. Ici, nous nous appuyons sur le cadre de segmentation développé dans les chapitres précédents pour la segmentation des images de la base de données SWIMSEG. Notre approche donne des résultats similairesà l'état de l'art en n

R. Achanta and S. Susstrunk, Superpixels and Polygons Using Simple Noniterative Clustering, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.4895-4904, 2017.

R. Achanta, SLIC Superpixels Compared to State-of-the-Art Superpixel Methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, pp.2274-2282, 2012.

S. Alpert, Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, pp.315-327, 2012.

J. Angulo and D. Jeulin, Stochastic watershed segmentation, Proc. of the 8th Int. Symposium on Mathematical Morphology, pp.265-276, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01134047

P. Arbelaez, From contours to regions: An empirical evaluation, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.2294-2301, 2009.

P. Arbeláez, Semantic segmentation using regions and parts, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.3378-3385, 2012.

P. Arbeláez, Contour Detection and Hierarchical Image Segmentation, IEEE Trans. Pattern Anal. Mach. Intell, vol.33, issue.5, pp.898-916, 2011.

P. Arbeláez, IEEE Conference on Computer Vision and Pattern Recognition, pp.328-335, 2014.

M. Van-den and . Bergh, Andrew Fitzgibbon et al. Lecture Notes in Computer Science, Computer Vision -ECCV 2012, pp.13-26, 2012.

K. B. Bernander, Improving the stochastic watershed, Pattern Recognition Letters, vol.34, pp.993-1000, 2013.

S. Beucher, Watershed, Hierarchical Segmentation and Waterfall Algorithm, Mathematical Morphology and Its Applications to Image Processing, vol.2, pp.69-76, 1994.

S. Beucher and C. Lantuéjoul, Use of Watersheds in Contour Detection, 1979.

V. Bortolussi, Morphological modeling of cold spray coatings, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01837906

L. Breiman, Random Forests, Machine Learning, vol.45, pp.5-32, 2001.

P. Burt and E. Adelson, The Laplacian Pyramid as a Compact Image Code, IEEE Transactions on Communications, vol.31, pp.532-540, 1983.

P. Buyssens, I. Gardin, and S. Ruan, Eikonal based region growing for superpixels generation: Application to semi-supervised real time organ segmentation in CT images, IRBM 35.1, pp.20-26, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00945893

P. Buyssens, Eikonal-based region growing for efficient clustering, Image and Vision Computing, vol.32, pp.1045-1054, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01134406

P. Buyssens, Eikonal-based vertices growing and iterative seeding for efficient graph-based segmentation, IEEE International Conference on Image Processing, vol.5, p.pp, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01080017

P. Cettour-janet, Watervoxels". In: Image Processing On Line, vol.9, pp.317-328, 2019.

K. Chang and B. Figliuzzi, Fast Marching Based Superpixels Generation, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.350-361, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02335853

T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining -KDD '16, pp.785-794, 2016.

J. Cheng and J. C. Rajapakse, Segmentation of Clustered Nuclei With Shape Markers and Marking Function, IEEE Transactions on Biomedical Engineering, vol.56, issue.3, pp.741-748, 2009.

M. Cheng, HFS: Hierarchical Feature Selection for Efficient Image Segmentation, Computer Vision -ECCV 2016, pp.867-882, 2016.

D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis, IEEE Transactions on pattern analysis and machine intelligence, vol.24, pp.603-619, 2002.

S. Dev, Y. H. Lee, and S. Winkler, Color-Based Segmentation of Sky/Cloud Images From Ground-Based Cameras, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.10, issue.1, pp.231-242, 2017.

E. Dokladalova and P. , A parallel architecture for curve-evolution PDEs, Journal of Image Analysis and Stereology, vol.22, pp.121-132, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01251131

P. Dollár, Z. Tu, and S. Belongie, Supervised Learning of Edges and Object Boundaries, Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, pp.1964-1971, 2006.

P. Dollár and C. L. Zitnick, Fast Edge Detection Using Structured Forests, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.37, pp.1558-1570, 2015.

M. Everingham, The pascal visual object classes (voc) challenge, International journal of computer vision, vol.88, pp.303-338, 2010.

C. Farabet, Learning Hierarchical Features for Scene Labeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, pp.1915-1929, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00742077

P. F. Felzenszwalb and D. P. Huttenlocher, Efficient graph-based image segmentation, International journal of computer vision, vol.59, pp.167-181, 2004.

