Rd.
On the other hand, a direct change of coordinatesq = �( p) in Equation (6.24) gives

h� � Rd f; u i L 2 (Rd ) =
Z

B D

� � Rd f (q)u(q)dq =
Z

B R

� � Rd f (�( p))u(�( p)) j det J � (p)jdp

= �
Z

B R

�̂ Rd f (p)
p

det G(p)~u(p)dp ;

where �̂ Rd f = (� Rd f ) � � denotes the function ofBR canonically associated with� Rd f through
� .

Identifying these two expressions ofh� � Rd f; u i L 2 (Rd ) , which are true 8u 2 C1
0 (BD ), then

gives

�̂ Rd f = (� Rd f ) � � =
1

p
det G

divRd

 
p

det G
dX

l =1

[G � 1]ll 0
@f� �

@pl

!

; f 2 C2(BD ) : (6.26)

We recognize in the right member of the equation the expression (in local coordinates) of the
Laplace�Beltrami operator applied to the function ~f = f � � : BR ! R, where BR is now seen
as a Riemanniand-manifold endowed with a metric g de�ned from the �eld of positive-de�nite
matrices f G(p)gp2 B R given by Equation (6.25). We therefore retrieve the same construction
of a Riemannian manifold from a body B through deformation transformation � , as the one
presented in Section 6.6.1.

Hence, applying the Laplace�Beltrami operator to a (su�ciently smooth) function ~f of the
Riemannian manifold (BR ; g) is equivalent to applying the classical Laplacian operator ofRd

on the function ~f � � � 1 de�ned on the deformed body BD = �( BR ). The Laplace�Beltrami
operator on (BR ; g) can therefore be seen as a classical Laplacian operator on the deformed
con�guration BD , seen through the change of coordinates induced by� .

Conclusion

In this chapter, we introduced basic notions of di�erential and Riemannian geometry. The focus
was set on (compact) Riemannian manifolds, which can be seen as locally Euclidean spaces for
which the geometry around each point is de�ned by a spatially varying inner product called
Riemannian metric. In particular, integration and di�erential calculus were reintroduced in
these spaces.

We provided a more �physical� interpretation of Riemannian manifolds, which actually re-
lates them the spatial deformation models used in Geostatistics to model non-stationary data
(Sampson and Guttorp, 1992). The Riemannian metric was then simply interpreted as an ap-
plication allowing to compute lengths and angles as if the spatial domain on which it is de�ned
was deformed.

The Laplace�Beltrami operator, which corresponds to the generalization of the Laplace op-
erator to Riemannian manifolds, was introduced. As we may see in the subsequent chapters, this
operator plays a key role when working with �functions� de�ned on the manifold. We indeed
stated the spectral theorem, which ensures that its eigenfunctions act like a decomposition basis
for any square-integrable function de�ned on the Riemannian manifold.
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The next chapter will build on this result to build a class of (generalized) random �elds that
can be seen as the counterparts, on a Riemannian manifold, of isotropic stationary Gaussian
random �elds of Rd. As we may see, working with these �elds will answer the modeling problem
posed in this thesis.





7
Generalized random �elds on

Riemannian manifolds

Contents
7.1 Generalized random �elds: mathematical

framework . . . . . . . . . . . . . . . . . . . . 149
7.1.1 Functions of the Laplacian . . . . . . . . . 149
7.1.2 Generalized random �elds of L 2(M ) . . . . 150

7.2 Covariance properties of generalized Gaus-
sian �elds . . . . . . . . . . . . . . . . . . . . 153

7.2.1 Generalized random �elds and Karhunen�
Loève expansion . . . . . . . . . . . . . . . 154

7.2.2 Generalized random �elds on a compact do-
main of Rd equipped with a metric . . . . . 156

7.3 Discretization of generalized Gaussian �elds 157
7.3.1 Ritz�Galerkin discretization of functions of

the Laplacian . . . . . . . . . . . . . . . . . 157
7.3.2 Ritz�Galerkin discretization of GeGFs . . . 161

7.4 Discussion . . . . . . . . . . . . . . . . . . . . 162
7.4.1 Comparison with the Karhunen�Loève ex-

pansion . . . . . . . . . . . . . . . . . . . . 162
7.4.2 Accounting for local anisotropies . . . . . . 163
7.4.3 Link to stochastic partial di�erential equa-

tion approach . . . . . . . . . . . . . . . . . 165

147



148 7. Generalized random �elds on Riemannian manifolds

Résumé
Dans ce chapitre, nous présentons un cadre mathématique permettant de dé�nir et de tra-

vailler avec des champs gaussiens dé�nis sur des domaines complexes ou caractérisés par des
anisotropies locales. L'idée est d'étendre aux variétés riemanniennes la notion de champ gaussien
isotrope et stationnaire telle que dé�nie sur des domaines euclidiens. Travailler sur des variétés
riemanniennes permet à la fois de modéliser des champs dé�nis sur des domaines seulement lo-
calement euclidiens, mais aussi de modéliser des anisotropies locales en dé�nissant une métrique
appropriée.

Nous commençons par introduire une classe de champs aléatoires généralisés dé�nie à partir
des fonctions propres et des valeurs propres de l'opérateur de Laplace�Beltrami de la variété
riemannienne. Nous en étudions ensuite les propriétés statistiques, et plus particulièrement leur
covariance a�n de montrer en quoi cette classe de champ répond à notre problématique initiale.
En�n, nous proposons une discrétisation de Ritz�Galerkin de ces champs, qui sera destinée aux
application numériques.

Introduction

In this chapter we circle back to our initial modeling problem, that is de�ning a framework
that allows to easily work with Gaussian random �elds de�ned on complex spatial domains or
characterized by local anisotropies. As it turns out, this problem is answered by transposing
the notion of isotropic stationary Gaussian random �elds (as de�ned in Rd) to Riemannian
manifolds. Indeed, as we saw in the previous chapter, these objects can naturally represent
complex domains and local deformations of space.

We will propose a passage from the de�nition of random �elds onRd to Riemannian man-
ifolds using their characterization by a pseudo-di�erential operator (Lang and Pottho�, 2011).
This allows to rede�ne the notion of stationarity without involving a covariance function, and
therefore in a way that is independent of the actual geometry of the manifold. Doing otherwise
would indeed have forced us to �nd a counterpart to the notions of �invariance by translation and
rotation� that characterize the covariance of isotropic random �elds in Rd, and which are obvi-
ously geometry-dependent. We therefore end up with a framework that can easily be transposed
to a wide range of domains.

However, the fact that we are working with pseudo-di�erential operators forces us to gener-
alize the notion of random �eld to more than just a stochastic process indexed by the spatial
domain. This is why the notion of generalized random �eld is introduced. It allows us to justify
the fact that we work with both pseudo-di�erential operators, and processes/�elds that may not
be smooth.

The approach we present is similar to the approach used by Lindgren et al. (2011) to generalize
the de�nition of a class of stochastic partial di�erential equations to manifolds in order to de�ne
Matérn �eld on them. Bolin et al. (2018) also used this approach to derive results on the
numerical approximation of solutions of SPDEs de�ned by a fractional power of an elliptic
di�erential operator on a bounded domain of Rd.

We extend both approaches to the case where the domain of study is a compact Riemannian
manifold. In particular, the generalized random �elds that will be considered are de�ned by
leveraging the spectral theorem on compact Riemannian manifolds (cf. Theorem 6.5.3). As we
may see, this approach has several advantages:

� the proposed construction of generalized random �elds holds for any compact connected
Riemannian manifold,

� the covariance properties of the resulting (generalized) random �elds can easily be linked
to the covariance properties of usual random �elds de�ned onRd, and in particular those
that display local anisotropies,

� the resulting generalized random �elds can be discretized using a very general approach
and doing so, can be numerically computed.

In a �rst section, we introduce the class of generalized random �elds which will be used in
this work, and the surrounding framework. Our main contributions are presented in the two
subsequent sections.
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On one hand, we leverage the notion of metric to show how they can relate to the de�nition
of local anisotropies on the resulting random �elds. This is done by looking into the covariance
properties of these generalized random �elds.

On the other hand, a method of discretization of these generalized random �elds, based
on the Ritz�Galerkin approximation approach, is presented: the generalized random �elds are
approximated by a weighted sum of linearly independent (deterministic) functions de�ned on
the manifold and a theorem describing the statistical properties of the weights is stated (and
proven). As we may see, this discretization is linked to the notion of stochastic graph signal, and
will be leveraged in the subsequent chapters to numerically work with the generalized random
�elds de�ned here.

Note however that the work presented in this chapter only concerns zero-mean Gaussian
�elds.

Assumption 7.1. All (generalized) Gaussian �elds in this work are assumed to be zero-mean.

7.1 Generalized random �elds: mathematical framework

In this section, the mathematical framework leading to the de�nition of a particular class of
generalized random �elds on a compact Riemannian manifold is presented.

7.1.1 Functions of the Laplacian

The aim of this subsection is to introduce a class of operators acting onL 2(M ), called functions
of the Laplacian, and derived from the spectral theorem (cf. Theorem 6.5.3). These operators
are classically used to express solutions of some di�erential equations and to prove the Weyl
asymptotic formula that was introduced in Theorem 6.5.4 (Bouclet, 2012). We will be using
these operators to de�ne the class of generalized random �elds with which we will be working.

Consider then  : R+ 7! R such that  is bounded. We introduce  (� � M ) the (linear)
operator on L 2(M ) whose action is de�ned by:

8f 2 L 2(M );  (� � M )f =
X

k2 N

 (� k )hek ; f i L 2 (M ) ek : (7.1)

 (� � M ) is called function of the Laplacian. The next proposition details the action of this
operator.

Proposition 7.1.1. The operator  (� � M ) de�ned in Equation (7.1) satis�es

 (� � M ) : L 2(M ) ! L 2(M ) :

Besides, its de�nition does not depend on the orthonormal basis of eigenfunctions of� � M used
in Equation (7.1).

Proof.  is bounded, and therefore, so is 2. Hence, there existsM 2 R such that 8� 2 R+ ,
 (� )2 < M . Take then f 2 L 2(M ), and let f ~f pgp2 N be the sequence de�ned by

~f p =
pX

k=0

 (� k )hek ; f i L 2 (M ) ek ; p 2 N :

Note in particular that 8p; q 2 N such that q > p we have

k ~f q � ~f pk2
L 2 (M ) =

qX

k= p+1

 (� k )2hek ; f i 2
L 2 (M ) � M

qX

k= p+1

hek ; f i 2
L 2 (M ) �!

p;q! + 1
0 ;

given that
P

k2 Nhek ; f i 2
L 2 (M ) = kf k2

L 2 (M ) < 1 . Hence f ~f pgp2 N is a Cauchy sequence of
L 2(M ). It is therefore convergent in L 2(M ) given that L 2(M ) is complete.
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Finally, simply notice that by de�nition,

 (� � M )f := lim
p! + 1

~f p :

to conclude the proof.

 (� � M ) de�nes a linear (and continuous) operator from L 2(M ) to L 2(M ), which basically
scales the coordinates of an input functionf by the evaluation of  on each corresponding
eigenvalue of� � M .

 (� � M ) can be seen as a generalization of pseudo-di�erential operators ofRd on the Rie-
mannian manifold (M ; g). Indeed, a pseudo-di�erential operator P of Rd is an operator on
real-valued functions of Rd whose action on a particular function ' is de�ned by

P ' = F � 1 �
� 2 Rd 7! p(� ) � F [' ](� )

�
; (7.2)

where p is a smooth function called symbol ofP, whose derivatives are required to be polyno-
mially bounded.

Dealing now with a Riemannian manifold (instead ofRd), the notion of Fourier transform can
be naturally extended by noticing that the Fourier transform of Rd actually corresponds to the
decomposition of a function into the continuously indexed set of functionsf x 2 Rd 7! eix T � g� 2 Rd .
It is straightforward to check that these functions actually are eigenfunctions of the negative
Laplacian of Rd, associated with eigenvaluesfk � k2g� 2 Rd . Hence the Fourier transform in Rd can
be interpreted as a decomposition of a function into a weighted �sum� of eigenfunctions of the
Laplacian.

Extending now this observation to Riemannian manifolds, the notion of Fourier transform can
hence be identi�ed with the decomposition of a function into the countable basis of eigenfunctions
of the Laplace-Beltrami operator. Denote then F M : L 2(M ) ! `2(N) the map that associates
to any f 2 L 2(M ) its coordinates in the basisf ek gk2 N:

8f 2 L 2(M ); F M [f ] = fhek ; f i L 2 (M ) gk2 N :

This operator is invertible and its inverse F � 1
M : `2(N) ! L 2(M ) is given by:

8f ck gk2 N 2 `2(N); F � 1
M [f ck gk2 N] =

X

k2 N

ck ek 2 L 2(M ) :

Then the de�nition of the operator  (� � M ) in Equation (7.1) can be written

 (� � M ) = F � 1
M

�
f  (� k ) � hek ; f i L 2 (M ) gk2 N

�
: (7.3)

Equation (7.3) presents a form similar in all aspects to Equation (7.2). The function  in
Equation (7.3) plays the role of the symbol function in Equation (7.2), and functions de�ned on
the continuous spaceRd are replaced by countable sequences.

This observation justi�es the parallel that is drawn between pseudo di�erential operators
and the functional operators studied in this section. A more in-depth comparison between them
is carried out in Appendix D.1.1, in the case where the Riemannian manifold considered is a
bounded box ofRd.

