, RGT-950°C-15kW RGT-950°C-20kW RGT-950°C-25kW RGT-950°C-30kW RGT-1100°C-15kW RGT-1100°C-20kW RGT-1100°C-25kW RGT-1100°C-30kW RGT-1250°C-15kW RGT-1250°C-20kW RGT-1250°C-25kW RGT-1250°C-30kW IRGT-950°C-15kW IRGT-950°C-20kW IRGT-950°C-25kW IRGT-950°C-30kW IRGT-1100°C-15kW IRGT-1100°C-20kW IRGT-1100°C-25kW IRGT-1100°C-30kW IRGT-1250°C-15kW IRGT-1250°C-20kW IRGT-1250°C-25kW IRGT-1250°C-30kW

, IRReGT-950°C-15kW IRReGT-950°C-20kW IRReGT-950°C-25kW IRReGT-950°C-30kW

, IRReGT-1100°C-15kW IRReGT-1100°C-20kW

, IRReGT-1100°C-25kW

, IRReGT-1100°C-30kW

, IRReGT-1250°C-15kW IRReGT-1250°C-20kW

, IRReGT-1250°C-25kW

, IRGT-950°C-15kW IRGT-950°C-20kW IRGT-950°C-25kW IRGT-950°C-30kW IRGT-1100°C-15kW IRGT-1100°C-20kW IRGT-1100°C-25kW IRGT-1100°C-30kW IRGT-1250°C-15kW IRGT-1250°C-20kW IRGT-1250°C-25kW IRGT-1250°C-30kW

, IRReGT-950°C-15kW IRReGT-950°C-20kW IRReGT-950°C-25kW IRReGT-950°C-30kW

, IRReGT-1100°C-15kW IRReGT-1100°C-20kW

, IRReGT-1100°C-25kW

, IRReGT-1100°C-30kW

, IRReGT-1250°C-15kW IRReGT-1250°C-20kW

, IRReGT-1250°C-25kW

J. B. Heywood, Internal Combustion Engine Fundamentals, 1998.

M. J. Denny, Potential Future Engine Cycles for Improved Thermal Efficiency, 2014.

M. Wittler, P. Glusk, A. Nase, and M. Daniel-«, Future Engine Strategies -Survival of the ICE Beyond 2025? », 24th Aachen Colloquium Automobile and Engine Technology, 2015.

. European-union-/-european-commission-a-roadmap, 2050 European Union, 2011.

. European-union-/-european-commission-white and . Paper, Roadmap to a Single European Transport Area -Towards a competitive and resource efficient transport system European Union, European Commission, 2011.

H. Ichiro and H. Mitsuo, SKYACTIV Engine Efficiency Improvement and Monotsukuri Innovation to Be Applied to Next Generation SKYACTIV, Mazda Motor Corporation, 24 th Aachen Colloquium Automobile and Engine Technology, 2015.

. European-union-/-european and . Commission, of the European Parliament and of the Council of 11 March 2014 amending Regulation (EC) No. 443/2009 to define the modalities for reaching the 2020 target to reduce CO2 emissions from new passenger cars European Union, European Commission, issue.333, 2014.

. European and . Agency, EEA) Monitoring CO2 emissions from passenger cars and vans Copenhagen, 2015.

M. Krüger, R. Maier, D. Naber, S. Scherer, H. Schumacher et al., « Emission Optimization of Diesel Passenger Cars to Fulfill

C. Ernst, I. Olschewski, L. Eckstein, and . Co2, , p.2020

, Study commissioned by the Federal Ministry for Economic Affairs and Technology to the Institute of Automotive Engineering of, 2012.

F. Gouzonnat and D. A. Silva-v, New PSA PEUGEOT CITROËN 3-Cylinder Engine: Friction Losses Optimization and CO2 Impact Calculation

F. Gouzonnat and . Regent-l, Realizing Fuel Saving Potential By Taking Advantage Of New Technology For Friction Reduction, 2012.

N. Champagne, D. Laurent, M. Total, and . Solaize, France « Improving Fuel Economy and Durability of New Engines with Innovative Lubricants », 24th Aachen Colloquium Automobile and Engine Technology, 2015.

M. Seemann, F. Lauterwasser, D. J. Smolenski, B. Liu, and . Megatrend, Fuel Economy : How to Optimize Viscosity with VI Improvers », 24th Aachen Colloquium Automobile and Engine Technology, 2015.

S. Tomar, R. Mishra, S. Bisht, S. Kumar, A. Balyan et al., Optimisation of Connecting Rod Design to Achieve VC, Journal of Engineering Research and Applications, p.210, 2013.

S. Asthana, S. Bansal, S. Jaggi, and N. Kumar, A comparative Study of Recent Advancements in the Field of Variable Compression Ratio Engine Technology, 2016.

J. Doric and J. I. Klinar, Efficiency of a new internal combustion engine concept with variable piston motion, Thermal Science, 2014.

H. Junichi, F. Hiroyuki, S. Yuji, N. Ken, T. Taro et al., The New 1,6L 2-Stage Turbo Diesel Engine for, 2015.

M. Bassett, B. Hibberd, J. Hall, and . Powertrain, Dynamic Downsizing for Gasoline Engines », 24th Aachen Colloquium Automobile and Engine Technology, 2015.

C. Landerl, M. Ruelicke, B. Durst, and W. Mattes, The New BMW Inline 6-Cylinder Gasoline Engine with TwinPower Turbo, Direct Injection, and VALVETRONIC in the New BMW 7 Series, p.24

, Aachen Colloquium Automobile and Engine Technology, 2015.

A. Oropeza and F. Orozco, A Different Combustion Engine, ICES 2005-1007, ASME Conference, 2005.

M. Scheidt, C. Brands, M. Lang, J. Kuhl, M. Günther et al., Statische und dynamische Zylinderabschaltung an 4-und 3-Zylindermotoren Internationaler Motorenkongress, Proceedings, 2015.

A. Portal,

Y. S. Hussaini, S. Lahane, and G. N. Patil, Analysis of Performance and Emission Characteristics of a Homogeneous Charge Compression Ignition (HCCI) Engine, Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology, p.2016

, A review of Homogeneous charge compression ignition (HCCI) engine, International Journal of Scientific & Engineering Research, 2015.

R. Budack, M. Kuhn, R. Wurms, and T. Heiduk, Optimization of the Combustion Process as Demonstrated on the New Audi 2.0L TFSI », 24th Aachen Colloquium Automobile and Engine Technology, 2015.

M. Houben, A. Sommermann, D. Wweberskirch, and J. Wengert, Two Stage Turbo Charging as Fuel Consumption Concept for Long Haulage Applications, MAN Truck & Bus AG, 2015.

A. Kawaguchi, Toyota's Innovative Termal Management Approches -Thermo Swing Wall Insulation Technology », 24 th Aachen Colloquium Automobile and Engine Technology, 2015.

S. Juraschek, R. Vachenauer, K. Lorenz, T. Marschall, A. Stephan et al., Hybrid Drive in the New BMW 2 Series Active Tourer eDrive, 2015.

R. Mike, M. Omar, N. Ranbir, A. Ciprian, A. M. et al., Evoque_e Meeting the CO2 Chalenge Through Novel Propulsion System Technologies Incorporating Low Rare-Earth Material Electric Motors, p.24

, Aachen Colloquium Automobile and Engine Technology, 2015.

H. Paffrath, F. Seifert, S. Dewenter, B. Herrmann, S. Rothgang et al., The Electrical Air Charger Implemented in a Multi Stage Charging System -Technical, p.211

, Challenges and Application of the eAC », 24th Aachen Colloquium Automobile and Engine Technology, 2015.

A. Hubert and P. Bloore, Benefits of a Switched-Reluctance E-Motor for Mild Hybrid 48V

. Applications, th Aachen Colloquium Automobile and Engine Technology, 2015.

H. Sorger, W. Schöffmann, A. Ennemoser, G. Fuckar, M. Gröger et al., The Ideal Base Engine for 48 Volts -Chances for Efficiency Improvement and Optimization of the Overall System Complexity, 2015.

I. Steinberg, M. Daniel, K. Wolff, P. Glusk, and «. , Conventional Powertrain including Automatic Transmission for Entry Level Vehicle Segment », 24th Aachen Colloquium Automobile and Engine Technology, 2015.

M. Höck-;-gkn-driveline, ECO2 TWINSTER a Modular Axle Concept to Improve Efficiency and Vehicle Performance, 24 th Aachen Colloquium Automobile and Engine Technology, 2015.

C. Mansour, W. Bou, F. Nader, M. Breque, M. Haddad et al., Assessing additional fuel consumption from cabin thermal comfort and auxiliary needs on the worldwide harmonized light vehicles test cycle, Transportation Research Part D, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01976175

F. Mohammadkhani, S. Khalilarya, and I. Mirzaee, Exergy and exergoeconomic analysis and optimization of Diesel engine based combined heat and power (CHP) system using genetic algorithm, Int. J. Exergy, vol.12, issue.2, 2013.

M. Özkan, A Comparative Study on energy and exergy Analyses of a CI Engine Performed with Different Multiple Injection Strategies at Part Load -Effect of Injection Pressure, Entropy, vol.17, pp.244-263, 2015.

T. J. Wallington, E. W. Kaiser, and J. T. Farrell, Automotive fuels and internal combustion engines: a chemical perspective, Chemical Society Reviews

C. Wissam-bou-nader, C. Mansour, M. Dumand, and . Nemer, Brayton cycles as waste heat recovery systems on series hybrid electric vehicles, Energy Conversion and Management, vol.168, pp.200-2014, 2018.

C. Mansour, W. Bou-nader, C. Dumand, and M. Nemer, Waste heat recovery from engine coolant on mild hybrid vehicle using organic Rankine cycle, Journal of Automobile Engineering, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01987359

C. Wissam-bou-nader, M. Mansour, O. Nemer, and . Guezet, exergo-technological explicit methodology for gas-turbine system optimization of series hybrid electric vehicles, Journal of Automobile Engineering, 2017.

P. Sudeer-gowd, A. J. Martin, and . Ananthesha, Study on Performance Characteristics of Scuderi -Split Cycle Engine

Z. John and J. Moran, Split Cycle Engine and Method with Increased Power Density, p.1

D. Balu and G. , Scuderi Split Cycle Engine : Revolutionary technology & evolutionary design review, International Journal of Innovation in Engineering

D. Branyon and D. Simpson, Miller Cycle Application to the Scuderi Split Cycle Engine (by Downsizing the Compressor Cylinder), 2012.

U. Ricardo, Brighton working on advanced combustion system for heavy-duty vehicles; CoolR features recuperated split-cycle with isothermal compression using cryogenic injection, 2011.

, Ricardo advancing with two novel heavy-duty vehicle technologies: cryogenic split-cycle engine and microwave fuel reforming, 2013.

, The Scuderi Engine -Strength in Pairs

G. Collier, Hydrocarbon Motor, U.S. Patent, vol.1, 1915.

R. Defrancisco, Internal Combustion Engine of Positive Displacement Expansion Chambers with Multiple Separate Combustion Chambers of Variable Volume, Separate Compressor of Variable Capacity and Pneumatic Accumulator, U.S. Patent, vol.4, 1987.

R. Thring, Regenerative Internal Combustion Engine, vol.5, p.605, 1996.

F. Ruiz, Thermodynamic Modeling of the Two-Cylinder Regenerative Internal Combustion Engine, SAE Technical Paper 910346, 1991.

L. Scuderi-group, Exhaust valve timing for split cycle engine, WO 2012/050910 A1 at www.ScuderiGroup.Com, 2012.

L. Scuderi-group, Split Cycle Four Stroke Engine, EP Patent No. 1639247B9, available at www.Freepatentsonline.com , 14 th, 2009.

P. Ford, G. Ian, J. Pirault, and M. Marc, Scuderi Split Cycle Research Engine : Overview, Architecture and Operation, pp.20111-20112

L. Scuderi-group, Split Cycle Engine With helical Crossover Passage, WO 2009/020491 A1 at www.ScuderiGroup.com , 12 th, 2009.

S. Ashwini, R. M. Gaikwad, and . Shinde, Review on Scuderi Split Cycle Engine, International Journal of Emerging Technologies in Computational and Applied Sciences

L. Scuderi-group, Part Load Control in Split Cycle Engine, WO 2010/120499 A1, at www.ScuderiGroup.com, 21 st, 2010.

M. Riccardo, B. George, C. L. Ian, G. , J. Pirault et al., Scuderi Split Cycle Fast Acting Valvetrain : Architecture and Development

L. Nhut, T. Martin, T. Per, A. Arne, L. Staffan et al., Double Compression Expansion Engine Concepts : A Path to High Efficiency

L. Scuderi-group, Split cycle Air-hybrid engine with air tank valve, 2011.

, WO2011/115873 A1, at www.Scuderi Group.com, 2011.

M. Riccardo, Scuderi Split Cycle Engine Development Overview, 2012213-02-17.

P. Ford, R. M. Ian, and G. , The Scuderi Split Cycle Engine -Technical Update, 2011.

L. Scuderi-group, Air supply for components of a split -cycle engine, WO 2010/129872A1, at www.ScuderiGroup.com, 2010.

L. Scuderi-group, Variable volume crossover passage for a split-cycle engine, WO2010/120856A1, at www.ScuderiGroup.com, 2010.

, SwRI simulations indicate Scuderi split-cycle engine consumes 25% less fuel than comparable conventional engine in Cavalier; 36% reduction with hybrid configuration, 2011.

R. Hanson, First Scuderi split-cycle engine prototype completed, 2009.

D. Guangyu, M. Robert, and H. Morgan, A Novel split cycle internal combustion engine with integral waste heat recovery, 2015.

C. Iain and S. Asndrzej, Combustion characteristics of a spark-ignited split cycle engine fuelled with methane, vol.161, pp.33-41

, New split-cycle concept to control diesel HCCI combustion, 2010.

S. Keshav, Transient Modeling and Control of Split Cycle Clean Combustion Diesel Engine, Thesis, 2013.

, Tour Engine moves its opposed-cylinder split cycle engine to beta prototype; coupling a compression ratio of 8:1 with expansion ratio of 16:1 for increased efficiency, vol.12, 2011.

T. Benjamin, Double Piston Cycle Engine

T. Benjamin, Steam enhanced double piston cycle Engine, Patent WO2006/113635A2

, Tour Engine has Prototype II split-cycle engine running, 2012.

, Motiv Engines introduces 2nd-generation split cycle concept

, MkII Clarke-Brayton heavy-duty engine being designed for LNG, 2014.

N. Stuart, J. , A. Farquhar, and A. , Split cycle Reciprocating Piston Engine, 2012.

C. Linnemann and M. W. Coney, The isoengine : realisation of a high efficiency power cycle based on isothermal compression, International Journal of Energy Technology and Policy, vol.3, 2005.

N. Jackson, A. Atkins, and R. Morgan, An Alternative Thermodynamic Cycle for Reciprocating Piston Engines, 36th International Vienna Motor Symposium, pp.7-8, 2015.

, Ricardo investigating potential for its split-cycle engine in large engine market, vol.23, 2016.

A. Gurr, The 60% Efficiency Reciprocating Engine: A Modular Alternative to Large Scale Combined Cycle Power, 2016.

J. Excell, This Week in 1965 -The Rover-BRM gas turbine car, 2013.

B. Wissam, . Nader, M. Charbel, and N. Maroun, Optimization of a Brayton external combustion gas-turbine system for extended range electric vehicles, 2018.

P. Meherwan and . Boyce, Gas Turbine Engineering Handbook, 2002.

H. Cohen, G. Rogers, and H. Saravanamuttoo, Gas Turbine Theory, 1996.

L. Joseph, Gas Turbine Engine R&D for Shipboard Applications

P. Bogdan and H. Malgorzata, Determination of Operating Characteristics of Naval Gas Turbines LM2500, 2011.

R. Andriani, F. Gamma, and U. Ghezzi, Main Effects of Intercooling and Regeneration On Aeronautical Gas Turbine Engines, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 25 -28, 2010.

