R. Acharya, M. Ghosh, S. Anand, and R. Das, Leaching of Metals from Indian Ocean Nodules in SO2-H2O-H2SO4-(NH4)2SO4 Medium, vol.53, pp.40-47, 1999.

. Agarwal, A. E. Shiva, . Ferreira, M. C. Sílvia, M. Santos et al., Separation and Recovery of Copper from Zinc Leach Liquor by Solvent Extraction Using Acorga M5640, International Journal of Mineral Processing, vol.97, issue.1, pp.85-91, 2010.

K. Akiba and H. Freiser, The Role of the Solvent in Equilibrium and Kinetic Aspects of Metal Chelate Extractions, Analytica Chimica Acta, vol.136, pp.329-366, 1982.

H. F. Ali and M. M. Ali, Uranium Extraction Mechanism from Analytical Grade Phosphoric Acid Using D2EHPA and Synergistic D2EHPA-TOPO Mixture, vol.2, pp.57-61, 2012.

E. C. Avelar, C. L. Alvarenga, G. P. Resende, C. A. Morais, and M. B. Mansur, Modeling of the Solvent Extraction Equilibrium of Uranium (vi) Sulfate with Alamine 336, Brazilian Journal of Chemical Engineering, vol.34, issue.1, pp.355-62, 2017.

A. A. Baba, L. Ibrahim, A. Folahan, R. B. Adekola, . Bale et al., Hydrometallurgical Processing of Manganese Ores: A Review, Journal of Minerals and Materials Characterization and Engineering, vol.2, issue.3, pp.230-277, 2014.

R. Banda, S. Ho-sohn, and M. S. Lee, Solvent Extraction Separation of Mo and Co from Chloride Solution Containing Al, Materials Transactions, vol.54, issue.1, pp.61-65, 2013.

N. Batchu, B. E. Kumar, M. S. Kim, and . Lee, Chemical Model for Solvent Extraction Equilibrium of Mn(II) by Cyanex 272 from Chloride Solutions, Korean Journal of Metals and Materials, vol.52, issue.6, pp.445-50, 2014.

,

N. Batchu, C. H. Kumar, M. S. Sonu, and . Lee, Synergistic Solvent Extraction of manganese(II) with a Mixture of Cyanex 272 and Cyanex 301 from Chloride Solutions, Hydrometallurgy, vol.140, pp.89-94, 2013.

,

N. P. Bezrukova, V. E. Taraban'ko, I. U. Fleitlich, and G. V. Kolesnichenko, The Influence of Solvent on the Extraction of Some Non-Ferrous Metals by Aliphatic Non-Chelating Aldoximes, Solvent Extraction and Ion Exchange, vol.14, issue.6, pp.1017-1053, 1996.

L. T. Biegler, I. E. Grossmann, and A. W. Westerberg, Systematic Methods for Chemical Process Design, 1997.

R. K. Biswas, M. A. Habib, and M. N. Islam, Some Physicochemical Properties of (D2EHPA). 1. Distribution, Dimerization, and Acid Dissociation Constants of D2EHPA in a Kerosene/0.10 Kmol M -3 (Na + ,H + )Cl -System and the Extraction of Mn(II), Industrial & Engineering Chemistry Research, vol.39, issue.1, pp.155-60, 2000.

R. K. Biswas and M. S. Rahman, Solvent Extraction of Manganese from Sulphate-Acetato Medium with Cyanex 272, Indian Journal of Chemical Technology, 2011.

S. Biswas and S. Basu, Synergistic Extraction of Cobalt (II) by Tri-Octylamine and Neutral Donors, Journal of Radioanalytical and Nuclear Chemistry, vol.240, issue.1, pp.387-390, 1999.

M. B. Bogacki and G. Cote, Modeling of Nickel Extraction with Decanal Oxime, Separation Science and Technology, vol.28, issue.9, pp.1783-88, 1993.

A. Buch, A. Buch, D. Pareau, M. Stambouli, and G. Durand, Etude Thermodynamique et Cinétique de L'extraction Liquide-Liquide Du nickel(II) Par La 2-Ethylhexanal Oxime et D'acide Di-2-(Ethylhexyl)phosphorique, Solvent Extraction and Ion Exchange, vol.19, issue.2, pp.277-99, 2001.

