. .. General-conclusion, 2.2 Modeling Induced Aseismic Motion and Second Order Triggering of Seismic Failure

, Hydro-Mechanical Modeling of Laboratory Injection Tests, p.149

, je me suis intéréssée à étudier la réactivation hydro-mécanique d'une faille pré-existante. En effet, nombreuses observations associent une forte augmentation du risque sismique à des activités d'injection (la géothermie par example), dans des régions actives sismiquement (comme en Californie), comme dans des régions de faible sismicité

, La réactivation hydro-mécanique des failles était l'objet de nombreuses études d'observations, des études expérimentales ainsi que numériques. Néanmoins, comme nous l'avons montré au chapitre 1, plusieurs aspects de la réactivation hydro-mécanique n

. Dans-cette-Étude, ) d'explorer l'effet des paramètres d'injection (notamment la pression et le taux de pression d'injection) étude: ? observation d'une dépendence de la réponse sismique (taux de sismicité et distribution de magnitude) avec la pression d'injection et le taux de pression, ? pour des taux de pressions assez élevées, le taux de sismicité se sature, et se compense par un moment sismique libéré plus important, ? les failles plus stables résistent mieux à l'injection de fluide: la perturbation du taux de sismicité est dans ce cas moins importante, ? développement de méthodes d'inversion (déterministe et probabiliste) pour estimer l

, ) l'interaction glissement sismisque/asismique dans le contexte de la sismicité induite, et finalement (3) d'avoir un modèle hydro-mécanique qui tient compte de l'évolution de la diffusivité hydraulique avec le déplacement accumulé sur la faille et la réduction de la contrainte effective, En outre, je discute dans ce chapitre les possibles pistes afin d'améliorer notre modèle et pouvoir explorer (1) la sismicité après injection

R. Abercrombie and J. Rice, Can observations of earthquake scaling constrain slip weakening?, Geophys. J. Int, vol.162, p.55, 2005.

K. Aki, Estimation of earthquake moment, released energy and stress-strain drop from G wave spectrum, Bulletin of the Earthquake Research Institute, vol.44, issue.2, pp.23-88, 1964.

K. Aki, Maximum Likelihood Estimate of b in the Formula log N = a -bM and its Confidence Limits, Bulletin of the Earthquake Research Institute, vol.43, p.71, 1965.

A. and A. , The World's Major Earthquake Zones. ThoughtCo. (Cit, p.9, 2018.

M. Almakari, P. Dublanchet, H. Chauris, and F. Pellet, Effect of the Injection-Scenatio on the Rate and Magnitude Content of Injection-Induced Seismicity: Case of a Heterogeneous Fault, Journal of geophysical Research: Solid Earth, vol.124, p.45, 2019.

H. Aochi, R. B.-poisson, X. Toussaint, J. Rachez, and . Schmittbuhl, Self-induced seismicity due to fluid circulation along faults, Geophys. J. Int, vol.196, pp.1544-1563, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00923951

G. Atkinson, D. Eaton, H. Ghofrani, D. Walker, B. Cheadle et al., Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin, Seismological Research Letters, vol.87, issue.3, 2016.

H. Auradou, G. Drazer, J. Hulin, and J. Koplik, Permeability anisotropy induced by the sheardisplacement of rough fracture walls, Water Resources Reserach, vol.41, p.138, 2005.

G. Axelsonn, Stimulation of geothermal wells in basaltic rock in Iceland (cit, vol.12, p.4, 2006.

M. Azad, D. Garagash, and M. Satish, Nucleation of dynamic slip on a hydraulically fractured fault, Journal of Geophysical Research: Solid Earth, vol.122, pp.2812-2830, 2017.

C. Bachmann, S. Wiemer, J. Woesnner, and S. Hainzl, Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for Enhanced Geothermal Systems, Geophys. J. Int, vol.186, p.51, 2011.

A. Baghbanan and L. Jing, Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture, International Jounral of Rock Mechanics and Mining Sciences, vol.45, pp.1320-1334, 2008.

S. Baisch, R. Voros, E. Rothert, H. Stang, R. Jung et al., A numerical model for fluid injection induced seismicity at Soultz-sous-Forets, International Journal of Rock Mechanics & Mining Sciences, vol.47, pp.405-413, 2010.

S. Baisch, C. Koch, and A. Muntendam-bos, Traffic Light Systems: To What Extent Can Induced Seismicity Be Controlled?, Seismological Research Letters, vol.90, issue.3, p.26, 2019.

S. C. Bandis, A. Lumsden, and N. R. Barton, Fundamentals of Rock Joint Deformation, Int. J. Rock Mech. Min. Sci. & Geomech, vol.20, issue.6, p.136, 1983.

A. Barbour, J. Norbeck, and J. Rubinstein, The Effects of Varying Injection Rates in Osage County, Seismological Research Letters, vol.88, issue.4, 2017.

W. Barnhart, H. Benz, G. Hayes, J. Rubinstein, and E. Bergman, Seismological and geodetic constraints on the 2011 Mw5.3 Trinidad, Colorado earthquake and induced deformation in the Raton Basin, J. Geophys. Res. Solid Earth, vol.119, p.16, 2014.

B. Bateman, SA earthquake was mine-related. EWN (cit, p.3, 2014.

J. Baumgartner, Insheim and Landau: Recent Experiences with Egs Technology in the Urg, p.14, 2012.

, Investigation of Observed Seismicity in the Horn River Basin, BCOGC, vol.16, p.12, 2012.

P. Bhattacharya and R. Viesca, Fluid induced aseismic fault slip outpaces pore fluid migration, Science, vol.364, pp.464-468, 2019.

