;. A. Abdolahi, E. Abdolahi, Z. Hamzah, S. Ibrahim, and . Hashim, Microbially influenced corrosion of steels by Pseudomonas aeruginosa, Corrosion Reviews, vol.32, pp.129-141, 2014.

;. C. Abreu, M. J. Abreu, R. Cristóbal, X. R. Losada, G. Nóvoa et al., Comparative study of passive films of different stainless steels developed on alkaline medium, Electrochimica Acta, vol.49, pp.3049-3056, 2004.

;. D. Addari, B. Addari, A. Elsener, and . Rossi, Electrochemistry and surface chemistry of stainless steels in alkaline media simulating concrete pore solutions, Electrochimica Acta, vol.53, pp.8078-8086, 2008.

F. Ahimou, C. J. Boonaert, Y. Adriaensen, P. Jacques, P. Thonart et al.,

P. G. Paquot and . Rouxhet, XPS analysis of chemical functions at the surface of Bacillus subtilis, Journal of Colloid and Interface Science, vol.309, pp.49-55, 2007.

;. A. Allen, O. Allen, E. Habimana, and . Casey, The effects of extrinsic factors on the structural and mechanical properties of Pseudomonas fluorescens biofilms: A combined study of nutrient concentrations and shear conditions, Colloids and Surfaces B: Biointerfaces, vol.165, pp.127-134, 2018.

A. Allion, Environnement des bactéries et sensibilité aux biocides -Mise au point d'une technique rapide pour déterminer in situ l'efficacité bactéricide d'agents antimicrobiens, Thèse en Sciences Alimentaires, sous la direction de Marie-Noëlle Bellon-Fontaine, 2004.

]. K. Anselme, P. Anselme, A. M. Davidson, M. Popa, M. Giazzon et al., The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomaterialia, vol.6, pp.3824-3846, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02384171

;. P. Antony, S. Antony, P. Chongdar, R. Kumar, . J. Raman-;-p et al., Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria, Influence of thermal aging on sulfate-reducing bacteria (SRB)-influenced corrosion behaviour of 2205 duplex stainless steel, vol.50, pp.1858-1864, 2007.

P. J. Antony, R. K. Antony, R. Singh-raman, P. Raman, and . Kumar, Role of microstructure on corrosion of duplex stainless steel in presence of bacterial activity, Corrosion Science, vol.52, pp.1404-1412, 2010.

S. Arkan, E. Ilhan-sungur, and N. Cansever, Corrosive metabolic activity of Desulfovibrio sp. on 316L stainless steel, Journal of Materials Engineering and Performance, vol.25, pp.5352-5362, 2016.

;. K. Asami, K. Asami, S. Hashimoto, and . Shimodaira, An ESCA study of the Fe 2+ /Fe 3+ ratio in passive films on iron-chromium alloys, Corrosion Science, vol.16, pp.387-391, 1976.

K. Asami, K. Hashimoto, S. Shimodaira, ;. Baba, T. Kodama et al., An XPS study of the passivity of a series of iron-chromium alloys in sulphuric acid, Role of nitrogen on the corrosion behavior of austenitic stainless steels, vol.18, pp.2393-2407, 1978.

M. A. Baker and J. E. Castle, The initiation of pitting corrosion at MnS inclusions, Corrosion Science, vol.34, pp.667-682, 1993.

J. A. Bardwell, G. I. Sproule, D. F. Mitchell, B. Macdougall, and M. J. ,

. Graham, Nature of the passive film on Fe-Cr alloys as studied by 18 O Secondary Ion Mass Spectrometry: reduction of the prior film and stability to ex situ surface analysis, Journal of the Chemical Society, vol.87, pp.1011-1019, 1991.

J. A. Bardwell, G. I. Sproule, B. Macdougall, M. J. Graham, and A. J. ,

H. S. Davenport and . Isaacs, situ XANES detection of Cr(VI) in the passive film on Fe-26Cr, vol.139, pp.371-373, 1992.

B. Baroux and L. Passivité, La corrosion des métaux -Passivité et corrosion localisée, Collection : Technique et Ingénierie, Dunod, pp.119-138, 2014.

A. Bautista, G. Blanco, F. Velasco, A. Gutiérrez, L. Soriano et al., Changes in the passive layer of corrugated austenitic stainless steel of low nickel content due to exposure to simulated pore solutions, Corrosion Science, vol.51, pp.785-792, 2009.

I. B. Beech and C. W. Cheung, Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions, International Biodeterioration & Biodegradation, vol.35, pp.59-72, 1995.

I. B. Beech, V. Zinkevich, R. Tapper, and R. Gubner, Direct involvement of an extracellular complex produced by a marine sulfate-reducing bacterium in deterioration of steel, Geomicrobiology Journal, vol.15, pp.121-134, 1998.

I. B. Beech and C. C. Gaylarde, Recent advances in the study of biocorrosion -An overview, Revista de Microbiologia, vol.30, pp.177-190, 1999.

I. Beech, L. Hanjagsit, M. Kalaji, A. L. Neal, and V. Zinkevich, Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture, Microbiology, vol.145, pp.1491-1497, 1999.

I. B. Beech, V. Zinkevich, R. Tapper, R. Gubner, and R. Avci, Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry, Journal of Microbiological Methods, vol.36, pp.3-10, 1999.

I. B. Beech, V. Zinkevich, L. Hanjangsit, R. Gubner, ;. I. Avci et al., Characterisation of conditioning layers formed by exopolymeric substances of Pseudomonas NCIMB 2021 on surfaces of AISI 316 stainless steel, The effect of Pseudomonas NCIMB 2021 biofilm on AISI 316 stainless steel, vol.15, pp.231-247, 2000.

I. B. Beech and J. Sunner, Beech, Corrosion of technical materials in the presence of biofilmcurrent understanding and state-of-the art methods of study, International Biodeterioration & Biodegradation, vol.15, pp.177-183, 2004.

I. B. Beech, J. A. Sunner, and K. Hiraoka, Microbe-surface interactions in biofouling and biocorrosion processes, International Microbiology, vol.8, pp.157-168, 2005.

B. B. Benson and D. Krause, The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere, Limnology and Oceanography, vol.29, pp.620-632, 1984.

I. Betova, M. Bojinov, T. Laitinen, K. Mäkelä, P. Pohjanne et al., The transpassive dissolution mechanism of highly alloyed stainless steels. I. Experimental results and modelling procedure, Corrosion Science, vol.44, pp.2675-2697, 2002.

I. Betova, M. Bojinov, T. Laitinen, K. Mäkelä, P. Pohjanne et al., The transpassive dissolution mechanism of highly alloyed stainless steels. II. Effect of pH and solution anion on the kinetics, Corrosion Science, vol.44, pp.2699-2723, 2002.

B. Beverskog and I. Puigdomenech, Pourbaix diagrams for the ternary system of iron-chromium-nickel, Corrosion, vol.55, pp.1077-1087, 1999.

M. C. Biesinger, C. Brown, J. R. Mycroft, R. D. Davidson, and N. S. Mcintyre, X-ray photoelectron spectroscopy studies of chromium compounds, Surface and Interface Analysis, vol.36, pp.1550-1563, 2004.

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. Lau, and A. R. ,

R. S. Gerson and . Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Applied Surface Science, vol.257, pp.2717-2730, 2011.

P. L. Bishop, T. C. Zhang, and Y. Fu, Effects of biofilm structure, microbial distributions and mass transport on biodegradation processes, Water Science and Technology, vol.31, pp.143-152, 1995.

J. Block and G. Francius, Voyage dans l'espace intercellulaire des biofilms : nature, cohésion et fonctions des exopolymères, 2016.

, Bétons et métaux plus résistants à la biodétérioration, pp.235-151, 2016.

J. Bo?hmler, H. Haidara, A. Ponche, and L. Ploux, Impact of chemical heterogeneities of surfaces on colonization by bacteria, ACS Biomaterials Science and Engineering, vol.1, pp.693-704, 2015.

C. J. Boonaert and P. G. Rouxhet, Surface of lactic acid bacteria: relationships between chemical composition and physicochemical properties, Applied and Environmental Microbiology, vol.66, pp.2548-2554, 2000.

K. E. Bonnington and M. J. Kuehn, Protein selection and export via outer membrane vesicles, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1843, pp.1612-1619, 2014.

F. Bousta, Biodétérioration des oeuvres d'art, in Interactions matériauxmicroorganismes : Bétons et métaux plus résistants à la biodétérioration, pp.327-345, 2016.

S. S. Branda, Å. Vik, L. Friedman, and R. Kolter, Biofilms: the matrix revisited, Trends in Microbiology, vol.13, pp.20-26, 2005.

;. F. Brian-jaisson, M. Brian-jaisson, A. Molmeret, L. Fahs, and G. Guentas-dombrowsky, , 2016.

Y. Culioli, S. Blache, A. Cérantol, and . Ortalo-magné, Characterization and anti-biofilm activity of extracellular polymeric substances produced by the marine biofilm-forming bacterium Pseudoalteromonas ulvae strain TC14, Biofouling, vol.32, pp.547-560, 2016.

A. R. Brooks, C. R. Clayton, K. Doss, and Y. C. Lu, On the role of Cr in the passivity of stainless steel, ESCA Studies of MoO2 and MoO3, vol.133, pp.3-6, 1986.

;. R. Bryant, E. J. Bryant, and . Laishley, The role of hydrogenase in anaerobic biocorrosion, Canadian Journal of Microbiology, vol.36, pp.259-264, 1990.

J. P. Busalmen, M. Vázquez, S. R. De-sánchez, ;. M. Cabeen, and C. Jacobs-wagner, New evidences on the catalase mechanism of microbial corrosion, Nature Reviews Microbiology, vol.47, pp.601-610, 2002.

N. Cabrera and N. F. Mott, Theory of the oxidation of metals, vol.12, pp.163-184, 1948.

D. Cadosch, E. Chan, O. P. Gautschi, H. Simmen, and L. Filgueira, Biocorrosion of stainless steel by osteoclasts-in vitro evidence, Journal of Orthopaedic Research, vol.27, pp.841-846, 2009.

C. Calinski and H. Strehblow,

F. Alloys, Journal of the Electrochemical Society, vol.136, pp.1328-1331, 1989.

;. J. Castle, J. H. Castle, and . Qiu, A co-ordinated study of the passivation of alloy steels by Plasma Source Mass Spectrometry and X-ray Photoelectron Spectroscopy -I. Characterization of the passive film, Corrosion Science, vol.29, pp.591-603, 1989.

;. J. Castle, J. H. Castle, and . Qiu, The application of ICP-MS and XPS to studies of ion selectivity during passivation of stainless steels, Journal of the Electrochemical Society, vol.137, pp.2031-2038, 1990.

I. G. Chamritski, G. R. Burns, B. J. Webster, and N. J. Laycock, Effect of Iron-Oxidizing Bacteria on pitting of stainless steel, Corrosion, vol.60, pp.658-669, 2004.