H. Cunha, Investigation of the Potential of Gas Turbines for Vehicular Applications, CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, p.43, 2011.

M. Moran and H. Shapiro, Fundamentals of engineering thermodynamics, vol.5, pp.388-390

R. T. Sawyer, The Modern Gas Turbine, p.19454

L. E. Baklen, K. Jordal, E. Syverud, and T. Veer, Centenary of the first gas turbine to net power output: A tribute to AEgidius Elling, 2004.

H. Lukas, Survey of alternative gas turbine engine and cycle design, EPRI Report, AP-4450, 1986.

D. Unger and H. Herzog, Comparative Study on Energy R&D Performance: Gas Turbine Case Study, 1998.

E. Jeffs, Franz Stolze: Gas turbine engineer ahead of his time, 1986.

D. Eckardt-a,d and P. Rufli, Advanced gas turbine technology -ABB/BCC historical firsts, 2001.

H. Holzwarth, The Gas Turbine: Theory, Construction, and Records of the Results Obtained from Two Actual Machines, p.1912

, The world's first industrial gas turbine set at Neuchatel (1939)-An international historic mechanical engineering landmark, ASME publication, 1988.

R. K. Bhargava, M. Bianchi, A. Pascale, G. Negri-di-montenegro, and A. Peretto, Gas turbine Based Power Cycles -A State-of-the-Art Review, International Conference on Power Engineering, p.215, 2007.

D. G. Evans and T. J. Miller, An Overview of Aerospace Gas turbine Technology of Relevance to the Development of the Automotive Gas Turbine Engine, National Aeronautics and Space Administration, 1978.

A. J. Scalzo, R. L. Bannister, M. Decorso, and G. S. Howard, Evolution of heavy-duty power generation and industrial combustion turbines in the United States, ASME Paper, 1994.

G. A. Cincotta, The testing of GE's MS7001F gas turbine, Diesel & Gas Turbine Worldwide, 1991.

R. L. Bannister, N. S. Cheruvu, D. A. Little, and G. Mcquiggan, Development requirements for an advanced gas turbine system, ASME Paper, 1994.

S. A. Ali and H. A. Webb, Advanced turbine systems program requirements and an approach to implementation, ASME Paper, 1994.

J. C. Corman, Gas turbine power generation evolutionary advances for the future, ASME Paper, 1995.

A. W. Layne, Developing the next generation gas turbine systems -A national partnership, 2000.

I. S. Diakunchak, G. R. Gaul, G. Mcquiggan, and L. R. Southall, Siemens Westinghouse advanced turbine systems program final summary, ASME Paper No. GT, 2002.

G. A. Kool, Current and future materials in advanced gas turbine engines, Journal of Thermal Spray Technology, 1996.

M. Yuri, J. Masada, K. Tsukagoshi, E. Ito, and S. Hada, Development of 1600°C C-Class High efficiency Gas Turbine for Power Generation Applying J-Type Technology, Mitsubishi Heavy Industries Technical Review, vol.50, 2013.

, Key Technologies for 1700°C Class Ultra High Temperature Gas Turbine, Mitsubishi Heavy Industries Technical Review, 2017.

F. Whittle, The early history of Whittle jet propulsion gas turbines, Proceedings of the Institution of Mechanical Engineers, vol.152, pp.419-454, 1945.

L. J. Cheshire, The design and development of centrifugal compressors for aircraft gas turbines, Proceedings of the Institution of Mechanical Engineers, vol.153, pp.426-466, 1945.

P. Walsh and P. Fletcher, Gas Turbine Performance, 2004.

R. Gorla and A. Khan, Turbomachinery Design and Theory

Y. Ribaud and C. Mischel, Study and Experiments of a Small Radial Turbine for Auxiliary Power Units, The American Society of Mechanical Engineers, pp.86-109, 1986.

D. G. Ainley and G. C. Mathieson, A Method of Performance Estimation for Axial-Flow Turbines, Ministry of Supply, 1957.

Q. H. Nagpurwala, Design of Gas Turbine Combustors, Ramaiah School of Advanced Studies, vol.216

R. C. Hendricks, D. T. Shouse, and W. M. Roquemore, Water Injected Turbomachinery, NASA/TM -2005-212632, pp.10-2004

R. Pavri, G. D. Moore, and . Gas, Alternative Control Techniques Document -NOx Emissions from Stationary Gas Turbines, GE Energy Services

K. Sundsbo-alne, Reduction of Nox Emissions from the Gas Turbines for Skarv Idun, Master of Science in Energy and Environment, NTNY Innovation and Creativity, 2007.

M. Schorr and J. Chalfin, Gas Turbine Nox Emissions Approaching Zero -Is it worth the price?, General Electric Power Systems

J. Burns and D. J. Cooper, Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture

, Power Generation Handbook, vol.12

P. Kumar and P. Rao, Design and Analysis of Gas Turbine Combustion Chamber, International Journal Of Computational Engineering Research (ijceronline.com, vol.03, p.12

R. K. Shah, Compact Heat Exchangers for Microturbines, Compact Heat Exchangers for Microturbines, Compact Heat Exchangers for Microturbines

M. A. El-masri, Thermodynamics and performance projections for intercooled / reheat / recuperated gas turbine systems, ASME Paper

S. Sullivan, X. Zhang, A. A. Ayon, and J. Brisson, « Demonstration of a microscale heat exchanger for a silicon micro gas turbine engine, The 11th International Conference on Solid-State Sensors and Actuators, 2001.

S. Sullivan, Development and Testing of Microscale Silicon Heat Exchangers for the MIT Micro Gas-Turbine Engine, B.S. Mechanical Engineering, 1998.

H. E. Helms, Ceramic Applications in Turbine Engines, p.46206, 1984.

K. A. Pathiranthna, Gas Turbine Thermodynamic and Performance Analysis Methods using available catalog data, Faculty of engineering and sustainable development, 2013.

T. Nada, Performance Characterization of different configurations of gas turbine engines, 2014.

R. M. Shah, A. Mc, G. , M. Amor-segan, and P. Jennings, Micro Gas Turbine Range Extender -Validation Techniques for Automotive Applications

J. H. Horlock, Advanced Gas Turbine Cycles, 2003.

T. Ai, J. Masada, and E. Ito, Development of High Efficiency and Flexible Gas turbine M701F5 by Applying J Class Gas Turbine Technologies, Mitsubishi Heavy Industries Technical Review, vol.51, p.217, 2014.

S. Hada, K. Takata, Y. Iwasaki, M. Yuri, and J. Masada, High-efficiency Gas Turbine Development applying 1600°C class, Mitsubishi Heavy Industries Technical Review, vol.52, 2015.

B. J. Davidson and K. R. Keeley, The thermodynamics of practical combined cycles, Proc. Instn. Mech. Engrs". Conference on Combined Cycle Gas Turbines, pp.28-50, 1991.

M. S. Briesch, R. L. Bannister, .. S. Dinkunchak, and D. J. Huber, A combined cycle designed to achieve greater than 60% efficiency, ASME J. Engng Gas Turbines Power, vol.117, issue.1, pp.734-741, 1995.

A. Wunsch, Combined gas/steam turbine power stations-the present state of progress and future developments, Brown Boveri Review, vol.65, issue.10, pp.646-655, 1978.

H. Termuehlen, Forty years of combined cycle power plants, Energy-Tech, 2002.

D. L. Chase, Combined Cycle development evolution and future, GE Power Systems, p.4206, 2001.

H. Lukas, Cycles Revisited, IGTI News Letter, 1994.

R. K. Bhargava, Invited Lecture at National Institute of Technology, 2007.

M. J. Reale, New High Efficiency Simple Cycle Gas Turbine-GE's LMS100?, GE Power Systems GER -4222A, 2004.

C. Jones, J. A. Jacobs, and I. , Economical and technical considerations for combined-cycle performance -enhancement options, GE Power Systems, GER, vol.4200, 2000.

M. A. El-masri, A modified high efficiency recuperated gas turbine cycle, J. of Eng. for Gas Turbines and Power, vol.110, pp.233-242, 1988.

M. S. Patil, D. B. Pawase, and E. R. Deore, Thermal Performance of Reheat Regenerative Intercooled Gas turbine Cycle, vol.5, 2015.

S. B. Shepard, T. L. Bowen, and J. M. Chiprich, Design and development of the WR-21 intercooled recuperated (ICR) marine gas turbine, ASME Paper, 1994.

I. G. Rice, Thermodynamic evaluation of gas turbine cogeneration cycles: part II. Complex cycle analysis, J.of Eng. for Gas Turbines and Power, vol.109, 1987.

W. A. Sirignano and F. Liu, Performance Increase for Gas-Turbine Engines Through Combustion Inside the Turbine, Journal of Propulsion and Power, vol.15, issue.1, 1999.

E. D. Larson and R. H. Williams, Steam injected gas turbines, J. of Eng. for Gas Turbines and Power, vol.109, pp.55-63, 1997.

D. Y. Cheng and A. L. Nelson, The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years, ASME Paper No. GT, 2002.

J. Tuzson, Status of steam-injected gas turbines, J. of Eng. for Gas Turbines and Power, vol.114, p.218, 1992.

H. Abdallah and S. Harvey, Thermodynamic analysis of chemically recuperated gas turbines, Int. J. Therm. Sci, vol.40, pp.372-384, 2001.

P. A. Dellenback, Improved gas turbine efficiency through alternative regenerator configuration, J. of Eng. for Gas Turbines and Power, vol.124, pp.441-446, 2002.

K. F. Kesser, J. F. Hoffman, and J. W. Baughn, Analysis of a basic chemically recuperated gas turbine power plant, J. of Eng. for Gas Turbines and Power, vol.116, pp.277-284, 1994.

K. K. Botros, M. J. De-boer, and H. G. Fletcher, Thermodynamics, environmental economic assessment of CRGT for exhaust heat recovery in remote compressor station applications, ASME Paper, 1997.

R. D. Brdar and R. M. Ones, GE IGCC technology and experience with advanced gas turbines, GE Power Systems, 2000.

J. H. Horlock, The evaporative gas turbine (ECT) cycle, ASME Paper No. 97-GT, vol.408, 1997.

A. Lazzaretto and F. Segato, Thermodynamic optimization of the HAT cycle plant structure-Part I: Optimization of the Basic plant configuration, J. of Eng. for Gas Turbines and Power, vol.123, 2001.

M. Nakhamkin and J. R. Schiebel, CHAT technology: an alternative approach to achieve advanced turbine systems efficiencies with present combustion turbine technology, 1998.

S. E. Veyo, S. D. Vora, K. P. Litzinger, and W. L. Lundberg, Status of pressurized SOFC/Gas turbine development at Siemens Westinghouse, ASME Paper No. GT, 2002.

A. D. Rao, G. S. Samuelsen, F. L. Robson, and R. A. Geisbrecht, Power plant system configurations for the 21 st century, 2002.

A. J. Juhasz, Automotive Gas Turbine Power System -Performance Analysis Code, the 1997 International Congress and Exposition, p.107386

, Italy's Gas turbine Car, 1995.

A. George, The Turbine-Powered Lotus That Was So Good It Got Banned, 2014.

B. Senefsky, Chevrolet Turbo-Titan III Concept Vehicle -Space Truckin'. Sport Truck, 2003.

J. Norbye, Turbine Drives Chevy Truck. Popular Science, 1965.

J. G. Ingersoll, Natural Gas Vehicles, 1995.

, EV1 Electric: Series Hybrid". National Automobile Bankers Associates / Vehicle Information Services, 2001.

, Capstone CMT-380 electric hybrid supercar with microturbines

, ETV Motors -Electric Technology for Vehicles, 2011.

B. Simon, Taking the Long VieW

R. Capata, A. Coccia, and M. Lora, A Poposal for CO2 abatement in urban areas: the UDR1 -Lethe Turbo-Hybrid Vehicle. University of Roma 1, La Sapienza, pp.1996-1073

J. Moreau, Ca turbine en coulisses, Auto Moto Avril, 2016.

. Ect and . Hybrid, Volvo Trucks

, Wrightspeed unveils new turbine range extender for medium-and heavy-duty electric powertrains; 30% more efficient than current microturbine generators, 2015.

, Walmart showcases WAVE tractor-trailer at MATS; micro-turbine range extended electric vehicle with 45.5 kWh Li-ion pack, 2014.

. Stirling,

B. Cheverton, On the use of heated air as a motive power, Journal of the Franklin Institute, vol.55, issue.6, pp.365-368, 1853.

C. M. Hargreaves, The Philips Stirling Engine, 1991.

G. Thomas, R. , and C. Hooper, , 1983.

W. R. Martini, Stirling Engine Design Manual, 1983.

N. Parlak, A. Wagner, M. Elsner, and H. S. Soyhan, Thermodynamic analysis of a gamma type Stirling Engine in non-ideal adiabatic conditions, Int. J. Renew. Energy, vol.34, pp.266-273, 2009.

T. Godett, R. Meijer, R. Verhey, and C. Pearson, STM4-120 Stirling Engine Test Development, SAE Technical Paper, vol.890149, 1989.

D. G. Thombare and S. K. Verma, Technological development in the Stirling cycle engines, Renewable and Sustainable Energy Reviews, p.12, 2008.

W. John-viacqiiorn-rankine, On the means of realizing the advantages of the air engine: By , civil engineer, f. r. SS. long. and edin., &c, Journal of the Franklin Institute, vol.30, issue.5, pp.330-339, 1840.

R. Andy, Stirling Cycle Engines, 1977.

R. P. Alexander and . Walker, Stirling Alternative: Power Systems, Refrigerants and Heat Pumps, 1994.

D. Kirkley, A Thermodynamic Analysis of the Stirling Cycle and a Comparison with Experiment, SAE Technical Paper, vol.650078, 1965.

C. D. West, Theoretical basis for the Beale number, Proceedings of the 16th Intersociety Energy Conversion Engineering Conference, 1981.

J. J. Droher, . Se, and . Squier, Performance of the Vanguard Solar Dish-Stirling Engine Module. EPRI AP-4608, Electrical Power Research Insti-tute, 1986.

B. J. Washam, T. Hagen, D. Wells, and W. Wilcox, Vanguard I Solar Parabolic Dish-Stirling Engine Module, Advanco Corp, 1982.

P. R. Fraser, Stirling Dish System Performance Prediction Model, p.220, 2008.

R. Shaltens, J. Schreiber, and W. Wong, Update on the Advanced Stirling Conversion System Project for 25 kW Dish Stirling Applications, SAE Technical Paper 929184, 1992.

F. Nepveu, A. Ferriere, F. Daumas-bataille, I. Verdier, and P. Lefevre, « Modélisation énergétique du système Parabole / Stirling EURODISH de production d'électricité », Congrès Français de Thermique, 2007.

C. Bratt, S. Holgersson, H. Nelving, P. , and W. , The Stirling Engine -A Ready Candidate for Solar Thermal Power, SAE Technical Paper, vol.810456, 1981.

R. Mangion, M. Muscat, T. Sant, J. Rizzo, R. Ghirlando et al., « Challenges in developing a solar powered Stirling engine for domestic electricity generation, th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 2012.

D. Thimsen, Stirling Engine Assessment, EPRI, Final Report, 2002.

H. Nilsson, Submarine Power Systems Using the V4-275R Stirling Engine

N. Schnebelen, F. Nepveu, and A. Ferriere, Le système parabole-Stirling Eurodish appliqué à la cogeneration électricité / eau chaude sanitaire, PROMES, Journée Microcogénération -Paris CNAM -Janvier, 2008.

S. Hugo-ljunggren-falk and . Berg, Implementation of a Stirling engine generation system for residential use in rural areas of Beni department of Bolivia, KTH School of Industrial Engineering and Management, 2014.

M. L. Ferrari, M. Pascenti, A. Traverso, and M. Rivarolo, Smart polygeneration grid: a new experimental facility, Proceedings of ASME Turbo Expo, 2012.

