H. K. Bhadeshia and S. R. Honeycombe, Steels: Microstructure and Properties -3rd Edition, 2006.

A. Kelly and . Nicholson, Strengthening methods in crystals, 1971.

H. Mohrbacher, « Reverse metallurgical engineering towards sustainable manufacturing of vehicles using Nb and Mo alloyed high performance steels, Adv. Manuf, vol.1, issue.1, pp.28-41, 2013.

B. Hutchinson, « Microstructures and hardness of as-quenched martensites (0.1-0.5%C), Acta Mater, vol.59, pp.5845-5858, 2011.

F. Maresca, V. G. Kouznetsova, and M. G. Geers, « On the role of interlath retained austenite in the deformation of lath martensite, Model. Simul. Mater. Sci. Eng, vol.22, 2014.

S. Long, Y. Liang, Y. Jiang, Y. Liang, M. Yang et al., Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel, Mater. Sci. Eng. A, vol.676, pp.38-47, 2016.

H. Godin, J. Mithieux, C. Parrens, G. Badinier, M. Sennour et al., Gourgues-Lorenzon, « Effects of cooling path and resulting microstructure on the impact toughness of a hot stamping martensitic stainless steel, Mater. Sci. Eng. A, vol.742, pp.597-607, 2019.

Y. Liang, « The important role of martensite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel, Mater. Sci. Eng. A, vol.695, pp.154-164, 2017.

A. B. Greninger, « The martensite Thermal arrest in iron-carbon alloys and plain carbon steels, Trans ASM, vol.30, pp.1-26, 1942.

W. Steven and A. G. Haynes, « The temperature of formation of martensite and bainite in low alloy steels, J Iron Steel Inst, vol.183, pp.349-359, 1956.

K. W. Andrews, « Empirical formulae for the calculation of some transformation temperatures, J Iron Steel Inst, vol.203, pp.1443-1453, 1965.

M. Izumiyama, M. Tsuchiya, and Y. Imai, Effect of alloying element on supercooled transformation, J Jpn. Inst Met, vol.34, pp.291-295, 1970.

H. Yang and H. K. Bhadeshia, « Austenite grain size and the martensite-start temperature, Scr. Mater, vol.60, issue.7, pp.493-495, 2009.

. Mehl, Hardenability of alloy steels (medium and low alloy steels--up to 5% alloy), 1939.

H. Ohtani, S. Okaguchi, Y. Fujishiro, and Y. Ohmori, « Morphology and Properties of low-Carbon Bainite, Metall. Trans. A, vol.21, pp.877-884, 1990.

A. F. Gourgues, H. M. Flower, and T. C. Lindley, « Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures, Mater. Sci. Technol, vol.16, issue.1, pp.26-40, 2000.

A. Lambert-perlade, A. F. Gourgues, and A. Pineau, « Austenite to bainite phase transformation in the heataffected zone of a high strength low alloy steel, Acta Mater, vol.52, issue.8, pp.2337-2348, 2004.

H. K. Bhadeshia, Bainite in steels : transformations, microstructure and properties, 2001.

M. Takahashi and H. K. Bhadeshia, « Model for transition from upper to lower bainite, Mater. Sci. Technol, vol.6, issue.7, pp.592-603, 1990.

G. Baozhu and G. Krauss, « The effect of low-temperature isothermal heat treatments on the fracture of 4340 steel, J. Heat Treat, vol.4, pp.365-372, 1986.

G. Krauss, Tempering and structural change in ferrous martensitic structures, Phase Instrumentations in Ferrous Alloys », TMS-AIME, pp.101-123, 1984.

A. Constant and G. Henry, Les principes de bases du traitement thermique des aciers, PYC-Edition, 1986.

C. S. Roberts, B. L. Averbach, and M. Cohen, The Mechanism and Kinetics of the First Stage of Tempering, vol.45, p.576, 1953.

G. R. Speich and W. C. Leslie, Tempering of steel, vol.3, pp.1043-1054, 1972.

I. Chapitre, Etat de l'art sur les aciers trempés-revenus à haute résistance 39

E. C. Bain and H. W. Paxton, Alloying elements in steel, 1961.

P. Michaud, D. Delagnes, P. Lamesle, M. H. Mathon, and C. Levaillant, « The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels, Acta Mater, vol.55, pp.4877-4889, 2007.