[. Charles, ]. J. Charles, and P. Chemelle, The history of duplex developments, nowadays DSS properties and duplex market future trends, Duplex stainless steel, Conference Proceedings, 2010.

;. G. Chen, C. R. Chen, and . Clayton, Influence of Sulfate-Reducing Bacteria on the passivity of type 304 austenitic stainless steel, Journal of The Electrochemical Society, vol.144, pp.3140-3146, 1997.

G. Chen and C. R. Clayton, The influence of Sulfate-Reducing Bacteria on the passivity of type 317L austenitic stainless steel, Journal of The Electrochemical Society, vol.145, pp.1914-1922, 1998.

;. C. Clayton, Y. C. Clayton, and . Lu, A bipolar model of the passivity of stainless steel: the role of Mo addition, Journal of the Electrochemical Society, vol.133, pp.2465-2473, 1986.

C. R. Clayton and Y. C. Lu, A bipolar model of the passivity of stainless steels -III. The mechanism of MoO4 2-formation and incorporation, Corrosion Science, vol.29, 1989.

C. R. Clayton and I. Olefjord, Corrosion mechanisms in theory and practice, pp.327-347, 2011.

H. M. Cobb and . Cobb, The history of stainless steel, 2010.

C. Compère, M. Bellon-fontaine, P. Bertrand, D. Costa, P. Marcus et al.,

C. Poleunis, B. Pradier, M. G. Rondot, and . Walls, Kinetics of conditioning layer formation on stainless steel immersed in seawater, Biofouling, vol.17, pp.129-145, 2001.

J. W. Costerton, G. G. Geesey, and K. Cheng, How bacteria stick, Scientific American, vol.238, pp.86-95, 1978.

;. J. Costerton, Z. Costerton, D. Lewandowski, D. Beer, D. Caldwell et al., , 1994.

B. James, Journal of Bacteriology, vol.176, pp.2137-2142, 1994.

L. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Microbial biofilms, vol.49, pp.1318-1322, 1995.

]. A. Cournet, M. Cournet, C. Bergé, A. Roques, M. Bergel et al., Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa, Electrochimica Acta, vol.55, 2010.

B. Diawara, Y. Beh, and P. Marcus, Nucleation and growth of oxide layers on stainless steels (FeCr) using a virtual oxide layer model, The Journal of Physical Chemistry C, vol.114, pp.19299-19307, 2010.

;. B. Diaz, J. Díaz, V. ?wiatowska, M. Maurice, A. Pisarek et al., , 2012.

J. Tervakangas, P. Kolehmainen, and . Marcus, Chromium and tantalum oxide nanocoatings prepared by filtered cathodic arc deposition for corrosion protection of carbon steel, Surface and Coatings Technology, vol.206, pp.3903-3910, 2012.

W. H. Dickinson, F. Caccavo, Z. H. Lewandowski-;-w, F. Dickinson, B. Caccavo et al., The ennoblement of stainless steel by manganic oxide biofouling, Ennoblement of stainless steel by the manganese-depositing bacterium Leptothrix discophor, vol.38, pp.2502-2506, 1996.

H. T. Dinh, J. Kuever, M. Mußmann, A. W. Hassel, M. Stratmann et al., Iron corrosion by novel anaerobic microorganisms, Nature, vol.427, pp.829-832, 2004.

;. Z. Dong, H. F. Dong, and . Liu, Influence of EPS isolated from thermophilic sulphatereducing bacteria on carbon steel corrosion, Biofouling, vol.27, pp.487-495, 2011.

;. ?. Donik, A. Donik, J. T. Kocijan, M. Grant, A. Jenko et al., XPS study of duplex stainless steel oxidized by oxygen atoms, vol.51, pp.827-832, 2009.

?. Donik, A. Kocijan, D. Mandrino, I. Paulin, M. Jenko et al., X-Ray Photoelectron Spectroscopy depth profiling of electrochemically prepared thin oxide layers on duplex stainless steel, Metallurgical and Materials Transactions B, vol.255, pp.881-890, 2002.

R. M. Donlan, J. W. Donlan, and . Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms, Clinical Microbiology Reviews, vol.15, pp.167-193, 2002.

;. N. Dowling, Y. Dowling, S. Kim, Y. Ahn, and . Lee, Effect of alloying elements and residuals on corrosion resistance of type 444 stainless steel, Corrosion, vol.55, pp.187-199, 1999.

;. M. Dubiel, C. H. Dubiel, C. C. Hsu, F. Chien, D. K. Mansfeld et al., Microbial iron respiration can protect steel from corrosion, Applied and Environmental Microbiology, vol.68, pp.1440-1445, 2002.

C. Dumas, A. Mollica, D. Féron, R. Basséguy, L. Etcheverry et al., Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials, Electrochimica Acta, vol.53, pp.468-473, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00467126

]. C. Dumas, R. Dumas, A. Basseguy, ;. Bergel, A. Dumas et al., The enrichment of surface passive film on stainless steel during biofilm development in coastal seawater, Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes, vol.53, pp.511-525, 2008.

G. S. Eklund, Initiation of pitting at sulfide inclusions in stainless steel, Journal of the Electrochemical Society, vol.121, pp.467-473, 1974.

A. Elbiache and P. Marcus, The role of molybdenum in the dissolution and the passivation of stainless steels with adsorbed sulphur, Corrosion Science, vol.33, pp.261-269, 1992.

;. S. El-kirat-chatel, A. El-kirat-chatel, T. H. Puymege, P. Duong, and C. Van-overtvelt, , 2017.

L. Bressy, Y. F. Belec, M. Dufrêne, and . Molmeret, Phenotypic heterogeneity in attachment of marine bacteria toward antifouling copolymers unraveled by AFM, Frontiers in Microbiology, vol.8, pp.1-12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01898961

;. P. Erazmus-vignal, V. Erazmus-vignal, S. Vignal, F. Saedlou, and . Krajcarz, Corrosion behaviour of sites containing (Cr, Fe)2N particles in thermally aged duplex stainless steel studied using capillary techniques, atomic force microscopy and potentiostatic pulse testing method, Corrosion Science, vol.99, pp.194-204, 2015.

J. Esbelin, T. Santos, M. Hébraud, ;. S. Fajardo, D. M. Bastidas et al., Desiccation: An environmental and food industry stress that bacteria commonly face, Food Microbiology, vol.69, pp.82-88, 2018.

. Bastidas, Low-nickel stainless steel passive film in simulated concrete pore solution: A SIMS study, Applied Surface Science, vol.256, pp.6139-6143, 2010.

S. Fajardo, D. M. Bastidas, M. P. Ryan, M. Criado, D. S. Mcphail et al.,

J. M. Morris and . Bastidas, Low energy SIMS characterization of passive oxide films formed on a low-nickel stainless steel in alkaline media, Applied Surface Science, vol.288, pp.423-429, 2014.

F. P. Fehlner and N. F. Mott, Low-temperature oxidation, vol.2, pp.59-99, 1970.

M. Femenia, J. Pan, C. Leygraf, and P. Luukkonen, In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunnelling microscopy, Corrosion Science, vol.43, pp.1939-1951, 2001.

M. Femenia, J. Pan, and C. Leygraf, situ local dissolution of duplex stainless steels in 1 M H2SO4 + 1 M NaCl by Electrochemical Scanning Tunneling Microscopy, vol.149, pp.187-197, 2002.

M. Femenia, C. Canalias, J. Pan, and C. Leygraf, Scanning Kelvin Probe Force Microscopy and Magnetic Force Microscopy for characterization of duplex stainless steels, Journal of The Electrochemical Society, vol.150, pp.274-281, 2003.

M. Femenia, J. Pan, and C. Leygraf, Characterization of ferrite-austenite boundary region of duplex stainless steels by SAES, Journal of The Electrochemical Society, vol.151, pp.581-585, 2004.

D. Féron, Choix des matériaux métalliques et biocorrosion, in Interactions matériaux-microorganismes : Bétons et métaux plus résistants à la biodétérioration, pp.349-370, 2016.

C. A. Flemming, R. J. Palmer, A. A. Arrage, H. C. Van-der-mei, and D. C. ,

. White, Cell surface physicochemistry alters biofilm development of Pseudomonas aeruginosa lipopolysaccharide mutants, Biofouling, vol.13, pp.213-231, 1998.

H. Flemming, Biofouling in water systems -cases, causes and countermeasures, Applied Microbiology and Biotechnology, vol.59, pp.629-640, 2002.

H. Flemming, Why microorganisms live in biofilms and the problem of biofouling, Marine and Industrial Biofouling, vol.4, p.3, 2008.

H. Flemming and J. Wingender, The biofilm matrix, Nature Reviews Microbiology, vol.8, pp.623-633, 2010.

;. C. Flemming and . Flemming, The perfect slime, Colloids and Surfaces B: Biointerfaces, vol.86, pp.251-259, 2011.

H. C. Flemming, M. Meier, and T. Schild, Mini-review: microbial problems in paper production, Biofouling, vol.29, pp.683-696, 2013.

H. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice et al.,

. Kjelleberg, Biofilms: an emergent form of bacterial life, Nature Reviews Microbiology, vol.14, pp.563-575, 2016.

M. Fletcher and G. I. Loeb, Influence of Substratum Characteristics on the attachment of a marine Pseudomonad to solid surfaces, Applied and Environmental Microbiology, vol.37, pp.67-72, 1979.

;. G. Frankel and . Frankel, Pitting corrosion of metals: A review of the critical factors, Journal of the Electrochemical Society, vol.145, pp.2186-2198, 1998.

R. P. Frankenthal and D. L. Malm, Analysis of the air-formed oxide film on a series of iron-chromium alloys by Ion-Scattering Spectrometry, Journal of the Electrochemical Society, vol.123, pp.186-191, 1976.

I. Frateur, J. Lecoeur, S. Zanna, C. A. Olsson, D. Landolt et al., Adsorption of BSA on passivated chromium studied by a flow-cell EQCM and XPS, Electrochimica Acta, vol.52, pp.7660-7669, 2007.

W. Fredriksson, K. Edström, and C. A. Olsson, XPS analysis of manganese in stainless steel passive films on 1.4432 and the lean duplex 1, Corrosion Science, vol.4162, pp.2505-2510, 2010.

W. Fredriksson, S. Malmgren, T. Gustafsson, M. Gorgoi, K. ;. Edström et al., Full depth profile of passive films on 316L stainless steel based on high resolution HAXPES in combination with ARXPS, Situ high-resolution microscopy on duplex stainless steels, vol.258, pp.2525-2531, 2000.

;. L. Garfias-mesias, J. M. Garfias-mesias, C. D. Skyes, and . Tuck, The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions, Corrosion Science, vol.38, pp.1319-1330, 1996.