S. Thiers, B. Aoun, and B. Peuportier, Experimental characterization, modeling and simulation of a wood pellet micro-combined heat and power unit used as a heat source for a residential building, Energy and Buildings, vol.42, pp.896-903, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509397

F. Cotana, A. Messineo, A. Petrozzi, V. Coccia, and G. Aquino, Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste, 2014.

H. Carlsen, N. Ammundsen, and J. Trerup, 40 kW STIRLING ENGINE FOR SOLID FUEL, Energy Conversion Engineering Conference, Proceedings of the 31st Intersociety

G. J. Hane and R. A. Hutchinson, , 1987.

S. Saxena and M. Ahmed, Automobile Exhaust Gas Heat Energy Recovery Using Stirling Engine: Thermodynamic Model, SAE Technical Paper, 2017.

D. G. Thombare and S. K. Verma, Technological development in the Stirling cycle engines, Renewable and Sustainable Energy Reviews, p.12, 2008.

R. H. Titran and J. R. Stephens, Advanced high temperature materials for the energy efficient automotive Stirling engine, 1984.

M. Costea and M. Feidt, The effect of the overall heat transfer coefficient variation on the optimal distribution of the heat transfer surface conductance or area in a Stirling engine, Energy Convers. Manag, vol.39, pp.1753-1761, 1998.

L. G. Thieme, Low-power baseline test results for the GPU 3 stirling engine. DOE/NASA, pp.1040-79, 1979.

R. Gheith, F. Aloui, M. Tazerout, and S. Ben-nasrallah, Experimental investigations of a Gamma Stirling engine, Energy Res, vol.36, pp.1175-1182, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00935911

R. Gheith, F. Aloui, and S. Ben-nasrallah, Study of regenerator constituting material influence on a Gamma type Stirling engine, J. Mech. Sci. Technol, vol.26, pp.1251-1255, 2012.

R. Gheith, F. Aloui, and S. Ben-nasrallah, Determination of adequate regenerator for a Gamma-type Stirling engine, Appl. Energy, vol.139, pp.272-280, 2015.

R. Gheith, F. Aloui, and S. Ben-nasrallah, Optimization of Stirling engine performance based on an experimental design approach, Int. J. Energy Res, vol.37, pp.1519-1528, 2013.

D. Murray and C. , Development of a Stirling Engine battery charger based on a low cost wobble mechanism, 1993.

M. Ibrahim, T. Simon, D. Gedeon, and R. Tew, Improving Performance of the Stirling Converter: Redesign of the Regenerator with Experiments, Computation and Modern Fabrication Techniques, 2001.

R. Gheith, F. Aloui, and S. Ben-nasrallah, Study of regenerator constituting material influence on a Gamma type Stirling engine, J. Mech. Sci. Technol, vol.26, pp.1251-1255, 2012.

H. Hachem, R. Gheith, F. Aloui, S. Ben-nasrallah, and I. Dincer, Energetic and Exergetic Performance Assessments of an Experimental Beta Type Stirling Engine, Proceedings of the 7th International Ege Energy Symposium & Exhibition (IEESE 2014), pp.18-20, 2014.

R. Gheith, F. Aloui, and S. Ben-nasrallah, Determination of adequate regenerator for a Gamma-type Stirling engine, Appl. Energy, vol.139, pp.272-280, 2015.

T. Finkelstein and A. J. Organ, Air Engines -The History, Science, and Reality of the Perfect Engine, 2001.

R. A. Farrel, Mod II Stirling Engine Overview, vol.880539, 1988.

P. Drogosz, S. Nitkiewicz, and A. Pietak, The selection of Stirling engines applied to cogeneration systems, J. of Kones, Powertrain and Transports, vol.19, issue.2, 2012.

N. Parlak, A. Wagner, M. Elsner, and H. S. Soyhan, Thermodynamic analysis of a gamma type Stirling Engine in non-ideal adiabatic conditions, Int. J. Renew. Energy, vol.34, pp.266-273, 2009.

P. Comiskey, , 2013.

G. Walker, M. Weiss, R. Fauvel, and G. Reader, Simulation Program for Multiple Expansion Stirling Machines, SAE Technical Paper 929036, 1992.

J. Bennethum, T. Laymac, L. Johansson, and T. Godett, Commercial Stirling Engine Development and Applications

J. E. Thorsen, J. K. Bovin, and H. Carlsen, 3 kW Stirling Engine for Power and Heat Production, Energy Conversion Engineering Conference, 1996.

L. Smith, B. Nuel, S. Weaver, S. Berkower, S. Weaver et al., 25 kW Low-Temperature Stirling Engine for Heat Recovery, Solar and Biomass Applications

F. Dioguardi, Use of Stirling Cryogenerators for on-site bio-LNG production, Nordic Biogas Conference, 2013.

T. Godett, R. Meijer, R. Verhey, and C. Pearson, STM4-120 Stirling Engine Test Development, SAE Technical Paper, vol.890149, 1989.

H. Nilsson, The United Stirling 4-95 and 4-275 Engines for underwater use, Intersociety Energy Conversion Engineering Conference, pp.102-107, 1983.

N. P. Nightingale, Automotive Stirling Engine -Mod II Design Report, National Aeronautics and Space Administration, 1986.

H. Nilsson, Submarine Power Systems Using the V4-275R Stirling Engine, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1998.

Y. Nomaguchi, M. Suganami, M. Fujiwara, M. Sakai, Y. Kazumoto et al., Progress on 3 kW Class Stirling Engine and Heat-Pump System, 1986.

T. Nomaguchi, T. Suganami, M. Fujiwara, M. Sakai, Y. Kazumoto et al., 3 kW Class Stirling Engine and Heat Pump System, Presented at the 3rd International Stirling Engine Conference, 1986.

N. Kagawa, S. Nagatomo, M. Sakamoto, T. Komakine, L. Hongo et al., Performance Analysis and Improvement of a 3 kW Stirling Engine, 1986.

T. Watanabe and K. Andy, Momose. 1985 (English). "30 kW Stirling Engine, Presented at the 20th Intersociety Energy Conversion Engineering Conference, 1985.

Y. Momose and T. Watanabe, Stirling Engine NS30A, Presented at the 3rd Engine Conference, 1986.

J. Matsue, R. Katona, H. Sekiya, M. Takamatsu, and H. Kurita, Development of a Compact 30 kW Stirling Engine, Technical Review, vol.18, issue.1

L. William, V160 stirling Engine for a Total Energy System, the 5 th International Symposium on Automotive Propulsion Systems, 1980.

T. Godett, R. Meijer, R. Verhey, and C. Pearson, STM4-120 Stirling Engine Test Development

K. Khalili, T. Godett, R. Meijer, and R. Verhey, Design and Testing of a heat pipe gas combustion system for the STM4-120 Stirling engine, Energy Conversion Engineering Conference, p.89, 1989.

T. Saito, Heat Pumps: Solving Energy and Environmental Challenges, Proceedings of the 3 rd International Energy Agency Heat Pump Conference, 1990.

K. Rosenqvist, T. Lia, and B. Goldwater, The Stirling Engine for the Automotive Application,SAE Technical Paper 790329, 1979.

H. Koichi and K. Masakuni, Development of a multi-cylinder Stirling engine, Proceedings of 12th International Stirling Engine Conference, pp.315-324, 2005.

G. Walker,

P. Agarwal, R. Mooney, and R. Toepel, Stir-Lec I, A Stirling Electric Hybrid Car, SAE Technical Paper 690074, 1969.

N. Postma, R. Van-giessel, and F. Reinink, The Stirling Engine for Passenger Car Application, SAE Technical Paper 730648, 1973.

A. Grandin and W. Ernst, Alternative Fuel Capabilities of the Mod II Stirling Vehicle, SAE Technical Paper 880543, 1988.

J. Allan and . Organ, Striling Cycle Engine -Inner Working and Design

G. Thomas, R. , and C. Hooper, , 1983.

R. Meijer, The Philips Stirling thermal engine analysis of the rhombic drive mechanism and efficiency measurements, Philips research reports supplements, 1961.

J. E. Cairelli, L. G. Thieme, and R. J. Walter, Initial test results with a single-cylinder rhombic-drive stirling engine, 1978.

R. Van-giessel and F. Reinink, Design of the 4-215 D.A. Automotive Stirling Engine, SAE Technical Paper, vol.770082, 1977.

W. R. Martini, Stirling Engine Design Manual, 2004.

M. Dowdy and N. Nightingale, Mod I Automotive Stirling Engine System Performance, SAE Technical Paper 820353, 1982.

A. Richey, Mod I Automotive Stirling Engine Performance Development, SAE Technical Paper, vol.840461, 1984.

R. Farrell, Mod II Stirling Engine Overview, SAE Technical Paper, vol.880539, 1988.

A. E. Richey, Mod II Automotive Stirling engine -Design Description and Performance Projections, 1986.

A. J. Organ, Thermodynamics and Gas Dynamics of the Stirling Cycle Machine, 2010.

Y. Timoumi and I. Tlili, Sassi Ben Nasrallah, Design and performance optimization of GPU-3

W. Ernst, Automotive Stirling Engine Development Project, 1997.

A. Stirling and . Development-program, , 1977.

D. G. Beremand, Stirling Engines for Automobiles, International Conference on Energy Use Management, 1979.

G. Lundholm, The Experimental V4X Stirling Engine -A Pioneering Development

A. E. Richey and S. C. Huang, Mod II Automotive Stirling Engine, Design Description and Performance Projections

W. Ernst, Stirling Engines for Hybrid Electric Vehicle Applications, SAE Technical Paper 929137, 1992.

W. Ernst, J. Meacher, and R. Bascom, Status and Emissions Results for Natural-Gas-Fired Stirling Engine, SAE Technical Paper 920383, 1992.

J. Lienesch and W. Wade, Stirling Engine Progress Report: Smoke, Odor, Noise and Exhaust Emissions, SAE Technical Paper 680081, 1968.

S. Davis, N. Henein, and R. Lundstrom, Combustion and Emission Formation in the Stirling Engine with Exhaust Gas Recirculation, 1971.

J. Andrew, Steam and Steam Engines, p.1889

J. Lovland, A History of Steam Power, 2007.

C. William and . Strack, Condensers and Boilers for Steam-powered Cars: A Parametric Analysis of their Size, Weight, and Required Fan Power, p.4413

T. Tanuma, Advances in Steam Turbines for Advanced Power Plants, p.2017

R. Sonntag-r-and-borgnakke, . Fundamentals, and . Thermodynamics, , pp.384-410, 2003.

M. Moran and H. Shapiro, Fundamentals of engineering thermodynamics, pp.325-365

W. Cha, K. Kim, and K. Choi, « Optimum Working Fluid Selection for Automotive Cogeneration System, World Academy of Science, Engineering and Technology, 2010.

F. Abe, Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700°C and Above, 2015.

F. Starr, High temperature materials issues in the design and operation of coal-fired steam turbines and plant, 2014.

V. Lemort, Contribution to the characterization of scroll machines in compressor and expander modes, 2008.

D. Seher, T. Lengenfelder, and J. Gerhardt, Waste heat recovery for commercial vehicles with a Rankine process, 21st Aachen Colloquium on Automobile and Engine Technology, 2012.

R. Daccord, A. Darmedru, and J. Melis, Oil-Free Axial Piston Expander for Waste Heat Recovery, 2014.

O. Badr and P. W. O'callaghan, Multi-vane expanders as prime movers for low-grade organic Rankine cycle engines, Appl Energ, vol.16, issue.2, pp.129-175, 1984.

O. Badr and P. W. O'callaghan, Multi-vane expanders: geometry and vane kinematics, Appl Energ, vol.19, issue.3, pp.159-82, 1985.

O. Badr and P. W. O'callaghan, Performances of Rankine cycle engines as functions of their expanders' efficiencies, Appl Energ, vol.18, issue.1, pp.15-27, 1984.

P. Leduc and P. Smague, Rankine System for Heat Recovery: an Interesting Way to Reduce Fuel Consumption

O. Badr, S. Naik, P. W. O'callaghan, and S. D. Probert, Expansion machine for a low power-output steam Rankine-cycle engine, Appl. Energy, vol.39, pp.93-116, 1991.

S. Kang, Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid, Energy, vol.41, issue.1, pp.514-524, 2012.

C. Eckoldt, Kraftmaschinen I: Muskelkraft,Wasserkraft, Windkraft, Dampfkraft, Deutsches Museum, 1996.

J. Nyamwange and M. Nyamwange, Major Innovation in Transportation: Evolution of Automobiles, International Journal of Humanities and Social Science, vol.4, issue.5, 2014.

D. Brinkley, Wheels for the World, 2003.

D. Rayner, Traction Engines and other steam road engines, Shire Album 404, 2002.

A. Sebastian, « Are steam cars poised for an epic comeback?, 2013.

S. W. Gouse, Steam Powered Automobile Should Come Back. Engineer, pp.22-26, 1968.

S. Gouse and J. William, Automotive Vehicle Propulsion". ,Part I: The Steam Engine and Part 11: Total Energy Ecology Implications, Advances in Energy Conversion Engineering. ASME, pp.917-926, 1967.

J. W. Bjerklie and B. Sternlicht, Critical Comparison of Low-Emission Otto and Rankine Engine for Automotive Use, 1969.

R. U. Ayres, Alternative Nonpolluting Power Sources, SAE J, vol.76, issue.12, pp.40-80, 1968.

C. Sprouse and C. Depcik, Review of organic Rankine cycle for internal combustion engine exhaust waste heat recovery, Applied Thermal Engineering, vol.51, pp.711-722, 2013.

A. Horst, T. Tegethoff, W. Eilts, P. Koehler, and J. , Prediction of Dynamic Rankine Cycle waste heat recovery performance and fuel saving potential in passenger car applications considering interactions with vehicles energy management, Energy Conversion and Management, vol.78, pp.438-451, 2014.

J. Armstead and S. Miers, Review of waste heat recovery mechanisms for internal combustion engines, Journal of Thermal Science and Engineering Applications, 2013.

V. Maizza and A. Maizza, Working fluids in non-steady flows for waste energy recovery systems, Applied Thermal Engineering, vol.16, issue.7, pp.579-590, 1996.

V. Maizza and A. Maizza, Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems, Applied Thermal Engineering, vol.21, issue.3, pp.381-390, 2001.

S. Vijayaraghavan and D. Y. Goswami, Organic working fluids for a combined power and cooling cycle, ASME Journal of Energy Resources Technology, vol.127, pp.125-130, 2005.

J. Mago, L. Chamra, K. Srinivasan, and C. Somayaji, An examination of regenerative organic Rankine cycles using dry fluids, Applied Thermal Engineering, vol.28, pp.998-1007, 2008.

O. Badr, S. D. Probert, O. 'callaghan, and P. W. , Selecting a working fluid for a Rankine cycle engine, Appl Energ, vol.21, pp.1-42, 1985.

W. Cha, K. Kim, and K. Choi, « Optimum Working Fluid Selection for Automotive Cogeneration System, Tc, vol.374, issue.240, pp.132-134, 2010.

R. Haller, . Nicolas, and . Hammi, Comparison of High and Low Temperature Working Fluids for Automotive Rankine Waste Heat Recovery Systems

M. Tahani, S. Javan, and M. Biglari, A comprehensive study on waste heat recovery from internal combustion engines using organic Rankine cycle, Therm Sci, vol.17, issue.2, pp.611-624, 2013.

P. Mago, L. Chamra, and K. Srinivasan, An examination of regenerative organic Rankine cycles using dry fluids, Appl Therm Eng, vol.28, issue.8, pp.998-1007, 2008.

T. C. Hung, Waste heat recovery of organic Rankine cycle using dry fluids, Energy Conversion & Management, vol.42, pp.539-553, 2001.