7.1.2 Generalized random �elds of L2(M )

General de�nitions and notions

A generalized random �eld (GeRF) Z on M is a linear and continuous functional that associates
to any ' 2 C1 (M ) a random variable Z (' ) 2 R (Gelfand and Shilov, 1964). A GeRF Z is
characterized by its probability distribution , which is the set of all joint distributions F' 1 ;:::;' m

de�ned by
F' 1 ;:::;' m : (a1; : : : ; am ) 2 Rm 7! P[Z (' 1) � a1; : : : ; Z (' m ) � am ]

for any m � 1 and ' 1; : : : ; ' m 2 C1 (M ).
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The mean of Z is the linear and continuous functional � Z which associates to any' 2
C1 (M ), the expectation of Z (' ):

� Z (' ) := E[Z (' )]; ' 2 C1 (M ) :

In particular Z is called zero-mean if8' 2 C1 (M ), � Z (' ) = 0 .
If the expectation of the product Z (' 1)Z (' 2) exists for any ' 1; ' 2 2 C1 (M ) and is con-

tinuous in (' 1; ' 2), then the covariance functional CZ : C1 (M ) � C1 (M ) ! R of Z is the
positive de�nite functional de�ned as

CZ (' 1; ' 2) := Cov[ Z (' 1); Z (' 2)] = E[Z (' 1)Z (' 2)] � E[Z (' 1)]E[Z (' 2)]; ' 1; ' 2 2 C1 (M ) :

Finally, the characteristic functional 	 Z of Z is the functional that associates to any ' 2
C1 (M ) the value of the characteristic function of Z (' ) at 1, namely

	 Z : ' 2 C1 (M ) 7! E[eiZ ( ' ) ] :

The characteristic function of a GeRF is continuous onC1 (M ) and satis�es 	 Z (0) = 1 . Besides,
Minlos' theorem ensures that the characteristic functional of a GeRF entirely characterizes its
probability distribution (Gelfand and Shilov, 1964; Lang, 2007).

Gaussian GeRF and white noise

A GeRF Z is called Gaussian GeRF, or generalized Gaussian �eld (GeGF), if for any m � 1
and any linearly independent ' 1; : : : ; ' m 2 C1 (M ), the random vector (Z (' 1); : : : ; Z (' m ))T

is a non-singular Gaussian vector. The characteristic functional of a zero-mean GeGFZ is then
given by (cf. Theorem A.4.4):

8' 2 C1 (M ); 	 Z (' ) = e� 1
2 CZ ( ';' ) ;

whereCZ is once again the covariance functional ofZ . Conversely, given a continuous, symmetric
and positive-de�nite bilinear form Q on C1 (M ) � C1 (M ), the functional de�ned by

' 2 C1 (M ) 7! e� 1
2 Q( ';' ) ;

is the characteristic function of a GeGF with covariance functionalQ (Gelfand and Shilov, 1964).
In particular, considering as bilinear form the inner product of L 2(M ), yields the functional

' 2 C1 (M ) 7! e� 1
2 h';' i L 2 ( M ) : (7.4)

Any GeRF with characteristic function given by Equation (7.4) is a GeGF called Gaussian white
noise on M . A characterization of Gaussian white noises based on the Hilbert spaceL 2(M ) is
given by the following proposition.

Proposition 7.1.2. Let f Wj gj 2 N be a sequence of independent, standard Gaussian variables.
Then, the linear functional W de�ned over L 2(M ) by

W : ' 2 L 2(M ) 7!
X

j 2 N

Wj h'; e j i L 2 (M ) (7.5)

is a Gaussian white noise onM . In particular, it satis�es

8' 2 L 2(M ); E [W(' )] = 0 (7.6)

and
8' 1; ' 2 2 L 2(M ); Cov [W(' 1); W(' 2)] = h' 1; ' 2i L 2 (M ) : (7.7)
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Proof. Note that given that C1 (M ) � L 2(M ), W can be seen as a GeRF onM .
Let ' 2 C1 (M ). Following from the mutual independence of the Wj , the characteristic
function of W satis�es:

	 W (' ) = E
�
e

i
P

j 2 N
W j h';e j i L 2 ( M )

�
=

Y

j 2 N

E
h
eiW j h';e j i L 2 ( M )

i
=

Y

j 2 N

	 N (0 ;1) (h'; e j i L 2 (M ) ) ;

where	 N (0 ;1) denotes the characteristic function of the standard Gaussian distribution, which
is given by 	 N (0 ;1) (t) = e� t 2 =2, 8t 2 R. Hence,

	 W (' ) =
Y

j 2 N

e� 1
2 h';e j i 2

L 2 ( M ) = e
� 1

2

P
j 2 N

h';e j i 2
L 2 ( M ) = e� 1

2 h';' i 2
L 2 ( M ) ;

which is the characteristic function of a Gaussian white noise. HenceW is Gaussian white
noise.
Equations (7.6) and (7.7) then follow from the fact that the Gaussian white noise is a zero-
mean generalized random process with covariance functionalh:; :i L 2 (M ) ; and by density of
C1 (M ) in L 2(M ).

Seen as the functional de�ned in Proposition 7.1.2, the Gaussian white noise has several prop-
erties related to L 2(M ). For one, it is de�ned on L 2(M ) and not only on C1 (M ). Moreover,
for any m � 1, and for any ' 1; : : : ; ' m 2 L 2(M ), we have:

0

B
B
B
@

W(' 1)
...

W(' m )

1

C
C
C
A

� N

0

B
B
B
@

0;

0

B
B
B
@

h' 1; ' 1i L 2 (M ) : : : h' 1; ' m i L 2 (M )

...
. . .

...

h' n ; ' 1i L 2 (M ) : : : h' m ; ' m i L 2 (M )

1

C
C
C
A

1

C
C
C
A

;

which means that (W(' 1) : : : W(' m ))T de�nes a zero-mean Gaussian vector. Finally, note that

8' 2 L 2(M ); Var[W(' )] = E
�
jW (' )j2

�
= k' k2

L 2 (M ) < 1 :

Hence all random variablesW(' ) have a �nite variance.

L 2(M )-valued GeGF

We now introduce (and denote by)L 2(
 ; M ) the set of L 2(M )-valued random variables de�ned
on a probability space (
 ; F ; P) and satisfying

8Z 2 L 2(
 ; M ); E[Z ] = 0 L 2 (M ) and E[kZk2
L 2 (M ) ] < 1 : (7.8)

In particular, this means that any Z 2 L 2(
 ; M ) is almost surely in L 2(M ). This condition is
actually enforced by Equation (7.8). Indeed, according to Markov's inequality (Stewart, 2009,

Section 8.1), 8N � 1, P
h
kZk2

L 2 (M ) � N
i

� E[kZk2
L 2 (M ) ]=N. And taking the limit as N ! 1

then gives P
h
kZk2

L 2 (M ) = + 1
i

= 1 � P
�
Z 2 L 2(M )

�
= 0 . Consequently, anyZ 2 L 2(
 ; M )

can be represented in the basisf ej gj 2 N as

Z =
X

j 2 N

Z j ej ; (7.9)

where Z1; Z2; : : : are real-valued random variables satisfyingE[Z j ] = 0 and E[Z 2
j ] < 1 (Tone,

2011).
L 2(
 ; M ) is a Hilbert space when equipped with the scalar producth:; :i L 2 (
 ;M ) (and asso-

ciated norm k:kL 2 (
 ;M ) ) de�ned by:

8Z ; Z 0 2 L 2(
 ; M ); hZ; Z 0i L 2 (
 ;M ) = E
�
hZ; Z 0i L 2 (M )

�
:

Note in particular that if Z and Z 0 are represented as in Equation (7.9), we have

hZ; Z 0i L 2 (
 ;M ) =
X

j 2 N

E[Z j Z 0
j ] and kZk2

L 2 (
 ;M ) =
X

j 2 N

E[Z 2
j ] :
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The next result introduces a class of GeGFs de�ned through the white noise that can be
identi�ed with elements of L 2(
 ; M ).

Theorem 7.1.3. Let f Wj gj 2 N be a sequence of independent standard Gaussian variables de�ning
a Gaussian white noiseW as in Proposition 7.1.2.
For  : R+ 7! R such that

P
j 2 N  (� j )2 < 1 , denote  (� � M )W the GeGF of M de�ned on

L 2(M ) by
( (� � M )W) ( ' ) := W

�
 (� � M )' ); ' 2 L 2(M

�
; (7.10)

where  (� � M ) is the function of the Laplacian de�ned in Equation (7.1).
Then,  (� � M )W can be identi�ed with the elementZ 2 L 2(
 ; M ) de�ned by

Z =
X

j 2 N

Wj  (� j )ej ; (7.11)

through the linear functional of L 2(M ) de�ned by: ' 2 L 2(M ) 7! hZ ; ' i L 2 (M ) .

Proof. Clearly, Z is an element ofL 2(
 ; M ) given that E[Z ] = 0 L 2 (M ) and

kZk2
L 2 (
 ;M ) = E

h
kZk2

L 2 (M )

i
=

X

j 2 N

 (� j )2 < 1 :

We now show that the linear functional ' 2 L 2(M ) 7! hZ ; ' i L 2 (M ) is equal to  (� � M )W.
Indeed, 8' 2 L 2(M ), we have from Proposition 7.1.2:

( (� � M )W)( ' ) = W

0

@
X

j 2 N

 (� j )hej ; ' i L 2 (M ) ej

1

A

=
X

j 2 N

Wj  (� j )hej ; ' i L 2 (M ) = hZ; ' i L 2 (M ) ;

which concludes the proof.

From now on, GeGFs of the form (� � M )W will be directly identi�ed with their represen-
tation Z in L 2(
 ; M ), and we will write them as:

Z =  (� � M )W =
X

j 2 N

Wj  (� j )ej ; (7.12)

where f Wj gj 2 N is a sequence of independent, standard Gaussian variables. As such, they are
considered as linear applications that mapL 2(M ) to zero-mean Gaussian variables such that

8' 2 L 2(M ); Z (' ) =
X

j 2 N

Wj  (� j )hej ; ' i L 2 (M ) ;

and

8u; v 2 L 2(M ); Cov[Z (u); Z (v)] = h (� � M )u;  (� � M )vi L 2 (M )

=
X

j 2 N

 (� j )2hej ; ui L 2 (M ) hej ; vi L 2 (M ) : (7.13)

In particular,  will be taken to be a non-negative square-integrable function onR+ , to ensure
that Equation (7.12) is well-de�ned. In the next section, the statistical properties of such �elds,
and in particular their covariance, are investigated and related to those of usual random �elds.

7.2 Covariance properties of generalized Gaussian �elds

The aim of this section is to show how the covariance properties of the GeGFs de�ned in the
previous section by Equation (7.12) relate to the usual description of the covariance properties of
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random �elds of Rd. In particular, we show they can basically be seen as random �elds de�ned
on the manifold, whose spectral density is given by and with local anisotropies de�ned by the
Riemannian metric.

To come up with these conclusions, we �rst consider the case where the Riemannian manifold
(M ; g) is a compact domain ofRd endowed with the Euclidean metric (cf. Example 6.2.1). This
allows to draw a direct parallel between GeGFs de�ned on this trivial manifold and the so-called
Karhunen�Loève expansion of random �elds. In particular, we deduce a practical interpretation
of  . Then, this same manifold is endowed with a Riemannian metric to derive the conclusion
on local anisotropies.

7.2.1 Generalized random �elds and Karhunen�Loève expansion

In this subsection, we draw a parallel between the de�nition of GeGFs we proposed in Sec-
tion 7.1.2 and the Karhunen�Loève expansion of Gaussian random �elds in the particular case
where the domain we consider is a hypercube ofRd. We �rst recall the de�nition of this expan-
sion.

Let B denote the unit hypercube of Rd and let Z be a zero-mean Gaussian random �eld
de�ned on B . Denote cZ : B � B ! R the covariance function ofZ , i.e.

8x ; y 2 B; cZ (x ; y ) = Cov[ Z (x ); Z (y )] = E[Z (x )Z (y )] :

Denote by L 2(B ) the set of square-integrable functions ofB . We can associate to the covari-
ance function cZ an operator CZ : L 2(B ) ! L 2(B ), called covariance operator, which maps any
' 2 L 2(B ) to a function CZ [' ] 2 L 2(B ) given by

CZ [' ](x ) =
Z

B
cZ (x ; y )' (y )dy : (7.14)

Similarly as what was done for the Laplacian (cf. Section 6.5.2), a function� 2 L 2(B ) is
called eigenfunction ofCZ with associated eigenvalue� 2 R if it satis�es

CZ [� ] = �� : (7.15)

The Karhunen�Loève theorem then states the following results (Lindgren, 2012).

Theorem 7.2.1 (Karhunen�Loève theorem). Let Z be a (continuous in quadratic mean) Gaus-
sian random �eld with covariance operator CZ , de�ned on the hypercubeB .

On one hand, there exists a complete (countable) orthogonal1 basis of L 2(B ) consisting of
eigenfunctions f � k gk2 N of CZ .

On the other hand, if f � k gk2 N denotes the eigenvalues associated withf � k gk2 N, then 8k 2 N,
� k � 0 and Z can be decomposed as

Z =
X

k2 N

Wk
p

� k � k ; (7.16)

where f Wk gk2 N is a set of zero-mean uncorrelated (Gaussian) random variables with unit vari-
ance. Equation (7.16) is called the Karhunen�Loève expansion ofZ .

Remark 7.2.1. Note that Z can be identi�ed with a zero-mean GeGF2Z with covariance
functional CZ (cf. Section 7.1.2) given by:

8u; v 2 C1 (B ); CZ (u; v) =
Z

B
cZ (x ; y )u(x )v(y )dy :

Then the eigenfunctions� k and eigenvalues� k of the covariance operatorCZ also correspond
to eigenfunctions and eigenvalues of the covariance functionalCZ in the sense that

8u 2 C1 (B ); CZ (� k ; u) = � k h� k ; ui L 2 (B ) :

Hence, Theorem 7.2.1 can also be stated using the covariance functional instead of the covari-
ance operator.

1For the usual inner product on L 2 (B ).
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We now circle back to the class of GeGFs considered in this work and characterized in
Theorem 7.1.3. We show in particular that the expansion in Equation (7.11) can be identi�ed
with the Karhunen�Loève expansion of the GeGF.

Indeed, let Z be now a GeGF de�ned as in Equation (7.11). Then, 8u 2 C1 (B ), the
eigenfunctionsf ek gk2 N of the negative Laplace-Beltrami operator onB satisfy

CZ (ek ; u) : = Cov[ Z (ek ); Z (u)] = h (� � B )ek ;  (� � B )ui L 2 (B )

=

*
X

l 2 N

 (� l )hel ; ek i L 2 (B ) el ;
X

l 02 N

 (� l 0)hel 0; ui L 2 (B ) el 0

+

L 2 (B )

=  (� k )2 hek ; ui L 2 (B ) :

Hence, the eigenfunctionsf ek gk2 N of the negative Laplace-Beltrami operator are eigenfunctions
of the covariance functional ofZ with associated eigenvaluesf  (� k )2gk2 N. Then, following The-
orem 7.2.1, the expansion ofZ in Equation (7.11) corresponds to a Karhunen�Loève expansion.