;. R. Gubner, I. B. Gubner, and . Beech, The effect of extracellular polymeric substances on the attachment of Pseudomonas NCIMB 2021 to AISI 304 and 316 stainless steel, Biofouling, vol.15, pp.25-36, 2000.

L. Q. Guo, M. C. Lin, L. J. Qiao, and A. A. Volinsky, Duplex stainless steel passive film electrical properties studied by in situ current sensing atomic force microscopy, Corrosion Science, vol.78, pp.55-62, 2014.

;. H. Ha, H. J. Ha, H. S. Jang, S. J. Kwon, and . Kim, Effects of nitrogen on the passivity of Fe-20Cr alloy, vol.51, pp.48-53, 2009.

;. Ha, M. Ha, T. Jang, J. Lee, and . Moon, Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial 2205 duplex stainless steel, Corrosion Science, vol.89, pp.154-162, 2014.

N. E. Hakikia, M. Da-cunha, A. M. Belo, M. G. Simões, . P. Ferreira-;-g et al., Photoreduction of hexavalent chromium during X-ray Photoelectron Spectroscopy analysis of electrochemical and thermal films, Journal of The Electrochemical Society, vol.145, pp.2921-2927, 1991.

G. P. Halada, D. Kim, and C. R. Clayton, Influence of nitrogen on electrochemical passivation of high-nickel stainless steels and thin molybdenum-nickel films, Corrosion, vol.52, pp.36-46, 1996.

;. L. Hall-stoodley, J. W. Hall-stoodley, P. Costerton, and . Stoodley, Bacterial biofilms: from the natural environment to infectious diseases, Nature Reviews Microbiology, vol.2, pp.95-108, 2004.

J. F. Halsall, M. Kalaji, and A. L. Neal, Adsorption of bacterial capsular exopolymers to hydrophilic and hydrophobic surfaces: A 2D-FTIR analysis, Biofouling, vol.16, pp.105-118, 2000.

E. Hamada, K. Yamada, M. Nagoshi, N. Makiishi, T. Sato et al.,

S. Fukuda, T. Ishikawa, and . Ujiro, Direct imaging of native passive film on stainless steel by aberration corrected STEM, vol.52, pp.3851-3854, 2010.

W. A. Hamilton, Microbially Influenced Corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis, Biofouling, vol.19, pp.65-76, 2003.

]. D. Hamm, C. A. Hamm, D. Olsson, and . Landolt, Effect of chromium content and sweep rate on passive film growth on iron-chromium alloys studied by EQCM and XPS, Corrosion Science, vol.44, pp.1009-1025, 2002.

;. D. Hamm, K. Hamm, C. A. Ogle, S. Olsson, D. Weber et al., Influence of Pseudomonas aeruginosa bacteria on corrosion resistance of 304 stainless steel, Corrosion Engineering Science and Technology, vol.44, pp.116-120, 2002.

[. Hashimoto, ]. K. Hashimoto, K. Asami, and K. Teramoto, An X-ray Photo-electron in HCl, Corrosion Science, vol.19, pp.3-14, 1979.

[. Hashimoto, ]. K. Hashimoto, and K. Asami, An X-ray Photo-electron Spectroscopic study of the passivity of ferritic 19Cr stainless steel in 1 N HCl, Corrosion Science, vol.19, pp.251-260, 1979.

K. Hashimoto, K. Asami, A. Kawashima, H. Habazaki, E. Akiyama et al., Effect of tungsten on the pitting and crevice corrosion resistance of type 25Cr super duplex stainless steels, Contact Dermatitis, vol.49, pp.53-67, 1994.

;. S. Haupt, H. Haupt, and . Strehblow, A combined surface analytical and electrochemical study of the formation of passive layers on Fe/Cr alloys in 0.5 M H2SO4, vol.37, pp.43-54, 1995.

H. He, T. Zhang, C. Zhao, K. Hou, G. Meng et al., Effect of alternating voltage passivation on the corrosion resistance of duplex stainless steel, Journal of Applied Electrochemistry, vol.39, pp.737-745, 2009.

X. He, J. Wang, L. Abdoli, . Hu, and . Li, Mg 2+ /Ca 2+ promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater, Colloids and Surfaces B: Biointerfaces, vol.146, pp.289-295, 2016.

B. Heine and R. Kirchheim, Dissolution rates of iron and chromium and Fe-Cralloys in the passive state, Corrosion Science, vol.31, pp.533-538, 1990.

J. Herisson, Biodétérioration des matériaux cimentaires dans les ouvrages d'assainissement, in Interactions matériaux-microorganismes : Bétons et métaux plus résistants à la biodétérioration, pp.303-325, 2016.

A. A. Hermas, M. Nakayama, and K. Ogura, Enrichment of chromium-content in passive layers on stainless steel coated with polyaniline, Electrochimica Acta, vol.50, pp.2001-2007, 2005.

G. Hernandez, V. Kucera, D. Thierry, A. Pedersen, and M. Hermansson, Corrosion inhibition of steel by bacteria, vol.50, pp.603-608, 1994.

;. L. Herrera, H. A. Herrera, and . Videla, Role of iron-reducing bacteria in corrosion and protection of carbon steel, International Biodeterioration & Biodegradation, vol.63, pp.891-895, 2009.

J. Högström, W. Fredriksson, K. Edstrom, F. Björefors, L. Nyholm et al.,

A. Olsson, Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra, Applied Surface Science, vol.284, pp.700-714, 2013.

;. Hoppe, S. Hoppe, H. Haupt, and . Strehblow, Combined surface analytical and electrochemical study of the formation of passive layers on Fe/Cr alloys in 1 M NaOH, vol.21, pp.514-525, 1994.

;. G. Hwang, S. Hwang, M. G. Kang, Y. El-din, and . Liu, Impact of an extracellular polymeric substance (EPS) precoating on the initial adhesion of Burkholderia cepacia and Pseudomonas aeruginosa, Biofouling, vol.28, pp.525-238, 2012.

;. G. Hwang, J. Hwang, S. Liang, M. Kang, Y. Tong et al., Local analysis of oxygen reduction catalysis by scanning vibrating electrode technique: A new approach to the study of biocorrosion, Biochemical Engineering Journal, vol.76, pp.60-65, 2008.

G. O. Ilevbare, G. T. Burstein-;-e.-ilhan-sungur, N. Cansever, and A. Cotuk, Microbial corrosion of galvanized steel by a freshwater strain of sulphate reducing bacteria (Desulfovibrio sp, Corrosion Science, vol.43, pp.1097-1109, 2001.

;. E. Ilhan-sungur, A. Ilhan-sungur, T. Çotuk-;-e.-ilhan-sungur, N. Unsal-istek, and . Cansever, Microbiologically influenced corrosion of galvanized steel by Desulfovibrio sp. and Desulfosporosinus sp, Materials Chemistry and Physics, vol.52, pp.839-851, 2010.

;. M. Ismail, A. Ismail, T. K. Jayaraman, J. C. Wood, and . Earthman, The influence of bacteria on the passive film stability of 304 stainless steel, Electrochimica Acta, vol.44, pp.4685-4692, 1999.

A. Ithurbide, I. Frateur, A. Galtayries, P. Marcus, ;. Jalili et al., XPS and flow-cell EQCM study of albumin adsorption on passivated chromium surfaces: Influence of potential and pH, Electrochimica Acta, vol.53, pp.907-945, 2004.

. F. Jargelius-pettersson-;-r, Jargelius-Pettersson, Application of the pitting resistance equivalent concept to some highly alloyed austenitic stainless steels, Corrosion, vol.54, pp.162-168, 1998.

. F. Jargelius-pettersson-;-r, B. G. Jargelius-pettersson, and . Pound, Examination of the role of molybdenum in passivation of stainless steels using AC Impedance Spectroscopy, Journal of The Electrochemical, vol.145, pp.1462-1469, 1998.

. F. Jargelius-pettersson-;-r, Jargelius-Pettersson, Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels, Corrosion Science, vol.30, pp.1639-1664, 1999.

;. M. Javed, P. R. Javed, E. A. Stoddart, S. L. Palombo, S. A. Mcarthur et al., Inhibition or acceleration: Bacterial test media can determine the course of microbiologically influenced corrosion, Corrosion Science, vol.86, pp.149-158, 2014.

A. Jayaraman, F. B. Mansfeld, and T. K. Wood, Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin, Journal of Industrial Microbiology and Biotechnology, vol.22, pp.167-175, 1999.

R. Jia, D. Yang, D. Xu, and T. Gu, Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm, Bioelectrochemistry, vol.118, pp.38-46, 2017.

R. Jiang, Y. Wang, X. Wen, C. Chen, and J. Zhao, Effect of time on the characteristics of passive film formed on stainless steel, vol.412, pp.214-222, 2017.

L. Jinlong, L. Tongxiang, W. Chen, and D. Limin, Comparison of corrosion properties of passive films formed on coarse grained and ultrafine grained AISI 2205 duplex stainless steels, Journal of Electroanalytical Chemistry, vol.757, pp.263-269, 2015.

L. Jinlong, L. Tongxiang, D. Limin, and W. Chen, Influence of sensitization on microstructure and passive property of AISI 2205 duplex stainless steel, Corrosion Science, vol.104, pp.144-151, 2016.

L. Johansson and T. Saastamoinen, Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species, Applied Surface Science, pp.244-248, 2009.

L. J. Jones, R. Carballido-lópez, and J. Errington, Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis, Cell, vol.104, pp.913-922, 2001.

R. Jung, H. Tsuchiya, and S. Fujimoto, XPS characterization of passive films formed on Type 304 stainless steel in humid atmosphere, Corrosion Science, vol.58, pp.62-68, 2012.

;. P. Keller, H. Keller, and . Strehblow, XPS investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5 M H2SO4, vol.46, pp.1939-1952, 2004.

D. Kempf, V. Vignal, N. Martin, and S. Virtanen, Relationships between strain, microstructure and oxide growth at the nano-and microscale, Surface and Interface Analysis, vol.40, pp.43-50, 2008.

;. D. Kim, S. V. Kim, C. R. Kagwade, and . Clayton, Identification of Mo(V) commonly observed in passive films formed on stainless steels, Surface and Interface Analysis, vol.26, pp.155-159, 1998.

R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote et al., , 1989.

;. R. Stolz, B. Kirchheim, S. Heine, H. Hofmann, and . Hofsäss, Compositional changes of passive films due to different transport rates and preferential dissolution, Corrosion Science, vol.29, pp.573-578, 1989.

S. Kjelleberg, B. A. Humphrey, and K. C. Marshall, Effect of interfaces on small, starved marine bacteria, Applied and Environmental Microbiology, vol.43, pp.1166-1172, 1982.

A. Kocijan, D. K. Merl, and M. Jenko, The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride, Corrosion Science, vol.53, pp.776-783, 2011.

;. J. Kruger and . Kruger, Passivity of metals -a materials science perspective, International Materials Reviews, vol.33, pp.113-130, 1988.