T. Endo, S. Kawarjiri, Y. Kojima, K. Takahashi, T. Baba et al., Study on Maximizing Exergy in Automotive Engines. SAE Technical Paper

S. Ibaraki, T. Endo, Y. Kojima, K. Takahashi, T. Baba et al., Study of efficiency onboard waste heat recovery system using Rankine cycle, Review of Automotive Engineers, vol.28, pp.307-313, 2007.

R. Freymann, J. Ringler, M. Seifert, and T. Horst, The second generation Turbosteamer, MTZ Worlidwide, vol.73, pp.18-23, 2012.

R. Freymann, W. Strobl, and A. Obieglo, The Turbosteamer: a system introducing the principle of cogeneration in automotive applications, MTZ, vol.69, pp.20-27, 2008.

P. Smague and P. Leduc, Integrated Waste Heat Recovery System with Rankine Cycle » 22 nd Aachen Colloquium Automobile and Engine Technology, 2013.

E. F. Doyle, L. Dinanno, and S. , Installation of a Diesel-Organic Rankine Compound Engine in a class 8 Truck for a Single-Vehicle Test, Society of Automotive Engineers, vol.790646, 1979.

N. Espinosa, L. Tilman, V. Lemort, S. Quoilin, and B. Lombard, Rankine cycle for waste heat recovery on commercial trucks: approach, constraints and modeling

C. Dumand, B. Nader, W. Coma, G. Smague, and P. , Enjeux et évaluation de solutions de récupération d'énergie à l'échappement : une analyse du Groupement Scientifique Moteur, regroupant PSA, 2014.

T. Furukaa, M. Nakamura, K. Machida, and K. Shimokawa, A study of the Rankine Cycle Generating System for Heavy Duty HV Trucks, 2014.

J. Ringler, M. Seifert, V. Guyotot, and W. Hübner, Rankine Cycle for Waste Heat Recovery of IC Engines, SAE Int. J. Engines, vol.2, issue.1, pp.67-76, 2009.

C. Nelson, Waste Heat Recovery, DEER Conference, 2008.

D. Stanton, S. Charlton, and P. Vajapeyazula, Cummins Inc Diesel Engine Technologies Enabling Powertrain Optimization to Meet U.S Greenhouse Gas Emissions

H. Teng, J. Klaver, T. Park, and G. Hunter, A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines -WHR System Development, SAE Technical Paper, 2011.

T. Park, H. Teng, G. Hunter, and B. Van-der-velde, A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines -Experimental Results, SAE Technical Paper, 1337.

. Ericsson,

I. Kolin, Stirling motor: history, theory, practice, 1991.

. Th, A. J. Finkelstein, and . Organ, Air engines, 2001.

A. J. Organ, The regenerator and the Stirling engine, Mechanical Engineering Publications, 1997.

I. Kolin, The Evolution of the Heat Engine, 1998.

, Appleton's mechanics' magazine and engineers' journal, 1851.

J. Dejust, Machines à vapeur et machines thermiques diverses, p.1899

W. Johnson, The Imperial Cyclopaedia of Machinery, p.1853

G. Descombes and J. L. Magnet, Moteurs non conventionnels, traité de Génie mécanique

A. Touré, Etude théorique et expérimentale d'un moteur Ericsson à cycle de Joule pour conversion thermodynamique de l'énergie solaire ou pour micro-cogénération, 2010.

A. Fula, P. Stouffs, and F. Sierra, In-cylinder heat transfer in an Ericsson engine prototype, International Conference on Renewable Energies and Power Quality, pp.20-22

A. Touré and P. Stouffs, Modélisation du moteur Ericsson, Actes de la septième édition du colloque francophone en énergie, environnement, économie et thermodynamique COFRET'14, 2014.

M. Cryex, Etude théorique et expérimentale d'une unité de micro-cogénération biomasse avec moteur Ericsson, 2014.

G. Angelino and C. Invernizzi, Real gas effects in Stirling engines, Proceedings of the Energy Conversion Engineering Conference and Exhibit (IECEC) 35th Intersociety, pp.24-28, 2000.

M. Creyx, E. Delacourt, C. Morin, B. Desmet, and P. Peultier, Energetic Optimization of the Performances of a Hot Air Engine for Micro-CHP systems working with a Joule or an Ericsson cycle, vol.49, pp.229-239, 2013.

P. Stouffs, Le moteur d'Ericsson, un moyen de valorisation de l'énergie thermique à réhabiliter?, Entropie, vol.241, pp.26-32, 2002.

M. A. Rojas and . Modélisation-thermique, Thermodynamique et Expérimentation d'un moteur Ericsson à air chaud à cycle de Joule, 2015.

H. Kim, W. Kim, H. Kim, and E. S. Kim, « Applicability of scroll expander and compressor to an external power engine: Conceptual design and performance analysis, Int. J. Energy Res, vol.36, pp.385-396, 2012.

D. Mikielewicsz, J. Mikielewicz, and J. Wajs, « Experiences from operation of different expansion devices for application in domestic micro CHP, Arch. Thermodyn, vol.31, pp.3-13, 2010.

J. W. Bjerklie, « A Free Piston Brayton Cycle Engine for Low Power

S. Rajiu, The History of The Internal Combustion Engine, Annals of the faculty of engineering hunedoara, 2003.

R. Proeschel, Afterburning Ericsson Cycle Engine, SAE Technical Paper, 1999.

D. A. Blank and C. Wu, Power limit of an endoreversible Ericsson cycle with regeneration, Energy Convers. Mgmt, vol.37, issue.I, pp.59-66, 1996.

M. Golub, Power and efficiency of Ericsson motor, compared to modern engines, ISEC97065, 8th International Stirling Engine Conference and Exhibition, 1997.

. Delameter, Ericsson's New Hot Air Pumping Engine, 1890.

J. Chen and J. A. Schouten, The comprehensive influence of several major irreversibilities on the performance of an Ericsson heat engine, Applied Thermal Engineering, vol.19, pp.555-564, 1999.

B. C. Fryer, « Design, construction, and testing of a new valved, hot-gas engine, 1973.

G. A. Tsongas and T. J. White, « A Parametric Analysis Microcomputer Model for Evaluating the Thermodynamic Performance of a Reciprocating Brayton Cycle Engine, J. Eng. Gas Turbines Power USA, vol.111, issue.1, 1989.

K. K. Craven and N. N. Clark, « Ideal Computer Analysis of a Novel Engine Concept, 1996.

F. Lontsi-;-thèse, U. , and P. France, Modélisation dynamique des moteurs thermiques alternatifs à apport de chaleur externe à cycle de Joule (Moteurs Ericsson, 2010.

D. A. Blank and C. Wu, Finite-time power limit for solar-radiant Ericsson engines in space applications, Applied Thermal Engineering, vol.18, pp.1347-1357, 1998.

M. Alaphilippe, Recherche d'un nouveau procédé de conversion thermodynamique de l'énergie solaire, en vue de son application à la cogeneration de petite puissance, 2007.

S. Bonnet, M. Alaphilippe, and P. Stouffs, Energy, exergy and cost analysis of a micro-cogeneration system based on an Ericsson engine, International Journal of Thermal Sciences, vol.44, pp.1161-1168, 2005.

P. Stouffs, Machines thermiques non conventionnelles : état de l'art, applications, problèmes à résoudre. Journées SFT, pp.1-15, 1999.

P. Stouffs, « Pré-dimensionnement d'un moteur Ericsson pour production d'énergie électrique pour station télécom

P. Stouffs, « Dimensionnement d'un moteur Ericsson pour production d'énergie électrique pour station télécom en vue de la réalisation d'un prototype

W. G. Le-roux, T. Bello-ochende, and J. P. Meyer, « Thermodynamic optimisation of the integrated design of a small-scale solar thermal Brayton cycle », Int. J. Energy Res, vol.36, issue.11, pp.1088-1104, 2012.

M. Creyx, Développement d'un prototype de micro-cogénération bois incluant un moteur Ericsson à cycle de Joule ouvert, 2014.

P. Durcansky, S. Papucik, J. Jandacka, M. Holubcik, and R. Nosek, Design of Heat exchanger for Ericsson-Brayton Piston Engine, The Scientific World Journal, 2014.

A. Traverso, A. F. Massardo, and R. Scarpellini, Externally Fired micro-gas Turbine: Modelling and experimental performance, Applied Thermal Engineering, vol.26, pp.1935-1941, 2006.

R. W. Moss, A. P. Roskilly, and S. K. Nanda, Reciprocating Joule-cycle engine for domestic CHP systems, Applied Energy, vol.80, pp.169-185, 2005.

J. Wojewoda and Z. Kazimierski, Numerical model and investigations of the externally heated valve Joule engine, Energy, vol.35, pp.2099-2108, 2010.

M. A. Bell and T. Partridge, Thermodynamic design of a reciprocating Joule cycle engine, N_3 Part A: Journal of Power and Energy, vol.217, pp.239-246, 2003.

J. C. Schlatter, Ultralow NOx via Catalytic Combustion, IMechE Seminar on 'Turbulent Combustion of Gases and Liquids-Leading Edge Technologies, pp.15-16, 1998.

G. B. Warren and J. W. Bjerklie, « Proposed Reciprocating Internal Combustion Engine with Constant Pressure Combustion -Combustion Chamber Separated from Cylinders (Modified Brayton Cycle), 1969.

M. Doubs, F. Lanzetta, and «. , Experimental study of the use of metal bellows as an Ericsson Engine Expansion Chamber, PROCEEDINGS OF ECOS 2015 -THE 28TH INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, 2015.

T. Cartigny, M. Mille, M. Doubs, and I. Projet, Système de micro-cogénération à cylindrée variable », Assystem, Journée micro cogénération CNAM, 2015.

T. Cartigny, M. Doubs, P. Ranc, and «. Energine, Système de micro-cogénération à cylindrée variable », Assystem, Journée micro cogénération CNAM, 2016.

. Thermoacoustic,

K. Sondhauss, Über die Schallschwingungen der Lufit in erhitzen Glasrohren und in gedeckten Pfeifen von ungleicher Weite, Annalen der Physik und Chemie, vol.79, p.229, 1850.

B. Higgins, Journal of Natural Philosophy and Chemical Arts, vol.129, p.1802

K. T. Feldman, Review of the literature on Rijke thermoacoustic phenomena, J. Sound Vib, 1968.

P. L. Rijke, On the vibration of the air in a tube open at both ends, Philisophical Magazine, vol.17, pp.419-422, 1859.

K. T. Feldman, Review of the literature on Sondhauss thermoacoustic phenomena, J. Sound Vib, vol.7, pp.71-82, 1968.

L. Rayleigh, The explanation of certain acoustical phenomena, Nature, p.1878

M. Francois, Valorisation des Rejets Thermiques par le procédé Thermoacoustique », 16 ième Cycle de Conférence CNAM/SIA, 2015.

G. Swift, What is thermoacoustics? A brief description, with technical details and citations, Condensed Matter and Thermal Physics Group

B. Zinn, Pulsating combustion, Advanced Combustion Methods, pp.113-181, 1986.

T. Hofler, J. C. Wheatley, G. W. Swift, and A. Migliori, Acoustic cooling engine, vol.722, 0201.

W. E. Gifford and R. C. Longsworth, Pulse tube refrigeration progress, Adv. Cryogenic Eng, vol.10, pp.69-79, 1965.

P. S. Spoor and G. W. Swift, Thermoacoustic separation of a He-Ar mixture, Phys. Rev. Lett, vol.85, pp.1646-1649, 2000.

D. A. Geller and G. W. Swift, Thermoacoustic enrichment of the isotopes of neon, J. Acoust. Soc. Am, vol.115, pp.2059-2070, 2004.

N. Rott, Damped and thermally driven acoustic oscillations in wide and narrow tubes, Z. Angew. Math. Phys, vol.20, pp.230-243, 1969.

N. Rott, Thermally driven acoustic oscillations, part III: Second-order heat flux, Z. Angew. Math. Phys, vol.26, pp.43-49, 1975.

N. Rott, Thermoacoustics. Adv. Appl. Mech, vol.20, pp.135-175, 1980.

D. Fahey, Thermoacoustic Oscillations, 2006.

S. Backhaus and G. W. Swift, A thermoacoustic-Stirling heat engine: Detailed study, The Journal of the Acoustical Society of America, vol.107, 2000.

E. L. Mikulin, A. A. Tarasov, and M. P. Shkrebyonock, Low-temperature expansion pulse tubes, Adv. Cryogenic Eng, vol.29, pp.629-637, 1984.

R. Radebaugh, A review of pulse tube refrigeration, Adv. Cryogenic Eng, vol.35, pp.1191-1205, 1990.

I. Urieli and D. M. Berchowitz, Stirling Cycle Engine Analysis, 1984.

T. Yazaki, A. Iwata, T. Maekawa, and A. Tominaga, Traveling wave thermoacoustic engine in a looped tube, Phys. Rev. Lett, vol.81, pp.3128-3131, 1998.

C. M. De-blok, Dutch Patent: International Application Number PCT/NL98/00515. US Patent 6, vol.314, 1998.

S. Backhaus and G. W. Swift, A thermoacoustic-Stirling heat engine, Nature, vol.399, pp.335-338, 1999.

S. Mathew, K. K. Rasheed, K. A. Shafi, S. Kasthurirengan, and U. Behera, Simulation stuies on the performance of thermoacoustic prime movers and refrigerator, Computers & Fluids, vol.111, pp.127-136, 2015.

A. Mostafa, N. M. Nouh, E. Arafa, and . Abdel-rahman, Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine, 2014.

S. Esmatullah-maiwand-sharify, S. Takahashi, and . Hasegawa, CFD Study of Oscillatory Flow around Parallel Plates in a Travelling-Wave Thermoacoustic Engine, Thermoacoustic systems & applications, Proceedings of the 3rd International Workshop on Thermoacoustic, 2015.

M. Zubir-bin and . Yahaya, Evaluation of Heat Exchanger on Thermoacoustic Performance, 2013.

N. C. Castro, Experimental heat exchanger performance in a thermoacoustic prime mover, 1993.

K. Tourkov, F. Zink, and L. Schaefer, Thermoacoustic sound generation under the influence of resonator curvature, International Journal of Thermal Sciences, vol.88, pp.158-163, 2015.

C. Haddad, C. Périlhon, A. Danlos, M. François, and G. Descombes, Some Efficient Solutions to Recover Low and Medium Waste Heat : Competitiveness of the Thermoacoustic Technology, The International Conference on Technologies and Materials for Renewable Energy, Envieonment and Systainability, vol.14, pp.1056-1069, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01499673

J. G. Jacobs, Design, construction and experimental observation of a thermoacoustic prime mover, 2014.

S. N. Backhaus and R. M. Keolian, In-line stirling energy system, vol.7908856, 2007.

R. M. Keolian, M. E. Poese, R. W. Smith, E. C. Mitchell, C. M. Roberts et al., Thermoacoustic systems & applications, Proceedings of the 3rd International Workshop on Thermoacoustic, 2015.

C. Jensen and R. Raspet, Thermoacoustic power conversion using a piezoelectric transducer, The Journal of the Acoustical Society of America, vol.128, pp.98-103, 2010.

A. Thiele, Loudspeakers in Vented Boxes : Parts I and II, J. Audio Eng. Soc, vol.19, issue.5, pp.382-392, 1971.

R. H. Small, Vented-Box Loudspeaker Systems-Part 1 : Small-Signal Analysis, JAES, vol.21, pp.363-372, 1973.

K. Kaneuchi, K. Nishimura, and «. , Evaluation of Bi-Directional Turbines Using the Two-Sensor Method, Proceedings of the 3rd International Workshop on Thermoacoustic, 2015.

J. Lin, C. Scalo, and L. Hesselink, High-fidelity simulations of a standing-wave thermoacousticpiezoelectric engine, Thermoacoustic systems & applications, Proceedings of the 3rd International Workshop on Thermoacoustic, 2015.

J. Smoker, M. Nouh, O. Aldraihem, and A. Baz, Energy harvesting from a standing wave thermoacoustic piezoelectric resonator, Journal of Applied Physics, vol.111, p.104901, 2012.