D. Delagnes, F. Pettinari-sturmel, M. H. Mathon, R. Danoix, F. Danoix et al., « Cementite-free martensitic steels: A new route to develop high strength/high toughness grades by modifying the conventional precipitation sequence during tempering, Acta Mater, vol.60, pp.5877-5888, 2012.

G. Krauss, Heat Treated Martensitic Steels: Microstructural Systems for Advanced Manufacture, vol.35, pp.349-359, 1995.

«. Aisi-, SAE Classification of sfteels ». Air Liquide

D. A. Curry and P. L. Pratt, « The Role of Second Phase Particles in the Ductile Fracture of Higher Carbon Steels, Mater. Sci. Eng, vol.37, pp.223-235, 1979.

Y. Tomita and K. Okabayashi, « Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite, Metall. Trans. A, vol.16, issue.1, pp.73-82, 1985.

Y. Tomita, Effect of martensite morphology on mechanical properties of low alloy steels having mixed structure of martensite and lower bainite », Mater. Sci. Technol, vol.7, issue.4, pp.299-306, 1991.

K. Abbaszadeh, H. Saghafian, and E. S. Kheirandish, « Effect of Bainite Morphology on Mechanical Properties of the Mixed Bainite-martensite Microstructure in D6AC Steel, J. Mater. Sci. Technol, vol.28, issue.4, pp.336-342, 2012.

L. J. Leach, C. W. Siyasiya, and W. E. Stumpf, « Effect of dual phase microstructure on the toughness of a Cr-Mo low-alloy plate steel, J. South. Afr. Inst. Min. Metall, vol.113, issue.2, pp.109-113, 2013.

G. Charpy, « Sur l'influence de la température sur la fragilité des métaux », Mémoire et compte rendu de la sociétés des ingénieurs civils de France, pp.562-569, 1906.

O. M. Akselsen and Ø. Grong, « Prediction of weld metal Charpy V notch toughness », Mater. Sci. Eng. A, vol.159, issue.2, pp.187-192, 1992.

I. C. Gutiérrez, Effect of microstructure on the impact toughness of high strength steels, vol.50, 2014.

Y. Tomita and . Low, Temperature improvement of mechanical properties of aisi 4340 steel through hightemperature thermomechanical treatment, Metall. Trans. A, vol.22, issue.5, pp.1093-1102, 1991.

J. P. Materkowski and G. Krauss, « Tempered martensite embrittlement in SAE 4340 steel, Metall. Trans. A, vol.10, issue.11, pp.1643-1651, 1979.

C. L. Briant, « Role of carbides in tempered martensite embrittlement, Mater. Sci. Technol, vol.5, issue.2, pp.138-147, 1989.

E. Chang, C. Y. Chang, and C. D. Liu, « The effects of double austenitization on the mechanical properties of a 0.34C containing low-alloy Ni-Cr-Mo-V steel, Metall. Mater. Trans. A, vol.25, issue.3, pp.545-555, 1994.

Y. Im, Y. Oh, B. Lee, J. H. Hong, and H. Lee, Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn-Ni-Mo bainitic steels », J. Nucl. Mater, vol.297, issue.2, pp.138-148, 2001.

S. Kim, S. Lee, Y. Im, H. Lee, Y. J. Oh et al., « Effects of alloying elements on mechanical and fracture properties of base metals and simulated heat-affected zones of SA 508 steels, Metall. Mater. Trans. A, vol.32, issue.4, pp.903-911, 2001.

S. Takebayashi, K. Ushioda, N. Yoshinaga, and E. S. Ogata, « Effect of Carbide Size Distribution on the Impact Toughness of Tempered Martensitic Steels with Two Different Prior Austenite Grain Sizes Evaluated by Instrumented Charpy Test, Mater. Trans, vol.54, issue.7, pp.1110-1119, 2013.

C. A. Hippsley and S. G. Druce, « The influence of phosphorus segregation to particle/matrix interfaces on ductile fracture in a high strength steel, Acta Metall, vol.31, issue.11, pp.1861-1872, 1983.