A. Buch, M. Stambouli, D. Pareau, and G. Durand, Solvent Extraction of nickel(II) by Mixture of 2-Ethylhexanal Oxime and bis(2-Ethylhexyl) Phosphoric Acid, Solvent Extraction and Ion Exchange, vol.20, issue.1, pp.49-66, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01255100

P. H. Cardwell and W. S. Kane, Method for separating metal constituents from ocean floor nodules, 1977.

A. Chagnes and G. Cote, Séparation du cobalt et du nickel à l'aide du Cyanex® 272 par extraction liquide-liquide, L' Actualité chimique, issue.346, pp.29-34, 2010.

A. Chagnes and B. Pospiech, A Brief Review on Hydrometallurgical Technologies for Recycling Spent Lithium-Ion Batteries, Journal of Chemical Technology & Biotechnology, vol.88, issue.7, pp.1191-99, 2013.

, Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling, 2015.

X. Chen, Y. Chen, T. Zhou, D. Liu, H. Hu et al., Hydrometallurgical Recovery of Metal Values from Sulfuric Acid Leaching Liquor of Spent Lithium-Ion Batteries, Waste Management, vol.38, pp.349-56, 2015.

X. Chen, T. Zhou, J. Kong, H. Fang, and Y. Chen, Separation and Recovery of Metal Values from Leach Liquor of Waste Lithium Nickel Cobalt Manganese Oxide Based Cathodes, Separation and Purification Technology, vol.141, pp.76-83, 2015.

C. Cheng and . Yong, Purification of Synthetic Laterite Leach Solution by Solvent Extraction Using D2EHPA, Hydrometallurgy, vol.56, issue.3, pp.369-86, 2000.

, Solvent Extraction of Nickel and Cobalt with Synergistic Systems Consisting of Carboxylic Acid and Aliphatic Hydroxyoxime, Hydrometallurgy, vol.84, issue.1-2, pp.109-126, 2006.

C. Cheng, K. R. Yong, W. Barnard, D. J. Zhang, and . Robinson, Synergistic Solvent Extraction of Nickel and Cobalt: A Review of Recent Developments, Solvent Extraction and Ion Exchange, vol.29, issue.5-6, pp.719-54, 2011.

C. Y. Cheng, G. Boddy, W. Zhang, M. Godfrey, D. J. Robinson et al., Determination of the equilibrium constants of organophosphorus liquid-liquid extractants by inductively coupled plasma-atomic emission spectroscopy, Solvent Extraction and Ion Exchange, vol.3, issue.6, pp.895-908, 1985.

M. R. Antonio, R. Chiarizia, B. Gannaz, L. Berthon, N. Zorz et al., Aggregation in Solvent Extraction Systems Containing a Malonamide, a Dialkylphosphoric Acid and Their Mixtures, Separation Science and Technology, vol.43, issue.9, pp.2572-2605, 2008.

M. A. Azam, S. Alam, and F. I. Khan, The Solubility/Degradation Study of Organophosphoric Acid Extractants in Sulphuric Acid Media, Journal of Chemical Engineering, vol.25, pp.18-21, 2010.

D. Beltrami, A. Chagnes, M. Haddad, H. Laureano, H. Mokhtari et al., Development of New Cationic Exchangers for the Recovery of Uranium (VI) from Concentrated Phosphoric Acid, Separation Science and Technology, vol.48, issue.3, pp.480-86, 2013.

,

K. Bhattacharya and T. K. Murthy, Extraction-Spectrophotometric Determination of Di (2-Ethylhexyl) Phosphoric Acid with Rhodamine B, Analytica Chimica Acta, vol.71, issue.1, pp.107-111, 1974.

Y. Binghua, Y. Nagaosa, M. Satake, A. Nomura, and K. Horita, Solvent extraction of metal ions and separation of nickel(II) from other metal ions by organophosphorus acids, Solvent Extraction and Ion Exchange, vol.14, issue.5, pp.849-70, 1996.

R. K. Biswas, M. A. Habib, and M. N. Islam, Some Physicochemical Properties of (D2EHPA). 1. Distribution, Dimerization, and Acid Dissociation Constants of D2EHPA in a Kerosene/0.10 Kmol M -3 (Na + ,H + )Cl -System and the Extraction of Mn(II), Industrial & Engineering Chemistry Research, vol.39, issue.1, pp.155-60, 2000.

R. K. Biswas, M. A. Habib, and M. G. , Kinetics and Mechanism of Stripping of Mn(II)D2EHPA Complex by Sulphuric Acid Solution, Hydrometallurgy, vol.80, issue.3, pp.186-95, 2005.