;. L. Kulakov, M. B. Kulakov, K. L. Mcalister, M. J. Ogden, J. F. Larkin et al., Analysis of bacteria contaminating ultrapure water in industrial systems, Applied and Environmental Microbiology, vol.68, pp.157-160, 2002.

[. Landoulsi, ]. J. Landoulsi, M. J. Genet, C. Richard, K. E. Kirat et al.,

;. J. Pulvin, M. J. Landoulsi, C. Genet, K. E. Richard, S. Kirat et al., Ennoblement of stainless steel in the presence of glucose oxidase: Nature and role of interfacial processes, Journal of Colloid and Interface Science, vol.320, pp.508-519, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00308458

;. J. Rouxhet, C. Landoulsi, C. Dagbert, R. Richard, M. Sabot et al., Evolution of the passive film and organic constituents at the surface of stainless steel immersed in fresh water, Journal of Colloid and Interface Science, vol.318, pp.278-289, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00308463

. Pulvin, Enzyme-induced ennoblement of AISI 316L stainless steel: Focus on pitting corrosion behavior, Electrochimica Acta, vol.54, pp.7401-7406, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01247936

J. Landoulsi, K. E. Cooksey, and V. Dupres, Review -Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion, vol.27, pp.1105-1124, 2011.

;. H. Lappin-scott, S. Lappin-scott, P. Burton, and . Stoodley, Rittmann, A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass, Nature Reviews Microbiology, vol.12, pp.2711-2720, 2002.

J. R. Lawrence, D. R. Korber, B. D. Hoyle, J. W. Costerton, and D. E. ,

. Caldwell, Optical sectioning of microbial biofilms, Journal of Bacteriology, vol.173, pp.6558-6567, 1991.

;. N. [le-bozec, C. Bozec, M. Compère, A. Her, D. Laouenan et al., Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater, Corrosion Science, vol.43, pp.765-786, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01770132

A. K. Lee and D. K. Newman, Microbial iron respiration: impacts on corrosion processes, Applied Microbiology Biotechnology, vol.62, pp.134-139, 2003.

J. Lee, K. Fushimi, T. Nakanishi, Y. Hasegawa, and Y. Park, Corrosion behaviour of ferrite and austenite phases on super duplex stainless steel in a modified greendeath solution, Corrosion Science, vol.89, pp.111-117, 2014.

K. Leistner, C. Toulemonde, B. Diawara, A. Seyeux, and P. Marcus, Oxide film growth kinetics on metal and alloys II. Numerical simulation of transient behavior, Journal of the Electrochemical Society, vol.160, pp.197-205, 2013.

L. Leone, J. Loring, S. Sjöberg, P. Persson, and A. Shchukarev, Surface characterization of the Gram-positive bacteria Bacillus subtilis-an XPS study, Surface and Interface, vol.38, pp.202-205, 2006.

M. J. Lehtola, M. Laxander, I. T. Miettinen, A. Hirvonen, T. Vartiainen et al.,

. Martikainen, The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes, Water Research, vol.40, pp.2151-2160, 2006.

M. A. Lever, K. L. Rogers, K. G. Lloyd, J. Overmann, B. Schink et al.,

T. M. Thauer, B. B. Hoehler, and . Jørgensen, Life under extreme energy limitation: a synthesis of laboratory-and field-based investigations, FEMS Microbiology Reviews, vol.39, pp.688-728, 2015.

Y. Levi, Les biofilms dans la gestion de la qualité microbienne des eaux destinées à la consommation humaine en cours de distribution, in Interactions matériauxmicroorganismes : Bétons et métaux plus résistants à la biodétérioration, pp.173-187, 2016.

Z. Lewandowski, W. Dickinson, W. Lee, ;. Lewandowski, and H. Beyenal, Electrochemical interactions of biofilms with metal surfaces, Marine and Industrial Biofouling, vol.36, pp.35-64, 1997.

K. Lewis, Persister cells, dormancy and infectious disease, Nature Reviews Microbiology, vol.5, pp.48-56, 2007.

]. K. Lewis and . Lewis, Persister cells, vol.64, pp.357-372, 2010.

C. Leygraf, G. Hultquist, I. Olefjord, B. Elfström, V. M. Knyazheva et al.,

V. Plaskeyev and Y. M. Kolotyrkin, Selective dissolution and surface enrichment of alloy components of passivated Fe18Cr and Fe18Cr3Mo single crystals, Corrosion Science, vol.19, pp.343-357, 1979.

;. F. Li, M. Li, G. An, D. Liu, and . Duan, Effects of sulfidation of passive film in the presence of SRB on the pitting corrosion behaviors of stainless steels, Materials Chemistry and Physics, vol.113, pp.971-976, 2009.

;. K. Li, M. Li, K. J. Whitfield, and . Van-vliet, Beating the bugs: roles of microbial biofilms in corrosion, Corrosion Reviews, vol.31, pp.73-84, 2013.

]. H. Li, E. Li, Y. Zhou, D. Ren, D. Zhang et al.,

K. Gu and . Yang, Investigation of microbiologically influenced corrosion of high nitrogen nickelfree stainless steel by Pseudomonas aeruginosa, Corrosion Science, vol.111, pp.811-821, 2016.

[. Li, ]. H. Li, E. Zhou, D. Zhang, D. Xu et al., Microbiologically Influenced Corrosion of 2707 hyper-duplex stainless steel by marine Pseudomonas aeruginosa biofilm, Scientific Reports, vol.6, pp.1-12, 2016.

H. Li, C. Yang, E. Zhou, C. Yang, H. Feng et al., Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm, Journal of Materials Science & Technology, vol.33, pp.1596-1603, 2017.

;. Liang, H. Liang, N. Wang, and . Huang, Effects of sulphate-reducing bacteria on corrosion behaviour of 2205 duplex stainless steel, Journal of Iron and Steel Research, vol.21, pp.444-450, 2014.

, Understanding Biocorrosion -Fundamentals and Applications, First Edition, 2014.

B. Little, P. Wagner, and D. Duquette, Microbiologically induced increase in corrosion current density of stainless steel under cathodic protection, Corrosion, vol.44, pp.270-274, 1988.

B. Little, P. Wagner, and F. Mansfeld, Microbiologically influenced corrosion of metals and alloys, International Materials Reviews, vol.36, pp.253-272, 1991.

B. Little, P. Wagner, and F. Mansfeld, An overview of Microbiologically Influenced Corrosion, Electrochimica Acta, vol.37, pp.2185-2194, 1992.

B. Little, P. Wagner, K. Hart, R. Ray, D. Lavoie et al., The role of biomineralization in microbiologically influenced corrosion, Biodegradation, vol.9, pp.1-10, 1998.

B. Little and R. Ray, A Perspective on Corrosion Inhibition by Biofilms, Corrosion, vol.58, pp.424-428, 2002.

B. J. Little, J. S. Lee, and R. I. Ray, The influence of marine biofilms on corrosion: A concise review, Electrochimica Acta, vol.54, pp.2-7, 2008.

B. J. Little and J. S. Lee, Microbiologically influenced corrosion: an update, International Materials Reviews, vol.59, pp.384-393, 2014.

;. B. Liu, G. M. Liu, X. L. Zhang, H. Li, and . Chen, Effect of glutaraldehyde fixation on bacterial cells observed by Atomic Force Microscopy, Scanning, vol.34, pp.6-11, 2012.

;. B. Logan and . Logan, Exoelectrogenic bacteria that power microbial fuel cells, Nature Reviews Microbiology, vol.7, pp.375-381, 2009.

B. E. Logan and K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Biochemical Journal, vol.337, pp.81-87, 1954.

F. A. Lopes, P. Morin, R. Oliveira, and L. F. Melo, Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism, Journal of Applied Microbiology, vol.101, pp.1087-1095, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01814445

K. Lorenz and G. Medawar, Über das Korrosionsverhalten austenitischer Chrom-Nickel-(Molybdän-) Stähle mit und ohne Stickstoffzusatz unter besonderer Berücksichtigung ihrer Beanspruchbarkeit in chloridhaltigen Lösungen, Thyssenforschung, vol.1, pp.97-108, 1969.

, Bétons et métaux plus résistants à la biodétérioration, pp.255-282, 2016.

G. Lothongkum, P. Wongpanya, S. Morito, T. Furuhara, and T. Maki, Effect of nitrogen on corrosion behavior of 28Cr-7Ni duplex and microduplex stainless steels in air-saturated 3.5 wt% NaCl solution, Corrosion Science, vol.48, pp.137-153, 2006.

C. A. Loto, Microbiological corrosion: mechanism, control and impact -a review, The International Journal of Advanced Manufacturing Technology, vol.92, pp.4241-4252, 2017.

[. Lu, ]. Y. Lu, C. R. Clayton, and A. R. Brooks, A bipolar model of the passivity of stainless steels -II. The influence of aqueous molybdate, Corrosion Science, vol.29, pp.863-880, 1989.

;. C. Lu, M. B. Lu, C. R. Ives, and . Clayton, Synergism of alloying elements and pitting corrosion resistance of stainless steels, Corrosion Science, vol.35, pp.89-96, 1993.

H. Luo, C. F. Dong, K. Xiao, and X. G. Li, , p.2205

, duplex stainless steel in sodium thiosulphate solution, Applied Surface Science, vol.258, pp.631-639, 2011.

H. Luo, C. F. Dong, X. G. Li, and K. Xiao, , p.2205

, duplex stainless steel in alkaline solutions with different pH in the presence of chloride, Electrochimica Acta, vol.64, pp.211-220, 2012.

[. Luo, ]. H. Luo, Z. Li, Y. Chen, D. Ponge et al., Hydrogen effects on microstructural evolution and passive film characteristics of a duplex stainless steel, Electrochemistry Communications, vol.79, pp.28-32, 2017.

[. Luo, ]. H. Luo, X. Wang, C. Dong, K. Xiao et al., Effect of cold deformation on the corrosion behaviour of UNS S31803 duplex stainless steel in simulated concrete pore solution, Journal of The Electrochemical Society, vol.124, pp.3434-3449, 1992.

D. D. Macdonald, Some personal adventures in passivity -a review of the Point Defect Model for film growth, Russian Journal of Electrochemistry, vol.48, pp.235-258, 2012.

S. H. Mameng, R. Pettersson, and C. Leygraf, Effect of stainless steel composition on atmospheric corrosion resistance at a marine site in Dubai, Corrosion, vol.73, pp.880-891, 2017.

D. Mandrino, ?. Donik, and M. Jenko, AES of thin oxide layers on a duplex stainless steel surface, vol.42, pp.762-765, 2010.

D. Mandrino and ?. Donik, Chemical-state information obtained by AES and XPS from thin oxide layers on duplex stainless steel surfaces, Vacuum, vol.86, pp.18-22, 2011.