I. Chapitre, Etat de l'art sur les aciers trempés-revenus à haute résistance 40

A. Chatterjee, A. Moitra, A. K. Bhaduri, D. Chakrabarti, and R. Mitra, Effect of Heat Treatment on Ductile-Brittle Transition Behaviour of 9Cr-1Mo Steel, vol.86, pp.287-294, 2014.

S. Hong, J. Song, M. Kim, K. Choi, and B. Lee, « Effects of microstructural variation on Charpy impact properties in heavy-section Mn-Mo-Ni low alloy steel for reactor pressure vessel, Met. Mater. Int, vol.22, issue.2, pp.196-203, 2016.

A. Chatterjee, A. Ghosh, A. Moitra, A. K. Bhaduri, R. Mitra et al., Role of hierarchical martensitic microstructure on localized deformation and fracture of 9Cr-1Mo steel under impact loading at different temperatures », Int. J. Plast, vol.104, pp.104-133, 2018.

B. Mintz, W. B. Morrison, and E. A. Jones, « Influence of carbide thickness on impact transition temperature of ferritic steels, Met. Technol, pp.252-260, 1979.

N. J. Petch, « The influence of grain boundary carbide and grain size on the cleavage strength and impact transition temperature of steel, Acta Metall, vol.34, issue.7, pp.1387-1393, 1986.

S. Pallaspuro, A. Kaijalainen, S. Mehtonen, J. Kömi, Z. Zhang et al., « Effect of microstructure on the impact toughness transition temperature of direct-quenched steels », Mater. Sci. Eng. A, vol.712, pp.671-680, 2018.

S. Maropoulos, N. Ridley, and E. S. Karagiannis, « Structural variations in heat treated low alloy steel forgings, Mater. Sci. Eng. A, vol.380, issue.2, pp.79-92, 2004.

X. Z. Zhang and J. F. Knott, « Cleavage fracture in bainitic and martensitic microstructures, Acta Mater, vol.47, pp.3483-3495, 1999.

D. A. Curry and J. F. Knott, « Effects of microstructure on cleavage fracture stress in steel, Met. Sci, vol.12, issue.11, pp.511-514, 1978.

A. Martín-meizoso, I. Ocaña-arizcorreta, J. Gil-sevillano, and M. Fuentes-pérez, Modelling cleavage fracture of bainitic steels, vol.42, pp.2057-2068, 1994.

I. Kawata, H. Nakai, and E. S. Aihara, « Experimental evaluation of effective surface energy for cleavage microcrack propagation across grain boundary in steels, Acta Mater, vol.150, pp.40-52, 2018.

, Prélèvements des échantillons de l'étude

, Microstructures à l'état brut de trempe et fraction des constituants

, Conception des microstructures additionnelles de l'étude

, Conclusions sur la présentation de l'acier 40CrMo4, p.61

, Conclusions sur l'étude micrographique

, Etude des entités microstructurales de seconde phase

, Conclusions sur les entités microstructurales

I. I. Chapitre, Matériau de l'étude

G. Murry and R. Lévêque, Aide-mémoire Métallurgie. Dunod, 2015.

J. Dumerger, G. Boi, E. Henrault, S. Evrard, R. Millot et al., « Impact du type de masselotte sur la qualité des lingots, 2013.

T. Sourmail and M. Saby, Connaissance de la trempe-revenu des nuances Oil et Gas », Rapport interne CREAS, 2014.

S. Michel, « Prédiction par simulation de la microstructure de trempe des produits Ascometal pour le marché Oil&Gas », Note interne CREAS, 2015.

T. Sourmail, « Dureté de la martensite et modèle de cémentation », sept, 2007.

S. D. Catteau, T. Sourmail, and A. Moine, Dilatometric Study of Phase Transformations in Steels: Some Issues, vol.5, pp.564-584, 2016.

S. Dépinoy, « Microstructural evolution of a 2.25Cr -1 Mo steel during austenitization and temper : austenite grain growth, carbide precipitation sequence and effects on mechanical properties », these de doctorat, 2015.

S. Maropoulos, N. Ridley, and E. S. Karagiannis, « Structural variations in heat treated low alloy steel forgings, Mater. Sci. Eng. A, vol.380, issue.2, pp.79-92, 2004.