P. Kees-de-blok, M. Owczarek, and . Francois, Bi-directional turbines for converting acoustic wave power into electricity

C. Olivier, G. Poignand, and G. Pénelet, « Do it yourself: make your own thermoacoustic engine with steel wool or rice, European Journal of Physics, 2016.

J. R. Olson and G. W. Swift, Acoustic streaming in pulse tube refrigerators: Tapered pulse tubes, Cryogenics, vol.37, pp.769-776, 1997.

N. Rott, The influence of heat conduction on acoustic streaming, Z. Angew. Math. Phys, vol.25, p.231, 1974.

C. Olivier, G. Poignand, G. Penelet, and P. Lotton, Simplified Modeling of a Thermo-Acousto-Electric Engine Forced by An External Sound Source, Thermoacoustic systems & applications, Proceedings of the 3rd International Workshop on Thermoacoustic, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01400324

N. Sugimoto, On General Expressions of Temporal Means of Mass Flux, Shear Stress and Heat Flux due to Thermoacoustic Waves, Thermoacoustic systems & applications, Proceedings of the 3rd International Workshop on Thermoacoustic, 2015.

R. Paridaens, S. Kouidri, and F. Jebali-jerbi, « Experimental investigations of acoustic streaming in a thermoacoustic traveling wave engine using Laser Doppler Velocimetry, 2014.

J. A. Lycklama, M. E. Tijani, and N. B. Siccama, CFE Modelling of the Effect of Oscillating Jets on Streaming Heat Losses in a Torus-shaped Thermoacoustic Engine, Proceedings of the 3rd International Workshop on Thermoacoustic, 2015.

G. Q. Lu and P. Cheng, Thermoacoustic streaming in a tube with isothermal outer surface, International Journal of Heat and Mass Transfer, vol.48, pp.1599-1607, 2005.

A. Gopinath and N. L. Tait, Thermoacoustic streaming in a resonant channel: the time-averaged temperature distribution, Journal of Acoustic. Soc. Am, vol.103, pp.1388-1405, 1998.

T. S. Ryan, Design and Control of a Standing-Wave Thermoacoustic Refrigerator ». B.S. in Mechanical Engineering, 2006.

K. D. Blok, « Low Operating Temperature Integral Thermo Acoustic Devices for Solar Cooling and Waste Heat Recovery, Aster Thermoakoestische Systemen, 2008.

M. Francois, K. De, P. Blok, M. Bouakhao, J. Niphon et al.,

D. Courtes, . Clodic, V. The, and . Project, Full scale conversion of CHP engine flue gas heat into electricity, Thermoacoustic systems & applications, Proceedings of the 3rd International Workshop on Thermoacoustic, 2015.

J. A. Adeff and T. J. Hofler, Design and construction of a solar powered, themoacoustically driven, thermoacoustic refrigerator, 2000.

R. Bessis, G. Poignand, H. Bailliet, H. Lazure, J. Valiere et al., Thermoacoustic systems & applications, Proceedings of the 3rd International Workshop on Thermoacoustic, 2015.

T. Jin, R. Yang, Y. L. Liu, K. Tang, B. M. Chen et al., Thermoacoustic systems & applications, Proceedings of the 3 rd International Workshop on Thermoacoustic, 2015.

C. Olivier, G. Penelet, G. Poignand, and P. Lotton, Active control of thermoacoustic amplification in a thermo-acousto-electric engine, J. Appl. Phys, vol.115, issue.17, p.174905, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01401761

G. Poignand, C. Olivier, G. Penelet, and P. Lotton, Active tuning of acoustic oscillation in a thermoacoustic power generator, 2nd International Workshop on Thermoacoustics, 2014.

P. Lotton, G. Poignard, G. Penelet, and C. Olivier, Thermoacoustic Electric Generation, 2014.

M. Petach, E. Tward, and S. Backhaus, Design of a High Efficiency Power Source (HEPS) Based On Thermoacoustic Technology, NASA, p.232, 2004.

Z. Yu, A. J. Jaworski, and S. Backhaus, A low-cost electricity generator for rural areas using a travelling-wave looped-tube thermoacoustic engine, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol.224, pp.787-795, 2010.

M. G. Normah, A. R. Irfan, K. S. Koh, A. Manet, Z. Ab et al., Investigation of a portable standing wave thermoacoustic heat engine, Procedia Engineering, pp.829-834, 2013.

B. Chen, A. Abdalla, P. H. Yousif, D. B. Riley, and . Hann, « Development and Assessment of Thermoacoustic Generators Operating by Waste Heat from Cooking Stove, Scientific Research, Engineering, vol.4, pp.894-902, 2012.

S. Backhaus and G. Swift, A thermoacoustic-Stirling heat engine : detailed study, Journal of Acoustical Society of America, vol.107, pp.3148-3166, 2000.

J. Mumith, C. Makatsoris, and T. Karayiannis, Design of a thermoacoustic heat engine for low temperature waste heat recovery in food manufacturing, Applied Thermal Engineering, vol.65, pp.588-596, 2014.

S. Backhaus, E. Tward, and M. Petach, Traveling-wave thermoacoustic electric generator, Appl. Phys. Lett, vol.85, p.1085, 2004.

M. Tijani and S. Spoelstra, A hot air driven thermoacoustic-Stirling engine, Applied Thermal Engineering, vol.61, pp.866-870, 2013.

D. Alary, C. Tourneur, J. Reed, B. Rechain, and M. François, Thermo-Acoustic Generators for Space Missions

Z. Wu, G. Yu, L. Zhang, W. Dai, and E. Luo, Development of a 3 kW doubleacting thermoacoustic Stirling electric generator, 2014.

M. Haberbusch, Thermoacoustic Stirling Heat Engine (TASHE) for Space Power and Cooling, 2015.

, Startup commercializing thermo-acoustic Stirling technology for combined heat and power for homes, 20013-12-27.

G. Yu, X. Wang, W. Dai, and E. Luo, Study on energy conversion characteristics of a high frequency standingwave thermoacoustic heat engine, Applied energy, issue.111, pp.1147-1151

D. Gardner and C. Howard, Waste-heat-driven thermoacoustic engine and refrigerator, conf. Acoustics, 2009.

I. , line stirling energy system, US patent number 7908856 B2, 2011.

J. Fritzsche, J. Drückhammer, C. Käppner, E. Hassel, and T. W. Steiner, Thermoacoustics as an Alternative Technology for Waste Heat Recovery in Automotive and (Heavy) Duty Applications », 24th Aachen Colloquium Automobile and Engine Technology, 2015.

M. Karlsson, M. Abom, M. Lalit, and R. Glav, A Note on the Applicability of Thermo-Acoustic Engines for Automotive Waste Heat Recovery, SAE Int. J. Mater. Manf, vol.9, issue.2, pp.286-293, 2016.

, Breakthrough micro-generation technology

, NRCan ecoENERGY Innovation Initiative, Stakeholder Report, 2014.

. Thermoelectric,

D. M. Rowe, CRC Handbook of thermoelectrics, 1995.

D. M. Rowe, Thermoelctrics Handbook: macro to nano, 2006.

T. J. Seebeck, Abhandlungen der Deutschen Akademi der Wissenschaften

D. D. Allred, An overview of thermoelectrics in "Short course on thermoelectrics, Edited by the international thermoelectric society, 1993.

W. Thomson,

L. Onsager, Reciprocal relations in irreversible processes II. PHYSICAL REVIEW, vol.38, p.2265, 1931.

H. Nowotny, The chemistry of extended defects in non-metallic solid. North holland, 1970.

U. Gottlieb, Magnetic properties of single crystalline Mn4Si7, Journal of Alloys and Compounds, vol.361, issue.1-2, pp.13-18, 2003.

L. Onsager, Reciprocal relations in irreversible processes I. PHYSICAL REVIEW 1931, vol.37, p.405

H. K. Nishihata, O. Ueno, and T. , PELTIER cooling system utilizing liquid heat exchanger combined with pump, Proceedings of the 21st International Conference on Thermoelectrics, 2002.

M. W. Davis, R. Clarke, and P. , CPU cooling using high efficiency liquid flow heat exchangers, Proceedings of the 23rd International Conference on Thermoelectrics, 2004.

G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials, pp.105-114, 2008.

M. N. Kishi, H. Hamao, T. Yamamoto, M. Sudou, S. Mandai et al., Micro thermoelectric modules and their application to wristwatches as an energy source, Proceedings of the 18th International Conference on Thermoelectrics, 1999.

J. W. Fairbanks and . Thermoelectric, Developments for Vehicular Applications », FreedomCar & Vehicle Technologies Program, 2006.

L. Bertrand, M. Jean-pierre, D. Anne, and . Thermoélectricité, , 2010.

M. Zebarjadi, Perspectives on thermoelectrics: from fundamentals to device applications, Energy & Environmental Science, vol.5, issue.1, pp.5147-5162, 2012.

N. F. Mott and H. J. , The theory of the properties of metals and alloys, 1958.

G. D. Mahan and J. O. Sofo, The best thermoelectric, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.7436-7439, 1996.

T. K. Reynolds, J. G. , R. F. Kelley, and F. J. Disalvo, Chemistry, physics, materials science of thermoelectric materials, beyond bismuth telluride, 2002.

H. J. Goldsmid, Thermoelectric Refrigeration, 1964.

B. Lenoir, J. P. Michenaud, and A. Dauscher, Conversion d'énergie par effets thermoélectriques: théorie, matériaux et application 3ed, 2009.

A. Ioffe, Semiconductors, Thermoelements and Thermoelectric cooling, 1957.

C. H. Goodman, The prediction of semiconducting properties in inorganic compounds, Journal Of Physics And Chemistry Of Solids, vol.6, p.305, 1958.

H. J. Goldsmid and R. , The use of semiconductors in thermoelectric refrigeration, British journal of applied physics, vol.5, p.386, 1954.

G. A. Slack, New material and performance limits for thermoelectric cooling, CRC Handbook of thermoelctrics, p.407, 1995.

G. D. Mahan, B. C. , and J. Sharp, Thermoelectric materials: new approaches to an old problem, Physics Today, vol.50, p.42, 1997.

B. Lenoir and H. S. Caillat, An overview of recent developpements for BiSb alloys, Recent Trends in Thermoelectric Materials, vol.69, 2001.

T. Graf, S. S. Parkin, and C. Felser, HEUSLER Compounds-A Material Class With Exceptional Properties, Ieee Transactions on Magnetics, vol.47, issue.2, pp.367-373, 2011.

T. Graf, Phase separation in the quaternary HEUSLER compound CoTi(1-x)MnxSb -A reduction in the thermal conductivity for thermoelectric applications, Scripta Materialia, pp.1216-1219, 2010.

W. M. Yim and A. A. , Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling. Solid-State Electronics, vol.15, p.1141, 1972.

O. Yamashita and S. Tomiyoshi, Effect of annealing on thermoelectric properties of bismuth telluride compounds, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol.42, issue.2A, pp.492-500, 2003.

J. M. Simmard, D. Turenne, and S. , Influence of composition and texture on the thermoelectric and mechanical properties of extruded (Bi1-xSbx)2(Te1-ySey)3 alloys, Proc. 22th Int. Conf. on Thermoelectrics, 2003.

J. Sharp, Some properties of Ge-Te based thermoelectric materials, International Conference on Thermoelctrics, p.267, 2003.

I. Kawasumi, Crystal-Growth of Manganese Silicide, Mnsi Approximately 1.73 and Semiconducting Properties of Mn15si26, Journal of Materials Science, vol.16, issue.2, pp.355-366, 1981.

E. S. Toberer, Traversing the Metal-Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1-xAlxSb11, Advanced Functional Materials, pp.2795-2800, 2008.

E. S. Toberer, A. F. May, and G. J. Snyder, Zintl Chemistry for Designing High Efficiency Thermoelectric Materials, Chemistry Of Materials, vol.22, issue.3, pp.624-634, 2010.

C. A. Cox, Heat Capacity, and High-Temperature Thermal Properties of Yb14Mn1-xAlxSb11, Chemistry Of Materials, vol.21, issue.7, pp.1354-1360, 2009.

S. R. Brown, Yb14MnSb11: New high efficiency thermoelectric material for power generation, Chemistry Of Materials, vol.18, issue.7, pp.1873-1877, 2006.

L. D. Hicks and M. S. Dresselhaus, Thermoelectric Figure of Merit of a One-Dimensional Conductor, Physical Review B, vol.47, issue.24, pp.16631-16634, 1993.

L. D. Hicks and . Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit, Physical Review B, vol.47, pp.12727-12731, 1993.

T. C. Harman, D. L. Spears, and M. P. Walsh, PbTe/Te superlattice structures with enhanced thermoelectric figures of merit, Journal of Electronic Materials, vol.28, issue.1, pp.1-4, 1999.

R. Venkatasubramanian, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, vol.413, issue.6856, pp.597-602, 2001.

M. Winkler, Current Status in Fabrication, Structural and Transport Property Characterization, and Theoretical Understanding of Bi2Te3/Sb2Te3 Superlattice Systems. Zeitschrift Fur Anorganische Und Allgemeine Chemie, vol.638, pp.2441-2454, 2012.

X. A. Yan, Enhanced Thermoelectric Figure of Merit of p-Type Half-HEUSLERs, Nano Letters, vol.11, issue.2, pp.556-560, 2011.

M. Puyet, Beneficial effect of Ni substitution on the thermoelectric properties in partially filled CayCo4-xNixSb12 skutterudites, Journal Of Applied Physics, issue.8, p.97, 2005.

V. L. Kuznetsov, Preparation and thermoelectric properties of A(8)(II)B(16)(III)B(30)(IV) clathrate compounds, Journal Of Applied Physics, vol.87, issue.11, pp.7871-7875, 2000.

G. J. Snyder, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nature Materials, vol.3, issue.7, pp.458-463, 2004.

A. Akrap, High-pressure resistivity and thermoelectric power in Yb14MnSb11, Physical Review B, issue.8, p.76, 2007.

Y. He, High Thermoelectric Performance in Non-Toxic Earth-Abundant Copper Sulfide, Advanced Materials, vol.26, issue.23, pp.3974-3978, 2014.

L. D. Zhao, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature, vol.508, issue.7496, p.373, 2014.

T. P. Hogan, Nanostructured thermoelectric materials and high-efficiency power-generation modules, Journal Of Electronic Materials, vol.36, issue.7, pp.704-710, 2007.

C. Uher, Transport properties of pure and doped MNiSn (M=Zr, Hf), Physical Review B, vol.59, issue.13, pp.8615-8621, 1999.

S. Bhattacharya, Effect of Sb doping on the thermoelectric properties of Ti-based half-HEUSLER compounds, TiNiSn1-xSbx, Applied Physics Letters, vol.77, issue.16, pp.2476-2478, 2000.

I. A. Drabkin, Thermoelectric cooling text of lectures, 2002.

N. K. Abrikosov, V. F. Fedorova, and G. A. Metallurgy, Physics of Semiconductors. J. N.Ch, 1957.

T. E. Svechnikova, The Homogeneity of Czochralski-Grown Bi2te2.85se0.15 Single-Crystals, Inorganic Materials, vol.31, issue.1, pp.20-28, 1995.

B. Lenoir, Transport properties of Bi-rich Bi-Sb alloys, Journal of Physics and Chemistry of Solids, vol.57, issue.1, pp.89-99, 1996.

K. D. Shcherbachev, V. T. Bublik, and O. E. Daricheva, The Study of Microdefects in Gaas Single-Crystals Doped with Si by X-Ray Diffuse-Scattering. Kristallografiya, vol.40, pp.868-876, 1995.

V. B. Ufimtsev, Structure, homogeneity and properties of thermoelectric materials based on ternary solid solutions of bismuth and antimony chalcogenides, vol.4, pp.189-197

N. M. Katano, Ingot plate made of thermoelectric material, rectangular bar cut from the ingot plate, and process of fabricating the ingot plate, 1998.