R. K. Biswas, M. A. Habib, and H. P. Singha, Colorimetric Estimation and Some Physicochemical Properties of Purified Cyanex 272, Hydrometallurgy, vol.76, issue.1-2, pp.97-104, 2005.

A. Buch, A. Buch, M. Stambouli, D. Pareau, and G. Durand, Etude Thermodynamique et Cinétique de L'extraction Liquide-Liquide Du nickel(II) Par La 2-Ethylhexanal Oxime et D'acide Di-2-(Ethylhexyl)phosphorique, Solvent Extraction and Ion Exchange, vol.20, issue.1, pp.49-66, 2001.

G. T. Castro, O. S. Giordano, and S. E. Blanco, Determination of the pKa of Hydroxy-Benzophenones in Ethanol-water Mixtures. Solvent Effects, Journal of Molecular Structure: THEOCHEM, vol.626, issue.1-3, pp.167-78, 2003.

G. Ferru, L. Berthon, C. Sorel, O. Diat, P. Bauduin et al., Influence of Extracted Solute on the Organization of a Monoamide Organic Solution, Procedia Chemistry, vol.7, pp.27-32, 2012.

X. Fu, Z. Hu, Y. Liu, and J. A. Golding, Extraction of sodium in bis(2,4,4-trimethylpentyl) phosphoric acid Cyanex 272. Basic constants and extraction equilibria, Solvent Extraction and Ion Exchange, vol.8, issue.4-5, pp.573-95, 1990.

B. Gannaz, Spéciations moléculaire et supramoléculaire de systèmes d'extraction liquide-liquide à base de malonamide et/ou d'acides dialkylphosphoriques pour la séparation An(III) et Ln(III), 2007.

N. A. Grigorieva, N. I. Pavlenko, M. A. Pleshkov, G. L. Pashkov, I. Yu et al., Investigation of the State of Bis(2,4,4-Trimethylpentyl)dithiophosphinic Acid in Nonane and Toluene Solutions, Solvent Extraction and Ion Exchange, vol.27, issue.5-6, pp.745-60, 2009.

J. B. Hasted, Water, a Comprehensive Treatise, 1973.

T. Huang, R. Chia, and . Juang, Extraction Equilibrium of Zinc from Sulfate Media with Bis (2-Ethylhexyl) Phosphoric Acid, Industrial & Engineering Chemistry Fundamentals, vol.25, issue.4, pp.752-757, 1986.

T. H. Ibrahim, Role of Water Molecules in Sodium bis(2-Ethylhexyl) Phosphate Reversed Micelles in N-Heptane, Journal of the Franklin Institute, vol.347, issue.5, pp.875-81, 2010.

M. P. Jensen and A. H. Bond, Influence of Aggregation on the Extraction of Trivalent Lanthanide and Actinide Cations by Purified Cyanex 272, Cyanex 301, and Cyanex 302, Radiochimica Acta, 2002.

J. G. Kirkwood, Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions, The Journal of Chemical Physics, vol.2, issue.7, pp.351-61, 1934.

Z. Kola?ík, Acidic Organophosphorus Extractants. II. Studies of the Dissociation, Dimerisation and Distribution of Some Diamylphosphoric Acids, Collection of Czechoslovak Chemical Communications, vol.32, issue.1, pp.311-321, 1967.

Z. Kolarik, Critical Evaluation of Some Equilibrium Constants Involving Acidic Organophosphorus Extractants, 1982.

-. , Review: Dissociation, Self-Association, and Partition of Monoacidic Organophosphorus Extractants, Solvent Extraction and Ion Exchange, vol.28, issue.6, pp.707-63, 2010.

I. Komasawa, T. Otake, and Y. Higaki, Equilibrium Studies of the Extraction of Divalent Metals from Nitrate Media with Di-(2ethylhexyl) Phosphoric Acid, Journal of Inorganic and Nuclear Chemistry, vol.43, issue.12, pp.3351-3356, 1981.

K. J. Laidler, Chemical Kinetics, 1987.

M. Martinez, N. Miralles, A. Sastre, and E. Bosch, Dissociation Constants of Organophosphinic Acid Compounds, Talanta, vol.40, issue.9, pp.1339-1343, 1993.

W. J. Mcdowell and C. F. Coleman, Sodium and Strontium Extraction by di(2-Ethylhexyl)phosphate: Mechanisms and Equilibria, Journal of Inorganic and Nuclear Chemistry, vol.27, issue.5, pp.1117-1156, 1965.