Hence, using the formalism of Karhunen�Loève expansions, we identify the GeGFZ with
the zero-mean random function series given by

Z (x ) =
X

j 2 N

Wj  (� j )ej (x ); x 2 BD ;

where f Wj gj 2 N denotes a sequence of independent standard Gaussian variables, andf � j gj 2 N

(resp. f ej gj 2 N) are the eigenvalues (resp. eigenfunctions) of the Laplacian onBD . Its covariance
function is then obtained as

Cov[Z (x ); Z (y )] =
X

j 2 N

X

k2 N

E[Wk Wj ] (� j ) (� k )ej (x )ek (y )) ; x ; y 2 BD :

which gives
Cov[Z (x ); Z (y )] =

X

j 2 N

 (� j )2ej (x )ej (y ); x ; y 2 BD : (7.17)

In their work on Gaussian process regression, Solin and Särkkä (2014), show that away
from the boundary of BD , the covariance function de�ned by Equation (7.17) yields a good
approximation of the isotropic covariance function de�ned as the inverse Fourier transform of
the function  2, which we denoteC0:

C0 = F � 1[ 2] : (7.18)

Another proof is provided by (Huang et al., 2001), and relies on the identi�cation of the
Karhunen�Loève expansion ofZ with the discretized spectral representation of a Gaussian ran-
dom �eld with covariance function C0.

Hence we have that for pointsx ; y 2 BD away from the boundaries,

Cov[Z (x ); Z (y )] = C0(kx � yk2) : (7.19)

where C0 is given by Equation (7.18).

Remark 7.2.2. The link between our de�nition of GeGFs and the Karhunen�Loève expan-
sion exhibited in this subsection actually provides an additional justi�cation to the fact the
Laplacian functions can be considered as the transposition of pseudo-di�erential operators to
compact domains ofRd (cf. Section 7.1.1).

Indeed, following a characterization from (Lang and Pottho�, 2011), a stationary �eld with
covarianceC0 on Rd can be identi�ed with a generalized random �eld of Rd de�ned by

Z = L  W ; (7.20)

where once againC0 and  2 are linked through Equation (7.18), L  denotes the pseudo-
di�erential with symbol function  and W is a Gaussian white noise onRd. In particular,

2This identi�cation can actually be seen as (formally) de�ning the GeGF Z as the map Z : u 2 C1 (B ) 7!R
B

u(x )Z (x )dx .
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Z is therefore seen as a linear application mappingC1
c (Rd) (the set of compactly-supported

smooth functions of Rd) to zero-mean Gaussian variables such that

8u; v 2 C1 (Rd); Cov[Z (u); Z (v)] = hL u; L  vi L 2 (Rd ) : (7.21)

Comparing Equation (7.12) with Equation (7.20) and Equation (7.13) with Equation (7.21)
then allows to conclude that the de�nition Laplacian functions play the exact same role as
the pseudo-di�erential operators do when de�ning stationary �elds.

7.2.2 Generalized random �elds on a compact domain of Rd equipped
with a metric

In this subsection, we use the formalism presented in Section 6.6.BR � Rd denotes a compact
and connected set ofRd, with (piecewise) smooth boundary, called reference con�guration.
� : BR ! BD = �( B ) denotes a di�eomorphism that maps any point p 2 BR to a point
q = �( p) 2 BD in the set BD � Rd, which is called deformed con�guration.

In particular, the body BR is seen as a compactd-submanifold BR of Rd, equipped with
a Riemannian metric g, represented by a �eld of positive de�nite matrices f G(p)gp2 B R . In
particular, BD = �( BR ), and we assume that� is linked to g through Equation (6.25). Let
then � B R be the Laplace-Beltrami operator on(BR ; g).

Following Equation (7.12), we now de�ne a GeGF ZR on BR through

ZR =
X

k2 N

Wk  (� R
k )eR

k ;

wheref Wk gk2 N is a set of independent standard Gaussian variables, andf � R
k gk2 N (resp. f eR

k gk2 N)
are the eigenvalues (resp. eigenfunctions) of� � B R .

Let � � Rd denote the classical Laplacian ofRd, de�ned on functions of BD . Note that,
following Equation (6.26), the eigenfunctions of� � B R satisfy

8k 2 N; � � B R eR
k =

�
� � Rd (eR

k � � � 1)
�

� � = � R
k eR

k :

And therefore the function eD
k := eR

k � � � 1 is an eigenfunction of� � Rd on BD , associated with
the eigenvalue� D

k := � R
k . Hence,

ZD := ZR � � � 1 =
X

k2 N

Wk  (� R
k )eR

k � � � 1 =
X

k2 N

Wk  (� D
k )eD

k

de�nes a GeGF on BD . In particular, following from Section 7.2.1, ZD can be seen as an
isotropic stationary random �eld with spectral density  2 and covariance function satisfying
Equation (7.19).

Consider now two pointsp 2 BR and p+ dp 2 BR separated by an in�nitesimal displacement
vector dp 2 Rd. Following the results of Section 6.6.1 we have,

Cov[ZR (p); ZR (p + dp)] = Cov[ ZD (�( p)) ; ZD (�( p + dp))]

= C(k�( p + dp) � �( p)k2) = C
� p

dpG (p)dp
�

:
(7.22)

Besides,G(p) being a positive-de�nite and symmetric matrix, it can be diagonalized as

G(p) = R (p)T Diag(� 1(p); : : : ; � d(p))R (p) ; (7.23)

where R (p) 2 M d(R) is an orthogonal matrix (i.e. R (p)T R (p) = R (p)R (p)T = I d) and
� 1(p); : : : ; � d(p) > 0. For d 2 f 2; 3g, whenever det R (p) = 1 , R (p) represents a rotation
transformation3. In this case, Equation (7.22) becomes

Cov[ZR (p); ZR (p + dp)] = C(kDiag(1=
p

� 1(p); : : : ; 1=
p

� d(p))R (p)dpk2) : (7.24)

3 If det R (p) = � 1, R (p) represents a re�ection transformation (Friedberg et al., 2003).
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Hence, the covariance ofZR around p 2 BR acts basically like an isotropic �eld with covariance
C de�ned on a neighborhood ofp deformed by the rotation induced by R (p) and dilatation with
factors 1=

p
� 1(p); : : : ; 1=

p
� d(p) 4.

Conversely, given �elds of axis lengthsf 1=
p

� 1(p)gp2 B R , ..., f 1=
p

� d(p)gp2 B R and of rotation
matrices f R (p)gp2 B R and de�ned across a domainBR , a GeGF that behaves locally as in
Equation (7.22) can be generated and characterized as a GeGF de�ned on the Riemannian
manifold obtained by equipping BR with a Riemannian metric de�ned by Equation (7.23). This
idea will be discussed in Section 7.4.2 and leveraged to model a class of non-stationary �elds
de�ned on BR , called Gaussian random �elds with local anisotropies.

Note in particular, there is no need to actually specify the transformation deformation � that
was associated to the metric in our formalism, as it does not intervene in the characterization
of the metric or the pseudo-di�erential operators de�ning the �elds once f G(p)gp2 B R is �xed.

7.3 Discretization of generalized Gaussian �elds

In the last section, we showed how the covariance of the GeGFs de�ned through Equation (7.12)
could be linked to the covariance function of a �eld whose spectral density is 2. Besides,
endowing a manifold with a Riemannian metric proved to be a natural way to de�ne local
anisotropies on the manifold.

We now aim at computing numerical approximations of such �elds using a discretization
of the functions of the Laplacian and of the resulting GeGFs we have been working with. It
leads to their approximation by a weighted sum of user-de�ned deterministic functions called
basis functions and de�ned on the manifold. The discretization we propose, based on the Ritz�
Galerkin approximation theory, can be seen as an extension to general functions of the Laplacians
and to Riemannian manifolds of the approach proposed by Bolin et al. (2018) to derive numerical
approximation results for fractional elliptic stochastic partial di�erential equations.

Our main contribution is the derivation of Theorem 7.3.5 which provides a complete charac-
terization of the weights of such an approximation. The study of the convergence properties of
these approximations is delayed to the next chapter, for a particular set of basis functions.

The following notations are adopted in this section. Let H (M ) denote either H 1(M ) if a
closed or a Neumann Laplacian is considered, orH 1

0 (M ) if a Dirichlet Laplacian is considered
(cf. Section 6.5.3). Taken � 1 and f  k g1� k � n a family of linearly independent functions of
H (M ). Vn � H (M ) denotes its linear span:

Vn = span f  k : k 2 [[1; n]]g :

In particular, Vn is a n-dimensional vector space included inH (M ).

7.3.1 Ritz�Galerkin discretization of functions of the Laplacian

Let ' 2 H (M ). Following the Ritz�Galerkin approximation approach (Brenner and Scott, 2007;
Strang and Fix, 1973), the discretization of � � M ' over a n-dimensional spaceVn � H (M ) is
de�ned as the element ofVn , which we denote� � n ' 2 Vn , that agrees with � � M ' over Vn .
Formally, and following the de�nition of � � M ' provided in Section 6.5.3,� � n � is de�ned as
the element ofVn satisfying:

8v 2 Vn ; h� � n �; v i L 2 (M ) = hr M �; r M vi L 2 (M ) : (7.25)

Consider now the operator� � n that associates to any' 2 H (M ) its discretization � � n ' 2
Vn as de�ned by Equation (7.25). � � n is called theRitz�Galerkin approximation of the operator
� � M . In particular, if f f k g1� k � n denotesany orthonormal basis of Vn (with respect to the
scalar product h�; �i L 2 (M ) ), � � n satis�es

� � n : Vn ! Vn

' 7! � � n ' =
nX

k=1

hr M f k ; r M ' i L 2 (M ) f k
: (7.26)

4This is actually equivalent to saying that around p 2 B R , Z R acts like a stationary �eld with geometric
anisotropy (Chilès and Del�ner, 2012)
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Let C and R be the n-matrices respectively calledmass matrix and sti�ness matrix , and
de�ned by

C =
�
h k ;  l i L 2 (M )

�
1� k;l � n

;

R =
�
hr M  k ; r M  l i L 2 (M )

�
1� k;l � n

:
(7.27)

Lemma 7.3.1. Let C and R be the matrices de�ned in Equation (7.27).
Then, C is a symmetric positive de�nite matrix and R is a symmetric positive semi-de�nite
matrix.

Proof. On one hand, note thatC is symmetric since the functionsf  k gk are real-valued. Also,
8x 2 Rn ,

x T Cx =
nX

k=1

nX

l =1

xk h k ;  l i L 2 (M ) x l = k
nX

k=1

xk  k k2
L 2 (M ) � 0 :

Given that the functions f  k gk are linearly independent, this quantity is zero only if x = 0.
Hence,C is positive de�nite.
On the other hand, R is symmetric by de�nition of its entries (cf. Corollary 6.5.2). And,
8x 2 Rn ,

x T Rx = h
nX

k=1

xk r M  k ;
nX

l =1

x l r M  l i L 2 (M ) = k
nX

k=1

xk r M  k k2
L 2 (M ) � 0

HenceG is positive semi-de�nite.

Remark 7.3.1. Following the proof of Lemma 7.3.1, note that R is positive de�nite (and
therefore invertible) whenever 8' 2 Vn , r M ' = 0 L 2 (M ) ) ' = 0 L 2 (M ) .

We denote by C 1=2 the principal square-root5 of the mass matrix C . In particular, C 1=2 is
invertible and we denote by C � 1=2 its inverse. The following result provides a link between the
matrices C and R and the endomorphism� � n of Vn .

Theorem 7.3.2. Let f  k g1� k � n be a family of linearly independent functions ofH (M ), sat-
isfying Dirichlet or Neumann boundary conditions whenever@M 6= ; . Let Vn denote its linear
span.

Then the endomorphism� � n de�ned by Equation (7.26) is diagonalizable and its eigenvalues
are those of the matrixS de�ned by

S = C � 1=2RC � 1=2 ; (7.28)

where the matricesC and R are de�ned in Equation (7.27) and C � 1=2 is the inverse of the
principal square-root of C .
In particular, the application E : Rn ! Vn , de�ned by

E : v 2 Rn 7!
nX

k=1

[C � 1=2v]k  k ; (7.29)

is an isometric isomorphism that maps the eigenvectors ofS to the eigenfunctions of� � n .

Proof. Note �rst that S is real symmetric and is therefore diagonalizable. Take then� an
eigenvalue ofS and denotev 6= 0 an associated eigenvector. Then,

Sv = C � 1=2RC � 1=2v = � v = � C 1=2C � 1=2v ;

and so,Ru = � Cu where u = C � 1=2v. Hence, using Equation (7.27),

8k 2 [[1; n]];
nX

l =1

hr M  k ; r M  l i L 2 (M ) ul = �
nX

l =1

h k ;  l i L 2 (M ) ul ;

5Hence, C 1=2 is obtained by applying the square-root function to the eigenvalues of C , in the same way as
graph �lters were de�ned (cf. Section 1.3.5).
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which gives using Equation (7.29),

8k 2 [[1; n]]; hr M  k ; r M E(v)i L 2 (M ) = � h k ; E (v)i L 2 (M ) : (7.30)

Note then that f  k gk is also a basis ofVn as it is a family of linearly independent functions
spanning Vn . Denote then A 2 M n (R) the invertible change-of-basis matrix betweenf  k gk

and the orthonormal basis f f k gk of Vn in Equation (7.26). In particular, A satis�es

8k 2 [[1; n]];  k =
nX

l =1

Akl f l :

Then Equation (7.30) can be written

A

0

B
B
B
@

hr M f 1; r M E(v)i L 2 (M )

...

hr M f n ; r M E(v)i L 2 (M )

1

C
C
C
A

= � A

0

B
B
B
@

hf 1; E (v)i L 2 (M )

...

hf n ; E (v)i L 2 (M )

1

C
C
C
A

:

Multiplying both members of this equality by A � 1 then yields that

8k 2 [[1; n]]; hr M f k ; r M E(v)i L 2 (M ) = � hf k ; E (v)i L 2 (M ) :

And so, given that E(v) 2 Vn ,

� � n E(v) =
nX

k=1

hr M f k ; r M E(v)i L 2 (M ) f k = �
nX

k=1

hf k ; E (v)i L 2 (M ) f k = �E (v) :

Therefore � is an eigenvalue of� � n and E maps the eigenvectors ofS to the eigenfunctions
of � � n .
Note then that, 8x 2 Rn ,

kE(x )k2
L 2 (M ) =

nX

k=1

nX

l =1

[C � 1=2x ]k h k ;  l i L 2 (M ) [C
� 1=2x ]l =

�
C � 1=2x

� T
CC � 1=2x = kx k2

2 :

Hence, given that it is also linear, E is an isometry betweenRn (with the metric k:k2) and
Vn (with the metric k:kL 2 (M ) ). Consequently E is injective: indeed, 8x 2 Rn , E (x ) = 0 )
kx k2

2 = kE(x )k2
L 2 (M ) = 0 and so,x = 0 . And �nally, using the rank�nullity theorem Friedberg

et al. (2003), E is bijective (as an injective application between two vector spaces with same
dimension).