E. E. Mann and D. J. Wozniak, Pseudomonas biofilm matrix composition and niche biology, FEMS Microbiology Reviews, vol.36, pp.893-916, 2012.

F. Mansfeld and B. Little, A technical review of electrochemical techniques applied to microbiologically influenced corrosion, Corrosion Science, vol.32, pp.247-272, 1991.

F. Mansfeld, The interaction of bacteria and metal surfaces, Electrochimica Acta, vol.52, pp.7670-7680, 2007.

C. Mansour, G. Berger, M. Fédoroff, G. Lefèvre, A. Pages et al.,

H. Pavageau, S. Catalette, and . Zanna, Influence of temperature and reducing conditions on the sorption of sulfate on magnetite, Journal of Colloid and Interface Science, vol.352, pp.476-482, 2010.

C. Marconnet, J. Landoulsi, C. Dagbert, C. S. Richard, and . Pulvin, Corrosion des aciers inoxydables induite par les micro-organismes mangano-oxydants, Matériaux & Techniques, vol.94, pp.485-493, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01250373

C. Marconnet, Y. Wouters, F. Miserque, C. Dagbert, J. Petit et al.,

D. Galerie, ;. Féron, C. Marconnet, M. Dagbert, D. Roy et al., Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution, Electrochimica Acta, vol.54, pp.2342-2352, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00194748

;. P. Marcus, I. Marcus, and . Olefjord, A round robin on combined electrochemical and AES/ESCA characterization of the passive films on Fe-Cr and Fe-Cr-Mo alloys, Corrosion Science, vol.28, pp.589-602, 1988.

;. P. Marcus, M. E. Marcus, and . Bussell, XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels, vol.59, pp.7-21, 1992.

]. P. Marcus and J. M. Marcus, The anodic dissolution and passivation of Ni-Cr-Fe alloys studied by ESCA, Corrosion Science, vol.33, pp.805-814, 1992.

;. P. Marcus and . Marcus, On some fundamental factors in the effect of alloying elements on the passivation of alloys, Corrosion Science, vol.36, pp.2155-2158, 1994.

;. P. Marcus, E. Marcus, and . Protopopoff, Thermodynamics of thiosulfate reduction on surfaces of iron, nickel and chromium in water at 25 and 300°C, Corrosion Science, vol.39, pp.1741-1752, 1997.

;. P. Marcus and . Marcus, Surface science approach of corrosion phenomena, Electrochimica Acta, vol.143, pp.109-118, 1998.

;. P. Marcus, V. Marcus, H. Maurice, and . Strehblow, Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure, Corrosion Science, vol.50, pp.2698-270, 2008.

T. Massoud, V. Maurice, L. H. Klein, and P. Marcus, Nanoscale morphology and atomic structure of passive films on stainless steel, Journal of The Electrochemical Society, vol.160, pp.232-238, 2013.

H. J. Mathieu and D. Landolt, SIMS/AES characterization of the initial oxidation of an iron-chromium-molybdenum alloy and its base metals at room temperature, Surface and Interface Analysis, vol.14, pp.744-750, 1989.

;. V. Maurice, W. P. Maurice, P. Yang, and . Marcus, XPS and STM investigation of the passive film formed on Cr (110) single-crystal surfaces, Journal of The Electrochemical Society, vol.141, pp.3016-3027, 1994.

;. V. Maurice, W. P. Maurice, P. Yang, and . Marcus, XPS and STM study of passive films formed on Fe-22Cr (110) single-crystal surfaces, Journal of The Electrochemical Society, vol.143, pp.1182-1200, 1996.

;. V. Maurice, W. P. Maurice, P. Yang, and . Marcus, X-Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy study of passive films formed on (100) Fe-18Cr-13Ni single-crystal surfaces, Journal of The Electrochemical Society, vol.145, pp.909-920, 1998.

V. Maurice, S. Cadot, P. Marcus, and X. , STM study of thin oxide films formed on Cr(110), vol.458, pp.195-215, 2000.

;. V. Maurice, P. Maurice, and . Marcus, Passive films at the nanoscale, Electrochimica Acta, vol.84, pp.129-138, 2012.

;. V. Maurice, H. Maurice, L. H. Peng, A. Klein, S. Seyeux et al., Effects of molybdenum on the composition and nanoscale morphology of passivated austenitic stainless steel surfaces, Faraday Discussions, vol.180, pp.151-170, 2015.

S. Maximovitch, G. Barral, F. L. Cras, and F. Claudet, The electrochemical incorporation of molybdenum in the passive layer of a 17% Cr ferritic stainless steel. Its influence on film stabilityin sulphuric acid and on pitting corrosion in chloride media, Corrosion Science, vol.37, pp.271-291, 1995.

A. Mazenc, A. Galtayries, A. Seyeux, P. Marcus, and S. Leclercq, ToF-SIMS study of the behavior of thermally oxidized films formed on nickel-based 690 alloy in hightemperature water, Surface and Interface Analysis, vol.45, pp.583-586, 2012.

;. C. Mcbee, J. Mcbee, and . Kruger, Nature of passive films on iron-chromium alloys, Electrochimica Acta, vol.17, pp.1337-1341, 1972.

;. C. Mcnamara, T. D. Mcnamara, R. Perry, K. Leard, J. Bearce et al., Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks, Biofouling, vol.21, pp.257-265, 2005.

M. Mehanna, R. Basseguy, M. Delia, L. Girbal, M. Demuez et al., New hypotheses for hydrogenase implication in the corrosion of mild steel, Electrochimica Acta, vol.54, pp.140-147, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00475993

M. Mehanna, R. Basséguy, M. Délia, and A. Bergel, Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels, Corrosion Science, vol.51, pp.2596-2604, 2009.

M. Mehanna, R. Basseguy, M. Delia, and A. Bergel, Role of direct microbial electron transfer in corrosion of steels, Electrochemistry Communications, vol.11, pp.568-571, 2009.

;. L. Melo, T. R. Melo, and . Bott, Biofouling in water systems, Experimental Thermal and Fluid Science, vol.14, pp.375-381, 1997.

M. Merchat and C. Forêt, Interactions matériaux-microorganismes : Bétons et métaux plus résistants à la biodétérioration, pp.190-214, 2016.

;. R. Merello, F. J. Merello, J. Botana, M. V. Botella, M. Matres et al., Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn-N duplex stainless steels, Corrosion Science, vol.45, pp.909-921, 2003.

T. J. Mesquita, E. Chauveau, M. Mantel, N. Kinsman, and R. P. Nogueira, Anomalous corrosion resistance behavior of Mo-containing SS in alkaline media: The role of microstructure, Materials Chemistry and Physics, vol.126, pp.602-606, 2011.

T. J. Mesquita, E. Chauveau, M. Mantel, N. Kinsman, V. Roche et al.,

. Nogueira, Lean duplex stainless steels -The role of molybdenum in pitting corrosion of concrete reinforcement studied with industrial and laboratory castings, Materials Chemistry and Physics, vol.132, pp.967-972, 2012.

T. J. Mesquita, E. Chauveau, M. Mantel, and R. P. Nogueira, A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions, Applied Surface Science, vol.270, pp.90-97, 2013.

;. S. Mischler, H. J. Mischler, D. Mathieu, ;. S. Landolt, A. Mischler et al., The chemical composition of the passive film on Fe-24Cr and Fe-24Cr-11Mo studied by AES, Surface and Interface Analysis, vol.11, pp.925-944, 1988.

P. Monnartz, Iron-chromium alloys with special consideration of resistance to acids, Metallurgie, vol.8, pp.161-176, 1911.

;. D. Monroe and . Monroe, Looking for chinks in the armor of bacterial biofilms, PLoS Biology, vol.5, pp.2458-2461, 2007.

M. F. Montemor, M. G. Ferreira, N. E. Hakiki, M. Da-cunha, and . Belo, Chemical composition and electronic structure of the oxide formed on 316L stainless steel and nickel based alloys in high temperature aqueous environments, Corrosion Science, vol.42, pp.1635-1650, 2000.

M. Moradi, J. Duan, H. Ashassi-sorkhabi, and X. Luan, De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria, Corrosion Science, vol.53, pp.4282-4290, 2011.

M. Moradi, Z. Song, L. Yang, J. Jiang, and J. He, Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel, Corrosion Science, vol.84, pp.103-112, 2014.

;. J. Morales, P. Morales, S. Esparza, R. González, M. P. Salvarezza et al., The role of Pseudomonas aeruginosa on the localized corrosion of 304 stainless steel, Corrosion Science, vol.34, pp.1531-1540, 1993.

;. D. Moreno, J. R. Moreno, J. L. Ibars, J. M. Polo, and . Bastidas, EIS monitoring study of the early microbiologically influenced corrosion of AISI 304L stainless steel condenser tubes in freshwater, Journal of Solid State Electrochemistry, vol.18, pp.377-388, 2014.

;. V. Moura, L. D. Moura, J. M. Lima, A. Y. Pardal, R. R. Kina et al., , 2008.

. Tavares, Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803, Materials Characterization, vol.59, pp.1127-1132, 2008.

J. Mystkowska, J. A. Ferreira, K. Leszczynska, S. Chmielewska, and J. R. ,

P. D?browski, K. J. Wiecinski, D. Kurzyd?owski-;-l.-nan, T. Xu, X. Gu et al., Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.105, pp.228-234, 2015.

R. C. Newman and T. Shahrabi, The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behaviour of austenitic stainless steel in hydrochloric acid, Corrosion Science, vol.27, pp.827-838, 1987.

T. M. Nguyen, X. Sheng, Y. Ting, and S. O. Pehkonen, Biocorrosion of AISI 304 stainless steel by Desulfovibrio desulfuricans in seawater, Industrial & Engineering Chemistry Research, vol.47, pp.4703-4711, 2008.

J. Nilsson and G. Chai, The physical properties of DSS, Duplex stainless steel, Conference Proceedings, 2010.

K. N. Oh, S. H. Ahn, K. S. Eom, and H. S. Kwon, A Study on the localized corrosion and repassivation kinetics of Fe-20Cr-xNi (x = 0-20 wt%) stainless steels via electrochemical analysis, Corrosion Science, vol.100, pp.158-168, 2015.

;. G. Okamoto and . Okamoto, Passive film on 18-8 stainless steel structure and its function, Corrosion Science, vol.13, pp.471-489, 1973.

I. Olefjord, The passive state of stainless steels, Materials Science and Engineering, vol.42, pp.161-171, 1980.

I. Olefjord and B. Elfström, The composition of the surface during passivation of stainless steels, Corrosion, vol.38, pp.46-52, 1982.

I. Olefjord, B. Brox, and U. Jevelstam, Surface Composition of Stainless Steels during Anodic Dissolution and passivation studied by ESCA, Journal of The Electrochemical Society, vol.132, pp.2854-2861, 1985.

