
HAL Id: tel-02516727
https://pastel.hal.science/tel-02516727

Submitted on 24 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance analyses and code transformations for
MATLAB applications

Patryk Kiepas

To cite this version:
Patryk Kiepas. Performance analyses and code transformations for MATLAB applications. Computa-
tion and Language [cs.CL]. Université Paris sciences et lettres, 2019. English. �NNT : 2019PSLEM063�.
�tel-02516727�

https://pastel.hal.science/tel-02516727
https://hal.archives-ouvertes.fr

Préparée à MINES ParisTech

Analyses de performances et transformations de code pour les
applications MATLAB

Performance analyses and code transformations for MATLAB applications

Soutenue par

Patryk KIEPAS
Le 19 decembre 2019

Spécialité

Informatique temps-réel,
robotique et automatique

Composition du jury :

Christine EISENBEIS
Directrice de recherche, Inria / Paris 11 Présidente du jury

João Manuel Paiva CARDOSO
Professeur, University of Porto Rapporteur

Erven ROHOU
Directeur de recherche, Inria Rennes Rapporteur

Michel BARRETEAU
Ingénieur de recherche, THALES Examinateur

Francois GIERSCH
Ingénieur de recherche, THALES Invité

Claude TADONKI
Chargé de recherche, MINES ParisTech Directeur de thèse

Corinne ANCOURT
Maître de recherche, MINES ParisTech Co-directrice de thèse

Jarosław KOŹLAK
Professeur, AGH UST Co-directeur de thèse

Ecole doctorale n° 621

Ingénierie des Systèmes,
Matériaux, Mécanique,
Énergétique

2

Abstract

MATLAB is an interactive computing environment with an easy programming
language and a vast library of built-in functions. Therefore, researchers in
Computer Science and Engineering (CSE) often use it as a prototyping
tool. However, some features of this environment, such as its dynamic
language or interactive style of programming, affects how fast programs
can execute. The deficiency of performance is especially visible in compute-
intensive applications, such as image processing or machine learning. These
applications perform computations on a massive amount of data, ideally, as
fast as possible.

The goal of this thesis is to develop techniques for the analysis and op-
timisation of general MATLAB programs. Current methods for increasing
performance of the programs include two approaches: (1) systematic code
transformations applied without any consideration of their impact on the
program execution, and (2) translation of MATLAB codes to static languages
to benefit from years of research into optimising compilers for C and Fortran
languages. While the translation of MATLAB programs (2) skips the MAT-
LAB environment entirely, the systematic code transformation (1) does not
consider the exact inner workings of this environment at all. In this thesis,
we aim to fill this gap by focusing on research questions about how to analyse
the black-box MATLAB environment, and what new code transformation
could optimise the performance of programs without incurring additional
development cost on programmers.

MATLAB environment consists of an interpreter, garbage collector, and
Just-In-Time (JIT) compiler among others. However, these components
are neither open-source nor documented. Therefore, the environment is a
black-box which requires an entirely new approach for its analysis, as current
performance modelling techniques aim mainly at open-source solutions. To
address this challenge, we focus on the execution of MATLAB programs
directly on the CPU. For this task, we use a well-known performance event
profiles which measure how particular events on the CPU change over time,
e.g. the number of cache misses or floating-point operations. Furthermore,
we introduce a notion of execution regions which divides performance profiles
into segments with particular properties, e.g. a data copy or a floating-point
computation.

3

4

Using performance event profiles and execution regions, we have analysed
how particular expressions are scheduled for the execution by the MATLAB
JIT compiler. The compiler generates machine code for a batch of functions
at a time, called an instruction block. Therefore, by observing the activity
of an instruction cache on the CPU, we can track when each block starts
and ends. An instruction block is either a set of combinable functions which
coexist together or a single function requiring the whole instruction block for
itself.

To predict the type and the order of instruction blocks, we have proposed
a static tree-based model called the instruction tree. The model predicts,
directly from the MATLAB code, what execution regions are generated while
running the program. The instruction tree gives an insight into the execution
of MATLAB programs, and it can be a basis for future performance models.
Furthermore, with the knowledge gained from the analysis of the MATLAB
environment, we have proposed several code transformations which create
new optimisation opportunities. Repacking of array slices can increase the
amount of JIT-compiled code in programs by performing array slicing before
the actual computation, and range simplification, which reduces the number
of redundant computation and indexing phases. Also, the proposed model
indicates when the reordering, fusing and splitting of (sub-)expressions could
increase the program performance as well.

The main contribution of this thesis is the methodology to analyse and
discover how a black-box environment, such as MATLAB, executes programs.
Furthermore, with the increased knowledge about the execution of programs,
we have proposed several code transformations which can improve the per-
formance of applications. During the work on the thesis, we have developed
HU!M, a source-to-source compiler for MATLAB programs which performs
automatic analyses and code transformations, and an interface mPAPI for
accessing hardware performance counters directly from the MATLAB envi-
ronment.

Acknowledgements

The creation of this thesis was an effect of superposition of various events and
people met during my life. I am not exactly sure to whom I can attribute
my appreciation and fascination of science, but whoever you are: well done!

Firstly, I am grateful to my supervisors Corinne Ancourt, Claude Tadonki,
and Jarosław Koźlak for their helpful, supportive, and encouraging guidance.
This thesis is the result of our meetings and all tough questions asked during
them. I have learnt a lot from you. Thank you.

CRI laboratory is a unique mix of science, friendship, and work, where
time does fly a bit differently. I express my gratitude to past and present
CRI members for creating this warm atmosphere and including me in the
group: Maksim Berezov, Catherine Le Caër, Fabien Coelho, Laurent Daverio,
Emilio Gallego, Florian Gouin, Pierre Guillou, Olfa Haggui, Olivier Hermant,
François Irigoin, Pierre Jouvelot, Claire Medrala, Benoît Pin, Bruno Sguerra,
Lucas Sguerra, Pierre Wargnier, and Katarzyna Węgrzyn-Wolska. I am
indebted to François and Fabien for making my last year of studies possible.

I thank Michel Barreteau, François Giersh and Frédéric Barbaresco from
THALES for their cooperation and an opportunity to prepare this thesis in
the first place. Our meetings, although sparse, were always entertaining.

I say thanks to my dense friends: Jakub and Ziejka for always being there
on-line; Panek for coming to us off-line; Adilla for all the voices; Gabriella
for many topics to think about; Nathan for speed hiking; Laila for always
having nuts; Tuanir for remembering the sound of bongos; Corinne for making
Monika and me the happiest dog sitters of Orson on this side of the Seine;
and the Chileans: Rocío, Estaban, and Hector for crossing our timelines.

Finally, I send love to my whole family for years of cheering, especially to
my parents, Ewa and Arkadiusz, for all the support. I thank my sister Kinia
and Leszek, for the best B&B in Warsaw. I am grateful to Monika’s parents,
Małgorzata and Witold, for the help and time spent. At last, I send my love
to Monika for not falling asleep while listening about MATLAB. You are,
indeed, optimal.

5

6

Contents

1 Introduction 15
1.1 Motivation . 16
1.2 Research challenges . 18
1.3 Thesis contributions . 19
1.4 Thesis structure . 20

2 Related work 23
2.1 Acceleration of MATLAB programs 24

2.1.1 Compilation of MATLAB programs 24
2.1.2 Transformation of MATLAB code 27
2.1.3 Alternative execution environments 28
2.1.4 Analysis of MATLAB programs 28

2.2 Performance analysis . 31
2.2.1 Metrics and models . 31
2.2.2 Hardware performance counters 32
2.2.3 Profiling . 34
2.2.4 Performance of execution environments 35

2.3 Conclusion . 35

3 Performance event profiles 37
3.1 Overview . 38
3.2 Motivation . 39
3.3 Building performance profiles 41

3.3.1 Selecting the sampling event 43
3.3.2 Selecting the sampling threshold 45
3.3.3 Performance profiles with mPAPI 48

3.4 Finding execution regions . 50
3.5 Case study: cost of array slicing 52
3.6 Conclusion . 55

4 Execution model for MATLAB 57
4.1 Scope of the execution model 58
4.2 Instruction blocks in JIT compilation 59

7

8 CONTENTS

4.3 Detecting instruction blocks 61
4.4 JIT compilation of functions 64

4.4.1 Built-in functions . 64
4.4.2 User-defined function 66

4.5 Instruction tree . 68
4.5.1 Building minimal instruction tree 69
4.5.2 Predicting execution from minimal instruction tree . . 72

4.6 Conclusion . 74

5 Code transformations for array operations 77
5.1 Redesigning array slicing . 78

5.1.1 Dynamic array slicing 78
5.1.2 Eliminating redundant 0-initialisation 79

5.2 Repacking of array slices . 82
5.3 Range simplification . 83
5.4 Profile-guided loop vectorisation 86
5.5 Conclusion . 91

6 HU!M compiler 93
6.1 Overview . 94
6.2 Influences . 95
6.3 Code analysis . 97
6.4 Code transformation . 100

6.4.1 Loop vectorisation . 100
6.4.2 Fast array slicing substitution 102
6.4.3 Repacking of array slices 103

6.5 Conclusion . 103

7 Evaluation of the execution model and code transformations105
7.1 Evaluation of the execution model 106

7.1.1 Model precision . 106
7.1.2 Splitting expressions 106
7.1.3 Reordering operations 108
7.1.4 Information limit of performance profiles 110

7.2 Evaluation of the range simplification 111
7.3 Evaluation of the repacking of arrays 114
7.4 Conclusion . 116

8 Conclusion 119
8.1 Summary . 120
8.2 Future work . 121

CONTENTS 9

A Experiment methodology 125
A.1 Preparation of the environment. 125
A.2 Collecting measurements . 126
A.3 Machine specification . 126

B mPAPI 129
B.1 mPAPI interface. 130

B.1.1 Enumerating available performance events 130
B.1.2 Measuring performance events in counting mode . . . 130
B.1.3 Measuring performance events in sampling mode . . . 131

C Menchi 133
C.1 Benchmark preparation . 134
C.2 Experiment specification . 135
C.3 Experiment modes . 136

D Accompanying materials 141

10 CONTENTS

List of Figures

1.1 Multiplication of random square matrices in C, MATLAB, and
Python . 16

1.2 Improving performance of MATLAB 17

3.1 Components of program execution in MATLAB 38
3.2 Performance event profiles for the striad kernel 40
3.3 Performance profiles built using various sampling events . . . 44
3.4 Performance profiles built using various sampling thresholds . 46
3.5 Impact of the sampling threshold on the duration of perfor-

mance profiles . 47
3.6 Workflow of creating performance traces with mPAPI 49
3.7 Cost of performing data copy during array slicing 54

4.1 Components of MATLAB expressions with array operations . 58
4.2 Detection of instruction blocks with code examples 63
4.3 Code examples for testing dynamic compilation of user-defined

functions . 67
4.4 Step 1: Conversion of an expression to AST 69
4.5 Step 2: Conversion from an AST to the instruction tree . . . 70
4.6 Step 3: Removal of array reference leaves 70
4.7 Step 4: Merging of instruction blocks to form the minimal

instruction tree . 72
4.8 Instruction chain obtained from the flattened instruction tree 74
4.9 Prediction of the execution regions and their order 75

5.1 Zero initialisation in array slicing 80
5.2 Results of applying repacking of array slices 84
5.3 Performance profiles of array slicing with ranges 85
5.4 Profiling of loop vectorisation 88
5.5 Results of profile-guided vectorisation 90

6.1 Overview of analyses in HU!M 97
6.2 Hierarchy of classes representing the instruction tree 97
6.3 Overview of transformations in HU!M 100

11

12 LIST OF FIGURES

6.4 Fast array slicing substitution in HU!M 102
6.5 Repacking of array slices in HU!M 103

7.1 Execution regions of MIT-2 example 107
7.2 Example of splitting an expression into sub-expressions 108
7.3 Splitting expression to perform vector operations 109
7.4 Minimal instruction tree after reordering of instructions . . . 109
7.5 Reordering expression to reduce instruction blocks 110
7.6 Execution regions of MIT-1 example 111
7.8 Performance profiles of array slicing with ranges 113
7.9 Execution time of range simplification 114
7.10 Repacking of array slices on Livermore kernels 115
7.11 Repacking of array slices on LCPC16 kernels 117

A.1 Hierarchical topology of test machines 127

C.1 Workflow of code benchmarking with Menchi 133

D.1 Optimised loop crni2 from Chen et al. [1] 141
D.1 Optimised loops nw2 and nw3 from Chen et al. [1] 142
D.1 Optimised loop fft1 from Chen et al. [1] 143
D.2 Extended version: cost of performing data copy during array

slicing . 144
D.3 Execution regions of MIT-3 example 145
D.4 Execution regions of MIT-4 example 145
D.5 Execution regions of MIT-5 example 146
D.6 Execution regions of MIT-6 example 146
D.7 Execution regions of MIT-7 example 147
D.8 Execution regions of MIT-8 example 147

List of Tables

2.1 List of research and industrial compilers for MATLAB. 25

3.1 Size of profile files with changing sampling threshold 48
3.2 Selected programs for the analysis of data copy cost 53

4.1 Performance event candidates for the detection of instruction
blocks . 62

4.2 Test codes used for the detection of dynamic compilation . . . 65
4.3 List of single and combinable built-in functions 66
4.4 Examples of expressions with their minimal instruction trees . 73

5.1 Experiment reproduction of vectorisation by Chen et al. [1] . 87
5.2 Results of loop profiling for profitable loop vectorisation . . . 89

7.1 Machine instructions counted by the FP_ARITH_INST_RETIRED:*
family of performance events on Skylake and Coffee Lake
microarchitectures. 112

A.1 Specification of test machines 126

C.1 Benchmark specification generated by CodeExtractor 135
C.2 Experiment modes in Menchi tool 137

13

14 LIST OF TABLES

Chapter 1

Introduction

Résumé

Pour de nombreux chercheurs et programmeurs, MATLAB est un outil pratique pour
le prototypage rapide de solutions à des problèmes de calculs complexes, car le langage
possède une syntaxe claire et une vaste bibliothèque de fonctions et d’algorithmes
intégrés. Bien que les versions récentes de MATLAB soient compilées en temps réel
(JIT), ses performances sont souvent inférieures à celles d’autres langages tels que le
C, Fortran et même Python. Auparavant, les chercheurs ont adopté deux approches
pour améliorer les performances des programmes MATLAB : 1) la compilation du
code MATLAB comme celle des langages C et Fortran, et 2) la transformation
du code des programmes MATLAB pour utiliser des constructions de langage plus
rapides. Alors que 1) la compilation ignore entièrement l’environnement d’exécution
de MATLAB, 2) la transformation du code ne fonctionne bien que lorsque nous
savons précisément comment MATLAB exécute les programmes. Dans cette thèse,
nous présentons une analyse de performance permettant de découvrir comment les
applications s’exécutent dans l’environnement MATLAB. De plus, nous formalisons
l’exécution des programmes avec un modèle d’exécution basé uniquement sur les
arbres permettant d’effectuer de nouvelles transformations de code qui augmentent
les performances des programmes MATLAB compilés en temps réel (JIT). Nous
avons également développé plusieurs outils et un compilateur qui facilite l’utilisation
de l’analyse des performances et l’application des transformations de code.

Introduction

For many programmers and researchers, MATLAB is an everyday tool, ca-
pable of expressing even the most complex computational problems in an
easy, concise, and interactive way using its dynamic execution environment.
MATLAB achieves this by mastering the idea of programming language as
mathematical notation, first proposed by Iverson [2] in his APL language.
Consequently, MATLAB is a domain-specific language dedicated to linear
algebra and array-based computations. Moreover, in the language, vectors,

15

16 CHAPTER 1. INTRODUCTION

1 // C language
2 double *randmatmul(int n) {
3 double *A = myrand(n*n);
4 double *B = myrand(n*n);
5 double *C = (double*)
6 malloc(n*n*sizeof(double));
7 cblas_dgemm(CblasColMajor,

CblasNoTrans, CblasNoTrans, n, n,
n, 1.0, A, n, B, n, 0.0, C, n);

8 free(A);
9 free(B);
10 return C;
11 }

1 # Python + NumPy
2 import numpy as np;
3 def randmatmul(n):
4 A = np.random.rand(n,n)
5 B = np.random.rand(n,n)
6 return np.matmul(A,B)

1 % MATLAB
2 function C = randmatmul(n)
3 A = rand(n,n);
4 B = rand(n,n);
5 C = A * B;
6 end

Figure 1.1: Code examples for the multiplication of random square matrices
written in three different languages: C, MATLAB, and Python (from Julia
Microbenchmarks [3]). C code requires manual memory management, an
explicit call to the external BLAS routine, and type declarations.

matrices and multi-dimensional arrays are first-class citizens with dedicated
operations. Thus, expressing computations using these multi-element struc-
tures is as easy as working with scalar variables in any other language.

MATLAB is not only a programming language, it is a problem-solving
environment [4], with more than 2900 built-in functions, 53 specialised tool-
boxes, 8 compilers, and 1 code profiler (as of version R2019b). Figure 1.1
compares multiplication of random square matrices written in C, Python, and
MATLAB. While the code of Python with NumPy library is fairly similar to
the MATLAB code, the C code requires an implementation of function myrand
for random generation of arrays (MATLAB has rand); a call to the external
dgemm BLAS routine for matrix multiplication (MATLAB uses Intel MKL [5]
for * operator seamlessly); a manual memory management using malloc and
free (MATLAB performs automatic memory [de]allocation); and explicit
declarations of type double (MATLAB works on double type by default, also
it has dynamic and weak type system). The inherent easiness of writing code
together with the numerical orientation make MATLAB especially suitable
for fast prototyping of applications in computational science and engineering
(CSE), signal processing, control systems, image processing, machine learning,
and many more disciplines.

1.1 Motivation

The interactive and dynamic natures of MATLAB, so desirable for fast
prototyping, required MATLAB programs to be interpreted at first in 1984 [6],
and then gradually moved to more powerful techniques such as program

1.1. MOTIVATION 17

MATLAB program

Compilation

Code transformation

C/C++

Fortran

MPI/OpenMP

CUDA/OpenACC
. . .

MATLAB runtime

Figure 1.2: Two possible approaches to improving performance of MATLAB
programs.

execution using bytecode-based virtual machine (VM) [7] and Just-In-Time
(JIT) compilation [8]. In order to stay relevant and increase its performance,
over the years, MATLAB received support for vector instructions around
year 2000 [9], included Just-In-Time (JIT) compiler in 2002 with MATLAB
6.5, introduced explicit parallelism with Parallel Computing Toolbox in
2004, executes built-in functions on many-threads since R2007b, included
computation on Graphics Processing Unit (GPU) in R2010b, and finally,
obtained new execution engine (LXE) in R2015b [10] which combines the
interpreter and the JIT compiler under a single monolithic architecture.

Unfortunately, the JIT compilation induces additional costs related to
the runtime preparation of the code just before the execution. In order
to compete with statically compiled languages like C and Fortran, the JIT
compiler must be as good, or even better, as compilers for those languages.
Therefore, since the beginning of MATLAB, researchers and companies have
worked on methods and tools for optimising MATLAB programs [1, 11–21].

Figure 1.2 presents two common approaches to improving MATLAB
performance: (1) compilation and (2) code transformation. Other techniques
include, e.g. developing new virtual (VM) machines [22], JIT compilers [23],
and parallel extensions [24, 25]. From the previous works, the MATLAB
translation to C and Fortran are, by far, the most popular approaches,
probably because they bypass performance limitations of the MATLAB
runtime whatsoever. Instead, the compilation can benefit from years of
research on optimising compilers [26–28]. However, compilation of MATLAB
programs breaks the fast prototyping development cycle. Imagine our problem
is compute-intensive and it requires compilation before each run. In such case,
we need to leave the MATLAB environment and switch to other compilation
toolchain. Therefore, in order to facilitate program development, we have
focused on source-to-source transformations of MATLAB programs. Moreover,
code transformations for MATLAB were much less investigated by researchers
than MATLAB compilation, and as such, we believe there is still room for
improvement.

18 CHAPTER 1. INTRODUCTION

1.2 Research challenges

Researchers have applied code transformations to MATLAB since the 1990s
starting with the FALCON project [29, 30]. Around year 2000, the huge
benefit of loop vectorisation made it a primary code optimisation technique
for MATLAB programmers. Since then, researchers applied vectorisation
automatically to MATLAB programs [9, 21]. However, because of the im-
provements to JIT compilation in MATLAB, the systematic vectorisation of
every loop is no longer a viable approach [1, 31]. Therefore, the successful
application of loop vectorisation and any other code transformation requires
the understanding of how exactly MATLAB executes programs and a careful
consideration of when and what transformation to apply.

MATLAB is a closed source, proprietary environment. Thus, programmers
and researchers have almost no details from the vendor about how MATLAB
really works. Moreover, the MATLAB language is dynamic with a weak type
system which is not the best input for static code analysis, because of the
lack of many information about the source code. This situation leads to the
need of developing new approaches of characterising program execution and
MATLAB itself. For this task, we have previously worked on several research
directions, unfortunately with no positive results apart from gaining new
knowledge.

Static heuristics for loop vectorisation. Our first approach to improv-
ing performance of MATLAB programs was to create heuristics for checking
when to apply loop vectorisation. In order to find key elements of programs
contributing the most to the performance of loop vectorisation, we have
used several performance models, analyses and metrics such as the Roofline
Model [32], Top-Down Microarchitectural Analysis [33], cache and data reuse
models, monitoring of hardware performance counters in the counting mode.
However, every tested approach gave us only a global view on the program
execution without any consideration for time-varying behaviour, which turned
out to be a key factor. The lack of results from this approach lead us to
a direction of profile-guided vectorisation using a simple profiling scheme
described in Section 5.4 and [31]. Although, very useful and powerful, profile-
guided vectorisation is not a solution to the initial goal of having static
heuristics.

Machine Learning model for selecting loop vectorisation. Our next
approach to the previous problem was based on Machine Learning for building
a decision model for loop vectorisation. For this task, we have examined two
approaches with vastly different representations of MATLAB programs. The
work of Cavazos et al. [34] uses a vector of values from hardware performance
counters to encode a single code example. Later, in order to predict if a loop
is worth vectorising, we just run the loop and collect performance counters

1.3. THESIS CONTRIBUTIONS 19

which were then feed to the model. In contrast, the work of Cummins et
al. [35] uses fully static representation, the string of the code example encoded
using techniques used also in Natural Language Processing (NLP). Although,
using the approach by Cavazos et al. [34] we were able to create promising
models with high precision, we failed too find in them any important insights.

Warm-up state of JIT compiler in MATLAB. In this analysis, we
have focused on the JIT compiler entirely and followed a study of Barrett
et al. [36] about characterising warm-up stages of popular virtual machines
(VM), e.g. HHVM [37], Graal [38], HotSpot JVM [39], and others. In the
study, various benchmarks were repeatedly executed on each virtual machine
to see when the JIT compilation happens and how it affects the performance.
In MATLAB, we have observed that JIT compilation usually increases the
program performance, however, in very rare cases it might even lead to
performance degradation. Moreover, we have observe the JIT compilation
happens during the first run of a program, which indicates that the JIT
compiler in MATLAB has a single-tier policy [40].

All abovementioned challenges have only emphasized the need for a
different approach to analyse, model, and understand how MATLAB executes
programs, before working on code transformations for them.

1.3 Thesis contributions

In the thesis, we have focused on the development of new analyses and code
transformations for MATLAB programs. The main contributions are built
around three research questions:

• RQ1: Can we analyse and model how MATLAB works seen as a
black-box?

• RQ2: Are we able to propose new code transformations for MATLAB?

• RQ3: Is it possible to improve MATLAB performance without breaking
much the fast prototyping cycle?

Analysis and modelling. The answer to question RQ1 is divided into
two Chapters 3 and 4. In Chapter 3, we introduce performance event profiles
(PEP) which are an inventive use of hardware performance counters to analyse
time-varying aspects of the program execution. Later, in Chapter 4, we use
the profiles to discover and build an execution model for MATLAB expressions.
The model is encoded as instruction trees where each node represents a block
of instructions executed together by the JIT compiler. Moreover, connections
between these nodes indicate their execution order. The result of the model
is a prediction of how MATLAB executes a given expression.

20 CHAPTER 1. INTRODUCTION

New code transformations. To answer the next question, RQ2, we use
the combined results of Chapters 3 and 4 to propose several specialised code
transformations for MATLAB programs, e.g. repacking of array slices and
range simplification in Chapter 5. For example, the repacking leverages the
fact that JIT compiler in MATLAB prefers expressions without indexed
variables, because then the expressions can be compiled as one block of
instructions. Therefore, the repacking extracts and substitutes indexed
variables with references to temporary arrays. Furthermore, in Section 5.4,
we take a fresh look on loop vectorisation applied to MATLAB programs in
the profile-guided context.

Fast prototyping cycle. The last question RQ3 is answered indirectly
with the knowledge from previous answers and the content of Chapter 6. The
chapter presents our HU!M compiler which implements presented execution
model and code transformations. These transformations not only keep
the similar level of code readability, but also once applied, they persist
in the code without future need to reapply them again, as opposed to
MATLAB compilation which works on the whole compilation unit (usually a
function) and requires recompilation even after small change in the source
code. Moreover, the majority of presented code transformations (except for
loop vectorisation) requires little to none of code analysis, while other, e.g.
dynamic array slicing, postpone the analysis until the runtime.

1.4 Thesis structure

In Chapter 2, we outline collection of works related to three topics: (1)
acceleration of MATLAB programs; (2) performance analysis of computer
programs; and (3) analysis of runtime environments. The topic (1) shows the
scale of the research that went into the optimisation of MATLAB programs.
Moreover, topics (2) and (3) show other attempts to understand the behaviour
of program execution and runtime environments, e.g. Python and JVM.

The next three Chapters 3 to 5 describe our contributions:

• Performance event profiles (PEP) are an inventive way to use perfor-
mance profiles built using hardware performance counters to discover
and understand the program execution (Chapter 3). Every performance
profile consists of several execution regions, each depicting different kind
of a computation. Furthermore, we present how to create performance
profiles using our open source tool mPAPI.

• Execution model of MATLAB expressions is encoded as an instruction
tree which groups instructions into blocks (Chapter 4). Each instruction
block is separately compiled for the execution by the JIT compiler. Using
our model, we are able to predict the order of instruction blocks and

1.4. THESIS STRUCTURE 21

their content, by tracking which instructions merge together in the
process of obtaining the minimal instruction tree.

• Dynamic array slicing, repacking of array slices, range simplifications are
code transformations for MATLAB programs introduced in Chapter 5.
They improve performance of MATLAB expressions without impacting
drastically the code readability. Moreover, in Chapter 5, we have
analysed loop vectorisation applied with profiling information.

In Chapter 6, we present our source-to-source compiler HU!M capable of
applying transformations from Chapter 5 in an automatic manner. Moreover,
the compiler implements our execution model from Chapter 4, and it is
capable of giving prediction about the program execution directly from
an input source code. Finally, Chapter 8 summarises the research tasks
performed during the work on the thesis, obtained results, and the future
work.

The thesis consists of 4 appendix with descriptions of experiment method-
ology, our two tools mPAPI and Menchi, and a collection of additional results.
Appendix A describes the experiment methodology used for every results
(plots included) in the thesis, except for the experiments in Section 5.4. The
goal of the methodology is to limit measurement errors and non-deterministic
events as much as possible, and to correctly summarise the obtained mea-
surements, e.g. using confidence intervals [36, 41,42]. Moreover, Appendix A
contains a list of two machines used in our experiments.

Appendix B describes mPAPI which is a MATLAB interface for accessing
hardware performance counters built on top of the PAPI library [43]. The
interface extends the capabilities of the official PAPI interface for MATLAB
with collecting performance counters in the sampling and the multiplexed
modes, and allowing to measure counters for separate threads.

In Appendix C, we describe Menchi, an experiment generator tool which
was used to prepare each test in the thesis in a single and consistent manner.

Finally, Appendix D contains additional codes and plots which could not
fit into the main part of the manuscript.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

Résumé

Dans ce chapitre, nous nous sommes concentrés sur les travaux de recherche liés
à l’accélération des programmes MATLAB et à l’analyse des performances des
applications. Bien qu’il existe plusieurs autres domaines de recherche proches des
travaux présentés dans cette thèse, ces deux sujets sont les plus importants.

Au fil des ans, les chercheurs ont créé plusieurs compilateurs de MATLAB vers
d’autres langages : FALCON, Otter, Match, MATISSE, ou le codeur officiel de
MATLAB, pour n’en citer que quelques-uns. Aujourd’hui, seul MATLAB Coder
est prêt à être utilisé par les programmeurs et les scientifiques, mais le processus
d’utilisation n’est pas entièrement automatisé. D’autre part, la recherche sur les
transformations de code des programmes MATLAB est très rare. Pendant de
nombreuses années, le savoir collectif pour augmenter les performances a inclus
la vectorisation des boucles dans les codes MATLAB. Cependant, les compilateurs
récents de MATLAB peuvent produire un code plus rapide sans vectorisation. La
simple décision de vectoriser une boucle ne peut être prise qu’avec l’aide de modèles
d’exécution qui ont été étudiés auparavant dans le contexte de MATLAB.

Pour créer un modèle d’exécution et un modèle de performance, nous devons
utiliser des techniques d’analyse de performance. Les mesures et modèles de perfor-
mance classiques, tels que le nombre d’instructions par cycle (IPC) ou le modèle de
cache d’exécution (ECM), soit ne prennent pas en compte le comportement variable
dans le temps des programmes analysés, soit ne décrivent qu’une perspective abstraite
de l’exécution du programme. Les compteurs de performance matérielle donnent
une vue détaillée de l’exécution du programme car ils représentent la façon dont une
unité centrale exécute le programme. De plus, les valeurs des compteurs de perfor-
mance peuvent être échantillonnées dans le temps, donnant ainsi une description
de l’exécution du programme qui varie dans le temps. La majorité des analyses de
performance ont été appliquées à des langages et des environnements d’exécution
de logiciels libres, par opposition aux boîtes noires de logiciels propriétaires comme
MATLAB.

23

24 CHAPTER 2. RELATED WORK

Introduction

The work presented in the thesis, spans across several important topics:
programming languages, compiler construction, performance analysis, design
of processors, code transformations, compilation, to name a few. For this
chapter, we have selected two most important topics connected to our work:
(1) acceleration of MATLAB programs; (2) performance analysis of computer
programs and runtime environments.

2.1 Acceleration of MATLAB programs

Acceleration of MATLAB programs has a long history full of many research
and industrial projects. In this section, we describe four major components
of improving MATLAB programs: (1) compilation; (2) transformation; (3)
development of new virtual machines and parallel extensions; and (4) analysis.

2.1.1 Compilation of MATLAB programs

Compilation of MATLAB programs, especially to static languages like C or
Fortran, brings the results of many research works devoted to loop transfor-
mations and optimising compilers for these languages. Moreover, because
the input language is MATLAB, programmers still benefit from MATLAB
language clarity and fast prototyping properties. Furthermore, compilation
of MATLAB is a solution for porting programs to parallel and heterogeneous
computing platforms.

Unfortunately, not all MATLAB built-in functions are supported by
MATLAB compilers. Even today, the official MATLAB to C compiler, MATLAB
Coder, supports the majority but not all built-in functions [44]. Moreover,
other MATLAB compilers support only a handful of built-ins. Although, the
compilation of MATLAB programs is common and beneficial, it is not always
applicable. However, some compilers port a MATLAB program onto a new
platform which does not run MATLAB environment. A good example is the
MATISSE compiler which targets embedded systems [45] and heterogeneous
computing platforms with OpenCL [46], otherwise not available for MATLAB
programs.

In this section, we present various compilers for MATLAB language
depicted in Table 2.1. Moreover, we briefly describe some of them in the
subsequent paragraphs to illustrate the variety of targeted languages and
architectures. However, we do not focus on their code analysis capabilities,
leaving this part for the Section 2.1.4.

FALCON. FALCON is a programming infrastructure for creating numeric
applications using MATLAB language [48]. The tool is able to transform
MATLAB code, as well as compiled it to Fortran 90. FALCON infers

2.1. ACCELERATION OF MATLAB PROGRAMS 25

T
ab

le
2.
1:

Li
st

of
re
se
ar
ch

an
d
in
du

st
ri
al

co
m
pi
le
rs

fo
r
M
A
T
LA

B
.

C
om

pi
le
r

A
ct
iv
e
ye
ar
s

T
ar
ge
t
la
ng

ua
ge

P
la
tf
or
m

R
ef

FA
LC

O
N

19
95

-2
00

1
Fo

rt
ra
n/

M
A
T
LA

B
C
P
U

[1
1,
47

,4
8]

O
tt
er

19
98

-1
99

9
C
/M

P
I

C
P
U

[1
2,
49

]
M
en
hi
r

19
98

-1
99
9

C
/F

or
tr
an

C
P
U

[1
9,
50

]
M
A
T
C
H

19
99

-2
00

3
V
H
D
L

F
P
G
A
/D

SP
ch
ip
s

[5
1–

53
]

M
at
2C

20
06

-2
00

7
C

C
P
U

[5
4]

O
M
P
C

20
09

–2
01

0
P
yt
ho

n
C
P
U

[5
5]

M
E
G
H
A

20
11

–2
01

2
C
+
+
/C

U
D
A

C
P
U
/G

P
U

[5
6]

M
A
T
IS
SE

20
13

–2
01

7
C
/O

pe
nC

L
E
m
be

dd
ed

/H
et
er
og
en

eo
us

[1
3]

M
c2
Fo

r
20

13
–2

01
4

Fo
rt
ra
n9

5
C
P
U

[1
5]

eV
ar
iX

/C
O
LD

20
13

–2
01

8
C

C
P
U
/H

et
er
og

en
eo
us

[5
7]

M
ix
10

20
14

X
10

C
P
U

[1
6]

m
2c
pp

20
15

–2
01
8

C
+
+

C
P
U

[5
8,
59

]
St
en
ci
lP
aC

20
16

C
/O

pe
nM

P
/M

P
I/
O
pe

nA
C
C

C
P
U
/G

P
G
P
U

[6
0]

M
at
Ju

ic
e

20
16

Ja
va
Sc
ri
pt

C
P
U

[6
1]

La
ti
fis

et
al
.

20
17

C
/S

IM
D

E
m
be

dd
ed

/S
ys
te
m
-o
n-
C
hi
p
(S
oC

)
[6
2]

26 CHAPTER 2. RELATED WORK

several information about variables in programs, such as their type, shape,
size of each dimensions, and their structural properties, e.g. if a matrix is
diagonal or triangular. The structural analysis is used to generate specialised
arithmetic operations which work especially well on matrices with particular
properties [11]. Furthermore, the analyses can be static (working from the
source code) or dynamic (deferred to the runtime). For the analyses, FALCON
represents MATLAB programs in the Static Single Assignment (SSA) form.

Moreover, FALCON is capable of transforming MATLAB programs to
achieve better performance. However, the code transformation is manual and
requires inserting annotations into the code. Further, the annotated code
is transformed accordingly to one of the patterns in a database of rewriting
rules. The rules include algebraic restructuring such as reordering matrices
during multiplication, and primitive-set translation like loop interchange [11].

Otter. Otter is a compiler which not only translates MATLAB into C,
but it also parallelises the code using Message Passing Interface (MPI)
[49] and delegates numerical computations to parallel implementation of
the Linear Algebra PACKage (LAPACK) library called Scalable LAPACK
(ScaLAPACK) [12]. The compiler uses Static Single Assignment (SSA) as
intermediate representation of MATLAB programs.

MATCH. MATCH is a compiler targeting heterogeneous platforms such
as Digital Signal Processing (DSP) chips and FPGA. The compiler has a very
detailed parser for the MATLAB language which development was detailed
in an extensive report [63, 64].

Mat2C. Joisha and Banerjee, after years of work on shape inference for
MATLAB [17,65], have created MATLAB to C compiler called Mat2C. The
compiler uses MAGICA, their shape inference engine.

MATISSE. MATISSE is a compiler from MATLAB language to C and
OpenCL [13, 66], focusing also on embedded systems [45]. MATISSE uses
aspect-oriented programming language called LARA [67] to specify missing
information required for the compilation. LARA allows to declare, e.g. data
types and shapes, which are dynamic information in MATLAB and usually
unspecified in the MATLAB source code.

m2cpp. m2cpp1 is a MATLAB to C++ compiler which generates parallel
code using OpenMP [68] or Intel TBB [69] libraries. Moreover, for the
computations, m2cpp utilizes Armadilo library. The compiler uses external
file with meta-information such as types and shapes of variables required for
the compilation.

1https://github.com/jonathf/matlab2cpp

https://github.com/jonathf/matlab2cpp

2.1. ACCELERATION OF MATLAB PROGRAMS 27

2.1.2 Transformation of MATLAB code

Although, much less popular, the code transformation of MATLAB programs
was investigated by researchers as well. The biggest disadvantage of this
approach is that the final gain from optimisation is limited to the performance
of the MATLAB environment.

Loop vectorisation

Still today, loop vectorisation is considered as a primary tool for increasing
performance of MATLAB loops2. Menon and Pingali [9] have implemented
automatic loop vectorisation in FALCON [11]. Moreover, they have performed
one of the first studies on the effectiveness of loop vectorisation. Their
results have shown that vectorisation is always beneficial and can be applied
systematically.