C. Mialkowski, . Chagnes, . Carré, P. Lemordant, and . Willmann, Excess Thermodynamic Properties of Binary Liquid Mixtures Containing Dimethylcarbonate and ?-Butyrolactone, The Journal of Chemical Thermodynamics, vol.34, issue.11, pp.1847-56, 2002.

N. Miralles, A. Sastre, M. Martinez, and M. Aguilar, The Aggregation of Organophosphorus Acid Compounds in Toluene1, Analytical Sciences, vol.8, issue.6, pp.773-777, 1992.

P. R. Mussini, T. Mussini, and S. Rondinini, Reference Value Standards and Primary Standards for pH Measurements in D2O and Aqueousorganic Solvent Mixtures: New Accessions and Assessments, vol.69, pp.1007-1014, 1997.

A. L. Myers, W. J. Mcdowell, and C. F. Coleman, Degree of Polymerization of di(2-Ethylhexyl) Phosphoric Acid and Sodium di(2-Ethylhexyl) Phosphate in Wet Benzene by Differential Vapour-Pressure Measurements, Journal of Inorganic and Nuclear Chemistry, vol.26, issue.11, pp.80025-80032, 1964.

K. Omelchuk, P. Szczepa?ski, A. Shrotre, M. Haddad, and A. Chagnes, Effects of Structural Changes of New Organophosphorus Cationic Exchangers on a Solvent Extraction of Cobalt, Nickel and Manganese from Acidic Chloride Media, RSC Adv, vol.7, issue.10, pp.5660-68, 2017.

D. D. Perrin and B. Dempsey, Buffers for Ph and metal ion control, 1979.

C. Sella and D. Bauer, Diphasic acido-basic properties of organophosphorus acids, Solvent Extraction and Ion Exchange, vol.6, issue.5, pp.819-852, 1988.

C. Sella, A. Becis, G. Cote, and D. Bauer, Diphasic acido-basic properties of di(octylphenyl)phosphoric acid (DOPPA), Solvent Extraction and Ion Exchange, vol.13, issue.4, pp.715-744, 1995.

J. C. Tebby, Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data, 1991.

F. Xun, X. Yahong, X. Shuyun, Z. Shaona, and H. Zhengshui, Study on the thiophosphinic extractants. I. The basic properties of the thiophosphinic extractants and the phase behavior in their saponified systhems, Solvent Extraction and Ion Exchange, vol.20, issue.3, pp.331-375, 2002.

. Yu, T. H. Zhi-jian, R. D. Ibrahim, and . Neuman, Aggregation behavior of cobalt(II), nickel(II) and copper(II) bis(2-ethylhexyl) phosphate complexes in nheptane, Solvent Extraction and Ion Exchange, vol.16, issue.6, pp.1437-63, 1998.

R. Beltrami, D. , G. Cote, H. Mokhtari, B. Courtaud et al., Modeling of the Extraction of Uranium (VI) from Concentrated Phosphoric Acid by Synergistic Mixtures of Bis-(2-Ethylhexyl)-Phosphoric Acid and Tri-N-Octylphosphine Oxide, Hydrometallurgy, vol.129, pp.118-143, 2012.

,

R. K. Biswas, M. A. Habib, and M. G. , Kinetics and Mechanism of Stripping of Mn(II) by D2EHPA Complex by Sulphuric Acid Solution, Hydrometallurgy, vol.80, issue.3, pp.186-95, 2005.

G. R. Choppin and A. Morgenstern, Thermodynamics of solvent extraction, Solvent Extraction and Ion Exchange, vol.18, issue.6, pp.1029-1078, 2000.

,

P. R. Danesi, L. Reichley-yinger, G. Mason, L. Kaplan, E. P. Horwltz et al., Selectivity-structure trends in the extraction of Co(II) and Ni(II) by dialkyl phosphoric, alkyl alkylphosphonic and dialkylphosphinic acids, Solvent Extraction and Ion Exchange, vol.3, issue.4, pp.435-52, 1985.

A. Dartiguelongue, A. Chagnes, E. Provost, W. Furst, and G. Cote, Modelling of uranium(VI) Extraction by D2EHPA/TOPO from Phosphoric Acid within a Wide Range of Concentrations, Hydrometallurgy, vol.165, pp.57-63, 2016.

A. Dartiguelongue, E. Provost, A. Chagnes, G. Cote, and W. Fuerst, Experimental Determination and Modeling of the Speciation of Uranium(VI) in Phosphoric Acid Medium, Solvent Extraction and Ion Exchange, vol.34, issue.3, pp.241-59, 2016.

