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Chapter 1

Introduction

Hydrodynamic cavitation in liquid ows is partial vaporization observed when the liquid

experiences an abrupt pressure drop. This phenomenon a�ects high-speed internal ows in

rotating machinery, external ows on fast marine vehicles, and, more generally, any hydraulic

system where the ow is submitted to local accelerations. Cavitation is obtained in various

application areas, such as propellers and appendices of high speed ships or submarines in ocean

engineering, pumps of nuclear plants and space rocket cryogenic engines, and hydraulic dams.

Major detrimental e�ects of cavitation in these applications include a loss of e�ciency and the

inception of instabilities, vibrations, noise, and erosion. Instabilities are mostly generated by

the adverse pressure gradient in the wake of cavitation, which induces large-scale secondary

ows and shedding of bubble clouds. The collapse of these bubbles generates a combination of

pressure waves and micro-jets that repeatedly impact the walls of the hydraulic device, which is

responsible for the noise and the erosion. On the other hand, cavitation can also have positive

e�ects in diverse contexts. For instance, cavitation generated at the tip of underwater vehicles

is used to create a layer of gas between the walls and the liquid ow, which strongly reduces

the friction coe�cient. It results in a signi�cant drop of the drag that noticeably increases the

vehicle speed. Cavitation can also be used for lithotripsy via the shock pulse produced by the

collapse of cavitation bubble clusters. To bene�t from this phenomenon through preventing

the negative e�ects as well as triggering the positive ones, we have to gain insights into the

physical mechanisms and thus control the behavior of cavitation. Some examples of cavitation

e�ects are shown in Fig. 1.1.

The experimental measurements and numerical simulations are common tools to investigate

cavitating ows. Experiments in multiphase ows with high void fraction, like cavitating ows,

are generally challenging: non-intrusive measurements based on optical imaging, like particle

image velocimetry (PIV), are made di�cult by the opacity of the liquid/vapor mixture, and the

strong reection of any incident light on the cavitation bubbles. Speci�c techniques have to be

used, like the use of uorescent particles in PIV, or X-ray imaging instead of optical imaging.

The cost and the complexity of such experiments make numerical simulations very appealing as
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(a) Cavitating ow in a turbopump (b) Cavitating ow in a propeller

(c) Supercavity ow around a hydrofoil (d) Cavitation erosion in a gear pump

Figure 1.1: Examples of cavitation e�ects in hydraulic machinery. Adopted from [33]

a complementary approach to investigate the physics of this phenomenon.

To numerically simulate the turbulent cavitating ow, the most common approach is to

couple the Reynolds averaged Navier{Stokes (RANS) method with cavitation or phase change

models. High-�delity turbulence methods, such as large eddy simulation (LES) and direct

numerical simulation (DNS), have also been introduced into the cavitation simulation. They

generally provide more accurate results for a much higher computational cost. For instance,

Dittakavi et al. [ 36] conducted the LES in the Venturi nozzle by using the dynamic Smagorinsky

model and analyzed the e�ects of cavitation on each term in the vorticity transport equation.

Huang et al. [69] performed the LES simulation with Wall-Adapting Local Eddy-viscosity

(WALE) model in the Clark Y hydrofoil and demonstrated the strong correlation between the

cavity and vorticity structure through the analysis of the vorticity transport equation. Ji et

al. [74, 76] adopted the WALE LES to investigate the interaction of turbulence and cavitation

in unsteady cavitation and showed that the cavitation could prompt the vortex production.

Gnanaskandan and Mahesh [57] used the LES with a homogeneous mixture model and showed
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the simulation results in void fraction could have a good agreement with experimental data.
�Znidar�ci�c [ 157] proposed a fast, novel DNS algorithm to better investigate the cavitation{

turbulence interaction. Despite the development of these high-�delity methods, they are still

not practical for many engineering applications, mainly due to the prohibitive computational

cost. Hence, the RANS method is still the primary tool for cavitation simulations.

Conversely, the current framework combining the RANS approach and homogeneous cavita-

tion modelling cannot, in general, accurately predict the di�erent types of cavitating ows. The

unsteady cavitation patterns can be roughly divided into:

(a) attached/sheet cavitation : cavity forms on a wall due to a local ow acceleration, and

remains mostly steady, with possible uctuations and shedding at various scales. This

type of cavitation is shown in Fig. 1.2a.

(b) cloud cavitation : the main part of the cavitation periodically detaches from the wall,

forms large scale clouds of bubbles, and sheds downstream, where they collapse as soon

as the pressure re-increases. This is the most aggressive ow pattern regarding cavitation-

induced erosion, and also the one that will likely generate noise, vibrations, and pressure

uctuations. This cavitation pattern is presented in Fig. 1.2b.