Two further works on automatic loop vectorisation are mainly concern
about shape analysis and the validity of the vectorisation. Birkbeck et al. [21]
introduced the notion of dimensionality abstraction which helps to check if
the code after vectorisation is correct. If not, their vectoriser can transpose
arrays and check if this transformation made the code correct. Moreover, their
vectoriser includes a database of common patter used in loop vectorisation.

The next study by Chen et al. [1] improved on the idea of dimensionality
abstraction by introducing a data-flow analysis called promoted shape. The
analysis was implemented in their vectoriser Mc2Mce3 along with automatic
shape inference built on top of the Tamer [1, 70]. With the analysis, au-
thors were able to perform loop vectorisation, but also vectorisation of the
whole user-defined functions (also called procedure vectorisation [20]). Both
presented approaches uses the same vectorisation algorithm by Allen and
Kennedy [71,72] as their base. However, both Chen et al. [1] and Birkbeck
et al. [21] are not considering when vectorisation might not be beneficial,
applying it only systematically.

Arithmetic simplification

Often, mathematical equations can be simplified and optimised. The same
is true for MATLAB code which expresses these equations. In FALCON
compiler, using annotations, it is possible to perform algebraic restructuring,
such as reordering of matrices during multiplication, in order to reduce the
number of performed arithmetic operations [11].

Menon and Pingali [73] introduced a whole framework for restructuring
expressions called Abstract Matrix Form (AMF). AMF is an algebraic lan-
guage for expressing semantics and transformations of element-wise matrix

2https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
3https://github.com/Sable/Mc2Mc

https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
https://github.com/Sable/Mc2Mc

28 CHAPTER 2. RELATED WORK

operations. Moreover, the framework contains several rewriting rules for
simplifying computations which result in significant performance gain [9, 73].

Partial evaluation

Elphick et al. [74] presented a partial evaluation system for MATLAB where
rarely (or never) changing parts of the programs are evaluated before the
actual execution. In other words, partial evaluation is about evaluating static
instructions and leaving dynamic instructions for later. The presented results
were optimistic, however, their system considered only a small subset of
MATLAB language.

2.1.3 Alternative execution environments

During the efforts to increase MATLAB performance, there were several
attempts to build an alternative to the MATLAB environment.

MaJIC. Almási and Padua [18, 23] have built a Just-In-Time compiler for
MATLAB using the FALCON infrastructure [11]. The compiler performs
dynamic type, shape, and range analyses right before the code execution.
Moreover, MaJIC reduces the amount of required temporary variables, auto-
matically preallocates them, unrolls vector operations on small arrays, and
performs preallocation for arrays which change their size during execution.

McMV. Chevalier-Boisvert et al. [22] have presented a new virtual machine
(VM) for MATLAB with a JIT compiler. The JIT compiler is built using
LLVM infrastructure [75], but it also has a mark-and-Sweep garbage collector
and integration with numerical libraries: ATLAS, BLAS, LAPACK. Further-
more, the JIT compiler performs on-the-fly specialisation and optimisation
of functions based on the type of their arguments. The compiled functions
are later versioned and kept in a database for further function calls.

MATCH Virtual Machine (MVM). Haldar et al. [76], using an infras-
tructure of the MATCH compiler, have built a virtual machine for MATLAB
language. The machine is capable of generating parallel code at runtime,
thus, solving problems of having insufficient information about types and
shapes of variables. Moreover, MVM executes parallel tasks in an out-of-order
model to better exploit available resources.

2.1.4 Analysis of MATLAB programs

The analysis of MATLAB programs can be divided into three main categories:
kind, shape, and type analysis. While the shape and type analyses are
common for other languages and environments, kind analysis is unique to

2.1. ACCELERATION OF MATLAB PROGRAMS 29

MATLAB and results from two issues: (1) dynamic nature of the language
where the same label can point to different objects in the course of the
program execution; and (2) the ambiguity in the language syntax where the
same expression identifier() could point to a function call or an array slice,
two vastly different entities.

In our work, we use only a very simplified kind analysis based on the
database of built-in functions, and dimensionality based shape analysis
proposed by [21]. Moreover, when comes to types, we consider only double
type representing double-precision floating point numbers.

Kind analysis

The goal of kind analysis is to statically determine if a label points to: a
function call, variable or a package name. During the program execution,
kind analysis is easily resolved with exist label function which not only
tests the existence of the label in the workspace, but it also returns the label
type (e.g. variable, function, MEX-file, class). However, the source code of
MATLAB program obviously lacks this information, especially because the
content of the label can dynamically change during the program execution.

The name kind analysis for this problem, along with a detailed semantics
of how MATLAB 7 (year 2004) resolves this problem was described by
Doherty et al. [77]. Moreover, Doherty et al. have created an algorithm to
perform kind analysis using, e.g. flow-sensitive information. While previous
works have performed kind analysis as well, most notably in FALCON [48],
Menhir [19,50], and MATCH [63,64], they did not call it this way. Usually,
their approach was to mark an identifier as a function if the identifier was in
a database of built-in functions or when an inter-procedural analysis of user-
defined functions has found a corresponding function definition. Otherwise,
depending on the reaching definition, the label was deemed as a variable.

Shape analysis

In the world of array programming languages, shape analysis concerns with
the size of multi-dimensional arrays, their rank (number of dimensions), and
how their size changes after performing operations on them. As opposed
to shape analysis in imperative languages like C, where compilers analyse
properties of heap-allocated data structures, e.g. linked lists [78].

Lattice-based approach. The most common shape analysis for MATLAB,
used in e.g. FALCON [48], Menhir [19], or McJIC [18], is based on a lattice
defining a hierarchy of shapes (e.g. row vector, matrix, unknown) with rules
for resolving shape when arrays are used as arguments to MATLAB functions.
However, these analyses were always limited to matrices and, in many cases,
they return an unknown shape, due to a lack of required shape information.

30 CHAPTER 2. RELATED WORK

Algebraic approach. A completely other algebraic approach was pre-
sented by Joisha and Banerjee [17]. Their methodology expresses the shape
of each variable as an algebraic expression. If a dimension or array rank is
unknown, it is represented as a free variable in the equation. Therefore, the
method instead of returning an unknown value, always returns an equation
expression of the shape, even when parametrised with variables. The method
with a dedicated inference engine called MAGICA [79] was implemented
in Mathematica [80, 81]. The method is powerful, however, it is not only
complicated, but also not very useful in many contexts, such as static code
generation because the parametrised formulas with missing values are un-
acceptable for compilation, and they need to be resolved during the code
generation phase. Nevertheless, the analysis was used in compiler Mat2C [54],
built by the authors of MAGICA [79].

Dimensionality analysis. Introduced by Birkbeck et al. [21], dimension-
ality analysis is an example of specialised shape analysis performed only in
the context of automatic loop vectorisation. This analysis has two goals:
(1) to validate if the vectorisation was correct, and (2) to transpose arrays
so that their shapes are compatible. Therefore, the analysis can be simple
and not concerned about the exact size for each dimension. Dimensionality
of arrays is represented using only three values 1, * and ri to indicate the
dimension of size equals to 1, more than 1, or having a value obtained after a
loop was vectorised along the i-th dimension, respectively. For example, this
system represents a scalar as (1, 1), a row vector as (1, *), a column vector
as (*, 1), and a matrix (*, *). However, this shape information must be
manually inserted using directives and could not be inferred automatically.

Promoted shape. Demonstrated by Chen et al. [1], promoted shape is also
a dedicated analysis to loop vectorisation. However, the analysis extends the
concept of dimensionality analysis [21] to user-defined functions, and using
data-flow techniques, to flow-sensitive code. Moreover, the implementation
of the analysis inside the vectoriser Mc2Mc uses value analysis from Tamer
[70], which can statically infer the exact shape of an array, if only possible.
Therefore, in many cases there is no need for explicit directives with shape
information like in the dimensionality analysis by Birkbeck et al. [21].

Type analysis

Some compilers had no type inference, instead, they incorporate a set of
directives for specifying the types, shapes, and other information. For example
in the work of Ramaswamy et al. [82], the presented compiler accepts directives
e.g. %! local float fool(128,128); for type and shape. Other compilers
have simple algebraic or lattice-based type inference like the work by Latifis
et al. [62]. Similarly, FALCON implements a SSA-based forward propagation

2.2. PERFORMANCE ANALYSIS 31

inference algorithm [11, 47, 48]. In FALCON, if a type inference yield an
unknown type, then the compiler generates code for dynamic type inference
which is performed at runtime.

Domain-Specific Language (DSL) for type propagation. Type anal-
ysis is not only about inference rules because, with a vast number of built-in
functions, it is hard to track and collect type information for them. For this
problem, Dubrau and Hendren [70] have prepared a domain specific language
for expressing how types propagate and change from the arguments of a
built-in function to the result of the function.

2.2 Performance analysis

Precise performance analysis of computer system, at current state, is extremely
complex which Abel and Reineke have recently summarised [83]:

“Modern microarchitectures are some of the world’s most complex
man-made systems. As a consequence, it is increasingly difficult
to predict, explain, let alone optimize the performance of software
running on such microarchitectures. As a basis for performance
predictions and optimizations, we would need faithful models of
their behaviour, which are, unfortunately, seldom available.”

In this section, we describe several means to analyse and express perfor-
mance of applications, without having an accurate model of the processor.

2.2.1 Metrics and models

When faced with hard problems, researchers delve into abstractions and
simplifications. One example of such simplifications is performance metrics
which describes one (or several) aspect of the program execution. Common
metrics include: instructions per cycles (IPC) [84], loop balance [85], data
reuse [86], etc. Metrics can be divided into dynamic and static, the former
come as a result of measurements, while the latter are built just from analysing
the program source code. Nevertheless, these metrics describe only small
parts of the program execution like cache memory system, or utilisation of
execution units in processor.

To get a more global view, we can use models such as polyhedral model [26],
Roofline Model [32, 87–89], or Execution-Cache-Memory (ECM) [90]. These
models are specialised in expressing how well the program will execute or
what is the execution bottleneck. Nevertheless, each of them is only a part
of the story, e.g. Roofline Model focuses on memory bandwidth (or caches in
other available extensions); polyhedral model focuses on the order of memory
access and computations.

32 CHAPTER 2. RELATED WORK

Researchers also have created metrics dedicated to virtual machines, e.g.
for JVM, however, these metrics mainly consider properties of the bytecode,
and not the virtual machine directly. Consequently, none of these metrics
and models are useful for MATLAB because of three reasons: (1) their target
is the machine; (2) MATLAB is a runtime environment which needs to be
modelled on its own; and (3) MATLAB is a closed source tool.

2.2.2 Hardware performance counters

Different approaches to performance analysis are based on pure measurements
using for example hardware performance counters. These counters are special
purpose registers on processors which collect information about program
execution in form of performance events, e.g. amount of cache misses, pro-
cessor stalls [91]. Although, at first, the set of performance counters was ever
changing and unstable, recently the available performance events stabilised
with the introduction of architectural events which are available in the whole
line of the microarchitectures. Accordingly to Stéphane Eranian [92], the
Intel’s attitude towards performance counters has changed with the Intel
Itanium processors. The second change can be observed with the introduction
of Top-Down Microarchitecture Analysis (TMA) by Yasin [33]. TMA allows
to find bottlenecks during program execution and to pinpoint them to a
specific part of processor pipeline like the frontend, back-end, or execution
units. Nowadays, performance counters are used in performance and power
analyses, adaptive optimisations and many others.

Collecting performance counters. The popularity of performance coun-
ters is backed by the number of tools and libraries allowing easy access to
them. A few solutions include: OProfile [93], perfmon2 [94], PAPI [43,95],
Tiptop [96–98]. Moreover, some applications for performance analysis allow to
collect performance counters as well. Intel® VTune [99] collects performance
events to perform the Top-Down Microarchitecture Analysis (TMA). However,
the measurements come only from one run of the application and they are
multiplexed. Therefore, TMA analysis is not usable for short programs or
programs with time-varying behaviour.

In our work, we use PAPI library which already has an interface to interact
with MATLAB. However, we only reuse the interface and extend it with new
functionalities collected inside mPAPI (see Appendix B).

Accuracy of performance counters There is still an ongoing debate
about the precision and accuracy of performance counters which might differ
depending on the microarchitecture, implementation of the code responsible
for accessing performance counters in the kernel, acquisition methods and
libraries, among others. Weaver et al. performed several studies on the
topic [100,101]. General finding states there is usually a subset of accurate

2.2. PERFORMANCE ANALYSIS 33

and deterministic counters. However, the tests need to be performed for each
new machine and its configuration [102]. In our work, we do not analyse the
precision of performance counters, and instead, we only acknowledge their
inherent imprecision for solving our problem of understanding the behaviour
of MATLAB programs execution.

Feedback-directed optimisations. Schneider et al. [103] used perfor-
mance events about cache activity to guide the Just-In-Time (JIT) compi-
lation process. This type of optimisations is known as Feedback-Directed
Optimisations (FDO); also called Profile-Guided Optimisations (PGO), be-
cause the Just-In-Time compiler monitors programs and collects performance
events from their execution. Later, accordingly to the feedback from their
execution, a decision about future transformation is taken.

Characterising programs with performance counters. Stéphane Era-
nian [92] analyses how performance counters can be used to understand
performance of memory subsystem on processors. In his work, he points out
that performance counters are important for program analysis because they
are more common nowadays, do not require program recompilation, and have
a small overhead (especially in comparison to, e.g. simulation).

The study by Eeckhout et al. [104] used hardware performance counters to
analyse interactions between various components like Java Virtual Machines
(JVM), processors, and programs. The results show that differences between
JVMs implementations are greater than the difference from running various
benchmarks on the same implementation. Similarly to our study, Eeckhout
et al. looked directly into the performance events to see how interpreted
programs perform on processors.

The study by Sweeney et al. [105] described a methodology to analyse
performance of Jikes RVM (Research Virtual Machine) using traces with
performance events. The traces allow to better understand the interactions
between various components of Java program execution: the application,
virtual machine, operating system, and the microarchitecture. However,
authors noted that in their case, traces of performance counters are not
enough to explain certain performance phenomena.

Machine Learning with performance counters. In their seminal work,
Cavazos et al. [34] pioneered the use of hardware performance counters as
a representation of code examples for machine learning. In this work, the
training data set consists of programs before code transformations. Each
program is described with values of performance counters collected from their
execution. The training set is then used to create a model which selects the
best transformation.

34 CHAPTER 2. RELATED WORK

2.2.3 Profiling

Presented models and use-cases of hardware performance counters assume
that programs execute in a regular manner. However, as in the case of
MATLAB or programs with control dependences, it is not the case. In this
subsection, we show two approaches to the analysis of time-varying and phase
behaviours.

Time-varying behaviour. One of the first studies of program properties
changing throughout the program execution was a study of large-scale patterns
in SPEC95 benchmark suite by Sherwood and Calder [106]. The work looked
for patterns in performance profiles of e.g. instructions per cycles (IPC), cache
miss rate or branch prediction miss rate, in terms of committed instructions.
An interesting result of the study was finding cyclic behaviours in benchmarks,
which can also indicate for how long we should run the benchmarks to obtain
representative results. Subsequent studies by Sherwood et al. improved
the analysis of time-varying and large-scale patterns by either creating an
automatic machine-independent technique for finding large-scale pattern [107]
or proposing a hardware (and software) tracking and prediction method for
reoccurring phase behaviours [108]. Although our work deals with small scale
time-varying changes and lacks of phase behaviour, the work of Sherwood et
al. is an early example of a detailed analysis using performance profiles. In
another interesting study, Duesterwald et al. [109] argued that time-varying
behaviours are important and should be incorporated into adaptive systems
to improve program performance and energy consumption. The results
show that programs have time-varying behaviours at even small scales which
could be used e.g. to predict the value of one metrics based on another
(cross-metrics).

Vertical profiling. Across three papers, Hauswirth et al. [110–112] ex-
plored the idea of vertical profiling, a methodology for understanding and
correlating performance data obtained over time from multiple levels of ab-
stractions: server, hardware, virtual machine (VM), operating system (OS),
application. At the core, in correlating performance from multiple levels
of abstraction lies the same idea as in our performance event profiles from
Chapter 3. However, in our case, we correlate multiple performance events
coming from the same abstraction – a processor. In the second paper, authors
evaluated several techniques for automating trace alignment coming from
different measurements [111]. So far, in our work, we have used only a small
amount of performance events which are measured at once.

Warm-up state. A particular case of time-varying behaviour is a warm-up
state which occurs for virtual machines and Just-In-Time (JIT) compilers

2.3. CONCLUSION 35

when a class or resource is loaded for the first time, or during the profile-guided
optimisation phase (when JIT compiler monitors how programs execute).

In a 3 years long study, Barrett et al. [36] have analysed warm-up phases
of popular interpreters and virtual machines, e.g. JavaScript V8, Python
PyPy, Java HotSpot. The analysis was based on the repeated execution of
the same program in order to obtain a performance profile of its execution
times. The results of the work show that virtual machines and JIT compilers
often have inconsistent warm-up states. Moreover, for some cases, that JIT
compilation decreases the performance of programs.

2.2.4 Performance of execution environments

Compilers and compiled programs are not the only target of performance
analysis. For many years, researchers have been working on the performance
analysis of interpreters, virtual machines, and Just-In-Time compilers (some
of these examples, we have already mentioned in previous sections).

Branches and jumps. Since their creation, interpreters were consider
being slow because they create an additional layer of abstraction between
the program and the hardware. Moreover, by definition, they interpret
instructions one by one, thus making impossible optimisations which work on
two or more instructions. At the time, slow branches and jumps were often
considered as the root cause of performance problems [6, 113–115].

The notion of branch misprediction as the main problem was widespread
for many years. Until the study by Rohou et al. [116], where researchers
analysed again this concept and compared current and new techniques for
branch prediction. The results showed that the new microarchitectures have
improved to a level, that the branch misprediction was no longer a problem.

Decomposing performance. Several works have tried to decompose per-
formance of various interpreted languages. Barany [117] has tried to analyse
the performance of particular features in the CPython interpreter. His ap-
proach was to modify the interpreter so it is possible to disable a single
feature and perform tests with and without it. However, this approach is not
applicable to MATLAB because it requires an access to the source code of
the execution environment.

Carchiolo et al. [118] have tried to analyse the activity of Python dynamic
features, e.g. reflection, dynamic typing, using performance profiles. Their
findings show that the highest activity of these features occur mostly during
the program start-up.

2.3 Conclusion

From the analysis of related work, we have learned several important points:

36 CHAPTER 2. RELATED WORK

• The majority of research about accelerating MATLAB programs is
dedicated to compiling MATLAB to other languages, mainly C and
Fortran [45,58,62]. In our work, we focus only on code transformations
and the performance analysis of the MATLAB environment.

• There were no prior work on execution models for the MATLAB envi-
ronment. In Chapter 4, we introduce an execution model, instruction
tree, for MATLAB.

• Recent research on vectorisation of MATLAB loops shows that the
execution model and the deep understanding of MATLAB runtime are
crucial for successful application of vectorisation [1]. In Section 5.4, we
apply profile-guided loop vectorisation to MATLAB programs.

• Performance profiles and traces were mostly used to find bottlenecks
in applications, analyse time-varying and large-scale behaviours, or to
correlate performance of multiple components. In Chapters 3 and 4, we
use performance profiles to discover the type and order of JIT-compiled
instructions coming from MATLAB expressions.

• Not every performance analysis tool works well with execution environ-
ments such as MATLAB. Therefore, we have decided to implement our
own tool mPAPI (see Appendix B) for accessing hardware performance
counters directly from MATLAB code.

• The performance analysis of interpreters, virtual machines, and Just-
In-Time (JIT) compilers is focused on open source projects; thus, it
cannot be applied to MATLAB. Instead, in our work we focus entirely
on the program performance observed from the processor perspective
using performance event profiles (PEP) from Chapter 3.

Chapter 3

Performance event profiles

Résumé

Afin d’analyser le fonctionnement d’un programme dans un environnement pro-
priétaire tel que MATLAB, nous utilisons des profils d’événements de performance.
Ces profils décrivent l’exécution du programme sur l’unité centrale directement, en
capturant également leur comportement dans le temps. Par conséquent, ils contour-
nent les composants responsables de l’exécution qui sont difficiles à analyser, comme
le système d’exploitation (OS) et l’environnement MATLAB lui-même. Grâce à
ces profils, nous pouvons mesurer les erreurs de cache, les erreurs de prédiction de
branchements, les blocages dans le pipeline et de nombreuses autres caractéristiques
d’exécution.

Avec les profils d’événements de performance, nous pouvons décomposer l’exécution
des programmes en sous-composantes de calculs appelés régions d’exécution. Ensuite,
nous pouvons analyser chaque région séparément. De plus, nous pouvons observer le
résultat de la compilation en temps réel (JIT) en recherchant les régions composées
de plusieurs opérations (elles correspondent à un seul bloc de base dans le code
machine). Ce faisant, nous obtenons une image complète de la compilation JIT des
expressions MATLAB.

La mesure à l’aide de profils d’événements de performance exige de notre part
la mise en place de plusieurs paramètres. Le premier est le seuil d’échantillonnage
qui indique la fréquence de lecture de la mesure des compteurs de performance. En
raison de l’effet d’observation, un échantillonnage dense pourrait affecter consid-
érablement l’exécution mesurée. En même temps, si l’échantillonnage est faible,
nous pourrions perdre trop d’informations. Un autre critère à considérer est le
type d’événements de performance. Avec la grande quantité d’événements (171
événements sur l’architecture Skylake), il est nécessaire d’examiner attentivement
leur signification.

Introduction

In this chapter, we unravel how profiling of performance events allows to
accurately describe program behaviour. Still today, program behaviours are
described mostly with one dimensional metrics such as loop balance [85],

37

38 CHAPTER 3. PERFORMANCE EVENT PROFILES

MATLAB runtime environment

Interpreter Garbage Collector (GC) JIT compiler

MATLAB program

Operating system (OS)

Machine (CPU with PMU) Performance events

‘

Performance
event profiles

Execution
regions

Figure 3.1: A simplified view on components taking part in the execution of
a MATLAB program.

cycles per instructions (CPI) [84], arithmetic intensity and memory bandwidth
from the Roofline Model [32], and many more. However, those metrics fail to
encompass non-linear and time-dependent behaviour of many programs, and
they are a not sufficient help in exploring the runtime semantics of MATLAB
programs.

In Section 3.2, we present the case of MATLAB program for which stan-
dard metrics fail to capture the behaviour; Section 3.3 describes the creation
of performance profiles; Section 3.4 shows a methodology for the classification
of segments with interesting properties in profiles; and finally Section 3.5
presents one case study for performance profiles used to characterise the cost
of indexing arrays in MATLAB.

3.1 Overview

Code transformation is a common way to improve program execution where
a code is rewritten to obtain better performance. However, the knowledge of
which part of the code is concerned and how to transform it requires precise
information about the underlying algorithm, the programming language, the
used compiler or interpreter, the runtime system, the operating system, the
processor and its microarchitecture (see Figure 3.1).

In an ideal world, each of the components mentioned above is well-
documented and provided as open source. Unfortunately, MATLAB is a
proprietary, closed source computing environment. Therefore, MATLAB
programmers have no precise technical information about the interpreter,
Just-In-Time (JIT) compiler, garbage collector, nor the runtime system.
Reverse engineering of MATLAB seems too difficult due to the JIT compiler
which dynamically creates new machine code. Moreover, the dynamic binary
instrumentation with tools, e.g. DynamoRIO [119] or Intel PIN [120] is
inherently complex because of the static machine code of the interpreter

3.2. MOTIVATION 39

mixed with the dynamic code generated by the JIT compiler.
MATLAB environment runs on an operating system (OS) responsible

for running it and other processes, handling I/O, scheduling work between
processors, communicating with external devices among others. The envi-
ronment and the OS execute on processors with unique microarchitectures.
Processors are one of the most complex human-made systems, also not well-
documented [83]. Nevertheless, in the inherent mist of complexity of the
program execution, processors have a performance monitoring unit (PMU)
capable of measuring and recording the behaviour of program execution.
Figure 3.1 presents these common components taking part in the execution
of MATLAB programs.

Surprisingly, a solution to discover the behaviour of the MATLAB envi-
ronment is to forget entirely about the inner-workings of MATLAB. Instead,
we focus on the link between an input MATLAB program and its observed
runtime behaviour in the form of performance events as shown in Figure 3.1
(arrows and the ‘ symbol). With the use of the PMU, it is possible to run
the program and to simultaneously record its execution on the processor. In
this chapter, we focus on exploring methods to measure and record processor
behaviours and to analyse the results to create the link between a given
program and its execution.

3.2 Motivation

Observing processor behaviour using performance events during program
executions shows how the processor performs MATLAB programs. Perfor-
mance events indicate two critical things: (1) what kind of instructions the
program issues on the processor and; (2) how well the program executes on
the processor. Group (1) contains performance events which count, e.g. the
number of retired instructions1. The number of retired instructions coupled
with instruction type and their latency in cycles, could give an excellent
performance prediction on sequential processors [121]. However, multi-core
processors are vastly more complex; they have multiple cores; they perform
many instructions at once and in an out-of-order fashion, and they can specu-
late and execute instructions ahead-of-time. Thus, group (2) of performance
events fills this gap by describing how well components and resources on a
processor perform at almost every point of the processor pipeline.

Nevertheless, the performance events obtained after the program has
finished its execution indicate only the total number of executed instructions

1retired instructions — executed instructions from the correct execution path or floating-
point operations. Modern processors speculate about which execution path might be taken
in the near future and they execute instructions from such a path to better utilise available
resources.

2array slicing — extraction of a subset of array elements. Some examples from MATLAB:
A(1:N) extracts elements from 1 to N, B(1:2:N) returns only odd elements.

40 CHAPTER 3. PERFORMANCE EVENT PROFILES

loop vec vec_O1

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE
(Vector floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

0e+00 1e+07 2e+07 3e+07 0e+00 1e+07 2e+07 3e+07 0e+00 1e+07 2e+07 3e+07

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Execution region JIT−compiled scalar loop Data copy Computation JIT−compiled vector code

Run on machine M1; MATLAB=R2018b; threads=1; sampling threshold=100000; N=1000000.

Performance profiles for Schönauer Vector Triad (striad)

Figure 3.2: Performance profiles for the striad kernel in three versions as a:
(1) loop computation; (2) vectorised instructions on all data; (3) vectorised
operations with array slicing2. The figure depicts four interesting regions:
JIT-compiled scalar loop, data copy, computation, and JIT-compiled vector
code.

and potential performance bottlenecks for the whole program (with the use of,
e.g. Top-Down Micro-architectural Analysis [33]). The missing information in
the full description of MATLAB execution is the time when the instructions
execute (e.g. do floating-point operations execute at the end of the program?)
also, how well at each stage of the program those instructions perform (e.g.
do cache misses occur while executing floating-point operations?). Therefore,
the solution is to gather performance events over the program execution
time, where “time“ actually means another performance event such as retired
instructions or total cycles. The result in Figure 3.2 shows performance
profiles indicating not only the amount, but also when performance events
happen after some amount of retired instructions.

Listing 3.1: Three versions of the same kernel the Schönauer Vector Triad
striad. In MATLAB, it is common to express loops as array functions
(vectorised code).

1 % Loop computation
2 for ii = 1:N
3 a(ii) = b(ii) + c(ii) .* d(ii);
4 end
5 % Vectorised with explicit indexing
6 a(1:N) = b(1:N) + c(1:N) .* d(1:N);
7 % Vectorised over whole vectors
8 a = b + c .* d;

Combining multiple performance profiles helps us finding execution regions

3.3. BUILDING PERFORMANCE PROFILES 41

which represent distinctive stages of the computation. Possible regions include
e.g. (1) data copy where we observe proportional amount of memory loads
and stores; (2) computation with a high amount of floating-point operations;
(3) scalar loop with a constant amount of each performance event; or finally
(4) JIT vector code which is similar to scalar loop, except for the occurrence
of packed floating-point vector operations.

Figure 3.2 presents these four execution regions for 3 versions of the
Schönauer Vector Triad kernel (striad) listed on Listing 3.1. Execution
regions can also be defined using the notion of how well a given part of the
program runs, e.g. by indicating memory or compute bound regions [33]. In
Figure 3.2, we observe that the loop and vec_O1 have regular profiles, because
both compile to one instruction block, the concept, which we will explore in
Chapter 4 for the case of vectorised code.

The vec code version in Figure 3.2 is a vectorised loop with explicit array
slicing which generates data copy, as opposed to vec_O1 version without
array slicing. The main difference between these two codes is the data copy
region marked in green (and one unmarked store region at the end of the
vec code). Without performance event profiles (PEP) and just by using
performance counters in the counting mode, it is not possible to uncover
these execution regions, their type, order, and performance. Finally, just by
looking at Figure 3.2 it is not a surprise that the fastest code is vec_O1.

In the next part of the chapter, we investigate how to build, analyse,
and use performance event profiles (PEP) with execution regions in order to
explore and understand the behaviour of MATLAB programs.

3.3 Building performance profiles

In this section, we define performance event profile (PEP) and execution
region formally. Moreover, we show how to build performance profiles using
our mPAPI tool and the PAPI library [95].

Performance profile describes changes of performance event measured
over time. Fortunately, performance counters on modern CPUs work in two
modes [122]: (1) counting mode, where the values of a performance event are
accumulated in a single register; and more importantly (2) sampling mode,
where measurements are taken in intervals equal to a specified sampling
threshold of a performance event used as the “time” (e.g. on every 1 000 000
retired instructions). Therefore, the capabilities of building performance
profiles are already inside modern CPUs with mechanisms of counter overflow,
Event-Based Sampling (EBS), and recently Precise Event-Based Sampling
(PEBS) on Intel processors [91,123].

Performance profile. We define a performance profile as P “ pT,Mq
where T “ pt1, t2, . . . , tlq and M “ pm1,m2, . . . ,mlq are sequences of sam-

42 CHAPTER 3. PERFORMANCE EVENT PROFILES

pling times and measurements ti,mi P N, moreover, the sampling time is
strictly increasing @i ă j : ti ă tj . Both T and M have the same length l.
We say the length of the profile |P | “ l. Moreover, T and M have their own
event domain E , which states what performance event the sequence represents.
The universe of event domain E contains any performance event available
on the CPU. For example, a sequence of level 1 cache misses measurements
M has the event domain as follows EpMq “ L1D:REPLACEMENT. Along with
sequences T and M , the event domain of the whole performance profile
EpP q “ pEpT q, EpMqq creates a full description of the profile. Event domains
specify the profile content, where M holds the measurements and T holds
the sampling time with embedded sampling intervals between every pair of
measurements.

Function ∆pX, iq “ xi ´ xi´1 : xi, xi´1 P X calculates the difference
between elements i and i´ 1 of sequence X (however, for i “ 1 it is always
∆pX, 1q “ x1). In an ideal case when measurements are precisely taken,
Equation (3.1) about the sampling time T always holds, which means that
observations are obtained in equal sampling intervals. However, this is rarely
the case due to measurement errors.

Dt̂ P N, @i P r1, ls : ∆pT, iq “ t̂ (3.1)

The constant t̂ from Equation (3.1) expresses only a theoretical sampling
threshold. Therefore, in an ideal world, single measurement V in the counting
mode of a performance event is equal, or at least very close, to the sum of
measurements mi P M of the same event obtained in the sampling mode:
V u

ř

M .
This correspondence of the counting and sampling modes indicates an

interesting property of performance profiles, that the value of sampling
threshold affects values of measurements in the profiles (this can be seen in
Figure 3.4 from Section 3.3.2). When hardware performance counters collect
occurrences of performance events, they never stop, no matter if we sample
the counters more or less often. Thus, if we collect performance counters
more frequently, the value of counters increase only a little, than when we
sample them rarely and give them a time to grow. Taken to the extreme, a
very rare, one-time sampling is equivalent to measuring performance counters
in the counting mode. In other words, performance event profiles are nothing
like the result of sampling a physical signal.

Profile group. In fact, building only one performance profile at a time is
usually poor resource management, because the rest of hardware performance
registers are not used (if available). Therefore, it is beneficial to measure
several performance profiles at once, creating a group G “ tP1, P2, ..., Pgu of
g profiles. In a system with N hardware performance registers, we can
create only g “ N ´ 1 profiles, because the last register measures the

3.3. BUILDING PERFORMANCE PROFILES 43

sampling event. Moreover, profiles in a group are aligned ; thus, we can
simplify the group definition to G “ pT, tM1,M2, . . . ,Mguq where the pro-
files and their measurements share the sampling time T . As in the case
of performance profiles, groups have their event domain defined as follows
EpGq “ pEpT q, tEpM1q, EpM2q, . . . , EpMgquq.

3.3.1 Selecting the sampling event

When a processor executes a program, it generates various performance
events describing the program behaviour. Those events are measured with
programmable hardware performance counters. The simplest example of
a performance event is the number of processor cycles which is counted
each time the processor moves forward the program execution. However,
other performance events also increase their values as the execution progress.
Therefore, in principle, any performance event can be the sampling event
which expresses the progress of program execution and as such, can be used
as the base of performance profiles.

Two popular choices for the sampling event on Skylake architecture are the
number of retired instructions (INST_RETIRED:ANY_P) and the total amount of
processors cycles (CPU_CLK_UNHALTED:THREAD_P) depicted in Figure 3.3. Both
events increase, but in a slightly different manner. While processors cycles
always change (otherwise the processor is not running), instructions not
always retire on every cycle because processors sometimes experience pipeline
stalls and none of the executed instructions are retired [84]. Therefore, some
performance events have time gaps, when the processor is running (and
the cycles increase), but the event is not changing its value. This leads
to a conclusion that not every performance event is a good candidate for
the sampling event which supposed to be like “time”, changing along the
progressing program execution. Moreover, this is even more visible when
some performance events are never meant to happen like vector floating-point
operations in a scalar program.

The “time” gaps in program execution can manifest as sudden spikes of
some activity like in the case of the number of requests to the external memory
(OFFCORE_REQUESTS:ALL_REQUESTS) in Figure 3.3. Those two red spikes are seen
on the performance profile of store instructions (MEM_INST_RETIRED:ALL_STORES)
and what they really mean is that while nothing happened in terms of requests
to the external memory (horizontal axis), a lot of store instructions were
performed in caches without reaching to the RAM memory (vertical axis). In
other words, although, those requests look like not the best candidate for the
sampling event, they still bring new information and insights. Moreover, the
requests to the external memory are an order of magnitude less frequent, thus,
we use an order of magnitude smaller sampling threshold than for retired
instructions and processor cycles. In general, performance events differ in
their rate of occurrence.

44 CHAPTER 3. PERFORMANCE EVENT PROFILES

●

●

O
F

F
C

O
R

E
_R

E
Q

U
E

S
T

S
:A

LL_R
E

Q
U

E
S

T
S

(R
equests to the external m

em
ory)

S
am

pling threshold: 10000

C
P

U
_C

LK
_U

N
H

A
LT

E
D

:T
H

R
E

A
D

_P
(P

rocessor cycles)

S
am

pling threshold: 100000

IN
S

T
_R

E
T

IR
E

D
:A

N
Y

_P
(R

etired instructions)

S
am

pling threshold: 100000

F
P

_A
R

IT
H

_IN
S

T
_R

E
T

IR
E

D
:128B

_PA
C

K
E

D
_D

O
U

B
LE

(V
ector floating−

point instructions)

M
E

M
_IN

S
T

_R
E

T
IR

E
D

:A
LL_LO

A
D

S
(Load instructions)

M
E

M
_IN

S
T

_R
E

T
IR

E
D

:A
LL_S

TO
R

E
S

(S
tore instructions)

0e+00

1e+06

2e+06

3e+06
0.0e+00
5.0e+06
1.0e+07
1.5e+07
2.0e+07

0e+00

1e+07

2e+07

3e+07

0

10000

200000

10000

20000

30000

40000

0e+
00

1e+
05

2e+
05

3e+
05

4e+
05

5e+
05

S
am

pling tim
e

Performance event values

E
xecution region

F
loating−

point com
putation

S
chönauer V

ector Triad kernel (striad) run on m
achine M

1; M
AT

LA
B

=
R

2018b, threads=
1, N

=
1000000.

P
rofiling w

ith various sam
pling events

F
igure

3.3:
P
erform

ance
profiles

built
using

various
sam

pling
events.

T
he

choice
ofthe

sam
pling

event
affects

the
duration

and
properties

of
perform

ance
profiles.

3.3. BUILDING PERFORMANCE PROFILES 45

What versus How the program executes. The sampling events, retired
instructions and processor cycles, are much easier to reason about than,
e.g. the number of requests to the external memory. The use of retired
instructions (on Skylake and Coffee Lake architectures INST_RETIRED:ANY_P)
in performance profiles help answering questions: (1) how many instructions
of type X execute every n retired instructions? (2) how many cache misses
do n retired instructions generate? or (3) what types of instructions do n
retired instructions represent? Where n stands for the measured sampling
threshold, as opposed to the theoretical t̂ threshold.