,

B. Gannaz, Spéciations Moléculaire et Supramoléculaire de Systèmes D'extraction Liquide-Liquide à Base de Malonamide Et/ou D'acides Dialkylphosphoriques Pour La Séparation An(III)Ln(III), 2007.

G. Duyckaerts and J. F. Desreux, , pp.73-86, 1977.

T. Goto, Proc. Int. Solvent Extr. Conf. ISEC." In, vol.2, pp.1011-1035, 1971.

Y. Hoh and R. G. Bautista, Chemically Based Model to Predict Distribution Coefficients in the Cu-LIX 65N and Cu-KELEX 100 Systems, Metallurgical Transactions B, vol.9, issue.1, pp.69-75, 1978.

T. K. Ioannou, Proc. Int. Solvent Extr. Conf. ISEC '71, vol.2, pp.957-65, 1971.

B. Kumar, C. H. Nagaphani, M. S. Sonu, and . Lee, Chemical Model on the Synergistic Solvent Extraction of Manganese(II) from Chloride Solutions by a Mixture of Cyanex 272 and Cyanex 301, Journal of Chemical & Engineering Data, vol.58, issue.10, pp.2881-86, 2013.

W. Liu, A. Migdisov, and A. Williams-jones, The Stability of Aqueous nickel(II) Chloride Complexes in Hydrothermal Solutions: Results of UV-Visible Spectroscopic Experiments, Geochimica et Cosmochimica Acta, vol.94, pp.276-90, 2012.

D. F. Morris, G. L. Reed, E. L. Short, D. N. Slater, and D. N. Waters, Nickel (II) Chloride Complexes in Aqueous Solution, Journal of Inorganic and Nuclear Chemistry, vol.27, issue.2, pp.377-82, 1965.

K. Omelchuk, P. Szczepa?ski, A. Shrotre, M. Haddad, and A. Chagnes, Effects of Structural Changes of New Organophosphorus Cationic Exchangers on a Solvent Extraction of Cobalt, Nickel and Manganese from Acidic Chloride Media, RSC Adv, vol.7, issue.10, pp.5660-68, 2017.

C. G. Robinson, , vol.2, pp.1416-1444, 1971.

M. I. Stefanakis and A. J. Monhemius, Computer Modelling of the Solvent Extraction of Iron by Versatic Acid from Aluminium Nitrate Solutions, Hydrometallurgy, vol.19, issue.2, pp.187-98, 1987.

B. Tait, Cobalt Nickel Separation -the Extraction of Cobalt(ii) and Nickel(ii), Hydrometallurgy, vol.32, issue.3, pp.365-72, 1993.

Y. Tian, W. B.-etschmann, S. Liu, Y. Borg, D. Mei et al., Speciation of Nickel (II) Chloride Complexes in Hydrothermal Fluids: In Situ XAS Study, vol.334, pp.345-63, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00761072

,

. Rdt, , p.89

, 17 g/mol Formule chimique: C11H24O3 Rf (Cy/AcOEt : 85/15) = 0, p.33

, RMN 13 C (CDCl3, 75 MHz): ? = 71, vol.9

. Rdt, , p.71

, 17 g/mol Formule chimique: C11H24O3 Rf (Cy/AcOEt : 8/2) = 0, p.36

, RMN 1 H (CDCl3, 300 MHz): ? = 3.99-3.93 (m, 1H)

, RMN 13 C (CDCl3, 75 MHz): ? = 78, vol.4

. Rdt, , p.79

, 22 g/mol Formule chimique: C15H32O5 Rf, vol.0, p.31

, RMN 1 H (CDCl3, 300 MHz): ? = 3.98-3.96 (m, 1H), 3.67-3.64 (m, 4H)

, Rdt: quantitatif M = 316,30 g/mol Formule chimique: C19H40O3 Rf, vol.0, p.39

, RMN 1 H NMR (CDCl3, 300 MHz): ? = 3.96-3.92 (m, 1H)

, Hz, 4H), 1.28-1.21 (m, 20H), 0.87 (t, J = 6.5 Hz, 6H)

, RMN 13 C (CDCl3, 75 MHz): ? = 71.8, 71.7 (CH2), vol.69

, 3-di-2-éthylhexyloxypropan-2-ol 2e

, Rdt: quantitatif M = 316,30 g/mol Formule chimique: C19H40O3 Rf, vol.0, p.43

, RMN 1 H (CDCl3, 300 MHz): ? =3.93 (qi, J = 5.9 Hz, 1H), vol.5

J. Hz, , pp.1-53

, Hz, 6H), 0.87 (t, J = 7.4 Hz, 6H)