Denote by f � k;n g1� k � n � R+ the eigenvalues of the matrix S in Theorem 7.3.2, and let
f vk g1� k � n � Rn be an orthonormal basis ofRn composed of real eigenvectors ofS satisfying
8k 2 [[1; n]], Svk = � k;n vk . Denoting by V 2 M n (R) the matrix

V = ( v1j : : : jvn ) ;

we then have

S = V

0

B
B
@

� 1;n

. . .

� n;n

1

C
C
A V T ; V T V = V V T = I n : (7.31)

Given that the application E de�ned in Equation (7.29) is a linear isometry, it maps or-
thonormal sequences inRn (with respect to h:; :i 2) to orthonormal sequences inVn (with respect
to h:; :i L 2 (M ) ). Hence, the sequencef ek;n g1� k � n � Vn , where

8k 2 [[1; n]]; ek;n = E(vk ) ;

is an orthonormal family of functions of Vn .
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Moreover, given that E is linear and bijective, f E (vk )g1� k � n is actually a basis ofVn since
f vk g1� k � n is a basis ofRn . Consequently, f ek;n g1� k � n de�nes an orthonormal basis of Vn

composed of eigenfunctions of� � n .
Take  : R+ ! R. Following the de�nition of the discretized operator � � n and analogously

to the de�nition of the operator  (� � M ) from the operator � � M , the discretization of the
operator  (� � M ) on Vn is then de�ned as the endomorphism (� � n ) of Vn given by

 (� � n ) : Vn ! Vn

' 7!  (� � n )' :=
nX

k=1

 (� k;n )h'; e k;n i L 2 (M ) ek;n :
(7.32)

Lemma 7.3.3. The de�nition of  (� � n ) in Equation (7.32) does not depend on the choice
of orthonormal basis f ek;n g1� k � n of eigenfunctions of � � n satisfying 8k 2 [[1; n]], � � n ek;n =
� k;n ek;n .

Proof. Let f ek;n g1� k � n and f e0
k;n g1� k � n denote two orthonormal basis ofVn such that 8k 2

[[1; n]], � � n ek;n = � k;n ek;n and � � n e0
k;n = � k;n e0

k;n . Assume that  (� � n ) is de�ned by
Equation (7.32).
Let A 2 M n (R) be the change-of-basis matrix betweenf ek;n gk and f e0

k;n gk , i.e.

8k 2 [[1; n]]; ek;n =
nX

l =1

Akl e0
l;n :

The orthonormality of f ek;n gk and f e0
k;n gk gives that

8k; k0 2 [[1; n]]; hek;n ; ek 0;n i L 2 (M ) =
nX

l =1

nX

l 0=1

Akl he0
l;n ; e0

l 0;n i L 2 (M ) Ak 0l 0 =
nX

l =1

nX

l 0=1

Akl � ll 0Ak 0l 0

=
nX

l =1

Akl Ak 0l = [ AA T ]kk 0 = � kk 0 :

Hence,AA T = I n = A T A .
On the other hand, the fact that f ek;n gk and f e0

k;n gk are eigenfunctions of� � n gives 8k 2
[[1; n]], � � n ek;n =

P n
l =1 Akl (� � n e0

l;n ) =
P n

l =1 � l;n Akl e0
l;n = � k;n ek;n = � k;n

P n
l =1 Akl e0

l;n .
Hence,

8k; l 2 [[1; n]]; � k;n Akl = � l;n Akl

Consequently, note that 8k; l 2 [[1; n]],  (� k;n )Akl =  (� l;n )Akl still holds (this can be veri�ed
with a simple proof by contradiction). Therefore, we have

 (� )A = A  (� ); where  (� ) :=

0

B
B
@

 (� 1;n )
. . .

 (� n;n )

1

C
C
A :

Finally, note that 8' 2 Vn ,

 (� � n )' =
X

k

 (� k;n )

*

';
X

l

Akl e0
l;n

+

L 2 (M )

X

l 0

Akl 0e0
l 0;n

=
X

k;l;l 0

 (� k;n )Akl Akl 0



'; e 0

l;n

�
L 2 (M )

e0
l 0;n

=
X

l;l 0

[A T  (� )A ]ll 0



'; e 0

l;n

�
L 2 (M )

e0
l 0;n =

X

l;l 0

[A T A  (� )] ll 0



'; e 0

l;n

�
L 2 (M )

e0
l 0;n

=
X

l;l 0

[I n  (� )] ll 0



'; e 0

l;n

�
L 2 (M )

e0
l 0;n =

X

l

 (� l;n )


'; e 0

l;n

�
L 2 (M )

e0
l;n ;

which proves the result.
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7.3.2 Ritz�Galerkin discretization of GeGFs

Let Wn be the Vn -valued random variable de�ned by

Wn =
nX

k=1

Wk ek;n ; (7.33)

where W1; : : : ; Wn are independent standard Gaussian variables. Then,Wn is called white
noise on Vn . This de�nition of white noise is coherent with the characterization of Gaus-
sian white noises introduced in Proposition 7.1.2. Indeed, the linear functional' 2 Vn 7!
hWn ; ' i L 2 (M ) =

P n
k=1 Wk hek;n ; ' i L 2 (M ) maps elements ofVn to Gaussian variables satisfying

8' 2 Vn , E[hWn ; ' i L 2 (M ) ] = 0 and 8' 1; ' 2 2 Vn ,

Cov[hWn ; ' i L 2 (M ) ; hWn ; ' i L 2 (M ) ] =
nX

k=1

hek;n ; ' 1i L 2 (M ) hek;n ; ' 2i L 2 (M ) = h' 1; ' 2i L 2 (M ) :

In particular, by independence of theWk , the characteristic function of this functional is

' 2 Vn 7! E[eihWn ;' i L 2 ( M ) ] =
nY

k=1

	 N (0 ;1) (hek;n ; ' i L 2 (M ) ) = e� 1
2 h';' i L 2 ( M ) ;

which is the expected form de�ned in Equation (7.4).

Proposition 7.3.4. Let Wn be a white noise onVn .
Then Wh can be written

Wn =
nX

k=1

~Wk  k ; (7.34)

where the weights~W1 : : : ~Wn for a Gaussian vector de�ned by( ~W1 : : : ~Wn )T � N (0; C � 1).

Proof. Using the linearity of the map E de�ned in Theorem 7.3.2, the de�nition of Wn 2 Vn in
Equation (7.33) can be written Wn =

P n
k=1 Wk E(vk ) = E (

P n
k=1 Wk vk ) = E

�
V (W1; : : : ; Wn )T

�

where (W1; : : : ; Wn )T � N (0; I ).
But also, denoting ~W1; : : : ; ~Wn the coordinates ofWn in the basis f  k gk , we get from Equa-
tion (7.29), Wn =

P n
k=1

~Wk  i = E
�
C 1=2( ~W1 : : : ~Wn )T

�
. Hence, using the fact that E is

bijective, we get ( ~W1 : : : ~Wn )T = C � 1=2V (W1 : : : Wn )T which proves the result.

Theorem 7.3.5. Let Zn be theVn -valued random variable de�ned by

Zn =  (� � n )Wn ; (7.35)

where  (� � n ) is the mapping of Equation(7.32) and Wn is a Gaussian white noise onVn .
Then, Zn can be decomposed in the basisf  k g1� k � n as

Zn =
nX

k=1

Zk  k ; (7.36)

The weightsZ1; : : : ; Zn form a Gaussian vectorZ = ( Z1; : : : ; Zn )T with mean 0 and covariance
matrix

Var[Z ] = C � 1=2 2(S)C � 1=2 ; (7.37)

whereC and S are de�ned in Equations (7.27) and (7.28) , C � 1=2 is the inverse of the principal
square-root of C and  2(S) denotes the graph �lter with shift operator S and transfer function
� 7!  (� )2.

Proof. Notice that Zn 2 Vn , hence there exists some random vectorZ 2 Rn such that
Zn =

P n
k=1 Zk  k . And following Equation (7.29), Zn = E

�
C 1=2Z

�
.
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But also, following the de�nition of Wn in Equation (7.33) and the linearity of E , Zn =
 (� � n )Wn =

P n
k=1  (� k;n )Wk E(vk ) = E (

P n
k=1  (� k;n )Wk vk ) which gives,

Zn =  (� � n )Wn = E

 

V

  ( � 1;n )

. . .
 ( � n;n )

!  
W 1

...
W n

!!

:

Therefore, given that E is bijective,

Z = C � 1=2V

  ( � 1;n )

. . .
 ( � n;n )

!  
W 1

...
W n

!

;

where (W1 : : : Wn )T � N (0; I ), which proves the result.

Theorem 7.3.5 provides an explicit expression for the the covariance matrix of the weights
of Vn -valued random variables. Consequently, generating realizations of such random functions
can easily be done by simulating a zero-mean Gaussian vector of weights with covariance matrix
given in Equation (7.37) and then building the weighted sum Equation (7.36). More generally,
the statistical properties of such �elds are entirely speci�ed by those of its random weights.

Following Equation (7.37), note that the vector

X = C 1=2Z

is a zero-mean Gaussian vector with covariance matrix 2(S). It can therefore be seen as a
S-stationary stochastic graph signal with spectral density  2, on a n-graph G for which S can
be a shift operator. This means in particular that the two vertices i; j of G such that i 6= j should
be adjacent wheneverSij = [ C � 1=2RC � 1=2]ij 6= 0 . The results and algorithms presented in the
�rst two parts of this work can therefore be applied to X seen as a graph signal. For instance
the simulation algorithm of Section 3.1 can be used to generate realizations ofX and therefore
of Z = C � 1=2X .

Of particular interest is the case where the matrix S is sparse, as then the graph �ltering al-
gorithms become computationally e�cient. In the next chapter, a particular family of subspaces
Vn of L 2(M ) yielding sparse shift operatorsS is presented: the subspaces arising from the �nite
element method. Convergence results of the discretization of a GeGF onto such subspaces are
derived.

7.4 Discussion

7.4.1 Comparison with the Karhunen�Loève expansion

In Section 7.2.1 we provided a link between our construction of GeGFs and Karhunen�Loève
expansions. The latter are classically used to derive numerical approximations of a Gaussian
�eld by truncating at a given order the expansion in Equation (7.16). The main drawback of this
approach is the determination of the eigenfunctions (and eigenvalues) of the covariance operator
de�ning the expansion.

For some simple domains, the analytical expression of the eigenfunctions is known, and the
Karhunen�Loève expansion becomes an e�cient modeling tool for isotropic �elds de�ned on
them (Solin and Särkkä, 2014). In the general case however, the determination of approxima-
tion eigenfunctions can easily require heavy computations: the integral (eigenvalue) problem of
Equations (7.14) and (7.15) is indeed discretized, and the resulting matrix eigenvalue problem
is solved by diagonalization (Huang et al., 2001).

On the other hand, with our description of GeGFs, no problem-speci�c diagonalization is ac-
tually needed. Indeed, the weights of the (Ritz�Galerkin) discretization of any (isotropic) GeGF
are given by Theorem 7.3.5 and can be leveraged using the graph signal processing techniques
presented in the early chapters of this work. Moreover, the extension to more complex domains
(i.e. arbitrary smooth submanifolds of Rd) and to �elds with local anisotropies is straightfor-
ward using our approach: it only a�ects the de�nition of the entries of the mass and sti�ness
matrices in Theorem 7.3.5. Doing the same with Karhunen�Loève expansions would suppose
�rst to de�ne the covariance operator, which is far from trivial for these problems.
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7.4.2 Accounting for local anisotropies

We assume for this subsection thatB denotes a compact connected domain ofRd and that
d 2 f 2; 3g. The goal of this section is to highlight how our characterization of GeGFs on
Riemannian manifolds relates to a particular class of non-stationary Gaussian random �elds on
B .

Namely, we call Gaussian random �eld with local anisotropies6 (GRFLA) on B any non-
stationary Gaussian random �eld Z de�ned on B such that its covariance function satis�es

8p 2 B; Cov[Z (p); Z (p + h)] �
h ! 0

C0(kA (p)hk2) = C0

� q
hT A (p)T A (p)h

�
; (7.38)

where A (p) 2 M d(R) is an invertible matrix and C0 is an isotropic covariance function. Hence,
Z corresponds to a random �eld that can be made locally isotropic around each pointp 2 B by
the linear change of variableh ! h0 = A (p)h. In particular, the matrix A (p)T A (p) is called
anisotropy matrix and is symmetric positive de�nite.

The anisotropy matrices de�ning a GRFLA actually have a geometric interpretation. Indeed,
for d 2 f 2; 3g, the anisotropy matrices can be written as the composition of a rotation matrix,
a diagonal matrix and the inverse of rotation matrix (cf. Appendix A.2.3). Around each point
of the domain, the covariance ofZ then acts like the covariance of a stationary �eld with
geometric anisotropy de�ned by these matrices. Hence, working with GRFLA allows to handle
a large spectrum of non-stationary random �elds, as the local behavior of the resulting �elds
is parametrized by interpretable geometric parameters, namely a rotation and scalings along
principal coordinate axes.