G. Bjornsson, Reservoir conditions at 3-6 Km depth in the Hellisheidi geothermal field, SW -Iceland, estimated by deep drilling, cold water injection and seismic monitoring, 2004.

J. Bommer, S. Oates, J. Cepeda, C. Lindholm, J. Bird et al., Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Engineering geology, vol.83, pp.287-306, 2006.

C. Bonnemann, B. Schmidt, J. Ritter, N. Gestermann, T. Plenefisch et al., Seismisches Risiko bei hydrotherma-ler Geothermie, p.14, 2009.

S. Bourne, S. Oates, T. Van-elk, and D. Doornhof, A seismological model for earthquakes induced by fluidextraction from a subsurface reservoir, J. Geophy. Res.: Solid Earth, vol.119, p.13, 2014.

S. Bourouis and P. Bernard, Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients, Geophys. J. Int, vol.169, pp.723-732, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00310546

H. Bradley, PEtroleum engineering handbook (cit, p.137, 1987.

R. Brossier, Two-dimensional frequency-domain visco-elastic full waveform inversion: Parallel algorithms, optimization and performance, Computers & Geosciences, vol.37, p.134, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00679644

W. Brown and C. Frohlich, Seismological Research Letters, vol.84, p.16, 2013.

R. Burridge and L. Knopoff, Model and Theoretical Seismicity, Bulletin of the Seismological Society of America, vol.57, issue.3, p.40, 1967.

J. Byerlee, Friction of Rocks. Pageoph, vol.116, p.28, 1978.

M. Calo, C. Dorbath, F. Cornet, and N. Cuenot, Large-scale aseismic motion identified through 4-D P-wave tomography, Geophys. J. Int, vol.186, p.22, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00732829

F. Cappa and J. Rutqvist, Impact of CO2 geological sequestration on the nucleation of earthquakes, Geophysical Research Letters, vol.38, p.41, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00634466

, Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2, International Journal of Greenhouse Gas Control, vol.5, p.41, 2012.

F. Cappa, Y. Guglielmi, C. Nussbaum, and J. Birkholzer, On the Relationship Between Fault Permeability Increases, Induced Stress Perturbation, and the Growth of Aseismic Slip During Fluid Injection, Geophys. Res. Lett, vol.45, p.41, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01983409

F. Cappa, M. Scuderi, C. Collettini, Y. Guglielmi, and J. Avouac, Stabilization of fault slip by fluid injection in the laboratory and in situ, Science Advances -Geophysics, vol.5, p.35, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02116201

K. Chang and P. Segall, Injection-induced seismicity on basement faults including poroelastic stressing, J. Geophy. Res.: Solid Earth, vol.121, p.39, 2016.

K. Chang, H. Yoon, and M. J. Martinez, Seismicity Rate Surge on Faults after Shut-in: Poroelastic Response to Fluid Injection, Bulletin of the Seismological Society of America, vol.108, issue.4, pp.1889-1904, 2018.

G. Chavent, On the theory and practice of non-linear least-squares, Adv. Water Resources, vol.14, issue.2, p.117, 1991.

Z. Chen, S. Narayan, Z. Yang, and S. Rahman, An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock, International Journal of Rock Mechanics & Mining Sciences, vol.37, p.35, 2000.

Z. Chen, S. P. Narayan, Z. Yang, and S. Rahman, An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock, International Jounral of Rock Mechanics and Mining Sciences, vol.37, p.137, 2000.

G. Choy, J. Rubinstein, W. Yeck, D. Mcnamara, C. Mueller et al., A Rare Moderate-Sized, Earthquake of 12 November 2014 and Its Relationship to Fluid Injection, vol.87, p.10, 2016.

H. Clarke, L. Eisner, P. Styles, and P. Turner, Felt seismicity associated with shale gas hydraulic fracturing: The first documented example in Europe, Geophys. Res. Lett, vol.41, p.12, 2014.

A. Cochard and J. Rice, A spectral method for numerical elastodynamic fracture analysis without spatial replication of the rupture event, J. Mech. Phys. Solids, vol.45, issue.8, p.57, 1997.

F. Cornet, Seismic and aseismic motions generated by fluid injections, Geomechanics for Energy and the Environment, vol.5, pp.42-54, 2016.

F. Cornet, J. Helm, H. Poitrenaud, and A. Etchecopar, Seismic and Aseismic Slips Induced by Large-scale Fluid Injections, Pure and Applied Geophysics, pp.563-583, 1997.

H. Darcy, Recherches experimentales relatives au mouveament de l'eau dans le tuyaux, p.109, 1857.

S. Davis and C. Frohlich, Did (or will) fluid injection cause earthquakes? Criteria for a rational assessment, Seismological Research Letters, vol.64, issue.3-4, 1993.

S. Davis and W. Pennington, Induced seismic deformation in the Cogdell oil field of west Texas, Bulletin of the Seismological Society of America, vol.79, issue.5, pp.1477-1495, 1989.

L. De-barros, G. Daniel, Y. Guglielmi, D. Rivet, H. Caron et al., Fault structure, stress, or pressure control of the seismicity in shale? Insights from a controlled experiment of fluid-induced fault reactivation, J. Geophy. Res.: Solid Earth, vol.121, p.91, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01527365

L. De-barros, Y. Guglielmi, D. Rivet, F. Cappa, and L. Duboeuf, Seismicity and fault aseismic deformation caused by fluid injectionin decametric in-situ experiments, Compte Rendus Geoscience -Internal Geophysics (Seismology, 2018.

N. Deichman and D. Giardini, Earthquakes Induced by the Stimulation of an Enhanced Geothermal System below Basel (Switzerland), Seismological Research Letters, vol.80, issue.5, pp.784-798, 2009.