F. Tioguem, « Lien entre microstructure et transition ductile-fragile des aciers trempés revenus à haute résistance », Rapport d'avancement de thèse année 1, 2018.

Y. Ohmori, H. Ohtani, and T. Kunitake, The Bainite in Low Carbon Low Alloy High Strength Steels », Tetsu--Hagane, vol.57, pp.1690-1705, 1971.

Y. Ohmori and R. W. Honeycombe, Proceedings of ICSTIS (suppl.), vol.11, pp.1160-1165, 1971.

Y. Tomita and K. Okabayashi, « Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite, Metall. Trans. A, vol.16, issue.1, pp.73-82, 1985.

H. F. Li, S. G. Wang, P. Zhang, R. T. Qu, and Z. F. Zhang, « Crack propagation mechanisms of AISI 4340 steels with different strength and toughness », Mater. Sci. Eng. A, vol.729, pp.130-140, 2018.

U. F. Kocks, On the spacing of dispersed obstacles, Acta Metall, vol.14, issue.11, pp.1629-1631, 1966.

C. A. Hippsley and S. G. Druce, « The influence of phosphorus segregation to particle/matrix interfaces on ductile fracture in a high strength steel, Acta Metall, vol.31, issue.11, pp.1861-1872, 1983.

S. Lee, S. Kim, B. Hwang, B. S. Lee, and C. G. Lee, « Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel, Acta Mater, vol.50, pp.4755-4762, 2002.

A. Roth and M. Billet, « Dosage d'austénite résiduelle, 2018.

M. Callahan, O. Hubert, F. Hild, A. Perlade, and J. Schmitt, Coincidence of strain-induced TRIP and propagative PLC bands in Medium Mn steels, vol.704, pp.391-400, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01591751

O. Hubert and S. Lazreg, « Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials, J. Magn. Magn. Mater, vol.424, pp.421-442, 2017.

A. Gourgues, H. M. Flower, and T. C. Lindley, « Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures, Mater. Sci. Technol, vol.16, issue.1, pp.26-40, 2000.

A. Ghosh, A. Ray, D. Chakrabarti, and C. L. Davis, Cleavage initiation in steel: Competition between large grains and large particles, vol.561, pp.126-135, 2013.

S. Pallaspuro, A. Kaijalainen, S. Mehtonen, J. Kömi, Z. Zhang et al., « Effect of microstructure on the impact toughness transition temperature of direct-quenched steels, Mater. Sci. Eng. A, vol.712, pp.671-680, 2018.

S. Li, G. Zhu, and Y. Kang, « Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C-1.1Si-1.7Mn steel », J. Alloys Compd, vol.675, pp.104-115, 2016.

S. Zhou, Y. Zuo, Z. Li, X. Wang, and Q. Yong, « Microstructural analysis on cleavage fracture in pearlitic steels, Mater. Charact, vol.119, pp.110-113, 2016.

, Traction sur éprouvettes en déformation plane

, 3.1. Effet de la direction de sollicitation en traction uniaxiale

, Effet de la position de prélèvement (configuration 130ksi)

, Effet de la température de revenu sur la rupture et l'endommagement en traction, p.114

, Effet de la température d'essai sur le comportement en traction

, Contributions de l'échauffement local lors des essais en vitesse

I. Chapitre, Etude expérimentale du comportement en traction

M. Gojic, L. Kosec, and P. Matkovic, « The effect of tempering temperature on mechanical properties and microstructure of low alloy Cr and CrMo steel, J. Mater. Sci, vol.33, issue.2, pp.395-403

F. Tariq, N. Naz, R. A. Baloch, and E. A. Ali, « Evolution of microstructure and mechanical properties during quenching and tempering of ultrahigh strength 0.3C Si-Mn-Cr-Mo low alloy steel, J. Mater. Sci, vol.45, issue.6, pp.1695-1708, 2010.

C. Defaisse, Rupture ductile des aciers aéronautiques », thèse de doctorat, 2018.

C. Defaisse, M. Mazière, L. Marcin, and J. Besson, « Ductile fracture of an ultra-high strength steel under low to moderate stress triaxiality, Eng. Fract. Mech, vol.194, pp.301-318, 2018.