C. C. Koch, Materials Synthesis by Mechanical Alloying. Annual Review of Materials Science, vol.19, pp.121-143, 1989.

D. R. Maurice and T. H. Courtney, The Physics of Mechanical Alloying -a 1st Report. Metallurgical Transactions a-Physical Metallurgy and Materials Science, vol.21, issue.2, pp.289-303, 1990.

S. H. Han, K. A. Gschneidner, and B. J. Beaudry, Preparation of a Metastable High-Temperature Phase (Gamma-Dy2s3) and a Metastable High-Pressure Phase (Gamma-Y2s3) by Mechanical Alloying and Mechanical Milling. Scripta Metallurgica Et Materialia, vol.25, pp.295-298, 1991.

R. Martin-lopez, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol.248, pp.147-152, 1998.

N. Bouad, R. M. Marin-ayral, and J. C. Tedenac, Mechanical alloying and sintering of lead telluride, Journal of Alloys and Compounds, vol.297, issue.1-2, pp.312-318, 2000.

N. Bouad, Mechanical alloying of a thermoelectric alloy: Pb0.65Sn0.35Te, Journal of Solid State Chemistry, vol.177, issue.1, pp.221-226, 2004.

H. Nagai, Effect of Si/C ratio on thermoelectric properties of beta-FeSi2 mechanically alloyed with (Si plus C) additions, Materials Transactions Jim, vol.41, issue.2, pp.287-292, 2000.

J. Y. Yang, Synthesis of CoSb3 skutterudite by mechanical alloying, Journal of Alloys and Compounds, vol.375, issue.1-2, pp.229-232, 2004.

V. Izard, M. C. Record, and J. C. Tedenac, Mechanical alloying of a new promising thermoelectric material, Sb3Zn4, Journal of Alloys and Compounds, vol.345, issue.1-2, pp.257-264, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01756298

Y. C. Zhang, Silver-Based Intermetallic Heterostructures in Sb2Te3 Thick Films with Enhanced Thermoelectric Power Factors, Nano Letters, vol.12, issue.2, pp.1075-1080, 2012.

X. H. Ji, Improved thermoelectric performance in polycrystalline p-type Bi(2)Te(3) via an alkali metal salt hydrothermal nanocoating treatment approach, Journal of Applied Physics, vol.104, issue.3, 2008.

W. W. Zhou, Binary-Phased Nanoparticles for Enhanced Thermoelectric Properties, Advanced Materials, vol.21, issue.31, p.3196, 2009.

W. J. Xie, Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb)(2)Te-3 Nanocomposites, Nano Letters, vol.10, issue.9, pp.3283-3289, 2010.

W. J. Xie, High thermoelectric performance BiSbTe alloy with unique low-dimensional structure, Journal of Applied Physics, issue.11, p.105, 2009.

W. J. Xie, Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Applied Physics Letters, issue.10, p.94, 2009.

J. Carrey, H. B. Radousky, and A. E. Berkowitz, Spark-eroded particles: Influence of processing parameters, Journal of Applied Physics, vol.95, issue.3, pp.823-829, 2004.

F. Casper, Half-HEUSLER compounds: novel materials for energy and spintronic applications. Semiconductor Science and Technology, p.27, 2012.

M. Kakuei and . Thermoelectric, Generator to Utilize Waste Exhaust Heat Energy of Vehicles, 2005.

J. Lagrandeur, D. Crane, and A. Eder, Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery, DEER Conference, 2005.

S. Kumar, S. D. Heister, X. Xu, J. R. Salvador, and G. P. Meinsner, Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis, Journal of Electronic Materials, 2013.

N. Espinosa, M. Lazard, L. Aixala, and H. Scherrer, Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery, Journal of ELECTRONIC MATERIALS, vol.39, issue.9, 2010.

D. Crane, J. Lagrandeur, V. Jovovic, M. Ranalli, M. Adldinger et al., TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development, Journal of Electronic Materials, vol.42, issue.7, p.237, 2013.

S. Kumar, S. D. Heister, X. Xu, J. R. Salvador, and G. P. Meinsner, Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies, Journal of Electronic Materials, 2013.

F. Horst, S. Michael, H. Christian, and W. Tobias, Electricity from exhausts -Development of thermoelectric generators for use in vehicles, 2010.

U. G. Birkholz, E. Stohrer, U. Voss, and K. , Conversion of waste exhaust heat in automobiles using FeSi2 thermoelements, Proceedings of the 7th International Conference on Thermoelectric Energy Conversion, 1988.

J. E. Bass, N. B. Leavitt, and A. , Performance of the 1 kW thermoelectric generator for diesel engines, proceeding of the 13th Inthernational Conference on Thermoelectrics. 1995. AIP Conf. Proc

J. C. Bass, A. S. Kushch, and N. B. Elsner, Thermoelectric Generator (TEG) for Heavy Diesel Trucks, 2006.

D. T. Morelli, Potential applications of advanced thermoelectrics in the automobile industry, proceedings of the 15th International Conference on Thermoelectrics, 1996.

D. T. Morelli, Advanced thermoelectric materials and systems for automotive applications in the next millennium, Material Research Society Symposium Proceedings, p.297, 1997.

J. Liebl, Der thermoelektrische Generator von BMW macht Abwärme nutzbar, vol.70, pp.272-281, 2009.

M. Boris, « State of the Art Prototype Vehicle with a Thermoelectric Generator, TE Application Workshop, 2012.

W. Hornick, Case Study Fiat: The First Light Commercial Vehicle Equipped with a Thermo-Electric Generator, 2013.

R. Stobart and D. Milner, The Potential for Thermo-Electric Regeneration of Energy in Vehicles, pp.2009-2010

M. Mori, T. Yamagami, M. Sorazawa, T. Miyabe, S. Takahashi et al., Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid, 1335.

R. Yu, L. Aixala, C. De, «. Vaulx, and . Waste, Heat Recovery by Thermoelectricity on passenger car and heavy-duty truck diesel engine : The RENOTER project, p.2012

, Renault Trucks, 3 rd Thermoelectric Applications Workshop, pp.20-22, 2012.

R. Silvio, Z. Hans, and . Close, Coupled Exhaust Gas Energy Recovery in a Gasoline Engine, vol.74

R. Marco, A. Martin, K. Dmitri, and W. Marcel, Thermoelectric generators : From Aerospace to Automotive, ATZ worldwide, Development Thermal Management, 2013.

L. Saniya, S. K. Yee, M. L. Scullin, and D. Chris, Material and Manufacturing Cost Considerations for Thermoelectrics, vol.32, pp.313-327, 2014.

J. Liebl, S. Neugebauer, A. Eder, M. Linde, B. Mazar et al., Thermoelectric Generator from BMW is Making Use of waste Heat, vol.70, p.238, 2009.

B. Orr, A. Akbarzadeh, M. Mochizuki, and R. Singh, A revie of Car Waste Heat Recovery Systems Utilising Thermoelectric Generators and Heat Pipes, 2015.

E. Quazi, D. R. Hussain, C. W. Brigham, . Maranville, and . Thermoelectric, Exhaust Heat Recovery for Hybrid Vehicles, SAE Int. J. Engines, vol.2, issue.1, pp.2009-2010

A. Luc, Renoter Project, Renault Trucks, 2 nd Thermoelectric Applications Workshop, 2011.

, A New Green Technology, Thermoelectrci Applications Workshop, 2011.

A. Luc, Renoter Project, Renault Trucks, 3 rd Thermoelectric Applications Workshop, 2012.

J. Larminie and A. Dicks, Fuel cell systems explained, 2003.

A. J. Bard and L. R. Faulkner, Electrochemical methods, 1980.

, Fuel Cell Technology Showcase

, The History of Hydrogen

. Ford-sustainability-report, , vol.14, 2013.

E. Mehrdad, G. Yimin, and E. Ali, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles » -Fundamentals, Therory, and Design -Second Edition

M. I. Chris, M. A. Masrur, W. David, and . Gao, Hybrid Electric Vehicles » -Principles and Applications with Practical Perspectives, 2011.

B. Junghwan, K. Han-sang, L. Dong-hun, and M. Kyoungdoug, « Study on Operating Characteristics of fuel cell powered electric vehicle with different air feeding systems », Journal of Mechanical Science and Technology, vol.22, pp.1602-1611, 2008.

D. Ibrahim, M. A. Rosen, and . Exergy, , pp.363-381, 2013.

A. K. Mohiuddin and A. Rahman, Mohamed Fadhil Chemani and Mohb Baihaqi Zakaria, Investigation of PEM fuel cell for automotive use, IIUM Engineering Journal, 2015.

M. Sajgure, B. Kachare, P. Gawhale, S. Waghmare, and G. Jagadale, Direct Methanol Fuel Cell: A Review, International Journal of Current Engineering and Technology, 2016.

S. D. Cameron, A. G. Hards, B. Harrison, and J. R. Potter, Direct Methanol Fuel Cells : Recent Developments in the Search for Improved Performance, 1987.

K. Rajashekara, A. J. Macbain, and J. Grieve, Evaluation of SOFC Hybrid Systems for Automotive Propulsion Applications, Industry Applications Conference, 41th IAS Annual Meeting, 2006.

S. C. Singhal, Solid Oxide Fuel Cells for Stationary, mobile, and military applications, Solid State Ionics, 2002.

K. Kordescha, J. Gsellmanna, M. Cifraina, S. Vossa, V. Hackera et al., Intermittent use of a low-cost alkaline ful cell-hybrid system for electric vehicles, Journal of Power Sources, p.239, 1999.

D. Geeter, E. Mangan, M. Spaepen, S. Stinissen, W. Vennekens et al., Alkaline Fuel Cells for Road Traction, Journal of Power Sources, 1999.

S. Pathak, . Narayana-das, J. Rangarajan, R. S. Choudhury, and R. Prakash, Development of Prototype Phosphoric Acid Fuel Cell Pick-Up Electric Vehicle, Electric and Hybrid Vehicles, 2006.

S. Mekhilef, R. Saidur, and A. Safari, Comparative study of different fuel cell technologies, 2012.

J. M. Nail, G. Anderson, G. Ceasar, and C. J. Hansen, The Role of the U.S. National Innovation System in the Development of the PEM Stationary Fuel Cell, 2005.

K. Lejda, Fuel Cells as Alternative for Power Transmission of Automotive Vehicles, Journal of KONES Internal Combustion Engines, 2005.

T. Hottinen, M. Noponen, T. Mennola, O. Himanen, M. Mikkola et al., Effect of ambient conditions on performance and current distribution of a polymer electrolyte membrane fuel cell, Journal of Applied Electrochemistry, vol.33, pp.265-271, 2003.

M. Murthy, M. Esayian, J. W. Woo-kum-lee, and . Van-zee, The Effects of Temperature and Pressure on the Performance of a PEMFC Exposed to Transient CO Concentrations, Journal of the Electrochemical Society, vol.150, issue.1, pp.29-34, 2003.

F. Bhaskar-balasubramanian, J. Barbir, and . Neutzler, Optimal Operating Temperature and Pressure of PEM Fuel Cell Systems in Automotive Applications

. Bmw-group, Cryo-Compressed Hydrogen Storage », 2012.

C. Maugy, Hydrogène, Pile à Combustible: Applications automobiles et Autres, 2016.

F. Laurencelle, R. Chahine, J. Hamelin, K. Agbossou, M. Fournier et al., Characterization of a Ballard MK5-E proton exchange membrane fuel cell stack, Fuel Cells, 2001.

A. Mayyas, M. Wei, H. Shuk, T. Chan, and . Lipman, Fuel Cell Forklift Deployment in the, Fuel Cells : Data, Facts and Figures, pp.334-342

, Fuel Cell Forklift Truck Development Status, 2015.

O. Pasdag, A. Kvasnicka, M. Steffen, and A. Heinzel, Highly integrated steam reforming fuel processor with condensing burner technology for maximised electrical efficiency of CHP-PEMFC systems, Energy Procedia, vol.28, pp.57-65, 2012.

M. Gandiglio, A. Lanzini, M. Santarelli, and P. Leone, Design and optimization of a proton exchange membrane fuel cell CHP system for residential use, Energy Build, vol.69, pp.381-93, 2014.

U. H. Jung, W. Kim, K. Y. Koo, and W. L. Yoon, Genuine design of compact natural gas fuel processor for 1-kWe class residential proton exchange membrane fuel cell systems, Fuel Process Technol, vol.121, pp.32-39, 2014.

B. Naja, H. Mamaghani, A. Baricci, A. Rinaldi, F. Casalegno et al., Mathematical modelling and parametric study on a 30 kWel high temperature PEM fuel cell based residential micro cogeneration plant

, Int J Hydrogen Energy, vol.40, issue.3, pp.1569-83, 2015.

L. Zhao, J. Brouwer, S. James, J. Siegler, E. Peterson et al., Servers Powered by a 10 kW In-Rack Proton Membrane Fuell Cell System, Proceedings of the ASME 2014 8 th International Conference on Energy Sustainability & 12 th Fuel Cell Science, Engineering and Technology Conference ESFuelCell2014, 2014.

J. Gosset, Hydrogen Technology for Integration of Renewables

J. Gosset, The Myrte Project: Implementating Hydrogen Energy Storage Through the GreEnergy Box, Areva, 2012.

C. Bidault, S. Besse, T. Nietsch, and V. Chaudron, Electrolyser Development at Hélion/Areva, Fuell Cell Seminar & Exposition, 2008.

J. José, C. De-troya, C. Alvarez, L. Fernandez-garrido, and . Carral, Analysing the Possibilities of Using Fuel Cells in Ships

C. Topete, C. Tiankai, Y. Tang, S. Jun, and . Xie, Fuel Cell Submarine

F. Masset, Hycarus: Hydrogen Powered Fuel Cell Systems for non-essential cabin applications, Workshop on aeronautical applications of fuel cells and hydrogen technologies, 2015.

J. Ayre, Daimler Bringing Electric & Hydrogen Fuel-Cell Buses to Production by, 2016.

, Demonstration of 1 st European Solide Oxide Fuel Cell Truck APU on a Vehicle, DESTA, 2015.

M. M. Hussain, J. J. Baschuk, X. Li, and I. Dincer, Thermodynamic analysis of A PEM fuel cell power system, International Journal of Thermal Sciences, vol.44, pp.903-914, 2005.

J. J. Baschuk and L. I. Xianguo, « A comprehensive, consistent and systematic mathematical model of PEM fuel cells, Applied Energy, vol.86, pp.181-193, 2009.

J. T. Pukrushkapan, A. G. Stefenopoulou, and H. Peng, Modelling and Control for PEM Fuel cell stack system, 2002.

S. O. Mert, I. Dincer, Z. Ozcelik, and «. , Performance investigation of a transportation PEM fuel cell system, International Journal of Hydrogen Energy, vol.37, pp.623-633, 2012.

S. O. Mert, I. Dincer, and Z. Ozcelik, Exergoeconomic analysis of a vehicular PEM fuel cell system, Journal of Power Sources, vol.165, issue.1, pp.244-52, 2007.

L. Wang, A. Husar, T. Zhou, and H. Liu, A parametric study of PEM fuel cell performances, International Journal of Hydrogen Energy, vol.28, pp.1263-72, 2003.

W. Ya-xiong, O. U. Kai, and K. Young-bae, « Modeling and experimental validation of hybrid proton exchange membrane fuel cell-battery system for power management control, International Journal of Hydrogen Energy, vol.40, pp.11713-11721, 2015.

N. Behzad, H. Alireza, A. Mamaghani, . Baricci, R. Fabio et al., Mathematical modelling and parametric study on a 30 kWel high temperature PEM fuel cell based residential micro cogeneration plant, International Journal of Hydrogen Energy, vol.40, 2015.

S. Waseem and W. Ghaith, Modeling and Analysis of Renewable PEM Fuel Cell System », International Conference on Technologies and Materials for Renewable Energy, vol.15, pp.87-101, 2015.