D. Dempsey and J. Riffault, Response of Induced Seismicity to Injection Rate Reduction: Models of Delay, Decay, Water Resources Reserach, vol.55, pp.656-681, 2019.

D. Dempsey and J. Suckale, Collective properties of injection-induced earthquake sequences: 1. Model description and directivity bias, J. Geophy. Res.: Solid Earth, vol.121, p.38, 2016.

D. Dempsey, J. Suckale, and Y. Huang, Collective properties of injection-induced earthquake sequences: 2. Spatiotemporal evolution and magnitude frequency distributions, J. Geophy. Res.: Solid Earth, vol.121, p.38, 2016.

T. Diehl, T. Kraft, E. Kissling, and S. Wiemer, The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerlan): Fault reactivation and fluid interactions imaged by microseismicity, Journal of Geophysical Research: Solid Earth, vol.122, p.4, 2017.

J. Dietrich, Time-Dependent Friction in Rock, J. Geophys. Res, vol.77, issue.20, pp.3690-3697, 1972.

, Modeling of rock friction. 1. Experimental results and constitutive equations, Journal of geophysical Research, vol.84, issue.B5, pp.52-54

, Earthquake nucleation on faults with rate-and state-dependent strength, Tectonophysics, vol.211, p.91

, A constitutive law for rate of earthquake production and its application to earthquake clustering, Journal of geophysical Research, vol.99, issue.B2, p.102

J. Dietrich, K. Richards-dinger, and . Kroll, Modeling Injection-Induced Seismicity with the Physics-Based Earthquake Simulator RSQSim, Seismological Research Letters, vol.86, issue.4, 2015.

L. Dorbath, N. Cuenot, A. Genter, and M. Frogneux, Seismic response of the fractured and faulted granite of Soultz-sous-Fore^ts (France) to 5 km deep massive water injection, Geophys. J. Int, vol.177, pp.653-675, 2009.

P. Dublanchet, Fluid driven shear cracks on a strengthening rate-and-state frictional fault, Journal of the Mechanics and Physics of Solids, vol.212, issue.2, pp.41-43, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02367634

P. Dublanchet, P. Bernard, and P. Favreau, Interactions and triggering in a 3-D rate-andstate asperity model, J. Geophys. Res, vol.118, pp.2225-2245, 2013.

L. Duboeuf, L. De-barros, F. Cappa, Y. Guglielmi, A. Deschamps et al., Aseismic Motions Drive a Sparse Seismicity During Fluid Injections Into a Fractured Zone in a Carbonate Reservoir, J. Geophy. Res.: Solid Earth, vol.122, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01734554

B. Edwards, T. Kraft, C. Cauzzi, P. Kastli, and S. Wiemer, Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland. Geophys. J. Int. -Seismology, vol.201, p.16, 2015.

W. Ellsworth, Injection-Induced earthquakes, Science, vol.341, issue.6142, p.51, 2013.

B. Engeser, Dus kontinentale tiej-bohrprogranim der Bundesrepublik Deutschland, Bohrtechnische Dokumentation,Niedersachsisches Landesamt fur Bodenforschung, p.37, 1996.

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, vol.35, p.134, 2000.

T. Esaki, S. Du, Y. Mitani, K. Ikusuda, and L. Jing, Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint, International Journal of Rock Mechanics & Mining Sciences, vol.36, issue.5, p.135, 1999.

D. Evans, The Denver Area Earthquakes and The Rocky Mountain Arsenal Disposal Well. The Mountain Geologist, 3 (cit, 1966.

K. Evans, Z. A. , T. Kraft, N. Deichman, and F. Moia, A survey of the induced seismic responsed to fluid injection in geothermal and CO2 reservoirs in Europe, Geothermics, vol.41, pp.30-54, 2012.

A. Fagereng and R. Sibson, Melange rheology and seismic style, Geology, vol.38, issue.8, p.43, 2010.

A. Farahbod, H. Kao, D. Walker, and J. Cassidy, Investigation of regional seismicity before and after hydraulic fracturing in the Horn River Basin, northeast British Columbia, Canadian Journal of Earth Sciences, vol.52, issue.2, 2015.

E. Fehlberg, Low-order classical Runge-Kutta formulas with step size control and their application to some heat transfer problems, Nasa Technical Report. Nasa (cit. on p, vol.57, 1969.

A. Fisher and G. Zwart, Relation between permeability and effective stress along a plateboundary fault, Barbados accretionary complex. Geology, vol.24, issue.4, pp.307-310, 1996.

M. French, W. Zhu, and J. Banker, Fault slip controlled by stress path and fluid pressurization rate, Geophysical Research Letters, vol.43, p.33, 2016.

P. Friberg, G. Besana-ostman, and I. Dricker, Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County, Ohio. Seismological Research Letters, vol.85, p.11, 2014.

C. Frohlich, Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas (cit. on pp. 9, vol.52, p.38, 2012.

C. Frohlich, C. Hayward, B. Stump, and E. Potter, The Dallas-Fort Worth Earthquake Sequence, Bulletin of the Seismological Society of America, vol.101, issue.1, pp.327-340, 2008.

C. Frohlich, W. Ellsworth, W. Brown, M. Brunt, J. Luetgert et al., An event possibly triggered by fluid injection, Journal of geophysical Research: Solid Earth, vol.119, 2012.

M. Galis, J. Ampuero, P. Mai, and F. Cappa, Induced seismicity provides insight into why earthquake ruptures stop, Science Advances -Geophysics, vol.3, p.43, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01737083

W. Gan and C. Frohlich, Gas injection may have triggered earthquakes in the Cogdell oil field, vol.110, pp.18786-18791, 2013.

D. Garagash and L. Germanovish, Nucleation and arrest of dynamic slip on a pressurized fault, Journal of geophysical Research, vol.117, 2012.

