A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal et al., Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers, Optics Express, vol.26, issue.5, pp.6056-6066, 2018.

G. P. Agrawal, G. H. Duan, and P. Gallion, Influence of refractive index nonlinearities on modulation and noise properties of semiconductor lasers, Electronics Letters, vol.28, issue.19, pp.1773-1774, 1992.

M. Ahmed, M. Yamada, and M. Saito, Numerical modeling of intensity and phase noise in semiconductor lasers, IEEE Journal of Quantum Electronics, vol.37, issue.12, pp.1600-1610, 2001.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H. Liu et al., Systematic study of the effects of modulation p-doping on 1.3-µm quantum-dot lasers, IEEE Journal of Quantum Electronics, vol.43, issue.12, pp.1129-1139, 2007.

Z. I. Alferov, V. Andreev, D. Garbuzov, Y. V. Zhilyaev, E. Morozov et al., Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature, Sov. Phys. Semicond, vol.4, issue.9, pp.1573-1575, 1971.

I. Alghoraibi, T. Rohel, N. Bertru, A. Le-corre, A. Letoublon et al., Self-assembled InAs quantum dots grown on InP(311)B substrates: Role of buffer layer and amount of InAs deposited, Journal of Crystal Growth, vol.293, issue.2, pp.263-268, 2006.

C. N. Allen, P. Poole, P. Barrios, P. Marshall, G. Pakulski et al., External cavity quantum dot tunable laser through 1.55 µm. Physica E: Low-dimensional Systems and Nanostructures, vol.26, pp.372-376, 2005.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, All-optical control of light on a silicon chip, Nature, vol.431, issue.7012, p.1081, 2004.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, Silicon photonics for next generation system integration platform, IEEE Communications Magazine, vol.51, issue.3, pp.72-77, 2013.

Y. Arakawa and H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current, Applied Physics Letters, vol.40, issue.11, pp.939-941, 1982.

F. Arecchi, G. Lippi, G. Puccioni, and J. Tredicce, Deterministic chaos in laser with injected signal, Optics Communications, vol.51, issue.5, pp.308-314, 1984.

F. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce, Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser, Physical Review Letters, vol.49, issue.17, p.1217, 1982.

D. Arsenijevi?, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg et al., Comparison of dynamic properties of ground-and excited-state emission in p-doped InAs/GaAs quantum-dot lasers, Applied Physics Letters, vol.104, issue.18, p.181101, 2014.

M. Asghari and A. V. Krishnamoorthy, Silicon photonics: Energy-efficient communication, Nature Photonics, vol.5, issue.5, p.268, 2011.

L. Asryan and R. Suris, Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser, Semiconductor Science and Technology, vol.11, issue.4, p.554, 1996.

M. Bayer and A. Forchel, Temperature dependence of the exciton homogeneous linewidth in In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots, Physical Review B, vol.65, issue.4, p.41308, 2002.

R. G. Beausoleil, Large-scale integrated photonics for high-performance interconnects, ACM Journal on Emerging Technologies in Computing Systems (JETC), vol.7, issue.2, p.6, 2011.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel et al., Widely tunable narrowlinewidth 1.5 µm light source based on a monolithically integrated quantum dot laser array, Applied Physics Letters, vol.110, issue.18, p.181103, 2017.

F. Bello, Q. Y. Lu, A. Abdullaev, M. Nawrocka, and J. F. Donegan, Linewidth and noise characterization for a partially-slotted, single mode laser, IEEE Journal of Quantum Electronics, vol.50, issue.9, pp.1-5, 2014.

M. Benyoucef and J. P. Reithmaier, Telecom wavelength nanophotonic elements for quantum communication, 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM), pp.77-78, 2018.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna et al., High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As selforganized quantum-dot lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.6, issue.3, pp.426-438, 2000.

D. Bhattacharyya, E. Avrutin, A. Bryce, J. Marsh, D. Bimberg et al., Spectral and dynamic properties of InAs-GaAs self-organized quantum-dot lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.5, issue.3, pp.648-657, 1999.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne et al., , 2011.

, On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nature Photonics, vol.5, issue.12, p.758

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, 1999.

D. Bossert and D. Gallant, Improved method for gain/index measurements of semiconductor lasers, Electronics Letters, vol.32, issue.4, pp.338-339, 1996.

C. A. Brackett, Dense wavelength division multiplexing networks: Principles and applications, IEEE Journal on Selected Areas in Communications, vol.8, issue.6, pp.948-964, 1990.

R. Broom, E. Mohn, C. Risch, and R. Salathe, Microwave self-modulation of a diode laser coupled to an external cavity, IEEE Journal of Quantum Electronics, vol.6, issue.6, pp.328-334, 1970.

P. Brosson, C. Artigue, B. Fernier, D. Leclerc, J. Jacquet et al., Simple determination of coupling coefficient in DFB waveguide structures, Electronics Letters, vol.24, issue.16, pp.990-991, 2002.

M. Buffolo, F. Samparisi, C. De-santi, D. Jung, J. Norman et al., Physical origin of the optical degradation of InAs quantum dot lasers, IEEE Journal of Quantum Electronics, vol.55, pp.1-7, 2019.

M. Buffolo, F. Samparisi, L. Rovere, C. De-santi, D. Jung et al., Investigation of current-driven degradation of 1.3 µm quantum-dot lasers epitaxially grown on silicon, IEEE Journal of Selected Topics in Quantum Electronics, vol.26, issue.2, pp.1-8, 2020.

R. E. Camacho-aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli et al., An electrically pumped germanium laser, Optics Express, vol.20, issue.10, pp.11316-11320, 2012.

A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz et al., Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser, Optics Express, vol.15, issue.9, pp.5388-5393, 2007.

G. Carpintero, E. Rouvalis, K. ?awniczuk, M. Fice, C. C. Renaud et al., 95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser, Optics Letters, vol.37, issue.17, pp.3657-3659, 2012.

J. E. Carroll, J. Whiteaway, D. Plumb, and R. Plumb, Distributed feedback semiconductor lasers, vol.10, 1998.

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. Baranov, Quantum cascade lasers emitting near 2.6 µm, Applied Physics Letters, vol.96, issue.14, p.141110, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01826618

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang et al., Electrically pumped continuous-wave III-V quantum dot lasers on silicon, Nature Photonics, vol.10, issue.5, p.307, 2016.

H. Choi, C. Wang, and N. Karam, GaAs-based diode lasers on Si with increased lifetime obtained by using strained ingaas active layer, Applied Physics Letters, vol.59, issue.21, pp.2634-2635, 1991.

W. W. Chow and F. Jahnke, On the physics of semiconductor quantum dots for applications in lasers and quantum optics, Progress in Quantum Electronics, vol.37, issue.3, pp.109-184, 2013.

W. W. Chow and S. W. Koch, Semiconductor-laser fundamentals: physics of the gain materials, 1999.

W. W. Chow and S. W. Koch, Theory of semiconductor quantum-dot laser dynamics, IEEE Journal of Quantum Electronics, vol.41, issue.4, pp.495-505, 2005.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, 2012.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost et al., Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 µm, Applied Physics Letters, vol.92, issue.19, p.191109, 2008.

C. Cornet, C. Platz, P. Caroff, J. Even, C. Labbé et al., Approach to wetting-layer-assisted lateral coupling of InAs/InP quantum dots, Physical Review B, vol.72, issue.3, p.35342, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00504376

C. Cornet, A. Schliwa, J. Even, F. Doré, C. Celebi et al., Electronic and optical properties of InAs/InP quantum dots on InP(100) and InP(311)B substrates: theory and experiment, Physical Review B, vol.74, issue.3, p.35312, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00491703

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, Limits on the performance of RF-over-fiber links and their impact on device design, IEEE Transactions on Microwave Theory and Techniques, vol.54, issue.2, pp.906-920, 2006.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, GaAs-based quantum dot lasers, Semiconductors and Semimetals, vol.86, pp.371-417, 2012.