, Synthèse de l' undécan-6-ol 2f

, 18 g/mol Formule chimique: C11H24O Rf (Cy/AcOEt : 9/1) = 0, p.34

, RMN 13 C (CDCl3, 75 MHz): ? = 74.7 (d, J = 6.4 Hz, vol.13

. Rdt, , p.57

, 31 g/mol Formule chimique: C22H47O7P Rf, vol.0, p.35

, RMN 13C (CDCl3, 75 MHz): ? = 78.4 (CH2), vol.74

. Rdt, , p.96

, 41 g/mol Formule chimique: C30H63O11P Rf, vol.0, p.47

, Hz, 8H), 0.91 (t, J = 7.2 Hz, 12H)

, RMN 13 C (CDCl3, 75 MHz): ? = 74, vol.13

. Rdt, , p.75

, g/mol Formule chimique: C38H79O7P Rf (Cy/AcOEt: 9/1) = 0, vol.56, p.24

, RMN 13 C (CDCl3, 75 MHz): ? = 74.6 (d, J = 6.8 Hz, CH), vol.71

. Rdt, , p.86

, g/mol Formule chimique: C38H79O7P Rf (Cy/AcOEt: 9/1) = 0, vol.56, p.35

, RMN 13 C (CDCl3, 75 MHz): ? = 74.7 (d, J = 6.0 Hz, CH), 74.4, 70.7 (d, J = 9.8 Hz), vol.39

, RMN 31 P (CDCl3, 120 MHz): ? = 8.6. bis(undécan-6-yl) phosphite, p.3

. Rdt, , p.88

, 33 g/mol Formule chimique: C22H47O3P Rf (Cy/AcOEt: 8/2) = 0, p.65

, RMN 13 C (CDCl3, 75 MHz): ? = 78.5 (d, J = 6.4 Hz

, Une fois que le milieu devient jaune pâle, AcOEt (20 mL) est ajouté et les deux phases sont séparées. La phase organique est acidifiée jusqu'à pH 1 avec une solution à 10 %m de HCl, séchée sur MgSO4, filtrée puis le solvant est évaporé sous pression réduite pour donner une huile jaune pâle, La phosphite 3a-f (5 mmol) est solubilisée dans un mélange pyridine/eau 9/1 (22,5 mL), p.4

. Rdt, , p.78

, M = 470,30 g/mol Formule chimique, pp.22-47

. H-(cdcl3,

, RMN 13 C (CDCl3, 75 MHz): ? = 75.9 (d, J = 5.8 Hz, vol.13

, MS (ESI/NH3): m/z = 471

, MS (CI/NH3): m/z = 471, p.4

. Rdt, , p.94

, M = 470,30 g/mol Formule chimique, pp.22-47

J. Hz, Hz, 8H), 1.83 (sept

, RMN 13 C (CDCl3, 75 MHz): ? = 78.7 (CH2), 75.8 (d, J =5.7 Hz, CH), vol.70

, MS (ESI/NH3): m/z = 471

, MS (CI/NH3): m/z = 471 [M+H] + . acide bis, vol.8

. Rdt, , p.82

, RMN 13 C (CDCl3, 75 MHz): ? = 75.5 (d, J = 5.6 Hz, vol.13

, MS (ESI-): m/z = 645

, MS (CI/NH3): m/z = 647, p.4

. Rdt, , p.99

, 55 g/mol Formule chimique, pp.38-79

J. Hz, Hz, 8H), 1.55 (qi, J = 6.5 Hz, 8H), vol.1

, RMN 13 C (CDCl3, 75 MHz): ? = 75, vol.6

, MS (ESI/NH3): m/z = 695

, MS (CI/NH3): m/z = 695, p.4

. Rdt, , p.89

, 55 g/mol Formule chimique, pp.38-79

, Hz, 8H), 1.51-1.46 (m, 4H), 1.39-1.29 (m, 8H), 1.27-1.23 (m, 24H), 0.89 (t, J = 6.6 Hz, 12H), 0.86 (t, J = 7.5 Hz, 12H). RMN 13 C (CDCl3, 75 MHz): ? = 75, vol.7