I. Olefjord and L. Wegrelius, Surface analysis of passive state, Corrosion Science, vol.31, pp.89-98, 1990.

I. Olefjord and L. Wegrelius, The influence of nitrogen on the passivation of stainless steels, Corrosion Science, vol.38, pp.1203-1220, 1996.

B. H. Olesen, R. Avci, and Z. Lewandowski, Hörnström, An AES and XPS study of the high alloy austenitic stainless steel 254 SMO ® tested in a ferric chloride solution, Corrosion Science, vol.42, pp.141-151, 1994.

;. A. Olsson and . Olsson, The influence of nitrogen and molybdenum on passive films formed on the austeno-ferritic stainless steel 2205 studied by AES and XPS, Corrosion Science, vol.37, pp.467-479, 1995.

C. A. Olsson, D. Hamm, and D. Landolt, Electrochemical Quartz Crystal Microbalance studies of the passive behavior of Cr in a sulfuric acid solution, Journal of The Electrochemical Society, vol.147, pp.2563-2571, 2000.

C. A. Olsson, H. Mathieu, and D. Landolt, Angle-resolved XPS analysis of molybdenum and tungsten in passive films on stainless steel PVD alloys, Surface and Interface Analysis, vol.34, pp.130-134, 2002.

C. A. Olsson and D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochimica Acta, vol.48, pp.1093-1104, 2003.

C. A. Olsson, S. Malmgren, M. Gorgoi, and K. Edström, Quantifying the metal nickel enrichment on stainless steel, Electrochemical and Solid-State Letters, pp.1-3, 2011.

D. Ornek, A. Jayaraman, B. C. Syrett, C. H. Hsu, F. B. Mansfeld et al., Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate, Applied Microbiology and Biotechnology, vol.58, pp.651-657, 2002.

C. Ortiz, P. S. Guiamet, and H. A. Videla, Relationship between biofilms and corrosion of steel by microbial contaminants of cutting-oil emulsions, International Biodeterioration, vol.26, pp.315-326, 1990.

D. Osiro, R. B. Filho, O. B. Assis, L. A. De-castro-jorge, and L. A. Colnago, Measuring bacterial cells size with AFM, Brazilian Journal of Microbiology, vol.43, pp.341-347, 2012.

;. G. O'toole, R. O'toole, and . Kolter, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Molecular Microbiology, vol.30, pp.295-304, 1998.

A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal et al., Effect of Mo and Mn additions on the corrosion behavior of AISI 304 and 316 stainless steels in H2SO4, Corrosion Science, vol.50, pp.780-794, 2008.

A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal et al., Pitting corrosion behaviour of austenitic stainless steels -combining effects of Mn and Mo additions, Corrosion Science, vol.50, pp.1796-1806, 2008.

A. Pedersen and M. Hermannsson, Inhibition of metal corrosion by bacteria, Biofouling, vol.3, pp.1-11, 1991.

L. Peguet and A. Gaugain, Localized corrosion resistance of duplex stainless steels: methodology and properties; a review paper, Revue de Métallurgie, vol.108, pp.231-243, 2011.

L. Peguet, A. Gaugain, C. Dussart, B. Malki, and B. Baroux, Statistical study of the critical pitting temperature of 22-05 duplex stainless steel, Corrosion Science, vol.60, pp.280-283, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00747450

J. Pendyala, G. G. Geesey, P. Stoodley, M. Hamilton, and G. Harkin, Chemical effects of biofilm colonization on 304 stainless steel, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, pp.1755-1760, 1996.

M. O. Pereira, M. Kuehn, S. Wuertz, T. Neu, and L. F. Melo, Effect of flow regime on the architecture of a Pseudomonas fluorescens biofilm, vol.78, pp.164-171, 2002.

R. A. Perren, T. A. Suter, P. J. Uggowitzer, L. Weber, R. Magdowski et al.,

M. O. Böhni and . Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: investigations by means of a new microelectrochemical method. I. Precipitation-free states, Corrosion Science, vol.43, pp.707-726, 2001.

R. A. Perren, T. Suter, C. Solenthaler, G. Gullo, P. J. Uggowitzer et al., Corrosion resistance of super duplex stainless steels in chloride ion containing environments: investigations by means of a new microelectrochemical method, Corrosion Science, vol.43, pp.727-745, 2001.

M. Petrova, M. Bojinov, S. Zanna, and P. Marcus, Mechanism of anodic oxidation of molybdenum in nearly-neutral electrolytes studied by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy, Electrochimica Acta, vol.56, pp.7899-7906, 2011.

O. E. Petrova, K. Sauer, ;. Ploux, S. Beckendorff, M. Nardin et al., Quantitative and morphological analysis of biofilm formation on self-assembled monolayers, Colloids and Surfaces B: Biointerfaces, vol.30, pp.174-181, 2007.

L. Ploux, A. Ponche, and K. Anselme, Bacteria/material interfaces: Role of the material and cell wall properties, in Surface and interfacial aspects of cell adhesion, pp.65-101, 2011.

C. Poleunis, C. Rubio, C. Compère, and P. Bertrand, Role of salts on the BSA adsorption on stainless steel in aqueous solutions. II. ToF-SIMS spectral and chemical mapping study, Surface and Interface Analysis, vol.34, pp.55-58, 2002.

C. Poleunis, C. Compère, and P. Bertrand, Time-of-flight secondary ion mass spectrometry: characterization of stainless steel surfaces immersed in natural seawater, Journal of Microbiological Methods, vol.48, pp.195-205, 2002.

J. H. Potgieter and M. B. Cortie, Determination of the microstructure and alloy element distribution in experimental duplex stainless steels, Materials Characterisation, vol.26, pp.155-165, 1991.

J. H. Potgieter, P. A. Olubambi, L. Cornish, C. N. Machio, and E. M. Sherif, Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels, Corrosion Science, vol.50, pp.2572-2579, 2008.

C. M. Pradier, P. Bertrand, M. N. Bellon-fontaine, C. Compère, D. Costa et al.,

C. Marcus, B. Poleunis, M. G. Rondot, and . Walls, Adsorption of proteins on an AISI 316 stainless-steel surface in natural seawater, Surface and Interface Analysis, vol.30, pp.45-49, 2000.

C. M. Pradier, D. Costa, C. Rubio, C. Compère, and P. Marcus, Role of salts on BSA adsorption on stainless steel in aqueous solutions. I. FT-IRRAS and XPS characterization, Surface and Interface Analysis, vol.34, pp.50-54, 2002.

C. M. Pradier, C. Rubio, C. Poleunis, P. Bertrand, P. Marcus et al., Surface characterization of three marine bacterial strains by Fourier Transform IR, X-ray Photoelectron Spectroscopy, and Time-of-Flight Secondary-Ion Mass Spectrometry, correlation with adhesion on stainless steel surfaces, Références bibliographiques -Q, vol.109, pp.34-39, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00109053

L. Qiu, G. Xu, ;. Ramstedt, R. Nakao, S. N. Wai et al., Monitoring surface chemical changes in the bacterial cell wall: multivariate analysis of cryo-x-ray photoelectron spectroscopy data, The Journal of Biological Chemistry, vol.256, pp.12389-12396, 2010.

K. Ravindranath and S. N. Malhotra, The influence of aging on the intergranular corrosion of 22 chromium-5 nickel duplex stainless steel, Corrosion Science, vol.37, pp.121-132, 1995.

P. Refait, M. Jeannin, R. Sabot, S. Sablé, I. Lanneluc et al., Les interactions fer-soufre dans les phénomènes de biocorrosion, in Interactions matériaux-microorganismes : Bétons et métaux plus résistants à la biodétérioration, C. Lors, F. Feugeas, B. Tribollet, pp.235-252, 2016.

A. G. Revesz and J. Kruger, Passivity of Metals, pp.137-155, 1979.

;. T. Riedel, W. M. Riedel, K. H. Berelson, S. E. Nealson, and . Finkel, Oxygen consumption rates of bacteria under nutrient-limited conditions, Applied and Environmental Microbiology, vol.79, pp.4921-4931, 2013.

R. Robin, F. Miserque, and V. Spagnol, Correlation between composition of passive layer and corrosion behavior of high Si-containing austenitic stainless steels in nitric acid, Journal of Nuclear Materials, vol.375, pp.65-71, 2008.

M. Robineau, A. Romaine, R. Sabot, M. Jeannin, V. Deydier et al.,

. Refait, Galvanic corrosion of carbon steel in anoxic conditions at 80 °C associated with a heterogeneous magnetite (Fe3O4)/mackinawite (FeS) layer, Electrochimica Acta, vol.255, pp.274-285, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02473211

F. L. Roe, Z. Lewandowski, and T. Funk, Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surfaces, Corrosion, vol.52, pp.744-752, 1996.

;. A. Romaine, M. Romaine, R. Jeannin, S. Sabot, P. Necib et al., Corrosion processes of carbon steel in argillite: Galvanic effects associated with the heterogeneity of the corrosion product layer, Electrochimica Acta, vol.182, pp.1019-1028, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02478361

M. Ross, D. A. Young, and R. Grover, Theory of the iron phase diagram at earth core conditions, Journal of the Geophysical Research, vol.95, pp.21713-21716, 1990.

A. Rossi, B. Elsener, G. Hähner, M. Textor, N. D. Spencer et al., SIMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels, vol.29, pp.460-467, 2000.

;. I. Rouvre, R. Rouvre, and . Basseguy, Exacerbation of the mild steel corrosion process by direct electron transfer between [Fe-Fe]-hydrogenase and material surface, Corrosion Science, vol.111, pp.199-211, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01907316

;. S. Roux and . Roux, Biodétérioration bétons, in Interactions matériaux-microorganismes, 2016.

, Bétons et métaux plus résistants à la biodétérioration, pp.283-301, 2016.

P. G. Rouxhet and M. J. Genet, XPS analysis of bio-organic systems, Surface and Interface Analysis, vol.43, pp.1453-1470, 2011.

C. Rubio, D. Costa, M. N. Bellon-fontaine, P. Relkin, C. M. Pradier et al.,

. Marcus, Characterization of bovine serum albumin adsorption on chromium and AISI 304 stainless steel, consequences for the Pseudomonas fragi K1 adhesion, Colloids and Surfaces B: Biointerfaces, vol.24, pp.193-205, 2002.

;. R. Ruhal, H. Ruhal, O. Antti, N. Rzhepishevska, D. R. Boulanger et al., A multivariate approach to correlate bacterial surface properties to biofilm formation by lipopolysaccharide mutants of Pseudomonas aeruginosa, Colloids and Surfaces B: Biointerfaces, vol.127, pp.182-191, 2015.

M. P. Ryan, R. C. Newman, and G. E. Thompson, Atomically resolved STM of oxide film structures on Fe-Cr alloys during passivation in sulfuric acid solution, Journal of The Electrochemical Society, vol.141, pp.164-165, 1994.