B. Dagens, A. Markus, J. Chen, J. Provost, D. Make et al., Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser, Electronics Letters, vol.41, issue.6, pp.323-324, 2005.

F. Devaux, Y. Sorel, and J. Kerdiles, Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter, Journal of Lightwave Technology, vol.11, issue.12, pp.1937-1940, 1993.

R. Dingle and C. H. Henry, Quantum effects in heterostructure lasers, US Patent, vol.3, p.207, 1976.

B. Dong, J. Duan, C. Shang, H. Huang, A. Sawadogo et al., Influence of the polarization anisotropy on the linewidth enhancement factor and reflection sensitivity of 1.55-µm InP-based InAs quantum dash lasers, Applied Physics Letters, vol.115, issue.9, p.91101, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02307297

G. Duan, C. Jany, A. Le-liepvre, A. Accard, M. Lamponi et al., Hybrid III-V on silicon lasers for photonic integrated circuits on silicon, IEEE Journal of Selected Topics in Quantum Electronics, vol.20, issue.4, pp.158-170, 2014.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman et al., 1.3-µm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon, IEEE Photonics Technology Letters, vol.31, issue.5, pp.345-348, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01561703

J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang et al., Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration, Photonics Research, vol.7, issue.11, pp.1222-1228, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02340542

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman et al., Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor, Applied Physics Letters, vol.112, issue.25, p.251111, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02305802

J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang et al., Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers, Applied Physics Letters, vol.112, issue.12, p.121102, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02306951

J. Duan, X. Wang, Y. Zhou, C. Wang, and F. Grillot, Carrier-noiseenhanced relative intensity noise of quantum dot lasers, IEEE Journal of Quantum Electronics, vol.54, issue.6, pp.1-7, 2018.

G. Eisenstein and D. Bimberg, Green Photonics and Electronics, 2017.

A. Elbaz, M. El-kurdi, A. Aassime, S. Sauvage, X. Checoury et al., Germanium microlasers on metallic pedestals, APL Photonics, vol.3, issue.10, p.106102, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02155862

J. Even, C. Wang, and F. Grillot, From basic physical properties of InAs/InP quantum dots to state-of-the-art lasers for 1.55 µm optical. communications: an overview, Semiconductor Nanocrystals and Metal Nanoparticles: Physical Properties and Device Applications, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01402662

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia et al., Electrically pumped hybrid AlGaInAs-silicon evanescent laser, Optics Express, vol.14, issue.20, pp.9203-9210, 2006.

A. Fiore and A. Markus, Differential gain and gain compression in quantum-dot lasers, IEEE Journal of Quantum Electronics, vol.43, issue.4, pp.287-294, 2007.

M. Fleming and A. Mooradian, Spectral characteristics of external-cavity controlled semiconductor lasers, IEEE Journal of Quantum Electronics, vol.17, issue.1, pp.44-59, 1981.

A. Gallet, Hybrid III-V/Si lasers for optical communications, 2019.

A. Gallet, K. Hassan, C. Jany, T. Card, J. Dafonseca et al., Dynamic and noise properties of high-Q hybrid laser, IEEE International Semiconductor Laser Conference (ISLC), pp.1-2, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02412385

J. Geng, C. Spiegelberg, and S. Jiang, Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry, IEEE Photonics Technology Letters, vol.17, issue.9, pp.1827-1829, 2005.

I. George, F. Becagli, H. Liu, J. Wu, M. Tang et al., Dislocation filters in GaAs on Si. Semiconductor Science and Technology, vol.30, p.114004, 2015.

M. Gioannini, Analysis of the optical gain characteristics of semiconductor quantum-dash materials including the band structure modifications due to the wetting layer, IEEE Journal of Quantum Electronics, vol.42, issue.3, pp.331-340, 2006.

M. Gioannini, M. Dommermuth, L. Drzewietzki, I. Krestnikov, D. Livshits et al., Two-state semiconductor laser self-mixing velocimetry exploiting coupled quantum-dot emission-states: experiment, simulation and theory, Optics Express, vol.22, issue.19, pp.23402-23414, 2014.

M. Gioannini and I. Montrosset, Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers, IEEE Journal of Quantum Electronics, vol.43, issue.10, pp.941-949, 2007.

F. Girardin, G. Duan, and P. Gallion, Linewidth rebroadening due to nonlinear gain and index induced by carrier heating in strained quantum-well lasers, IEEE Photonics Technology Letters, vol.8, issue.3, pp.334-336, 1996.

M. Gong, K. Duan, C. Li, R. Magri, G. A. Narvaez et al., Electronic structure of self-assembled InAs/InP quantum dots: Comparison with self-assembled InAs/GaAs quantum dots, Physical Review B, vol.77, issue.4, p.45326, 2008.

F. Grillot, On the effects of an antireflection coating impairment on the sensitivity to optical feedback of AR/HR semiconductor DFB lasers, IEEE Journal of Quantum Electronics, vol.45, issue.6, pp.720-729, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00501879

F. Grillot, B. Dagens, J. Provost, H. Su, and L. F. Lester, Gain compression and above-threshold linewidth enhancement factor in 1.3-µm InAs-GaAs quantumdot lasers, IEEE Journal of Quantum Electronics, vol.44, issue.10, pp.946-951, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00502372

F. Grillot, N. Naderi, M. Pochet, C. Lin, and L. Lester, Variation of the feedback sensitivity in a 1.55 µm InAs/Inp quantum-dash Fabry-Perot semiconductor laser, Applied Physics Letters, vol.93, issue.19, p.191108, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00536721

F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley et al., A dual-mode quantum dot laser operating in the excited state, Applied Physics Letters, vol.99, issue.23, p.231110, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01166265

F. Grillot, B. Thedrez, and G. Duan, Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures, IEEE Journal of Quantum Electronics, vol.40, issue.3, pp.231-240, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00084879

F. Grillot, B. Thedrez, O. Gauthier-lafaye, M. Martineau, V. Voiriot et al., Coherence-collapse threshold of 1.3-µm semiconductor DFB lasers, IEEE Photonics Technology Letters, vol.15, issue.1, pp.9-11, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00084877

F. Grillot, B. Thedrez, J. Py, O. Gauthier-lafaye, V. Voiriot et al., 2.5-Gb/s transmission characteristics of 1.3-µm DFB lasers with external optical feedback, IEEE Photonics Technology Letters, vol.14, issue.1, pp.101-103, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00267385

M. E. Groenert, A. J. Pitera, R. J. Ram, and E. A. Fitzgerald, Improved roomtemperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded Ge x Si 1?x buffer layers, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.21, issue.3, pp.1064-1069, 2003.

B. W. Hakki and T. L. Paoli, cw degradation at 300 ? K of GaAs doubleheterostructure junction lasers. II. Electronic gain, Journal of Applied Physics, vol.44, issue.9, pp.4113-4119, 1973.

C. Harder, K. Vahala, Y. , and A. , Measurement of the linewidth enhancement factor ? of semiconductor lasers, Applied Physics Letters, vol.42, issue.4, pp.328-330, 1983.

M. Harfouche, The coherence collapse regime of high-coherence Si/III-V lasers and the use of swept frequency semiconductor lasers for full field 3D imaging, 2018.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-romeo, X. Letartre et al., Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects, IEEE Photonics Technology Letters, vol.18, issue.1, pp.223-225, 2005.

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors: Fivth Edition, 2009.