Y. Tevfik, Omer Faruk SELAMET, « Mathematical modeling and dynamic Simulink simuation of high-pressure PEM electrolyzer system, International Journal of Hydrogen Energy, vol.41, 2016.

T. T. Springer, T. A. Zawodinski, S. Gottesfeld, and «. , Polymer Electrolyte Fuel Cell Model, vol.138, issue.8, 1991.

M. Ay, A. Midilli, and I. Dincer, Thermodynamic modelling of a proton exchange membrane fuel cell, International Journal of Exergy, vol.3, issue.1, pp.16-44, 2006.

Z. Abdin, C. J. Webb, and E. Maca, GRAY, « Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell », International Journal of Hydrogen Energy, vol.40, pp.13243-13257, 2015.

N. Gia, S. Simon, S. Juhl, A. Brendan, S. et al., «Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack, International Journal of Hydrogen Energy, vol.41, pp.4729-4739, 2016.

A. Kazim, Exergy analysis of a PEM fuel cell at variable operating conditions, Energy Conversion and Management, vol.45, 2004.

M. Adnan and D. Ibrahim, Development of some exergetic parameters for PEM fuel cells for measuring environmental impact and sustainability, International Journal of Hydrogen Energy, vol.34, 2009.

L. Barelli, G. Bidini, F. Gallorini, and A. Ottaviano, An energetic-exergetic comparison between PEMFC and SOFC-based micro-CHP systems, International Journal of Hydrogen Energy, vol.36, 2011.

L. Barelli, G. Bidini, F. Gallorini, and A. Ottaviano, « An energetic-exergetic analysis of a residential CHP system based on PEM fuel cell, Applied Energy, vol.88, pp.4334-4342, 2011.

L. Barelli, G. Bidini, F. Gallorini, and A. Ottaviano, Dynamic analysis of PEMFC-based CHP systems for domestic application, Applied Energy, vol.91, issue.1, pp.13-28, 2012.

F. Barbir and T. Gomez, Efficiency and economics of proton exchange membrane fuel cells, International Journal of Hydrogen Energy, vol.22, issue.10, pp.121-96, 1997.

R. Cownden, M. Nahon, and M. Rosen, Exergy analysis of a fuel cell power system for transportation applications, Exergy An International Journal, vol.1, pp.112-133, 2001.

A. Ishihara, S. Mitsushima, N. Kamiyab, and K. Ota, Exergy analysis of polymer electrolyte fuel cell systems using methanol, Journal of Power Sources, vol.126, pp.34-40, 2004.

F. Mueller, J. Brouwer, S. Kang, H. Kim, and M. K. , Quasi-three dimensional dynamic model of a proton exchange membrane fuel cell for system and controls development, J Power Sources, vol.163, issue.2, pp.814-843, 2007.

S. J. Andreasen and S. K. Kaer, Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature, J Fuel Cell Sci Technol, vol.6, issue.4, p.41006, 2009.

S. J. Andreasen and S. K. Kaer, Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks, Int J Hydrogen Energy, vol.33, issue.17, pp.4655-64, 2008.

Y. Zhang, Y. Zhang, X. Li, and G. Cao, Control design of 60 kW PEMFC generation system for residential applications, J Zhejiang Univ Sci A, vol.14, issue.9, pp.679-85, 2013.

V. Liso, M. P. Nielsen, S. K. Kaer, and H. H. Mortensen, Thermal modeling and temperature control of a PEM fuel cell system for forklift applications, Int J Hydrogen Energy, vol.39, issue.16, pp.8410-8430, 2014.

H. Reddy, E. Jayanti, and S. , Thermal management strategies for a 1 kWe stack of a high temperature proton exchange membrane fuel cell, Appl Therm Eng, vol.48, pp.465-75, 2012.

J. Supra, H. Janßen, W. Lehnert, and D. Stolten, Design and experimental investigation of a heat pipe supported external cooling system for HT-PEFC stacks, vol.10, p.51002, 2013.

Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Prog Polym Sci, vol.34, issue.5, pp.449-77, 2009.

S. Bent and «. , On the road performance simulation of hydrogen and hybrid cars, International Journal of Hydrogen Energy, vol.32, pp.683-686, 2007.

L. Jingming and W. U. Zefeng, A Study of the Performance of PEMFC Hybrid Vehicle Using ADVISOR, International Symposium on Knowledge Acquisition and Modeling, 2015.

, Hydrogen Fuel Cars, 1990.

M. F. Hordeski, Hydrogen & Fuel Cells : Advances in Transportation and Power, 2008.

J. Dr and . Wainright, Light-weight, low cost PEM Fuel Cell Stacks, 2008.

J. Olivier, A. Murphy, E. Cisar, and . Clarke, Low-cost light weight high power density PEM fuel cell stack, Electrochimica Acta, vol.43, pp.3829-3840, 1998.

, Intelligent Energy To Provide Fuel Cell For Peugeot Electric Cars, 2006.

, Hydrogen Cars Now, Hydrogen Cars, Vehicles and Infrastructure

, Peugeot Citroen H2Origin Fuel Cell Delivery Van, Hydrogen Cars Now, Hydrogen Cars, Vehicles and Infrastructure

, Toyota FCHV Hydrogen Hybrid Vehicle

M. Glc, Daimler worked with Ford to shrink the size of the fuel-cell stack, 2017.

S. Sarah and A. , Is Ready To Produce Fuel Cell Vehicles », HybridCARS Auto alternatives for the 21th century, 2015.

, Audi developing a hybrid fuel cell drivetrain on a Q5-based prototype that combines a hydrogen-powered car with a hybrid set up that includes a 1.3 kWh lithium-ion battery, 2011.

, BMW 5 Series GT Fuel Cell concept review

, Hydrogen Cars Now, Hydrogen Cars, Vehicles and Infrastructure

, GM selects Quantum Fuel Systems to produce H2 storage for Equinox Fuel-Cell Fleet, 2006.

S. Dean, Motors is standing firm on its fuel cell investments, as seen during a rececent trip to the company's advanced R&D site in Germany, Fuel Cells, Electric & Hybrid Vehicle technology International, 2011.

, Mazda 5 / Premacy Hydrogen RE Hybrid Minivan, Hydrogen Cars Now, Hydrogen Cars, Vehicles and Infrastructure

M. Lifecar and G. Concept,

R. Scenic and Z. H2, Hydrogen Cars Now, Hydrogen Cars, Vehicles and Infrastructure

, Suzuki SX4 Fuel-Cell Vehicle Concept

. Vw-golf-sportwagen, HyMotion Concept FCV

. Volkswagen-touran-hymotion,

. Volkswagen-tiguan-hymotion,

M. Ahman, Primary energy efficiency of alternative powertrains in vehicles, Energy, vol.26, 2001.

A. Schafer, J. B. Heywood, and M. A. Weiss, Future fuel cell and internal combustion engine automobile technologies: A 25-year life cycle and fleet impact assessment, pp.2064-2087, 2006.

, History of Chrysler Corporation Gas Turbine Vehicles, Chrysler Corporation, 1979.

G. Huebner, The Chrysler regenerative turbine-powered passenger car, Society of Automotive Engineers, 1964.

H. Cunha, Investigation of the Potential of Gas Turbines for Vehicular Applications, 2011.

R. Capata, A. Coccia, and M. Lora, A Poposal for CO2 abatement in urban areas: the UDR1 -Lethe Turbo-Hybrid Vehicle. University of Roma 1, La Sapienza, pp.1996-1073

D. J. and K. R. , The thermodynamics of practical combined cycles, Proc. Instn. Mech. Engrs. Conference on Combined Cycle Gas Turbines, pp.28-50, 1991.

S. Briesch, L. Bannister, S. Dinkunchak, and J. Huber, A combined cycle designed to achieve greater than 60% efficiency, ASME J. Eng Gas Turbines Power, vol.117, issue.1, pp.734-741, 1995.

T. Nada, Performance Characterization of different configurations of gas turbine engines. Propulsion and Power Research, 2014.

M. Patil, D. Pawase, and E. Deore, Thermal performance of reheat regenerative intercooled gas turbine cycle, vol.5, 2015.

R. Bhargava, M. Bianchi, D. Pascale, and A. , Gas turbine based power cycles -A state-of-the-art review, International Conference on Power Engineering, 2007.

P. Dellenback, Improved gas turbine efficiency through alternative regenerator configuration, J. of Eng. for Gas Turbines and Power, vol.124, pp.441-446, 2002.

K. Pathiranthna, Gas turbine thermodynamic and performance analysis methods using available catalog data. University of Gävle, Faculty of engineering and sustainable development, 2013.

M. El-masri, A modified high efficiency recuperated gas turbine cycle, Journal of Eng for Gas Turbines and Power, vol.110, pp.233-242, 1988.

M. El-masri, Thermodynamics and performance projections for intercooled / reheat / recuperated gas turbine systems, ASME Paper, 1987.

D. Cheng and A. Nelson, The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years, ASME Paper No. GT, 2002.

D. Kulshreshtha and S. Mehta, Exergy Analysis of a Regenerative Micro Gas Turbine Engine, Proceedings of ICFD 10: Tenth International Congress of Fluid Dynamics, 2010.

W. Sirignano and F. Liu, Performance increase for gas-turbine engines through combustion inside the turbine, Journal of Propulsion and Power, vol.15, issue.1, 1999.

R. Andriani, F. Gamma, and U. Ghezzi, Main effects of intercooling and regeneration on aeronautical gas turbine engines, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p.244, 2010.

F. Christodoulou, P. Giannakakis, and A. Kalfas, Performance benefits of a portable hybrid micro-gas-turbine power system for automotive applications, Proceedings of ASME Turbo Expo, pp.2010-23248, 2010.

R. Capata, E. Sciubba, and C. Toro, The gas turbine hybrid vehicle LETHE at UDR1: The on-board innovative ORC energy recovery system -feasibility analysis, Proceedings of the International Mechanical Engineering Conference & Exposition, 2012.

B. Shah, R. Mazuir, and M. , Micro gas turbine range extender -validation techniques for automotive applications, 4 th Hybrid Electric Vehicle Conference, 2013.

R. Mackay, Development of a 24 kW gas turbine-driven generator set for hybrid vehicles, International congress and exposition, vol.940510, 1994.

C. Leontopoulos, M. Etemad, R. Pullen, and M. Lamperth, Hybrid Vehicle simulation for a turbogenerator based power-train, Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering, vol.212, pp.357-368, 1998.

U. Lampérth, K. Pullen, and K. Mueller, Turbogenerator based hybrid versus dieselelectric hybrid-A parametric optimization simulation study, Future Transportation Technology Conference, 2000.

A. Juhasz, Automotive gas turbine power system -Performance analysis code, the 1997 International Congress and Exposition. Lewis Research Center, NASA Technical Memorandum 107386, 1997.

C. Mansour, Trip-based optimization methodology for a rule-based energy management strategy using a global optimization routine: the case of the Prius plug-in hybrid electric vehicle, Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering, vol.230, issue.11, pp.1529-1545, 2015.

C. Mansour, Optimized energy management control for the Toyota Hybrid system using dynamic programming on a predicted route with short computation time, International Journal of Automotive Technology. Paper N°, vol.220100321, issue.2, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00769622

F. Breque, Cabin Thermal Needs : Modeling and Assumption Analysis, International Modelica Conference, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524924

J. Liebl, S. Neugebauer, A. Eder, M. Linde, B. Mazar et al., The Thermoelectric Generator from BMW is Making Use of Waste Heat, vol.70

R. Sonntag-r-and-borgnakke, . Fundamentals, and . Thermodynamics, , pp.411-423, 2003.

M. Moran and H. Shapiro, Fundamentals of engineering thermodynamics, vol.5, pp.303-308

H. Zoughaib and A. , Exergy recovery during LNG gasification using ambient air as heat source, Proceedings of Ecos 2016 -The 29th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01464280

N. Dev and R. Attri, Exergetic analysis of a combustion chamber of a combined heat and power system, Proceedings of the National Conference on Trends and Advances in Mechanical Engineering, 2012.

A. Datta and S. Som, Energy and exergy balance in a gas turbine combustor, J Power Energy -Proc Inst Mech Eng, vol.213, pp.23-32, 1999.

N. Jubleh, Exergy analysis and second law efficiency of a regenerative brayton cycle with isothermal Heat Addition, 2005.

C. Linnemann and C. , The isoengine: realization of a high efficiency power cycle based on isothermal compression, International Journal of Energy Technology and Policy, vol.3, 2005.

K. Deb, A. Pratap, and S. Agarwal, A fast and elitist multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on evolutionary computation, vol.6, issue.2, 2002.

C. Wissam-bou-nader, O. Mansour, M. Guezet, and . Nemer, « exergo-technological explicit methodology for gas-turbine system optimization for series hybrid electric vehicles », Journal of Automobile Engineering

C. Mansour, W. Bou-nader, F. Breque, M. Haddad, and M. Nemer, Assessing additional fuel consumption from cabin thermal comfort and auxiliary needs on the worldwide harmonized light vehicles test cycle, Transportation Research Part D, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01976175

S. Wang, . Jun, and . Gu, Experimental analysis of an automotive air conditioning system with two-phase flow measurements, International Refrigeration and Air Conditioning Conference, 2004.

, Technical Information Engineering office. History of Chrysler Corporation gas turbine vehicles, 1979.

G. J. Huebner, The Chrysler regenerative turbine powered passenger car, 1964.

H. E. Cunha, Investigation of the potential of gas turbines for vehicular applications, 2011.

R. Capata, A. Coccia, and M. Lora, A proposal for CO2 abatement in urban areas: the UDR1-Lethe_ turbohybrid vehicle, Energies, vol.4, issue.3, pp.368-388, 2011.

C. Wissam-bou-nader, M. Mansour, O. Nemer, and . Guezet, Exergo-technological explicit methodology for gas-turbine system optimization of series hybrid electric vehicles, Journal of automobile Engineering, 2017.

R. Shah, A. Mcgordon, M. Amor-segan, and J. , Micro gas turbine range extender -validation techniques for automotive applications, 4th hybrid and electric vehicles conference, pp.1-6, 2013.

C. Leontopoulos, M. R. Etemad, K. R. Pullen, and M. U. Lamperth, Hybrid vehicle simulation for a turbogenerator based power-train, Proc IMechE Part D: J Automobile Engineering, vol.212, issue.5, pp.357-368, 1998.

M. U. Lampe´-rth, K. R. Pullen, and K. G. Mueller, Turbogenerator based hybrid versus dieselelectric hybrid -a parametric optimization simulation study, 2000.

R. Mackay, Development of a 24 kW gas turbine-driven generator set for hybrid vehicles, 1994.

A. Casadei and R. Broda, Impact of Vehicle Weight Reduction on Fuel Economy for Various Vehicle Architectures, 2008.

B. Richard, J. Carlson, and . Francfort, Vehicle Mass Impact on Vehicle Losses and Fuel Economy, 2012.

W. Lin and B. Sunden, Vehicle Cooling Systems for Reducing Fuel Consumption and Carbon Dioxide : Literature Survey, SAE Technical Paper, 2010.

S. Swedenborg, Modeling and Simuation of Cooling System for Fuel Cell Vehicle, 2017.

W. A. Sirignano and F. Liu, Performance Increases for Gas-Turbine Engines Through Combustion Inside the Turbine, Journal Of Propulsion and Power, vol.15, issue.1, pp.111-118, 1999.

R. Sivakumar and B. L. Mordike, High temperature coatings for gas turbine blades : A review, Surface and Coatings Technology, vol.37, issue.2, pp.139-160, 1989.

T. Nada, Performance characterization of different configurations of gas turbine engines, Propulsion and Power Research, vol.3, issue.3, pp.121-132, 2014.

M. S. Patil, P. Db, and E. R. Deore, Thermal performance of reheat, regenerative, intercooled gas turbine cycle, IJRMET, vol.5, issue.2, 2015.