The number of retired instructions is the most used performance event in
our study, because when used in performance profiles, it describes the intent
of a computation (a signature of the computation). What we mean by that is
the ability to answer question (3) and to find segments of performance profiles
with particular properties, for example the floating-point computations like
in segments highlighted in Figure 3.3.

Although, processor cycles (on Skylake and Coffee Lake architectures
CPU_CLK_UNHALTED:THREAD_P) can help us answer the same questions as retired
instructions, they do it in a slightly different way. Processor cycles are the
closest to the real physical time as any performance event can be. Moreover, as
we have mentioned before, the processor experiences pipeline stalls resulting
in a noise and ever changing length of particular segments and whole profiles.
Therefore, processor cycles as the sampling event can additionally show: (1)
where programs experience stalls by prolonging execution of some parts of a
program? and (2) for how long a part of a program executes? (a question
explored in our case study Section 3.5). In conclusion, performance profiles
built with retired instructions show what we want to execute; while profiles
measured using processor cycles show how it executes.

3.3.2 Selecting the sampling threshold

When comes to the size of the sampling threshold, we face a multi-criteria
dilemma because as in any sampling methodology, sampling too much over-
flows us with a stream of useless and repeated data, also creating huge
files. On the other hand, sampling rarely can easily hide the existence of
interesting execution properties like sudden spikes or valleys of the measured
events. Therefore, in this section we look closely into how changing sampling
threshold affects these criteria and performance event profiles (PEP).

Impact of the sampling threshold. Figure 3.4 presents how perfor-
mance event profiles change with an increasing sampling threshold. Each
performance profile represents an execution of the same kernel striad with
the same data size N “ 1000000. Apart from the obvious change of the level
of details (the more we sample performance counters, the more detailed the
profile is), Figure 3.4 presents a perfect comparison between the intent of

46 CHAPTER 3. PERFORMANCE EVENT PROFILES

CPU_CLK_UNHALTED:THREAD_P
(Processor cycles)

INST_RETIRED:ANY_P
(Retired instructions)

Sampling threshold:
10000

Sampling threshold:
50000

Sampling threshold:
100000

Sampling threshold:
500000

0e
+0

0

1e
+0

7

2e
+0

7

0e
+0

0

1e
+0

7

2e
+0

7

3e
+0

7

0

1000

2000

3000

4000

0

5000

10000

15000

20000

0

10000

20000

30000

40000

0

50000

100000

150000

200000

Sampling time

Lo
ad

 in
st

ru
ct

io
ns

 (
M

E
M

_I
N

S
T

_R
E

T
IR

E
D

:A
LL

_L
O

A
D

S
)

Schönauer Vector Triad kernel (striad) run on machine M1; MATLAB=R2018b; threads=1; N=1000000.

Profiling with various sampling threshold

Figure 3.4: Performance profiles built using various sampling thresholds
depicting load instructions (MEM_INST_RETIRED:ALL_LOADS). Profiles differ in
their level of details, but also in their length.

a program and its real execution. Performance profiles built using retired
instructions (INST_RETIRED:ANY_P) all have the same length and identically
placed execution regions, because MATLAB executes a given code with the
same set of instructions in the identical order. This is because MATLAB
has a single-tier Just-In-Time (JIT) compiler [40] which, for a given code,
always applies the same set of optimisations generating the same machine
code. However, as seen in performance profiles built using processor cycles
(CPU_CLK_UNHALTED:THREAD_P), the real execution on a machine has more noise
and it is less predictable with unequally stretched and contracted parts of
the computation, even when executing the same code many times.

The choice of the sampling threshold affects also the values of performance
profiles. Figure 3.4 shows how increasing the sampling threshold from 10 000
to 50 000, increases 5 times the maximal amount of memory load instructions
on profiles with retired instructions (INST_RETIRED:ANY_P). The reason is very
simple, the performance profiles are not a sampled representation of a signal.
Instead, they contain values sampled from always increasing performance
counters. Therefore, without changing the rate of counting, if we sample the
counters more often then the collected values are smaller than if we sample
them less frequent.

Measurement impact. The theory of the observer effect in physics states
that the observation of a phenomena changes the measurements [124]. Unfor-

3.3. BUILDING PERFORMANCE PROFILES 47

●

●●

●

●

●
●

●●
●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

CPU_CLK_UNHALTED:THREAD_P
(Processor cycles)

INST_RETIRED:ANY_P
(Retired instructions)

10
00

50
00

10
00

0

50
00

0

10
00

00

50
00

00

10
00

00
0

Ba
se

lin
e

2e+07

3e+07

4e+07

5e+07

6e+07

3.0e+07

3.2e+07

3.4e+07

3.6e+07

Sampling threshold

D
ur

at
io

n
of

 p
er

fo
rm

an
ce

 p
ro

fil
e

Measurement type Counting Sampling

Schönauer Vector Triad kernel (striad) run on machine M1; MATLAB=R2018b; threads=1; N=1000000.

Impact of the sampling threshold on performance profiles

Figure 3.5: Impact of the sampling threshold on the duration of performance
profiles. Frequent sampling of profiles, based on processor cycles, considerably
affects the program execution.

tunately, a similar effect is visible in Figure 3.5, where the act of sampling
impacts the final measurements. This effect is severe for performance profiles
built on top of processor cycles because of several sources of overhead: the
hardware sampling mechanism, running mPAPI (introduced in the next Sec-
tion 3.3) in MATLAB to gather measurements, and saving the measurements
after each program execution in an external file. Therefore, the more frequent
we sample performance counters (with smaller sampling thresholds), the
longer it takes for the programs to finish. However, the impact of sampling
is not considerable for performance profiles built using the number of retired
instructions, because the mentioned overheads add only a small amount of
instructions (e.g. the mPAPI code is short and simple).

The impact of the sampling mode is compared to a baseline counting mode
in Figure 3.5. In the case of processor cycles based profiles, the difference is as
high as 100 % for the sampling threshold of 1000. This clearly suggests that
below a certain value of the sampling threshold, the collected measurements
lose their precision significantly. However, before jumping to a conclusion
about the exact limit of usable sampling thresholds, we need to remember that
mPAPI, used in tests, implements only one measurement scheme. Therefore,
we leave the exact estimation of this limit for future work along with testing
other implementations of the measurement scheme in mPAPI. For know, we
only make sure that the selected sampling threshold in our experiments has
the impact on measurements lower than an arbitrary 20 %.

Size of profile files. The value of the sampling threshold impacts the
number of collected measurements. Therefore, it affects the size of result files

48 CHAPTER 3. PERFORMANCE EVENT PROFILES

Table 3.1: Size of profile files with changing sampling threshold. Each file
contains 60 profiles of load instructions. The tests use the same benchmark
striad with the same data size N equal to 1 000 000 (30 repeated profiles
come from MATLAB R2018b and another 30 from R2015b).

Sampling threshold CPU_CLK_UNHALTED:THREAD_P INST_RETIRED:ANY_P

1000 76.2 MB 67.8 MB
5000 9.0 MB 13.4 MB

10 000 4.4 MB 6.7 MB
50 000 897.2 kB 1.3 MB

100 000 451.6 kB 675.7 kB
500 000 106.3 kB 143.9 kB

1 000 000 58.7 kB 77.5 kB

containing the values of performance event profiles (PEP). Table 3.1 presents
how the size of profile files changes with changing sampling threshold. If
we consider the high impact of frequent sampling depicted on Figure 3.5,
we notice in the Table 3.1 that a 5-fold increase of the sampling threshold
from 1000 to 5000 decreases the file size 8.47 times for processor cycles based
profiles (middle column). On the other hand, for the retired instructions
based profiles, the change of sampling threshold affects proportionally the
size of result files, as expected.

3.3.3 Performance profiles with mPAPI

Apart from manually programming hardware performance counters, several
libraries give easy access to both modes of measurement: counting and
sampling. In our work, we have focused on the PAPI library [95] because
this library is a comprehensive, open source, up-to-date, actively maintained
solution with a C API which makes it possible to integrate with MATLAB
through C MEX API 3.

For that reason, we have created mPAPI4, an open-source profiling tool for
MATLAB. mPAPI supports both counting and sampling modes of collecting
performance events. In this section, we focus only on the sampling mode,
but for a detailed description of mPAPI, please refer to Appendix B.

In the sampling mode, mPAPI creates performance traces which store the
raw information about the occurrence of the performance events. Before
collecting values from performance counters, we need to define trace parame-
ters. For this task we have one function trace_register(), which takes four
arguments: (1) sampling event used as the sampling domain; (2) sampling
threshold value which indicates the interval for reading performance counters;

3https://www.mathworks.com/help/matlab/call-mex-files-1.html
4https://github.com/quepas/mPAPI

https://web.archive.org/web/20181002124750/https://www.mathworks.com/help/matlab/call-mex-files-1.html
https://github.com/quepas/mPAPI

3.3. BUILDING PERFORMANCE PROFILES 49

trace_register() trace_tic()

trace_toc()

for ii = 1:N
A(ii) = B(ii) + ...
...

end

Trace name

Sampling event
Sampling threshold
Performance events

Trace file
Start Execute

StopNext
Finish

Figure 3.6: Workflow of creating performance traces with mPAPI.

(3) list of performance events to measure; and finally (4) path to the trace
file which will store our measurements. The trace_register() function calls
PAPI_overflow() of PAPI library which uses either a hardware event-based
sampling (if available on the CPU) or a software timer which periodically
checks the values of the performance counters, thus imitating the event-based
sampling behaviour. Moreover, the PAPI_overflow() function allows tracking
the Program Counter (PC) address at the time of the measurement. However,
mPAPI does not store this information because it is unfeasible to map the PC
address with a particular region of MATLAB code (for the reasons mentioned
at the beginning of this chapter).

Next, after successful registration, we have two functions for starting and
ending a performance trace. Function trace_tic() starts a new performance
trace and takes an argument, trace name, which helps to distinguish between
traces. Finally, function trace_toc() marks the end of the performance
trace and stores the result. For a single registration, we can create many
performance traces of various benchmarks and their repeated executions.
Figure 3.6 presents the workflow of creating performance traces using mPAPI.

Listing 3.2: Performance trace over retired instructions (INST_RETIRED:ANY_P)
with measurements of three performance events. The trace comes from the
execution of the striad:vec_O1 benchmark on MATLAB R2018b.

1 @trace_start:R2018b:1:1:striad:vec_O1:1000000:2
2 @perf_events:INST_RETIRED:ANY_P,FP_ARITH_INST_RETIRED:128

B_PACKED_DOUBLE,MEM_INST_RETIRED:ALL_LOADS,MEM_INST_RETIRED:
ALL_STORES

3 62593,2790,18189,9392
4 162592,17072,39626,16533
5 262518,31345,61027,23669
6 362593,45638,82351,30816
7 462593,59922,103787,37958
8 ...
9 6962583,988316,1494990,502154
10 7062518,1000000,1518534,511403
11 @trace_end

50 CHAPTER 3. PERFORMANCE EVENT PROFILES

The trace file is a collection of many performance traces encoded as text
(Listing 3.2 presents single performance trace). Keywords @trace_start and
@trace_end indicate the start and the end of the trace respectively. The text
after @trace_start is a trace name which usually describes the measured
code. The third keyword @perf_events defines the event domains of the
measured profile group EpGq. Finally, each row of numbers contains one
measurement for each performance event, the first number in a row is the
sampling event.

Nature of hardware performance counters is to count and sum up values
of performance events. Thus, measurements in columns from the trace file
never decrease. Therefore, to obtain performance profiles, traces need to
be pre-processed and requires calculating the difference between the current
i-th row and the previous pi´ 1q-th row. After the calculation, it is easy to
spot the possible inaccuracies of the sampling mechanism. In our example
(Listing 3.2), the trace supposed to contain measurements taken on every
100 000 retired instructions, but the sampling time shows a bit different
values ∆pT q “ p62593, 99999, 99926, 100075, 100000, . . . , 99935q. However,
the inaccuracy is not sever enough to invalidate the conclusion coming from
the following sections and chapters.

3.4 Finding execution regions

In this section, we explore a simple approach for finding and analysing regions
with interesting execution properties in the performance profiles. The proper-
ties include the occurrence of specific processor instructions, (non)existence
of performance bottlenecks, or simply, appearance of performance events with
particular values.

Execution region. A section of the program execution with particular
properties is an execution region expressed as a binary predicate ϕptq : T Ñ
t0, 1u. The predicate marks an interesting region in the domain of the
sampling event, thus, the predicate indicates when the region starts and
ends during the program execution. We assume predicate ϕ is applied to
measurements coming from the same profile group or from aligned groups.
Otherwise, ambiguities appear, e.g. when two performance profiles P1 and
P2 have different lengths |P1| ‰ |P2|.

ϕ1ptq “ MEM_INST_RETIRED:ALL_LOADSptq ą 0^

MEM_INST_RETIRED:ALL_STORESptq ą 0^

MEM_INST_RETIRED:ALL_LOADSptq
MEM_INST_RETIRED:ALL_STORESptq

« 1

(3.2)

Consider the problem of quantifying a cost of data copy in programs.

3.4. FINDING EXECUTION REGIONS 51

We could define data copy as a region presented in Equation (3.2). In the
definition, the data copy has a non-zero amount of load and store instructions,
and the ratio between loads and stores is close to 1. We have chosen here to
count loads and stores, because during data copy each loaded element should
be stored in a new location. However, there are plenty of others, equally
adequate, performance events capable of describing a desired execution region
(which we will see in the task of detecting instruction blocks in Table 4.1 from
Chapter 4). An example of a search for meaningful performance counters is
the work of Molka et al. [125] where researchers have embarked on a quest
of finding the best counters for characterising utilisation and performance
of memory subsystem. Finally, the exact definition of an execution region
always depends on its purpose as well as on availability of performance events
on a given machine.

Having a defined predicate ϕ1, we apply it to a group of performance
profiles which contains mentioned load and store events. The result is a
region where the data copy occurs, or at least program execution which shows
similar properties. From that region we extract its start and end time to
compute the length of the computation (or the amount of data transfer), in
terms of cycles if the sampling event is CPU_CLK_THREAD_UNHALTED:THREAD_P,
or in terms of instructions if we use retired instructions INST_RETIRED:ANY_P.
The abovementioned analysis is performed in more details in Section 3.5.

Alignment of profile groups. Sometimes, in order to create an execution
region, we need more measurements that fit in a single profile group. Therefore,
we need to create two or more profile groups G1, G2, . . . which hold all the
required data. For example, the Top-down Micro-architecture Analysis
(TMA), used with performance profiles, would require 17 groups, assuming
4 hardware performance counters per core [33]. However, those groups are
unaligned because groups are always measured separately. The solution is to
align performance profiles coming from those profile groups. We generalise
this idea with an alignment function λpG1, G2, . . .q that creates a new group G
according to a recipe which follows some form of e.g. stretching, contracting,
reducing, or averaging of performance profiles.

The alignment of profile groups is a non-trivial task for several reasons:
(1) the sampling time is unevenly-spaced due to measurement errors of the
sampling mechanism; (2) the values of a performance profile are inaccurate
due to the imprecision and systematic errors of the Performance Monitoring
Unit (PMU) and the non-deterministic events happening on a machine; (3)
lengths of performance profiles differ, especially with cycles as the sampling
event, because again of the non-deterministic events and measurement errors.
The catch-all term “non-deterministic events” includes unexpected hardware
interruption, dynamic frequency scaling of a processor, changes to processor
affinity, branch prediction, memory prefetching, or any process rescheduling

52 CHAPTER 3. PERFORMANCE EVENT PROFILES

and context switching by the Operating System, among others.
Nevertheless, in our work, we mainly utilise only single profile group

and if otherwise, the groups are measured using much more stable retired
instruction, than processor cycles.

3.5 Case study: cost of array slicing

In this section, we present one application of performance event profiles
(PEP) to the cost analysis of data copy performed during array slicing. In
MATLAB, each array slice requires a data copy as depicted in Figure 3.2
with the vectorised version of the code (vec). However, as with any costly
operation, several questions arise such as: (1) how many cycles exactly takes
data copy? (2) does the cycle cost change with the volume of copied data?
An answer to question (1) gives information useful for taking a decision
whether or not to vectorise a loop. If the vectorised loop requires a lot of
explicit array slicing, then the benefit from using vector operations might be
overshadowed by the cost of making data copies. Moreover, the question (2)
asks if there is a fundamental difference in how MATLAB performs the data
copy according to an increasing size of data. Differences in cost according
to the size of data could indicate the use of various copying mechanisms by
MATLAB (e.g. software prefetching, use of packed vector instructions) or
that the machine is performing the copy differently (e.g by using a hardware
prefetching).

We start by selecting benchmark codes for the analysis and performance
events for building performance event profiles. Next, we repeatedly execute
each benchmark with variable size of data and build performance event profiles
for each execution. From the profiles, we measure the length of execution
regions which perform data copy. Finally, we collect the information about
duration of data copy and compute the cost of per-element copy.

Selecting benchmarks. Our cost analysis prefers simple codes with arith-
metic operations and array slices, because in such codes, we can easily spot
and measure the data copy regions. Therefore, we have selected the famous
STREAM benchmark [126] and its extension Bandwidth Benchmark [127].
The goal of both benchmarks is to measure the maximal attainable bandwidth
of memory load and store operations, which is perfectly in line with our goal
of measuring the cost of data copy. Table 3.2 depicts 6 selected codes from
both benchmarks which perform computation over vectors of size N. The last
column in the table indicates the number of right-hand array slices in each
code.

Selecting profile group. Data copies often occur before computation
regions. Moreover, it can be also defined as a region with similar amount

3.5. CASE STUDY: COST OF ARRAY SLICING 53

Table 3.2: Selected programs from Bandwidth Benchmark [127] for the use in
cost analysis of implicit data copy in array slicing.

Program Code #Slices

update a(1:N) = scalar .* a(1:N) 1
add a(1:N) = b(1:N) + c(1:N) 2

triad a(1:N) = b(1:N) + scalar .* c(1:N) 2
daxpy a(1:N) = a(1:N) + scalar .* b(1:N) 2
sdaxpy a(1:N) = a(1:N) + b(1:N) .* c(1:N) 3
striad a(1:N) = b(1:N) + c(1:N) .* d(1:N) 3

of load and store operations as Equation (3.2) indicate (data copy is about
loading an element and storing it somewhere else). Therefore, for our task,
we have defined a group Gas of profiles depicted in Equation (3.3). The group
contains three profiles of: 128 B packed floating-point operations, load, and
store operations. Moreover, because our analysis is concerned with processor
cycles, all profiles from the group Gas use processor cycles as the sampling
event. Thus, allowing us to measure the real cost of data copy.

EpGasq “ pCPU_CLK_THREAD_UNHALTED:THREAD_P,

tFP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE,

MEM_INST_RETIRED:ALL_LOADS,

MEM_INST_RETIRED:ALL_STORESuq

(3.3)

Measuring benchmarks. For the tests, we have selected M1 machine
(consult Table A.1 for full specification) with MATLAB R2015b/R2018b
running on a single thread because mPAPI is able to build performance event
profiles only for the single thread execution. Furthermore, we test each
benchmark with double precision floating-point data of size from 10 000 to
10 000 000 which represent from 0.23 MB to 228.88 MB of copied data in the
case of striad benchmark. This big range of transferred data might help
answer question (2) about existence of different copying mechanisms.

In order to get relevant measurements, each benchmark execution is
repeated 30 times. The repeated execution is especially important with
performance event profiles built using processor cycles, because of the ex-
istence of many sources of noise and measurement errors. Moreover, for
the sampling threshold of the profile group Gas, we have selected a value of
100 000 processor cycles which gives an excellent trade-off between the size of
the result profile file (only 128.4 MB), low impact on the values of measured
performance events (see Figure 3.5), and the high level of details found in the
profiles (see Figure 3.4). Moreover, the selected sampling threshold is well
suited for our benchmarks run with data of size from 10 000 to 10 000 000.

54 CHAPTER 3. PERFORMANCE EVENT PROFILES
R

2015b
R

2018b

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

1e
+0

5

2e
+0

5

3e
+0

5

4e
+0

5

5e
+0

5

6e
+0

5

7e
+0

5

8e
+0

5

9e
+0

5

1e
+0

6

2e
+0

6

3e
+0

6

4e
+0

6

5e
+0

6

6e
+0

6

7e
+0

6

8e
+0

6

9e
+0

6

1e
+0

7

4

6

8

10

4

6

8

10

Size of copied data (double−precision floating−points elements)

P
ro

ce
ss

or
 c

yc
le

s
pe

r−
el

em
en

t
Combined view of 6 test programs; run on M1; threads=1; sampling threshold=100000

Per−element cost of data copying

Figure 3.7: The per-element cost of performing data copy during array slicing.
The results show the copy of huge volume of data (more than 4 000 000
elements) is performed more efficient in terms of processor cycles.

Finding data copy regions When comes to finding the data copy regions,
we have two choices: (1) use the definition of a data copy region from
Equation (3.2) and the profile group Gas containing measurements of load
and store instructions; or (2) use a reference profile indicating when the
data copy execution region starts and ends. Figure 3.2 shows that data copy
regions occur before the computation region for benchmark striad which is
the most complex one from our set of codes. Therefore, instead of using all
three performance profiles from the group Gas, we can use only the profile
of floating-point operations. From the profile, we extract the length of data
copies by taking the period from the profile beginning, until the occurrence of
the first floating-point operation. In this case, the profile acts as a reference
profile (or a proxy profile) because by using it, we are actually obtaining
information about the data copy which is more closely related to load and
store operations instead of arithmetic operations.

Results. Collected lengths of data copies, from all benchmarks and for the
same data size, were grouped and divided by the number of copied elements N
and the number of right-hand array slices occurring in the tested benchmark
code (from 1 to 3). Thus, the result indicates a per-element cost of performing
array slicing with implicit data copy. Figure 3.7 presents a combined cost
of all 6 codes from the study for two MATLAB versions and different data
size. Results for each size of copied data are represented as violin plots [128]
which shows the exact distribution of measurements. In Figure D.2 from
Appendix D, we have placed detailed results where the per-element cost of
data copy is depicted for each benchmark code separately.

3.6. CONCLUSION 55

The results unanimously show one recurrent pattern, the existence of two
cost levels for data copy before and after copying up to 4 000 000 elements
(30.52 MB). With copying more than 4 000 000 elements, the cost of per-
element copy drops from 4 to 5 processor cycles. This indicates that MATLAB,
both R2015b and R2018b, have two different methods for performing array
slicing.

3.6 Conclusion

MATLAB, as a closed source environment, keeps information about how
it analyses and compiles programs. Therefore, in order to understand how
MATLAB executes programs, we have referred to hardware performance
counters which describe the program execution on processors, bypassing the
inner-workings of MATLAB altogether (see Figure 3.1). However, the sole
values of performance events describing the program are not enough, because
they do not consider the fact that a single expression in runtime environments,
might in reality be a composition of many distinctive regions (see Figure 3.2).
Therefore, the performance events must be collected over time to capture
different parts of the program execution.

In this chapter, we have presented Performance Event Profiles (PEP)
which is an innovative use of performance counters gathered in the sampling
mode. Previously, researchers have used such profiles too, but their purpose
were different ranging from analysis of server workload, through feedback-
directed optimisations (FDO) to finding security vulnerabilities in programs.
In this work, however, we correlate many profiles under a single profile group
to asses what hides under the execution of expressions and statements in
MATLAB code. We have achieved this by carefully selecting performance
events showing intentions of particular parts of execution (called execution
regions). The intent behind an execution region (e.g. computation or data
copy) greatly differs from possible end results of the execution (e.g. cache
misses, pipeline stalls).

In Section 3.3, we have introduced formally the performance profile, profile
group, and their event domains. Furthermore, in the following subsections,
we have shown how to measure them directly in MATLAB using our tool
mPAPI (see Appendix B for more details). Moreover, we have described the
benefits and problems coming from the selection of various sampling events
and thresholds. Section 3.4 outlines the concept of execution region allowing
to discover various parts of the program execution. Finally, Section 3.5 shows
how using performance profiles measured over processor cycles can evaluate
to the cost analysis of data copy.

Although, this chapter focuses solely on MATLAB, performance event
profiles are applicable to other languages, runtime systems, and interpreters
because the profiles measure execution from the perspective of a processor.

56 CHAPTER 3. PERFORMANCE EVENT PROFILES

Chapter 4

Execution model for MATLAB

Résumé

Les profils d’événements de performance permettent non seulement d’analyser la
performance des codes MATLAB mais, plus important encore, ils aident à découvrir
les règles régissant l’exécution des programmes compilés par JIT. Dans ce chapitre,
nous présentons une description formelle de la façon dont MATLAB exécute des
expressions composées d’opérations sur des éléments de tableaux.

Nous commençons l’analyse en trouvant toutes les régions d’exécution à l’intérieur
d’une seule expression. Chaque région représente un bloc d’instructions rempli
d’opérations sur des éléments de tableaux programmées par le compilateur JIT de
MATLAB et dont l’exécution est combinée. Le résultat d’une expression compilée
par le JIT est un code machine généré dynamiquement qui est récupéré en mé-
moire, par l’intermédiaire d’un cache d’instructions. Par conséquent, en observant
l’activité du cache d’instructions, nous pouvons facilement reconnaître combien de
blocs d’instructions une seule expression génère et quand chaque bloc commence.
Enfin, notre étude a révélé deux groupes de fonctions intégrées à MATLAB : 1)
les fonctions uniques, par exemple acos(), sum() qui nécessitent un bloc entier
d’instructions pour elles-mêmes ; et 2) les fonctions combinées, par exemple cos(),
times() qui se combinent avec d’autres fonctions combinables pour former un bloc
d’instructions partagé.

A partir de la décomposition connue des expressions en blocs d’instructions,
nous avons proposé un modèle arborescent qui généralise les motifs observés. Le
modèle proposé prédit, à partir d’une expression en entrée, le type et l’ordre des blocs
d’instructions survenant pendant l’exécution du code.

Introduction

In MATLAB, programmers express element-wise computation using array
operations or loops. Both code versions produce the same result, but they
have different performance. For example, Figure 3.2 shows that loops in
MATLAB use only scalar floating-point instructions on a single core, where
array operations use vector instructions (e.g. with Intel SSE, AVX extensions)
with possible multi-threading. Moreover, MATLAB with Just-In-Time (JIT)

57

58 CHAPTER 4. EXECUTION MODEL FOR MATLAB

A = sqrt(B) + C .* compute(D - E(1:N), F(1:N));

Built-in functions User-defined function

Array references Array slices

Figure 4.1: Components of MATLAB expressions with array operations.

compilation often compiles programs written with loops and array operations
directly to the machine code. The advantages of array operations seem to
overpower performance of loops, however, the diversity of execution modes
leads to complex cases where the choice of the faster code version is non-
trivial [1, 31].

The choice of how to write optimal code is even non-trivial for array
operations alone. Without the JIT compiler, MATLAB would act as a plain
interpreter which executes composition of array operations in a sequence.
However, with the JIT compiler, a subset of operations from the composition
are scheduled and executed together. The knowledge of which operations are
JIT-compiled and how MATLAB schedules and executes array instructions
is crucial for writing code with optimal performance.

In this section, we uncover and encode rules governing the execution of
array operations with the dynamic compilation. These rules create an execu-
tion model for MATLAB expressions with a consideration of JIT compilation.
The model includes information about the type and order of computation,
function calls, and indexing of arrays mentioned in Section 4.1. Moreover, the
model is based on the concept of an instruction block from Section 4.2 which
is a set of instructions executed together. In Section 4.4, with the notion of
instruction blocks, we are able to find out which built-in and user-defined
functions can merge together and be inside the same instruction block. Then,
we express how instruction blocks interact with each other in a form of
instruction trees in Section 4.5. Finally, instruction trees allow us to make
predictions about MATLAB codes.

This chapter is based on performance event profiles (PEP) and execution
regions, introduced in Chapter 3, which are essential for building the model.

4.1 Scope of the execution model

We start our investigation by setting the scope of our execution model. MAT-
LAB has an expressive language with a vast number built-in functions thus,
expressing every possible detail in the model might be infeasible. Therefore,
we focus on vectorised expressions consisting of four components: (1) built-in

4.2. INSTRUCTION BLOCKS IN JIT COMPILATION 59

functions; (2) user-defined functions; (3) array references; and (4) array
slices, as depicted in Figure 4.1. These four components cover the majority
of expressions in common MATLAB programs. However, we only consider
expressions as part of assignment statements.

In an ideal world, every expression is JIT-compiled as one code region.
However, in MATLAB, some of the abovementioned components divide the
compilation of a single expression into multiple parts. For example, an array
slice requires data copy which creates a new execution regions. In a similar
fashion, built-in functions e.g. sum, diff split the compilation into three parts
which evaluate: (1) function arguments, (2) the function itself; and (3) the
rest of the expression. Moreover, every user-defined function behaves exactly
like the non-JIT-compiled built-in function.

Our model describes built-in and user-defined functions containing array
operations which perform element-wise computation. Other types of functions
are matrix operations implementing linear algebra routines such as matrix
multiplication (*, mtimes()) or solving systems of linear equations Ax “ B
for x (\, mldivide()). Nevertheless, the presented execution model is capable
of expressing matrix operations too. Moreover, we consider only single-
thread execution in this part of the chapter, because predicting the multi-
threaded execution requires additional information in the model which would
unnecessary complicate its description. Finally, we analyse two MATLAB
versions, R2015b and R2018b, with a redesigned execution engine LXE which
combines the interpreter and the JIT compiler into a monolithic structure [10].

4.2 Instruction blocks in JIT compilation

Without a Just-In-Time (JIT) compiler, MATLAB would be an interpreter
which executes (interprets) instructions step by step. The interpreter fetches,
decodes, and executes each instruction in isolation without any knowledge
about future instructions. However, with the JIT compiler, MATLAB can
defer evaluation of the instruction as long as possible (in the APL interpreter,
this concept is known as drag-along [8, 129]). The delay often creates new
optimisation opportunities for the JIT compiler, because the compiler car-
ries information about future instructions. This leads to better instruction
scheduling, register allocation and code optimisations.

However, the nature of instructions in MATLAB is questionable because
without a formal specification, we are not sure about which parts of the
language syntax are really executable. Instead, we make a simplification and
assume that each call to a built-in or user-defined function is an instruction.
We leave out array slicing as a specialised type of an instruction and further,
we always consider the slicing separately.

60 CHAPTER 4. EXECUTION MODEL FOR MATLAB

Instruction block. We define an instruction block Γ as a program segment
containing a set of instructions Γ.instructions “ tγ1, γ2, . . .u which MATLAB
executes together. The instructions γ1, γ2, . . . are calls to MATLAB built-in
or user-defined functions. Instructions inside the block are stored as a set,
because we are not concerned with their order of execution. Moreover, in
many cases the real execution order would be hard to deduce and dependent
on the compiler, compilation heuristics, and the target machine. Furthermore,
the set of instructions is a multi-set capable of holding a few references to
the same function.

If an instruction block Γ has multiple instructions |Γ.instructions| ą 1,
then we say the JIT compiler schedules and executes together instructions
inside the block. Usually, the result of compilation of an instruction block
is a regular execution region without time-varying behaviour, similarly to
how MATLAB executes loops. Therefore, for these regions, we can use
traditional metrics and models, e.g. the Roofline Model [32], Top-Down
Micro-architectural Analysis Method (TMAM) [33], which do not consider
time-varying execution by default.

Block attributes. It is convenient to extend the instruction block with
additional information in a form of block attributes. Usually, instructions in
the block (Γ.instructions) perform computation on data accessed through
array references (Γ.references) or array slices (Γ.slices). The distinction
between attributes for references and slices is important, because instruc-
tions directly use references to arrays, where array slices require data copy
operations beforehand. Three standard block attributes include:

• Γ.instructions “ tγ1, γ2, . . .u a multiset (mset) of instructions in the
block. Single γi represents a call to a built-in or user-defined function.
We track all calls to the same function, because all of them performs
computations (MATLAB has no seamless memoisation for functions).

• Γ.references “ ta, b, c, . . .u a set of array references to variables used
in the computation. We track repeated uses of the same reference only
once, because we are not concern about the data reuse at this stage.

• Γ.slices “ tk, l,m, . . .u a set of array slices used in the computation.
Each array slice is just an object holding the information about a sliced
variable (a, b, c) and the region of copied data.

Merging instruction blocks So far, we have mentioned how the JIT com-
piler executes instructions together forming an instruction block. However, it
is not hard to imagine a code optimisation in which the JIT compiler executes
together two instruction blocks. The new result block shares instructions,
array references, and array slices coming from both input blocks. Algorithm 1

4.3. DETECTING INSTRUCTION BLOCKS 61

presents how the merge operation might take effect for instruction blocks
with default attributes.

Algorithm 1 Function merging together two instruction blocks Γ1 and Γ2.
function mergeInstructionBlocks(Γ1, Γ2)

Γresult Ð newInstructionBlock()
Γresult.instructions “ Γ1.instructionsZ Γ2.instructions
Γresult.references “ Γ1.referencesY Γ2.references
Γresult.slices “ Γ1.slicesY Γ2.slices
return Γresult

In the case of Γ.instructions attribute, the operation Z is a multiset
sum which not only performs an union between two multisets, but it also
adds repeated elements multiple times inside the multiset. The other two
operations Y are classical unions between sets.

4.3 Detecting instruction blocks

A successful execution of an instruction block indicates that the JIT compiler
fetches, decodes, schedules, and executes every instruction from the block. The
first stage, fetch and decode, requires retrieving instructions for the execution
from the instruction cache. This process usually generates several performance
events on the processor, e.g. L2_RQSTS:ALL_CODE_RD if the instructions are
in the L2 instruction cache, or OFFCORE_RESPONSE_*:DMND_CODE_RD if they are
requested from the external memory. Therefore, by observing changes in
performance events related to instruction fetch and decode, we can find the
beginning of the instruction block. This is also true for instruction blocks with
only one instruction |Γ.instructions| “ 1. In that case, MATLAB behaves
like a pure interpreter executing instruction by instruction. Moreover, JIT
compilers have finite granularity of compilation which means the compilers
work on portions of the code instead of whole programs (e.g. method or
trace-based compilation focusing on loops) [130, 131]. Hence, programs of
reasonable size have more than one instruction block.

With the use of performance event profiles (PEP) introduced in Chapter 3
and a careful selection of a single performance event which indicates fetch
and decode stage, we can find the start point of an instruction block. For the
performance event candidates, we have consider events measuring activities
related to instruction fetching such as cache misses or hits. Some event
candidates collected in Table 4.1 are interconnected with each other. From
their descriptions, we can easily spot direct and indirect relations between
events. For example, cache misses propagate throughout many levels of cache
memories and instructions entirely missing from the cache can cause misses
in the instruction translation-lookahead buffers (iTLB).

Table 4.1 presents performance events which consist of random information

62 CHAPTER 4. EXECUTION MODEL FOR MATLAB

Table 4.1: Performance events related to instruction fetch and decode on
Skylake and Coffee Lake microarchitectures [132]. Events description comes
from the Intel® Processor Event Reference [133]. Not every performance
event candidate can indicate the start of instruction blocks.

Performance event Description Metric

FRONTEND_RETIRED:DSB_MISS Counts retired Instructions that experienced
DSB (Decode stream buffer i.e. the decoded
instruction-cache) miss.

7

FRONTEND_RETIRED:ITLB_MISS Counts retired Instructions that experienced
iTLB (Instruction TLB) true miss.

7

FRONTEND_RETIRED:L1I_MISS Retired Instructions who experienced In-
struction L1 Cache true miss.

7

FRONTEND_RETIRED:L2_MISS Retired Instructions who experienced In-
struction L2 Cache true miss.

3

ICACHE_16B:IFDATA_STALL Cycles where a code line fetch is stalled due
to an L1 instruction cache miss. The legacy
decode pipeline works at a 16 Byte granular-
ity.

3

ICACHE_64B:IFTAG_HIT Instruction fetch tag lookups that hit in the
instruction cache (L1I). Counts at 64-byte
cache-line granularity.

7

ICACHE_64B:IFTAG_MISS Instruction fetch tag lookups that miss in the
instruction cache (L1I). Counts at 64-byte
cache-line granularity.

3

ICACHE_64B:IFTAG_STALL Cycles where a code fetch is stalled due to
L1 instruction cache tag miss.

3

ITLB_MISSES:
MISS_CAUSES_A_WALK

Counts page walks of any page size
(4K/2M/4M/1G) caused by a code fetch.
This implies it missed in the ITLB and fur-
ther levels of TLB, but the walk need not
have completed.

3

ITLB_MISSES:
WALK_COMPLETED

Completed page walks (2M and 4M page
sizes) caused by a code fetch. This implies
it missed in the ITLB and further levels of
TLB. The page walk can end with or without
a fault.

3

L2_RQSTS:ALL_CODE_RD Counts the total number of L2 code requests. 3

L2_RQSTS:CODE_RD_MISS Counts L2 cache misses when fetching in-
structions.

3

OFFCORE_RESPONSE_*:
DMND_CODE_RD

Counts both cacheable and non-cacheable
code read requests.

3

4.3. DETECTING INSTRUCTION BLOCKS 63

Listing (4.1) Interpreted computation
expressed in two statements with an
explicit intermediate variable tmp.

1 tmp = A1 + A2(1:LEN_1D);
2 R = tmp .* A3;

Listing (4.2) Dynamically compiled
computation collapesd into just one
statement.