M. P. Ryan, D. E. Williams, R. J. Chater, B. M. Hutton, and D. S. Mcphail, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria, Research in Microbiology, vol.415, pp.49-56, 2002.

N. Sato, An overview on the passivity of metals, Corrosion Science, vol.31, pp.1-19, 1990.

;. K. Sauer, A. K. Sauer, G. D. Camper, J. W. Ehrlich, D. G. Costerton et al., Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm, Journal of Bacteriology, vol.184, pp.1140-1154, 2002.

R. M. Saville, S. Rakshe, J. A. Haagensen, S. Shukla, and A. M. Spormann, Energy-dependent stability of Shewanella oneidensis MR-1 biofilms, Journal of Bacteriology, vol.193, pp.3257-3264, 2011.

G. Schitter, R. W. Stark, and A. Stemmer, Fast contact-mode atomic force microscopy on biological specimen by model-based control, Ultramicroscopy, vol.100, pp.253-257, 2004.

;. E. Schmidt-rieder, X. Q. Schmidt-rieder, J. P. Tong, M. Farr, and . Aindow, situ electrochemical scanning probe microscopy corrosion studies on duplex stainless steel in aqueous NaCl solutions, vol.31, pp.139-145, 1996.

;. E. Schmidt-rieder, M. Schmidt-rieder, J. P. Ashworth, and . Farr, The effect of nitrogen on the stability of the passive film on a Zeron 100 super duplex stainless steel, Electrochemical and Solid-State Letters, vol.2, pp.19-21, 1999.

;. E. Schmidt-rieder, M. Schmidt-rieder, J. P. Ashworth, and . Farr, The effects of preparative treatment on the composition of the passive film on duplex stainless steel, Transactions of the Institute of Metal Finishing, vol.81, pp.164-167, 2003.

P. Schmutz and D. Landolt, In-situ microgravimetric studies of passive alloys: potential sweep and potential step experiments with Fe-25Cr and Fe-17Cr-33Mo in acid and alkaline solution, Corrosion Science, vol.41, pp.2143-2163, 1999.

R. P. Schneider, Bacterial adhesion to solid substrata coated with conditioning films derived from chemical fractions of natural waters, Journal of Adhesion Science and Technology, vol.18, pp.979-994, 1997.

S. R. Schooling and T. J. Beveridge, Membrane vesicles: an overlooked component of the matrices of biofilms, Microbial ferric iron reductases, vol.188, pp.427-447, 2003.

K. L. Schulze and R. S. Lipe, Relationship between substrate concentration, growth rate, and respiration rate of Escherichia coli in continuous culture, Archiv für Mikrobiologie, vol.48, pp.1-20, 1964.

C. Schwechheimer and M. J. Kuehn, Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions, Nature Reviews Microbiology, vol.13, 2015.

J. H. Scofield, ;. Scotto, R. D. Cintio, G. Marcenaro, ;. Senoner et al., The influence of marine aerobic microbial film on stainless steel corrosion behaviour, SIMS imaging of the nanoworld: applications in science and technology, vol.8, pp.1050-1068, 1976.

P. Galtayries and . Marcus, ToF-SIMS imaging study of the early stages of corrosion in Al-Cu thin films, Journal of The Electrochemical Society, vol.158, pp.165-171, 2011.

A. Seyeux, V. Maurice, and P. Marcus, Oxide film growth kinetics on metals and alloys I. Physical model, Journal of The Electrochemical Society, vol.160, pp.189-196, 2013.

A. Seyeux, S. Zanna, A. Allion, and P. Marcus, The fate of the protective oxide film on stainless steel upon early stage growth of a biofilm, Corrosion Science, vol.91, pp.352-356, 2015.

X. Sheng, Y. Ting, and S. O. Pehkonen, The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316, Corrosion Science, vol.49, pp.2159-2176, 2007.

;. Sheng, H. Sheng, X. Yu, and . Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review, Biotechnology Advances, vol.28, pp.882-894, 2010.

;. X. Shi, R. Shi, M. Avci, Z. Geiser, and . Lewandowski, Comparative study in chemistry of microbially and electrochemically induced pitting of 316L stainless steel, Corrosion Science, vol.45, pp.2577-2595, 2003.

K. Shimizu, H. Habazaki, P. Skeldon, G. E. Thompson, and G. C. Wood, GDOES depth profiling analysis of the air-formed oxide film on a sputter-deposited Type 304 stainless steel, Surface and Interface Analysis, vol.29, pp.743-746, 2000.

S. Sillankorva, P. Neubauer, and J. Azeredo, Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A, BMC Biotechnology, vol.8, pp.1-12, 2008.

E. M. Smith, Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community, Aquatic Microbial Ecology, vol.16, pp.27-35, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01663412

M. Soma, A. Tanaka, H. Seyama, and . Satake, Characterization of arsenic in lake sediments by X-ray photoelectron spectroscopy, Geochimica et Cosmochimica Acta, vol.58, pp.2743-2745, 1994.

Z. Song, H. Feng, S. R. Hu-;-k, K. Sreekumari, Y. Nandakumar et al., Development of Chinese duplex stainless steel in recent years, Bacterial attachment to stainless steel welds: significance of substratum microstructure, vol.24, pp.303-316, 2001.

;. R. Stadler, W. Stadler, K. Fuerbeth, M. Harneit, M. Grooters et al., First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates, Electrochimica Acta, vol.54, pp.91-99, 2008.

R. Stadler, L. Wei, W. Fürbeth, M. Grooters, and A. Kuklinski, Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS), Materials and Corrosion, vol.61, pp.1008-1016, 2010.

J. Starosvetsky, D. Starosvetsky, B. Pokroy, T. Hilel, and R. Armon, Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling, Corrosion Science, vol.50, pp.540-547, 2008.

;. J. Stewart, D. E. Stewart, and . Williams, The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions, Corrosion Science, vol.33, pp.457-474, 1992.

;. P. Stewart, J. W. Stewart, and . Costerton, Antibiotic resistance of bacteria in biofilms, The Lancet, vol.358, pp.135-138, 2001.

P. S. Stewart, Diffusion in biofilms, Journal of Bacteriology, vol.185, pp.1485-1491, 2003.

;. P. Stewart, M. J. Stewart, and . Franklin, Physiological heterogeneity in biofilms, Nature Reviews Microbiology, vol.6, pp.199-210, 2008.

P. Stoodley, S. Wilson, L. Hall-stoodley, J. D. Boyle, and H. M. Lappin-scott,

J. W. Costerton, Growth and detachment of cell clusters from mature mixed-species biofilms, Applied and Environmental Microbiology, vol.37, pp.5608-5613, 2001.

P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, Biofilms as complex differentiated communities, vol.56, pp.187-209, 2002.

F. Straub, T. Wirth, A. Hertwig, V. Hodoroaba, W. E. Unger et al.,

. Böllinghaus, Imaging the microstructure of duplex stainless steel samples with TOF-SIMS, Surface and Interface Analysis, vol.42, pp.739-742, 2010.

H. Strehblow, V. Maurice, and P. Marcus, Passivity of metals, in Corrosion mechanisms in theory and practice, Third Edition, pp.235-326, 2011.

T. L. Sudesh, L. Wijesinghe, D. J. Blackwood, ;. Sugimoto, and Y. Sawada, The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions, Applied Surface Science, vol.253, pp.422-445, 1977.

M. I. Suleiman, I. Ragault, and R. C. Newman, The pitting of stainless steel under a rust membrane at very low potentials, Corrosion Science, vol.36, pp.485-486, 1994.

E. Symniotis, ;. Takahashi, and W. A. Basset, Galvanic effects on the active dissolution of duplex stainless steels, Corrosion, vol.46, pp.483-486, 1964.

M. Tan, E. Akiyama, A. Kawashima, K. Asami, and K. Hashimoto, The effect of air exposure on the corrosion behavior of amorphous Fe-8Cr-Mo-13P-7C alloys in 1 M HCl, vol.37, pp.1289-1301, 1995.

S. Tanuma, C. J. Powell, and D. R. Penn, Calculations of electron inelastic mean free paths. II. Data for 27 elements over the 50-2000 eV range, Surface and Interface Analysis, vol.17, pp.911-926, 1991.

S. Tario, M. Abel, R. H. Carr, J. E. Castle, and J. F. Watts, Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS, vol.33, pp.1-14, 2015.

D. Thierry and W. Sand, Microbially Influenced Corrosion, Corrosion Mechanisms in Theory and Practice, pp.737-776, 2011.

N. G. Thompson, M. Yunovich, and D. Dunmire, Cost of corrosion and corrosion maintenance strategies, Corrosion Reviews, vol.25, pp.247-261, 2007.

L. Tian, X. D. Chen, Q. P. Yang, J. C. Chen, L. Shi et al., Effect of calcium ions on the evolution of biofouling by Bacillus subtilis in plate heat exchangers simulating the heat pump system used with treated sewage in the 2008 Olympic Village, Colloids and Surfaces B: Biointerfaces, vol.94, pp.309-316, 2012.

[. Bautista, ;. B. Bautista, M. L. Carvalho, A. Seyeux, S. Zanna et al., , 2014.

B. Cristiani, P. Tribollet, I. Marcus, and . Frateur, Effect of protein adsorption on the corrosion behavior of 70Cu-30Ni alloy in artificial seawater, Bioelectrochemistry, vol.97, pp.34-42, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01018382

[. Bautista, ;. B. Bautista, A. J. Wikie?, I. Datsenko, M. Vera et al., Influence of extracellular polymeric substances (EPS) from Pseudomonas NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in seawater, Journal of Electroanalytical Chemistry, vol.737, pp.184-197, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01111550

;. Tsai, J. Tsai, and . Chen, Galvanic corrosion between the constituent phases in duplex stainless steel, Corrosion Science, vol.49, pp.3659-3668, 2007.

S. Tsuneda, H. Aikawa, H. Hayashi, A. Yuasa, and A. Hirata, Extracellular polymeric substances responsible for bacterial adhesion onto solid surface, FEMS Microbiology Letters, vol.223, pp.287-292, 2003.

;. H. Uhlig and . Uhlig, Passivity in metals and alloys, vol.19, pp.777-791, 1979.

K. M. Usher, A. H. Kaksonen, I. Cole, and D. Marney, Critical review: Microbially influenced corrosion of buried carbon steel pipes, International Biodeterioration & Biodegradation, vol.93, pp.84-106, 2014.

, Vander Voort, Metallographic specimen preparation for Electron Backscattered Diffraction Part I, Practical Metallography, vol.48, pp.454-473, 2011.

A. S. Vanini, J. Audouard, and P. Marcus, The role of nitrogen in the passivity of austenitic stainless steels, Corrosion Science, vol.36, pp.1825-1834, 1994.

H. A. Videla and W. G. Characklis, Biofouling and microbially influenced corrosion, International Biodeterioration & Biodegradation, vol.29, pp.195-212, 1992.