Following the results of Section 7.2.2, building a GeGF onB that acts like a GRFLA can be
done by endowingB with a Riemannian metric. Then if a �eld of local anisotropy parameters
(namely rotation angles �; � 1; � 2; � 3 and ranges� 1; � 2; � 3 for the scalings) are de�ned across a
domain B , we can endowB with the metric de�ned by

G(p) =

(
V� (p ) Diag

�
1=� 1(p)2; 1=� 2(p)2

�
V T

� (p ) if d = 2

V� 1 (p ) ;� 2 (p ) ;� 3 (p ) Diag
�
1=� 1(p)2; 1=� 2(p)2; 1=� 3(p)2

�
V T

� 1 (p ) ;� 2 (p ) ;� 3 (p ) if d = 3
;

(7.39)
where V� denotes a two(or-three)-dimensional rotation matrix (cf. Appendix A.2.3). Then our
construction of GeGFs using the Laplace-Beltrami operator associated with this metric will yield
a random �eld on B which respects the prescribed local anisotropies.

The advantage of this method is that it allows to easily incorporate into the model of a
non-stationary random �eld information about its local behavior, as described geometrically by
the anisotropy parameters. In the remainder of this subsection, we draw parallels between this
approach and other approaches aiming at modeling non-stationary random �elds. A complete
review of such models can be found in (Fouedjio, 2017).

Space deformation

Within the space deformation approach, a non-stationary �eld Z de�ned on B is modeled as

8p 2 B; Z (p) = Y(�( p)) ; (7.40)

where � is a deterministic non-linear smooth bijective function de�ned over B and Y is an
isotropic random �eld on �( B ) which covariance function is denoted byC. The covariance
function of Z then satis�es

8p1; p2 2 B; Cov[Z (p1); Z (p2)] = C(k�( p1) � �( p2)k2) (7.41)

A �rst-order Taylor approximation of Equation (7.41) allows to retrieve Equation (7.38) where
A (p) is set to be the Jacobian matrix of � at p. Hence,Z is a GRFLA.

In practice, problems involving Z are transposed to the isotropic �eld Y by determining the
transformation � from observations ofZ , which can be done using a multi-dimensional scaling
algorithm (Kruskal, 1964). This approach is detailed in (Sampson and Guttorp, 1992).

6This notion corresponds, in the zero-mean case, to the notion of locally stationary �eld introduced by (Math-
eron, 1971).
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Following the results of Sections 6.6 and 7.2.2, the random �elds de�ned by Equation (7.40)
can be directly interpreted as instances of one of our GeGFs, de�ned onB equipped with the
Riemannian metric de�ned from the Jacobian matrix of � (cf. Equation (6.25)). In a context
where the anisotropy parameters are known, using the formalism of GeRFs on Riemannian
manifolds rather than the space deformation representation of Equation (7.40) allows to actually
work with Z without having to specify the deformation transformation � , that actually may not
exist7. Indeed, we simply set the metric onB using Equation (7.39) and then use Theorem 7.3.5
to characterize (numerical approximations) of the resulting GeGF.

Convolution model

Within the convolution approach (Higdon et al., 1999), a non-stationary �eld Z de�ned on B
is modeled at each pointp 2 B as the result of a (stochastic) convolution onRd of a so-called
kernel function qp with a Gaussian white noiseW:

8p 2 B; Z (p) =
Z

B
qp (x )W(dx ) : (7.42)

Note that the non-stationarity of Z is a consequence of the fact that we allow the kernel functions
f qp gp2 B to vary with p 2 B .

In the case where a �eld of anisotropy parameters is de�ned onB , Paciorek and Schervish
(2006) proposed to setqp as the density of a multivariate Gaussian distribution centered at p
and with covariance matrix G(p), as given by Equation (7.39). This yields a closed-form for the
covariance function of the resulting �eld Z :

Cov[Z (p1); Z (p2)] =
1

� d=2
p

det A (p1; p2)
e� (p 2 � p 1 )T A (p 1 ;p 2 ) � 1 (p 2 � p 1 ) ; p1; p2 2 B (7.43)

where

A (p1; p2) :=
G(p1) + G(p2)

2
:

Hence, Z can be seen as GRFLA if we consider that, for anyp 2 B , if we take h ! 0 then
det A (p; p + h) can be considered as constant. In particular,Z then corresponds to a non-
stationary Gaussian covariance function. Generalizations of Equation (7.43) have been proposed
for Matérn and Cauchy covariance functions (Stein, 2005). They yield the same forms of covari-
ance function as in Equation (7.43), except that the Gaussian covariance function is replaced by
the appropriate one.

Contrary to the space deformation approach, taking �eld of anisotropies into account is done
readily when setting the kernel functions through f G(p)gp2 B in Equation (7.39). However,
when considering the expression of the resulting covariance function, we see that the covariance
between two points depends only �what is happening� at these two points speci�cally. Indeed,
the covariance betweenZ (p1) and Z (p2) in Equation (7.43) can be seen as the covariance,
between p1 2 B and p2 2 B , of a random function on B with (global) geometric anisotropy
de�ned by the averaged anisotropy matrix A (p1; b2). Hence, the structure of the anisotropy
�eld between p1 and p2 is not taken into account in Equation (7.43).

This property is not shared by the space deformation approach, which in this sense is more
�exible. Indeed, the deformation process� in Equation (7.41), makes it so that the covariance
between any two points of the domainB depends on the overall structure of the anisotropy �eld.
This is due to the fact that this structure is actually de�ned by the function � .

Hence, our GeGFs on Riemannian manifolds allow to take the best of the two approaches
presented in this discussion. They ally the ease of taking into account �elds of local anisotropies
(of the convolution model) to the de�nition of covariance functions that assimilate them as a
whole (as space deformation models do). In summary, the GeGF approach allows to easily
take into account local anisotropies in a global model of covariance. However, we lose the
closed-form expression of the covariance model, which can only be computed numerically using
Theorem 7.3.5.

7At least if we consider transformations � from Rd to Rd .... However, Perrin and Meiring (2003) showed that
a non-stationary �eld (with moments at least of order 2) de�ned on Rd can always be seen as a stationary �eld
de�ned R2d , which points towards considering deformations into space with higher dimensions.
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7.4.3 Link to stochastic partial di�erential equation approach

In this subsection, we show how the class of GeGFs we introduced relates to the stochastic partial
di�erential equation (SPDE) approach introduced by Lindgren et al. (2011).

Within the SPDE approach, stationary Gaussian random �elds Z on Rd with a Matérn
covariance function, are characterized as the stationary solutions of the SPDE de�ned inRd by

(� 2 � �) �= 2Z = � W (7.44)

where � > 0, � > d= 2, � > 0, (� 2 � �) �= 2 is the pseudo-di�erential operator with symbol
function p(� ) = � 2 + k� k2 (cf. Equation (7.2)) and W is a Gaussian white noise (Whittle, 1954).
Hence, Equation (7.44) can actually be seen as a particular case of the more general set of SPDEs
de�ned as

L pZ = W ; (7.45)

where p is a strictly positive radial function of Rd, i.e. for somep0 : R+ ! R�
+ ,

8� 2 Rd; p(� ) = p0(k� k2) ;

and L p is the pseudo-di�erential operator of Rd with symbol function p. In particular, the
equality is here understood in the second-order sense, meaning thatZ is seen as a generalized
random �eld and both sides have the same covariance functional.

The class of SPDEs de�ned by Equation (7.45) was extensively studied by (Carrizo Vergara
et al., 2018), who derived conditions on the symbol functionp for the existence (and uniqueness)
of stationary solutions. Precisely, they show that existence and uniqueness of a stationary
solutions are guaranteed ifp0 is a continuous non-negative function satisfying the following
conditions:

� p0 is polynomially upper-bounded,

� p0 is lower-bounded by the inverse of a strictly positive polynomial,

� 9N > 0;
R

Rd jp0(k! k2)j � 2(1 + k! k2) � N d! < 1 .

They show that the solution is the obtained as the generalized random �eldZ of Rd de�ned by

Z = L 1=pW ;

where L 1=p is the pseudo-di�erential operator with symbol function 1=p (Carrizo Vergara et al.,
2018, Theorem 1 & Remark 2). In particular, Z is de�ned as in Remark 7.2.2.

Following Remark 7.2.2, we conclude that the class of GeGFs we have been working with
includes the solutions of Equation (7.45) (when transposed to the manifold) and therefore the
solutions of the SPDE in Lindgren et al. (2011), which are retrieved by taking

p0(k� k2) =
1
�

(� 2 + k� k2) �= 2; :

In particular one may notice that the expressions of the covariance matrix of the weights of the
�nite element approximation of Matérn �elds proposed by Lindgren et al. (2011) are retrieved
by setting  = 1=p0 in Theorem 7.3.5.

Conclusion

Generalized random �elds on Riemannian manifolds were introduced as a tool allowing to model
Gaussian �elds on complex spatial domains and with local anisotropies. They can be seen as the
transposition of isotropic stationary random �elds of Rd to compact Riemannian manifolds. They
were de�ned using a general approach based on the properties of the Laplace-Beltrami operator
associated with the Riemannian manifold: this operator actually takes on the �transposition�
process mentioned above given that it accounts for both the geometry of the manifold and
the eventual presence of anisotropies (through the Riemannian metric used to de�ne it). The
approach presented in this section can therefore be applied on any compact Riemannian manifold
to de�ne non-stationary �eld from the expression of a (radial) spectral density.
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The discretization of these generalized random �elds was then tackled. Given a set of deter-
ministic �basis� functions de�ned on the domain, we looked for approximations that would be
written as a weighted sum of the basis functions. We derived a theorem that entirely charac-
terizes the random weights of this linear combination, thus providing a numerical model for the
generalized random �elds.

In the next section, we apply this decomposition theorem to the basis functions obtained
from the �nite element method and derive a convergence result for the approximation.
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Résumé
Dans ce chapitre, nous proposons de discrétiser les champs gaussiens généralisés introduits

au chapitre précédent à l'aide de la méthode des éléments �nis, en nous basant sur les résultats
d'approximation de Ritz�Galrkin déjà obtenus.

Nous commençons par introduire la méthode des éléments �nis et à en présenter des exemples
de mise en ÷uvre. Puis nous appliquons cette méthode à la discrétisation de champs gaussiens
généralisés, en prenant soin de détail ler le problème des conditions limites. Nous présentons
également une analyse d'erreur de l'approximation obtenue, débouchant sur un résultat de con-
vergence de l'approximation vers le champ lorsque la tail le de maillage se réduit. En�n, nous
donnons un exemple complet de construction de cette approximation a�n de mettre en évidence
l'intérêt de travailler avec des éléments �nis.

Introduction

The aim of this chapter is to build from the results of Theorem 7.3.5, and provide an example of
construction of a discretization of a generalized random �eld de�ned on a Riemannian manifold.
The set of basis functions used to de�ne the approximation are derived from the �nite element
method, and we start by recalling its principle. Convergence results of the �nite element ap-
proximation are then exposed. Finally, the full construction of this approximation is carried out
on a simple example.

8.1 Introduction to the �nite element method

In this section, we recall the principle of the �nite element method and the mathematical objects
it involves. We refer the reader to (Brenner and Scott, 2007; Raviart et al., 1998; Strang and
Fix, 1973) for a complete review of the method and its main convergence properties.

8.1.1 Mathematical construction of �nite elements

De�nition of a �nite element

Let K � Rd be a compact and connected set, with a non-empty interior. LetX = f x ( i ) gN
i =1 be

a set ofN points of K : x ( i ) 2 K . Finally, let P be a �nite-dimensional vector space of functions
mapping K to R. The triplet (K; X; P ) is called a Lagrange �nite element if 8� 2 Rd, there
exists a unique elementp 2 P such that 8j 2 [[1; N ]], p(x ( j ) ) = � j . In this case, we say that
the set X is P-unisolvent. Hence, all elements ofP are uniquely de�ned by the values they take
over the points of K constituting X .

From now on (K; X; P ) denotes a Lagrange �nite element. Consider then the familyf p( i ) gN
i =1

of functions of P de�ned by:

8i 2 [[1; N ]]; 8j 2 [[1; N ]]; p( i ) (x ( j ) ) = � ij :

The functions f p( i ) gN
i =1 are called shape functionsof the �nite element. They de�ne a basis of

the vector spaceP as any elementp 2 P can be uniquely written as

p =
NX

i =1

p(x ( i ) )p( i ) ; p 2 P :

More generally, consider the operator� K that associates to anyv : K ! R the element of P
de�ned by

� K v =
NX

i =1

v(x ( i ) )p( i ) 2 P (8.1)

and called P-interpolator associated with the �nite element (K; X; P ). In particular, � K v is
called P-interpolate of v: � K v is indeed the unique element ofP that interpolates v over the
set of points X .

Starting from the de�nition of a single Lagrange �nite element, the next proposition is used
to build a whole family of �nite elements.
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Proposition 8.1.1. Let (K; X; P ) be a Lagrange �nite element.
Then for any bijective function F : K ! bK = F (K ) � Rd, the triplet ( bK; bX; bP) de�ned by

bK = F (K ); bX = F (X ) = f F (x ( i ) )gN
i =1 ; bP = P � F � 1 = f p � F � 1 : p 2 Pg (8.2)

is also a Lagrange �nite element.
In particular, (K; X; P ) and ( bK; bX; bP) are said to be equivalent. If besides,F is an a�ne

function, then (K; X; P ) and ( bK; bX; bP) are called a�ne-equivalent.

Proof. By de�nition, bX is a set ofN = Card X points of bK and bP is a vector space of functions
mapping bK to R which has the same dimension asP. We now show that bX is bP-unisolvent.

Let � 2 Rd and assume that there existsbp1; bp2 2 bP such that 8j 2 [[1; N ]], bp1(F (x ( j ) )) =
bp2(F (x ( j ) )) = � j . By de�nition of bP, there exists p1; p2 2 P such bp1 = p1 � F � 1 and
bp2 = p2 � F � 1. Hence, 8j 2 [[1; N ]], p1(x ( j ) ) = p2(x ( j ) ) = � j , and so, by given that X is
P-unisolvent, p1 = p2. This then gives, bp1 = bp2, ans so, bX is bP-unisolvent.