J. Hayau, P. Besnard, O. Dehaese, F. Grillot, R. Piron et al., Effect of the wetting layer on intensity noise in quantum dot laser, Optical Communication, 2009. ECOC'09. 35th European Conference on, pp.1-2, 2009.

J. Haysom, G. Aers, S. Raymond, and P. Poole, Study of quantum well intermixing caused by grown-in defects, Journal of Applied Physics, vol.88, issue.5, pp.3090-3092, 2000.

S. Hein, V. Von-hinten, S. Höfling, and A. Forchel, The impact of p-doping on the static and dynamic properties of 1.5 µm quantum dash lasers on, InP. Applied Physics Letters, vol.92, issue.1, p.11120, 2008.

R. Heitz, A. Kalburge, Q. Xie, M. Grundmann, P. Chen et al., Excited states and energy relaxation in stacked InAs/GaAs quantum dots, Physical Review B, vol.57, issue.15, p.9050, 1998.

R. Helkey, A. A. Saleh, J. Buckwalter, and J. E. Bowers, High-performance photonic integrated circuits on silicon, IEEE Journal of Selected Topics in Quantum Electronics, vol.25, issue.5, pp.1-15, 2019.

C. Henry, Theory of the linewidth of semiconductor lasers, IEEE Journal of Quantum Electronics, vol.18, issue.2, pp.259-264, 1982.

C. Henry, Theory of the phase noise and power spectrum of a single mode injection laser, IEEE Journal of Quantum Electronics, vol.19, issue.9, pp.1391-1397, 1983.

C. Henry and R. Kazarinov, Instability of semiconductor lasers due to optical feedback from distant reflectors, IEEE Journal of Quantum Electronics, vol.22, issue.2, pp.294-301, 1986.

C. Herbert, D. Jones, A. Kaszubowska-anandarajah, B. Kelly, M. Rensing et al., Discrete mode lasers for communication applications, IET optoelectronics, vol.3, issue.1, pp.1-17, 2009.

S. Hoffmann and M. R. Hofmann, Generation of terahertz radiation with two color semiconductor lasers, Laser & Photonics Reviews, vol.1, issue.1, pp.44-56, 2007.

E. Homeyer, R. Piron, F. Grillot, O. Dehaese, K. Tavernier et al., First demonstration of a 1.52 µm RT InAs/InP (311)B laser with an active zone based on a single QD layer. Semiconductor science and technology, vol.22, p.827, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00493037

D. Huang, P. Pintus, and J. E. Bowers, Towards heterogeneous integration of optical isolators and circulators with lasers on silicon, Optical Materials Express, vol.8, issue.9, pp.2471-2483, 2018.

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic et al., High-power sub-kHz linewidth lasers fully integrated on silicon, Optica, vol.6, issue.6, pp.745-752, 2019.

H. Huang, Optical nonlinearities in quantum dot lasers for high-speed communications, 2017.
URL : https://hal.archives-ouvertes.fr/tel-02112135

H. Huang, D. Arsenijevi?, K. Schires, T. Sadeev, D. Bimberg et al., Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states, AIP Advances, vol.6, issue.12, p.125114, 2016.

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang et al., Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon, JOSA B, vol.35, issue.11, pp.2780-2787, 2018.

H. Huang, L. Lin, C. Chen, D. Arsenijevi?, D. Bimberg et al., Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short-to long-delay regimes, Optics Express, vol.26, issue.2, pp.1743-1751, 2018.

H. Huang, K. Schires, L. Lin, C. Chen, D. Arsenijevi? et al., Dynamics of excited-state InAs/GaAs Fabry-Perot quantum-dot lasers under optical feedback, CLEO: Science and Innovations, pp.4-6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02412274

H. Huang, K. Schires, P. Poole, and F. Grillot, Non-degenerate four-wave mixing in an optically injection-locked InAs/InP quantum dot Fabry-Perot laser, Applied Physics Letters, vol.106, issue.14, p.143501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02287164

J. Huang and L. W. Casperson, Gain and saturation in semiconductor lasers, Optical & Quantum Electronics, vol.25, issue.6, pp.369-390, 1993.

D. Huffaker, G. Park, Z. Zou, O. Shchekin, and D. Deppe, 1.3 µm roomtemperature GaAs-based quantum-dot laser, Applied Physics Letters, vol.73, issue.18, pp.2564-2566, 1998.

R. Hui, A. Mecozzi, A. D'ottavi, and P. Spano, Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking, Electronics Letters, vol.26, issue.14, pp.997-998, 1990.

M. Ilyas and H. T. Mouftah, The handbook of optical communication networks, 2003.

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama et al., Directly modulated 1.3 µm quantum dot lasers epitaxially grown on silicon, Optics Express, vol.26, issue.6, pp.7022-7033, 2018.

R. Intel, Intel® silicon photonics 100G PSM4 optical transceiver brief, 2017.

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata et al., Photon lifetime dependence of modulation efficiency and K factor in 1.3 µm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth, Applied Physics Letters, vol.85, issue.18, pp.4145-4147, 2004.

I. Joindot, Measurements of relative intensity noise (RIN) in semiconductor lasers, Journal de Physique III France, vol.2, issue.9, pp.1591-1603, 1992.
URL : https://hal.archives-ouvertes.fr/jpa-00248828

L. Jumpertz, Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers, 2017.

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, Chaotic light at mid-infrared wavelength, Light: Science & Applications, vol.5, issue.6, p.16088, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01288719

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard et al., Low threading dislocation density GaAs growth on on-axis GaP/Si (001), Journal of Applied Physics, vol.122, issue.22, p.225703, 2017.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan et al., Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si, Applied Physics Letters, vol.112, issue.15, p.153507, 2018.

D. Jung, J. Norman, M. Kennedy, C. Shang, B. Shin et al., High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si, Applied Physics Letters, vol.111, issue.12, p.122107, 2017.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy et al., Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency, ACS Photonics, vol.5, issue.3, pp.1094-1100, 2017.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda et al., Extremely high temperature (220 ? C) continuous-wave operation of 1300-nm-range quantum-dot lasers, The European Conference on Lasers and Electro-Optics, p.1, 2011.

E. Kapon, Semiconductor lasers I: fundamentals, 1999.

K. Kechaou, B. Thedrez, F. Grillot, G. Aubin, C. Kazmierski et al., Influence of facet phases on adiabatic chirp behavior of index-coupled distributedfeedback lasers, IEEE Photonics Conference, pp.332-333, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02411883

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O'carroll et al., Discrete mode laser diodes with very narrow linewidth emission, Electronics Letters, issue.23, p.43, 2007.

M. Z. Khan, T. K. Ng, and B. S. Ooi, Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices, Progress in Quantum Electronics, vol.38, pp.237-313, 2014.

K. Kihara, H. Soda, H. Ishikawa, and H. Imai, Evaluation of the coupling coefficient of a distributed feedback laser with residual facet reflectivity, Journal of Applied Physics, vol.62, issue.4, pp.1526-1527, 1987.

K. Kikuchi, Fundamentals of coherent optical fiber communications, Journal of Lightwave Technology, vol.34, issue.1, pp.157-179, 2015.

J. Kim, H. Su, S. Minin, and S. L. Chuang, Comparison of linewidth enhancement factor between p-doped and undoped quantum-dot lasers, IEEE Photonics Technology Letters, vol.18, issue.9, pp.1022-1024, 2006.

N. Kirstaedter, N. Ledentsov, M. Grundmann, D. Bimberg, V. Ustinov et al., Low threshold, large T 0 injection laser emission from (InGa) as quantum dots, Electronics Letters, vol.30, issue.17, pp.1416-1417, 1994.