E. Gaucher, M. Schoenball, O. Heidbach, A. Zang, P. Fokker et al., Induced seismicity in geothermal reservoirs: A review of forecasting approaches, Renewable and Sustainable Energy Reviews, vol.52, p.25, 2015.

, Induced Seismicity in Geothermal Reservoirs: Physical Processes and Key Parameters (cit, p.14

M. Gerstenberger, S. Wiemer, and D. Giardini, A systematictestof the hypothesisthat the b value varies with depth in California, Geophys. Res. Lett, vol.28, issue.1, p.77, 2001.

S. Ghabezloo, J. Sulem, S. Guedon, and F. Martineau, Effective stress law for the permeability of a limestone, International Jounral of Rock Mechanics and Mining Sciences, vol.46, pp.297-306, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00315562

J. Gibbs, J. Healy, C. Raleigh, and J. Coakley, Bulletin of the Seismological Society of America, vol.63, pp.1557-1570, 1973.

S. Gibowicz, Seismicity induced by surface mining: the Belchatow, Poland, earthquake of 29, Advances in Geophysics. Advances in Geophysics, vol.21, pp.1-53, 1980.

T. Goebel, J. Haffner, and X. Chen, Statistical seismicity analysis methods for the detection of fault activation during fluid injection, vol.20, p.19, 2016.

T. Goebel, S. Hosseini, F. Cappa, E. Hauksson, J. Ampuero et al., Wastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California. Geophysical Research Letters, vol.43, pp.1092-1099, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346818

S. Goodfellow, M. Nasseri, S. Maxwell, and R. Young, Hydraulic fracture energy budget: Insights from the laboratory, Geophys. Res. Lett, vol.42, p.33, 2015.

C. Green, P. Styles, and B. Baptie, Preese Hall Shale Gas Fracturing: Review & recommendations for induced seismic mitigation, p.5, 2012.

F. Grigoli, S. Cesca, E. Priolo, A. Rinaldi, J. Clinton et al., Current challenges in monitoring, discrimination,and management of induced seismicity relatedto underground industrial activities:A European perspective, Review of Geophysics, vol.55, pp.310-340, 2017.

F. Grigoli, S. Cesca, A. Rinaldi, A. Manconi, J. Lopez-comino et al., Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea, Science, vol.360, pp.1003-1006, 2017.

Y. Guglielmi, D. Elsworth, F. Cappa, P. Henry, C. Gout et al., In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales, J. Geophy. Res.: Solid Earth, vol.120, pp.7729-7748, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01364594

Y. Guglielmi, F. Cappa, J. Avouac, P. Henry, and D. Elsworth, Seismicity triggered by fluid injection-induced aseismic slip, Science, vol.348, pp.1224-1226, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01183359

H. Gupta, A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth-Science Reviews, vol.58, p.3, 2002.

B. Gutenberg and C. Richter, Seismicity of the earth and associated phenomena, p.91, 1949.

, Seismicity of the Earth

M. Gutierrez, L. Øino, and R. Nygard, Stress-dependent permeability of a de-mineralised fracture in shale. Marine and Petroleum Geology, vol.17, p.35, 2000.

T. Hanks and H. Kanamori, A Moment Magnitude Scale, J. Geophy. Res, vol.84, issue.B5, p.59, 1979.

M. Haring, U. Schanz, F. Ladner, and B. Dyer, Characterisation of the Basel 1 enhanced geothermal system, Geothermics, vol.37, pp.469-495, 2008.

W. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, p.97, 1970.

J. Healy, W. Rubey, D. Griggs, and C. Raleigh, Disposal of waste fluids by injection into a deep well has triggered earthquakes near Denver, Colorado. Science, vol.16, issue.3848, p.52, 1968.

R. Hermann, S. Park, and C. Wang, The denver earthquakes of 1967-1968, Bulletin of the Seismological Society of America, vol.71, issue.3, pp.731-745, 1981.

H. Hofmann, G. Zimmerman, M. Farkas, E. Huenges, A. Zang et al., First field application of cyclic soft stimulation at the Pohang Enhanced Geothermal System site in Korea, Geophys. J. Int. -Seismology, vol.217, p.25, 2019.

A. Holland, Examination of Possibly Induced Seismicity from Hydraulic Fracturing in the Eola Field, 2011.

, Earthquakes Triggered by Hydraulic Fracturing in South Central Oklahoma, Bulletin of the Seismological Society of America, vol.103, issue.3, pp.1784-1792

S. Horton, Disposal of Hydrofracking Waste Fluid by Injection into Subsurface Aquifers Triggers Earthquake Swarm in Central Arkansas with Potential for Damaging Earthquake, Seismological Research Letters, vol.83, issue.2, 2012.

P. Hsieh and J. Bredehoeft, A reservoir analysis of the Denver earthquakes: A case of induced seismicity, J. Geophy. Res, vol.86, issue.B2, pp.903-920, 1981.

M. Hubert and W. Rubey, Mechanics of fluid-filled porous solids and its application to overthrust faulting, Bull. Geol. Sot. Am, vol.70, p.27, 1959.

N. Hummel and T. Muller, Microseismic signatures of non-linear pore-fluid pressure diffusion, Geophys. J. Int, vol.179, p.38, 2009.

S. Ide and H. Aochi, Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy, J. Geophy. Res, vol.110, p.56, 2005.

M. Ikari, D. Saffer, and C. Marone, Frictional and hydrologic properties of a major splay fault system, Nankai subduction zone, Geophysical Research Letters, vol.36, p.56, 2009.

K. Im, D. Elsworth, and Y. Fang, The influence of Preslip Sealing on the Permeability Evolution of Fractures and Faults, Geophys. Res. Lett, vol.45, p.35, 2018.