Therefore, ( bK; bX; bP) de�nes a Lagrange �nite element.

Finite elements de�ned from simplices

We now restrict ourselves to the case where the compact setK is a d-simplex, which we denote
T. Namely, T is the convex hull of (d+1) points f a ( i ) gd+1

i =1 of Rd such that there is no hyperplane
of Rd containing all of them. T is a polyhedron and particular, for d = 2 , T is a triangle and for
d = 3 , T is a tetrahedron.

It can be shown that, given that the points f a ( i ) gd+1
i =1 of Rd do not lie in a single hyperplane

of Rd, the matrix A 2 M d+1 (R) de�ned by

A =

0

B
B
B
B
B
@

a (1) : : : a (d+1)

1 : : : 1

1

C
C
C
C
C
A

=

0

B
B
B
B
B
@

a(1)
1 a(d+1)

1
... : : :

...

a(1)
d a(d+1)

d

1 : : : 1

1

C
C
C
C
C
A

(8.3)

is invertible. Indeed, 8y 2 Rd+1 , Ay = 0 )
P d+1

k=1 yk a (k ) = 0 and
P d+1

k=1 yk = 0 , which gives
P d

k=1 yk (a (k ) � a (d+1) ) = 0 and so otherwise To any pointx 2 Rd we can therefore associate a
set of (d + 1) coe�cients gathered in a vector b(x ) = ( b1(x ); : : : ; bd+1 (x ))T 2 Rd+1 de�ned as
the solution of the system

Ab (x ) =

0

@ x

1

1

A : (8.4)

These coe�cients are called barycentric coordinates of x with respect to T and can be seen as
the unique set of coe�cients b1(x ); : : : ; bd+1 (x ) 2 R such that

x =
d+1X

i =1

bi (x )a ( i ) ; with
d+1X

i =1

bi (x ) = 1 ; x 2 Rd : (8.5)

In particular, 8i 2 [[1; d + 1]] , the barycentric coordinates ofa ( i ) are given by the i -th canonical
basis vector ofRd+1 : bj (a ( i ) ) = � ij , 1 � i; j � d + 1 .

The barycentric coordinates b of a simplex T provide a characterization of the points it
contains:

T = f x 2 Rd : 8i 2 [[1; d + 1]] ; bi (x ) 2 [0; 1]g

=

(
d+1X

i =1

ci a ( i ) :
d+1X

i =1

ci = 1 and 8i 2 [[1; d + 1]] ; ci 2 [0; 1]

)

:
(8.6)

In particular, Figure 8.1 provides a graphical interpretation of the barycentric coordinates of a
triangle (i.e. a 2-simplex).
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Figure 8.1: Illustration of the barycentric coordinates of a triangle. The i -th barycentric
coordinate bi of a point lying inside the triangle is equal to the ratio between the corresponding

colored area and the total area of the triangle.

For 1 � i � d + 1 and a d-simplex T with barycentric coordinates b, the subset Ui � T
de�ned by

Ui = f x 2 T : bi (x ) = 0 g (8.7)

is called a face of T. In particular, Ui is one of the faces of the polyhedron ofRd de�ned by T.
Note also that, following Equation (8.6), Ui is actually a (d � 1)-simplex de�ned by the points
f a (k ) gk2 [[1;d+1]] nf i g using the characterization of simplices given by Equations (8.5) and (8.6).
The barycentric coordinates with respect to a faceUi � T of a point x 2 Ui are therefore equal
to its barycentric coordinates with respect to T, where the i -th barycentric coordinate (which is
zero) is omitted.

For m � 0, let Pm be the set of all polynomial functions from Rd to R with degree at most
m. Hence, any elementp 2 Pm can be written as

p(x ) =
X

k 2 Nd ;j k j� m

ck x k ; x 2 Rd ;

where x k :=
Q d

j =1 xk j
j , jk j :=

P d
j =1 jkj j and the coe�cients ck 2 R are indexed by the index

vectors k 2 Nd; jk j � m. In particular, Pk is a vector space of dimension

N = dim(Pm ) =

 
d + m

m

!

=
(d + m)!

m!d!
:

Note that we will also denote the restrictions of Pm to subsets ofRd with non-empty interior by
Pm .

Let then X m be the set of points of ad-simplex T de�ned from their barycentric coordinates
b by

X m =
�

x 2 Rd : 8j 2 [[1; d + 1]] ; bj (x ) 2
�

0;
1
m

; : : : ;
m � 1

m
; 1

��
; (8.8)

and for the particular case wherem = 0 , take,

X 0 =
�

x 2 Rd : 8j 2 [[1; d + 1]] ; bj (x ) =
1

d + 1

�
: (8.9)

Note that X m is therefore composed ofN = dim(Pm ) points. Indeed, for any x 2 X m can be
uniquely identi�ed by the vector b0(x ) = m(b1(x ) � � � bd(x ))T which satis�es b0(x ) 2 Nd and
jb0(x )j = m

P d
j =1 bj (x ) = m(1 � bd+1 (x )) � m. Henceb0(x ) is the multi-index of a monomial

in Pk , which proves the statement.
Consequently, using an extension of Lagrange interpolation to the multivariate case (Saniee,

2008), we can deduce that the polynomial ofPm interpolating a function v : T 7! R over the
points of X m is uniquely de�ned. Hence, X m is Pm -unisolvent and the triplet (T; X m ; Pm )
de�nes a Lagrange �nite element calledd-simplex of type(m).



8.1. Introduction to the �nite element method 171

Figure 8.2: Illustration of the standard d-simplices for d = 2 (left) and d = 3 (right).

Remark 8.1.1. If we restrict the functions of Pm on one of the facesUi of T, then X m \ Ui is
Pm jU i

-unisolvent, meaning that the values a functionp 2 Pm takes at the points of X m that lie
on a faceUi uniquely de�ne the values p takes on the whole face. This is a direct consequence
of the fact that X m \ Ui actually de�nes the interpolating set (as de�ned in Equation (8.8))
of the (d � 1)-simplex of type (m) associated with the faceUi .

A very useful property of simplices is that if T and bT denote two d-simplices, then their
associatedd-simplices of type(m) are equivalent �nite elements. Indeed, the applicationF that
maps any point x 2 T with barycentric coordinates (with respect to T) b(x ) 2 Rd+1 to the
point of bx = F (x ) 2 bT with barycentric coordinates (with respect to bT) bb( bx ) = b(x ) 2 Rd+1

is a bijective transform sendingT to bT. Following Proposition 8.1.1, it is then straightforward
to check that the Lagrange �nite element de�ned by Equation (8.2) actually corresponds to the
d-simplex of type (m) built from bT.

In particular, following the de�nition of barycentric coordinates as solution of the linear
system in Equation (8.4), the points x 2 T and bx = F (x ) 2 bT satisfy

0

@ bx

1

1

A = bA bb( bx ) = bAb (x ) = bAA � 1

0

@ x

1

1

A ; (8.10)

where the matricesA and bA are given by Equation (8.3) using the vertices de�ning the simplices
T and bT. This gives the relation

bx = F (x ) = Mx + c ;

where M 2 M d(R) is the matrix containing the d �rst rows and columns of bAA � 1 and c 2 Rd

is the vector containing the d �rst entries of the last column of bAA � 1. Hence, thed-simplices
of type (m) associated withT and bT are in fact a�ne-equivalent.

In conclusion, all d-simplices of type(m) are in bijection with one another, through an a�ne
transform. In practice, they are all de�ned from a single referenced-simplex of type (m) which
is now de�ned.

Construction of the standard �nite element

Let T0 be the d-simplex de�ned from the following points of Rd: a (1)
0 = (1 ; 0; : : : ; 0), a (2)

0 =
(0; 1; 0; : : : ; 0), ..., a (d)

0 = (0 ; : : : ; 0; 1) and a (d+1)
0 = (0 ; 0; : : : ; 0). T0 is called the standard d-

simplex (cf. Figure 8.2) .
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In particular, the barycentric coordinates b0 of a standard d-simplex satisfy for any x 2 Rd

the relation A 0b0(x ) = ( x T j1)T where

A 0 =

0

@ I d 0d

1T
d 1

1

A :

Equivalently, the barycentric coordinates with respect to T0 are given by

8x 2 Rd; b0
i (x ) = x i 8i 2 [[1; d]] and b0

d+1 (x ) = 1 �
dX

i =1

x i : (8.11)

Hence, the �rst d barycentric coordinates of a point x 2 Rd with respect to T0 correspond to its
actual Cartesian coordinates.

The d-simplex of type (m) de�ned from T0 is called thestandard d-simplex of type(m) and is
denoted (T0; X 0

m ; Pm ). In particular, following Equations (8.8) and (8.11), we have (for m � 1)

X 0
m =

8
<

:
x 2 Rd :

8
<

:
8j 2 [[1; d]]; x j 2

�
0; 1

m ; : : : ; m � 1
m ; 1

	

1 �
P d

j =1 x j 2
�

0; 1
m ; : : : ; m � 1

m ; 1
	

9
=

;
;

and we denotep( i )
0 ; i 2 [[1; Card X 0

m ]] the shape functions of(T0; X 0
m ; Pm ).

Any d-simplex of type (m) can be deduced from(T0; X 0
m ; Pm ) using their a�ne equivalence.

Using Equation (8.10) and the particular form of A 0, the (bijective) a�ne map FT that sends
T0 to a given d-simplex T (while conserving its barycentric coordinates) is given by

FT : x 0 2 T0 7! x = F (x 0) = a (d+1) + Mx 0 2 T ; (8.12)

where M 2 M d(R) is the (invertible) matrix de�ned by

M =

0

B
B
@ a (1) � a (d+1) : : : a (d) � a (d+1)

1

C
C
A : (8.13)

The inverse ofF , which maps T to T0 is therefore given by

F � 1
T : x 2 T 7! x 0 = FT (x ) = M � 1(x � a (d+1) ) 2 T0 : (8.14)

In particular, note that given that FT maintains the barycentric coordinates and following Equa-
tion (8.11), F � 1

T simply corresponds to the function that maps x 2 T to its �rst d barycentric
coordinates (with respect to T). These transformations are illustrated in Figure 8.3.

Any d-simplex of type (m) (T; X m ; Pm ) can then be retrieved from(T0; X 0
m ; Pm ) through

T = FT (T0); X m = FT (X 0
m ); Pm = span

n
p( i ) = p( i )

0 � F � 1
T : i 2 [[1; Card X m ]]

o
; (8.15)

where p( i )
0 ; i 2 [[1; Card X m ]] denote the shape functions of(T0; X 0

m ; Pm ), i.e. the polynomial
of Pm satisfying which is 1 at the i -th point of X 0

m and 0 at any other point of X 0
m . We can

therefore restrict ourselves to the study of the standardd-simplex of type (m).
In the particular case wherem � 2, we now derive the expression of the shape functions of

(T0; X 0
m ; Pm ). First, we introduce the following notations:

a (0)
0 =

1
d + 1

d+1X

i =1

a ( i )
0 =

1
d + 1

1d ;

a ( ij )
0 =

1
2

(a ( i )
0 + a ( j )

0 ); 1 � i < j � d + 1 ;

where once againf a ( i )
0 gd+1

i =1 denotes the(d + 1) points whose convex hull de�nes thed-simplex
T0, and given by

8i 2 [[1; d + 1]] ; 8j 2 [[1; d]]; [a ( i )
0 ]j = � ij :
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Figure 8.3: Illustration of the a�ne transformation from a general 2-simplex T to the standard
2-simplex T0. b1; b2; b3 denote the barycentric coordinate functions ofT.

Figure 8.4: Illustration of the possible interpolation points from a general 2-simplex T (left)
and for the standard 2-simplex T0 (right).
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Interpolating points X 0
m Shape functions Number

m = 0 f a (0)
0 g p(0)

0 (x ) = 1 1

m = 1 f a ( i )
0 g1� i � d+1

p( i )
0 (x ) = x i

where xd+1 := 1 �
P d

i =1 x i
d + 1

m = 2 f a ( i )
0 g1� i � d+1 [ f a ( ij )

0 g1� i<j � d+1

p( i )
0 (x ) = x i (2x i � 1)

p( ij )
0 (x ) = 4 x i x j

where xd+1 := 1 �
P d

i =1 x i

(d+1)( d+2)
2

Table 8.1: Interpolating points X 0
m and associated shape functions for the standardd-simplex

of type m with d � 1 and 0 � m � 2.

Then, for m � 2, the points in X 0
m are taken from f a (0)

0 g [ f a ( i )
0 g1� i � d+1 [ f a ( ij )

0 g1� i<j � d+1 .
These interpolation points are illustrated in Figure 8.4 for d = 2 .

Table 8.1 then gives the expression of the points composingX 0
m and the corresponding shape

functions of T0 for m � 3. We denote by p( � )
0 the shape function associated with the point

a ( � )
0 2 X 0

m .

Remark 8.1.2. As we may see in the subsequent sections of this chapter, the �nite element
method relies on the computation of integrals de�ned on simplices. The relations in Equa-
tion (8.15) are then used to express integrals over arbitraryd-simplices as integrals on the
standard d-simplex, through a change of variable (cf. Theorem A.1.2).

Indeed, if ' : T ! R is a measurable function on ad-simplex T, then its integral over T
can be written as an integral over the standardd-simplex T0 as

Z

T
' (x )dx = jM j

Z

T0

' � F (x 0)dx 0 ;

where jM j is the determinant of the matrix M de�ned in Equation (8.13). In particular,
this determinant actually corresponds to twice the surface (resp.6 times the volume) of the
triangle (resp. tetrahedron) T when d = 2 (resp. d = 3 ).

8.1.2 Finite element method

We �rst assume that M � Rd is a compact polyhedral set, i.e.M is a compact set formed by a
�nite union of polyhedrons of Rd. A triangulation Th of M is a �nite decomposition of M

M =
[

T 2T h

T ;

such that:

� Each elementT 2 Th is a d-simplex.

� Two distinct simplices of Th have disjoint interiors.

� Any face of a simplexT1 2 Th is either the face of a distinct simplexT2 2 Th or is part of
the boundary of M .