T. Kita, R. Tang, and H. Yamada, Narrow spectral linewidth silicon photonic wavelength tunable laser diode for digital coherent communication system, IEEE Journal of Selected Topics in Quantum Electronics, vol.22, issue.6, pp.23-34, 2016.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J. Shin et al., Integrated silicon photonic laser sources for telecom and datacom, National Fiber Optic Engineers Conference, pp.5-8, 2013.

T. L. Koch and J. E. Bowers, Nature of wavelength chirping in directly modulated semiconductor lasers, Electronics Letters, vol.20, issue.25, pp.1038-1040, 1984.

T. L. Koch, U. Koren, and B. Miller, High performance tunable 1.5 µm InGaAs/InGaAsP multiple quantum well distributed bragg reflector lasers, Applied Physics Letters, vol.53, issue.12, pp.1036-1038, 1988.

T. L. Koch and R. Linke, Effect of nonlinear gain reduction on semiconductor laser wavelength chirping, Applied Physics Letters, vol.48, issue.10, pp.613-615, 1986.

J. Kotani, P. Van-veldhoven, T. De-vries, B. Smalbrugge, E. Bente et al., First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state, Electronics Letters, vol.45, issue.25, pp.1317-1318, 2009.

A. Kovsh, Quantum-dot comb laser with low relative-intensity noise for each mode, SPIE Newsroom, 2008.

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil'ev et al., InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain, Journal of Crystal Growth, pp.729-736, 2003.

H. Kroemer, A proposed class of hetero-junction injection lasers, Proceedings of the IEEE, vol.51, issue.12, pp.1782-1783, 1963.

J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe et al., , 2018.

, All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001), Optics Express, vol.26, issue.9, pp.11568-11576

J. Kwoen, B. Jang, K. Watanabe, A. , and Y. , High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001), Optics Express, vol.27, issue.3, pp.2681-2688, 2019.

R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection laser properties, IEEE journal of Quantum Electronics, vol.16, issue.3, pp.347-355, 1980.

N. Ledentsov, Quantum dot laser. Semiconductor Science and Technology, vol.26, p.14001, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02123602

N. Ledentsov, V. Shchukin, M. Grundmann, N. Kirstaedter, J. Böhrer et al., Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth, Physical Review B, vol.54, issue.12, p.8743, 1996.

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities, Optics Express, vol.20, issue.20, pp.22181-22187, 2012.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard et al., Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 µm, IEEE Journal of Selected Topics in Quantum Electronics, vol.13, issue.1, pp.111-124, 2007.

D. Lenstra, B. Verbeek, and A. Boef, Coherence collapse in single-mode semiconductor lasers due to optical feedback, IEEE Journal of Quantum Electronics, vol.21, issue.6, pp.674-679, 1985.

A. Levine, G. Van-tartwijk, D. Lenstra, and T. Erneux, Diode lasers with optical feedback: Stability of the maximum gain mode, Physical Review A, vol.52, issue.5, p.3436, 1995.

Q. Li, K. W. Ng, and K. M. Lau, Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon, Applied Physics Letters, vol.106, issue.7, p.72105, 2015.

S. Li, Q. Gong, C. Cao, X. Wang, J. Yan et al., The developments of InP-based quantum dot lasers, Infrared Physics & Technology, vol.60, pp.216-224, 2013.

D. Liang and J. E. Bowers, Recent progress in lasers on silicon, Nature Photonics, vol.4, issue.8, p.511, 2010.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. Beausoleil, Integrated finely tunable microring laser on silicon, Nature Photonics, vol.10, issue.11, p.719, 2016.

M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam et al., Low-noise 1.3 µm InAs/GaAs quantum dot laser monolithically grown on silicon, Photonics Research, vol.6, issue.11, pp.1062-1066, 2018.

P. F. Liao and P. Kelley, Quantum well lasers, 2012.

C. Lin, H. Lin, and F. Lin, Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhancement factor extraction, Optics Express, vol.20, issue.1, pp.101-110, 2012.

G. Lin, H. Tang, H. Cheng, C. , and H. , Analysis of relative intensity noise spectra for uniformly and chirpily stacked InAs-InGaAs-GaAs quantum dot lasers, Journal of Lightwave Technology, vol.30, issue.3, pp.331-336, 2012.

L. Lin, C. Chen, H. Huang, D. Arsenijevi?, D. Bimberg et al., Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states, Optics Letters, vol.43, issue.2, pp.210-213, 2018.

K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna et al., Self-organized In 0.4 Ga 0.6 As quantum-dot lasers grown on Si substrates, Applied Physics Letters, vol.74, issue.10, pp.1355-1357, 1999.

B. Lingnau, W. W. Chow, E. Schöll, and K. Lüdge, Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis, New Journal of Physics, vol.15, issue.9, p.93031, 2013.

A. Y. Liu and J. Bowers, Photonic integration with epitaxial III-V on silicon, IEEE Journal of Selected Topics in Quantum Electronics, vol.24, issue.6, pp.1-12, 2018.

A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, Reflection sensitivity of 1.3 µm quantum dot lasers epitaxially grown on silicon, Optics Express, vol.25, issue.9, pp.9535-9543, 2017.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman et al., Electrically pumped continuous-wave 1.3 µm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si, Optics Letters, vol.42, issue.2, pp.338-341, 2017.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, Quantum dot lasers for silicon photonics, Photonics Research, vol.3, issue.5, pp.1-9, 2015.

G. Liu, X. Jin, and S. Chuang, Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique, IEEE Photonics Technology Letters, vol.13, issue.5, pp.430-432, 2001.

G. Liu, A. Stintz, H. Li, K. Malloy, and L. Lester, Extremely low roomtemperature threshold current density diode lasers using InAs dots in InGaAs quantum well, Electronics Letters, vol.35, issue.14, pp.1163-1165, 1999.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu et al., Longwavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate, Nature Photonics, vol.5, issue.7, p.416, 2011.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. Kennedy et al., High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity, Optica, vol.6, issue.2, pp.128-134, 2019.

Z. Lu, J. Liu, P. Poole, C. Song, C. et al., Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking, Optics Express, vol.26, issue.9, pp.11909-11914, 2018.

Z. Lu, P. Poole, J. Liu, P. Barrios, Z. Jiao et al., High-performance 1.52 µm InAs/InP quantum dot distributed feedback laser, Electronics Letters, vol.47, issue.14, pp.818-819, 2011.

K. Lüdge, E. Schöll, E. Viktorov, and T. Erneux, Analytical approach to modulation properties of quantum dot lasers, Journal of Applied Physics, vol.109, issue.10, p.103112, 2011.

K. Lüdge and H. G. Schuster, Nonlinear laser dynamics: from quantum dots to cryptography, vol.5, 2012.

E. Malic, M. J. Bormann, P. Hovel, M. Kuntz, D. Bimberg et al., Coulomb damped relaxation oscillations in semiconductor quantum dot lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.13, issue.5, pp.1242-1248, 2007.

S. Marcinkevi?ius, Dynamics of carrier transfer into In(Ga)As self-assembled quantum dots, Self-Assembled Quantum Dots, pp.129-163, 2008.

D. Marcuse, Computer simulation of laser photon fluctuations: Theory of single-cavity laser, IEEE Journal of Quantum Electronics, vol.20, issue.10, pp.1139-1148, 1984.

I. P. Marko, A. R. Adams, N. F. Massé, and S. J. Sweeney, Effect of nonpinned carrier density above threshold in InAs quantum dot and quantum dash lasers, IET Optoelectronics, vol.8, issue.2, pp.88-93, 2014.

A. Markus, J. Chen, C. Paranthoen, A. Fiore, C. Platz et al., Simultaneous two-state lasing in quantum-dot lasers, Applied Physics Letters, vol.82, issue.12, pp.1818-1820, 2003.