B. Figliuzzi, Eikonal-based models of random tessellations, Image Analysis and Stereology, vol.38, pp.15-23, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02437235

B. Figliuzzi, K. Chang, and M. Faessel, Hierarchical segmentation based upon multi-resolution approximations and the watershed transform, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.185-195, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01695402

B. Figliuzzi, Modelling the microstructure and the viscoelastic behaviour of carbon black filled rubber materials from 3D simulations, Technische Mechanik, vol.32, pp.22-46, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263932

S. Fomel, S. Luo, and H. Zhao, Fast sweeping method for the factored eikonal equation, Journal of Computational Physics, vol.228, pp.6440-6455, 2009.

G. Franchi and J. Angulo, Bagging Stochastic Watershed on Natural Color Image Segmentation, Mathematical Morphology and Its Applications to Signal and Image Processing, pp.422-433, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01104256

B. Fulkerson, A. Vedaldi, and S. Soatto, Class segmentation and object localization with superpixel neighborhoods, Computer Vision, pp.670-677, 2009.

. Galun, Texture segmentation by multiscale aggregation of filter responses and shape elements, Proceedings Ninth IEEE International Conference on Computer Vision, vol.1, pp.716-723, 2003.

S. Ghosh, Understanding Deep Learning Techniques for Image Segmentation, 2019.

R. Giraud, Texture-Aware Superpixel Segmentation, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01995819

R. Girshick, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.580-587, 2014.

J. V. Gómez, Fast Methods for Eikonal Equations: An Experimental Survey, IEEE Access, vol.7, pp.2169-3536, 2019.

. Tr, R. Hastie, J. Tibshirani, and . Friedman, The Elements of Statistical Learning. Springer Series in Statistics, 2009.

H. He and E. A. Garcia, Learning from Imbalanced Data, IEEE Transactions on Knowledge and Data Engineering, vol.21, pp.1263-1284, 2009.

A. Heinle, A. Macke, and A. Srivastav, Automatic cloud classification of whole sky images, Atmospheric Measurement Techniques, vol.3, pp.557-567, 2010.

D. Hoiem, A. A. Efros, and M. Hebert, Geometric Context from a Single Image, Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV'05, vol.1, pp.654-661, 2005.

H. Hsl,

A. K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern recognition, vol.24, pp.1167-1186, 1991.

V. Jain, Learning to Agglomerate Superpixel Hierarchies, Proceedings of the 24th International Conference on Neural Information Processing Systems. NIPS'11, pp.648-656, 2011.

C. R. Jung, Combining wavelets and watersheds for robust multiscale image segmentation, Image and Vision Computing. SIBGRAPI, vol.25, issue.1, pp.24-33, 2007.

C. R. Jung and J. Scharcanski, Robust watershed segmentation using wavelets, Image and Vision Computing, vol.23, pp.661-669, 2005.

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.1, pp.321-331, 1988.

J. B. Kim and H. J. Kim, Multiresolution-based watersheds for efficient image segmentation, Pattern Recognition Letters, vol.24, issue.1-3, pp.473-488, 2003.

J. B. Kruskal, On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem, Proceedings of the American Mathematical Society, vol.7, pp.48-50, 1956.

, Lab color space

T. Leung and J. Malik, Contour continuity in region based image segmentation, Computer Vision -ECCV'98, pp.544-559, 1998.

A. Levinshtein, Turbopixels: Fast superpixels using geometric flows, IEEE transactions on pattern analysis and machine intelligence, vol.31, pp.2290-2297, 2009.

Q. Li, W. Lu, and J. Yang, A Hybrid Thresholding Algorithm for Cloud Detection on Ground-Based Color Images, Journal of Atmospheric and Oceanic Technology, vol.28, issue.10, pp.1286-1296, 2011.

Z. Li and J. Chen, Superpixel segmentation using Linear Spectral Clustering, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1356-1363, 2015.

T. Lin, Microsoft coco: Common objects in context, pp.740-755, 2014.

M. Y. Liu, Entropy rate superpixel segmentation, CVPR 2011, pp.2097-2104, 2011.

S. Liu, Automatic Cloud Detection for All-Sky Images Using Superpixel Segmentation, IEEE Geoscience and Remote Sensing Letters, vol.12, issue.2, pp.354-358, 2015.

T. Liu, M. Seyedhosseini, and T. Tasdizen, Image Segmentation Using Hierarchical Merge Tree, IEEE Transactions on Image Processing, vol.25, pp.4596-4607, 2016.

C. N. Long, Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images, Journal of Atmospheric and Oceanic Technology, vol.23, issue.5, pp.633-652, 2006.