In particular, note that the intersection of two distinct simplices of Th is either empty or it is a
common face or a common vertex. The indexh is called the size of the triangulation and denotes
the largest diameter hT of an elementT 2 Th :

h = max
T 2T h

hT ; where hT := sup
p 1 ;p 2 2 T

d(p1; p2) :

For a d-simplex T, let � T be the radius of the largest ball ofRd that can be contained in
T, and let hT be the diameter of T. A family of triangulations fT h gh2 H , where H � ]0; + 1 [, is
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called shape regular if there exists a constant C > 0 such that 8h 2 H , 8T 2 Th , � T � ChT .
Besides,fT h gh2 H is called quasi-uniform if there exists a constant C0 > 0 such that 8h 2 H ,
8T 2 Th , hT � Ch.

Let m � 0. We associate to eachT 2 Th a Lagrange �nite element (T; X m ; Pm ) which is a d-
simplex of type (m). Consider then the setXh � M de�ned as the union of all the interpolating
setsX m corresponding to the �nite elements of the triangulation Th :

Xh =
[

(T;X m ;P m )
T 2T h

X m :

The elements ofXh are points of M called nodes of the triangulation Th .
Note that if we consider two of such �nite elements (T; X m ; Pm ) and ( bT ; bX m ; Pm ) such that

T and bT have a common faceU, then the interpolating points of X m and bX m that lie in U
coincide, i.e. X m \ U = bX m \ U. Indeed, this is a direct consequence of the de�nition ofX m and
bX m (cf. Equation (8.8)) and of the fact that the barycentric coordinates of a point of U are the
same whether they are considered with respect toT or bT. Using then the fact that X m \ U and
bX m \ U are Pm jU -unisolvent, we deduce that the functions ofPm de�ned on T or bT coincide

along any common faceU = T \ bT as long as they coincides on the pointsX m \ U = bX m \ U.
Let then � h ' be the function de�ned for any square-integrable function ' : M ! R by

8T 2 Th ; 8x 2 T; � h ' (x ) = � T ' (x ) ;

where � T is the Pm -interpolator associated with the �nite element (T; X m ; Pm ), as de�ned in
Equation (8.1). � h is therefore well-de�ned (including along the faces of the simplices ofTh ) and
is a continuous function of M . Besides, on each simplexT 2 Th with associated �nite element
(T; X m ; Pm ), it coincides with the Pm -interpolate of ' .

We now introduce the set Vh of (continuous) functions of M de�ned by

Vh = f � h ' : ' 2 L 2(M )g :

Then Vh is a vector subspace ofL 2(M ) of dimension Nh = jXh j, and is called �nite element
space. Indeed, if we denote

Xh = f x ( j ) g1� j � N h ;

then a basis for Vh is provided by the set of functions f  j g1� j � N h � Vh where for eachj 2
[[1; Nh ]], the function  j is de�ned by the relation:

8k 2 [[1; Nh ]];  j (x (k ) ) = � jk : (8.16)

Hence we have
Vh = span ff  j g1� j � N h g ; (8.17)

where  j is the unique function of Vh that is 1 at the node x ( j ) 2 X h and 0 at any other node
of the triangulation. In particular,

8v 2 Vh ; v =
N hX

j =1

v(x ( j ) ) j :

Note that the basis functions f  j g1� j � N h have a limited support: indeed if x ( j ) 2 T then  j

coincides with the shape function associated with the interpolating point x ( j ) of T (cf. for
instance Table 8.1), and otherwise j is zero overT. Hence the support of j is limited to the
simplices that contain x ( j ) .

8.1.3 Triangulation of non-polyhedral sets

In this section, we no longer assume thatM is a compact polyhedral set ofRd. Instead, we now
take M to be a compact subset ofRd with a (piecewise) smooth boundary@M . The idea is to
approximate M by a polyhedral setM h such that any vertex on the boundary of M h is a point
of @M . Then, M h is triangulated as described above by a triangulationTh , according to the
boundary conditions prescribed by the problem.
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Figure 8.5: Triangulation of a non-polyhedral set M (delimited by the black boundary). The
approximating polyhedral set M h is represented in blue and the skinMnM h in red.

In the general case whereM has a curved boundary, the setMnM h , also called �skin�,
will be non-empty (cf. Figure 8.5). To account for the fact that the skin is not part of the
triangulation, small adjustments can be made to extend the de�nition of the basis functions to
the skin.

In the Dirichlet case, given that the value of the basis functions is zero on the boundary of
M h and that we also want them to be zero on@M , we may simply set the value of all basis
functions over the skin to be zero (Strang and Fix, 1973).

Using the same approach for the Neumann case however would result in a discontinuity of the
basis functions across@M h . Instead, when linear shape functions are considered (m = 1 ), we
may for instance extend into each piece of the skin the shape functions of the adjacent simplex
(Strang and Fix, 1973). Given that their derivatives are piecewise constant, their values on the
faces of@M h will be �propagated� on the skin.

Another possible method to account for curved boundaries consists in deforming the simplices
approximating M on its boundary so that their faces that lie on @M h are themselves curved
(Strang and Fix, 1973). Such elements are called isoparametric and are de�ned through a
bijective transformation that maps the standard d-simplex T0 to a deformed d-simplex ~T. In
particular, the faces of the deformed simplex~T are polynomial surfaces de�ned using the same
shape functions as the one used to build the �nite elements.

8.1.4 Triangulation of surfaces of R3

We now consider the case whereM is a smooth surface embedded inR3, and de�ned either
parametrically or implicitly. M can therefore be seen as2-submanifold of R3. Triangulating M
consists in de�ning a locally planar surfaceM h composed of trianglesT � M h that approximate
locally M , in the sense that8p 2 T, dist(p; M ) � � , for some threshold� > 0 �xed in advance.
Hence, we can write

M h =
[

T 2T h

T ;

where Th denotes the triangulation of M , i.e. the set of triangles de�ning M h . In particular,
the triangles of Th must satisfy the following requirements:

� Given that each triangle T 2 Th can be seen as a2-simplex de�ned by 3 points f a ( i ) g1� i � 3

of R3, we impose that these points lie in the original surfaceM : a ( i ) 2 M .

� 8T; T0 2 Th , either T = T0, or T \ T0 = ; , or T \ T0 is a common edge or vertex ofT and
T0.

The notions of shape regular and quasi-uniform are directly extended from the case of the
triangulation of compact sets of Rd.
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It can be showed that, for a small enough mesh size, each triangleT 2 Th can be mapped
to a curved triangle ~T � M , where curved triangles are de�ned as the image of the standard
2-simplex through a bijective application that maps it to M . This is a consequence of the local
coordinate mappings de�ning the surfaceM . Conversely, in order to avoid double coverings, the
triangulation Th is built so that each point of M can be associated to (at most) and one point
of Th , meaning that the M and M h are in bijection.

Hence functions de�ned on M can be seen as de�ned onM h and vice versa, using the
bijection between both surfaces. Indeed, ifa : T ! ~T denotes the mapping that sendsT 2 Th

to its curved counterpart ~T 2 M , then we can associate to any' : T ! R the function
~v = v � a� 1 : ~T ! R. Consequently the function spaceVh on Th , which is de�ned in the same
manner as it would be de�ned for the triangulation of a compact set ofR2, can be seen as a set
of functions de�ned on M .

Finally, note that each triangle T 2 Th � R3 in the triangulation of M h is actually in
bijection with the standard 2-simplex T0 � R2. If x (1) ; x (2) ; x (3) 2 R3 denote the three vertices
of T and M denotes the matrix de�ned by

M =
�

x (1) � x (3) x (2) � x (3)
�

2 M 3;2(R) ;

then the application F de�ned by

FT : y 2 T0 7! F (y ) = x (3) + My 2 T (8.18)

is a bijective map sendingT0 � R2 to T � R3. Its inverse is given by

F � 1
T : x 2 T 7! F � 1(x ) = ( M T M ) � 1M T (x � x (3) ) 2 T0 : (8.19)

In particular, F � 1
T sends a point of T to its �rst two barycentric coordinates as de�ned by

Equation (8.5). Hence �nite elements can be built on M h using the fact that all triangles are
a�ne-equivalent to the standard 2-simplex.

8.2 Generalized random �eld approximation

Circling back to the discretization problem introduced in Section 7.3, �nite element spaces are
used to de�ne the set of approximating functions Vn used to discretize generalized Gaussian
�elds (GeGFs) on a compact manifold M . In particular, in the remainder of this chapter, these
sets of function will rather be denoted by Vh where h will correspond to the mesh size of the
triangulation, as the latter is directly linked to the dimension of the set.

8.2.1 Accounting for boundary conditions

The sets of basis functionsVh arising from �nite element spaces are used to approximate GeGFs
de�ned on the domain M . The boundary conditions de�ning the eigenvalue problems onM
should be accounted for as they are a key building block of the construction of GeGFs. In
particular the set of approximating functions should be chosen as a subset of the domain of
de�nition of the Laplacian. For the Dirichlet Laplacian/boundary conditions, this set is H 1

0 (M )
and for the closed and Neumann case, the set isH 1(M ).

The closed eigenvalue problem arises whenM is a manifold without boundary. In particular,
this is the case whenM is a closed surface, i.e. a surface that is topologically compact but
has no boundary as a manifold (ex: sphere, torus). In that case, the setVh arising from the
triangulation of M can directly be used as a set of approximating functions of the problem given
that no restriction is required and that it is a subset of H 1(M ).

The Dirichlet eigenvalue problem can be considered whenM is a compact manifold with
non-empty boundary. This is the case whenM is a topological compact ofRd (with smooth
boundary). Approximation functions re�ecting this boundary condition should be used: hence,
the approximation function should also be zero on the boundary ofM so that they can lie in
H 1

0 (M ). Consequently, the set of approximating function that should be chosen is:

V 0
h = f ' 2 Vh : ' j@M = 0g ;
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where Vh is the set of basis functions de�ned by the triangulation of M . In particular, V 0
h is

a vector subspace ofVh , whose dimension is equal to the number of unconstrained nodes of
the triangulation, i.e. the number of nodes that are not on the boundary of M (or rather the
boundary of the the polyhedron formed by the simplices of the triangulation). Indeed,V 0

h is
spanned by the basis functions ofVh (de�ned by Equation (8.16)) associated with these nodes
(and only these nodes). Besides,V 0

h � H 1
0 (M ).

As for the Neumann eigenvalue problem, it can be considered for the same types of domains
M as the Dirichlet problem. The set of approximation functions can be taken to be the whole set
of basis functionsVh , which is a subset ofH 1(M ). The boundary conditions will be implicitly
enforced by de�nition of the Neumann Laplacian.

8.2.2 Error analysis of the �nite element approximation

In this section, a convergence result of the �nite element approximation of a GeGF is exposed.
This result is simply an extension of Theorem 2.10 in (Bolin et al., 2018), and is proved in the
exact same way.

First, we recall some notations. Let (Vh )h2 ]0;1] be a family of �nite element spaces indexed
by a mesh sizeh over a domain M � Rd. In particular, following the previous subsection,
the �nite element spaces are de�ned so that they account for boundary conditions. We denote
nh = dim(Vh ) the number of basis functions associated with the triangulation1 of M with mesh
sizeh.

Let � � M denote the Laplace-Beltrami operator, de�ned overL 2(M ), and let � � h denote
its discretization over Vh , as de�ned in Equation (7.26). Let f � j gj 2 N and f � k;h g1� k � n h be the
eigenvalues of� � M and � � h , listed in non-decreasing order.

Let  : R+ ! R such that
P

j 2 N  (� j )2 < 1 .
The following assumptions are considered to derive an error bound between a GeGFZ de�ned

by Equation (7.12) and its �nite element approximation de�ned by Equation (7.36).

Assumption 8.1 (Growth of the eigenvalues of� � M ). There exist three constants� > 0,
c� > 0 and C� > 0 such that the eigenvaluesf � j gj 2 N satisfy

8j 2 N; � j > 0 ) c� j � � � j � C� j � :

Assumption 8.2 (Derivative of  ).  : R+ ! R is derivable onR+ , and there existCDeriv > 0
and a � 0 such that

8x > 0; j 0(x)j �
CDeriv

xa :

Assumption 8.3 (Asymptotic behavior of  ). There exists a constant � > 0 such that
 : R+ ! R satis�es j (� )j = O

� ! + 1

�
� � �

�
, i.e.

9C > 0; 9R > 0; � � R ) j  (� )j � C � � � :

Assumption 8.4 (Dimension of the �nite element space). There exist two constants ~d > 0,
CFES > 0 such that

nh = dim( Vh ) = CFES h� ~d :

Assumption 8.5 (Mesh size). The mesh sizeh shall satisfy:

h �

 
1

CFES

&�
R

c�

� 1=�
'! � 1= ~d

;

1 In particular nh is equal to either the total number of interpolation points (for closed and Neumann boundary
conditions) or the number of interpolation points that do not lie on the boundary of the domain (for Dirichlet
boundary conditions).
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where CFES , R , � and c� are the constants de�ned in Assumptions 8.1, 8.3 and 8.4.
In particular, following Assumptions 8.1 and 8.4, for all j � nh , � j � R .

Assumption 8.6 (Eigenvalues and eigenvectors of� � h ). There exist constantsH0 2]0; 1[,
C1; C2 > 0, and exponentsr; s; q > 0 such that

8h 2]0; H0[; 8k 2 [[1; nh ]];

(
0 � � k;h � � k � C1hr � q

j

kek;h � ek k2
L 2 (M ) � C2h2s � q

k

;

where f � k;h g1� k � n h and f ek;h g1� k � n h are the eigenvalues and eigenvectors of the discretized
operator � � h associated with a mesh sizeh.

Following the notations of the previous sections, letZ and Zh be the random �elds de�ned
by:

Z =  (L )W =
X

j 2 N

Wj  (� j )ej (8.20)

and

Zh =  (L h )Wh =
n hX

k=1

Wk  (� k;h )ek;h ; (8.21)

where f Wj gj 2 N is a sequence of independent standard Gaussian variables. The expected ap-
proximation error of Z by Zh is then de�ned by :

kZ � Z h kL 2 (
; M ) =

r

E
h
kZ � Z h k2

L 2 (M )

i
(8.22)

and can be bounded using the following result.