J. Jaeger, N. Cook, and R. Zimmerman, Fundamentals of Rock Mechanics, vol.137, p.135, 2007.

Y. Jarny, M. Ozisik, and J. Bardon, A general optimization method using adjoint equation for solving multidimensional inverse heat conduction, Int. J. Heat Mass Transfer, vol.134, issue.11, p.117, 1991.

L. Johann, S. Shapiro, and C. Dinske, The surge of earthquakes in Central Oklahoma has features of reservoir-induced seismicity, Nature -Scientific Reports, p.9, 2018.

B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative Resularization Methods for nonlinear problems. de Gruyter (cit, p.134, 2008.

H. Kanamori, The Energy Release in Great Earthquake, J. Geophy. Res, vol.82, issue.20, p.3, 1977.

H. Kanamori and E. Hauksson, A slow earthquake in the Santa Maria basin, California. Bulletin of the Seismological Society of America, vol.85, issue.2, pp.2087-2096, 1992.

C. Kelley, Iterative Methods for Optimization. North Carolina State University (cit, p.134, 1999.

K. Keranen and M. Weingarten, Induced Seismicity, Annu. Rev. Earth Planet. Sci, vol.46, pp.149-174, 2018.

K. Keranen, H. Savage, G. Abeys, and E. Cochran, Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence, Geology, vol.16, issue.6, p.51, 2013.

K. Keranen, M. Weingarten, G. Abers, B. Bekins, and S. Ge, Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, vol.345, p.28, 2014.

K. Kim, J. Ree, Y. Kim, S. Kim, S. Kang et al., Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event, Science, vol.360, pp.14-16, 2018.

W. Kim, Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. J. Geophys. Res: Solid Earth, vol.118, pp.3506-3518, 2013.

M. Kozlowska, M. Brudzinski, P. Friberg, R. Skoumal, N. Baxter et al., Maturity of nearby faults influences seismic hazard from hydraulic fracturing, vol.15, pp.17-19, 2018.

K. Kroll, K. Richards-dinger, and J. Dietrich, Sensitivity of Induced Seismic Sequences to Rate-and-State Frictional Processes, Journal of Geophysical Research: Solid Earth, vol.122, issue.10, pp.207-219, 2017.

G. Kwiatek, P. Martinez-garzon, K. Plenkers, M. Leonhardt, A. Zang et al., Insights into complex subdecimeter fracturing processes occuring dureing a water injection experiment at depth in Aspo Hard Rock laboratory, Sweden. J. Geophy. Res.: Solid Earth, vol.123, p.32, 2018.

G. Kwiatek, T. Saarno, T. Ader, F. Bluemle, M. Bohnhoff et al., Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland, Science Advances, vol.5, 2019.

C. Langenbruch and S. Shapiro, Decay rate of fluid-induced seismicity after termination of reservoir stimulations, Geophysics, vol.75, issue.6, p.17, 2010.

C. Langenbruch and M. Zoback, How will induced seismicity in Oklahoma respond to decreased salwater injection rates, Science Advances -Seismology (cit. on pp. 9, vol.22, p.42, 2016.

C. Langenbruch, M. Weingarten, and M. Zoback, Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas, Nature Communications (cit. on pp, vol.9, p.22, 2018.

O. Lengline and D. Marsan, Inferring the coseismic and postseismic stress changes caused by the 2004 Mw = 6 Parkfield earthquake from variations of recurrence times of microearthquakes, J. Geophys. Res, vol.114, p.43, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00498789

O. Lengline, L. Lamourette, L. Vivin, N. Cuenot, and J. Schmittbuhl, Fluid-induced earthquakes with variable stress drop, J. Geophys. Res. Solid Earth, vol.119, p.23, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02323441

O. Lengline, M. Boubacar, and J. Schmittbuhl, Seismicity related to the hydraulic stimulation of GRT1, Geophys. J. Int, vol.208, pp.1704-1715, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01924555

Z. Li, F. Fortin, A. Nicolas, D. Deldicque, and Y. Guéguen, Physical and Mechanical Properties of Thermally Cracked Andesite Under Pressure. Rock Mechanics and Rock Engineering (cit, p.111, 2019.

M. Linker and J. Dietrich, Effects of variable normal stress on rock friction: Observations and constitutive equations, Journal of geophysical Research, vol.97, pp.4923-4940, 1992.

A. Llenos and A. Michael, Modeling Earthquake Rate Changes in Oklahoma and Arkansas: Possible Signatures of Induced Seismicity, Bulletin of the Seismological Society of America, vol.103, issue.5, pp.2850-2861, 2013.

E. Majer, R. Baria, M. Stark, S. Oates, J. Bommer et al., Induced seismicity associated with Enhanced Geothermal Systems, Geothermics, vol.36, p.51, 2007.

C. Marone, Laboratory -derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci, pp.643-96, 1998.

M. Mcclure and R. Horne, Correlations between formation properties and induced seismicityduring high pressure injection into granitic rock. Engineering geology, Geophysics, vol.76, issue.6, pp.74-80, 2011.

A. Mcgarr, Maximum magnitude earthquakes induced by fluid injection, J. Geophys. Res.: Solid Earth, vol.119, p.43, 2014.

A. Mcgarr and A. Barbour, Wastewater disposal and the earthquake sequences during 2016 near Fairview, Geophys. Res. Lett, vol.44, p.9, 2017.

A. Mcgarr, D. Simpson, L. Seeber, and W. Lee, Case histories of induced and triggered seismicity, International Geophysics Series, vol.81, p.3, 2002.