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3431-3440, 2015.

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.

U. Luxburg, A tutorial on spectral clustering, Statistics and Computing, vol.17, pp.395-416, 2007.

V. Machairas, E. Decenciere, and T. Walter, Waterpixels: Superpixels based on the watershed transformation, 2014 IEEE International Conference on Image Processing (ICIP), pp.4343-4347, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01139797

V. Machairas, Waterpixels, IEEE Transactions on Image Processing, vol.24, pp.3707-3716, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212760

J. Malik, Contour and texture analysis for image segmentation, International journal of computer vision, vol.43, pp.7-27, 2001.

R. Malladi, J. A. Sethian, and B. C. Vemuri, Shape modeling with front propagation: a level set approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, pp.158-175, 1995.

S. Mallat, A wavelet tour of signal processing, 1999.

F. Malmberg, L. Cris, and . Hendriks, An efficient algorithm for exact evaluation of stochastic watersheds, Pattern Recognition Letters, vol.47, pp.80-84, 2014.

F. Malmberg, J. Lindblad, and I. Nyström, Sub-pixel segmentation with the image foresting transform, International Workshop on Combinatorial Image Analysis, pp.201-211, 2009.

B. Marcotegui and S. Beucher, Fast Implementation of Waterfall Based on Graphs, Mathematical Morphology: 40 Years On, pp.177-186, 2005.

B. Marcotegui and F. Meyer, Segmentation de bas en haut de sÉquences d'images en vue du codage, Annales Des Télécommunications, vol.52, pp.397-407, 1997.

D. Martin, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV, vol.2, pp.416-423, 2001.

D. R. Martin, C. C. Fowlkes, and J. Malik, Learning to detect natural image boundaries using local brightness, color, and texture cues, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, pp.530-549, 2004.

M. Meil?, Comparing Clusterings by the Variation of Information, Learning Theory and Kernel Machines, pp.173-187, 2003.

F. Meyer, From connected operators to levelings, Computational Imaging And Vision, vol.12, pp.191-198, 1998.

F. Meyer, Levelings, Image Simplification Filters for Segmentation, Journal of Mathematical Imaging and Vision, vol.20, pp.59-72, 2004.

F. Meyer, Stochastic watershed hierarchies, Eighth International Conference on Advances in Pattern Recognition (ICAPR), pp.1-8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01111749

F. Meyer and S. Beucher, Morphological segmentation, Journal of Visual Communication and Image Representation, vol.1, issue.1, pp.21-46, 1990.

O. J. Morris, M. J. Lee, and A. G. Constantinides, Graph theory for image analysis: an approach based on the shortest spanning tree, IEE Proceedings F -Communications, Radar and Signal Processing, vol.133, pp.146-152, 1986.

P. Neubert and P. Protzel, Superpixel benchmark and comparison, Forum Bildverarbeitung, pp.205-218, 2010.

J. Nunez-iglesias, Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images, PLOS ONE, vol.8, p.71715, 2013.

S. Paris and F. Durand, A Topological Approach to Hierarchical Segmentation using Mean Shift, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.

N. Passat, Watershed and multimodal data for brain vessel segmentation: Application to the superior sagittal sinus, Image and Vision Computing, vol.25, pp.512-521, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01694416

F. Pedregosa, Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

B. Peng, L. Zhang, and D. Zhang, A survey of graph theoretical approaches to image segmentation, Pattern Recognition, vol.46, pp.1020-1038, 2013.

W. M. Rand, Objective Criteria for the Evaluation of Clustering Methods, Journal of the American Statistical Association, vol.66, pp.846-850, 1971.

X. Ren, C. C. Fowlkes, and J. Malik, Scale-invariant contour completion using conditional random fields, Tenth IEEE International Conference on Computer Vision (ICCV'05, vol.1, pp.1214-1221, 2005.

X. Ren and J. Malik, Learning a classification model for segmentation, Proceedings Ninth IEEE International Conference on Computer Vision, pp.10-17, 2003.

Z. Ren and G. Shakhnarovich, Image Segmentation by Cascaded Region Agglomeration, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2011-2018, 2013.

M. R. Rezaee, A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering, IEEE Transactions on Image Processing, vol.9, pp.1238-1248, 2000.

A. Schick, M. Fischer, and R. Stiefelhagen, Measuring and evaluating the compactness of superpixels, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp.930-934, 2012.

J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proceedings of the National Academy of Sciences, vol.93, pp.1591-1595, 1996.