Theorem 8.2.1. Let Vh ,  , � � M and � � h satisfying Assumptions 8.1 to 8.6.
Assume that the function  is such that a < q + � in Assumption 8.2 and that the growth of
eigenvalues� , de�ned in Assumption 8.1, satis�es

1
2�

< � � min
�

2s

q~d
;

r

(q + � � a) ~d

�
: (8.23)

Then, for h > 0 su�ciently small, the approximation error of the GeGF Z (de�ned by Equa-
tion (8.20)) by its �nite element discretization Zn (de�ned by Equation (8.21)) is bounded by

kZ � Z h kL 2 (
; M ) � Mh min f s; ~d( �� � 1=2); r g ; (8.24)

where M > 0 is a constant independent ofh.

Proof. See Appendix D.2 for a proof of this theorem.

In the applications that will be presented in the next chapter, Assumptions 8.1 to 8.6 are
satis�ed and therefore, Theorem 8.2.1 applies. Indeed,

� Assumption 8.1 is a direct consequence of the Weyl asymptotic formula (cf. Theorem 6.5.4),
and will be satis�ed as long as a compact connected Riemannian manifold is considered;

� Assumptions 8.2 and 8.3 depend only on a suitable choice of spectral density (or equiva-
lently covariance function) of the random �elds with which we work;

� Assumptions 8.4 and 8.5 depend only on the size of the triangulation, which is also set by
the user;

� Assumption 8.6 is a consequence of (Strang and Fix, 1973, Theorems 6.1 & 6.2) for �ne
enough triangulations.

In particular, we refer the reader to the work of Bolin et al. (2018) for an example of possible
values taken by the parameters de�ned in these assumptions.
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8.3 Example of construction of a �nite element approxi-
mation

We assume in this section that a GeGFZ is built from a Neumann Laplacian on a compact
2-manifold M . We assume that a �nite element spaceVh = span f  j : j 2 [[1; Nh ]]g has been
built on M from shape functions taken in P1. Hence the functions in Vh are piecewise-linear
and continuous functions ofR2.

We seek to built the discretization ZN h of Z described in Theorem 7.3.5. This comes down to
building the matrices S and C de�ning the covariance matrix of the weights in Equation (7.36),
through the relation in Equation (7.37).

Recall �rst that each basis function  j is related to the nodex ( j ) of the triangulation through
Equation (8.17). In particular, on each triangle containing x ( j ) ,  j coincides with the basis
function associated with x ( j ) ; and on the triangles that do not contain x ( j ) ,  j is zero.

To each triangle T 2 Th we associate a set(j 1; : : : ; j d+1 ) 2 [[1; Nh ]]d+1 such that the points
x ( j 1 ) ; : : : ; x ( j d +1 ) are the vertices ofT. In particular, if T0 denotes the standardd-simplex, the
map

FT : y 2 T0 7! FT (y ) = x ( j d +1 ) + M T y 2 T ; (8.25)

where
M T =

�
x ( j 1 ) � x ( j d +1 ) j : : : jx ( j d ) � x ( j d +1 )

�

is a bijective map that sendsT0 to T. Note that F � 1
T is given by

F � 1
T : x 2 T 7! F � 1

T (x ) = PT

�
x � x ( j 3 )

�
2 T0 ; (8.26)

where PT = M � 1
T if M is a d-submanifold of Rd (for instance a polyhedral set of Rd) and

PT = ( M T
T M T ) � 1M T

T if M is a d-submanifold of Rd+1 (for instance a surface inR3). Then,
F � 1

T maps any point of T to its �rst two barycentric coordinates.
Given a point x ( j ) 2 X h , we denote

T ( j )
h = f T 2 Th : x ( j ) is one the vertices ofTg : (8.27)

Consider then someT = ( j 1; : : : ; j d+1 ) 2 T ( j )
h and denote kj 2 [[1; d + 1]] the index such that

j = j k j . Then the restriction of  j to T is given by

 j jT = p(k j )
0 � F � 1

T ;

where the expression of the functionp(k j )
0 is given in Table 8.1. As for the gradient of  j on T

it is therefore given by
8x 2 T; r  j (x ) = P T

T ck j ;

where 8k 2 [[1; d]], ck denotes thek-th canonical basis vector ofRd and we set

cd+1 = �
dX

k=1

ck = � 1d

As expected, note that the gradient of  j is constant over each triangle of the triangulation.

8.3.1 Construction of the mass matrix

Recall the expression of the elements of the mass matrixC 2 M N h (R) in Equation (7.27). It
is a common practice to actually replace the matrix C by a diagonal matrix (also denoted C )
with entries given by

8j 2 [[1; Nh ]]; Cjj = h j ; 1i L 2 (M ) :

This approach, called mass lumping, bears negligible e�ects on the outcome of the approximation
while bringing major simpli�cations (Chen and Thomée, 1985; Lindgren et al., 2011). Indeed,
the matrix C being now diagonal, its (inverse) principal square-root is given with no extra
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computational e�ort by taking the (inverse) square-root of its diagonal entries. This property
will be particularly useful when computing the scaled sti�ness matrix S.

Mass lumping is applied in the following. The elementsCjj are de�ned by integrals over
(M ; g). Given that the triangulation of M is a partition of this set, the integral over M can
be split into a sum of integrals over each simplexT 2 Th . On each simplexT, assuming that
there exists a coordinate chart(UT ; xT ) containing T, the integral can be expressed using local
coordinates, thus giving

Cjj =
Z

M
 j dVg =

X

T 2T h

Z

T
 j dVg =

X

T 2T h

Z

x T (T )
 j � x � 1

T (t )
q

jgx T j(x � 1
T (t ))dt ;

where xT (T) � Rd is the image of T through xT and jgx T j denotes the determinant of the
representative matrix of the metric g with respect to the coordinate chart (UT ; xT ) at any point
of T � UT . In particular, given that the simplices T are portions of Rd, we can choosexT to be
the identity mapping Id and UT to be a small enough open set ofM containing T. This gives

Cjj =
X

T 2T h

Z

T
 j (p)

p
jgj(p)dp =

X

T 2T ( j )
h

Z

T
 j (p)

p
jgj(p)dp ;

where T ( j )
h is de�ned in Equation (8.27) for any p 2 T, jgj(p) now denotes the determinant of

the representative matrix G(p) of the metric g with respect to the chart (UT ; Id). In particular,
G(p) can be seen as a matrix de�ning local anisotropies overT through Equation (7.23).

Finally, a change of variabley = FT (p) in these integrals allows to express them as integrals
over the same domainT0

Cjj =
X

T 2T ( j )
h

Z

T0

 j � FT (y )
p

jgj � FT (y )
q

det JFT (y )T JFT (y )dy ;

whereJFT denotes the Jacobian matrix ofFT . This gives the following expression ofFT and  j :

Cjj =
X

T 2T ( j )
h

q
det M T

T M T

Z

T0

p(k j )
0 (y )

p
jgj � FT (y )dy ; (8.28)

where kj 2 [[1; d + 1]] is the vertex index of the triangulation node x ( j ) in T 2 T ( j )
h and the

expression ofp( � )
0 is given in Table 8.1.

In practice, the computation of these elements is eased by assuming that the �eld of matrices
G(p) is constant across each triangle:

8T 2 Th ; 8p 2 T; G(p) = GT ;

for some (symmetric) positive de�nite matrix GT . For �ne triangulation and smoothly varying
matrices G(p) this approximation is valid and we usually take GT to be the value of G(p) at
the center of gravity of T or the mean of the valuesG(p) at the vertices of T. Hence,

Cjj =
X

T 2T ( j )
h

q
det M T

T M T

p
det GT

Z

T0

p(k j )
0 (y )dy ;

where the remaining integral is actually the volume of thed + 1 standard simplex (cf. (Stein,
1966)). Hence,

Cjj =
1

(d + 1)!

X

T 2T ( j )
h

q
det M T

T M T

p
det GT : (8.29)

8.3.2 Construction of the sti�ness matrix

Following Equation (7.27), the elements of the sti�ness matrix R are given by

8i; j 2 [[1; Nh ]]; Rij = hr M  i ; r M  j i L 2 (M ) :



182 8. Finite element approximation of generalized Gaussian �elds

Once again the integral overM is decomposed as a sum of integrals over each simplex of the
triangulation, thus giving

Rij =
X

T 2T h

Z

T
r  i (p)T G(p) � 1r  j (p)

p
jgj(p)dp ;

where G and jgj are de�ned as in the previous section. Using the fact that the gradients have
limited support, we get

Rij =
X

T 2T ( i )
h \T ( j )

h

Z

T
r  i (p)T G(p) � 1r  j (p)

p
jgj(p)dp :

Applying once again the change of variabley = FT (p) �nally gives,

Rij =
X

T 2T ( i )
h \T ( j )

h

q
det M T

T M T

Z

T0

cT
k i

PT G(FT (y )) � 1P T
T ck j

p
jgj(FT (y ))dy

or equivalently

Rij =
X

T 2T ( i )
h \T ( j )

h

q
det M T

T M T � cT
k i

PT H T P T
T ck j ; (8.30)

where H T is the matrix de�ned by

H T =
Z

T0

p
jgj(FT (y ))G(FT (y )) � 1dy ;

and the integral of a matrix is understood as the integral of its entries. Note that if we once
gain assume that the matricesG(p) are constant on each triangle the coe�cients Rij would be
given by

Rij =
1
d!

X

T 2T ( i )
h \T ( j )

h

q
det M T

T M T

p
det GT � cT

k i
PT G � 1

T P T
T ck j : (8.31)

For the element Rij to be non-zero, the nodesx ( i ) 2 X h and x ( j ) 2 X h must be the vertices
of at least one common simplexT. This means that x ( i ) and x ( j ) must form the edge of one
of the triangles (or tetrahedron) of the triangulation. Thus, the number of non-zero entries of
R is equal to the number of simplex edges in the triangulation, thus yielding the fact that the
matrix R will be sparse.

Recall now the concluding remarks of Section 7.3, which pointed out the link between ap-
proximation weights and graph signals. The particular form of Equation (8.31) actually allows
to specify the graph on which the signal lies. Indeed, denote byGh the graph whose vertices are
the nodes of the triangulation Xh and such that i � j wheneverx ( i ) and x ( j ) form the edge of
one of the simplices of the triangulation. In particular, Gh is an undirected simple graph. Then
R is a shift operator of Gh . The following proposition even goes a step further.

Proposition 8.3.1. Let Gh be the graph de�ned from the vertices of the triangulation of a
domain M (as described above) with linear basis functionsf  j gj 2 [[1;N h ]] . Let assume that each
edge(i; j ) of Gh has weightwij given by

wij = �hr M  i ; r M  j i L 2 (M ) ; i � j :

Then the sti�ness matrix R de�ned from the basis functions is the graph Laplacian ofGh .

Proof. Note that 8i 6= j vertices of the graph/triangulation, wii = 0 and wij = � Rij . Note
then that the degree di of the vertex i of Gh is given by

di =
nX

j =1

wij = �
nX

j =1
j 6= i

X

T 2T ( i )
h \T ( j )

h

q
det M T

T M T � cT
k i

PT H T P T
T ck j

= �
X

T 2T ( i )
h

X

j 2X h \ T
j 6= i

q
det M T

T M T � cT
k i

PT H T P T
T ck j :
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Noting then that
P

j 2X h \ T ck j = 0 by de�nition of the vectors ck and of the indiceskj , we
get

nX

j =1

wij = �
X

T 2T ( i )
h

q
det M T

T M T � cT
k i

PT H T P T
T (� ck i ) = Rii :

Hence the o�-diagonal entries ofR are minus the weights ofGh and the diagonal entries ofR
are the degrees of the vertices ofGh . R is therefore the graph Laplacian ofGh .

Note that, given that C is taken diagonal, the scaled sti�ness matrix S = C � 1=2SC � 1=2

is also a shift operator Gh and is a sparse matrix. Using graph �ltering algorithms for the
simulations, prediction and inference of the approximation weights is therefore expected to yield
good computational and storage performances.

8.3.3 Particular case: constant anisotropy on a 2D grid

In this section, we look into the particular case where:

� The domain of study M is a rectangular domain ofR2.

� The coe�cients of the metric are constant, meaning that the �eld of matrices f G(p)gp2M

is constant over M . We then denote by G its value.

As we may see, we can leverage the redundancy of the entries of the sti�ness matrix for storage
and computational gains.

The triangulation M is performed in two steps. First, a regular grid, with steps (l1; l2) is
de�ned over M . Then each rectangledx � dy is divided into two triangles by cutting them
along the same diagonal. We assume here that all rectangles were cut along their top-left to
bottom-right. We call T r

h this �grid� triangulation of M .
To each triangle T 2 T r

h , we associate the vertex indices(j 1; j 2; j 3) such that x ( j 3 ) is the
corner of T and x ( j 1 ) (resp x ( j 2 ) ) is the vertex of T horizontally (resp. vertically) aligned with
x ( j 3 ) . Then, by de�nition of the matrices M T we have

8T 2 T r
h ; M T = M = �

0

@l1

l2

1

A ; � 2 f� 1; 1g

The matrices M T = M , and PT = M � 1
T = M � 1 = P , are therefore independent ofT.

Leveraging the fact that the metric coe�cients are constant, the expressions of the coe�cients
Cjj and Rij are therefore simpli�ed to

Cjj =
1
6

X

T 2T ( j )
h

l1l2
p

det G =
l1l2
6

p
det GCard

n
T 2 T r

h : x ( j ) 2 T
o

; j 2 [[1; Nh ]] (8.32)

and
Rij =

1
2

X

T 2T ( i )
h \T ( j )

h

l1l2
p

det G � cT
k i

P G � 1P T ck j ; i; j 2 [[1; Nh ]] : (8.33)

Note that we now have 8i; j 2 [[1; Nh ]],

Rij =
X

T 2T ( i )
h \T ( j )

h

cT
k i

~Hc k j

where
~H =

1
2

l1l2
p

det G � P G � 1P T :

These coe�cients are non-zero only if i = j or i and j form the edge of one of the triangles of
the grid triangulation, i.e. i and j must be adjacent vertices in the triangulation graph. For a
triangulation point x ( i ) , denote (i 1; i 2) 2 [[1; n1]] � [[1; n2]] its grid coordinates. The only possible
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