A. Markus, J. X. Chen, O. Gauthier-lafaye, J. Provost, C. Paranthoën et al., Impact of intraband relaxation on the performance of a quantum-dot laser, IEEE Journal of Selected Topics in Quantum Electronics, vol.9, issue.5, pp.1308-1314, 2003.

A. Martinez, Y. Li, L. F. Lester, and A. L. Gray, Microwave frequency characterization of undoped and p-doped quantum dot lasers, Applied Physics Letters, vol.90, issue.25, p.251101, 2007.

A. Martinez, K. Merghem, S. Bouchoule, G. Moreau, A. Ramdane et al., Dynamic properties of InAs/InP(311B) quantum dot Fabry-Perot lasers emitting at 1.52-µm, Applied Physics Letters, vol.93, issue.2, p.939, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00494345

M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto et al., Low-noise characteristics on 1.3-µm-wavelength quantum-dot DFB lasers under external optical feedback, IEEE International Semiconductor Laser Conference (ISLC), pp.1-2, 2018.

M. Matthews, K. Cameron, R. Wyatt, and W. Devlin, Packaged frequencystable tunable 20 kHz linewidth 1.5 µm InGaAsP external cavity laser, Electronics Letters, vol.21, issue.3, pp.113-115, 1985.

A. Mcdaniel and A. Mahalov, Stochastic differential equation model for spontaneous emission and carrier noise in semiconductor lasers, IEEE Journal of Quantum Electronics, 2018.

S. Melnik, G. Huyet, and A. V. Uskov, The linewidth enhancement factor ? of quantum dot semiconductor lasers, Optics Express, vol.14, issue.7, pp.2950-2955, 2006.

Z. Mi, P. Bhattacharya, and S. Fathpour, High-speed 1.3 µm tunnel injection quantum-dot lasers, Applied Physics Letters, vol.86, issue.15, p.153109, 2005.

Z. Mi, P. Bhattacharya, J. Yang, and K. P. Pipe, Room-temperature selforganised In 0.5 Ga 0.5 As quantum dot laser on silicon, Electronics Letters, vol.41, issue.13, pp.742-744, 2005.

S. Mikhrin, A. Kovsh, I. Krestnikov, A. Kozhukhov, D. Livshits et al., High power temperature-insensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers, Semiconductor Science and Technology, vol.20, issue.5, p.340, 2005.

R. Mirin, A. Gossard, and J. Bowers, Room temperature lasing from InGaAs quantum dots, Electronics Letters, vol.32, issue.18, pp.1732-1734, 1996.

Y. Miyamoto, M. Cao, Y. Shingai, K. Furuya, Y. Suematsu et al., Light emission from quantum-box structure by current injection, Japanese Journal of Applied Physics, vol.26, issue.4A, p.225, 1987.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara et al., Isolator free optical I/O core transmitter by using quantum dot laser, IEEE 12th International Conference on Group IV Photonics (GFP), pp.177-178, 2015.

J. Mork, B. Tromborg, and J. Mark, Chaos in semiconductor lasers with optical feedback: theory and experiment, IEEE Journal of Quantum Electronics, vol.28, issue.1, pp.93-108, 1992.

I. Mukhametzhanov, Z. Wei, R. Heitz, and A. Madhukar, Punctuated island growth: An approach to examination and control of quantum dot density, size, and shape evolution, Applied Physics Letters, vol.75, issue.1, p.85, 1999.

R. Nagarajan and J. E. Bowers, Effects of carrier transport on injection efficiency and wavelength chirping in quantum-well lasers, IEEE Journal of Quantum Electronics, vol.29, issue.6, pp.1601-1608, 1993.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy et al., Gain and linewidth enhancement factor in InAs quantum-dot laser diodes, IEEE Photonics Technology Letters, vol.11, issue.12, pp.1527-1529, 1999.

Z. Newman, V. Maurice, T. Drake, J. Stone, T. Briles et al., Photonic integration of an optical atomic clock, 2018.

T. R. Nielsen, P. Gartner, J. , and F. , Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers, Physical Review B, vol.69, issue.23, p.235314, 2004.

H. H. Nilsson, J. Zhang, and I. Galbraith, Homogeneous broadening in quantum dots due to Auger scattering with wetting layer carriers, Physical Review B, vol.72, issue.20, p.205331, 2005.

K. Nishi, K. Takemasa, M. Sugawara, A. , and Y. , Development of quantum dot lasers for data-com and silicon photonics applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.23, issue.6, pp.1-7, 2017.

K. Nishi, M. Yamada, T. Anan, A. Gomyo, and S. Sugou, Long-wavelength lasing from InAs self-assembled quantum dots on (311)b InP, Applied Physics Letters, vol.73, issue.4, pp.526-528, 1998.

J. Norman, Quantum Dot Lasers for Silicon Photonics, 2018.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, Perspective: The future of quantum dot photonic integrated circuits, APL Photonics, vol.3, issue.3, p.30901, 2018.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu et al., A review of high-performance quantum dot lasers on silicon, IEEE Journal of Quantum Electronics, vol.55, issue.2, pp.1-11, 2019.

A. J. Nozik, Multiple exciton generation in semiconductor quantum dots, Chemical Physics Letters, vol.457, issue.1-3, pp.3-11, 2008.

D. O'brien, S. Hegarty, G. Huyet, J. Mcinerney, T. Kettler et al., Feedback sensitivity of 1.3 µm InAs/GaAs quantum dot lasers, Electronics Letters, vol.39, issue.25, p.1, 2003.

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos, vol.111, 2012.

M. Okai, M. Suzuki, T. Taniwatari, C. , and N. , Corrugation-pitchmodulated distributed feedback lasers with ultranarrow spectral linewidth, Japanese Journal of Applied Physics, vol.33, issue.5R, p.2563, 1994.

T. Okoshi, K. Kikuchi, and A. Nakayama, Novel method for high resolution measurement of laser output spectrum, Electronics letters, vol.16, issue.16, pp.630-631, 1980.

H. Olesen, B. Tromborg, H. E. Lassen, and X. Pan, Mode instability and linewidth rebroadening in DFB lasers, Electronics Letters, vol.28, issue.5, p.444, 1992.

S. L. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer et al., Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection, Optics Express, vol.26, issue.4, pp.4522-4530, 2018.

S. Osborne, P. Blood, P. Smowton, J. Lutti, Y. Xin et al., State filling in InAs quantum-dot laser structures, IEEE Journal of Quantum Electronics, vol.40, issue.12, pp.1639-1645, 2004.

M. Osinski and J. Buus, Linewidth broadening factor in semiconductor lasers-an overview, IEEE Journal of Quantum Electronics, vol.23, issue.1, pp.9-29, 1987.

C. Otto, B. Globisch, K. Lüdge, E. Schöll, and T. Erneux, Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback, International Journal of Bifurcation and Chaos, vol.22, issue.10, p.1250246, 2012.

L. Pavesi and D. J. Lockwood, Silicon Photonics II: Components and Integration, 2011.

R. Pawlus, S. Breuer, and M. Virte, Relative intensity noise reduction in a dual-state quantum-dot laser by optical feedback, Optics Letters, vol.42, issue.21, pp.4259-4262, 2017.

R. Pawlus, L. Columbo, P. Bardella, S. Breuer, and M. Gioannini, Intensity noise behavior of an InAs/InGaAs quantum dot laser emitting on ground states and excited states, Optics Letters, vol.43, issue.4, pp.867-870, 2018.

K. Petermann, Laser diode modulation and noise, vol.3, 2012.

C. Platz, C. Paranthoën, P. Caroff, N. Bertru, C. Labbé et al., Comparison of InAs quantum dot lasers emitting at 1.55 µm under optical and electrical injection, Semiconductor Science and Technology, vol.20, issue.5, p.459, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00145858

P. Poole, K. Kaminska, P. Barrios, Z. Lu, and J. Liu, Growth of InAs/InP-based quantum dots for 1.55 µm laser applications, Journal of Crystal Growth, vol.311, issue.6, pp.1482-1486, 2009.