J. A. Sethian, Fast marching methods, SIAM review 41, vol.2, pp.199-235, 1999.

J. A. Sethian, Levet set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol.3, 1999.

E. Sharon, A. Brandt, and R. Basri, Fast multiscale image segmentation, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), vol.1, pp.70-77, 2000.

E. Sharon, A. Brandt, and R. Basri, Segmentation and boundary detection using multiscale intensity measurements, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR, vol.1, pp.I-I, 2001.

J. Shen, Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm, IEEE Transactions on Image Processing, vol.25, pp.5933-5942, 2016.

J. Shi and J. Malik, Normalized cuts and image segmentation, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.731-737, 1997.

J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on pattern analysis and machine intelligence, vol.22, pp.888-905, 2000.

J. Sklansky, Image Segmentation and Feature Extraction, IEEE Transactions on Systems, Man, and Cybernetics, vol.8, pp.237-247, 1978.

P. Soille, Morphological Image Analysis: Principles and Applications, 2013.

D. Stutz, A. Hermans, and B. Leibe, Superpixels: An Evaluation of the Stateof-the-Art, Computer Vision and Image Understanding, 2017.

R. Szeliski, Segmentation". In: Computer Vision. Texts in Computer Science, pp.235-271, 2011.

R. Urquhart, Graph theoretical clustering based on limited neighbourhood sets, Pattern Recognition, vol.15, pp.173-187, 1982.

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, pp.583-598, 1991.

S. Van-der and W. , scikit-image: image processing in Python, p.453, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071542

J. Z. Wang, J. Li, and G. Wiederhold, SIMPLIcity: semantics-sensitive integrated matching for picture libraries, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, pp.947-963, 2001.

M. Wang, Superpixel segmentation: A benchmark, Signal Processing: Image Communication, vol.56, pp.28-39, 2017.

S. Wang, Superpixel tracking, 2011 International Conference on Computer Vision, pp.1323-1330, 2011.

Z. Wu and R. Leahy, An optimal graph theoretic approach to data clustering: theory and its application to image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.15, pp.1101-1113, 1993.

X. Xiao, Y. Gong, and Y. Zhou, Adaptive superpixel segmentation aggregating local contour and texture features, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1902-1906, 2017.

S. Xie and Z. Tu, Holistically-Nested Edge Detection, 2015.

X. Xie and M. Mirmehdi, A Galaxy of Texture Features, Handbook of Texture Analysis, vol.13, pp.375-407, 2008.

J. Yan, Object detection by labeling superpixels, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.5107-5116, 2015.

F. Yang, H. Lu, and M. Yang, Robust Superpixel Tracking, IEEE Transactions on Image Processing, vol.23, pp.1639-1651, 2014.

C. T. Zahn, Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters, IEEE Transactions on Computers C, vol.20, issue.1, pp.68-86, 1971.

H. Zhao, A Fast Sweeping Method for Eikonal Equations, Mathematics of computation, vol.74, pp.603-627, 2004.

C. L. Zitnick and S. Kang, Stereo for image-based rendering using image over-segmentation, International Journal of Computer Vision, vol.75, pp.49-65, 2007.

. Xviii and . Clés,

, Segmentation d'image, superpixel, apprentissage automatique, équation eikonale, fast marching, graphe

, La présente thèse vise à développer une méthodologie générale basée sur des méthodes d'apprentissage pour effectuer la segmentation d'une base de données constituée d'images similaires, à partir d'un nombre limité d'exemples d'entraînement. Cette méthodologie est destinée à être appliquée à des images recueillies dans le cadre d'observations de la terre ou lors d'expériences menées en science des matériaux, pour lesquelles il n'y a pas suffisamment d'exemples d'entraînement pour appliquer des méthodes basées

, avant de fusionner progressivement les différents superpixels obtenus jusqu'à l'obtention d'une segmentation valide. Les deux principales contributions de cette thèse sont le développement d'un nouvel algorithme de superpixel basé sur l'équation eikonale, et le développement d'un algorithme de fusion de superpixels basé sur une adaptation de l'équation eikonale au contexte des graphes. L'algorithme de fusion des superpixels s'appuie sur un graphe d'adjacence construit à partir de la partition en superpixels. Les arêtes de ce graphe sont valuées par une mesure de dissimilarité prédite par un algorithme d

, A titre d'application, l'approche de segmentation est évaluée sur la base de données SWIMSEG, qui contient des images de nuages. Pour cette base de données, avec un nombre limité d'images d'entraînement, nous obtenons des résultats de segmentation similaires à ceux de l