R. K. Bhargava, M. Bianchi, D. Pascale, and A. , Gas turbine based power cycles -a state-of-the-art review, Challenges of power engineering and environment, International conference on power engineering, angzhou, pp.23-27, 2007.

P. A. Dellenback, Improved gas turbine efficiency through alternative regenerator configuration, vol.124, pp.441-446, 2002.

C. Mansour, W. Bou-nader, F. Breque, M. Haddad, and M. Nemer, Assessing additional fuel consumption from cabin thermal comfort and auxiliary needs on the worldwide harmonized light vehicles test cycle, Transportation research Part D, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01976175

G. Morrison and J. S. Gallagher, Refprop : A Thermodynamic Properties Software Program for Refrigerants and Their Mixtures, International Refrigeration and Air Conditioning Conference, 1990.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans Evolution Comput, vol.6, issue.2, pp.182-197, 2002.

P. Meherwan and . Boyce, Gas Turbine Engineering Handbook, 2002.

P. Walsh and P. Fletcher, Gas Turbine Performance, 2004.

H. Cohen, G. Rogers, and H. Saravanamuttoo, Gas Turbine Theory, 1996.

K. A. Pathiranthna, Gas Turbine Thermodynamic and Performance Analysis Methods using available catalog data, 2013.

R. C. Hendricks, D. T. Shouse, and W. M. Roquemore, Water Injected Turbomachinery, NASA/TM -2005-212632, pp.10-2004

R. Pavri, G. D. Moore, and . Gas, Turbine Emissions and Control

, Alternative Control Techniques Document -NOx Emissions from Stationary Gas Turbines

K. Sundsbo-alne, Reduction of Nox Emissions from the Gas Turbines for Skarv Idun, Master of Science in Energy and Environment, NTNY Innovation and Creativity, 2007.

J. Burns and D. J. Cooper, Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture

M. Schorr and J. Chalfin, Gas Turbine Nox Emissions Approaching Zero -Is it worth the price ?, General Electric Power Systems, p.247

P. Kiameh, Power Generation Handbook, Second Edition, vol.12, 2012.

E. Canli, S. Darici, M. Ozgoren, and . Intercooler, Effect on Conventional Supercharging Systems », International Scientific Conference, 2010.

K. Bilen and . Intercooler, , 1998.

, Tubocharger Technology and IC Engines Boosting

S. Sullivan, X. Zhang, A. A. Ayon, and J. Brisson, « Demonstration of a microscale heat exchanger for a silicon micro gas turbine engine, The 11th International Conference on Solid-State Sensors and Actuators, 2001.

, Wrightspeed unveils new turbine range extender for medium-and heavy-duty electric powertrains; 30% more efficient than current microturbine generators, 2015.

R. K. Shah, Compact Heat Exchangers for Microturbines, Proceedings of Fifth International Conference on enhanced, 2005.

S. Sullivan, Development and Testing of Microscale Silicon Heat Exchangers for the MIT Micro Gas-Turbine Engine, B.S. Mechanical Engineering, 1998.

Y. Ribaud and C. Mischel, Study and Experiments of a Small Radial Turbine for Auxiliary Power Units, The American Society of Mechanical Engineers, pp.86-109, 1986.

H. Hiereth and P. Prenninger, Charging the Internal Combustion Engine, 2007.

. Ml-cmd-ir, , 2013.

, Garett Turbocharger Guide, vol.4

C. F. Mcdonald, Recuperator Considerations for Future Higher Efficiency Microturbines, Appl. Therm. Eng, vol.23, issue.12, pp.1463-1487, 2003.

R. M. Manglik and A. E. Bergles, Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger, Exp. Therm. Fluid Sci, vol.10, issue.2, pp.171-180, 1995.

Y. Chang and C. A. Wang, Generalized Heat Transfer Correlation for Louver Fin Geometry, Int. J. Heat Mass Transfer, vol.40, issue.3, pp.533-544, 1997.

Y. Chang, K. Hsu, Y. Lin, W. , and C. , A Generalized Friction Correlation for Louver Fin Geometry, Int. J. Heat Mass Transfer, vol.43, issue.12, pp.2237-2243, 2000.

A. Traverso and A. F. Massardo, Optimal Design of Compact Recuperators for Microturbine Application, Appl. Therm. Eng, vol.25, issue.14, pp.2054-2071, 2005.

W. Qiuwang, L. Hongxia, X. Gongnan, Z. Min, L. Laiqin et al., Genetic Algorithm Optimization for Primary Surfaces Recuperator of Microturbine, ASME J. Eng. Gas Turbines Power, vol.129, issue.2, pp.436-442, 2007.

J. Wen, H. Yang, X. Tong, K. Li, S. Wang et al., Optimization Investigation on Configuration Parameters of Serrated Fin in Plate-Fin Heat Exchanger Using Genetic Algorithm, Int. J. Therm. Sci, vol.101, pp.116-125, 2016.

H. Peng, L. , and X. , Optimal Design Approach for the Plate-Fin Heat Exchangers Using Neural Networks Cooperated With Genetic Algorithms, Appl. Therm. Eng, vol.28, issue.5, pp.642-650, 2008.

S. Sanaye and H. Hajabdollahi, Thermal-Economic Multi-Objective Optimization of Plate Fin Heat Exchanger Using Genetic Algorithm, Appl. Energy, vol.87, issue.6, pp.1893-1902, 2010.

P. Ahmadi, H. Hajabdollahi, and I. Dincer, Cost and Entropy Generation Minimization of a Cross-Flow Plate Fin Heat Exchanger Using Multi-Objective Genetic Algorithm, ASME J. Heat Transfer, vol.133, issue.2, p.21801, 2011.

L. Zhang, C. Yang, and J. Zhou, A Distributed Parameter Model and its Application in Optimizing the Plate-Fin Heat Exchanger Based on the Minimum Entropy Generation, Int. J. Therm. Sci, vol.49, issue.8, pp.1427-1436, 2010.

J. Dong, J. Chen, Z. Chen, W. Zhang, and Y. Zhou, Heat Transfer and Pressure Drop Correlations for the Multi-Louvered Fin Compact Heat Exchangers, Energy Convers. Manage, vol.48, issue.5, pp.1506-1515, 2007.

K. Murthy, C. Ranganayakulu, and T. Babu, Development of Heat Transfer Coefficient and Friction Factor Correlations for Serrated Fins in Water Medium using CFD, Journla of Physical Science and Application, 2015.

M. Kim, J. Lee, S. Yook, and K. Lee, Correlations and optimization of a heat exchanger with offset-strip fins, International Journal of Heat and Mass Transfer, 2011.

R. K. Shah and D. P. Sekulic, Fundamentals of Heat Exchanger Design, 2003.

P. Frank, D. P. Incropera, T. L. Dewitt, A. S. Bergman, and . Lavine, Fundamentals of Heat and Mass Transfer, 2007.

L. Austrin, M. Torabzadeh-tari, and G. Engdahl, A New High Power Density Generation System, 25 th International Congress of the Aeronautical Sciences, 2006.

J. Borg-bartolo, H. Zhang, D. Gerada, and L. Lillo, High Speed Electrical Generators, Applications, Materials and Design, Electrical Machines Design Control and Diagnosis, 2013.

M. Van-der-geest, H. Polinder, J. A. Ferreira, and M. Christmann, Power Density Limits and Design Trends of High-Speed Permanent Magnet Synchronous Machines, IEEE Transactions on Transportation Electrification, 2015.

W. Bou and N. , Charbel Mansour

M. Nemer, Optimization of a Brayton External Combustion Gas-Turbine system for Extended Range Electric Vehicles, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01987334

C. Wissam-bou-nader, C. Mansour, M. Dumand, and . Nemer, Brayton Cycles as Waste Heat Recovery Systems on Series Hybrid Electric Vehicles, 2018.

K. Deb, A. Pratap, and S. Agarwal, A fast and elitist multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on evolutionary computation, vol.6, issue.2, 2002.

O. Sundstrom and L. Guzzella, A generic dynamic programming Matlab function, IEEE control applications & intelligent control, pp.1625-1630, 2009.

C. Wissam-bou-nader, M. Mansour, O. Nemer, and . Guezet, Exergo-technological explicit methodology for gas-turbine system optimization of series hybrid electric vehicles, Journal of Automobile Engineering, 2017.

, History of Chrysler Corporation Gas Turbine Vehicles, 1979.

H. Cunha, Investigation of the Potential of Gas Turbines for Vehicular Applications, CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, p.43, 2011.

C. Mansour, W. Bou-nader, F. Breque, M. Haddad, and M. Nemer, Assessing additional fuel consumption from cabin thermal comfort and auxiliary needs on the worldwide harmonized light vehicles test cycle, Transportation Research Part D, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01976175

R. K. Bhargava, M. Bianchi, A. Pascale, G. Negri-di-montenegro, and A. Peretto, Gas turbine Based Power Cycles -A State-of-the-Art Review, International Conference on Power Engineering, 2007.

C. Christophe, PSA PEUGEOT CITROËN

J. Excell, This Week in 1965 -The Rover-BRM gas turbine car, 2013.

C. Wissam-bou-nader, M. Mansour, and . Nemer, Optimization of Brayton external combustion gasturbine system for extended range electric vehicles, 2018.

C. Mansour, Trip-based optimization methodology for a rule-based energy management strategy using a global optimization routine: the case of the Prius plug-in hybrid electric vehicle, Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering, vol.230, issue.11, pp.1529-1545, 2015.

C. Mansour, Optimized energy management control for the Toyota Hybrid system using dynamic programming on a predicted route with short computation time, International Journal of Automotive Technology. Paper N°, vol.220100321, issue.2, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00769622

Y. Mazloum, H. Sayah, and M. Nemer, Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System, Journal of Energy Resources Technology, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01462064

Y. Mazloum, H. Sayah, and M. Nemer, Dynamic modelling and simulation of an Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) system, Journal of Energy Storage, 2017.

S. M. Camporeale, B. Fortunato, and M. Mastrovito, A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simulink, Journal of Engineering for Gas turbine and Power, vol.128, 2002.

A. Hussain and H. Seifi, Dynamic Modeling of a Single Shaft Gas Turbine, IFAC Control of Power Plants and Power Systems, 1992.

. Samson-endale-turie, Gas Turbine Plant Modeling for Dynamic Simulation, 2011.

E. Thirunavukarasu, Modeling and Simulation Study of a Dynamic Gas Turbine System in a Virtual Test Bed Environment, Master's thesis, 2013.

J. H. Kim, T. W. Song, T. S. Kim, and S. T. Ro, Dynamic Simulation of Full Start-Up Procedure of Heavy Duty Gas Turbines, ASME Proceedings, Controls, Diagnostics and Instrumentation, 2001.

K. K. Botros, P. J. Campbell, and D. B. Mah, Dynamic Simulation of Compressor Station Operation Including Centrifugal Compressor & Gas turbine, The American Society of Mechanical Engineers, 1990.

M. T. Schobeiri, M. Attia, and C. Lippke, GETRAN: A Generic, Modularly Structured Computer Code for Simulation of Dynamic Behavior of Aero and Poer Generation Gas Turbine Engines, Journal of Engineering for Gas Turbine and Power, 2008.

Y. Cengel and M. Boles, Thermodynamics: an engineering Approach, pp.517-521

R. Sonntag-r-and-borgnakke, . Fundamentals, and . Thermodynamics, , pp.411-423, 2003.

M. Moran and H. Shapiro, Fundamentals of engineering thermodynamics, pp.404-414

E. Mehrdad, G. Yimin, and E. Ali, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles » -Fundamentals, Therory, and Design -Second Edition

M. I. Chris, M. A. Masrur, W. David, and . Gao, Hybrid Electric Vehicles » -Principles and Applications with Practical Perspectives, 2011.

C. Wissam-bou-nader, C. Mansour, M. Dumand, and . Nemer, Brayton cycles as waste heat recovery systems on series hybrid electric vehicles, Energy Conversion and Management, 2018.

E. Benini and N. Rao-muktinutalapati, Advances in Gas Turbine Technology, chapter 13: Materials for Gas Turbines -An Overview, 2011.

K. Deb, A. Pratap, and S. Agarwal, A fast and elitist multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on evolutionary computation, vol.6, issue.2, 2002.

O. Sundstrom and L. Guzzella, A generic dynamic programming Matlab function, IEEE control applications & intelligent control, pp.1625-1630, 2009.

Y. P. Yeung, K. W. Cheng, W. W. Chan, .. Y. Lam, W. F. Choi et al., Automobile Hybrid Air Conditioning Technology, 3 rd International Conference on Power Electronics Systems and Applications, 2009.

J. H. Kim, T. W. Song, T. S. Kim, and S. T. Ro, Model Development and Simulation of Transient Behavior of Heavy Duty Gas Turbines, Journal of Engineering for Gas Turbines and Power, vol.123, p.589, 2001.

J. E. Chung, J. W. Chung, N. H. Kim, S. W. Lee, and G. Kim, , 2018.

N. A. Schorn, The Radial Turbine for Small Turbocharger Applications: Evoluation and Analytical Methods for Twin-Entry Turbine Turbochargers, 2014.

J. R. Serrano, C. Guardiola, V. Dolz, A. Tiseira, and C. Cervelló, Experimental Study of the Turbine Inlet Gas Temperature Influence on Turbocharger Performance, 2013.

P. Maghsoudi, S. Sadeghi, and P. Hanafizadeh, Thermoeconomic Optimization and Comparison of Plate-Fin Heat Exchangers Using Louver, Offset Strip, Triangular and Rectangular Fins Applied in 200kW Microturbines, Journal of Heat Transfer, 2017.

Q. Li, G. Flamant, X. Yuan, P. Neveu, and L. Luo, Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers, Renewable and Sustainable Energy Reviews, 2011.

Y. Zhu and Y. Li, Three-Dimensional Numerical Simulation on the Laminar Flow and Heat Transfer in Four Basic Fins of Plate-Fin Heat Exchangers, Journal of Heat Transfer, 2008.

F. Incropera and D. Dewitt, Fundamentals of Heat and Mass Transfer, vol.886, pp.420-515, 1996.

R. K. Shah, M. Ishizuka, T. M. Rudy, and V. V. Wadekar, Compact Heat Exchangers for Microturbines, Proceedings of Fifth International Conference on Enhanced, 2005.

I. E. Idelchik, Handbook of Hydraulic Resistance, vol.788, pp.75-87, 1993.

, Dassault systems, the Official Web Site of Dymola

J. R. Cooper and R. B. Dooley, Release on the Ionization Constant of H2O, The International Association for the Properties of Water and Steam, 2007.

B. J. Mcbride, M. J. Zehe, G. , and S. , NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, NASA Glenn Research Center, 2002.

, Micro Gas turbine Technology, Research and Development for European Collaboration

T. Bayar, Cogeneration & on-site power production, pp.21-24, 2015.

, Wrightspeed unveils new turbine range extender for medium-and heavy-duty electric powertrains; 30% more efficient than current microturbine generators, 2015.

, Annex 1

D. Nikhil, A. Rajesh, J. Michael, H. N. Moran, and . Shapiro, Exergetic Analysis of Combustion Chamber of a Combined Heat and Power System, Fundamentals of Engineering Thermodynamics -2006

S. Hada, K. Takata, Y. Iwasaki, M. Yuri, and J. Masada, One of the main reasons for the discrepancy is that current testing pro-tocols do not account for non-mechanical vehicle energy needs, such as passengers' thermal comfort needs and the use of electric auxiliaries on-board. Cabin heating and cooling can espe-cially lead to considerable increase in vehicle energy consumption, J" Technology, Mitsubishi Heavy Industries Technical Review, vol.52, issue.2, 2015.

, A vehicle cabin model is developed and the thermal comfort energy needs are derived for cooling and heating, depending on ambient external temperature under cold, mod-erate and warm climates. A modification to the WLTP is proposed by including the generated power profiles for thermal comfort and auxiliary needs