A. Mcgarr, B. Bekins, N. Burkardt, J. Dewey, P. Earle et al., Coping with earthquakes induced by fluid injection. Hazard may be reduced by managing fluid injection activities, Science, vol.347, issue.6224, p.25, 2015.

C. Mckee, A. Bumb, and R. Koelng, Stress-dependent permeability and porosity of coal and other geologic formations. SPE Formation evaluation (cit, vol.135, p.109, 1988.

L. Metivier, R. Brossier, J. Virieux, and S. Operto, Full Waveform Inversion and the truncated Newton method, SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, vol.35, issue.2, p.134, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02009700

N. Metropolis, A. Rosenbluth, M. Rosenbluth, and A. Telles, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys, vol.21, p.1087, 1953.

A. Mignan, M. Broccardo, S. Wiemer, and D. Giardini, Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections, Nature -Scientific Reports, vol.7, p.27, 2017.

A. Muntendam-bos and J. , Reassessment of the probability of higher magnitude earthquakes in the Groningen gas field. Tech. rep. State Supervision of Mines (cit, p.13, 2013.

R. Nadeau and L. Johnson, Seismological studies at parkfield vi : Moment release rates and esti-mates of source parameters for small repeating earthquakes, Bulletin of the Seismological Society of America, vol.88, issue.3, p.43, 1998.

K. Nemoto, H. Moriya, H. Niitsuma, and N. Tsuchiya, Mechanical and hydraulic coupling of injection-induced slip along pre-existing fractures, Geothermics, vol.37, p.33, 2008.

J. Norbeck and J. Rubinstein, Hydromechanical Earthquake Nucleation Model Forecasts Onset, Peak, and Falling Rates of Induced Seismicity in Oklahoma and Kansas, Geophys. Res. Lett, vol.45, p.9, 2018.

M. Ohnaka, A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geophy. Res, vol.108, issue.B2, p.55, 2003.

F. Omori, On the Aftershocks of Earthquakes, Journal of the College of Science, vol.7, p.41, 1894.

P. Pacheco, Parallel Programming with MPI. Morgan Kaufmann (cit, p.46, 1997.

F. Passelegue, N. Brantut, and T. Mitchell, Fault Reactivation by Fluid Injection: Controls From Stress State and Injection Rate, Geophysical Research Letters, vol.45, pp.12837-12846, 2018.

F. Passelegue, M. Almakari, P. Dublanchet, F. Darras, and M. Violay, On the Nature of Fault Slip: From the Field to the Lab, Nature, p.150, 2020.

R. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophys. J. Int, vol.167, pp.495-503, 2006.

C. Raleigh, J. Healy, and J. Bredehoeft, An Experiment in Earthquake Control at, Science, vol.191, pp.1230-1237, 1976.

J. Rice, Spatio-temporal complexity of slip on a fault, J. geophys. Res, vol.98, issue.B6, p.57, 1993.

J. Rice and A. Ruina, Stability of steady frictional slipping, Journal of Applied Mechanics, vol.50, pp.343-349, 1983.

C. Robert and G. Casilla, Monte Carlo Statistical Methods, p.110, 2004.

P. Romanet, H. Bhat, R. Jolivet, and R. Madariaga, Fast and slow slip events emerge due to fault geometrical complexity, Geophys. Res. Lett, vol.45, p.148, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02185462

A. Rubin and J. Ampuero, Earthquake nucleation on (aging) rate and state faults, J. Geophys. Res, vol.110, p.93, 2005.

J. Rubinstein and A. Mahani, Myths and Facts on Waste Water Injection, Hydraulic Fracturing, Enhanced Oil Recovery, and Induced Seismicity, Seismological Research Letters, vol.86, issue.4, 2015.

J. Rubinstein, W. Ellsworth, and A. Mcgarr, The 2001 present triggered seismicity sequence in the Raton Basin of southern Colorado/northern New Mexico (cit, vol.51, p.16, 2012.

J. Rubinstein, W. Ellsworth, and S. Dougherty, The 2013-2016 Induced Earthquakes in Harper and Sumner Counties, vol.108, pp.674-689, 2018.

L. Rubinstein, W. Ellsworth, A. Mcgarr, and H. Benz, The 2001-Present Induced Earthquake Sequence in the Raton Basin of Northern New Mexico and Southern Colorado, Bulletin of the Seismological Society of America, vol.104, issue.5, 2014.

A. Ruina, Slip instability and state variable friction laws, J. Geophy. Res, vol.88, pp.52-54, 1983.

J. Rutqvist, A. Rinaldi, F. Cappa, P. Jeanne, A. Mazzoldi et al., Fault activation and induced seismicity in geological carbon storage e Lessons learned from recent modeling studies, Journal of Rock Mechanics and Geotechnical Engineering, vol.8, pp.789-804, 2016.

J. Rutqvist, A. Rinaldi, F. Cappa, and G. Moridis, Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs, Journal of Petroleum Science and Engineering, vol.107, p.53, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00842734

E. Rutter and A. Hackston, On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection, Philosophical Transactions of the Royal Society A, vol.375, p.33, 2017.

E. Rutter and J. Mecklenburgh, Influence of Normal and Shear Stress on the Hydraulic Transmissivity of Thin Cracks in a Tight Quartz Sandstone, a Granite, and a Shale, Journal of Geophysical Research: Solid Earth, vol.123, pp.1262-1285, 2018.

M. Schoenball and W. Ellsworth, A Systematic Assessment of the Spatiotemporal Evolution of Fault Activation Through Induced Seismicity in Oklahoma and Southern Kansas, J. Geophy. Res.: Solid Earth, vol.122, p.38, 2017.

M. Schoenball, T. Muller, B. Muller, and O. Heidbach, Fluid-induced microseismicity in pre-stressed rock masses, Geophys. J. Int, vol.180, p.38, 2010.