1 R = (A1 + A2(1:LEN_1D)) .* A3;

Two statements One statement

FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE
(Vector floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0.0e+00 5.0e+06 1.0e+07 1.5e+07 0.0e+00 5.0e+06 1.0e+07 1.5e+07

0

5000

10000

15000

0

5000

10000

15000

20000

0

20000

40000

60000

0

500

1000

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Execution region Data copy Interpreted floating−point computation JIT−compiled floating−point computation

Run on machine M1; MATLAB=R2018b; threads=1; sampling threshold=100000; N=1000000.

Detection of instruction blocks

Figure 4.2: Detection of instruction blocks using instruction cache misses.
Execution region of interpreted floating-point computation actually contains
two instruction blocks (addition followed by multiplication).

64 CHAPTER 4. EXECUTION MODEL FOR MATLAB

(FRONTEND_RETIRED:DSB_MISS or ICACHE_64B:IFTAG_HIT), but also events con-
taining measurements perfectly correlating with start and end points of execu-
tion regions (L2_RQSTS:CODE_RD_MISS or OFFCORE_RESPONSE_*:DMND_CODE_RD).
Figure 4.2 depicts how spikes on the profile of L2_RQSTS:CODE_RD_MISS relate
to execution regions. We assume, that each spike indicates the start of a
new instruction block, because the spike represents the load of instructions
designated for the execution. With the assumption, it is easy to see on the
left graph in Figure 4.2 that relaying only on execution regions is not enough
to distinguish between two separate, but identical computations. In the plot,
execution region of interpreted floating-point computations, marked in green,
actually consists of two separate instruction blocks. Moreover, with correctly
detected instruction blocks, this figure also indicates MATLAB JIT compiler
granularity of compilation which is a single statement.

4.4 JIT compilation of functions

The core of any instruction block is a set of instructions compiled together
by the JIT compiler. However, not every MATLAB function forms a multi-
instruction block. Complex functions or calls to external libraries generate
separate instruction block(s) because the JIT compiler is not able to emit a
machine code for them, and instead, emits only calls to those functions.

In this section, we use the detection scheme from Section 4.3 to analyse
the number of instruction blocks inside compositions of MATLAB functions.
For the task, we prepare and analyse specialised codes which combine several
MATLAB functions into various compositions. Later, during the analysis,
we observe the number of instruction blocks generated by those codes (just
like in Figure 4.2). If a composition of functions generates only one block, it
means the JIT compiler executed the composition by emitting single piece of
machine code. We apply the same analysis to both, MATLAB built-in and
user-defined functions.

The ability to predict how JIT compiler schedules and executes instruc-
tions, allow to reorganise an expression in a way that the new expression
executes faster. This is possible, because new order of evaluation might
reduce the number of instruction blocks generated from the expression. In
other words, the expression with lower number of blocks indicates better code
scheduling by the JIT compiler. One of the goals of our model is to predict
the number and the content of instruction blocks in the program. With the
complete picture on the computation, we can start working on specialised
transformations which help the JIT compiler to better schedule the program.

4.4.1 Built-in functions

The analysis of built-in functions starts with running the three code patterns
depicted in Table 4.2 for each function. Every pattern is a composition of

4.4. JIT COMPILATION OF FUNCTIONS 65

Table 4.2: Three detection patterns used for the detection of dynamic (JIT)
compilation of MATLAB functions. The presented patterns use functions
cos and atan2 as an example.

Detection pattern Unary Binary

Self-composition cos(cos(A)) atan2(atan2(A1, A2), A3)
Composition plus:+ cos(A1)+cos(A2) atan2(A1, A2)+atan2(A3, A4)
Arguments plus:+ cos(A1+A2) atan2(A1+A2, A3+A4)

at least two functions, because only then we are able to observe if the JIT
compiler creates one instruction block for these functions. However, this does
not mean a single instruction is not JIT-compiled, we just are not able to
observe it with this approach.

The first pattern is a self-composition f(f(A)) which is the simplest way
for one function to create a complex expression. The next two patterns
compose the function f with addition operator +/plus which is JIT-compiled
(we have verified this by observing if a composition of many additions is
translated into a single basic block of machine code with packed double-
precision floating point instructions addpd on x86 architecture; in order to
lookup and analyse the machine code, we have used Intel VTune [99]). The
second pattern f(A)+f(B) tests if the plus composes well with functions f
as arguments. Finally, the third pattern f(A+B) validates if the function f
executes with a complex expression as an argument inside a single instruction
block. Table 4.2 presents detection patterns for unary and binary functions.

The self-composition pattern from Table 4.2 is not applicable to every
function. Consider reduction operations sum or prod. Their first execution in
the self-composition reduces the input array by one dimension (e.g. a vector
reduces to a scalar). Therefore, the second call to the function works on data
with a significantly reduced size. Consequently, if the self-composition of sum
or prod generates two instruction blocks, then the second block is very small,
thus, hard to compare (it might get lost between measurement samples).
Therefore, we do not use the self-composition for these two functions.

For the test of unary and binary built-in functions in MATLAB, we
have selected elementary arithmetic operations, rounding functions, modulo
division, trigonometric functions, exponents and logarithms, reductions, Fast-
Fourier Transformations, and more. Table 4.3 presents which MATLAB
functions can be combined with others (combinable functions) and which
always generate an additional instruction block (single functions) just for
themselves. Typical examples of single functions include fft and mtimes
which are delegated to external libraries, FFTW [134,135] and Intel MKL [5]
respectively. For the combinable functions, prime examples include basic
arithmetic operators, e.g. plus, times, ldivide, which are easy to combine and

66 CHAPTER 4. EXECUTION MODEL FOR MATLAB

Table 4.3: List of built-in functions which require single instruction block
(single functions) or merge with other instructions into a common instruction
block (combinable functions). All functions were tested on machine M1 and
MATLAB R2015b/R2018b.

Single functions Combinable functions

acos, acosh, asin, atanh, :, colon,
’, ctranspose, cumprod, cumsum, det,
diff, eig, expm1˚, fft, fliplr, gamma,
ifft, log, log10, log1p, log2, max,
mean, min, mtimes, nextpow2, norm,
ones, .ˆ, power, prod, rand, randn,
sqrt, sum, zeros

abs, asinh, atan, atan2, ceil, cos,
cosh, exp, expm1:, fix, floor, imag,
.\, ldivide, -, minus, mod, +,
plus, pow2, ./, rdivide, real, rem,
round, sign, sin, sinh, tan, tanh,
.*, times, .’, transpose, uminus,
uplus

˚ Only R2015b.
: Only R2018b.

schedule together. The obtained results are consistent for MATLAB R2015b
and R2018b, except for the function expm1 which is dynamically compiled
only on version R2018b. Furthermore, the presented testing procedure is
general and easy to extend to more functions.

4.4.2 User-defined function

MATLAB programmers can create their own user-defined functions which
raises two questions about how JIT compiler manages them: (1) is the body
of an user-defined function JIT-compiled? (2) is an expression which uses
user-defined functions JIT-compiled too? A positive answer to question
(1) means the JIT compiler is method-based with a whole function as the
compilation unit [131], or at least the compiler compiles statements in the
function body, but separately. On the other hand, question (2) explores
capabilities of the JIT compiler in merging instruction blocks created from
user-defined functions with other blocks. In this section, we analyse both
questions (1) and (2), about user-defined functions, using the same analysis
and detection patterns as in Section 4.4.1.

JIT compilation of user-defined functions. In order to test if the JIT
compiler also compiles the body of user-defined functions, we have prepared
a set of test routines (similar to test functions in Figure 4.3), which consist
of only combinable functions from Table 4.3. Therefore, we know that the
bodies of these test functions can be JIT-compiled. Moreover, apart from
testing single assignments in the test function body, we have prepared test
functions containing multiple JIT-compiled statements. Therefore, successful

4.4. JIT COMPILATION OF FUNCTIONS 67

1 function R=un_1_block(A)
2 R = A + A;
3 end

1 function R=un_2_blocks(A)
2 R = log10(A) + A;
3 end

1 function R=bin_1_block(A, B)
2 R = A + B;
3 end

1 function R=bin_2_blocks(A, B)
2 R = log10(A) + B;
3 end

Figure 4.3: Examples of test functions which are JIT-compiled to one or two
instruction blocks. With the use of single function log10 (see Table 4.3) in
*_2_blocks(), we force the JIT compiler to issue two instruction blocks.

compilation of such functions would indicate that the JIT compiler is able to
combine and optimise expressions coming from multiple statements (like a
method-based compiler would do). As an example, consider Listing 4.1 with
a small program (which could be a function body) containing two statements
which can be optimised and merged into one statement as in Listing 4.2.

Our results, obtained from running test functions, prove two things:
(1) JIT compiler in MATLAB compiles the body of user-defined functions,
however, (2) the compiler will not merge, schedule, nor execute together
multiple statements from a user-defined function. Therefore, although the
JIT compiler compiles the function body, the granularity of compilation still
stays at a level of a single statement, hence, an user-defined function with N
statements always compiles to at least N instruction blocks.

JIT compilation of expressions with user-defined functions. Con-
sidering that the MATLAB JIT compiler handles user-defined functions, we
move to testing how dynamic compilation affects expressions with calls to
those functions. For this analysis, we treat user-defined functions just like
built-in functions in Section 4.4.1. Moreover, we reuse the same testing
procedure as before and the same set of detection patterns from Table 4.2.

Figure 4.3 presents four simple user-defined functions which we use for
testing. Functions *_1_block contain only plus which generates one instruc-
tion block. On the other hand, functions *_2_blocks combine plus with
log10 which requires separate instruction block, thus, the functions consist
of two instruction blocks.

Our results can be summarise into two points: (1) the user-defined
functions are not merged with plus function; and (2) the functions force
a sequential evaluation of arguments, from left-to-right. In other words,
user-defined functions are never merged with other instructions and they do
not share a single instruction block. Moreover, each expression passed as
an argument to the user-defined function, creates at least one instruction
block. Therefore, single call to the user-defined function with N expressions

68 CHAPTER 4. EXECUTION MODEL FOR MATLAB

passed as arguments creates at least N ` 1 instruction blocks with at least 1
instruction block for the body.

4.5 Instruction tree

In MATLAB, expressions consist of many instructions grouped into one
or more instruction blocks. The role of the Just-In-Time (JIT) compiler
is to schedule block of instructions for the combined execution. From our
perspective, the execution of a single instruction block is an atomic action,
because, from execution regions, we are not able to distinguish particular
instructions. Therefore, we consider each instruction block as an atomic
entity too. However, we care about how those blocks were formed and what
is the execution order of particular blocks in an expression. Thus, we propose
a new tree-based model for MATLAB expressions called the instruction tree
which tracks and predicts how instructions merge into instruction blocks and
in what order these blocks execute.

The instruction tree represents the execution order of instruction blocks
and the use of variables, similar to how the abstract-syntax tree (AST) repre-
sents instructions and variables. However, unlike the AST, inner nodes depict
instruction blocks instead of single instructions. Moreover, the instruction
tree indicates possible unions of instruction blocks.

Components of the instruction tree. The instruction tree consists of
one type of inner nodes: instruction block — an execution block of one
or more instructions. Moreover, the tree uses two different kinds of nodes
array reference and array slice indicating the use of variables. Even though,
the array slice could be considered as an instruction because it performs a
data copy. However, array slice never merges with an instruction block, thus,
we consider the slice as a separate entity.

Actually, as we will see in the next section, an input expression can be
represented by a set of instruction trees, each with a different amount of
instruction blocks. This fact is especially visible at the first stage of building
instruction tree, when we translate each node of the input abstract-syntax
tree (AST) to a block with only one instruction. Later, the tree shrinks
because we merge together nodes in instruction blocks, thus, reducing their
number.

The initial instruction tree, with instruction blocks containing only one
instruction each, is a maximal instruction tree, because the tree could have
blocks which can be merged. On the other hand, a minimal instruction tree
has minimal number of instructions blocks, where no new merges are possible.
Our model is concern with only the minimal trees, because they are the true
representation of the execution of JIT-compiled expressions in MATLAB. In
the next section, we present an algorithm for obtaining minimal instruction

4.5. INSTRUCTION TREE 69

A(1:N)+compute(B.*C(1:N), cos(D./E))

+

A(1:N) compute

.*

B C(1:N)

cos

./

D E

Figure 4.4: Step 1: Conversion of an expression to AST.

trees from MATLAB expressions.

4.5.1 Building minimal instruction tree

This section presents how to translate an input MATLAB expression to a
minimal instruction tree, which indicates the type and execution order of
instruction blocks. The translation consists of 4 steps.

Step 1: Expression to AST. Our method works on expressions repre-
sented with abstract-syntax trees (AST) which are a good starting point,
because they indicate the instruction order and the use of variables, a two
key components of our execution model. Figure 4.4 presents an example
MATLAB expression with its AST representation. Although, the exact de-
tails and approaches to building an AST might differ, we assume that the
AST consists of separate nodes for each function call and variable reference
(or slice). Moreover, arguments of a function call are subtrees with an order
corresponding to their position (from left to right).

In order to create AST from an expression, we use our source-to-source
compiler HU!M described in details in Chapter 6. The compiler uses AST as the
main intermediate representation (IR) for code analyses and transformations.
Moreover, HU!M implements the execution model described in this chapter.

Step 2: AST to instruction tree. The next step is a conversion from
the AST to an initial instruction tree depicted in Figure 4.5. The translation
maps each AST node to a corresponding node in the universe of instruction
trees. Therefore, every reference to a variable maps to array reference,
indexing of a variable changes to array slice, and every operation or function
call translates to an instruction block. In the Figure 4.5, on the right of
an instruction block, the set indicates which instructions are inside the block
(the Γ.instructions attribute defined in Section 4.2).

The obtained tree could be named a maximal instruction tree, because at
this point every node represents an instruction block with just one instruction

70 CHAPTER 4. EXECUTION MODEL FOR MATLAB

+

A(1:N) compute

.*

B C(1:N)

cos

./

D E

{+}

A
{compute}

{.*}

B C

{cos}

{./}

D E

Figure 4.5: Step 2: Conversion from an AST to the instruction tree.

{+}

A
{compute}

{.*}

B C

{cos}

{./}

D E

{+}

A
{compute}

{B} {.*}

C

{cos}

{./}{D, E}

Figure 4.6: Step 3: Removing leaves with array references, but keeping the
information inside instruction nodes.

and none of the blocks being merged together. Only in the next few steps, the
maximal instruction tree will gradually transform into the minimal instruction
tree.

Step 3: Removing of array reference leaves. Before merging instruc-
tion blocks, we remove array reference leaves from the instruction tree for two
reasons: (1) they do not generate any execution regions on their own; and (2)
semantically, they belong to the instruction block where references are used
directly in the generated machine code to perform computations. Therefore,
we save the information about references inside instruction blocks in the
Γ.references attribute. Figure 4.6 depicts the removing of array reference
nodes. Furthermore, we still display the information about array references
in the instruction trees, but on the left of instruction block nodes.

Step 4: Merging instruction blocks. The last stage is a repetitive
process which merges pairs of instruction blocks as long as there exists any
pair of combinable blocks. Therefore, the result is a minimal instruction tree
consisting of a minimal possible amount of instruction blocks. The result

4.5. INSTRUCTION TREE 71

tree indicates the order of execution regions occurring during the execution
of MATLAB expressions.

Algorithm 2 Building minimal instruction tree by repetitive merging of
instruction blocks inside an instruction tree.
Input: the root node of the initial instruction tree
Output: minimal instruction tree

1: function canMerge(node)
2: correctInst Ð node.instructions Ď combinableFunctions Ź Table 4.3
3: return isInstructionBlock(node)^correctInst

4: function buildMinimalTree(node)
5: revChildren Ð reverseList(node.children) Ź Visit from right-to-left
6: for child in revChildren do
7: buildMinimalTree(child) Ź Recursive visit of the tree
8: if canMerge(node)^canMerge(node.parent) then
9: if hasRightSibling(node) then
10: node.parent Ð mergeInstructionBlocks(node, node.parent) Ź Algo. 1
11: attach(node.children, node.parent) Ź Attach children to the grandparent
12: removeFromParent(node)

The main function buildMinimalTree from Algorithm 2 is a recursive
method which traverses the instruction tree and finds candidate instruction
blocks for merging. The routine traverses the tree in a post-order, but with
children visited right-to-left (lines 5–7). The reason for the reversed visit of
children is the evaluation order of arguments in MATLAB which is left-to-
right. Hence, MATLAB evaluates expression e1 + e2 starting with arguments
e1, e2 and finishing with the + operator which creates an evaluation sequence:
e1, e2, +. With the standard post-order traversal and left-to-right visiting
of children, we would never merge e1 with + (even if possible), because the
second expression e2 stands on the way — e2 evaluates in between e1 and +.
However, if we visit children right-to-left, then we could merge e2 with + and
give to e1 an opportunity to merge with a newly created block of instructions
te2, +u. Therefore, the merge of a node with its parent is possible only when
the node has none of right siblings (line 9).

The presented perspective on merging nodes (instruction blocks) is related
to the structure of the instruction tree which encodes the evaluation order of
MATLAB operations. However, the lack of right siblings of a node is not the
only condition required for merging instruction blocks. The other condition,
even more important, is if both instruction blocks contain only combinable
instructions which can merged with each other (please refer to Table 4.3 in the
Section 4.4.1). The function canMerge from Algorithm 2 encapsulates the
condition and it is used in line 8. Moreover, the canMerge can work only
on instruction blocks, hence, the use of the isInstructionBlock predicate.
Finally, the procedure mergeInstructionBlocks from Algorithm 1 merges

72 CHAPTER 4. EXECUTION MODEL FOR MATLAB

{+}

A
{compute}

{B} {.*}

C

{cos}

{./}{D, E}

{+}

A
{compute}

{B} {.*}

C

{D, E} {cos, ./}

Figure 4.7: Step 4: Merging of instruction blocks. User-defined function
compute prevents further merging of blocks. The right hand side tree is the
minimal instruction tree.

two valid blocks and the subsequent operations rebuild the structure of the
instruction tree by connecting child nodes (line 11) and removing one of the
merged nodes (line 12).

Figure 4.7 depicts merging of two instructions blocks tcosu and t./u which
contain only combinable functions. The procedure starts from the right-most
child, the t./u, accordingly to the post-order with right-to-left visiting order.
The merging of the blocks is valid because t./u has no siblings. However,
none of the future unions are possible because of the user-defined function
compute. We mark compute in red to highlight the fact that the function is
not combinable, thus, preventing any future block merging.

Table 4.4 presents 8 more examples of expressions with their corresponding
minimal instruction trees. Each minimal tree was obtained by applying
Algorithm 2. Functions highlighted in red indicate non-combinable functions
which prevent further merging of instruction blocks. This behaviour can be
seen in the case of expressions 1, 2 and 3, where single functions sum, sqrt,
and .ˆ repetitively, prevent merging with other instruction blocks. However,
it is not the case for expression 6, where the log function is not the barrier,
but the array slicing of C. Furthermore, Expression 3 is an interesting example,
because it collapses to a single node which means, the expression is perfectly
scheduled by the JIT compiler. In other cases 5, 7, and 8, the existence of
array slices as node’s right sibling is the limiting factor of blocks merging.

4.5.2 Predicting execution from minimal instruction tree

Minimal instruction tree is a compact representation of execution regions
occurring while executing an input MATLAB expression. In the tree,
instruction blocks indicate the type of executed operations while array
slices mark data copies of arrays. Moreover, following a natural order of
expression evaluation, the post-order, we obtain an arrangement of execution
regions called the instruction chain, depicted in Figure 4.8. The result chain
is just a flatten instruction tree.

4.5. INSTRUCTION TREE 73

Table 4.4: Examples of expressions with their minimal instruction trees.
Instructions highlighted in red indicates functions which prevent instruction
blocks from merging.

№ Expression Minimal instruction tree

1 sum(round(A))
{sum}

{A} {round}

2 floor(A) + sqrt(fix(B .* C))

{+}

{A} {floor} {sqrt}

{B, C} {fix, .*}

3 floor(A) + sin(fix(B .* C)) {A, B, C} {floor, +, sin, fix, .*}

4 exp((A.^D+B.^E) ./ (C.^F))

{exp, ./}

{+}

{A, D} {.∧} {B, E} {.∧}

{C, F} {.∧}

5 A(1:N) .* atan2(B(1:N), C))
{C} {.*, atan2}

A B

6 log(A) + B + C(1:N)

{+}

{B} {+}

{A} {log}
C

7 fix(A(1:N))+(B(1:N).*C(1:N))

{+, .*}

{fix}

A

B C

8 A(1:N) + (B(1:N) + C(1:N))
{+, +}

A B C

74 CHAPTER 4. EXECUTION MODEL FOR MATLAB

{+}

A
{compute}

{B} {.*}

C

{D, E} {cos, ./} A C {B}

{.*}

{D, E}

{cos, ./} {compute} {+}

Figure 4.8: The result of traversing the instruction tree in a post-order is the
instruction chain — a direct prediction of execution regions and their order.

Figure 4.9 presents how the instruction chain predicts and matches with
a real measurement of the example expression. The performance profiles
from the figure illustrate 6 distinctive execution regions: data copy ˆ2, vector
floating-point computation ˆ3 (one for the compute function which performs
vector addition) and one long scalar floating-point computation. Each node
in the instruction chain matches with exactly one execution region. However,
as seen in Figure 4.9, the instruction chain does not indicate the length of
particular execution regions. In order to encode the length of instruction
blocks and their execution regions, we would need to extend the instruction
tree model with additional information about the execution of particular
instructions and their composition inside instruction blocks. However, we
plan to do so in the future.

4.6 Conclusion

This chapter introduces a methodology for the detection and modelling of the
execution of the expressions in MATLAB. We have presented a tree-based
execution model which not only encodes execution order of instructions and
array slices inside expressions, but it also indicates when the MATLAB Just-
In-Time (JIT) compiler schedules those instructions for combined execution as
part of instruction blocks. Our methodology is entirely based on performance
event profiles (PEP) introduced in Chapter 3. With these profiles, we are
able to determine which instructions are in an instruction block and match
them with a corresponding execution region.

To sum up, in this chapter, we have made the following contributions:

• Introduction of instruction blocks which consist of one or more MAT-
LAB combinable functions (presented in Section 4.2). In Section 4.3,
we describe a methodology for recognising instruction blocks inside
performance event profiles and matching them with particular execu-
tion regions. To achieve this task, we have used a performance event
L2_RQSTS:CODE_RD_MISS which indicates when MATLAB fetches instruc-

4.6. CONCLUSION 75

F
P

_A
R

IT
H

_I
N

S
T

_R
E

T
IR

E
D

:S
C

A
LA

R
_D

O
U

B
LE

(S
ca

la
r

flo
at

in
g−

po
in

t i
ns

tr
uc

tio
ns

)

F
P

_A
R

IT
H

_I
N

S
T

_R
E

T
IR

E
D

:1
28

B
_P

A
C

K
E

D
_D

O
U

B
LE

(V
ec

to
r

flo
at

in
g−

po
in

t i
ns

tr
uc

tio
ns

)

M
E

M
_I

N
S

T
_R

E
T

IR
E

D
:A

LL
_L

O
A

D
S

(L
oa

d
in

st
ru

ct
io

ns
)

M
E

M
_I

N
S

T
_R

E
T

IR
E

D
:A

LL
_S

TO
R

E
S

(S
to

re
 in

st
ru

ct
io

ns
)

L2
_R

Q
S

T
S

:C
O

D
E

_R
D

_M
IS

S
(L

2
in

st
ru

ct
io

n
ca

ch
e

m
is

se
s)

0e
+

00
5e

+
07

1e
+

08

0
50

00
10

00
0

15
00

0
20

00
0 0

50
00

10
00

0
15

00
0

20
00

0 0
50

00
10

00
0

15
00

0
20

00
0 0

20
00

0

40
00

0

60
00

0 0

50
0

10
00

15
00

N
um

be
r

of
 r

et
ire

d
in

st
ru

ct
io

ns
 (

IN
S

T
_R

E
T

IR
E

D
:A

N
Y

_P
)

Performance event values

E
xe

cu
tio

n
re

gi
on

D
at

a
co

py
S

ca
la

r
flo

at
in

g−
po

in
t c

om
pu

ta
tio

n
V

ec
to

r
flo

at
in

g−
po

in
t c

om
pu

ta
tio

n

R
un

 o
n

m
ac

hi
ne

 M
1;

 M
AT

LA
B

=
R

20
18

b;
 th

re
ad

s=
1;

 s
am

pl
in

g
th

re
sh

ol
d=

10
00

00
, N

=
10

00
00

0

P
re

di
ct

io
n

of
 th

e
ex

ec
ut

io
n

or
de

r
an

d
re

gi
on

s

A
C
{B

}

{.
*
}

{D
,E

}

{c
o
s
,.
/
}

{c
o
m
p
u
t
e
}{

+
}

F
ig
ur
e
4.
9:

T
he

fla
tt
en

in
st
ru
ct
io
n
tr
ee

in
a
fo
rm

of
th
e
ch
ai
n
pr
ed
ic
ts

th
e
or
de

r
an

d
th
e
ty
pe

of
in
st
ru
ct
io
n
bl
oc
ks

an
d
ex
ec
ut
io
n

re
gi
on

s
fo
r
th
e
ex
pr
es
si
on

:
A(
1:
N)

+
co
mp
ut
e(
B.
*C
(1
:N
),

co
s(
D.
/E
))
.

76 CHAPTER 4. EXECUTION MODEL FOR MATLAB

tions for the execution, which points to the start of a new instruction
block (see Table 4.1 for other performance event candidates used for
solving this problem).

• Analysis of which MATLAB built-in and user-defined functions can
be combined with others to form instruction blocks (described in Sec-
tion 4.4). The analysis works by testing how many instruction blocks
the JIT compiler generates for various compositions of built-in and
user-defined functions. Therefore, we divide functions into two groups
of single, and combinable functions which are able to be merged with
others (Table 4.3 presents built-in functions and the category they
belong to).

• Introduction of a tree-based execution model consisting of instruction
blocks and array slices as the tree nodes (presented in Section 4.5).
The model, named instruction tree, represents the execution order of
instruction blocks and also helps to visualise the potential candidate
blocks for merging. If the instruction tree lacks of any more merging
candidates, we say the tree is minimal. The minimal instruction tree
displays the final representation of how the MATLAB JIT compiler will
group, schedule, and prepare instructions (Figure 4.9 depicts example
prediction). Finally, Algorithm 2 and our methodology described in
section Section 4.5.1 show, step by step, how to obtain the minimal
instruction trees for MATLAB expressions.

The presented results form a basis for code transformations which reorder,
combine or split expressions in order to change (usually minimise) the number
of instruction blocks issued by the JIT compiler. Knowing the rules of how
the JIT compiler works, and changing the expressions accordingly, we could
improve the performance of the expression execution.

Although, in this chapter, we focus entirely on analysing MATLAB
expressions, our future work includes application of our methodology and our
model to other Just-In-Time environments, such as Julia [136] and PyPy JIT
compiler [137,138] for Python. Moreover, we plan to extend our model with
information on particular instruction blocks such as their performance (e.g.
attainable memory bandwidth, IPC), and some information about how the
JIT compiler schedules instructions on many threads.

Chapter 5

Code transformations for array
operations

Résumé

Avec un modèle d’exécution des expressions, nous avons une image complète de la
façon dont MATLAB effectue les calculs. Sachant cela, nous pouvons maintenant
concevoir des transformations de code qui exploitent les points faibles et les points
forts du compilateur JIT dans MATLAB. Dans ce chapitre, nous décrivons plusieurs
transformations de code, qui toutes augmentent les performances des programmes
MATLAB.

La première transformation, le repacking des sections de tableaux, utilise le fait
que la copie de données (section de tableaux) crée un bloc d’instructions. Souvent, la
copie est effectuée entre deux opérations de tableaux. Ainsi, elle divise ces opérations
en deux blocs d’instructions distincts alors qu’on pourrait autrement n’en conserver
qu’un seul. Le rôle du reconditionnement des sections de tableaux est de détecter ces
copies et de les exécuter avant les calculs proprement dits.

La simplification des plages d’indexation (fonctions d’accès aux éléments de
tableaux) est la deuxième transformation proposée. Elle tire parti du fait que le
compilateur JIT de MATLAB génère un code très efficace pour le découpage en
sections de tableaux si ses paramètres sont des nombres entiers. La transformation
remplace les expressions d’indexation complexes par des plages de nombres beaucoup
plus simples.

Enfin, l’optimisation de la boucle guidée par le profil permet de tester empirique-
ment si la vectorisation de la boucle est bénéfique. La procédure de profilage teste
la boucle et sa forme vectorisée à partir de seulement quelques exécutions, mais
chacune avec une taille croissante des données d’entrée. Ensuite, les résultats sont
extrapolés pour des données d’entrée beaucoup plus importantes. Cela permet de
réduire le temps nécessaire au profilage.

Introduction

In Chapter 4, we have created an execution model for evaluating expres-
sions with array operations in MATLAB. The model not only gave us an

77

78 CHAPTER 5. CODE TRANSFORMATIONS

understanding of how MATLAB executes expressions in terms of instruc-
tion trees, but it also gave us a framework for thinking about possible code
transformations and improvements on MATLAB.

In this section, we present a set of code transformations and improvements
to the performance of MATLAB programs with array operations: (1) reim-
plementation of the array slicing by introducing a dynamic array slicing and
by removing redundant memory initialisations (Section 5.1); (2) repacking
of array slices into new variables allowing the Just-In-Time (JIT) compiler
to merge operations (Section 5.2); (3) simplifying and transforming numeric
ranges inside array slices (Section 5.3); and (4) investigating the idea of
Profile-Guided Optimisation (PGO) for loop vectorisation in MATLAB.

5.1 Redesigning array slicing

Computations often require only a subset of an array, e.g. odd elements or
non-zero elements. To extract the subset of an array, MATLAB has three
indexing methods: (1) positional indexing with exact coordinates of elements;
(2) linear indexing which treats a multi-dimensional array as one-dimensional;
and (3) logical indexing with a boolean condition. Positional indexing and
logical indexing are also known as array slicing, a common operation in
array languages including APL, Julia, Octave and many others. In MATLAB,
function subsref() implements array slicing for vectors, cell arrays and object
indexing for classes. However, the array slicing is not a fast operation because
it always makes a copy of extracted elements.

5.1.1 Dynamic array slicing

In MATLAB, expression A(1:end) is equivalent to writing just A (end indicates
the number of elements in a given dimension, here length(A)). However,
the array slice here is not only redundant, but it generates unnecessary
operations, e.g. data copy, out-of-bound checks, type checks. While MATLAB
programmers do not write code like that, they do write array slices A(1:n),
A(m:end), and A(m:n). Furthermore, MATLAB compiler Mc2Mc often creates
similar slices during loop vectorisation [1].

Slices A(1:n), A(m:end), A(m:n) are valid, however, they become redundant
when n==length(A) and m==1. In a dynamic language like MATLAB, it is
not possible to test if n==length(A) and m==1 are true in every case without
running the program. Therefore, we propose to delay the test until the
program execution and select the array slice or reference, accordingly.

Listing 5.1: Dynamic array slicing with d_slice() which selects either array
reference or array slice depending on the indexing range [from:step:to].

1 function result = d_slice(array, from, step, to)
2 if from == 1 && step == 1 && numel(array) == to

5.1. REDESIGNING ARRAY SLICING 79

3 result = array; % Select array reference
4 else
5 result = array(from:step:to); % Select array slice
6 end
7 end

For the dynamic selection of array slices or references, we have prepared
a function d_slice() depicted on Listing 5.1. The function tests if the
range [from:step:to] extracts the whole array or just a slice and it returns
either the array reference or slice. With the use of our HU!M compiler,
described in Chapter 6, we can automatise the replacement of every array
slice by the corresponding call to the d_slice(). For example, the array slice
A(m:end) changes into d_slice(A, m, 1, numel(A)). Moreover, it is possible
to reimplement d_slice() for multi-dimensional arrays.

Call to d_slice() does not incur an overhead because the function only
once checks if the indexing expression covers the whole array. However,
d_slice() is an user-defined function, therefore, it does not improve the JIT
compiler capabilities of merging instructions together into a single instruction
block. Nevertheless, the function eliminates unnecessary array slicing and
implicit data copies during the runtime which is still highly desirable.

Skipping static code analysis. The approach of deferring certain tests
to the runtime (or whole code transformations), bypassing the static code
analysis completely, applies to other operations like array transposition
((c)transpose) or data replication (repmat). Both operations depend on the
size of their operands, e.g. array transposition is required when we want to
perform element-wise addition on row R and column C vectors.

In order to perform array transposition in the runtime, we could encode
it as a higher-order function accepting as arguments the addition function
(plus) with its operands (R and C). Then, inside this higher-order function,
we test if operands are compatible (size(R) == size(C); we assume both
variables are numerical) and either returns the original expression (R+C) or
an expression with compatible operands (R+C’). However, in all these cases,
the dynamic checks are encoded inside user-defined functions, e.g. d_slice,
which prevent the JIT compiler from merging instructions together (see
Section 4.4.2). Therefore, there exists a performance trade-off between the
benefit of not performing static code analysis and the interference with JIT
compiler capabilities to compile instructions together.

5.1.2 Eliminating redundant 0-initialisation

In Chapter 4, while building the execution model, we have noticed that array
slicing generates not only data copy but also an allocation pattern before the
copy (with a large amount of memory store operations). Our initial guess was
that the built-in array slicing in MATLAB initialises the allocated memory

80 CHAPTER 5. CODE TRANSFORMATIONS

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

zeros(1, N)

zeros(M, M)

A(1:N)

B(1:M, 1:M)

mu_fast_slice(A, 1, 1, N)

mu_fast_slice(B,1,1,M,1,1,M)

0e+00
2e+06

4e+06
6e+06

0e+00
2e+06

4e+06
6e+06

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s
Run on machine M1; MATLAB=R2018b; threads=1; sampling threshold=100000; N=1000000; M=1000.

Zero initialisation in array slicing

Figure 5.1: Array slicing performs 0-initialisation (marked as a grey region)
before copying the extracted elements. The initialisation is an execution
region with a high amount of store instructions.

before making a copy to conform with “first-touch” policy. In other words,
array slicing performs a redundant 0-initialisation by writing zeros to the
memory and then overwrites these zeros with the an actual copy of data.

To better visualise the problem, we have prepared performance profiles
of: (1) explicit memory allocation for one and two dimensional data with
memory allocation function zeros, and (2) explicit array slicing A(1:end),
B(1:end, 1:end) depicted in Figure 5.1. At the beginning of these codes,
the 0-initialisation pattern occurs in execution regions consisting of a high
amount of store instructions and a lack of load instructions. At this point, it
is highly probable that the store instructions write zeros to the memory.

Listing 5.2: The mu_fast_slice() function is a faster alternative to the built-
in array slicing. mu_fast_slice() removes redundant memory initialisation
before the data copy with replacement of mxCalloc() by mxMalloc().

1 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, ...)
2 {
3 auto *array = (double *)mxGetData(prhs[0]);
4 ...
5 // Allocation without 0́ initialisation
6 mxSetData(plhs[0], mxMalloc(sizeof(double) * num_elems));
7 double *output = (double *)mxGetData(plhs[0]);
8

5.1. REDESIGNING ARRAY SLICING 81

9 // Copy one dimensional data
10 for (size_t k_out = 0, k_in = lower_bound; k_in <= upper_bound; k_in

+= step, k_out++) {
11 output[k_out] = array[k_in ´ 1]; // Data copy
12 }
13 }

In order to test our hypothesis, we have implemented in C (MEX API)
a new indexing function mu_fast_slice() depicted in parts in Listing 5.2.
The mu_fast_slice() takes the same arguments as d_slice() and it does
not perform explicit 0-initialisation, because we have replaced MATLAB
function mxCalloc() by mxMalloc() which only reserves a memory. In normal
circumstances, the memory initialisation is important because it forces an
explicit memory allocation (“first touch”). Therefore, at this point, we should
stay cautious because the mu_fast_slice() changes how MATLAB performs
a fundamental operation, the array slicing.

While investigating reasons for removing the 0-initialisation, we have
considered the concept of optimistic memory allocation in Linux systems
(flag vm.overcommit_memory). The malloc() function in Linux only reserves
the memory for allocation, but the function never accesses the memory.
Therefore, the reserved memory which was not accessed for a long time,
might be taken by another process when needed. In this context, the explicit
memory initialisation is desired as it touches the memory and cements the
memory reservation. Nevertheless, the optimistic memory allocation is not a
problem in MATLAB for two reasons: (1) both mxCalloc() and mxMalloc()
use malloc() internally (we have validated this claim by analysing calls to
the C runtime library glibc in the machine code with the Intel VTune [99]),
but more importantly, (2) mu_fast_slice() access the memory explicitly
just right after the allocation by performing data copy. Hence, the use of
mxMalloc() with immediate data copy mimics the mxCalloc() and it renders
the 0-initialisation obsolete.