(c) shear cavitation : the formed vapor structures are immediately detached from the wall,

and no attached cavity can be observed on the wall. This cavitation type is shown in

Fig. 1.2c.

(a) sheet cavitation (b) cloud cavitation (c) shear cavitation

Figure 1.2: The di�erent cavitation patterns. Adopted from [6, 17, 110]

In some speci�c cases like cloud cavitation, a fair general agreement with the experiments

can be obtained [32, 52], but local comparisons of the void fraction or velocity pro�les usually

exhibit a poor agreement with the available experimental measurements [18]. In addition, the

other con�gurations of cavitating ows, such as attached cavitation or shear cavitation, are

usually not accurately predicted [6, 34].

The poor predictive performance of current methods can be due to many aspects.

(i) First, the RANS framework has inherent limitations due to the use of the Boussinesq

assumption, isotropic turbulence, etc. That will a�ect the predictive performance for
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the turbulent cavitating ows. Speci�cally, cavitating ows are typically the separated

recirculating ow with adverse pressure gradient, while it is well known that the RANS

model cannot con�dently predict this type of ow. Additionally, most of the RANS models

are validated only for simple ows. However, in the cavitating ows, the use of homogeneous

cavitation models results in large density gradients and high compressibility e�ects, which

are usually not in the range of validity of these models. Besides, RANS models usually

overestimate the turbulent viscosity in many cavitating ow con�gurations [ 27, 35, 155],

which leads to that the unsteady e�ects, including uctuations at multiple scales, are also

complicated to handle by current RANS methods.

(ii) Second, most of the existing cavitation model uses a homogeneous approach where the

slip velocity between the two phases is neglected, the pressure is assumed to be the

same in the liquid and vapor, and surface tension and bubble/bubble interactions are

not considered. The commonly used models are based on the hypothetical state law

(barotropic model), the empirical methods (such as Merkle model [104], Kunz model [87]),

or deduced from single bubble dynamics (such as Schnerr-Sauer model [128], Singhal

model [131]). Speci�cally, the barotropic model describes the vaporization behavior based

on a pre-set pressure interval � pv. If the local pressure is higher than the vaporization

pressurepv + 1
2 � pv , the local density is considered as pure liquid. Oppositely, if the local

pressure is lower thanpv � 1
2 � pv, the local density is regarded as vapor. Between the

two pressure limits, a sinusoidal function usually is used to de�ne the phase transition.

Di�erent from the barotropic model, the empirical models and the bubble dynamics based

models estimate the mixture density by solving a void fraction transport equation as:

(1.1)
@�
@t

+ r � (�U ) = m+ + m� ;

where � is the void fraction, U is velocity, m+ and m� represent the vaporization

and condensation term, respectively. One advantage of these methods, compared to

the barotropic model, is that both the vaporization and condensation process can be

taken into account. The di�erence between the empirical model and the model based on

bubble dynamics lies in the estimation for the vaporization and condensation process.

The empirical model is based on the di�erence between local pressure and vaporization

pressure. Moreover, as for the Kunz and Merkle model, the empirical coe�cients,Cprod and

Cdest, are introduced to control the magnitude of the vaporization and condensation term,

respectively. While the bubble dynamics based models are deduced from the Rayleigh{

Plesset equation, which describes the behavior of a spherical bubble in a pressure �eld.

Based on that, the vaporization and condensation terms in Eq. 1.1 are modeled by

assuming the bubbles in cavitating ows are spherical and have the same initial radius.

Generally, all these cavitation models are under several assumptions and problematic to

describe the behavior of natural cavitation bubble clusters accurately.
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(iii) Moreover, it has been demonstrated by numerous works that there exist strong interactions

between turbulence and cavitation. For instance, the cavitation can prompt the vortex

production [74], enlarge the turbulent boundary layer thickness [127], and arise additional

dissipation [35]. Speci�c changes of the standard turbulence models to take into account

these interactions have to be applied but still need further investigations.

Conclusively, we have not yet fully understood the physics of both turbulence and cavitation,

not mentioning the interaction between cavitation and turbulence. To improve the prediction

from both sides of the turbulence model and the cavitation model is too ambitious so far.