P. W. Bridgman, Studies in Large Plastic Flow and Fracture, 1952.

J. Besson, C. Berdin, S. Bugat, F. Feyel, and C. Et, Local Approach to Fracture, Presses de l'Ecole des Mines, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00755207

B. Tanguy, « Modélisation de l'essai Charpy par l'approche locale de la rupture, 2001.

A. Chauhan, D. Litvinov, and J. Aktaa, « High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel », J. Nucl. Mater, vol.468, pp.1-8, 2016.

Y. Tomita and K. Okabayashi, « Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite, Metall. Trans. A, vol.16, issue.1, pp.73-82, 1985.

Y. Tomita, « Effect of continuous-cooling transformation structure on mechanical properties of 0.4C-Cr-Mo-Ni steel, J. Mater. Sci, vol.29, issue.6, pp.1612-1616, 1994.

K. Abbaszadeh, H. Saghafian, and E. S. Kheirandish, « Effect of Bainite Morphology on Mechanical Properties of the Mixed Bainite-martensite Microstructure in D6AC Steel, J. Mater. Sci. Technol, vol.28, issue.4, pp.336-342, 2012.

A. Salemi, A. Abdollah-zadeh, M. Mirzaei, and H. Assadi, « A study on fracture properties of multiphase microstructures of a CrMo steel, Mater. Sci. Eng. A, vol.492, issue.2, pp.45-48, 2008.

A. Salemi and A. , Abdollah-zadeh, « The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel, Mater. Charact, vol.59, issue.4, pp.484-487, 2008.

D. A. Curry and P. L. Pratt, « The Role of Second Phase Particles in the Ductile Fracture of Higher Carbon Steels, Mater. Sci. Eng, vol.37, pp.223-235, 1979.

G. Avramovic-cingara, C. A. Saleh, M. K. Jain, and D. S. Wilkinson, « Void Nucleation and Growth in Dual-Phase Steel 600 during Uniaxial Tensile Testing, Metall. Mater. Trans. A, vol.40, issue.13, p.3117, 2009.

F. T. Tankoua, « Transition ductile-fragile des aciers pour gazoducs : Étude quantitative des ruptures fragiles hors plan et corrélation à l'anisotropie de microtexture », thèse de doctorat, 2015.

F. Peng, X. Dong, K. Liu, and H. Xie, « Effects of Strain Rate and Plastic Work on Martensitic Transformation Kinetics of Austenitic Stainless Steel 304, J. Iron Steel Res. Int, vol.22, issue.10, pp.931-936, 2015.

A. R. Khalifeh, A. D. Banaraki, H. D. Manesh, and M. D. Banaraki, « Investigating of the tensile mechanical properties of structural steels at high strain rates », Mater. Sci. Eng. A, vol.712, pp.232-239, 2018.

B. Sanborn, B. Song, A. Thompson, B. Reece, and E. S. Attaway, Chapitre IV : Etude de la transition ductile-fragile, High Strain Rate Tensile Response of A572 and 4140 Steel, 2017.

, 4.3. Conclusions sur les énergies d'amorçage et de propagation

, Conclusions sur les mécanismes de rupture à l'échelle macroscopique, IV.5. Mécanismes physiques de la rupture -Aspects macroscopiques

, IV.6. Mécanismes physiques de la rupture -Aspects microscopiques

, Conclusions sur la transition ductile-fragile

W. Oldfield, Curve fitting impact data, pp.24-29, 1975.

H. Kim, J. Park, M. Kang, and E. S. Lee, « Interpretation of Charpy impact energy characteristics by microstructural evolution of dynamically compressed specimens in three tempered martensitic steels, Mater. Sci. Eng. A, vol.649, pp.57-67, 2016.

H. F. Li, S. G. Wang, P. Zhang, R. T. Qu, and Z. F. Zhang, « Crack propagation mechanisms of AISI 4340 steels with different strength and toughness », Mater. Sci. Eng. A, vol.729, pp.130-140, 2018.

A. Genty, « Etude expérimentale et numérique de l'amorcage et de l'arrêt de fissure, sous choc thermique, dans un acier faiblement allie (16mnd5) », thèse de doctorat, 1989.

F. M. Burdekin, J. F. Knott, J. D. Sumpter, and A. H. Sherry, « TAGSI views on aspects of crack arrest philosophies for pressure vessels with thicknesses up to 100 mm », Int. J. Press. Vessels Pip, vol.76, issue.13, pp.879-883, 1999.