In Figure 5.1, the fifth and sixth rows present the performance of the
optimised array slicing with the mu_fast_slice() function for one and two
dimensional arrays. The two dimensional version of mu_fast_slice() accepts
three more arguments for the range expression of the second dimension.
The new array slicing executes fewer instructions than the built-in array
slicing; however, the performance gain highly depends on the size of the
array slice. The bigger the slice, the more costly 0-initialisation is and the
bigger the performance gain is from removing the initialisation. Furthermore,
the presented transformation can be systematic and applied everywhere for
two reasons: (1) it is always legal; and (2) it does not require any profiling
beforehand.

82 CHAPTER 5. CODE TRANSFORMATIONS

5.2 Repacking of array slices

Array slicing affects the performance of MATLAB programs in two ways: (1)
it creates a copy of the requested subset of an array; and (2) it sometimes
prevents the JIT compiler from merging two or more operations into one
instruction block. Usually, array slicing is necessary for programs and we
need to perform the copy at some point. However, it is possible to move the
copy before all associated computation. Therefore, the computation uses only
references to the already copied array slices which allow the JIT compiler
to merge and execute operations together. In this section, we show how to
extract array slices and better schedule instructions by repacking array slices
into new variables.

Listing 5.3: Repacking of array slices on crni3 loop from the LCPC16
benchmark suite.

1 % Original vectorised code
2 X(1:(N´1)) = (B(1:(N´1)) ´ C(1:(N´1)) .* X(2:N)) ./ D(1:(N´1));
3 % After repacking of array slices
4 tmp_b = B(1:(N´1));
5 tmp_c = C(1:(N´1));
6 tmp_x = X(2:N);
7 tmp_d = D(1:(N´1));
8 X(1:(N´1)) = (tmp_b ´ tmp_c .* tmp_x) ./ tmp_d;

Transformation. Listing 5.3 presents the simple idea behind the repacking
of array slices. The transformation replaces every indexed read reference
(array slice) in the right-hand side of the assignment (line 2) by a reference
to a temporary variable tmp_* which holds the array slice (line 8). The code
on lines from 4 to 7 depicts how array slices are copied into new temporary
variables tmp_*. The idea is somehow analogues to packing data into vector
registers where the temporary variables act as our registers [139] or packing
sparse subset of data into dense variables just for the computation [140].
However, the metaphor ends because temporary variables act only as aliases
of the array slices. In other words, we are just repacking the slices; hence,
the name.

Application. The transformation is especially useful in cases where ar-
ray slicing prevents the JIT compiler from executing operations together
(Chapter 4). Repacking replaces array slices in the statement with references
which allow the JIT compiler to merge and execute operations in a single
instruction block. For finding beneficial applications of the repacking, we
propose to use our execution model for expressions from Chapter 4. The
model allows predicting the order of instructions in the expression before and
after the repacking. Furthermore, the model works directly from the source

5.3. RANGE SIMPLIFICATION 83

code of the program and requires no prior execution (static model). In other
words, our model is a suitable candidate for a transformation heuristics for
source-to-source compilers.

The knowledge about the order of instructions after the repacking indicates
if the repacking creates new instruction blocks, execution regions where many
operations execute together. In general, the repacking yields two results: (1)
no change to the order of instructions; or (2) creation of new instruction
blocks by merging other blocks. In case (1), the repacking does not improve,
nor deteriorate the program performance. However, the sole existence of
new instruction blocks (2) is not sufficient to guarantee the performance
improvement. Other conditions including the size of input data, the number
of threads, and the version of JIT compiler (MATLAB version), among others
have to be taken into account.

Results. Figure 5.2 presents the relative increase of the performance after
the repacking of array slices measured on three kernels: crni3 loop from
LCPC16 [1], state_fragment (kernel 7) from Livermore 1, and s211 from
TSVC [141,142] benchmark suites.

A recurrent pattern in the data, that we can observe in Figure 5.2, is
a better performance of the repacking obtained on the newer version of
MATLAB R2018b. A possible explanation is the improved working of the
JIT compiler. In this case, the repacking reveals a massive opportunity for
JIT compilation, which the results show.

The repacking for TSVC/s211 kernel decreases the performance for the
majority of tests. However, the execution model from Chapter 4 can predict
this outcome. The result of the model is the same instruction chain of the code
before and after the repacking. In other words, the repacking is not profitable
because it does not create any new instruction block with operations executed
together.

Other two loops LCLP16/crni3 and Livermore/state_kernel are perfect
examples of how the performance gain from the repacking depends on the size
of input data, the number of threads, the MATLAB version, and the code
itself. In the current form, the execution model from Chapter 4 is insufficient
to answer if the repacking increases the performance. Thus, the repacking
should be considered with the code profiling to find out if the transformation
is beneficial in the given context.

5.3 Range simplification

Ranges created with the colon operator, e.g. 1:2:N, colon(50, -1, 25) are
an integral part of almost every MATLAB program. The colon operator
creates a new vector or extracts a subset of array elements in array slicing.

1https://www.netlib.org/benchmark/livermore

https://www.netlib.org/benchmark/livermore

84 CHAPTER 5. CODE TRANSFORMATIONS

1 thread
2 threads

4 threads
6 threads

@
LC

P
C

16
crni3

@
Liverm

ore
state_fragm

ent

@
T

S
V

C
s211

0e+00
1e+06
2e+06
3e+06
4e+06
5e+060e+00
1e+06
2e+06
3e+06
4e+06
5e+060e+00
1e+06
2e+06
3e+06
4e+06
5e+060e+00
1e+06
2e+06
3e+06
4e+06
5e+06

0%

40%

80%

120%

−
25.0%

0.0%

25.0%

50.0%

−
20.0%

−
10.0%

0.0%

10.0%

20.0%

Input data size

Percentage of improvement
M

AT
LA

B
 version

R
2015b

R
2018b

R
un on m

achine M
2.

P
erform

ance change after repacking of array slices

F
igure

5.2:
R
esults

ofapplying
repacking

ofarray
slices.

N
ot

every
com

putation
benefits

from
the

transform
ation

(TSVC/s211).

5.3. RANGE SIMPLIFICATION 85

A(2*(1:N)−1) A(1:2:(2*N−1))

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE
(Vector floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

0e+00
1e+07

2e+07
3e+07

4e+07
5e+07

0e+00
1e+07

2e+07
3e+07

4e+07
5e+07

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Execution region Range evaluation JIT−compiled code Indexing Data copy (with 0−init)

Run on machine M1; MATLAB=R2018b; threads=1; sampling threshold=100000; N=1000000.

Range simplification

Figure 5.3: Array slice with an arithmetic expression as index generates
complex execution regions (on the left). However, an array slice with a range
expression results only in the data copy (on the right).

Moreover, MATLAB optimises the use of the colon operator in the context
of array slicing.

Figure 5.3 presents performance event profiles for two array slices, one
created with an arithmetic expression A(2*(1:N)-1) and the other with just
one range A(1:2:(2*N-1)). The figure depicts profiles of four performance
events which count the number of instructions: scalar and vector arithmetic
instructions, load and store instructions, from top to bottom on the figure.
Both codes are equivalent; they create the same range and extract the same
elements of an array (odd elements). However, the first code is an expression
with multiplication, subtraction, and range 1:N. Therefore, the expression
requires evaluation with three distinctive steps before performing the data
copy of the required array elements. Those steps represent the following
execution regions: range evaluation of 1:N; multiplication and subtraction
compiled into one instruction block with the JIT compiler (JIT-compiled
code); and indexing of array elements from the computed indices (indexing).
Moreover, the same performance profiles occur for array slicing with indices
stored in an external variable or when the indices are a random permutation
of values from 1 to N. In short, this first version of the code is highly inefficient.

The second code A(1:2:(2*N-1)) skips all three steps and moves directly
to the data copy. The colon operator acts here as a recipe for the JIT compiler
on how to extract requested array elements. The ranges created with the
colon operator are simple arithmetic progressions. Thus, the JIT compiler
can use the ranges in the generated code to directly access array elements

86 CHAPTER 5. CODE TRANSFORMATIONS

during computations. However, the JIT compiler is not able to transform
explicit arithmetic expression like in the case of the first code.

Transformation. To simplify the arithmetic expression A(2*(1:N)-1), we
frame it as an affine function fpkq “ αk`β. We consider here only expressions
in the form of an affine function, where α and β are expressions which evaluate
to scalar values. If k is a range, then fpkq is a new range where every element
is multiplied by α and increased (or decreased) by β. However, because k
has the form of [from:step:to], we can use the function fpkq to rewrite the
k to the final shape as follows [fpfromq:α˚step:fptoq].

5.4 Profile-guided loop vectorisation

For many years, MATLAB programs expressed with array operations were
faster than those with for-loops. Therefore, in order to accelerate MATLAB
programs, researchers have applied automatic loop vectorisation to MATLAB
[1,9, 21], a transformation of for-loops to array operations previously known
for Fortran [71,140,143]. However, in recent years, the Just-In-Time (JIT)
compiler in MATLAB has improved the performance of not only array
operations but also for-loops resulting in a dilemma about which for-loops
should be vectorised [1, 31].

Chen et al. well illustrate the dilemma in their work about Mc2Mc2, an
automatic vectorising compiler for MATLAB [1]. The Mc2Mc has no heuristics
for selecting loops which could profit from vectorisation, and as a result,
Mc2Mc vectorises every for-loop systematically, if only the vectorisation is
valid for the loop. Moreover, with the systematic vectorisation, the profit
from several profitable loop vectorisations could be balanced out by the
performance decrease from other vectorised loops.

The result of Chen et al. work [1] indicates the systematic vectorisation
is beneficial for 8 out of 9 benchmarks in a purely interpreted execution with
average speedups ˆ19.1 for Octave 4.0 and ˆ7.65 for MATLAB R2013a.
However, the systematic vectorisation with newer versions of MATLAB
with the JIT compilation enabled (version ěR2015b) often decreases the
performance with an average speedup of ˆ1.02 for MATLAB R2013a and
a slowdown of ˆ0.77 for MATLAB R2015b. With the JIT compilation, the
minority of benchmarks benefit from the systematic vectorisation: only 5 on
R2013a and 2 on R2015b.

In this section, we explore profile-guided vectorisation as one of the
solutions to the dilemma of loop vectorisation, which was proposed by Chen
et al. [1]. The technique creates an interval of input data size for which the
loop vectorisation is profitable. Later, during program execution, the interval

2https://github.com/Sable/Mc2Mc

https://github.com/Sable/Mc2Mc

5.4. PROFILE-GUIDED LOOP VECTORISATION 87

Table 5.1: Experiment reproduction of systematic vectorisation from the
paper by Chen et al. [1]. Although, the exact speedups differ, the reproduction
follows the same patterns of speedups and slowdowns as in the original work.

Benchmark Description Speedup

Chen [1] Us [31]

backprop Backpropagation algorithm 0.71 0.81
bs Black–Scholes model 15.0 8.33

capr Gauss–Seidel method 0.79 0.85
crni Crank-Nicholson method 0.83 0.81
fft Fast Fourier Transform 0.59 0.64
nw Needleman-Wunsch algorithm 0.96 1.00

pagerank PageRank 0.94 0.94
mc Monte Carlo simulation 2.02 2.22

spmv Sparse Matrix-Vector Multiplication 0.013 0.02

is used as a condition which selects the faster version of the code: loop or
vector operations.

Experiment reproduction. In this section, we have reproduced the re-
sults from the paper by Chen et al. [1] on our machine M1 (full specification
in Table A.1). We have followed the authors’ instructions by computing
speedups from average execution time after 5 repeated measurements. The
reproduction focuses on MATLAB R2015b with enabled JIT compiler, be-
cause for this MATLAB version loop vectorisation results in a considerable
slowdown.

Table 5.1 depicts performance speedups of loop vectorisation from the
work of Chen et al. [1] and our reproduction. Although the results differ,
we observe the same speedups and slowdowns for particular benchmarks.
The result validates that loop vectorisation in MATLAB is responsible for
the performance change and not particular to machine configuration. The
result also shows that 7 out of 9 benchmarks (grey rows) are slower after the
systematic vectorisation. Therefore, our further analysis focuses solely on the
7 benchmarks in a need for a better vectorisation policy than the systematic
approach.

Code generation improvement. The Mc2Mc compiler creates, for each
vectorised loop in the generated code, a dedicated variable which stores the
iteration space of the loop, mostly a range expression. Array slicing uses later
that variable in the generated code. In Section 5.3, we have established that
array slicing with indices stored in a variable performs prolonged indexing
process, before making a copy. However, inlining the range expression into

88 CHAPTER 5. CODE TRANSFORMATIONS

nw3 fft1

crni2 nw2

0 2000 4000 6000 8000 0 1000 2000 3000 4000

0 1000 2000 3000 4000 0 2000 4000 6000 8000
0.0e+00

2.5e−05

5.0e−05

7.5e−05

1.0e−04

0.0

0.3

0.6

0.9

0.0

0.1

0.2

0.3

0.4

0e+00

1e−04

2e−04

3e−04

Size of input data

E
xe

cu
tio

n
tim

e
[s

ec
on

ds
]

Code version For−loop Vectorised (mc2mc) Vectorised (mc2mc + our optimisations)

Run on machine M1; MATLAB=R2015b; threads=2.

Performance of loop vectorisation

Figure 5.4: The execution time of loops crni2, nw2, nw3, fft1 in original
(for-loop) and vectorised versions; without and with our optimisations. Source
code of the loops is located in Figure D.1 inside Appendix D.

the array slice omits the indexing and performs the copy directly. Moreover,
Mc2Mc does not perform range simplification, as described in Section 5.3.

Figure 5.4 presents how the range expression inlining and the range
simplification increase the performance of the loop vectorisation. Vectorised
code with our optimisations performs as fast, or faster than the original
loop. The results are especially important in all cases where non-optimised
vector codes generated by the Mc2Mc are slower than loops. Figure D.1 in
Appendix D depicts the differences between tested loops and their versions.

Loop profiling. After improving the code generated by the Mc2Mc, we
investigate how sensitive the performance of loop vectorisation is to the
change of input size data. We have assumed the input size is synonymous
to the number of loop iterations because in our context more loop iterations
require more data to traverse over and the opposite.

For the profiling task, we have extracted and profiled 17 loops from 7
benchmarks, which have shown performance slowdown after the systematic
loop vectorisation (see Table 5.1). The profiling code randomly initialises
arrays used in the computations to a range of sizes from 1 to 3 200 000 with
various steps, depending on the loop, but it always includes the input size
used in the study of Chen et al. [1]. This approach is valid assuming the
loop has no control dependence [144] which is the case for our loops. Next,

5.4. PROFILE-GUIDED LOOP VECTORISATION 89

Table 5.2: Results of loop profiling (on MATLAB R2015b) depicts the interval
of profitable data size when the loop vectorisation improves the performance
of the loop. H indicates the loop is never optimised by vectorisation in the
profiled range, which always includes values of experiment data size from the
work of Chen et al. [1]. Intervals marked in grey intersect with experiment
data size, thus, increasing the performance of corresponding loops.

Loop Experiment data size Profitable data size

Mc2Mc Mc2Mc+opt

backprop1 t17, 2850001u H ě 255
backprop2 2 ě 4033 ě 257
backprop3 t17, 2850001u H ě 385
backprop4 2 H ě 257

capr1 8 ě 20 ě 17
capr2 20 ě 3329 ě 385
capr3 49 ě 5953 ě 321
crni1 2300 ě 161 ě 193
crni2 2300 H ě 289
crni3 2300 H ě 1217
fft1 256 H ě 417
fft2 2, 4, 8 . . . 256 H ě 129
nw1 4097 H ě 65
nw2 4097 ě 1665 ě 257
nw3 4097 ě 7681 ě 193

pagerank1 1000 H ě 273
spmv1 t2, 3u ě 6337 ě 321

the code measures the execution time between 10 to 100 times for each
loop, depending on the loop complexity. Finally, we take minimal execution
time from the measurements to obtain better stability and discards first 1
to 10 measurements which usually show an overhead of a warmup stage of
MATLAB execution engine [145].

Table 5.2 depicts intervals of input data size for which the loop vectori-
sation is profitable, without (Mc2Mc) or with our optimisations (Mc2Mc+opt).
Data size marked as H indicates the loop does not benefit from vectorisa-
tion for the profiled range. If we compute the intersection of the profitable
data sizes with sizes observed in the experiment by Chen et al. [1], we find
which loops benefit from vectorisation. For the non-optimised code (Mc2Mc),
vectorisation improves only two loops crni1 and nw2, marked in grey. Our
optimisations, range simplification and range expression inlining, improve
further performance of all loops by shifting to the left intervals of profitable
data size. For example, applying our optimisations to the non-optimised code

90 CHAPTER 5. CODE TRANSFORMATIONS

backprop crni fft nw pagerank

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0

1

2

3

0

1

2

3

E
xe

cu
tio

n
tim

e
[s

ec
on

ds
]

Code version For−loop Vectorised (mc2mc) Profile−Guided Vectorisation (mc2mc + our optimisations)

Run on machine M1; MATLAB=R2015b; threads=2.

Performance of Profile−Guided Vectorisation

Figure 5.5: Profile-guided vectorisation obtains faster or equal execution
in comparison to the loop code. More importantly, the profile-guided ap-
proach does not degrade performance as opposed to standard, systematic
vectorisation in Mc2Mc compiler.

nw2, decreases the starting point of beneficial vectorisation from 1665 to 257.
In other words, the optimised vector code is faster than the original loop nw2
even for smaller number of iterations than for the pure Mc2Mc version. More-
over, now, up to 10 loops from the work of Chen et al. [1] can benefit from
the optimised vectorisation, because their data sizes used in the experiment
intersect with intervals of profitable data size.

In order to integrate the profile-guided vectorisation, our compiler prepares
two code versions: original loop and vectorised code. Moreover, the compiler
inserts if statement to check if the number of loop iterations is inside the
interval of profitable data size (Table 5.2). If that is the case, then the
program runs the vector code. The runtime checks are essential especially for
loops backprop1, backprop3, and fft2 because for them, not every experiment
data size belongs to the profitable data size.

The presented profile-guided vectorisation has a considerable advantage
for two reasons: (1) the profiling examines loops for a whole range of possible
input data sizes preparing it for the future reuse; and (2) the profiling result
is integrated into the generated code, thus, allowing the code to easily choose
different code versions when values of variables and input data change in the
program. Therefore, the approach facilities program optimisations without
hurting MATLAB property of rapid prototyping. However, at the price of
running the loop and the vector code multiple times.

Conclusions. A profile-guided vectorisation is a viable approach to the
selection of candidates for loop vectorisation in MATLAB programs. The

5.5. CONCLUSION 91

profiling requires only one parameter the number of loop iterations, thus,
significantly simplifying the procedure of finding the conditions when a loop
is worth vectorising. With the improvements to array slicing in the code
generated by the Mc2Mc compiler, we have significantly improved performance
of three benchmarks: crni by 25.7 %, pagerank by 33.3 %, and backprop by
45.8 % as depicted in Figure 5.5.

Benchmarks and results presented in this section are available on-line3.

5.5 Conclusion

This chapter presents the results of fusing performance event profiles (PEP)
from Chapter 3 with information about program execution from Chapter 4.
Without the performance profiles, we could not discover how MATLAB
performs data copy during array slicing. Moreover, without the profiles, we
could not analyse and formalise the program execution in MATLAB which
lead us to concepts of the instruction block and the instruction tree. All these
components allowed us to make the following contributions:

• Introduction of dynamic array slicing which tests, during the program
execution, if the indexing expression covers the whole array (see Sec-
tion 5.1.1). As a result, this function removes redundant data copy
without performing any static code analysis. This approach of defer-
ring certain tasks to the runtime applies to other operations like array
transposition or data replication.

• Reimplementation of MATLAB built-in array slicing with mu_fast_slice
for one and two dimensional arrays. The new array slicing removes
redundant zero initialisation improving performance of the operation
(see Section 5.1.2).

• Introduction of repacking of array slices (presented in Section 5.2), a
transformation which extracts array slices from MATLAB expressions
and inserts them into new variables. Thus, allowing JIT compiler to
merge operations from the expression into a single instruction block.

• Introduction of a simple, yet, powerful range simplification transforma-
tion which converts expressions with ranges, e.g. 3*(1:N)+2, to pure
ranges 5:3:(3*N+2) (see Section 5.3). The transformation benefit comes
from the fact that array slicing with pure ranges skips the evaluation
of the complex expression and indexing process seen in Figure 5.3.

• Analysis of profile-guided loop vectorisation applied to MATLAB pro-
grams described in Section 5.4 and [31]. First proposed by Chen et

3https://github.com/quepas/array2018-profile-based-vectorization

https://github.com/quepas/array2018-profile-based-vectorization

92 CHAPTER 5. CODE TRANSFORMATIONS

al. [1], the profiling of loops is a valid technique for precise application
of vectorisation to MATLAB loops. In our work, we have combined
the vectorisation with range simplification to find even more optimisa-
tion opportunities for loops which benefit from vectorisation only at a
specific interval of loop iterations obtained from the profiling.

Chapter 6

HU!M compiler

Résumé

Dans ce chapitre, nous présentons notre compilateur HurryUp!MATLAB qui im-
plémente le modèle d’exécution et les transformations de code présentées dans les
sections précédentes. L’outil est un compilateur source-à-source qui prend en en-
trée le code MATLAB et produit du code MATLAB modifié avec des performances
identiques ou supérieures. Le compilateur effectue plusieurs analyses bien établies
telles que l’analyse du flot de contrôle, l’analyse du flot de données et l’analyse
des dépendances de données de la boucle. Plus important encore, HU!M est un
compilateur entièrement automatique, et il ne nécessite aucune information de code
supplémentaire.

Introduction

Compilers not only translate programming languages to a machine code which
is understandable and executable by computers, they also translate from one
language into another, or like in our case, compilers restructure and transform
an existing code without changing the underlying programming language.
The latter compilers are called source-to-source compilers (or transpilers)
with examples of ROSE [146], PIPS [147], Cetus [148,149], or Mc2Mc [1]. The
most common usage of the transpilers is to increase program performance
by transforming into a more efficient form or by deploying it on another
(performant) architecture, e.g. parallel, multi-core, many-core, GPGPU.

In this chapter, we present our prototype source-to-source compiler
HurryUp!MATLAB (HU!M) dedicated to increase performance of MATLAB/Oc-
tave programs on multi-core processors. Throughout our work, we have used
HU!M to prototype new code transformations, perform quantitative analysis
of the code, and prepare the codes for experiments.

93

94 CHAPTER 6. HU!M COMPILER

6.1 Overview

HU!M is a source-to-source compiler which takes an input MATLAB/Octave
program and performs two things: (1) analyses the input code; and (2)
transforms the code to achieve better performance. The analysis part (1)
consists of mainly standard compiler analyses such as: control-flow analysis
[150], data-flow analysis [151], and loop dependence analysis [152], which
give a fundamental information about the existing relationships between the
statements inside programs.

The analysis stage contains also MATLAB-specific (or array programming
specific) dimensionality analysis by Birkbeck et al. [21], which reasons about
the size of arrays changing over the course of the program execution. The
knowledge about changing arrays and their shape is necessary for loop
vectorisation [1, 9]. Moreover, within the compiler, we have implemented our
execution model for MATLAB expressions as explained in Chapter 4 as a part
of the analysis stage. The model predicts how MATLAB divides the program
into instruction blocks, generated by the Just-In-Time (JIT) compiler. With
the complete prediction of instruction blocks, the compiler can apply code
transformations which reorder, fuse, or divide expressions and statements in
order to obtain an optimal performance (or at least close to).

The transformation part is a collection of separate code transformations:
classical automatic loop vectorisation [71,72]; and two of our code transfor-
mations fast array slicing, which replaces built-in array slicing routine with
our optimised C MEX reimplementation, and repacking of array slices, which
extracts array slices and replaces them by references, thus, creating a single
instruction block for the computation.

The HU!M compiler is written in Java because of the language simplicity
and educational values (easy to read, modify, and extend). With the choice
of Java, we clearly state the prototype nature of our compiler. Moreover, the
compiler only targets the stand-alone MATLAB/Octave without additional
toolboxes in order to limit the scope of the analyses and the transformations.
Furthermore, with the compiler, we only target the optimisation of MAT-
LAB/Octave code executed on multi-core processors (MATLAB can also
perform computations on GPU/CUDA and distributed architectures with
the use of Parallel Computing Toolbox).

In the next section, we briefly present other compilers, which have influ-
enced the design and implementation of ours. Furthermore, we decompose
and describe in details the analysis and the transformation stages of our HU!M
source-to-source compiler.

6.2. INFLUENCES 95

6.2 Influences

The development of HU!M was influenced by several existing open-source
compilers. From these projects, we have collected and reused a few features
and approaches, most suitable for our purpose — a code transformation of
MATLAB/Octave programs.

LLVM. LLVM is a compilation toolchain designed for building new com-
pilers and language environments [75]. Today, LLVM is a basis for clang (a
C/C++ compiler), runtime environments for Swift, Rust, and many research
projects, e.g. Polly — implementation of loop transformations based on the
polyhedral model [153].

In LLVM, every analysis and code transformation is designed around
passes. Single pass traverses a portion of code, e.g. basic blocks or for-
loops, to perform code analysis or transformation. While code analyses only
gather information about the code, code transformations alter the code which
might require its re-analysis. In HU!M, we use the concept of the pass to
create four distinctive passes: IRAnalysis, Analysis, IRTransformation, and
Transformation.

The first two passes IRAnalysis and Analysis both perform analysis, but
on different inputs. The IRAnalysis works on intermediate representations
(IR) which are homogeneous, e.g. control-flow graph (CFG) consisting of basic
blocks and data-dependence graph (DDG) containing statements. Whereas,
Analysis in HU!M works on the whole or only parts of the AST, which is
heterogeneous [154]. In other words, the AST consists of distinct nodes and
Analysis can work on, e.g. any AST node, only SingleAssignment, or on all
top-level ForLoop in a MATLAB script. The same distinction is true between
IRTransformation and Transformation.

The passes also differ in their inputs and outputs. The analysis passes
have only one input parameter: an IR or the AST. The outputs of those
passes are accessed through predefined methods (getters) because single
analysis might output many distinctive information. Transformation passes
take only specific input and output. For example, LoopVectorisation is
a transformation pass which takes a ForLoop node and vectorise it into a
Region node — a linear chunk of code. Furthermore, the transformation pass
IRTransformation is used in between code analyses. For example, BuildCFG
pass converts an input AST into a CFG.

Halide. Image processing with stencil computations raises challenges to
efficient code generation that Halide tries to tackle. Halide is a state-of-
the-art language and compiler which expresses and treats separately what is
computed (algorithm) with how it is computed (schedule) [155]. However,
what influenced our compiler was something unrelated to improving code
generation for image kernels. Instead, we have reused the implementation

96 CHAPTER 6. HU!M COMPILER

of the visitor for mutating an AST. The altering of the AST is conditional
because it only modifies the AST root node if any of its subtrees have
changed. Listing 6.1 presents an example of visitPlus method from our
compiler, which mutates the left and right AST subtrees and recreates the
Plus node only if the subtrees have changed.

Listing 6.1: Conditional AST mutation implemented as a visitor pattern.
1 Node Mutator::visitPlus(Plus plus) {
2 Node left = mutate(plus.getLeft());
3 Node right = mutate(plus.getRight());
4 if (left.sameAs(plus.getLeft()) && right.sameAs(plus.getRight())) {
5 return plus; // If the subtrees haven't change, return the original node
6 }
7 return new Plus(left, right); // ... otherwise return the modified node
8 }

Without checking if subtrees have changed, altering a tree with the visitor
pattern recreates every node, even if not mutated. However, the approach
presented in Listing 6.1 transforms only the necessary parts of the input
AST. Therefore, the Mutator invalidates the results of code analysis only on
modified parts of the AST leaving intact other results of the analysis.

McLAB. McLAB [14,156] is an umbrella project of tools dedicated to the
analysis, compilation, and transformation of MATLAB code. The universe
contains static analysers (McSAF [77], Tamer [70], McFLAT [157]), compilers
(AspectMatlab [158], MiX10 [16], Mc2For [15]), and Just-In-Time (JIT)
compiler (McVM [22]). However, for us, the most interesting part consists
of static analyser: McSAF, Tamer, and Tamer+. In these project, we have
analysed the data-flow solver, value propagation in Tamer, and many other
components. Moreover, we have reused some part of the MATLAB grammar
defined in the fronted of the McLAB (which actually works on a subset
of MATLAB). In the end, we did not decide to use the McLAB in our
study, because our focus has switch into the performance analysis over time.
Moreover, our analyses and code transformations are fairly simple, requiring
only a straightforward code base.

Cetus. This source-to-source compiler is a comprehensive solution to the
analysis and transformation of C language [148,149]. The compiler contains a
simple implementation of the data-flow solver with reaching definition analysis.
Moreover, Cetus is implemented in Java, just like our compiler. Therefore, we
have reused several classes related to the def-use chains and data-flow graphs
which are universal across the analysis of imperative languages. Furthermore,
Cetus contains working implementations of loop data dependence tests which
was of great help to our efforts in implementing this analysis.

6.3. CODE ANALYSIS 97

Input code AST CFG Reaching definitions Use-def chains

Symbol table Shape analysis

Execution model

Execution prediction

Update

Figure 6.1: Overview of the analyses implemented in HU!M.

InstTreeNode

ArraySliceArrayReference InstructionBlock

Figure 6.2: Hierarchy of classes representing the instruction tree.

6.3 Code analysis

HU!M compiler implements several well-known analyses which are crucial for
the automatic analysis and transformation of MATLAB/Octave programs.
Figure 6.1 presents an overview of the most important analyses for our
work, some of them are already mentioned in the previous section. In the
compiler, we work only on abstract-syntax tree (AST) representation which
is well-suited for code transformations and simple analyses.

From the description, we omit the implementation of shape analysis
by Birkbeck et al. [21] and loop dependence analysis based on Integer-
Linear Programming (ILP) formulation, because both of them are fairly
straightforward and known. Instead, we focus on the implementation of our
execution model from Chapter 4.

Execution model

HU!M compiler implements the execution model described in Chapter 4. The
implementation is straightforward because the compiler already works on
the abstract-syntax tree (AST) code representation. Therefore, we skip the
first step of the model — the conversion from a MATLAB expression to the
AST (in Section 4.5.1). Instead, we start with a procedure for building an
instruction tree from the AST. The full implementation of the execution model
consists of two classes: BuildInstructionTree and ExprExecutionModel.

Building instruction tree. The first class, BuildInstructionTree, per-
forms a translation from an input AST to a corresponding instruction tree.
The instruction tree is represented as a hierarchy of four classes depicted

98 CHAPTER 6. HU!M COMPILER

in Figure 6.2. All three subclasses: InstructionBlock, ArrayReference, and
ArraySlice directly correspond to nodes instruction block, array refer-
ence, array slice from Section 4.5. Moreover, only InstructionBlock holds
children nodes, because both ArrayReference and ArraySlice are always used
as leaves.

The transformation from AST to instruction tree uses the visitor pattern
to traverse an AST in a post-order. Every time the procedure encounters
an array reference or slice, it issues a corresponding node. However, if
the procedure encounters an instruction, it not only creates a node for the
instruction block, but it also connects the already visited arguments with
this block as its children.

Listing 6.2: Definition of InstructionBlock and Instruction classes.
1 public InstructionBlock extends InstTreeNode {
2 private Multiset<Instruction> instructions = HashMultiset.create();
3 private Set<ArrayReference> references = Sets.newHashSet();
4 private Set<ArraySlice> slices = Sets.newHashSet();
5 ...
6 }
7
8 public Instruction {
9 private String opcode;
10 private CompilationMode compilationMode; // {SINGLE, COMBINABLE, UDF}
11 ...
12 }

Every node of the instruction tree holds additional information. Both,
ArrayReference and ArraySlice store a reference to the AST node ReadRef
which represents the name of the accessed array with indexing expressions.
Moreover, InstructionBlock holds information described in Section 4.2: (1)
instructions inside the block; (2) set of array references used in the computa-
tion; and (3) set of array slices accessed from inside the block.

Listing 6.2 shows the definition of the InstructionBlock and Instruction
classes. A single instruction represented as Instruction contains its name
(opcode) and the compilation mode (compilationMode), which is a property
expressing how the JIT compiler will use the instruction (execute alone or
merge with other instructions). Section 4.4 describes the compilation mode
in details.

Obtaining minimal instruction tree. ExprExecutionModel class directly
uses the instruction tree to perform three steps from Section 4.5.1: (1)
remove array references and store them inside instruction blocks; (2) create
minimal instruction tree presented in Algorithm 2; and (3) flatten the minimal
instruction tree to obtain the instruction chain which indicates what execution
regions MATLAB will create to execute an input expression.

6.3. CODE ANALYSIS 99

Listing 6.3: Building of the minimal instruction tree. The code follows
Algorithm 2.

1 public class ExprExecutionModel implements ExecutionModel {
2 ...
3 public boolean canMerge(InstTreeNode node) {
4 return node instanceof InstructionBlock && onlyCombinableFunctions(node);
5 }
6
7 public boolean hasRightSibling(InstTreeNode node) {
8 InstTreeNode parent = node.getParent();
9 int indexOfTheChild = parent.getChildren().indexOf(node);

10 return indexOfTheChild < parent.getChildren().size()́ 1;
11 }
12
13 public void buildMinimalTree(InstTreeNode node) {
14 List<InstTreeNode> revChildren =
15 Lists.newArrayList(Lists.reverse(node.getChildren()));
16 for (Iterator<InstTreeNode> it = revChildren.iterator(); it.hasNext();) {
17 buildMinimalTree(it.next());
18 }
19
20 if (canMerge(node) && canMerge(node.getParent())) {
21 if (!hasRightSibling(node)) {
22 node.getParent().mergeWith((InstructionBlock) node);
23 node.getChildren().forEach(child >́ node.getParent().addChild(child));
24 node.getParent().getChildren().remove(node);
25 }
26 }
27 }
28 ...
29 }

Stage (1), removing of array reference nodes, is a straightforward visitor
pattern where children of each instruction block are analysed. In the case
where a child is an array reference, the child node is inserted into the set of
references and then detached from the parent.

The next stage (2), reduction of an instruction tree to the minimal
instruction tree form, is a direct implementation of Algorithm 2 depicted in
Listing 6.3. The method traverses the instruction tree in a post-order manner
with right-to-left visiting of children (lines 14–18). Then, the algorithm checks
if a visited node can merge with its parent (lines 20–21). If the condition is
true, the node merges with its parent and it is removed from the tree entirely
(lines 22–24). The result of this procedure is a minimal instruction tree where
every pair of instruction blocks that could be merged was merged.

Finally, stage (3) translates the minimal instruction tree into an instruction
chain which is a flatten representation of this tree. In Section 4.5.2, we have
showed how the instruction tree predicts data copy and computation region
occurring during the execution of MATLAB expression (Figure 4.9). These
predictions indicate, e.g. which version of an expression has less instruction

100 CHAPTER 6. HU!M COMPILER

AST Symbol table Use-def chains Execution prediction

Loop dependence analysis Loop vectorisation

Fast array slicing Range simplification Repacking of array slices

Figure 6.3: Overview of transformations in HU!M.

blocks, or which expression after reordering will have less instruction blocks
and which one has more.

6.4 Code transformation

In this section, we present three code transformations implemented in HU!M.
Figure 6.3 shows how these transformations use information coming from
code analyses described in Section 6.3. All presented transformations are
implemented as Transformation passes.

6.4.1 Loop vectorisation

With the emergence of vector computers, programming languages like Fortran,
have received new instructions designed especially for vector computations [71,
140]. The vector form of programs (also called vectorised code) is available in
MATLAB as well in a form of array operations. Loops in MATLAB performs
scalar operations, however, vectorised code often uses vector instructions
(from ISA extensions: MMX, SSE, AVX on Intel architecture). Moreover, as
shown even fairly recently by Chen et al. [1] and in our work [31] (described
in Section 5.4), loop vectorisation is still a viable optimisation technique for
MATLAB programs.

Our implementation of loop vectorisation is based on techniques and on
the theorem of dependence described by Kennedy and Allen [71, 72] which
are also used by other MATLAB source-to-source compilers [1, 21]. HU!M
contains LoopVectorisation transformation pass implementing a simplified
algorithm vectorize from the book by Allen and Kennedy [72] (Figure 2.1
in this book).

Analysing data dependences. Our procedure starts by building a data
dependence graph (DDG) for the analysed loop nest [152]. For this task,
we use a loop dependence analysis based on Integer Linear Programming
(ILP) described in Section 6.3. The DDG represents relationships between
elements of arrays which are read from and write to in the same iteration (loop

6.4. CODE TRANSFORMATION 101

independent dependence) or across many iterations (loop carried dependence).
Those dependences between elements may prevent instructions from being
vecto rised directly, because some computations depend on previous ones,
therefore, these computations cannot execute in parallel.

Finding vectorisable statements. The data dependence graph shows
which statements depend on each other. The next step is to find in the
DDG strongly connected components (we use Kosaraju’s algorithm for this
task [159]) which indicate cycles of dependent statements that cannot be
vectorised. Further, the DDG is translated into a π-graph where each cycle of
statements or single statement translates to a single node (called π-node) [71].
Then, the π-graph is topologically sorted to obtain a legal execution order
of instructions. Finally, our algorithm generates vectorised code for each
π-node containing single statement. Other π-nodes with cyclic statements
are wrapped around a for-loop and executed sequentially as initially.