H. A. Videla, Biofilms and corrosion interactions on stainless steel in seawater, International Biodeterioration & Biodegradation, vol.34, pp.245-257, 1994.

H. A. Videla, An overview of mechanisms by which sulphate-reducing bacteria influence corrosion of steel in marine environments, International Biodeterioration & Biodegradation, vol.15, pp.176-201, 2000.

H. A. Videla and L. K. Herrera, Microbiologically influenced corrosion: looking to the future, International Microbiology, vol.8, pp.169-180, 2005.

H. A. Videla and L. K. Herrera, Understanding microbial inhibition of corrosion. A comprehensive overview, International Biodeterioration & Biodegradation, vol.63, pp.896-900, 2009.

V. Vignal, O. Delrue, O. Heintz, and J. Peultier, Influence of the passive film properties and residual stresses on the micro-electrochemical behavior of duplex stainless steels, Electrochimica Acta, vol.55, pp.7118-7125, 2010.

V. Vignal, H. Zhang, O. Delrue, O. Heintz, I. Popa et al., Influence of long-term ageing in solution containing chloride ions on the passivity and the corrosion resistance of duplex stainless steels, Corrosion Science, vol.53, pp.894-903, 2011.

V. Vignal, H. Krawiec, O. Heintz, and D. Mainy, Passive properties of lean duplex stainless steels after long-term ageing in air studied using EBSD, AES, XPS and local electrochemical impedance spectroscopy, Corrosion Science, vol.67, pp.109-117, 2013.

V. Vignal, D. Ba, H. Zhang, F. Herbst, and S. L. Manchet, Influence of the grain orientation spread on the pitting corrosion resistance of duplex stainless steels using electron backscatter diffraction and critical pitting temperature test at the microscale, Corrosion Science, vol.68, pp.275-278, 2013.

V. Vignal, H. Krawiec, and S. L. Manchet, Influence of surface preparation and microstructure on the passivity and corrosion behaviour of duplex stainless steels, Journal of Solid State Electrochemistry, vol.18, pp.2947-2954, 2014.

B. Vu, M. Chen, R. J. Crawford, E. P. Ivanova, ;. P. Wan et al., Effect of nitrogen on biocorrosion behavior of high nitrogen nickel-free stainless steel in different simulated body fluids, Materials Science & Engineering C, vol.14, pp.510-516, 2009.

J. Wang, P. J. Uggowitzer, R. Magdowski, and M. O. Speidel, Nickel-free duplex stainless steels, Scripta Materialia, vol.40, pp.123-129, 1999.

Y. Wang, X. Cheng, and X. Li, Electrochemical behavior and compositions of passive films formed on the constituent phases of duplex stainless steel without coupling, Electrochemistry Communications, vol.57, pp.56-60, 2015.

L. Wegrelius, F. Falkenberg, and I. Olefjord, Passivation of Stainless Steels in Hydrochloric Acid, Journal of The Electrochemical Society, vol.146, pp.1397-1406, 1999.

S. E. Werner, C. A. Johnson, N. J. Laycock, P. T. Wilson, and B. J. Webster, Pitting of type 304 stainless steel in the presence of a biofilm containing sulphate reducing bacteria, Corrosion Science, vol.40, pp.465-480, 1998.

N. A. Whitehead, A. M. Barnard, H. Slater, N. J. Simpson, and G. P. ,

. Salmond, Quorum-sensing in Gram-negative bacteria, FEMS Microbiology Reviews, vol.25, pp.365-404, 2001.

K. A. Whitehead and J. Verran, The effect of substratum properties on the survival of attached microorganisms on inert surfaces, Marine and Industrial Biofouling, vol.4, pp.13-33, 2008.

K. M. Wieneck and M. Fletcher, Effects of substratum wettability and molecular topography on the initial adhesion of bacteria to chemically defined substrata, Biofouling, vol.11, pp.293-311, 1997.

A. J. Wikie?, I. Datsenko, M. Vera, and W. Sand, Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment, Bioelectrochemistry, vol.97, pp.52-60, 2014.

R. D. Willenbruch, C. R. Clayton, M. Oversluizen, D. Kim, and Y. Lu, An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel, Corrosion Science, vol.31, pp.179-190, 1990.

C. R. Woese, ;. Xia, C. Yang, D. Xu, D. Sun et al., Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm, Current Biology, vol.6, pp.481-492, 1996.

]. D. Xu, J. Xu, E. Xia, D. Zhou, H. Zhang et al., Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm, Bioelectrochemistry, vol.113, pp.1-8, 2017.

[. Xu, ]. J. Xu, M. Li, Q. He, X. Sun et al., The behavior of chromium and molybdenum in the propagation process of localized corrosion of steels, Environmental Science and Pollution Research, vol.24, pp.691-707, 1984.

;. W. Yang, D. Yang, P. Costa, and . Marcus, Chemical composition, chemical states, and resistance to localized corrosion of passive Films on an Fe-17%Cr alloy, Journal of The Electrochemical Society, vol.141, pp.111-116, 1994.

W. P. Yang, D. Costa, and P. Marcus, Resistance to pitting and chemical composition of passive films of a Fe-17%Cr alloy in chloride-containing acid solution, Journal of The Electrochemical Society, vol.141, pp.2669-2676, 1994.

;. Y. Yang, A. J. Yang, L. T. Wikie?, P. Dall'agnol, M. J. Eloy et al., Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures, Biofouling, vol.32, pp.95-108, 2016.

C. Yin, F. Meng, and G. Chen, Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria, Water Research, vol.68, pp.740-749, 2015.

K. D. Young, Bacterial morphology: why have different shapes?, Current Opinion in Microbiology, vol.10, pp.596-600, 2007.

]. S. Yuan, S. O. Yuan, and . Pehkonen, Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study, vol.59, pp.87-99, 2007.

]. S. Yuan, A. M. Yuan, S. O. Choong, and . Pehkonen, The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy, Corrosion Science, vol.49, pp.4352-4385, 2007.

S. J. Yuan, S. O. Pehkonen, Y. P. Ting, E. T. Kang, and K. G. Neoh, Corrosion behavior of type 304 stainless steel in a simulated seawater-based medium in the presence and absence of aerobic Pseudomonas NCIMB 2021 bacteria, Industrial & Engineering Chemistry Research, vol.47, pp.3008-3020, 2008.

;. S. Yuan and . Yuan, AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater, Corrosion Science, vol.51, pp.1372-1385, 2009.

S. Yuan, B. Liang, Y. Zhao, and S. O. Pehkonen, Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria, Corrosion Science, vol.74, pp.353-366, 2013.

;. L. Zhang, Y. Zhang, B. Jiang, W. Deng, J. Zhang et al., Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel, Materials Characterization, vol.60, pp.1522-1528, 2009.

;. L. Zhang, W. Zhang, Y. Zhang, B. Jiang, D. Deng et al., Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101, Electrochimica Acta, vol.54, pp.5387-5392, 2009.

;. Z. Zhang, D. Zhang, Y. Hana, C. Jiang, J. Shia et al., Microstructural evolution and pitting resistance of annealed lean duplex stainless steel UNS S32304, Nuclear Engineering and Design, vol.243, pp.56-62, 2012.

;. P. Zhang, D. Zhang, Y. Xu, K. Li, T. Yang et al., Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm, Bioelectrochemistry, vol.101, pp.14-21, 2015.

E. Zhou, H. Li, C. Yang, J. Wang, D. Xu et al., Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm, International Biodeterioration & Biodegradation, vol.127, pp.1-9, 2018.

V. Zinkevich, I. Bogdarina, H. Kang, M. A. Hill, R. Tapper et al., Characterisation of exopolymers produced by different isolates of marine sulphatereducing bacteria, International Biodeterioration & Biodegradation, vol.37, pp.163-172, 1996.

, Couche interne : 1, issue.1

, Couche externe : Cr(OH), vol.3, p.100

, Couche interne : Fe2O3 : 10 ; Cr2O3 : 90 Fe : 55 Cr : 45 Passivation électrochimique

M. H2so4-;-+500-mv and /. Esh, , vol.22

, Couche externe : Cr(OH), vol.3, p.100

, Couche interne : Fe2O3 : 5 ; Cr2O3 : 95 Fe : 50 Cr, p.50

, Couche externe : Cr(OH)3 : 96, Ni(OH)2 : 4 Couche interne

, Couche externe : Cr(OH)3 : 97 ; Ni(OH)2 : 3 Couche interne : Fe2O3 : 17

, Film d'oxyde natif Couche

C. Externe,

, Couche interne : Cr2O3 : 96.4

. Mo4+/mo6+, , pp.3-6

, Passivation électrochimique

, Couche interne, vol.1, issue.3

, Couche externe : Fe2O3 : 89.1 ; Mo 4+ /Mo

, Couche interne : Cr2O3, Cr(OH), vol.3, p.100

, Couche interne, vol.1, issue.3

, Couche externe : Fe2O3 : 83.9

, Couche interne : Cr2O3, Cr(OH), vol.3, p.100

D. L'objectif-de-ce-chapitre-est-de-caractériser-le-film, oxyde natif formé après polissage l'acier inoxydable duplex 2304 par un couplage XPS/ToF-SIMS. A notre connaissance, ce travail propose la première comparaison des surfaces native et passive dans le cas d'un acier inoxydable duplex, Ni et N) dans la couche d'oxyde

, Le film d'oxyde natif ainsi que le film passif formé à la surface de l'alliage duplex peuvent être décrit, comme précédemment, par une couche d'oxydes et d'hydroxydes composée majoritairement d'espèces Fe(III) et Cr(III) avec une faible quantité d'espèces

(. Mo and . Vi, Au vu des analyses XPS angulaires, la stratification du fer et du chrome dans la couche d'oxyde est beaucoup plus prononcée pour le film passif que pour le film d'oxyde natif. La quantité d'hydroxydes augmente après la passivation. Les analyses XPS angulaires suggèrent que les espèces oxydées et hydroxydées, qui ne sont pas stratifiées pour film d'oxyde natif, sont stratifiées pour le film passif, Le nickel n'est pas détecté sous forme oxydée. Sur les profils ToF-SIMS, l'évolution des signaux caractéristiques des oxydes de fer (FeO2 -), de chrome

, Cr 2p3/2, Ni 2p3/2 et Mo 3d indique que l'épaisseur de la couche d'oxyde est de l'ordre de quelques nanomètres. L'épaisseur de la couche d'oxyde déterminée par XPS est de, La présence de composantes métalliques dans les spectres XPS des niveaux de coeur Fe 2p3

, Les épaisseurs équivalentes obtenues à partir des profils ToF-SIMS sont légèrement inférieures mais du même ordre de grandeur que les épaisseurs obtenues par XPS. Ces résultats suggèrent que le film passif est légèrement plus fin que le film d'oxyde natif. Cette différence peut être expliquée par la dissolution d'une partie de la couche d