, MS (ESI/NH3): m/z = 695

, MS (CI/NH3): m/z = 695 [M+H] + . acide bis(undécan-6-yl) phosphorique, p.4

. Rdt, , p.90

, 32 g/mol Formule chimique, pp.22-47

, RMN 1 H (CDCl3, 300 MHz): ? = 4.29 (dt, J = 5.9 Hz, J= 7.5 Hz, 2H), 1.62-1.57 (m, 8H), 1.43-1.26 (m, 24H), 0.88 (t, J = 6.8 Hz, 12H). RMN 13 C (CDCl3, 75 MHz): ? = 79.6 (d, J = 5.9 Hz, CH), vol.34

, MS (ESI/NH3): m/z = 407

, MS (CI/NH3): m/z = 407

, Caractérisation des acides commerciaux acide bis(2-ethylhexyl)phosphorique (D2EHPA)

, 23 g/mol Formule chimique, pp.16-35

, 23 g/mol Formule chimique, pp.16-35

, 24 g/mol Formule chimique, pp.16-35

, 24 g/mol Formule chimique, pp.16-35

M. Kateryna-omelchuk, G. Haddad, and A. Cote, Chagnes « New extractants for the recovery of cobalt and nickel from acidic chloride solutions, III th International Conference on Methods and Materials for Separation Processes, Separation science -Theory and practice 2015 (SSTP 2015), 6-10 septembre

M. Kateryna-omelchuk and A. Stambouli, Chagnes « Diphasic acid-basic properties of new organophosphorus extractants, 21 th International Solvent Extraction Conference ISEC 2017

P. Kateryna-omelchuk, A. Szczepa?ski, M. Shrotre, A. Haddad, and . Chagnes, Effects of structural changes of new organophosphorus cationic exchangers on solvent extraction of cobalt, nickel and manganese from acidic chloride media, vol.7, pp.5660-5668, 2017.

, hydrophobic, more the affinity between Mn(II) and the cationic exchanger is weakened and log b + log K D,ML 2 remains close to zero

, the sum of log b and log K D,ML 2 is not the same from a cationic extractant to another one. In particular, it is inter--So?-Acid-Base theory (HSAB), which indicates that so? atoms such as sulphur have more affinity with so? acids or borderline hard acids like Ni(II) and Co(II) rather than with hard acids like Mn(II). Therefore, the value of b may be much greater than the value of pK a , resulting in low value of pH 1/2 for Co(II) and Ni(II) extraction by Cyanex 301. Despite the high pK a value of EHPA, pH 1/2 is not so high of EHPA. More generally, the presence of oxygen atoms in the hydro-Ni(II), Co(II) and Mn(IIof the cationic exchangers for the extraction of Co(II), Regarding Ni(II) and Co(II) extraction, the behaviour of these , the trend is completely different for Ni(II) and Co(II) compared to Mn(II) as pH 1/2 values do not follow the variation of pK a . Therefore, unlike Mn(II), vol.1, pp.41-43

. Mn, Co(II) by controlling the pH of simulated leaching solutions of cathodes at 1.1 (Fig. 3a) and 1.6 (Fig. 3c) when the extractant is TPA and IPA, respectively. Less than 10% of Ni(II) and Co(II) are coextracted but the use of multi-stage solvent extraction Fig. 3 Extraction efficiency (%E) of Ni(II), Co(II) and Mn(II) by 0.25 M TPA (graphics (a) and (b)) or IPA (graphics (c) and (d))

, mol L À1 (typical composition of leaching solution of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode from spent Li-ion batteries); (b) and (d)

|. Rsc and A. , , vol.7, pp.5660-5668, 2017.

, This journal is © The Royal Society of Chemistry, 2017.

A. Chagnes and B. Pospiech, J. Chem. Technol. Biotechnol, p.1191, 2013.

, Lithium Process Chemistry : Resources, Extractions, Batteries and Recycling, p.313, 2015.

, Extractive metallurgy of nickel, cobalt and platinum-group materials, p.610, 2011.

P. K. Parhi, S. Panigrahi, K. Sarangi, and K. C. Nathsarma, Sep. Purif. Technol, p.310, 2008.

K. Sarangi, B. R. Reddy, and R. P. Das, Hydrometallurgy, vol.52, p.253, 1999.

H. Nadimi, A. Amirjani, D. H. Fatmehsari, S. Firoozi, A. Azadmehr et al., , p.177, 2014.

D. Darvishi, D. F. Haghshenas, E. K. Alamdari, S. K. Sadrnezhaad, and M. Halali, Hydrometallurgy, p.238, 2005.

Y. Liu, S. Nam, and M. Lee, Bull. Korean Chem. Soc, p.2646, 2015.

J. M. Zhao, X. Y. Shen, F. L. Deng, F. C. Wang, Y. Wu et al., Sep. Purif. Technol, p.345, 2011.

A. Chagnes and G. Cote, Séparation du Cobalt et du Nickelà l'aide du Cyanex® 272 par extraction liquide-liquide, L'Actualité Chimique, vol.346, pp.29-347, 2010.