Listing 6.4: Loop vectorisation often requires performing array transposition.
1 A = zeros(1, n);
2 B = rand(1, n);
3 C = rand(n, 1);
4 % Loop version does not care about the layout of arrays
5 for i=1:n
6 A(i) = B(i) + C(i);
7 end
8 % Vectorised version with the transposition of column vector C
9 A(1:n) = B(1:n) + C(1:n).';

Transforming array layout. During the vectorisation of a given state-
ment, we use the dimensionality analysis by Birkbeck et al. [21] (Section 6.3)
to validate if all arrays after the transformation are compatible. A common
case when they are not compatible, is when a vectorised element-wise expres-
sion contains a mix of column and row vectors as depicted in Listing 6.4. In
this case, the dimensionality analysis marks which vectors should be trans-
posed to make arrays compatible again, such as vector C in Listing 6.4 which
must be transposed (.’) so that the addition (+) preserves its semantics.
Otherwise, without the transposition, the addition will return an error due
to the incompatible sizes in MATLAB until the version R2016b. In R2016b
and after, the addition would perform implicit array expansion of both vec-
tor operands into matrices of the same size by replicating the vectors and
performing element-wise addition on the new matrices.

Dynamic code selection. HU!M also generates if-else statement for dy-
namic code selection of instructions which performance depends on variables

102 CHAPTER 6. HU!M COMPILER

R = A(1:N) + B(5:2:M, N:´2:1) .* C FastSliceTransformation

R = mu_fast_slice(A,1,1,N) + mu_fast_slice(B,5,2,M,N,´2,1) .* C;

Figure 6.4: Overview of the fast array slicing substitution in HU!M.

in programs. In Section 5.4, we have showed that loop vectorisation is benefi-
cial only if the loop performs a specific amount of iterations p (or work on
sufficiently large data of size p). If p value, obtained from loop profiling, is
provided to LoopVectorisation, then the transformation generates a code for
selection between the loop or its vectorised version by simply comparing the
profitable data size p with the number of loop iterations l available during
program execution. In other words, if l ě p then the vectorised code is
selected and executed.

6.4.2 Fast array slicing substitution

In Section 5.1, we have presented function mu_fast_slice which implements
fast array slicing by entirely bypassing the built-in indexing routine subsref
in MATLAB. The function is a part of MatlUp, our C MEX library consisting
of reimplemented and optimised MATLAB constructs like the array slicing.

The function comes in two variants: for 1D arrays mu_fast_slice(array,
from, step, to); and for 2D arrays mu_fast_slice(array, r_from, r_step,
r_to, c_from, c_step, c_to) where prefix r indicates a slice for rows and
c for columns. Both variants of the function skip unnecessary stage of 0-
initialisation which occurs for small and medium slices (under «15 MB),
as explained in Section 5.1. However, the other benefit of switching from
the built-in array slicing to mu_fast_slice comes from the fact that the
translation can be performed automatically using our compiler HU!M.

In the compiler, transformation pass FastSliceTransformation imple-
ments the substitution of array slicing as depicted in Figure 6.4. The im-
plementation is based on the Mutator class which visits the AST tree in
post-order and replaces only modified sub-trees to minimise the number of
reinitialised nodes. In our case, we only replace ReadRef nodes representing
array slice in an expression. The conditions for ReadRef to be replaced are:
(1) it references an array; (2) it contains an indexing part; (3) the indexing
expression is a range. The (3) part is especially important, because argu-
ments of the mu_fast_slice function for 1D arrays consist of the reference
to an array slice and three numeric arguments from, step, and to, which
express the range from the indexing expression. For higher dimensions, the
mu_fast_slice takes additional set of from, step, to arguments for the higher

6.5. CONCLUSION 103

R = A(1:N) + B(5:M) .* C

GatherArraySlices

ttmp_1 : A(1:N); tmp_2 : B(5:M)u

InjectRepackedArraySlices

tmp_1 = A(1:N);
tmp_2 = B(5:M);
R = tmp_1 + tmp_2 .* C;

Figure 6.5: Overview of the repacking of array slices implemented in HU!M.

dimension.
Moreover, the same code transformation as for mu_fast_slice can be

applied to d_slice function from Section 5.1. The d_slice reimplements
array indexing by dynamically checking if the indexing expression is redundant.
If the indexing expression includes all array elements, then the explicit array
slice is redundant, and d_slice returns directly the reference to the array.

6.4.3 Repacking of array slices

The repacking of array slices is a code transformation which replaces array
slices by array references in a vectorised expression. The benefit of this
transformation is the removal of array slices which prevent the MATLAB
JIT compiler from merging instruction blocks in this expression. Chapter 4
describes how instruction blocks are formed and what prevents them from
merging. In Chapter 5, we already detailed the repacking, thus, in this section
we focus only on the implementation.

The implementation of the repacking of array slices consists of the
main transformation pass RepackingArraySlices and two stages encapsulated
in classes: GatherArraySlices and InjectRepackedArraySlices. Figure 6.5
shows how an input expression is transformed to a repacked form during the
two transformation stages.

The first class GatherArraySlices collects the array slices which could be
extracted and packed into new, temporary variables tmp_*. The second class
InjectRepackedArraySlices replaces gathered slices by references to newly
created temporary variables tmp_*, which hold the original array slices. The
output code of the transformation is an expression which uses only array
references and as a result, the code has equal or smaller minimal instruction
tree than before the transformation.

6.5 Conclusion

In this chapter, we have introduced and described HU!M— our source-to-source
compiler extensively used during our work on accelerating MATLAB/Octave

104 CHAPTER 6. HU!M COMPILER

programs. Although, the compiler is only a prototype, it is a good basis
for further investigations of code analysis and transformation techniques.
The simplicity of the compiler design and the choice of Java as its primary
programming language, makes it a perfect tool for educational purposes too.

HU!M consists of several well-known code analysis and transformation
techniques: dimensionality abstraction [21], loop dependence analysis [152],
or loop vectorisation [72]. Moreover, in the compiler, we have implemented
our own techniques described in the previous chapters: execution model
for MATLAB expressions (Chapter 4), fast array slicing (Section 5.1) and
repacking of array slices (Section 5.2).

In the future, we plan to extend the scope of available code analyses and
transformations in the compiler. Especially, we would like to focus more on
automatic loop transformations: loop tiling [27], scalar replacement [85], and
loop unrolling [160]. The reason is that part of our unpublished work showed
promising results of applying these transformations to MATLAB/Octave
loops too. Moreover, a natural extension for our execution model is the
consideration of array types. For this reason, we plan to implement a type
analysis scheme similar to the work of De Rose and Padua on FALCON
compiler [48] with typing aspects by Hendren [161].

Chapter 7

Evaluation of the execution
model and code
transformations

Résumé

L’évaluation comprend l’analyse du modèle d’exécution présenté et deux transfor-
mations de code : le reconditionnement des tableaux et la simplification de la plage
d’indexation. Pour le modèle d’exécution, nous avons testé la capacité du modèle
à prédire l’exécution de l’expression MATLAB. Les résultats montrent une grande
précision du modèle. De plus, le modèle permet de guider diverses transformations
simples de l’expression, ce qui augmente leurs performances. Ces transformations
comprennent la division de l’expression en sous-expressions pour forcer les opérations
de tableau sur les registres vectoriels et le réarrangement des opérations commutatives
afin de regrouper les opérations sous un nombre plus petit de blocs d’instructions.

Le temps d’exécution des programmes après la simplification des plages d’indexation
diminue toujours. En outre, le gain de la transformation varie de 227.9 % à 1011.7 %

dans divers contextes. D’autre part, les avantages du reconditionnement des sections
de tableaux sont plus nuancés. Bien que la transformation puisse augmenter les
performances du code, même d’un facteur deux, elle peut également les diminuer
jusqu’à 20 %. Dans sa forme actuelle, notre modèle d’exécution est incapable de
prédire le résultat du reconditionnement.

Introduction

This chapter describes the evaluation of three items: (1) the execution
model from Chapter 4; (2) range simplification from Section 5.3; and (3)
repacking of array slices from Section 5.2. Previously, we have shown that
our model can predict the order and type of execution regions seen during
the program execution. Now, Section 7.1 demonstrates how well it works on
more MATLAB expressions and how it can be used to improve the program
performance. Moreover, Section 7.2 quantifies the gain in execution time of

105

106 CHAPTER 7. EXTENDED EVALUATION

applying range simplification. Finally, Section 7.3 shows the benefits and
pitfalls of using repacking of array slices.

7.1 Evaluation of the execution model

Table 4.4 in Chapter 4 presents eight MATLAB expressions with their mini-
mal execution trees obtained using our model. In this section, we execute
these expressions to validate if our model correctly predicts their execution.
Moreover, we show what happens when we modify some of these expres-
sions by reordering operands of commutative operations (e.g. addition plus,
element-wise multiplication times) or by splitting an expression into several
sub-expressions.

Evaluation setup. Our evaluation uses two machines described in Ta-
ble A.1 with processors implementing different microarchitectures, Skylake
and Coffee Lake introduced in 2015 and 2017, respectively. Although their
microarchitectures are different, the set of native performance events is the
same on both of them (171 events). Therefore, the evaluation and plotting of
diagrams are considerably simplified, as we can run the same tests on both
machines, and prepare uniform diagrams.

The evaluation is performed on MATLAB in versions R2015b (the first
version with the LXE execution engine) and R2018b. These versions have
the same, current architecture of the interpreter and the JIT compiler, even
though there is a 3-year gap between these versions. Nevertheless, evaluation
of them could show the broad applicability of our execution model.

7.1.1 Model precision

Every minimal instruction tree (MIT) from Table 4.4 precisely predict the
order and type of execution regions. Figure 7.6 and Figure 7.1 contain the
measured execution regions for expressions corresponding to MIT 1 and 2.
Execution regions predicted by MIT-3 to 8 are presented in Figures D.3
to D.8 in Appendix D. Furthermore, during the work on our execution
model, we have tested it with more than 200 expressions without finding any
counterexamples.

7.1.2 Splitting expressions

Expressions MIT-2, 3, 4 and 5 perform scalar operations when they could
perform vector operations. Figure 7.1 depicts the execution of the expression
of MIT-2. This expression has four instruction blocks, where the second block
performs the sub-expression fix(B.*C). This sub-expression executes only
scalar operations, although, element-wise multiplication .* usually performs
vector instructions. The reason behind this behaviour is that the fix function

7.1. EVALUATION OF THE EXECUTION MODEL 107

forces scalar arithmetic on the rest of the instructions from the block. Other
combinable functions from Table 4.3 which force scalar arithmetic are asinh,
atan, atan2, ceil, cos, cosh, exp, fix, floor, mod, pow2, rem, round, sin, sinh,
tan, tanh. Each time we mix vector instructions inside an instruction block
with one of the above functions, the code executes in scalar mode.

M1

R2015b

M1

R2018b

M2

R2015b

M2

R2018b

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE
(Vector floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0.
0e

+0
0

2.
5e

+0
7

5.
0e

+0
7

7.
5e

+0
7

1.
0e

+0
8

0.
0e

+0
0

2.
5e

+0
7

5.
0e

+0
7

7.
5e

+0
7

1.
0e

+0
8

0.
0e

+0
0

2.
5e

+0
7

5.
0e

+0
7

7.
5e

+0
7

1.
0e

+0
8

0.
0e

+0
0

2.
5e

+0
7

5.
0e

+0
7

7.
5e

+0
7

1.
0e

+0
8

0

4000

8000

12000

0
2500
5000
7500

5000
10000
15000
20000

5000

10000

15000

0

500

1000

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Minimal instruction tree #2; threads=1; sampling threshold=100000, N=1000000

MIT−2 execution regions

Figure 7.1: Expression floor(A)+sqrt(fix(B.*C)) has four instruction blocks
with mixed scalar and vector arithmetic.

In order to avoid performing scalar operations by vector instructions,
we propose to split the expression into several sub-expression to keep scalar
operations together in separate instruction blocks. To illustrate how to split
expressions, consider expression floor(A) + sin(fix(B .* C)) of MIT-3 from
Table 4.4. This code contains only combinable functions; thus, it requires one
instruction block for the whole expression as depicted in Figure D.3. Since
the expression floor(A) + sin(fix(B .* C)) has one instruction block, every
arithmetic operations in this block perform scalar computation. Instructions
floor, sin and fix force scalar mode of computations when mixed with other
functions. Therefore, our goal is to keep these three instructions separated
from addition (+) and element-wise multiplication (.*).

Figure 7.2 presents how to split the input expression into four sub-
expressions. Only two functions + and .* perform vector operations; thus, we
split them in a way that they do not mix with scalar functions — tmp_mul
variable stores element-wise multiplication. Furthermore, both operands of
the addition have scalar operations; therefore, we store them in tmp_left and
tmp_right variables.

Figure 7.3 depicts the program execution after the splitting of the MIT-3
expression. After the splitting, there are four instruction blocks instead of
one. Two of them perform vector operations of + and .* operators. However,

108 CHAPTER 7. EXTENDED EVALUATION

1 % Minimal Instruction Tree #3 (MIT´3)
2 R = floor(A) + sin(fix(B .* C))
3 % Splitting MIT́ 3
4 tmp_left = floor(A);
5 tmp_mul = B .* C;
6 tmp_right = sin(fix(tmp_mul));
7 R = tmp_left + tmp_right;

{A, B, C} {floor, +, sin, fix, .*}

{floor}{A}
{.*}{B, C}
{sin, fix}{tmp mul}
{+}{tmp left, tmp right}

Figure 7.2: MIT-3 expression splitted into several sub-expression with their
minimal instruction trees depicted below.

the splitting of the expression fragments our computation. Moreover, +
and .* take only a small fraction of the computation (sin, floor and fix
are much more compute-intensive). Therefore, even with vector operations,
the expression performs in 0.0457 and 0.0467 seconds before and after the
splitting, respectively. In order to obtain performance gain from splitting,
vector operations in the expression must take a considerable amount of
computation. Moreover, the splitting introduces more instruction blocks,
each with its execution overhead.

7.1.3 Reordering operations

Expressions MIT-2, 6 and 7 have commutative functions, and their operands
can be reordered. Consider expression log(A) + B + C(1:N) of MIT-6 (de-
picted in Table 4.4) which has an array slice to variable C in the right subtree.
This slice prevents two additions + from merging together. However, by know-
ingly modifying and reordering the expression, we can alter its instruction
tree in a way which changes the number and the content of instruction blocks
without changing the semantics of the computation.

On the top-level, expression log(A) + B + C(1:N) consists of commutative
addition (we can change the order of operands) and associative (we can change
the order of evaluation). In our example, if we swap the reference to array B
with the array slice C, we make sure that none of the right-sibling operations
blocks the rest of the expression in the instruction tree (see Algorithm 2 in
Section 4.5.1 for more information). Therefore, by modifying the expression
to log(A) + C(1:N) + B, we obtain a simpler instruction tree depicted in
Figure 7.4. Furthermore, Figure 7.5 presents the execution regions of the
expression before and after the reordering. The mean execution time is 0.0224
and 0.0186 seconds before and after reordering, respectively, which significant

7.1. EVALUATION OF THE EXECUTION MODEL 109

MIT3 MIT3 after splitting

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE
(Vector floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

0

5000

10000

0
2500
5000
7500

0
5000

10000
15000
20000

0

10000

20000

0
500

1000
1500

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Run on machine M1; MATLAB=R2018b; threads=1; sampling threshold=100000; N=1000000.

Splitting expression to perform vector operations

Figure 7.3: Some functions prevent others from performing vector operations.
Splitting an expression into sub-expressions might allow performing vector
operations at the cost of the increased number of instruction blocks.

log(A) + B + C(1:N)

{+}

{B} {+}

{A} {log}
C

log(A) + C(1:N) + B

{B} {+, +}

{A} {log}
C

Figure 7.4: Minimal instruction trees for the expression before and after
reordering. The reordered expression has fewer instruction blocks.

110 CHAPTER 7. EXTENDED EVALUATION

log(A) + B + C(1:N) log(A) + C(1:N) + B

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE
(Vector floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0e+00
3e+07

6e+07
9e+07

0e+00
3e+07

6e+07
9e+07

0

10000

20000

0

5000

10000

15000

0
5000

10000
15000
20000

0

20000

40000

0
500

1000
1500
2000

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s
Run on machine M1; MATLAB=R2018b; threads=1; sampling threshold=100000; N=1000000.

Reordering expression to reduce instruction blocks

Figure 7.5: Reordering of the expression to reduce the number of instruction
blocks.

performance improvement for this example.

7.1.4 Information limit of performance profiles

In this section, we present a short discussion about the limits of information
encoded with performance event profiles (PEP), used to discover and build
our execution model. The discussion is closely related to the evaluation of
the model, more precisely, to the mapping of execution regions to particular
machine instructions.

Expression of MIT-1 from Table 4.4 is a composition of two functions
sum(round(A)). In this composition, the only combinable function is round,
which can coexist with other MATLAB functions in the same instruction
block (see Table 4.3). Therefore, each function requires its instruction block
which is seen in Figure 7.6.

Figure 7.6 depicts two execution regions corresponding to two instruction
blocks, one for round and the other for sum, respectively. However, only one
of them performs floating-point operations. The first execution region lacks
arithmetic operations because the family of FP_ARITH_INST_RETIRED:* events
count only specific machine instructions listed in Table 7.1. The list includes
operations like ADD, SUB, MUL, MAX, SQRT, but it lacks rounding x86
operations, e.g. roundpd, roundsd. However, even with the ability to count
rounding x86 operations, it is not guaranteed that MATLAB JIT compiler
generates these instructions for the round built-in function.

In order to check which x86 instructions the MATLAB JIT compiler
generates for the round function, we can use Intel PIN [120] or Intel VTune [99]
(which is also based on the PIN). PIN has many already prepared tools (so-

7.2. EVALUATION OF THE RANGE SIMPLIFICATION 111

M1

R2015b

M1

R2018b

M2

R2015b

M2

R2018b

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0e
+0

0

2e
+0

7

4e
+0

7

0e
+0

0

2e
+0

7

4e
+0

7

6e
+0

7

0e
+0

0

2e
+0

7

4e
+0

7

0e
+0

0

2e
+0

7

4e
+0

7

6e
+0

7

0
5000

10000
15000
20000
25000

5000
10000
15000
20000
25000

0

5000

10000

15000

0
300
600
900

1200

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Minimal instruction tree #1; threads=1; sampling threshold=100000, N=1000000

MIT−1 execution regions

Figure 7.6: Expression sum(round(A)) has two instruction blocks.

called PIN-tools) which scan, analyse, or modify the machine code of the
running program. For our purpose, the opcodemix tool counts the number
occurring x86 instructions. However, this approach counts them globally
without consideration of basic blocks. On the other hand, Intel VTune while
counting the x86 instructions, it can profile the code and indicates which part
of the program is executed the most (in terms of basic blocks). Therefore,
if we test compute-intensive programs, it is apparent which basic block is
responsible for the bulk of operations, executing the content of MATLAB
built-in functions.

The results of our analysis show that MATLAB round function is not using
any of x86 round[sp][sd] instructions. Instead, the “round to the nearest
decimal or integer” of the round function is implemented using arithmetic
right shift SAR instruction, along with others. Therefore, when analysing
the occurrence of instructions and building our model with performance
event profiles (PEP), we need to consider not only what performance events
measure, but also what kind of instructions MATLAB generates, and how
we can measure them.

7.2 Evaluation of the range simplification

In MATLAB, operator colon (:) defines a range of values with a specified
start point, endpoint, and interval between two given values in this range. The
range expresses an arithmetic progression. Section 5.3 shows that using ranges
as indices in array slicing (A(1:2:(2*N-1)) reduces the amount of computation
in comparison to using expressions which perform element-wise operations
on ranges (A(2*(1:N)-1)). Therefore, in Section 5.3, we have introduced
range simplification which transforms such expressions to an equivalent range.

112 CHAPTER 7. EXTENDED EVALUATION

Table 7.1: Machine instructions counted by the FP_ARITH_INST_RETIRED:*
family of performance events on Skylake and Coffee Lake microarchitectures.

Operation x86 instruction Description

ADD vadd[sp][sd] Add floating-point values
SUB vsub[sp][sd] Subtract floating-point values
MUL vmul[sp][sd] Multiply floating-point values
DIV vdiv[sp][sd] Divide floating-point values
MIN vmin[sp][sd] Minimum of floating-point values
MAX vmax[sp][sd] Maximum floating-point values
RCP vrcp[sp]s Compute reciprocals of single-precision

floating-point values
RSQRT vrsqrt[sp]s Compute reciprocals of square roots of

single-precision floating-point values
SQRT vsqrt[sp][sd] Square root of floating-point values
DPP vdpp[sd] Dot product of packed floating-point val-

ues
FM(N)ADD/SUB vfm[add|sub]* Fused multiply (negative) add/subtract

of floating-point values

[sp] — scalar or packed.
p — only packed.
[sd] — single or double-precision.
s — only single-precision.

Listing 7.1 and Listing 7.2 show two code examples of indexing expressions
transformed into simplified ranges. Although MATLAB programmers tend
to avoid complex indexing expressions, automatic vectoriser mc2mc by Chen
et al. [1] generates complex expressions and stores them in external variables.

The use of ranges in array slicing allows the MATLAB JIT compiler
to generate a machine code which skips the explicit range evaluation, and
instead, it uses the range values directly in the array indexing. Figure 7.8
depicts how the simplified range omits three execution regions responsible for
(1) evaluating the range; (2) performing arithmetic operations on the range;
and (3) indexing the array with just computed indices. In this section, we

Listing (7.1) Indexing all elements.

1 % Indexing expression
2 B = A((0:(N´1)) + 1);
3 % Range simplified
4 B = A(1:N);
5 % Variable with indices
6 I = 1:N;
7 B = A(I);

Listing (7.2) Indexing even elements.

1 % Indexing expression
2 B = A((1:2:(N´1)) + 1);
3 % Range simplified
4 B = A(2:2:N);
5 % Variable with indices
6 I = 2:2:N;
7 B = A(I);

7.2. EVALUATION OF THE RANGE SIMPLIFICATION 113

A(2*(1:N)−1) A(1:2:(2*N−1))

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE
(Vector floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

0e+00
1e+07

2e+07
3e+07

4e+07
5e+07

0e+00
1e+07

2e+07
3e+07

4e+07
5e+07

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Execution region Range evaluation JIT−compiled code Indexing Data copy (with 0−init)

Run on machine M1; MATLAB=R2018b; threads=1; sampling threshold=100000; N=1000000.

Range simplification

Figure 7.8: Array slice with an arithmetic expression as index generates
complex execution regions (on the left). However, an array slice with a range
expression results only in the data copy (on the right).

evaluate how omitting these execution regions affects the execution time of
MATLAB codes. For this purpose, we have prepared two codes which perform
indexing of all and even elements depicted in Listing 7.1 and Listing 7.2.

Execution time. Figure 7.9 presents the execution time of our code exam-
ples (from Listing 7.1 and Listing 7.2), executed on two machines, M1 and M2
using one thread. The results clearly show that range simplification massively
reduces the execution time of array slicing with indexing expressions using
ranges. The performance improvement spans from 306.5 % to 1011.7 % for
indexing of all elements. Furthermore, for the indexing of even elements, the
improvement ranges from 227.9 % to 769.3 %. Although array slicing takes
less than 0.008 of a second for copying 5 000 000 elements (on machine M1),
this cost increases proportionally to the number of array slices in the program.
Therefore, the end benefit of using range simplification can be high for codes
with many arrays.

Indices in variables. The code version variable with indices is interesting
because it is almost a lower-bound for the execution time of indexing expres-
sion. The reason is simple; this code version performs the evaluation of the
range and the indexing stage (depicted in Figure 7.8) just as the indexing
expression does. However, the code lacks the arithmetic operation on the
range (...+1). In general, variable with indices executes faster or close to the
performance of the indexing expression. This code version also shows that

114 CHAPTER 7. EXTENDED EVALUATION

M1

R2015b

M1

R2018b

M2

R2015b

M2

R2018b

All elements

Even elements

0e
+0

0

1e
+0

6

2e
+0

6

3e
+0

6

4e
+0

6

5e
+0

6

0e
+0

0

1e
+0

6

2e
+0

6

3e
+0

6

4e
+0

6

5e
+0

6

0e
+0

0

1e
+0

6

2e
+0

6

3e
+0

6

4e
+0

6

5e
+0

6

0e
+0

0

1e
+0

6

2e
+0

6

3e
+0

6

4e
+0

6

5e
+0

6

0.000

0.025

0.050

0.075

0.000

0.025

0.050

0.075

Number of indexed elements

E
xe

cu
tio

n
tim

e
[s

]

Code version Variable with indices Indexing expression Range simplification

Run with threads=1.

Execution time of range simplification

Figure 7.9: Range simplification massively reduces execution time of array
slicing with ranges.

indexing array with ranges is fast only when the range is used directly inside
the slice and not stored in a variable (then, it requires prior evaluation).

7.3 Evaluation of the repacking of arrays

In Section 5.2, we have introduced a new code transformation called repacking
of array slices. This transformation extracts array slices from an expression
and puts them into temporal variables. Therefore, the transformed expression
uses only references to the new variables. The benefit of repacking comes from
the fact that array slices perform data copy, which is a distinctive execution
region not combinable with other instructions. On the other hand, references
to arrays do not generate any additional computation, and they can be easily
used with combinable functions inside instruction blocks.

Our tests start with running 14 kernels from Livermore1 and LCPC16 [1].
We execute each kernel on the machine M2 and two MATLAB versions
R2015b and R2018b. Moreover, each kernel execution uses the size of input
data spanning from 250 000 to 5 000 000 with the step of 250 000 elements.
Figure 7.10 and Figure 7.11 presents the obtained results. Both figures
indicate the number of repacked array slices by the transformation.

The exact rule when an array slice prevents merging instruction blocks
is specified in Algorithm 2 in Chapter 4. However, the impact of repacking
array slice is hard to quantify because it requires not only the knowledge

1https://www.netlib.org/benchmark/livermore

https://www.netlib.org/benchmark/livermore

7.3. EVALUATION OF THE REPACKING OF ARRAYS 115

1 thread

kernel_3_inner_prod
(repacked arrays=2)

kernel_12_first_diff
(repacked arrays=2)

kernel_1_hydro
(repacked arrays=3)

kernel_7_state_fragment
(repacked arrays=9)

kernel_9_integrate_predictors
(repacked arrays=10)

kernel_8_adi_integration
(repacked arrays=18)

kernel_18_explicit_hydro_2D
(repacked arrays=32)

0e
+0

0

1e
+0

6

2e
+0

6

3e
+0

6

4e
+0

6

5e
+0

6

−10.0%

−5.0%

0.0%

−20.0%

−15.0%

−10.0%

−5.0%

0.0%

−10.0%

−5.0%

0.0%

5.0%

10.0%

−20.0%

−15.0%

−10.0%

−5.0%

0.0%

0.00%

2.00%

4.00%

0.0%

25.0%

50.0%

75.0%

0.0%

10.0%

20.0%

30.0%

Input data size

P
er

ce
nt

ag
e

of
 im

pr
ov

em
en

t

MATLAB version R2015b R2018b

Run on machine M2 using Livermore kernels.

Performance change after repacking of array slices

Figure 7.10: Repacking of array slices on Livermore kernels.

116 CHAPTER 7. EXTENDED EVALUATION

about instruction blocks and their order (which our execution model has), but
also performance characteristics of particular functions, instruction blocks,
and underlying execution regions. Without the knowledge, it is not possible
to precise if the benefit from removing array copy and allowing the merge
of two blocks will impact the overall performance beyond the measurement
noise. Nevertheless, the results show consistent benefit in kernels with more
than 10 repacked arrays (integrate predictors, adi integration, and explicit
hydro 2D from Livermore suite). In other words, more repacked arrays create
more opportunities for combining instruction blocks and increasing program
performance.

Kernel with low number of repacked arrays, like kernel 3 from Livermore,
sum(z(1:LEN_1D) .* x(1:LEN_1D)), creates no new optimisation opportuni-
ties. The sum function is non-combinable; therefore, the repacking cannot
merge the element-wise multiplication with sum. Similarly, Livermore kernel
number 12, y(2:(LEN_1D + 1)) - y(1:LEN_1D), performs binary subtraction
for which repacking is not creating any new instruction blocks (array slices
always perform before this subtraction). Kernels from the LCPC16 suite
experience the same problem, as the maximal number of the repacked arrays
is 4 for the crni3 kernel.

Obtained results also show two distinctive patterns. The first pattern is
a “hill” of performance improvement occurring for the backprop2, capr2, and
capr3 LCPC16 kernels only on MATLAB R2015b (see Figure 7.11). The “hill”
spans across 2 500 000 and 4 000 000 elements of input data (19.07 MB and
30.58 MB for a single array). These three kernels have one thing in common;
they use sum function; however, the exact reason for this pattern requires
further investigation.

The second pattern is a rapid decrease in performance after 4 000 000
elements which might be related to the changing cost of array slicing for this
amount of data elements (consult Section 3.5 for more details) because of
the benefit of using repacking which decreases with the decreasing cost of
array slicing. Kernels state fragment, explicit hydro 2D from Livermore and
backprop2, backprop3, capr2, capr3, backprop1, crni3 from LCPC16 exhibit
the second pattern.

The majority of these patterns occurs only in MATLAB R2015b which
suggests a fundamental difference in how MATLAB environments execute
particular functions.

7.4 Conclusion

In this chapter, we have evaluated our execution model for MATLAB ex-
pressions (from Chapter 4) along with two code transformations: range
simplification (from Section 5.3) and repacking of array slices (from Sec-
tion 5.2).

7.4. CONCLUSION 117

1 thread

backprop2
(repacked arrays=2)

backprop3
(repacked arrays=2)

capr2
(repacked arrays=2)

capr3
(repacked arrays=2)

backprop1
(repacked arrays=3)

crni2
(repacked arrays=3)

crni3
(repacked arrays=4)

0e
+0

0

1e
+0

6

2e
+0

6

3e
+0

6

4e
+0

6

5e
+0

6

0.0%

20.0%

40.0%

−20.0%

−10.0%

0.0%

10.0%

20.0%

30.0%

0.0%

40.0%

80.0%

−10.0%

0.0%

10.0%

20.0%

30.0%

−20.0%

−15.0%

−10.0%

−5.0%

0.0%

−20.0%

−10.0%

0.0%

10.0%

0.0%

25.0%

50.0%

Input data size

P
er

ce
nt

ag
e

of
 im

pr
ov

em
en

t

MATLAB version R2015b R2018b

Run on machine M2 using LCPC16 kernels.

Performance change after repacking of array slices

Figure 7.11: Repacking of array slices on LCPC16 kernels [1].

118 CHAPTER 7. EXTENDED EVALUATION

Execution model. The execution model for MATLAB expressions pre-
cisely predicts the order and type of execution regions occurring during the
execution of example expressions from Table 4.4 in Chapter 4. Moreover, the
model indicates which functions and parts of the expression execute in a single
instruction block. Our test results have shown the broad applicability of the
model which works for expressions executed on four experiment configurations
with two versions of MATLAB R2015b and R2018b, and two machines M1
and M2 (consult Table A.1 for machine specifications).

Apart from testing the model precision, we have also highlighted several
opportunities coming from the use of our execution model. To begin with, the
model indicates instruction blocks which mix scalar and vector combinable
functions. If an instruction block contains at least one scalar function,
e.g. ceil, cos, pow2, then the whole block executes only scalar arithmetic
operations, even for vector functions (this is clearly shown in Figure 7.3).
The solution to having vector arithmetic operations in such an expression is
to split it into sub-expressions which do not mix scalar and vector operations.
Furthermore, reordering of expressions changes their minimal instruction
trees; thus, changing the performance of expressions as well.

Range simplification. Section 7.2 presents the evaluation of range sim-
plification transformation, which simplifies numerical ranges used as indices
of arrays. The benefit from this transformation, on both machines M1 and M2,
spans from 227.9 % (for indexing even elements) to 1011.7 % (for indexing
all elements). Although this transformation is straightforward, it is also very
powerful because ranges are recipes for the MATLAB JIT compiler on how
to generate efficient code for array indexing. Moreover, in the array slicing
context, pure ranges do not require prior evaluation.

Repacking of array slices. Finally, Section 7.3 demonstrates more exam-
ples of evaluation of the repacking of array slices. The repacking replaces
array slices with references to them. This transformation changes the content
and the number of instruction blocks created from an expression. Depending
on these changes, the benefit of the repacking varies from decreasing the
performance by ´22 % (kernel backprop1 in Figure 7.11) to increase the
performance by even 100 % (kernel capr2 in Figure 7.11).

In general, the results show that the benefit from the repacking increases
with the number of repacked arrays. For the Livermore suite, three kernels
with at least 10 repacked arrays (integrate predictors, adi integration, and
explicit hydro 2D) are always faster after repacking. However, in the current
form, our execution model is not able to predict the benefit of the repacking
because it does not consider the effects of data size on the performance which
profoundly impacts the performance results.

Chapter 8

Conclusion

Résumé

Dans la thèse, nous avons présenté un nouvel ensemble d’outils pour analyser,
comprendre et transformer les programmes écrits dans des environnements proprié-
taires tels que MATLAB. Notre approche est basée sur des profils d’événements
de performance qui enregistrent la façon dont un programme s’exécute directe-
ment sur le processeur sous-jacent. Cette connaissance nous permet de contourner
l’environnement propriétaire de MATLAB. De plus, nous avons intégré le com-
portement observé de l’exécution des programmes dans MATLAB dans un modèle
d’exécution basé sur un arbre. En nous basant uniquement sur ce modèle, nous
avons proposé plusieurs transformations de code qui augmentent les performances des
programmes. Ces transformations comprennent la vectorisation de boucle guidée par
le profil, la restructuration des copies de tableaux et l’amélioration de l’indexation
des tableaux. Enfin, nous avons rassemblé ces transformations sous un seul outil,
un compilateur HU!M qui permet la restructuration automatique du code MATLAB.

Notre méthodologie d’analyse est également applicable à d’autres langages pop-
ulaires tels que Python, Octave ou Julia. Les travaux futurs comprennent des
améliorations du compilateur HU!M et des travaux supplémentaires sur le modèle
d’exécution pour le transformer en un modèle de performance à part entière.

Introduction

MATLAB is a highly popular, easy to use, language and environment for
scientific computing, commonly used for image processing, radar design,
machine learning, and many others disciplines. Unfortunately, the inherent
easiness of writing programs in MATLAB contrasts with its attainable per-
formance, especially when compared to statically compiled programs in C
and Fortran languages. Therefore, in order to combine the benefits of devel-
oping compute-intensive applications written in MATLAB with achieving
a reasonable performance, many researchers have worked on techniques for
increasing performance of MATLAB programs.

The most common approach to improve MATLAB programs is com-
pilation to compiled languages, such as C or Fortran, which have already

119

120 CHAPTER 8. CONCLUSION

performant optimising compilers. However, this approach requires, each time,
a compilation of the MATLAB program before running it. The compilation
takes time and requires switching to a different toolchain. Therefore, in
our work, we have focused on improving MATLAB programs through code
transformations which are applied only once and can be performed without
leaving the MATLAB environment.

8.1 Summary

The thesis consists of three interleaved parts: (1) the description of our
analysis “tool”, performance event profiles in Chapter 3; (2) application of
the “tool” to build an execution model of MATLAB expressions in Chapter 4;
and (3) proposition of new code transformations for MATLAB programs in
Chapter 5, based on gained knowledge and the execution model.

Contributions

The utilisation of performance event profiles (1) in Chapter 3 was necessary be-
cause MATLAB is a black-box, therefore, we posses no knowledge about how
MATLAB analyses, schedules, and executes instructions. Instead, we have
focused on a processor and its hardware performance counters which record
the program execution directly on the processor (see Figure 3.1). Therefore,
performance profiles describe how the program performance changes as the
program execution progresses. Moreover, we have introduced a notion of exe-
cution region describing a segment of the profile with interesting performance
properties (in Section 3.4). Thus, allowing us to clearly see what are the
smaller components of the program execution, what is their order, and how
they behave.

As it turned out later, the ability to see time-varying behaviours during
the execution of MATLAB programs is the key component to understand how
MATLAB really executes programs. In Chapter 4, using performance profiles,
we have analysed several programs only to observe that the JIT compiler
combines some instructions together, while leaving others apart. This has
lead to a concept of instruction block, a collection of instructions scheduled
for combined execution by the JIT compiler (in Section 4.2). Furthermore,
we have encoded the rules of merging instructions into blocks and how
these blocks form an instruction tree (in Algorithm 2). The instruction tree
from Section 4.5 in its minimal form (with the smallest possible number of
instruction blocks) constitutes our execution model which correctly predicts
the number, order, and kind of instruction blocks for an input MATLAB
expression (see an example prediction in Figure 4.9).

With the gained knowledge about program execution in MATLAB and
with our execution model, we have proposed in Chapter 5 several code
transformations which restructure programs, e.g. repacking of array slicing,

8.2. FUTURE WORK 121

range simplification or replace language constructs, e.g. dynamic array slicing,
fast array slicing. Moreover, the presented execution model is a basis for
further code transformation described in the future work. Furthermore, in
the same chapter, we have explored the potential of applying profiling to loop
vectorisation.