X. Porte, M. C. Soriano, and I. Fischer, Similarity properties in the dynamics of delayed-feedback semiconductor lasers, Physical Review A, vol.89, issue.2, p.23822, 2014.

N. Pourshab, A. Gholami, M. J. Hekmat, and N. Shahriyari, Analysis of narrow linewidth fiber laser using double subring resonators, JOSA B, vol.34, issue.11, pp.2414-2420, 2017.

J. Provost and F. Grillot, Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer, IEEE Photonics Journal, vol.3, issue.3, pp.476-488, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01166401

T. S. Rasmussen, Y. Yu, and J. Mork, Suppression of coherence collapse in semiconductor fano lasers, 2019.

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires et al., Linewidth rebroadening in quantum dot semiconductor lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.23, issue.6, pp.1-10, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02412238

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang et al., , 2010.

. Iii-v, /silicon photonics for on-chip and intra-chip optical interconnects, Laser & Photonics Reviews, vol.4, issue.6, pp.751-779

G. Roelkens, J. Van-campenhout, J. Brouckaert, D. Van-thourhout, R. Baets et al., , 2007.

. Iii-v/, Si photonics by die-to-wafer bonding, Materials Today, vol.10, issue.7-8, pp.36-43

A. Röhm, B. Lingnau, and K. Lüdge, Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices, Applied Physics Letters, vol.106, issue.19, p.191102, 2015.

A. Röhm, B. Lingnau, and K. Luedge, Understanding ground-state quenching in quantum-dot lasers, IEEE Journal of Quantum Electronics, vol.51, issue.1, pp.1-11, 2014.

P. R. Romeo, J. Van-campenhout, P. Regreny, A. Kazmierczak, C. Seassal et al., Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs, Optics Express, vol.14, issue.9, pp.3864-3871, 2006.

E. Rosencher and B. Vinter, Optoelectronics, 2002.

A. Salhi, G. Raino, L. Fortunato, V. Tasco, G. Visimberga et al., Enhanced performances of quantum dot lasers operating at 1.3 µm, IEEE Journal of Selected Topics in Quantum Electronics, vol.14, issue.4, pp.1188-1196, 2008.

M. Sanaee and A. Zarifkar, Theoretical modeling of relative intensity noise in p-doped 1.3-µm InAs/GaAs quantum dot lasers, Journal of Lightwave Technology, vol.33, issue.1, pp.234-243, 2014.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, Y. et al., Highcoherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms, Proceedings of the National Academy of Sciences, vol.111, issue.8, pp.2879-2884, 2014.

C. T. Santis, Y. Vilenchik, N. Satyan, G. Rakuljic, Y. et al., Quantum control of phase fluctuations in semiconductor lasers, Proceedings of the National Academy of Sciences, vol.115, issue.34, pp.7896-7904, 2018.

R. Schatz, Dynamics of spatial hole burning effects in DFB lasers, IEEE Journal of Quantum Electronics, vol.31, issue.11, pp.1981-1993, 1995.

K. Schires, N. Girard, G. Baili, G. Duan, S. Gomez et al., Dynamics of hybrid III-V silicon semiconductor lasers for integrated photonics, IEEE Journal of Selected Topics in Quantum Electronics, vol.22, issue.6, pp.43-49, 2016.

H. Schneider, W. Chow, and S. W. Koch, Anomalous carrier-induced dispersion in quantum-dot active media, Physical Review B, vol.66, issue.4, p.41310, 2002.

H. C. Schneider, W. W. Chow, and S. W. Koch, Excitation-induced dephasing in semiconductor quantum dots, Physical Review B, vol.70, issue.23, p.235308, 2004.

K. Schuh, P. Gartner, J. , and F. , Combined influence of carrier-phonon and coulomb scattering on the quantum-dot population dynamics, Physical Review B, vol.87, issue.3, p.35301, 2013.

N. Schunk and K. Petermann, Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback, IEEE Journal of Quantum Electronics, vol.24, issue.7, pp.1242-1247, 1988.

M. Seimetz, Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation, OFC/NFOEC 2008-2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, pp.1-3, 2008.

T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi et al., Large linewidth reduction in semiconductor lasers based on atom-like gain material, Optica, vol.6, issue.8, pp.1071-1077, 2019.

O. B. Shchekin, J. Ahn, and D. G. Deppe, High temperature performance of self-organised quantum dot laser with stacked p-doped active region, Electronics Letters, vol.38, issue.14, pp.712-713, 2002.

J. Siegert, S. Marcinkevi?ius, and Q. X. Zhao, Carrier dynamics in modulation-doped InAs/GaAs quantum dots, Physical Review B, vol.72, issue.8, p.85316, 2005.

G. A. Smolyakov and M. Osinski, High-speed modulation analysis of strongly injection-locked semiconductor ring lasers, IEEE Journal of Quantum Electronics, vol.47, issue.11, pp.1463-1471, 2011.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair et al., An optical-frequency synthesizer using integrated photonics, Nature, vol.557, issue.7703, p.81, 2018.

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt et al., Quantum cascade laser on silicon, Optica, vol.3, issue.5, pp.545-551, 2016.

S. H. Strogatz and D. E. Herbert, Nonlinear dynamics and chaos, Medical Physics, vol.23, issue.6, pp.993-995, 1996.

H. Su and L. F. Lester, Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp, Journal of Physics D: Applied Physics, vol.38, issue.13, p.2112, 2005.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa et al., Modeling room-temperature lasing spectra of 1.3-µm selfassembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection, Journal of Applied Physics, vol.97, issue.4, p.43523, 2005.

M. Suh, Q. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, Microresonator soliton dual-comb spectroscopy, Science, vol.354, issue.6312, pp.600-603, 2016.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti et al., Single-chip microprocessor that communicates directly using light, Nature, vol.528, issue.7583, p.534, 2015.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, G. Leake et al., Large-scale optical phased arrays enabled by silicon photonics, CLEO: 2013, pp.1-2, 2013.

K. Takaki, . Kise, . Tomofumi, . Maruyama, Y. Kazuomi et al., Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-µm continuous-wave distributedfeedback (CW-DFB) laser diodes, Quantum Electronics IEEE Journal, vol.39, issue.9, pp.1060-1065, 2003.

S. Takano, T. Sasaki, H. Yamada, M. Kitamura, and I. Mito, Sub-MHz spectral linewidth in 1.5 µm separate-confinement-heterostructure (SCH) quantum-well DFB LDs, Electronics Letters, vol.25, issue.5, pp.356-357, 1989.

H. Tan, Z. Mi, P. Bhattacharya, and D. Klotzkin, Dependence of linewidth enhancement factor on duty cycle in InGaAs-GaAs quantum-dot lasers, IEEE Photonics Technology Letters, vol.20, issue.8, pp.593-595, 2008.

K. Tanabe, K. Watanabe, A. , and Y. , III-V/Si hybrid photonic devices by direct fusion bonding, Scientific Reports, vol.2, p.349, 2012.

H. Temkin, N. Olsson, J. Abeles, R. Logan, and M. Panish, Reflection noise in index-guided InGaAsP lasers, IEEE Journal of Quantum Electronics, vol.22, issue.2, pp.286-293, 1986.

P. Thompson, D. Cox, and J. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al 2 O 3, Journal of Applied Crystallography, vol.20, issue.2, pp.79-83, 1987.

P. Tien, Integrated optics and new wave phenomena in optical waveguides, Reviews of Modern Physics, vol.49, issue.2, p.361, 1977.