B. Tanguy, « Modélisation de l'essai charpy par l'approche locale de la rupture : application au cas de l'acier 16MND5 dans le domaine de transition », these de doctorat, 2001.

A. Lambert-perlade, A. Gourgues, J. Besson, T. Sturel, and A. Pineau, « Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel, Metall. Mater. Trans

, A, vol.35, pp.1039-1053, 2004.

S. Wu, H. Jin, Y. Sun, and L. Cao, « Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels », Int. J. Press. Vessels Pip, pp.92-98, 2014.

M. Tsuboi, A. Shibata, D. Terada, and N. Tsuji, « Role of Different Kinds of Boundaries Against Cleavage Crack Propagation in Low-Temperature Embrittlement of Low-Carbon Martensitic Steel, Metall. Mater. Trans. A, vol.48, issue.7, pp.3261-3268, 2017.

B. Mintz, W. B. Morrison, and E. A. Jones, « Influence of carbide thickness on impact transition temperature of ferritic steels, Met. Technol, pp.252-260, 1979.

J. Du, M. Strangwood, and C. L. Davis, « Effect of TiN Particles and Grain Size on the Charpy Impact Transition Temperature in Steels, J Mater Sci Technol, vol.28, issue.10, pp.878-888, 2012.

A. Ghosh, A. Ray, D. Chakrabarti, and C. L. Davis, Cleavage initiation in steel: Competition between large grains and large particles, vol.561, pp.126-135, 2013.

N. J. Petch, « The influence of grain boundary carbide and grain size on the cleavage strength and impact transition temperature of steel, Acta Metall, vol.34, issue.7, pp.1387-1393, 1986.

S. Pallaspuro, A. Kaijalainen, S. Mehtonen, J. Kömi, Z. Zhang et al., « Effect of microstructure on the impact toughness transition temperature of direct-quenched steels, Mater. Sci. Eng. A, vol.712, pp.671-680, 2018.

S. Pallaspuro, S. Mehtonen, J. Kömi, Z. Zhang, and E. D. Porter, « Effects of local grain size and inclusions on the low-temperature toughness of low-carbon as-quenched martensite », Mater. Sci. Eng. A, vol.743, pp.611-622, 2019.

D. A. Curry and P. L. Pratt, « The Role of Second Phase Particles in the Ductile Fracture of Higher Carbon Steels, Mater. Sci. Eng, vol.37, pp.223-235, 1979.

H. P. Stüwe, « The work necessary to form a ductile fracture surface, Eng. Fract. Mech, vol.13, issue.2, pp.231-236, 1980.

S. Takebayashi, K. Ushioda, N. Yoshinaga, and E. S. Ogata, « Effect of Carbide Size Distribution on the Impact Toughness of Tempered Martensitic Steels with Two Different Prior Austenite Grain Sizes Evaluated by Instrumented Charpy Test, Mater. Trans, vol.54, issue.7, pp.1110-1119, 2013.

S. Hong, J. Song, M. Kim, K. Choi, and B. Lee, « Effects of microstructural variation on Charpy impact properties in heavy-section Mn-Mo-Ni low alloy steel for reactor pressure vessel, Met. Mater. Int, vol.22, issue.2, pp.196-203, 2016.

R. Cao, G. Li, X. Y. Fang, J. Song, and J. H. Chen, « Investigation on the effects of microstructure on the impact and fracture toughness of a C-Mn steel with various microstructures, Mater. Sci. Eng. A, vol.564, pp.509-524, 2013.

E. Chang, C. Y. Chang, and C. D. Liu, « The effects of double austenitization on the mechanical properties of a 0.34C containing low-alloy Ni-Cr-Mo-V steel, Metall. Mater. Trans. A, vol.25, issue.3, pp.545-555, 1994.

V. Chapitre,

, Chapitre V : Modélisation des propriétés à rupture de l'acier 40CrMo4

F. Tioguem, M. Mazière, F. Tankoua, A. Galtier, and A. , Gourgues-Lorenzon, « Identification of ductile to brittle transition temperature by using plane strain specimen in tensile test and correlation with instrumented Charpy impact test: experimental and numerical study, Mech. Ind, vol.19, issue.1, p.107, 2018.