Implementation

Apart from the conceptual contributions, during the work on the thesis, we
have implemented three important tools: HU!M, our source-to-source compiler
which implements the execution model and the presented code transforma-
tions; mPAPI1 which allows to access hardware performance counters from
MATLAB; and Menchi which generates experiments from a single specifica-
tion file.

Results

Presented code transformations show encouraging results. For example, the
repacking of array slices is able to speedup programs up to 80 % (see Fig-
ure 5.2). However, before predicting when we should apply the repacking, our
model needs further improvements. Furthermore, the profile-guided approach
to loop vectorisation presented in Section 5.4, combined with range simpli-
fication, was able to improve three benchmarks: crni by 25.7 %, pagerank
by 33.3 %, and backprop by 45.8 %. In comparison, for all three benchmarks,
the approach by Chen et al. [1] resulted in performance slowdowns.

Perspective

The code transformations and the execution model, presented in this thesis,
are specific to MATLAB. However, the performance event profiles (PEP) could
be used in other runtime environments, because the profiles are concerned
with how the program executes on a processor, and not necessary about
what is inside the runtime. Moreover, it is possible that the methodology of
discovering which built-in functions are JIT-compiled presented in Section 4.4
is applicable to other languages too.

To our best knowledge, the work presented in this thesis is the first
attempt to build an execution model for programs running in the MATLAB
environment.

8.2 Future work

Our research work has created a few areas of improvements in performance
event profiles, execution model, on the presented code transformations, and

1https://github.com/quepas/mPAPI

https://github.com/quepas/mPAPI

122 CHAPTER 8. CONCLUSION

in the implementation of our compiler HU!M.

Performance event profiles (PEP). In our work, we have used only a
handful of available native performance events on our processors (there are
171 native events on machines M1 and M2; see Table A.1). Other events include
information about various segments of the processor pipeline or even how
particular µ-ops were distributed among execution ports. All these events
and their possible combinations create an untapped potential for designing
new insightful performance event profiles (PEP) that deserve to be explored.

Furthermore, because the idea behind performance event profiles is to
skip the execution environment and measure the execution directly on a
process, we would like to test our methodology for two other environments:
Julia [136] and PyPy JIT compiler for Python [138].

Execution model. There are two possible major improvements to the
proposed execution model. The first one is the special consideration of
instruction blocks which mix scalar and vector operations. In such blocks,
the JIT compiler is forced to issue a scalar code even for vector instructions,
because it cannot issue the vector code for the scalar instructions. By splitting
an expression in such situations, we can break the mix of scalar and vector
operations, thus, letting the vector operations to execute at full speed.

The second extension is the consideration of multi-threading. One of
our previous works has shown that multi-threaded built-in functions divide
the computation between many threads in several predictable patterns, e.g.
(1) equal split of the computation between threads, or (2) the first thread
takes 50 % of the computation, and the rest of the computation splits equally
between other threads. We would like to encode those patterns inside our
model to predict how the JIT compiler schedules execution of blocks on many
threads.

Code transformations. As seen in Section 5.2, repacking of array slices
is not always beneficial. Therefore, we plan to adjust our execution model
from Chapter 4 to precisely predict the benefits of the repacking transforma-
tion. Moreover, we would like to further develop our ongoing work on code
transformations which reorder, fuse, and split expressions in order to change
the number of instruction blocks created by the MATLAB JIT compiler,
or to create blocks with specific properties (e.g. which contain only vector
instructions). We think, these transformations are crucial for generating
optimal MATLAB code.

HU!M compiler. Apart from further work on the general capabilities of
our compiler such as type analysis, we would like to implement in HU!M
three loop transformations: loop tiling [27], scalar replacement [85], and loop

8.2. FUTURE WORK 123

unrolling [160]. Our previous works have shown promising results for these
three transformations.

124 CHAPTER 8. CONCLUSION

Appendix A

Experiment methodology

In the thesis, we use a consistent experiment methodology which contains two
parts: (1) preparation of the environment; and (2) collecting measurements.
The part (1) is concerned with minimising the measurement error and non-
deterministic events [145]. In the part (2), we are interested in how to collect
measurement in order to obtain representative results [124].

A.1 Preparation of the environment.

In this step, we follow krun tool [162] from the work of analysing warm-up
states of virtual machines by Barrett et al. [36]. krun is an extreme benchmark
runner which prepares the machine and the operating system for performing
precise measurements of computer programs. The tool is capable of restarting
the machine before each run and running benchmarks only when the CPU
temperature is below a given threshold. In order to limit the time required
for running all tests, we only reuse some of the less extreme techniques:

• Restarting machines before running batch of experiments.

• Running experiment scripts only from command line without X11 (GUI)
turned on.

• Turning off active frequency scaling (Intel Turbo Boost), by setting up
performance governor which keeps the frequency at the base level (sudo
cpufreq-set -g performance).

• Synchronising buffered data on disk (sudo sync).

• Sleeping for 5 seconds before starting the benchmark (to stabilise the
system after recent command; sleep 5).

• Running benchmark scripts with the highest priority (sudo nice -n
-20).

125

126 APPENDIX A. EXPERIMENT METHODOLOGY

A.2 Collecting measurements

Each of our experiments consists of at least 30 repeated measurements of
the same phenomena. Even when we report a single performance profile, the
profile comes from the last repetition (like in Figures 3.3, 3.4 and 4.2). In the
case of measurements in counting mode, we either report each measurement
and show its data distribution using: box-plot (in Figure 3.5) or violin plot
(in Figure 3.7); or we compute confidence intervals and show them along
with the mean value (in Figure 5.2). The confidence intervals help to find
only relevant data without outliers [42]. We compute them using bootstrap
method (3000 trials), because we do not feel confident to assume the normal
distribution for the measurements of processor cycles and real time which
usually are skewed towards the maximal value (if a non-deterministic event
occurs, it will add to the execution time or processor cycles) [163].

A.3 Machine specification

All experiments and plots in the thesis were prepared on two machines with
Intel processors. Table A.1 outlines their detailed specification. Figure A.1
presents topology of Intel processors in M1 and M2 machines (processor cores
and the hierarchy of cache memories).

Table A.1: Specification of two machines M1 and M2 used in our work.

Property Machine

M1 M2

Vendor HP Inc. Dell Inc.
Model EliteBook 830G Precision Tower 3430
Class Notebook Desktop computer

CPU model Intel® Core™ i7-6600U Intel® Core™ i7-8700
Microarchitecture Skylake Coffee Lake

Frequency (min/base/max) 0.4GHz/2.6GHz/3.4GHz 0.8GHz/3.2GHz/4.6GHz
Cores (physical/logical) 2/4 6/12

Data Caches (L1/L2/L3) 32 kB/256 kB:/4096 kB˚: 32 kB/256 kB:/12 288 kB˚:
RAM (size/frequency/type) 16GB/2133MHz/DDR4 32GB/2666MHz/DDR4

OS Ubuntu 16.04.3 LTS Ubuntu 18.04.3 LTS
Kernel 4.4.0-159-generic 5.0.0-29-generic
PAPI 5.7.1.0 5.7.1.0

Perf. events (native/preset) 171/59 171/59
˚ Shared between cores.
: Unified cache (data and instructions).

A.3. MACHINE SPECIFICATION 127

Machine (16GB total)

Package L#0

L3 (4096KB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#1

PU L#2
P#1

PU L#3
P#3

NUMANode L#0 P#0 (16GB)

(a) Machine M1

Machine (31GB)

Package P#0

L3 (12MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#7

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#8

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#9

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#10

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#5

PU P#11

(b) Machine M2

Figure A.1: Hierarchical topology of two machines M1 and M2 respectively.

128 APPENDIX A. EXPERIMENT METHODOLOGY

Appendix B

Measuring performance events
in MATLAB with mPAPI

mPAPI1 is our open source tool for measuring hardware performance counters
directly in MATLAB code (it also works in Octave). The tool is built
using PAPI library [43, 95], a popular and powerful interface for accessing
performance counters. PAPI has a C interface, therefore, we use MEX files
to access its low-level routines from MATLAB.

The motivation behind creation of mPAPI comes from a lack of tools for
easy access to hardware performance counters. Popular tools like perf [164]
and Intel VTune [99] give us two choices for measuring performance counters:
(1) measuring MATLAB program from the beginning including the warm-up
of the MATLAB environment; or (2) attaching to already running process
and measuring counters only for it. Option (1) is easy to automate, but
it is inaccurate because we always measure the warm-up of the MATLAB
environment. Second option (2) is hard to automate, because we need to
attach to the running MATLAB environment in a particular moment, after
the warm-up. Therefore, registering and measuring performance counters
directly from the MATLAB code is the easiest and most reliable approach.

PAPI has an interface for MATLAB, however, it allows only to measure
performance counters in the counting mode. mPAPI extends the functionality
with three additional features:

1. Multiplexing — measuring many performance events at once [91].

2. Per-thread measurements — collecting performance counters from many
threads (processes).

3. Performance profiles — measuring performance events in the sampling
mode (we use here Event-Based Sampling to be precise) [91,132].

1https://github.com/quepas/mPAPI

129

https://github.com/quepas/mPAPI

130 APPENDIX B. MPAPI

Each function from the mPAPI interface is persistent, which means that
it cannot be removed from the MATLAB workspace, once loaded. This
is a requirement for our experiment methodology, which clears all loaded
functions (especially JIT-compiled functions) on the change of test data. This
is due to the fact that when testing MATLAB code with a small data, the
code is JIT-compiled and saved for later execution, making the initial runs
very slow in comparison to even later one with bigger data sets (because by
now, the test code is JIT-compiled).

B.1 mPAPI interface.

This section describes a list of available functions from mPAPI tool.

B.1.1 Enumerating available performance events

This functionality mimics two tools from PAPI toolchain: (1) papi_avail -d
for listing preset events and (2) papi_native_avail for enumerating native
events. Processors use native events which represent very specific events
available on a given microarchitecture. However, in the PAPI ecosystem,
there are also preset events which try to generalise common performance
events and concepts. For example, two microarchitectures µ1 and µ2 might
have two different native events X and Y for measuring the same number of
load instructions. Therefore, instead of measuring two specific native event,
we can always measure single preset event PAPI_LD_INS which maps to X on
µ1 and to Y on µ2 microarchitecture.

1 % Returns an array of names for native event
2 mPAPI_enumNativeEvents()
3 % Returns an array of names for preset event
4 mPAPI_enumPresetEvents()

On our test machines M1 and M2 (see Table A.1), mPAPI_enumNativeEvents
returns 171 events and mPAPI_enumPresetEvents returns 59 events.

B.1.2 Measuring performance events in counting mode

Measuring performance events in mPAPI (for counting and sampling modes)
always contains the same three step workflow: (1) register performance events
to measure; (2) start the measurement; and (3) finish the measurement and
collect results. Step (1) have three functions dedicated to registering an event
set indicating what should be measured:

1 % Register events for the current thread
2 event_set = mPAPI_register(events_list)
3 % Register events for the current thread with multiplexing
4 event_set = mPAPI_register(events_list, true)

B.1. MPAPI INTERFACE. 131

5 % Register events for the process pid
6 event_set = mPAPI_register(events_list, pid)

The events_list can contain a mix of native and preset events for the
measurement. In the case of per-process measurement, we need to call
mPAPI_register once for each pid and obtain several event sets. An event
set contains the list of performance events, but also information about the
measured process and if the measurements are gathered using multiplexing.

1 % Start measurement
2 mPAPI_tic(event_set)
3 mPAPI_tic([event_set_1, event_set_2])
4 % Stop measurement and collect results
5 results = mPAPI_toc(event_set)
6 results = mPAPI_toc([event_set_1, event_set_2])

The mPAPI_tic function can take one or more event sets and starts the
measurement. We stop the measurement and collect results using mPAPI_toc
which takes the same one or more event sets representing ongoing measure-
ments.

B.1.3 Measuring performance events in sampling mode

The exact procedure of creating performance profiles and using mPAPI to
measure performance traces is detailed in Section 3.3.3. Measuring perfor-
mance events in sampling mode mainly differs from counting mode with
the fact that samples are stored in an external profile file, instead of being
returned inside the MATLAB workspace. This is due to the fact that the
single performance trace can contain up thousands of measurements, thus, it
requires a post-processing in external tools.

As before, the workflow of measuring performance counters stay the same:
registering of performance events followed by start and stop of the measure-
ment procedure. However, now the functions have more arguments. The
function for registering performance trace takes 4 arguments: the sampling
event, sampling threshold, list of performance events to measure, and the path
to profile file. Moreover, the measurement start function takes one additional
argument for the name of the current trace. Each of these arguments is
described and explained in Section 3.3.3.

1 % Register performance trace
2 event_set = mPAPI_trace_register(sampling_event, sampling_threshold,

events_list, trace_file)
3 % Start the measurement with a given name
4 mPAPI_tic(event_set, trace_name)
5 % Stop the measurement and save the current trace in trace_file
6 mPAPI_toc(event_set)

132 APPENDIX B. MPAPI

Appendix C

Automatic experiment
generation with Menchi

Menchi is an experiment generator for automatic benchmarking of MAT-
LAB/Octave programs. The goal of Menchi is to facilitate repetitive tasks
such as generating scripts, preparing a machine for tests, and running bench-
marks with changing experiment parameters. Moreover, the tool makes
sure that all experiments share the same experimental conditions to ensure
benchmarking repetitiveness.

Menchi Experiment modeJSON specification

benchmarks.csv CodeExtractor Benchmarks

Run script MATLAB

Octave

Experiment script Experiment result

mPAPI

Figure C.1: Workflow of code benchmarking with Menchi. Three olive nodes
highlight our tools: CodeExtractor, Menchi and mPAPI.

Figure C.1 presents steps and tools required to prepare experiments with
Menchi. We start with preparing and extracting source code of benchmarks
to the CSV file format. An auxiliary tool called CodeExtractor takes a set
of benchmark codes, analyses them, and packs them into one CSV. Next,
we define the experiment specification in one JSON file roughly divided into
three sections: (1) environment, (2) experiment, and (3) measurement. The
environment section (1) contains paths to MATLAB/Octave environments,
mPAPI tool and paths to any external C MEX libraries used in the benchmark
codes, e.g. MatlUp with mu_fast_slice functions. The experiment section (2)
defines properties such as: experiment name, path to a result files, MAT-

133

134 APPENDIX C. MENCHI

LAB/Octave versions, benchmark codes, or the size of input data. The
measurement section (3) declares what is measured (execution time and/or
performance events), and how many times to repeat measurements.

Finally, we pass to Menchi two parameters with a path to the JSON
specification and the experiment mode (e.g. counting or sampling) as follows:
menchi spec.json experiment_mode. The path to benchmark codes is inside
the specification. The result of running Menchi is a collection of generated
runnable scripts.

In the subsequent sections, we describe how to prepare benchmark codes
and experiment specification to generate run scripts and execute benchmarks.
Moreover, we list 8 available experiment modes with their description.

C.1 Benchmark preparation

Menchi loads benchmarks from CSV files prepared using CodeExtractor
tool. The tool takes as an input files with benchmark codes structured as
separate MATLAB functions. Listing C.1 presents an example benchmark
from the Livermore suite1. Each benchmark code consists of several code
regions marked with the pragma directive. The only required region is init
which sets values to variables used in the benchmark code. Usually, the init
section performs random value generation of vectors with LEN_1D elements
and matrices of size LEN_2D ˆ LEN_2D. All subsequent code regions contain
different versions of the same benchmark, e.g. loop, vec, vec_O1, unrolled_2,
tiled.

Listing C.1: Structure of the benchmark source code used by the
CodeExtractor and Menchi. The example code contains three versions (loop,
unrolled_2, vec) of the inner product kernel from the Livermore suite.

1 function kernel_3_inner_prod(LEN_1D)
2 %! pragma init
3 q = 0.0;
4 x = randn(1, LEN_1D);
5 z = randn(1, LEN_1D);
6 %! pragma loop
7 for k = 1:LEN_1D
8 q = q + z(k) .* x(k);
9 end
10 %! pragma unrolled_2
11 for k = 1:2:(LEN_1D´1)
12 q = q + z(k) .* x(k);
13 q = q + z(k+1) .* x(k+1);
14 end
15 %! pragma vec
16 q = sum(z(1:LEN_1D) .* x(1:LEN_1D));

1https://www.netlib.org/benchmark/livermore

https://www.netlib.org/benchmark/livermore

C.2. EXPERIMENT SPECIFICATION 135

17 end

The CodeExtractor tool takes benchmark codes and extracts them to a
single CSV file containing 9 columns listed in Table C.1 with their descriptions.
Apart from standard information about benchmark name, versions, and their
source code, CodeExtractor extracts information about the number of vector
(num_vectors) and matrix (num_matrices) variables defined in the init region.
The information is later used by the Menchi to generate input variables
which occupy a specific amount of memory, e.g. all L1 cache or half of the
L2 cache. Moreover, the tool keeps lists of variables defined in the init
region and in source codes of every benchmark version. Later, Menchi uses
the lists to empirically validate if two or more benchmark versions generate
the same result, which is a useful feature while benchmarking new code
transformations.

Table C.1: Description of the CSV benchmark specification generated by the
CodeExtractor.

Column Description

benchmark Benchmark name extracted from the function name in
which the benchmark is stored

type Benchmark version from the pragma directive (except for
the init region)

parameter The name of the data size parameter (LEN_1D or LEN_2D)
num_vectors Number of vector variables defined in the init region
num_matrices Number of matrix variables defined in the init region

init Source code of the init region which sets values of input
variables, common for every benchmark version

code Source code of the benchmark version region
init_vars List of variables defined in the init region
code_vars List of variables defined in the benchmark version region

C.2 Experiment specification

In Menchi, a single specification file defines all properties of an experiment
except for the experiment mode which is an additional parameter to the
Mechi tool. The specification file is in the JSON format with predefined
structure and field names. The file contains three groups of parameters
describing: environment (env), experiment (experiment), and measurements
(measurements). Appendix C.2 depicts example specification of an experiment
for the measurement of vectorised codes from the STREAM benchmark.

1 {

136 APPENDIX C. MENCHI

2 “env”: {
3 “MATLAB”: {
4 “R2018b”: “/usr/local/MATLAB/R2018b/bin/matlab”,
5 “R2015b”: “/usr/local/MATLAB/R2015b/bin/matlab”},
6 “mPAPI”: {
7 “R2018b”: “../../../../ Tools/mPAPI/r2018b”,
8 “R2015b”: “../../../../ Tools/mPAPI/r2015b”},
9 “notification”: {

10 “enabled”: 1,
11 “credentials”: “/home/quepas/pushover_credentials.json”}
12 },
13 “experiment”: {
14 “name”: “stream_vectorised_performance”,
15 “directory”: {
16 “result”: “results/”,
17 “temporary”: “temp/”},
18 “execution”: {
19 “hyper -threading”: true,
20 “process_iter”: 1,
21 “threads”: [1, 2 ,4],
22 “matlab”: [“R2015b”, “R2018b”]},
23 “N”: {
24 “enumerate”: “L1, L2, 2*L2, 4*L2”},
25 “benchmarks”: {
26 “input_codes”: [
27 “../../../../ Benchmarks/_extracted/STREAM.csv”],
28 “version”: [“vec“],
29 “include”: [],
30 “exclude”: []},
31 “measurement”: {
32 “repetitions”: 30,
33 “test_time”: true,
34 “performance_events”: [[“CPU_CLK_UNHALTED:THREAD_P”,
35 “INST_RETIRED:ANY_P”]]}
36 }
37 }

Menchi prepares the experiment files accordingly to our experiment
methodology detailed in Appendix A. For example, the tool sets up the con-
stant frequency of the processor (performance governor), clears I/O buffers,
sets the highest processes priority, among others. Moreover, Menchi can
send push notification using Pushover service to notify when the test have
finished.

C.3 Experiment modes

Menchi generates 8 types of experiments depicted in Table C.2, mainly used
for the measurement of execution time and performance events. Moreover,
the tool collects data from code instrumentation and performs empirical
validation of results generated by different versions of the same benchmark.

C.3. EXPERIMENT MODES 137

Table C.2: Experiment modes in Menchi tool.

Experiment code Code placement Menchi parameter

Measurement Script measure
Measurement Function measure_fun

Per-thread measurement Script threads
Per-thread measurement Function threads_fun

Warmup Script warmup
Performance profile Function phase

Instrumentation Script instrument
Empirical validation Script validate

Measurement mode. In this mode, we can measure the execution time
using tic and toc built-in functions which have a resolution of 1ˆ 10´6

seconds. Moreover, we can measure performance events using mPAPI tool
which accesses native performance events and PAPI present events in the
counting mode.

The results of the measurement mode are stored in a long (narrow)
data format and contain several execution properties listed in the header in
Listing C.2. Apart from obvious entries: matlab, threads, benchmark, metrics,
N, and value, the properties include process: for counting how many times
the MATLAB environment was restarted; in_process for counting how many
times a measurement was taken; and version which indicates the code version
of a benchmark.

Listing C.2: Example of benchmark results in a long format.
1 matlab,threads,process,benchmark,version,metrics,N,in_process,value
2 R2018b,1,1,add,loop,INST_RETIRED:ANY_P,1000000,1,126562546
3 R2018b,1,1,add,loop,MEM_INST_RETIRED:ALL_LOADS,1000000,1,36292657
4 R2018b,1,1,add,loop,INST_RETIRED:ANY_P,1000000,2,21222667
5 R2018b,1,1,add,loop,MEM_INST_RETIRED:ALL_LOADS,1000000,2,3066188
6 ...

Per-thread measurement mode. The mode is similar to the measure-
ment mode, but it performs measurements per-thread basis. Therefore, the
result file in Listing C.3 contains an additional execution property, the thread
number with values from the range of r1, threadss.

Listing C.3: Example of benchmark results in a long format with per-thread
measurements.

1 matlab,thread,threads,process,benchmark,version,metrics,N,in_process,
value

2 R2018b,1,2,1,add,loop,INST_RETIRED:ANY_P,1000000,1,118316140

138 APPENDIX C. MENCHI

3 R2018b,2,2,1,add,loop,INST_RETIRED:ANY_P,1000000,1,0
4 R2018b,1,2,1,add,loop,INST_RETIRED:ANY_P,1000000,2,21224014
5 R2018b,2,2,1,add,loop,INST_RETIRED:ANY_P,1000000,2,0
6 ...

Function or script sub-modes. Both modes, measurement and per-
thread measurement, have two sub-modes where measured benchmarks are
embedded in either, a script or a separate function. The placement of
benchmarks affects their execution and performance, because the sub-modes
use MATLAB workspace differently. In the script, every time the benchmark
stores a variable, the global workspace is updated as well which generates
additional size and type checks among others. Potentially, the placement
of benchmarks affects capabilities of the JIT compiler too, because every
assignment in the script modifies the workspace, where in the function, only
assignments which return a result.

From our experience, measuring benchmarks embedded in the function is
more precise. However, depending on the context, measuring in the script or
in the function is a more appropriate approach.

Warmup measurement mode. The primary use of warmup measurement
mode is to examine how program execution changes after the program runs
multiple times. Modern Just-In-Time compilers can monitor how the same
program executes and recompile the program if profitable. This methodology
is an example of Profile-Guided Optimisation (PGO) found in e.g. HotSpot
JVM [165,166]. The goal of the warmup measurement mode is to accommo-
date a huge number of measurements in a wide format depicted in Listing C.4
and save storage memory in the process.

Listing C.4: Example of benchmark results in a wide format for warmup
mesurements.

1 matlab,threads,process,benchmark,version,metrics,N,1,2,3,4,5, ...
2 R2018b,add,loop,1,1000000,INST_RETIRED:ANY_P

,170517051,48110361,48098964,48097041,49076418, ...
3 R2018b,add,vec,1,1000000,INST_RETIRED:ANY_P

,26513485,25383927,25383917,25383815,27349558, ...
4 R2018b,add,vec_O1,1,1000000,INST_RETIRED:ANY_P

,5993393,5595819,5595819,5595820,6526795, ...

Performance profile mode. In the performance profile mode, Menchi
collects performance traces using the mPAPI in the sampling mode. Example
of a performance trace is depicted in Listing 3.2 in Chapter 3. However,
traces are hard to process and analyse because they store raw measurements.
Therefore, with the trace2csv() function from mPAPI, traces are converted
to a single CSV file in a long format.

C.3. EXPERIMENT MODES 139

The result CSV file has the same header as in the measurement mode in
Listing C.2, but with two additional columns: trace_id and time, because
each trace has its unique identifier (from 1 to N) and the observation time
from the sampling. Due to limitations of hardware performance counters,
there is no per-thread measurement in the performance profile mode.

Code instrumentation mode. Apart from classical measurements, Menchi
also collects data from the code instrumentation. We have developed a tool
which replaces language constructs with wrapped functions to count the
occurrence of read, write, flops instructions in the code. The result file is in
a long format (as in Listing C.2) with the same header as in the measurement
mode, but with only three metrics: read, write, flops.

In the current version, the set of collected metrics by Menchi is fixed
to the three above-mentioned metrics. However, it is possible to add new
metrics in the instrumentation tool and Menchi.

Empirical validation mode. In principle, each code version of a bench-
mark returns the same result (see Listing C.1). However, in the process of
preparing automated (or manual) code transformations, an implementation
bug might occur resulting in the invalid transformations. The goal of the
empirical validation mode is to check if various code versions perform the
same computation.

In the mode, for each measurement repetition, Menchi generates and
saves input data for the run. Then, the tool executes each code version with
the same input data and stores their results. Finally, the obtained results are
compared and in the case of a result mismatch, the tool displays an error.
Menchi performs the numerical comparison with a tolerance defined by the
parameter tolerance in the JSON specification of the experiment.

140 APPENDIX C. MENCHI

Appendix D

Accompanying materials

This section contains several accompanying materials such as: code listings
on Figure D.1 used in the profile-guided loop vectorisation in Section 5.4;
extended results on Figure D.2 of the cost analysis of array slicing in Sec-
tion 3.5; and finally, performance event profiles (PEP) for code examples
from Table 4.4 on Figures D.3 to D.8.

1 function crni2(LEN_2D)
2 %! pragma init
3 Vb = zeros(1, LEN_2D);
4 U = randn(LEN_2D, LEN_2D);
5 s2 = randn(1);
6
7 %! pragma loop
8 for j1 = 2:(LEN_2D+1)
9 for i1=2:(LEN_2D́ 1)

10 Vb(i1)=U(i1´1, j1́ 1)+U(i1+1, j1́ 1)+s2*U(i1, j1́ 1);
11 end
12 end
13
14 %! pragma mc2mc
15 for j1 = 2:(LEN_2D+1)
16 i1 = colon(2,minus(LEN_2D,1));
17 if length(Vb)==length(i1)
18 Vb=plus(plus(U(minus(i1,1),minus(j1,1)),U(plus(i1,1),minus(j1,1))),times(minus(

rdivide(2,s2),2),U(i1,minus(j1,1))));
19 else
20 Vb(i1)=plus(plus(U(minus(i1,1),minus(j1,1)),U(plus(i1,1),minus(j1,1))),times(minus

(rdivide(2,s2),2),U(i1,minus(j1,1))));
21 end
22 end
23
24 %! pragma mc2mc_opt
25 for j1 = 2:(LEN_2D+1)
26 Vb(2:(LEN_2D́ 1))=U(1:(LEN_2D́ 2), j1́ 1)+U(3:LEN_2D, j1́ 1)+s2*U(2:(LEN_2D́ 1), j1́ 1);
27 end
28 end

Figure D.1: Loop crni2 from the work by Chen et al. [1] and its vectorised
versions, without and with our code transformations.

141

142 APPENDIX D. ACCOMPANYING MATERIALS

1 function nw2(LEN_2D)
2 %! pragma init
3 input_itemsets = randn(LEN_2D, LEN_2D);
4 jj = randi([1, LEN_2D], 1, 1);
5 penalty = randn(1);
6
7 %! pragma loop
8 for ii = 2:LEN_2D
9 input_itemsets(ii, jj) = ´(ii ´ 1) * penalty;
10 end
11
12 %! pragma mc2mc
13 ii = colon(2, LEN_2D);
14 input_itemsets(ii, jj) = times(uminus(minus(ii, 1)), penalty);
15
16 %! pragma mc2mc_opt
17 input_itemsets(2:LEN_2D, jj) = ´(1:(LEN_2D ´ 1)) .* penalty;
18 end

1 function nw3(LEN_2D)
2 %! pragma init
3 input_itemsets = randn(LEN_2D, LEN_2D);
4 ii = randi([1, LEN_2D], 1, 1);
5 penalty = randn(1);
6
7 %! pragma loop
8 for jj = 2:LEN_2D
9 input_itemsets(ii, jj) = ´(jj ´ 1) * penalty;
10 end
11
12 %! pragma mc2mc
13 jj = colon(2,LEN_2D);
14 input_itemsets(ii, jj) = times(uminus(minus(jj,1)),penalty);
15
16 %! pragma mc2mc_opt
17 input_itemsets(ii, 2:LEN_2D) = ´(1:(LEN_2D´1)) * penalty;
18 end

Figure D.1: Two loops nw2 and nw3 from the work by Chen et al. [1] and their
vectorised versions, without and with our code transformations.

143

1 function fft1(LEN_2D)
2 %! pragma init
3 rtnR = zeros(LEN_2D, LEN_2D);
4 rtnI = zeros(LEN_2D, LEN_2D);
5 resR = randn(1, LEN_2D);
6 resI = randn(1, LEN_2D);
7
8 %! pragma loop
9 for ii = 1:LEN_2D

10 for k=1:LEN_2D
11 rtnR(ii,k) = resR(k);
12 rtnI(ii,k) = resI(k);
13 end
14 end
15
16 %! pragma mc2mc
17 for ii = 1:LEN_2D
18 k = colon(1,LEN_2D);
19 rtnI(ii, k) = resI(k);
20 rtnR(ii, k) = resR(k);
21 end
22
23 %! pragma mc2mc_opt
24 for ii = 1:LEN_2D
25 rtnR(ii, :) = resR(1:LEN_2D);
26 rtnI(ii, :) = resI(1:LEN_2D);
27 end
28 end

Figure D.1: Loop fft1 from the work by Chen et al. [1] and its vectorised
versions, without and with our code transformations.

144 APPENDIX D. ACCOMPANYING MATERIALS

R2015b R2018b

add
daxpy

sdaxpy
striad

triad
update

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

1e
+0

5

2e
+0

5

3e
+0

5

4e
+0

5

5e
+0

5

6e
+0

5

7e
+0

5

8e
+0

5

9e
+0

5

1e
+0

6

2e
+0

6

3e
+0

6

4e
+0

6

5e
+0

6

6e
+0

6

7e
+0

6

8e
+0

6

9e
+0

6

1e
+0

7

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

1e
+0

5

2e
+0

5

3e
+0

5

4e
+0

5

5e
+0

5

6e
+0

5

7e
+0

5

8e
+0

5

9e
+0

5

1e
+0

6

2e
+0

6

3e
+0

6

4e
+0

6

5e
+0

6

6e
+0

6

7e
+0

6

8e
+0

6

9e
+0

6

1e
+0

7

4

6

8

10

4

6

8

10

4

6

8

10

4

6

8

10

4

6

8

10

4

6

8

10

Size of copied data (double−precision floating−points elements)

P
ro

ce
ss

or
 c

yc
le

s
pe

r−
el

em
en

t

Detailed view on 6 test programs; run on M1; threads=1; sampling threshold=100000

Per−element cost of data copying

Figure D.2: The per-element cost of performing data copy during array
slicing. The results show the copy of huge volume of data (more than
4 000 000 elements) is performed more efficient in terms of processor cycles
for all 6 programs.

145

M1

R2015b

M1

R2018b

M2

R2015b

M2

R2018b

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

2.
0e

+0
8

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

2.
0e

+0
8

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

2.
0e

+0
8

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

2.
0e

+0
8

2500
5000
7500

10000
12500

5000

10000

15000

20000

10000

20000

0
500

1000
1500
2000

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Minimal instruction tree #3; threads=1; sampling threshold=100000, N=1000000

MIT−3 execution regions

Figure D.3: Expression floor(A)+sin(fix(B.*C)) is perfectly combinable and
requires only one instruction block to execute.

M1

R2015b

M1

R2018b

M2

R2015b

M2

R2018b

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0e
+0

0

3e
+0

8

6e
+0

8

9e
+0

8

0.
0e

+0
0

2.
5e

+0
8

5.
0e

+0
8

7.
5e

+0
8

1.
0e

+0
9

0e
+0

0

3e
+0

8

6e
+0

8

9e
+0

8

0.
0e

+0
0

2.
5e

+0
8

5.
0e

+0
8

7.
5e

+0
8

1.
0e

+0
9

0

10000

20000

5000
10000
15000
20000

3000

6000

9000

0

1000

2000

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Minimal instruction tree #4; threads=1; sampling threshold=100000, N=1000000

MIT−4 execution regions

Figure D.4: Expression exp((A.^D+B.^E) ./ (C.^F)) contains compute-
intensive power operators.

146 APPENDIX D. ACCOMPANYING MATERIALS

M1

R2015b

M1

R2018b

M2

R2015b

M2

R2018b

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

0
5000

10000
15000
20000

0
5000

10000
15000
20000

0

20000

40000

0
250
500
750

1000
1250

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Minimal instruction tree #5; threads=1; sampling threshold=100000, N=1000000

MIT−5 execution regions

Figure D.5: Expression A(1:N) .* atan2(B(1:N), C)) contains atan2 func-
tion which combined with element-wise multiplication .* creates an instruc-
tion block performing scalar arithmetic operations only.

M1

R2015b

M1

R2018b

M2

R2015b

M2

R2018b

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0e
+0

0

3e
+0

7

6e
+0

7

9e
+0

7

0e
+0

0

3e
+0

7

6e
+0

7

9e
+0

7

0e
+0

0

3e
+0

7

6e
+0

7

9e
+0

7

0e
+0

0

3e
+0

7

6e
+0

7

9e
+0

7

0

10000

20000

0
5000

10000
15000
20000

0
10000
20000
30000
40000
50000

0

500

1000

1500

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Minimal instruction tree #6; threads=1; sampling threshold=100000, N=1000000

MIT−6 execution regions

Figure D.6: Expression log(A) + B + C(1:N) performs compute-intensive
scalar log function followed by the addition of B with the array slice C(1:N).

147

M1

R2015b

M1

R2018b

M2

R2015b

M2

R2018b

FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE
(Vector floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0e
+0

0

2e
+0

7

4e
+0

7

6e
+0

7

0e
+0

0

2e
+0

7

4e
+0

7

6e
+0

7

0e
+0

0

2e
+0

7

4e
+0

7

6e
+0

7

0e
+0

0

2e
+0

7

4e
+0

7

6e
+0

7

0

5000

10000

15000

0
5000

10000
15000
20000

0

20000

40000

0
250
500
750

1000
1250

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Minimal instruction tree #7; threads=1; sampling threshold=100000, N=1000000

MIT−7 execution regions

Figure D.7: Expression fix(A(1:N))+(B(1:N).*C(1:N)), when executed, it
mixes addition and element-wise multiplication into one instruction block
performing vector arithmetic operations.

M1

R2015b

M1

R2018b

M2

R2015b

M2

R2018b

FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE
(Vector floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

MEM_INST_RETIRED:ALL_STORES
(Store instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)

0e
+0

0

1e
+0

7

2e
+0

7

0e
+0

0

1e
+0

7

2e
+0

7

0.
0e

+0
0

5.
0e

+0
6

1.
0e

+0
7

1.
5e

+0
7

2.
0e

+0
7

2.
5e

+0
7

0.
0e

+0
0

5.
0e

+0
6

1.
0e

+0
7

1.
5e

+0
7

2.
0e

+0
7

2.
5e

+0
7

0

5000

10000

15000

0
5000

10000
15000
20000

10000
20000
30000
40000
50000

0
300
600
900

1200

Number of retired instructions (INST_RETIRED:ANY_P)

P
er

fo
rm

an
ce

 e
ve

nt
 v

al
ue

s

Minimal instruction tree #8; threads=1; sampling threshold=100000, N=1000000

MIT−8 execution regions

Figure D.8: Expression A(1:N) + (B(1:N) + C(1:N)) evaluates chain of addi-
tions in the right-to-left order; thus, allowing plus operators to coexist in a
single instruction block.

148 APPENDIX D. ACCOMPANYING MATERIALS

Bibliography

[1] Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren.
Automatic Vectorization for MATLAB. volume 10136 LNCS of Lecture
Notes in Computer Science, pages 171–187. 2017.

[2] Kenneth E. Iverson. A programming language. Wiley, 1962.

[3] Julia Language: Microbenchmarks. https://github.com/JuliaLang/
Microbenchmarks. Accessed on: 2019-09-28.

[4] Efstratios Gallopoulos, E. Houstis, and J.R. Rice. Computer as thinker/-
doer: problem-solving environments for computational science. IEEE
Computational Science and Engineering, 1(2):11–23, 1994.

[5] Intel® Math Kernel Library (MKL). https://software.intel.com/
en-us/mkl. Accessed on: 2019-09-26.