R. Tkach and A. Chraplyvy, Regimes of feedback effects in 1.5-µm distributed feedback lasers, Journal of Lightwave technology, vol.4, issue.11, pp.1655-1661, 1986.

B. Tromborg, J. Osmundsen, and H. Olesen, Stability analysis for a semiconductor laser in an external cavity, IEEE Journal of Quantum Electronics, vol.20, issue.9, pp.1023-1032, 1984.

A. Uchida, Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization, 2012.

K. Uomi, T. Tsuchiya, M. Aoki, M. Suzuki, H. Nakano et al., , 2010.

, Ultrahigh-speed multiquantum well-distributed feedback semiconductor lasers, Electronics & Communications in Japan, vol.75, pp.13-23

V. Ustinov, A. Kovsh, A. Zhukov, A. Y. Egorov, N. Ledentsov et al., Lowthreshold quantum-dot injection heterolaser emitting at 1.84 µm, Technical Physics Letters, vol.24, issue.1, pp.22-23, 1998.

J. Van-der-ziel, R. Dingle, R. C. Miller, W. Wiegmann, N. Jr et al., Laser oscillation from quantum states in very thin GaAs-Al 0.2 Ga 0.8 As multilayer structures, Applied Physics Letters, vol.26, issue.8, pp.463-465, 1975.

J. Van-der-ziel, R. Dupuis, R. Logan, and C. Pinzone, Degradation of GaAs lasers grown by metalorganic chemical vapor deposition on Si substrates, Applied Physics Letters, vol.51, issue.2, pp.89-91, 1987.

D. Vermeulen, Y. De-koninck, Y. Li, E. Lambert, W. Bogaerts et al., Reflectionless grating couplers for silicon-on-insulator photonic integrated circuits, Optics Express, vol.20, issue.20, pp.22278-22283, 2012.

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski et al., Analysis of the double laser emission occurring in 1.55-µm InAs-InP (113)B quantum-dot lasers, IEEE Journal of Quantum Electronics, vol.43, issue.9, pp.810-816, 2007.

H. Virtanen, T. Uusitalo, and M. Dumitrescu, Simulation studies of DFB laser longitudinal structures for narrow linewidth emission, Optical and Quantum Electronics, vol.49, issue.4, p.160, 2017.

M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, Deterministic polarization chaos from a laser diode, Nature Photonics, vol.7, issue.1, p.60, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00756719

M. Virte, R. Pawlus, M. Sciamanna, K. Panajotov, and S. Breuer, Energy exchange between modes in a multimode two-color quantum dot laser with optical feedback, Optics Letters, vol.41, issue.14, pp.3205-3208, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01812532

Y. Wan, D. Jung, J. Norman, C. Shang, I. Macfarlane et al., O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si, Optics Express, vol.25, issue.22, pp.26853-26860, 2017.

Y. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 µm band, vol.107, p.81106, 2015.

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard et al., Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates, Applied Physics Letters, vol.108, issue.22, p.221101, 2016.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers et al., Optically pumped 1.3 µm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon, Optics Letters, vol.41, issue.7, pp.1664-1667, 2016.

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang et al., 1.3 µm submilliamp threshold quantum dot micro-lasers on Si, vol.4, pp.940-944, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01375668

C. Wang, Modulation dynamics of InP-based nanostructure laser and quantum cascade laser, 2015.

C. Wang, M. Osi?ski, J. Even, and F. Grillot, Phase-amplitude coupling characteristics in directly modulated quantum dot lasers, Applied Physics Letters, vol.105, issue.22, p.221114, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01091745

C. Wang, K. Schires, M. Osi?ski, P. J. Poole, and F. Grillot, Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking, Scientific Reports, vol.6, p.27825, 2016.

C. Wang, J. Zhuang, F. Grillot, C. , and S. , Contribution of offresonant states to the phase noise of quantum dot lasers, Optics express, vol.24, issue.26, pp.29872-29881, 2016.

J. Wang and K. Petermann, Noise analysis of semiconductor lasers within the coherence collapse regime, IEEE Journal of Quantum Electronics, vol.27, issue.1, pp.3-9, 1991.

R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li et al., Room-temperature operation of InAs quantum-dash lasers on InP, IEEE Photonics Technology Letters, vol.13, issue.8, pp.767-769, 2001.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu et al., Monolithic quantum-dot distributed feedback laser array on silicon, Optica, vol.5, issue.5, pp.528-533, 2018.

Z. R. Wasilewski, S. Fafard, and J. P. Mccaffrey, Size and shape engineering of vertically stacked self-assembled quantum dots, Journal of Crystal Growth, vol.201, issue.5, pp.1131-1135, 1999.

C. Weiss, A. Godone, and A. Olafsson, Routes to chaotic emission in a cw He-Ne laser, Physical Review A, vol.28, issue.2, p.892, 1983.

C. Weiss, W. Klische, P. Ering, C. , and M. , Instabilities and chaos of a single mode NH 3 ring laser, Optics communications, vol.52, issue.6, pp.405-408, 1985.

T. Windhorn, G. Metze, B. Tsaur, and J. C. Fan, AlGaAs doubleheterostructure diode lasers fabricated on a monolithic GaAs/Si substrate, Applied Physics Letters, vol.45, issue.4, pp.309-311, 1984.

M. Wu, Y. Lo, W. , and S. , Linewidth broadening due to longitudinal spatial hole burning in a long distributed feedback laser, Applied Physics Letters, vol.52, issue.14, pp.1119-1121, 1988.

R. Wyatt and W. Devlin, 10 kHz linewidth 1.5 µm InGaAsP external cavity laser with 55 nm tuning range, Electronics Letters, vol.19, issue.3, pp.110-112, 1983.

C. Xiang, P. A. Morton, and J. E. Bowers, Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si 3 N 4 bragg grating, Optics Letters, vol.44, issue.15, pp.3825-3828, 2019.

A. Yariv, Quantum Electronics, 1989.

Y. Yu, G. Giuliani, and S. Donati, Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect, IEEE Photonics Technology Letters, vol.16, issue.4, pp.990-992, 2004.

C. Zhang and J. E. Bowers, Silicon photonic terabit/s network-on-chip for datacenter interconnection, Optical Fiber Technology, vol.44, pp.2-12, 2018.

Y. Zhang, Q. Du, C. Wang, T. Fakhrul, and L. Bi, Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics, Optica, vol.6, pp.473-478, 2019.

Z. Zhang, D. Jung, J. Norman, W. W. Chow, and J. E. Bowers, Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolatorfree and narrow linewidth applications, IEEE Journal of Selected Topics in Quantum Electronics, 2019.

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow et al., Effects of modulation p doping in InAs quantum dot lasers on silicon, Applied Physics Letters, vol.113, issue.6, p.61105, 2018.

Z. Zhang, J. Liu, Y. Liu, J. Guo, H. Yuan et al., 30-GHz directly modulation DFB laser with narrow linewidth, Asia Communications and Photonics Conference, pp.1-3, 2015.

Z. Zhang, H. Wang, N. Satyan, G. Rakuljic, C. T. Santis et al., Coherent and incoherent optical feedback sensitivity of high-coherence Si/III-V hybrid lasers, Optical Fiber Communication Conference, pp.4-7, 2019.

Y. Zhou, J. Duan, H. Huang, X. Zhao, C. Cao et al., Intensity noise and pulse oscillations of an InAs/GaAs quantum dot laser on germanium, IEEE Journal of Selected Topics in Quantum Electronics, vol.25, issue.6, pp.1-10, 2019.

Y. Zhou, X. Zhao, C. Cao, Q. Gong, W. et al., High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium, Optics Express, vol.26, issue.21, pp.28131-28139, 2018.