F. Tioguem, Paramètres microstructuraux affectant la résilience des aciers trempés et revenus, 2016.

W. F. Hosford, « A Generalized Isotropic Yield Criterion, J. Appl. Mech, vol.39, issue.2, pp.607-609

J. A. Nelder and R. Mead, Simplex Method for Function Minimization, Comput. J, vol.7, issue.4, pp.308-313, 1965.

B. Tanguy, « Modélisation de l'essai charpy par l'approche locale de la rupture : application au cas de l'acier 16MND5 dans le domaine de transition », these de doctorat, 2001.

A. Pineau, « Development of the Local Approach to Fracture over the Past 25 years: Theory and Applications », Int. J. Fract, vol.138, issue.1, pp.139-166, 2006.

S. Zhou, Y. Zuo, Z. Li, X. Wang, and Q. Yong, « Microstructural analysis on cleavage fracture in pearlitic steels, Mater. Charact, vol.119, pp.110-113, 2016.

K. Lee, S. Park, M. Kim, and B. Lee, « Cleavage fracture toughness of tempered martensitic Ni-Cr-Mo low alloy steel with different martensite fraction », Mater. Sci. Eng. A, vol.534, pp.75-82

S. Wu, H. Jin, Y. Sun, and L. Cao, « Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels », Int. J. Press. Vessels Pip, pp.92-98, 2014.

C. Defaisse, Rupture ductile des aciers aéronautiques, 2018.

M. Tsuboi, A. Shibata, D. Terada, and N. Tsuji, « Role of Different Kinds of Boundaries Against Cleavage Crack Propagation in Low-Temperature Embrittlement of Low-Carbon Martensitic Steel, Metall. Mater. Trans. A, vol.48, issue.7, pp.3261-3268, 2017.

D. A. Curry and J. F. Knott, « Effects of microstructure on cleavage fracture stress in steel, Met. Sci, vol.12, issue.11, pp.511-514, 1978.

F. Tankoua, « Transition ductile-fragile des aciers pour gazoducs : Étude quantitative des ruptures fragiles hors plan et corrélation à l'anisotropie de microtexture », thèse de doctorat, 2015.

H. Godin, Effet de la microstructure sur la transition ductile-fragile d'aciers inoxydables martensitiques emboutissables à chaud, 2018.

E. Smith, The formation of a cleavage crack in a crystalline solid-I », Acta Metall, vol.14, issue.8, pp.985-989, 1966.

W. Yang, B. Lee, Y. Oh, M. Huh, and J. Hong, « Microstructural parameters governing cleavage fracture behaviors in the ductile-brittle transition region in reactor pressure vessel steels, Mater. Sci. Eng. A, vol.379, pp.17-26, 2004.

A. Martín-meizoso, I. Ocaña-arizcorreta, J. Gil-sevillano, and M. Fuentes-pérez, Modelling cleavage fracture of bainitic steels, vol.42, pp.2057-2068, 1994.

L. Rancel, M. Gómez, S. F. Medina, and E. I. Gutierrez, « Measurement of bainite packet size and its influence on cleavage fracture in a medium carbon bainitic steel, Mater. Sci. Eng. A, vol.530, pp.21-27, 2011.

O. M. Akselsen and Ø. Grong, « Prediction of weld metal Charpy V notch toughness », Mater. Sci. Eng. A, vol.159, issue.2, pp.187-192

W. Oldfield, Curve fitting impact data, pp.24-29, 1975.

P. L. Windle, M. Crowder, and R. Moskovic, A statistical model for the analysis and prediction of the effect of neutron irradiation on Charpy impact energy curves, Nucl. Eng. Des, vol.165, issue.1, pp.43-56, 1996.

I. W. Burr, Cumulative Frequency Functions, vol.13, pp.215-232

M. T. Todinov, An efficient method for estimating from sparse data the parameters of the impact energy variation in the ductile-brittle transition region, Int. J. Fract, vol.111, pp.131-150, 2001.

I. C. Gutiérrez, Effect of microstructure on the impact toughness of high strength steels, vol.50, 2014.

M. Avrami, « Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei », J. Chem. Phys, vol.8, issue.2, pp.212-224