M. H. Abraham, Pure Appl. Chem, p.2503, 1993.

M. H. Abraham, J. Phys. Org. Chem, vol.6, p.660, 1993.

T. A. Mastryukova and M. I. Kabachnik, Russ. Chem. Rev, p.795, 1969.

T. A. Mastryukova and M. I. Kabachnik, J. Org. Chem, p.1201, 1971.

R. W. Ta?, J. Abboud, M. J. Kamlet, and M. H. Abraham, J. Solution Chem, p.186, 1985.

D. C. Leggett, J. Solution Chem, p.289, 1993.

D. C. Leggett, Anal. Chem, p.2907, 1993.

W. Robak, W. Apostoluk, and P. Maciejewski, Anal. Chim. Acta, vol.569, p.119, 2006.

R. A. Bartsch, E. Jeon, W. Walkowiak, and W. Apostoluk, J. Membr. Sci, p.123, 1999.

W. Apostoluk, B. Gajda, J. Szymanowski, and M. Mazurkiewicz, Anal. Chim. Acta, p.321, 2000.

W. Apostoluk and W. Robak, Anal. Chim. Acta, vol.548, p.116, 2005.

M. H. Abraham, R. J. Abraham, J. Byren, and L. Griffith, J. Org. Chem, p.3389, 2006.

C. F. Poole, S. N. Atapattu, S. K. Poole, and A. K. Bell, Anal. Chim. Acta, p.32, 2009.

M. H. Abraham, R. E. Smith, R. Luchtefeld, A. J. Boorem, R. Luo et al., J. Pharm. Sci, p.1500, 2010.

J. A. Platts, D. Butina, M. H. Abraham, and A. Hersey, J. Chem. Inf. Comput. Sci, p.835, 1999.

J. Jover, R. Bosque, and J. Sales, J. Chem. Inf. Comput. Sci, p.1098, 2004.

L. M. Sprunger, A. Proctor, W. E. Acree, and M. H. Abraham, Phys. Chem. Liq, vol.46, p.574, 2008.

A. R. Katritzky, M. Kuanar, S. Slavov, and C. D. Hall, Chem. Rev, p.5714, 2010.

Y. E. Zevatskii and D. V. Samoilov, Russ. J. Org. Chem, 1445.

R. Todeschini and V. Consonni, Handbook of molecular descriptors, 2000.

R. G. Brereton and C. , Data analysis for the laboratory and chemical plant, 2003.

D. Beltrami, A. Chagnes, M. Haddad, H. Laureano, H. Mokhtari et al., This journal is © The Royal Society of Chemistry, Sep. Sci. Technol, vol.48, pp.5660-5668, 2013.

R. Paper and . Advances,

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, 2000.

M. Shamsipur, B. Hemmateenejad, M. Akhond, and H. Sharghi, Talanta, vol.54, p.1113, 2001.

Y. J. Xie, H. Liu, H. X. Liu, Z. C. Zhai, and Z. Y. Wang, Bull. Environ. Contam. Toxicol, p.319, 2008.

M. G. Drew, M. J. Hudson, and T. G. Youngs, J. Alloys Compd, p.408, 2004.

J. Jover, R. Bosque, and J. Sales, QSAR Comb. Sci, p.563, 2008.

I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone et al., J. Comput.-Aided Mol. Des, p.453, 2005.

A. G. Mercader, M. Goodarzi, P. R. Duchowicz, F. M. Fernandez, and E. A. Castro, Chem. Biol. Drug Des, p.433, 2010.

, Extractive metallurgy of nickel, cobalt and platinum-group materials, 2011.

G. Senanayake, . Miner, and . Eng, , p.1379, 2011.

J. R. Hein, K. Mizell, A. Koschinsky, and T. A. Conrad, Ore Geol. Rev, p.1, 2013.

|. Rsc and A. , , vol.7, pp.5660-5668, 2017.

, This journal is © The Royal Society of Chemistry, 2017.