Y. Zhou, C. Zhou, C. Cao, J. Du, Q. Gong et al., Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge, Optics Express, vol.25, issue.23, pp.28817-28824, 2017.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, 1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon, Applied Physics Letters, vol.113, issue.22, p.221103, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01965701

Q. Zou and S. Azouigui, Analysis of coherence-collapse regime of semiconductor lasers under external optical feedback by perturbation method. Semiconductor Laser Diode Technology and Applications, pp.71-86, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00707110

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov et al., Observation of zero linewidth enhancement factor at excited state band in quantum dot laser, Electronics Letters, vol.51, issue.21, pp.1686-1688, 2015.

J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang et al., Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration, Photonics Research, vol.7, issue.11, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02340542

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman et al., 1.3-µm Reflection Insensitive InAs/GaAs Quantum Dot Lasers Directly Grown on Silicon, IEEE Photonics Technology Letters, vol.31, issue.5, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01561703

J. Duan, H. Huang, Z. G. Lu, P. Poole, C. Wang et al., Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers, Applied Physics Letters, vol.112, p.121102, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02306951

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman et al., Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor, Applied Physics Letters, vol.112, p.251111, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02305802

J. Duan, X. G. Wang, Y. G. Zhou, C. Wang, and F. Grillot, Carrier-Noise Enhanced Relative Intensity Noise of Quantum Dot Lasers, IEEE Journal of Quantum Electronics, vol.54, issue.6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02307220

H. Huang, J. Duan, B. Dong, J. Norman, D. Jung et al., Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback, APL Photonics, vol.5, p.16103, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02437868

Y. Zhou, J. Duan, H. Huang, X. Y. Zhao, C. F. Cao et al., Intensity Noise and Pulse Oscillations of an InAs/GaAs Quantum Dot Laser on Publications Germanium, IEEE Journal of Selected Topics in Quantum Electronics, vol.25, issue.6, 2019.

B. Dong, J. Duan, C. Shang, H. Huang, A. B. Sawadogo et al., Influence of the polarization anisotropy on the linewidth enhancement factor and reflection sensitivity of 1.55 µm InP-based InAs quantum dash lasers, Applied Physics Letters, vol.115, p.91101, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02307297

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang et al., Analysis of the optical feedback dynamics in InAs/GaAs quantum dots lasers directly grown on silicon, Journal of the Optical Society of America B, vol.35, issue.11, 2018.

B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang et al., Frequency comb dynamics of a 1.3 µm hybrid-silicon quantum dot semiconductor laser with optical injection, Optics Letters, vol.44, issue.23, 2019.

S. Gomez, H. Huang, J. Duan, S. Combrié, A. Shen et al., High coherence collapse of a hybrid III-V/Si semiconductor laser with a large quality factor, Journal of Physics: Photonics

J. Duan, H. Huang, B. Dong, J. Norman, Z. Zhang et al., A path to isolator-free integration: suppression of coherence collapse in epitaxial quantum dot lasers on silicon, International Symposium on Physics and Applications of Laser Dynamics, pp.20-22, 2019.

J. Duan, H. Huang, B. Dong, D. Jung, Z. Zhang et al., Thermally insensitive determination of the chirp parameter of InAs/GaAs quantum dot lasers epitaxially grown onto silicon, SPIE Photonics West (Oral Presentation, pp.2-7, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02307789

J. Duan, B. Dong, H. Huang, Z. G. Lu, P. J. Poole et al., Thermal dependence of the emission linewidth of 1.52-µm single mode InAs/InP quantum dot lasers, The 31th International Conference on Indium Phosphide and Related Materials, pp.19-23, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02307323

J. Duan, H. Huang, D. Jung, J. C. Norman, J. E. Bowers et al., Relative intensity noise of silicon-based quantum dot lasers, The 31th International Conference on Indium Phosphide and Related Materials, pp.19-23, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02307311

J. Duan, H. Huang, K. Schires, P. J. Poole, C. Wang et al., Temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers, Oral Presentation), 2018.
URL : https://hal.archives-ouvertes.fr/hal-02340573

J. Duan, H. Huang, D. Jung, J. Norman, J. E. Bowers et al., Low linewidth enhancement factor and high optical feedback resistance of p-doped silicon based quantum dot lasers, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02307227

J. Duan, X. G. Wang, Y. G. Zhou, C. Wang, and F. Grillot, Relative intensity noise properties of quantum dot lasers, SPIE Photonics Asia (Oral Presentation, pp.11-13
URL : https://hal.archives-ouvertes.fr/hal-02340578

. October, , 2018.

J. Duan, X. G. Wang, Y. G. Zhou, C. Wang, and F. Grillot, Contribution des états non-résonants au bruit relatif d'intensité dans les lasers à îlots quantiques, pp.3-06, 2018.

J. Duan, H. Huang, K. Schires, Z. Lu, P. J. Poole et al., Narrow linewidth quantum dot distributed feedback lasers, The 29th International Conference on Indium Phosphide and Related Materials, (Oral Presentation), pp.14-18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02412279

J. Duan, H. Huang, K. Schires, P. Poole, and F. Grillot, InAs/InP Quantum Dot Distributed Feedback Lasers With Narrow Spectral Linewidth, International OSA Network of Students (IONS) conference, pp.14-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02412287

J. Duan, K. Schires, D. Jung, A. Liu, J. E. Bowers et al., Silicon quantum dot lasers with long delay optical feedback, International Symposium on Physics and Applications of Laser Dynamics, pp.15-17, 2017.

J. Duan, H. Huang, K. Schires, P. Poole, and F. Grillot, Oscillateurs à boites quantiques à trés faible largeur de raie pour les systèmes optiques cohérents, pp.4-06, 2017.

F. Grillot, J. Duan, H. Huang, B. Dong, D. Jung et al., Linewdith broadening factor and optical feedback sensitivity of silicon based quantum dot lasers, SPIE Photonics West, pp.2-7, 2019.

Y. Zhou, J. Duan, H. Huang, C. Cao, Q. Gong et al., Self-sustained pulse oscillations in a quantum dot laser monolithically grown on germanium, pp.23-27, 2019.

F. Grillot, J. Duan, H. Huang, B. Dong, J. Norman et al., 1.3 µm high performance epitaxial quantum dot lasers on silicon, 7th International Workshop on Epitaxial Growth and Fundamental Properties of Semiconductor Nanostructures, 2019.
URL : https://hal.archives-ouvertes.fr/hal-00493037

O. Spitz, A. Herdt, J. Duan, M. Carras, W. Er et al., Extensive study of the linewidth enhancement factor of a distributed feedback quantum cascade laser at ultra-low temperature, SPIE Photonics West, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02342862

B. Dong, A. Sawadogo, J. Duan, H. Huang, G. Kurczveil et al., Linewidth enhancement factor and optical injection in a hybrid-silicon quantum dot comb laser, International Conference Group IV Photonics, pp.28-30, 2019.

. August, , 2019.

S. Gomez, H. Huang, J. Duan, B. Sawadogo, A. Gallet et al., 10 Gbps error-free transmission of a high coherent Si/III-V hybrid distributed feedback laser under strong optical feedback, The Annual Conference of the IEEE Photonics Society (IPC), 2019.

J. Norman, Z. Zhang, D. Jung, J. Duan, H. Huang et al., Improved Quantum Dot Uniformity and Its Impact on Reflection Sensitivity, European Conference on Integrated Optics, pp.24-26, 2019.

H. Huang, J. Duan, J. G. Provost, Z. Lu, P. J. Poole et al., Failure of the current modulation driven linewidth broadening factor for analyzing the optical linewidth behavior of quantum dot lasers, The 30th International Conference on Indium Phosphide and Related Materials, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02412358