M. Schoenball, L. Dorbath, E. Gaucher, J. Wellman, and T. Kohl, Change of stress regime during geothermal reservoir stimulation, Geophys. Res. Lett, vol.41, p.23, 2014.

M. Schoenball, N. Davatzes, and J. Glen, Differentiating induced and natural seismicity using space-time-magnitude statistics applied to the Coso Geothermal field, Geophys. Res. Lett, vol.42, pp.6221-6228, 2015.

M. Schoenball, F. Walsh, M. Weingarten, and W. Ellsworth, How faults wake up: The Guthrie-Langston, Oklahoma earthquakes. The Leading Edge (cit, vol.15, p.9, 2018.

C. Scholz, The Frequency-Magnitude Relation of Microfracturing in Rock and its Relation to Earthquakes, Bulletin of the Seismological Society of America, vol.58, issue.1, p.77, 1968.

R. Schultz, R. Wang, Y. Gu, K. Haug, and G. Atkinson, A seismological overview of the induced earthquakesin the Duvernay play near Fox Creek, Alberta. J. Geophy. Res.: Solid Earth, vol.122, pp.492-505, 2017.

M. Scuderi, C. Collettini, and C. Marone, Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault, Earth and Planetary Science Letters, vol.477, p.33, 2017.

P. Segall, Earthquakes triggered by fluid extraction, Geology, vol.17, p.28, 1989.

P. Segall and S. Lu, Injection-induced seismicity: Poroelastic and earthquake nucleation effects, J. Geophys. Res. : Solid Earth, vol.120, pp.5082-5103, 2015.

A. Shapiro, J. Kummerow, C. Dinske, G. Asch, E. Rothert et al., Fluid induced seismicity guided by a continental fault: Injection experiment of 2004/2005 at the German Deep Drilling Site (KTB), Geophys. Res. Lett, vol.33, p.30, 2006.

S. Shapiro and C. Dinske, Fluid-induced seismicity: Pressure diffusion and hydraulic fracturing, Geophysical Prospecting, vol.57, p.37, 2009.

S. Shapiro, E. Huenges, and G. Borm, Estimating the crust permeability from fluid-injectioninduced seismic emission at the KTB site, Geophys. J. Int, vol.131, 1997.

S. Shapiro, E. Rothert, V. Rath, and J. Rindschwentner, Characterization of fluid transport properties of reservoirs using induced microseismicity, Geophysics, vol.67, issue.1, pp.212-220, 2002.

S. Shapiro, C. Dinske, and J. Kummerow, Probability of a given-magnitude earthquake induced by a fluid injection, Geophys. Res. Lett, vol.34, p.22314, 2007.

S. Shapiro, C. Dinske, and C. Langenbruch, Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations. The Leading Edge (cit, vol.19, p.5, 2010.

S. Shapiro, O. Kruger, C. Dinske, and C. Langenbruch, Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes, Geophysics, vol.76, issue.6, p.19, 2011.

J. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. School of Computer Science (cit, p.134, 1994.

Y. Shi and B. Bolt, The Standard Error of the Magnitude-Frequency b value, Bulletin of the Seismological Society of America, vol.72, issue.5, p.71, 1982.

P. Shunping, P. Zhigang, and C. Xiaowei, Locations of Injection-Induced Earthquakes in OklahomaControlled by Crustal Structures, J. Geophy. Res.: Solid Earth, vol.123, pp.2332-2344, 2018.

D. Simpson, Seismicity changes associated with reservoir loading, Engineering geology, vol.10, issue.2-4, p.3, 1976.

, Triggered Earthquakes, Annu. Rev. Earth Planet. Sci, vol.14, p.51

D. Simpson and W. Leith, Two types of reservoir-induced seismicity, Bulletin of the Seismological Society of America, vol.78, p.3, 1988.

R. Skoumal, M. Brudzinski, B. Currie, and J. Levy, Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence, Earth and Planetary Science Letters, vol.405, pp.274-280, 2014.

R. Skoumal, M. Brudzinski, and B. Currie, Distinguishing induced seismicity from natural seismicity in Ohio: Demonstrating the utility of waveform template matching, Bulletin of the Seismological Society of America, vol.120, p.11, 2015.

R. Skoumal, M. Brudzinski, and B. Currie, An efficient repeating signal detector to investigate earthquake swarms, J. Geophy. Res.: Solid Earth, vol.121, p.11, 2016.

D. Snow, A parallel plate model of fractures permeable media, p.137, 1965.

N. Soma, H. Asanuma, H. Kaieda, K. Tezuka, D. Wyborn et al., On site mapping of microseismicitt at Cooper Basin, Australia HDR project by the Japanese team, 2004.

M. Spada, T. Tormann, S. Wiemer, and B. Enescu, Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust, Geophys. Res. Lett, vol.40, p.77, 2013.

T. Stabile, A. Giocoli, A. Perrone, S. Piscitelli, and V. Lapenna, Fluid injection induced seismicity reveals a NE dipping fault in the southeastern sector of the High Agri Valley (southern Italy), Geophys. Res. Lett, vol.41, pp.5874-5854, 2014.

D. Sumy, E. Cochran, K. Keranen, M. Wei, and G. Abers, Observations of static Coulomb stress triggering of the, J. Geophys. Res. Solid Earth, vol.119, pp.1904-1923, 2011.

C. Tang, J. Rial, and J. Lees, Seismic imaging of the geothermal field at Krafla, Iceland using shear-wave splitting, Journal of Volcanology and Geothermal Research, vol.176, issue.2, pp.315-324, 2008.

A. Thikonov and V. Arsenin, Solution of ill-posed problems. Winston (cit, p.134, 1977.

, GeoTop modellering. Dutch. TNO rapport R10991 (cit, TNO, p.13, 2013.