[6] Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Alec Wolman,
Wayne A. Wong, Jean-Loup Baer, Brian N. Bershad, and Henry M.
Levy. The structure and performance of interpreters. In Proceedings
of the seventh international conference on Architectural support for
programming languages and operating systems - ASPLOS-VII, volume 5,
pages 150–159, New York, New York, USA, 1996. ACM Press.

[7] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools. Pearson Education, Inc,
2006.

[8] John Aycock. A brief history of just-in-time. ACM Computing Surveys,
35(2):97–113, 2003.

[9] Vijay Menon and Keshav Pingali. A case for source-level transformations
in MATLAB. ACM SIGPLAN Notices, 35(1):53–65, 1 2000.

[10] MATLAB Execution Engine. https://www.mathworks.com/
products/matlab/matlab-execution-engine.html. Accessed on:
2019-09-28.

149

https://github.com/JuliaLang/Microbenchmarks
https://github.com/JuliaLang/Microbenchmarks
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://www.mathworks.com/products/matlab/matlab-execution-engine.html
https://www.mathworks.com/products/matlab/matlab-execution-engine.html

150 BIBLIOGRAPHY

[11] Luiz De Rose, Kyle Gallivan, Efstratios Gallopoulos, B. Marsolf, and
David Padua. FALCON: A MATLAB interactive restructuring compiler.
In Lecture Notes in Computer Science, number 1448, pages 269–288.
1996.

[12] M.J. Quinn, A. Malishevsky, and N. Seelam. Otter: bridging the gap
between MATLAB and ScaLAPACK. In Proceedings. The Seventh
International Symposium on High Performance Distributed Comput-
ing (Cat. No.98TB100244), volume 1998-July, pages 114–121. IEEE
Comput. Soc, 1998.

[13] Joao Bispo, Pedro Pinto, Ricardo Nobre, Tiago Carvalho, Joao M. P.
Cardoso, and Pedro C Diniz. The MATISSE MATLAB compiler. In
2013 11th IEEE International Conference on Industrial Informatics
(INDIN), pages 602–608. IEEE, 7 2013.

[14] Laurie Hendren, Jesse Doherty, Anton Dubrau, Rahul Garg, Nurudeen
Lameed, Soroush Radpour, Amina Aslam, Toheed Aslam, Andrew
Casey, Maxime Chevalier Boisvert, Jun Li, Clark Verbrugge, and Olivier
Savary Belanger. McLAB: Enabling Programming Language, Compiler
and Software Engineering Research for Matlab. Proceedings of the ACM
International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, pages 195–196, 2011.

[15] Xu Li and Laurie Hendren. Mc2For: A tool for automatically translat-
ing MATLAB to FORTRAN 95. In 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE), pages 234–243. IEEE, 2 2014.

[16] Vineet Kumar and Laurie Hendren. MIX10. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications - OOPSLA ’14, pages 617–636, New
York, New York, USA, 2014. ACM Press.

[17] Pramod G. Joisha and Prithviraj Banerjee. An algebraic array shape
inference system for MATLAB®. ACM Transactions on Programming
Languages and Systems, 28(5):848–907, 2006.

[18] George Almási and David Padua. MaJIC: Compiling MATLAB for
Speed and Responsiveness*. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and implementation
- PLDI ’02, page 294, New York, New York, USA, 2002. ACM Press.

[19] Stéphane Chauveau and François Bodin. Menhir: An Environment
for High Performance Matlab. Scientific Programming, 7(3-4):303–312,
1999.

BIBLIOGRAPHY 151

[20] Arun Chauhan and Ken Kennedy. Reducing and Vectorizing Proce-
dures for Telescoping Languages. International Journal of Parallel
Programming, 30(4):291–315, 2002.

[21] Neil Birkbeck, Jonathan Levesque, and Jose Nelson Amaral. A Dimen-
sion Abstraction Approach to Vectorization in Matlab. In International
Symposium on Code Generation and Optimization (CGO’07), pages
115–130. IEEE, 3 2007.

[22] Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge. Op-
timizing Matlab through Just-In-Time Specialization. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 6011 LNCS,
pages 46–65. 2010.

[23] George Almasi and David Padua. MaJIC: A Matlab just-in-time Com-
piler. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 2017, pages 68–81, 2001.

[24] Ivano Azzini, Ronal Muresano, and Marco Ratto. Dragonfly: A multi-
platform parallel toolbox for MATLAB/Octave. Computer Languages,
Systems and Structures, 52:21–42, 6 2018.

[25] Vijay Menon and Anne E Trefethen. MultiMATLAB: Integrating
Matlab with high performance parallel computing. In Proceedings
of the 1997 ACM/IEEE conference on Supercomputing (CDROM) -
Supercomputing ’97, volume 1, pages 1–18, New York, New York, USA,
1997. ACM Press.

[26] Corinne Ancourt and François Irigoin. Scanning polyhedra with DO
loops. ACM SIGPLAN Notices, 26(7):39–50, 7 1991.

[27] Monica S. Lam, Edward E Rothberg, and Michael E Wolf. The cache
performance and optimizations of blocked algorithms. ACM SIGARCH
Computer Architecture News, 19(2):63–74, 1991.

[28] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improv-
ing data locality with loop transformations. ACM Transactions on
Programming Languages and Systems, 18(4):424–453, 1996.

[29] L. DeRose, Kyle Gallivan, Efstratios Gallopoulos, B. Marsolf, and David
Padua. An environment for the rapid prototyping and development of
numerical programs and libraries for scientific computation. Parallel
Computing, (1370), 1994.

152 BIBLIOGRAPHY

[30] Luiz DeRose, Kyle Gallivan, Efstratios Gallopoulos, Bret A Marsolf,
and David Padua. FALCON: An Environment for the Development
of Scientific Libraries and Applications. Proc. First International
Workshop on Knowledge-Based System for the (re)Use of Program
Libraries, (November), 1995.

[31] Patryk Kiepas, Jaroslaw Kozlak, Claude Tadonki, and Corinne Ancourt.
Profile-based vectorization for MATLAB. In Proceedings of the 5th
ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming - ARRAY 2018, pages 18–23, New
York, New York, USA, 2018. ACM Press.

[32] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
an insightful visual performance model for multicore architectures.
Communications of the ACM, 52(4):65, 2009.

[33] Ahmad Yasin. A Top-Down method for performance analysis and
counters architecture. In International Symposium on Performance
Analysis of Systems and Software, ISPASS 2014, pages 35–44, 2014.

[34] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.
O’Boyle, and Olivier Temam. Rapidly Selecting Good Compiler Opti-
mizations using Performance Counters. In International Symposium on
Code Generation and Optimization (CGO’07), pages 185–197. IEEE, 3
2007.

[35] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
End-to-End Deep Learning of Optimization Heuristics. In 2017 26th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), volume 2017-Septe, pages 219–232. IEEE, 9 2017.

[36] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount,
and Laurence Tratt. Virtual machine warmup blows hot and cold.
Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–27,
10 2017.

[37] Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew
Paroski, Brett Simmers, Edwin Smith, and Owen Yamauchi. The hiphop
virtual machine. ACM SIGPLAN Notices, 49(10):777–790, 2015.

[38] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. One VM to rule them all. In Proceedings of the
2013 ACM international symposium on New ideas, new paradigms, and
reflections on programming & software - Onward! ’13, pages 187–204,
New York, New York, USA, 2013. ACM Press.

BIBLIOGRAPHY 153

[39] OpenJDK Wiki: HotSpot Internals. https://wiki.openjdk.java.
net/display/HotSpot. Accessed on: 2019-09-30.

[40] Michael R Jantz and Prasad A Kulkarni. Exploring single and multilevel
JIT compilation policy for modern machines. ACM Transactions on
Architecture and Code Optimization, 10(4):1–29, 2014.

[41] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Producing wrong data without doing anything obviously
wrong! ACM SIGPLAN Notices, 44(3):265, 2 2009.

[42] Shruti Patil and David J. Lilja. Statistical methods for computer per-
formance evaluation. Wiley Interdisciplinary Reviews: Computational
Statistics, 4(1):98–106, 1 2012.

[43] PAPI: Performance Application Programming Interface. https://icl.
utk.edu/papi/. Accessed on: 2019-09-24.

[44] Functions and Objects Supported for C/C++ Code Generation
(MATLAB R2019b). https://www.mathworks.com/help/coder/
ug/functions-and-objects-supported-for-cc-code-generation.
html. Accessed on: 2019-09-22.

[45] João Bispo and João M.P. Cardoso. A MATLAB subset to C com-
piler targeting embedded systems. Software - Practice and Experience,
47(2):249–272, 2 2017.

[46] Luís Reis, João Bispo, and João M. P. Cardoso. Compiler Techniques
for Efficient MATLAB to OpenCL Code Generation. In Proceedings
of the 5th International Workshop on OpenCL - IWOCL 2017, volume
Part F1277, pages 1–2, New York, New York, USA, 2017. ACM Press.

[47] Luiz De Rose and David Padua. A MATLAB to Fortran 90 translator
and its effectiveness. In Proceedings of the 10th international conference
on Supercomputing - ICS ’96, number 1462, pages 309–316, New York,
New York, USA, 1996. ACM Press.

[48] Luiz Antonio de Rose and David Padua. Techniques for the transla-
tion of MATLAB programs into Fortran 90. ACM Transactions on
Programming Languages and Systems, 21(2):286–323, 3 1999.

[49] M.J. Quinn, Alexey Malishevsky, Nagajagadeswar Seelam, and Yan
Zhao. Preliminary results from a parallel MATLAB compiler. In
Proceedings of the First Merged International Parallel Processing Sym-
posium and Symposium on Parallel and Distributed Processing, pages
81–87. IEEE Comput. Soc, 1998.

https://wiki.openjdk.java.net/display/HotSpot
https://wiki.openjdk.java.net/display/HotSpot
https://icl.utk.edu/papi/
https://icl.utk.edu/papi/
https://www.mathworks.com/help/coder/ug/functions-and-objects-supported-for-cc-code-generation.html
https://www.mathworks.com/help/coder/ug/functions-and-objects-supported-for-cc-code-generation.html
https://www.mathworks.com/help/coder/ug/functions-and-objects-supported-for-cc-code-generation.html

154 BIBLIOGRAPHY

[50] Stéphane Chauveau and François Bodin. Menhir: An Environment
for High Performance Matlab. In LCR ’98: Selected Papers from the
4th International Workshop on Languages, Compilers, and Run-Time
Systems for Scalable Computers, pages 27–40. 1998.

[51] Prithviraj Banerjee, Alok Choudhary, S Hauck, Nagaraj Shenoy, C Bach-
mann, M Chang, Malay Haldar, Pramod G. Joisha, A Jones, Abhay
Kanhere, A Nayak, S Periyacheri, and M Walkden. MATCH: A MAT-
LAB Compiler For Conngurable Computing Systems. Technical report,
Electrical and Computer Engineering; Northwestern University, 1999.

[52] Prithviraj Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bach-
mann, M. Haldar, Pramod G. Joisha, A. Jones, A. Kanhare, A. Nayak,
S. Periyacheri, M. Walkden, and D. Zaretsky. A MATLAB compiler
for distributed, heterogeneous, reconfigurable computing systems. In
Proceedings 2000 IEEE Symposium on Field-Programmable Custom
Computing Machines (Cat. No.PR00871), pages 39–48. IEEE Comput.
Soc, 2000.

[53] Prithviraj Banerjee. An overview of a compiler for mapping MATLAB
programs onto FPGAs. In Proceedings of the 2003 conference on Asia
South Pacific design automation - ASPDAC, page 477, New York, New
York, USA, 2003. ACM Press.

[54] Pramod G. Joisha and Prithviraj Banerjee. A translator system for the
MATLAB language. Software: Practice and Experience, 37(5):535–578,
4 2007.

[55] Peter Jurica and van Cees Leeuwen. OMPC: an open-source
MATLAB®-to-Python compiler. Frontiers in Neuroinformatics, 3:5,
2009.

[56] Ashwin Prasad, Jayvant Anantpur, and R. Govindarajan. Automatic
compilation of MATLAB programs for synergistic execution on hetero-
geneous processors. ACM SIGPLAN Notices, 47(6):152, 8 2012.

[57] SILKAN eVariX/COLD. http://www.evarix.fr/. Accessed on: 2019-
09-30.

[58] Geir Yngve Paulsen, Jonathan Feinberg, Xing Cai, Bjorn Nordmoen,
and Hans Petter Dahle. Matlab2cpp: A Matlab-to-C++ code translator.
In 2016 11th System of Systems Engineering Conference (SoSE), pages
1–5. IEEE, 6 2016.

[59] Geir Yngve Paulsen, Stuart Clark, Bjørn Nordmoen, Sergey Nenakhov,
Aron Andersson, Xing Cai, and Hans Petter Dahle. Automated Trans-
lation of MATLAB Code to C++ with Performance and Traceability.

http://www.evarix.fr/

BIBLIOGRAPHY 155

In The Eleventh International Conference on Advanced Engineering
Computing and Applications in Sciences, number c, pages 50–55, 2017.

[60] Johannes Spazier, Steffen Christgau, and Bettina Schnor. Automatic
generation of parallel C code for stencil applications written in MAT-
LAB. Proceedings of the 3rd ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming - ARRAY
2016, pages 47–54, 2016.

[61] Vincent Foley-Bourgon and Laurie Hendren. Efficiently implementing
the copy semantics of MATLAB’s arrays in JavaScript. In Proceedings
of the 12th Symposium on Dynamic Languages - DLS 2016, pages 72–83,
New York, New York, USA, 2016. ACM Press.

[62] Ioannis Latifis, Karthick Parashar, Grigoris Dimitroulakos, Hans Cap-
pelle, Christakis Lezos, Konstantinos Masselos, and Francky Catthoor.
A MATLAB Vectorizing Compiler Targeting Application-Specific In-
struction Set Processors. ACM Transactions on Design Automation of
Electronic Systems, 22(2):1–28, 2017.

[63] Pramod G. Joisha, Abhay Kanhere, Prithviraj Banerjee, Nagaraj
Shenoy, and Alok Choudhary. The Design and Implementation of
a Parser and Scanner for the MATLAB Language in the MATCH Com-
piler. Technical Report September, Center for Parallel and Distributed
Computing; Northwestern University, Sheridan Road, 1999.

[64] Pramod G. Joisha, Abhay Kanhere, Prithviraj Banerjee, U Nagaraj
Shenoy, and Alok Choudhary. Handling context-sensitive syntactic
issues in the design of a front-end for a MATLAB compiler. ACM
SIGAPL APL Quote Quad, 31(3):27–40, 3 2001.

[65] Pramod G. Joisha and Prithviraj Banerjee. Implementing an Array
Shape Inference System for MATLAB Using MATHEMATICA. Tech-
nical Report October, Center for Parallel and Distributed Computing;
Northwestern University, 2002.

[66] João Bispo, Luís Reis, and João M. P. Cardoso. C and OpenCL
generation from MATLAB. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing - SAC ’15, pages 1315–1320, New
York, New York, USA, 2015. ACM Press.

[67] João M.P. Cardoso, Tiago Carvalho, José G.F. Coutinho, Wayne Luk,
Ricardo Nobre, Pedro C. Diniz, and Zlatko Petrov. LARA: An aspect-
oriented programming language for embedded systems. AOSD’12 -
Proceedings of the 11th Annual International Conference on Aspect
Oriented Software Development, pages 179–190, 2012.

156 BIBLIOGRAPHY

[68] Open Multi-Processing (OpenMP). https://www.openmp.org/. Ac-
cessed on: 2019-09-22.

[69] Intel® Threading Building Blocks (TBB). https://github.com/
intel/tbb. Accessed on: 2019-09-22.

[70] Anton Willy Dubrau and Laurie Jane Hendren. Taming MATLAB. In
Proceedings of the ACM international conference on Object oriented
programming systems languages and applications - OOPSLA ’12, page
503, New York, New York, USA, 2012. ACM Press.

[71] Randy Allen and Ken Kennedy. Automatic translation of FORTRAN
programs to vector form. ACM Transactions on Programming Lan-
guages and Systems, 9(4):491–542, 10 1987.

[72] John R. Allen and Ken Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2001.

[73] Vijay Menon and Keshav Pingali. High-level semantic optimization of
numerical codes. In Proceedings of the 13th international conference on
Supercomputing - ICS ’99, pages 434–443, New York, New York, USA,
1999. ACM Press.

[74] Daniel Elphick, Michael Leuschel, and Simon Cox. Partial Evaluation of
MATLAB. In GPCE ’03 Proceedings of the 2nd international conference
on Generative programming and component engineering, pages 344–363,
2003.

[75] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, 2004.

[76] Malay Haldar, Anshuman Nayak, Abhay Kanhere, Pramod Joisha,
Nagaraj Shenoy, Alok Choudhary, and Prithviraj Banerjee. Match
virtual machine: An adaptive runtime system to execute MATLAB
in parallel. Proceedings of the International Conference on Parallel
Processing, pages 145–152, 2000.

[77] Jesse Doherty, Laurie Hendren, and Soroush Radpour. Kind analysis
for MATLAB. ACM SIGPLAN Notices, 46(10):99, 10 2011.

[78] Reinhard Wilhelm, Mooly Sagiv, and Thomas Reps. Shape Analysis. In
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
1781, pages 1–17. 2000.

https://www.openmp.org/
https://github.com/intel/tbb
https://github.com/intel/tbb

BIBLIOGRAPHY 157

[79] MAGICA: A Type Inference Engine for MATLAB. http://www.ece.
northwestern.edu/cpdc/pjoisha/MAGICA/. Accessed on: 2019-09-29.

[80] Pramod G. Joisha and Prithviraj Banerjee. The MAGICA Type In-
ference Engine for MATLAB ®. In Compiler Construction. CC 2003.
Lecture Notes in Computer Science, pages 121–125. Springer, Berlin,
Heidelberg, vol 2622 edition, 2003.

[81] Pramod G. Joisha. A type inference system for MATLAB with ap-
plications to code optimization. PhD thesis, Northwestern University,
2003.

[82] Shankar Ramaswamy, E.W. Hodges, and P Banerjee. Compiling MAT-
LAB programs to ScaLAPACK: exploiting task and data parallelism. In
Proceedings of International Conference on Parallel Processing, pages
613–619. IEEE Comput. Soc. Press, 1996.

[83] Andreas Abel and Jan Reineke. uops.info: Characterizing Latency,
Throughput, and Port Usage of Instructions on Intel Microarchitec-
tures. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems - ASPLOS ’19, pages 673–686, New York, New York, USA,
2019. ACM Press.

[84] John L. Hennessy and David Patterson. Computer Architecture: A
Quantitive Approach. Morgan Kaufmann, 2017.

[85] David Callahan, John Cocke, and Ken Kennedy. Estimating interlock
and improving balance for pipelined architectures. Journal of Parallel
and Distributed Computing, 5(4):334–358, 8 1988.

[86] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler
optimizations for improving data locality. ACM SIGOPS Operating
Systems Review, 28(5):252–262, 1994.

[87] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. Cache-aware
roofline model: Upgrading the loft. IEEE Computer Architecture
Letters, 13(1):21–24, 2014.

[88] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. Beyond the
roofline: Cache-aware power and energy-efficiency modeling for multi-
cores. IEEE Transactions on Computers, 66(1):52–58, 2017.

[89] Victoria Caparros Cabezas and Markus Puschel. Extending the roofline
model: Bottleneck analysis with microarchitectural constraints. In
IISWC 2014 - IEEE International Symposium on Workload Characteri-
zation, pages 222–231, 2014.

http://www.ece.northwestern.edu/cpdc/pjoisha/MAGICA/
http://www.ece.northwestern.edu/cpdc/pjoisha/MAGICA/

158 BIBLIOGRAPHY

[90] Georg Hager, Jan Treibig, Johannes Habich, and Gerhard Wellein.
Exploring performance and power properties of modern multi-core
chips via simple machine models. Concurrency and Computation:
Practice and Experience, 28(2):189–210, 2 2016.

[91] Brinkley Sprunt. The basics of performance-monitoring hardware. IEEE
Micro, 22(4):64–71, 2002.

[92] Stéphane Eranian. What can performance counters do for memory sub-
system analysis? In Proceedings of the 2008 ACM SIGPLAN workshop
on Memory systems performance and correctness held in conjunction
with the Thirteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’08) -
MSPC ’08, page 26, New York, New York, USA, 2008. ACM Press.

[93] OProfile. https://oprofile.sourceforge.io/. Accessed on: 2019-
09-24.

[94] perfmon2. http://perfmon2.sourceforge.net/. Accessed on: 2019-
09-24.

[95] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Col-
lecting Performance Data with PAPI-C. In Tools for High Performance
Computing 2009, pages 157–173, 2010.

[96] Tiptop. http://tiptop.gforge.inria.fr/. Accessed on: 2019-09-24.

[97] Erven Rohou. Tiptop: Hardware Performance Counters for the Masses.
Technical report, Inria Rennes – Bretagne Atlantique, 2011.

[98] Erven Rohou. Tiptop: Hardware performance counters for the masses.
Proceedings of the International Conference on Parallel Processing
Workshops, pages 404–413, 2012.

[99] Intel® VTune. https://software.intel.com/en-us/vtune. Ac-
cessed on: 2019-09-24.

[100] V Weaver and Jack Dongarra. Can hardware performance counters
produce expected, deterministic results. Proceedings of Third Workshop
on Functionality of Hardware Performance Monitoring, 2010.

[101] Vincent M Weaver and Sally A. McKee. Can hardware performance
counters be trusted? In International Symposium on Workload Charac-
terization, IISWC 2008, pages 141–150, 2008.

[102] Dmitrijs Zaparanuks, Milan Jovic, and Matthias Hauswirth. Accuracy
of performance counter measurements. In International Symposium on
Performance Analysis of Systems and Software, ISPASS 2009, pages
23–32, 2009.

https://oprofile.sourceforge.io/
http://perfmon2.sourceforge.net/
http://tiptop.gforge.inria.fr/
https://software.intel.com/en-us/vtune

BIBLIOGRAPHY 159

[103] Florian T. Schneider, Mathias Payer, and Thomas R. Gross. On-
line optimizations driven by hardware performance monitoring. ACM
SIGPLAN Notices, 42(6):373, 2007.

[104] Lieven Eeckhout, Andy Georges, and Koen De Bosschere. How java
programs interact with virtual machines at the microarchitectural level.
ACM SIGPLAN Notices, 38(11):169, 2003.

[105] Peter F Sweeney, Matthias Hauswirth, Brendon Cahoon, Perry Cheng,
Amer Diwan, David Grove, and Michael Hind. Using hardware perfor-
mance monitors to understand the behavior of java applications. Virtual
Machine Research And Technology Symposium, VM 2004, page 5, 2004.

[106] Timothy Sherwood, Brad Calder, and San Diego. Time Varying Behav-
ior of Programs. Technical report, Department of Computer Science
and Engineering; University of California, San Diego, 1999.

[107] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS 2002, volume 36, page 45, 2002.

[108] T. Sherwood, E. Perelman, Greg Hamerly, S. Sair, and Brad Calder.
Discovering and exploiting program phases. IEEE Micro, 23(6):84–93,
2003.

[109] E. Duesterwald, C. Cascaval, and Sandhya Dwarkadas. Characterizing
and predicting program behavior and its variability. In Parallel Ar-
chitectures and Compilation Techniques, PACT 2003, pages 220–231,
2003.

[110] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael Hind.
Vertical profiling: Understanding the Behavior of Object-Oriented
Applications. In Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2004, volume 39, page 251, 2004.

[111] Matthias Hauswirth, Amer Diwan, Peter F Sweeney, and Michael C
Mozer. Automating vertical profiling. ACM SIGPLAN Notices,
40(10):281, 2006.

[112] Matthias Hauswirth, Peter F Sweeney, and Amer Diwan. Temporal
vertical profiling. Software - Practice and Experience, 40(8):627–654,
2010.

[113] M. Anton Ertl and David Gregg. The Behavior of Efficient Virtual
Machine Interpreters on Modern Architectures. In Lecture Notes in

160 BIBLIOGRAPHY

Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), volume 2150, pages
403–413. 2 2001.

[114] M Anton Ertl and David Gregg. The structure and performance of
efficient interpreters. Journal of Instruction-Level Parallelism, 5:1–25,
2003.

[115] Stefan Brunthaler. Virtual-Machine Abstraction and Optimization
Techniques. Electronic Notes in Theoretical Computer Science, 253(5):3–
14, 12 2009.

[116] Erven Rohou, Bharath Narasimha Swamy, and Andre Seznec. Branch
prediction and the performance of interpreters – Don’t trust folklore.
In 2015 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 103–114. IEEE, 2 2015.

[117] Gergö Barany. Python Interpreter Performance Deconstructed. In
Proceedings of the Workshop on Dynamic Languages and Applications -
Dyla’14, pages 1–9, New York, New York, USA, 2014. ACM Press.

[118] Vincenza Carchiolo, Michele Malgeri, Giuseppe Mangioni, and Vincenzo
Nicosia. Evaluating the Dynamic Behaviour of Python applications. In
ACSC ’09 Proceedings of the Thirty-Second Australasian Conference
on Computer Science, pages 19–28, 2009.

[119] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An
infrastructure for adaptive dynamic optimization. In International
Symposium on Code Generation and Optimization, CGO 2003, pages
265–275, 2003.

[120] Chi-keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In Programming Language Design and
Implementation, PLDI 2005, page 190. ACM Press, 2005.

[121] Rafael H. Saavedra and Alan Jay Smith. Analysis of benchmark char-
acteristics and benchmark performance prediction. ACM Transactions
on Computer Systems, 14(4):344–384, 1996.

[122] Shirley V Moore. A comparison of counting and sampling modes of
using performance monitoring hardware. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 2330 LNCS, pages 904–912,
2002.

BIBLIOGRAPHY 161

[123] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat,
Anirudha Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin,
and Adi Yoaz. Inside 6th-Generation Intel Core: New Microarchitecture
Code-Named Skylake. IEEE Micro, 37(2):52–62, 2017.

[124] Todd Mytkowicz, Peter Sweeney, Matthias Hauswirth, Amer Diwan,
Peter F Sweeney, and Unisich Amer Diwan. Observer Effect and
Measurement Bias in Performance Analysis. Technical Report June,
University of Colorado at Boulder, 2008.

[125] Daniel Molka, Robert Schöne, Daniel Hackenberg, and Wolfgang E
Nagel. Detecting Memory-Boundedness with Hardware Performance
Counters. volume 17, pages 27–38, 2017.

[126] John D McCalpin. Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers. IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, (May):19–25,
1995.

[127] The Bandwidth Benchmark: Extended Stream. https://github.com/
RRZE-HPC/TheBandwidthBenchmark. Accessed on: 2019-09-19.

[128] Jerry L Hintze and Ray D Nelson. Violin plots: A box plot-density
trace synergism. American Statistician, 52(2):181–184, 1998.

[129] Philip Samuel Abrams. An APL Machine. PhD thesis, Stanford
University, 1970.

[130] Mike Shaver, David Mandelin, Jason Orendorff, Michael Bebenita, Bren-
dan Eich, Michael Franz, Rick Reitmaier, David Anderson, Edwin W.
Smith, Boris Zbarsky, Mason Chang, Graydon Hoare, Mohammad R.
Haghighat, Blake Kaplan, Jesse Ruderman, and Andreas Gal. Trace-
based just-in-time type specialization for dynamic languages. ACM
SIGPLAN Notices, 44(6):465, 2009.

[131] Jacob Brock, Chen Ding, Xiaoran Xu, and Yan Zhang. PAYJIT:
space-optimal JIT compilation and its practical implementation. In
Proceedings of the 27th International Conference on Compiler Con-
struction - CC 2018, volume 18, pages 71–81, New York, New York,
USA, 2018. ACM Press.

[132] Intel. Intel ® 64 and IA-32 Architectures Software Developer’s Manual.
Technical report, 2019.

[133] Intel® Processor Event Reference. https://download.01.org/
perfmon/index/. Accessed on: 2019-09-13.

https://github.com/RRZE-HPC/TheBandwidthBenchmark
https://github.com/RRZE-HPC/TheBandwidthBenchmark
https://download.01.org/perfmon/index/
https://download.01.org/perfmon/index/

162 BIBLIOGRAPHY

[134] FFTW: Fastest Fourier Transform in the West. http://www.fftw.org/.
Accessed on: 2019-09-26.

[135] Matteo Frigo and Steven G. Johnson. The design and implementation
of FFTW3. In Proceedings of the IEEE, volume 93, pages 216–231, 2
2005.

[136] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia:
A fresh approach to numerical computing. SIAM Review, 59(1):65–98,
2017.

[137] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo.
Tracing the Meta-Level: PyPy’s Tracing JIT Compiler. In Proceedings
of the 4th workshop on the Implementation, Compilation, Optimization
of Object-Oriented Languages and Programming Systems - ICOOOLPS
’09, pages 18–25, New York, New York, USA, 2009. ACM Press.

[138] PyPy: Tracing JIT compiler for Python. https://pypy.org/. Accessed
on: 2019-09-27.

[139] Samuel Larsen and Saman Amarasinghe. Exploiting superword level
parallelism with multimedia instruction sets. SIGPLAN Notices (ACM
Special Interest Group on Programming Languages), 35(5):145–156,
2000.

[140] Michael Wolfe. Vector optimization vs vectorization. Journal of Parallel
and Distributed Computing, 5(5):551–567, 1988.

[141] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: a
test suite and results. In Proceedings. SUPERCOMPUTING ’88, pages
98–105. IEEE Comput. Soc. Press, 1988.

[142] Saeed Maleki, Yaoqing Gao, María J. Garzarán, Tommy Wong, and
David A. Padua. An evaluation of vectorizing compilers. Parallel
Architectures and Compilation Techniques, PACT 2011, 7:372–382,
2011.

[143] Randolph G. Scarborough and Harwood G. Kolsky. A vectorizing
Fortran compiler. IBM Journal of Research and Development, 30(2):163–
171, 3 1986.

[144] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Con-
version of control dependence to data dependence. In Proceedings of
the 10th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages - POPL ’83, pages 177–189, New York, New York,
USA, 2003. ACM Press.

http://www.fftw.org/
https://pypy.org/

BIBLIOGRAPHY 163

[145] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rig-
orous java performance evaluation. ACM SIGPLAN Notices, 42(10):57,
10 2007.

[146] Rose Compiler: Program Analysis and Transformation. http://
rosecompiler.org/. Accessed on: 2019-09-30.

[147] PIPS: Automatic Parallelizer and Code Transformation Framework.
https://pips4u.org/. Accessed on: 2019-09-30.

[148] Cetus: A Source-to-Source Compiler Infrastructure for C Programs.
https://engineering.purdue.edu/Cetus/. Accessed on: 2019-09-30.

[149] Hansang Bae, Dheya Mustafa, Jae-Woo Lee, Aurangzeb, Hao Lin,
Chirag Dave, Rudolf Eigenmann, and Samuel P. Midkiff. The Cetus
Source-to-Source Compiler Infrastructure: Overview and Evaluation.
International Journal of Parallel Programming, 41(6):753–767, 12 2013.

[150] Frances E. Allen. Control flow analysis. ACM SIGPLAN Notices,
5(7):1–19, 7 1970.

[151] Frances E. Allen and John Cocke. A program data flow analysis
procedure. Communications of the ACM, 19(3):137, 1976.

[152] David J. Kuck, R. H. Kuhn, David Padua, B. Leasure, and M. Wolfe.
Dependence graphs and compiler optimizations. In Proceedings of the
8th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages - POPL ’81, pages 207–218, New York, New York, USA,
1981. ACM Press.

[153] Polly: LLVM Framework for High-Level Loop and Data-Locality Opti-
mizations. https://polly.llvm.org/. Accessed on: 2019-09-14.

[154] Terence Parr. Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages. Pragmatic
Bookshelf, 2009.

[155] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. In Proceedings of the 34th ACM SIGPLAN
conference on Programming language design and implementation - PLDI
’13, page 519, New York, New York, USA, 2013. ACM Press.

[156] Andrew Casey, Soroush Radpour, Olivier Savary Belanger, Laurie
Hendren, Clark Verbrugge, Jun Li, Jesse Doherty, Maxime Chevalier-
Boisvert, Toheed Aslam, Anton Dubrau, Nurudeen Lameed, Amina
Aslam, and Rahul Garg. McLab: an extensible compiler toolkit for

http://rosecompiler.org/
http://rosecompiler.org/
https://pips4u.org/
https://engineering.purdue.edu/Cetus/
https: // polly.llvm.org/

164 BIBLIOGRAPHY

MATLAB and related languages. Proceedings of the Third C* Con-
ference on Computer Science and Software Engineering - C3S2E ’10,
pages 114–117, 2010.

[157] Amina Aslam and Laurie Hendren. McFLAT: A profile-based framework
for MATLAB loop analysis and transformations. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 6548 LNCS,
pages 1–15, 2011.

[158] Andrew Bodzay and Laurie Hendren. AspectMatlab++: annotations,
types, and aspects for scientists. In Proceedings of the 14th International
Conference on Modularity - MODULARITY 2015, pages 41–54, New
York, New York, USA, 2015. ACM Press.

[159] M. Sharir. A strong-connectivity algorithm and its applications in data
flow analysis. Computers & Mathematics with Applications, 7(1):67–72,
1981.

[160] J. J. Dongarra and A. R. Hinds. Unrolling Loops in FORTRAN.
Software: Practice and Experience, 9(3):219–226, 1979.

[161] Laurie Hendren. Typing aspects for MATLAB. In Proceedings of the
sixth annual workshop on Domain-specific aspect languages - DSAL ’11,
page 13, New York, New York, USA, 2011. ACM Press.

[162] Krun: High fidelity benchmark runner. https://soft-dev.org/src/
krun/. Accessed on: 2019-09-30.

[163] Aleksander Maricq, Dmitry Duplyakin, Ryan Stutsman, Robert Ricci,
Carlos Maltzahn, and Ivo Jimenez. Taming Performance Variability.
Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation - OSDI’18, pages 409–425, 2018.

[164] perf: Linux profiling with performance counters. https://perf.wiki.
kernel.org/index.php/Main_Page. Accessed on: 2019-09-30.

[165] April W. Wade, Prasad A. Kulkarni, and Michael R. Jantz. AOT vs.
JIT: impact of profile data on code quality. ACM SIGPLAN Notices,
52(4):1–10, 2017.

[166] Matthew Arnold, S.J. Fink, David Grove, Michael Hind, and P.F.
Sweeney. A Survey of Adaptive Optimization in Virtual Machines.
Proceedings of the IEEE, 93(2):449–466, 2 2005.

https://soft-dev.org/src/krun/
https://soft-dev.org/src/krun/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

RÉSUMÉ

MATLAB est un environnement informatique doté d'un langage de programmation simple et d'une
vaste bibliothèque de fonctions couramment utilisées en science et ingénierie (CSE) pour le
prototypage rapide. Cependant, certaines caractéristiques de son environnement, comme son
langage dynamique ou son style de programmation interactif, affectent la rapidité d'exécution des
programmes. Les approches actuelles d'amélioration des programmes MATLAB traduisent le
code dans des langages statiques plus rapides comme C ou Fortran, ou bien appliquent
systématiquement des transformations de code au programme MATLAB sans considérer leur
impact sur les performances. Dans cette thèse, nous comblons cette lacune en développant des
techniques d'analyse et de transformation de code des programmes MATLAB afin d'augmenter
leur performance. Plus précisément, nous analysons et modélisons le comportement d'un
environnement MATLAB black-box uniquement en mesurant l'exécution caractéristique des
programmes sur CPU. À partir des données obtenues, nous formalisons un modèle statique qui
prédit le type et l'ordonnancement des instructions programmées lors de l'exécution par le
compilateur Just-In-Time (JIT). Ce modèle nous permet de proposer plusieurs transformations de
code qui améliorent les performances des programmes MATLAB en influençant la façon dont le
compilateur JIT génère le code machine. Les résultats obtenus démontrent les avantages
pratiques de la méthodologie présentée.

MOTS CLÉS

Optimisation du programme, Analyse de performance, Compteurs de performance, MATLAB,
Modèle d'exécution, Transformation de code

ABSTRACT

MATLAB is a computing environment with an easy programming language and a vast library of
functions commonly used in Computation Science and Engineering (CSE) for fast prototyping.
However, some features of its environment, such as its dynamic language or interactive style of
programming affect how fast the programs can execute. Current approaches to improve MATLAB
programs either translate the code to faster static languages like C or Fortran, or apply code
transformations to MATLAB code systematically without considering their impact on the
performance. In this thesis, we fill this gap by developing techniques for the analysis and code
transformation of MATLAB programs in order to improve their performance. More precisely, we
analyse and model the behaviour of the black-box MATLAB environment by measuring the
execution characteristics of programs on CPU. From the resulting data, we formalise a static
model which predicts the type and order of instructions scheduled by the Just-In-Time (JIT)
compiler. This model allows us to propose several code transformations which increase the
performance of MATLAB programs by influencing how the JIT compiler generates the machine
code. The obtained results demonstrate the practical benefits of the presented methodology.

KEYWORDS

Program optimisation, Performance analysis, Performance counters, MATLAB, Execution model,
Code transformation