D. Turcotte and G. Schubert, Geodynamics, p.60, 2014.

S. Turuntaev and V. Riga, Non-linear effects of pore pressure increase on seismic event generation in multi-degree-of-freedom rate-and-state model of tectonic fault sliding, Nonlin. Processes Geophys, vol.24, p.40, 2017.

L. Valoroso, L. Improta, L. Chiaraluce, R. Stefano, L. Ferranti et al., Active faults and induced seismicity in the Val d'Agri area, 2009.

, Geophys. J. Int, vol.178, pp.488-502

K. Van-thienen-visser and J. Breunese, Induced seismicity of the Groningen gas field: History and recent developments. The Leading Edge (cit, vol.16, p.13, 2015.

N. Van-der-elst, H. Savage, K. Keranen, and G. Abers, Enhanced Remote Earthquake Triggering at Fluid-Injection Sites in the Midwestern United States, Science, vol.341, issue.6142, pp.164-167, 2013.

N. Van-der-elst, M. Page, D. Weiser, T. Goebel, and S. Hosseini, Induced earthquake magnitudes are as large as (statistically) expected, J. Geophy. Res.: Solid Earth, vol.121, pp.4575-4590, 2016.

T. Van-eck, F. Goutbeek, H. Haak, and B. Dost, Seismic hazard due to small-magnitude, shallow-source,induced earthquakes in The Netherlands. Engineering geology, vol.87, pp.105-121, 2006.

J. Verdon, B. Baptie, and J. Bommer, An Improved Framework for Discriminating Seismicity Induced by Industrial Activities from Natural Earthquak. Seismological Research Letters (cit, 2019.

G. Viegas, K. Buckingham, A. Baig, and T. Urbancic, Large scale seismicity related to wastewater injection near, vol.51, p.16, 2012.

S. Wei, J. Avouac, K. Hudnut, A. Donnellan, J. Parker et al., The 2012 Brawley swarm triggered by injection-induced aseismic slip, Earth and Planetary Science Letters, vol.422, pp.115-125, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01385078

M. Weingarten, S. Ge, J. God-t, B. Bekins, and J. Rubinstein, INDUCED SEISMICITY. High-rate injection is associated with the increase in U.S. mid-continent seismicity, Science, vol.348, pp.1336-1340, 2015.

M. L. Whitney, Theoretical and Numerical Study of Tikonov's Regularization and Morozov's Discrepancy Principle, p.134, 2009.

C. Wibberley and T. Shimamoto, Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line, Journal of Structural Geology, vol.25, p.135, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00407057

S. Wiemer, T. Kraft, and D. Landtwing, Seismic Risk. Pail Scherrer Inst. (cit, p.27, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01685353

M. Wilson, R. Davies, G. Foulger, B. Julian, P. Styles et al., Anthropogenic earthquakes in the UK: A national baseline prior toshale exploitation. Marine and Petroleum Geology, 68 (cit, p.12, 2015.

P. A. Witherspoon, J. S. Wang, K. Iwai, and J. E. Gale, Validity of cubic law for fluid in a deformable rock fracture, Water Resources Research, vol.16, issue.6, p.137, 1980.

W. Wu, J. Reece, Y. Gensterblum, and M. Zoback, Permeability Evolution of Slowly Slipping Faults in Shale Reservoirs, Geophys. Res. Lett, vol.44, p.35, 2017.

Z. Ye and A. Ghassemi, Injection-Induced Shear Slip and Permeability Enhancement in Granite Fractures, J. Geophy. Res.: Solid Earth, vol.123, pp.9009-9032, 2018.

W. Yeck, M. Weingarten, H. Benz, D. Mcnamara, E. Bergman et al., Far field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure, Geophys. Res. Lett, vol.43, p.16, 2016.

S. Zhang and T. Tullis, The effect of fault slip on permeability and permeability anisotropy in quartz gouge, Tectonophysics, vol.295, pp.41-52, 1998.

M. D. Zoback and J. D. Byerlee, Permeability and Effective Stress, pp.154-158, 1975.

M. Zobak and S. Gorelick, Earthquake triggering and large-scale geologic storage of carbon dioxide, vol.29, pp.10164-10168, 2012.

. Résumé,

, aide d'un modèle hydro-mécanique de faille rate and state. Bien que les principaux mécanismes à l'origine de la réactivation de faille soient bien connus, différents aspects ne sont pas encore complètement explorés. Dans la première partie de cette thèse, on étudie le rôle du protocole d'injection (pression maximale et taux de pression d'injection), ainsi que le rôle des paramètres de frottement sur le taux de sismicité et la distribution de magnitude, pour des failles 2-D hétérogènes. On souligne d'abord une corrélation temporelle entre le taux de sismicité et le taux de pression de pore gouvernant la faille

, En outre, on montre que les failles ayant un comportement de frottement plus stable présente un taux de sismicité et un moment sismique plus faibles. Dans la dernière partie de cette étude, la variation de la diffusivité hydraulique au cours de l'injection de fluide avec l'accumulation du déplacement et la réduction de la contrainte normale effective sur la faille est abordée. On utilise des expériences d'injection (échelle du laboratoire) sur un échantillon d'andésite, où la pression de pore est mesurée à deux endroits sur la faille. En appliquant des méthodes d'inversion, on estime le meilleur modèle de diffusivité et les incertitudes associés, pouvant expliquer les données expérimentales. Avec ces résultats, on peut étendre notre modèle hydro-mécanique, Une compensation entre ces deux existe pour de grandes valeurs du taux de pression d'injection. Ce comportement ne peut pas être abordé par le taux de sismicité proposé par Dietrich, 1994.