On the other hand, the work of [57] showed that better turbulence models (LES) combined

with the same homogeneous cavitation models could provide predictive results in remarkably

good agreement with experimental data, which suggests that the RANS models need to

be primarily improved, more than the cavitation models. Hence, before we investigate the

cavitation{turbulence interaction, it is crucial to have a better turbulence model to take into

account large, fast changes of properties in terms of compressibility and viscosity, and the

uctuations at di�erent scales in cavitating ows. Speci�cally, the cavitating ow is usually

characterized by strong unsteadiness, the ow separation caused by adverse pressure gradient,

and large pressure/density gradient, while RANS methods perform poorly on the ow with these

characterizations. With the improvement to tackle these issues, the RANS model is possible

to recover the �eld information of cavitating ows accurately. Therefore, this work intends

to focus on the optimization of RANS models, more speci�cally 2-equations RANS models,

and improve the overall performance with the optimal RANS methods for non-cavitating and

cavitating ows.

To improve the accuracy of simulations for cavitating ows, the conventional approach

is to apply better RANS models proposed in the turbulence community and deduce novel

cavitation models embedding more physical insights into the mass transfer. Di�erent works

have been conducted to improve the predictive performance of RANS models based on physical

knowledge. For instance, thek{ � , k{ ! , and k{ ! shear stress transport (SST) model were proposed

successively in the past decades and have been introduced in cavitation simulations. [27, 84] In

recent years, the hybrid RANS/LES methods, for instance, detached eddy simulation (DES) and

scale-adaptive simulation (SAS) model, which resolve the ow based on local turbulence length

scale, are developed rapidly and used to predict unsteady cavitating ows [34]. Nevertheless,

the development of the RANS model has been stagnant for the last two decades. There is still

no universal models that can make a satisfactory prediction at an a�ordable computational

cost for di�erent types of ows. It is mainly due to that the knowledge about turbulence is

still limited, and also the computational power is not feasible for the high-�delity simulation of

ows in industrial applications, which both barrier us to further improve the prediction. Hence,

for speci�c ows, we often have to tune the dozens of turbulence models to achieve a balance

between the simulation accuracy and the computational cost, which is very laborious.
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In view of the fact that the development of the physical model has encountered the bottle-

neck, in the past few years, the data-driven methods, including data assimilation and machine

learning, draw more and more attention in the turbulence community. Data assimilation is

widely applied in diverse context (e.g., geoscience, weather forecasting, uid mechanics, etc.).

This method can integrate the low �delity simulation with limited observations from experiments

or high-�delity simulations, and thus used for di�erent purposes, such as state estimation,

uncertainty quanti�cation (UQ), and inference of empirical parameters or underlying source

terms in RANS models. Another data-driven method, machine learning, is getting highlighted

in the CFD �eld in recent years. Di�erent from data assimilation, this technique does not

need to embed the physical model and can build a functional mapping between the input

features and the quantities of interest, e.g., model discrepancy, with o�ine training data. It

is very promising to augment the turbulence modeling and construct a predictive model for

the model-form discrepancy based on the underlying model information extracted with data

assimilation.

In this work, we explore to improve the RANS model from two di�erent directions: inverse

modeling and empirical modeling. The road map of this work is shown in Fig. 1.3. The

inverse modeling aims to extract the underlying model information from the data, and thus

we can use this information to assist the RANS modelling. While the empirical modeling is to

gain additional physical insight from the data, and further, we can embed the new physical

understanding into the existing models to improve the prediction.

Figure 1.3: Road map of the thesis

As for the inverse modeling, we mainly focus on the data assimilation approach and

investigate the applicability of diverse DA methods into complex CFD problems with the

ultimate goal of improving the RANS models for cavitating ows. In concrete, with the data

assimilation method, we attempt to quantify the unknown model-form uncertainties associated
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with the Reynolds stress (i.e., underlying model corrections, and discrepancy in the Reynolds

stress or the eddy viscosity), based on the high-�delity data. These latent �elds are not

measurable straightforwardly from experiments, but they embed the main source of model-form

uncertainties we need to quantify.

To achieve the goal, we �rst introduce a hybrid data assimilation method, namely ensemble-

based variational (EnVar) method, to improve the simulation in the convergent-divergent

channel, which is extensively used for the investigation of cavitating ows. We incorporate the

high �delity data (the DNS results and PIV experimental data) with k{ ! SST turbulence model

to infer optimal boundary condition and underlying model corrections, thereby improving the

predictive performance in the non-cavitating ows.

Although the EnVar method is robust and can improve the numerical predictions signi�cantly,

two issues are observed in the inference results and have to be addressed before further applying

into cavitating ows: one is the ill-posedness of the �eld inversion problem, and another one

is the uncertainty information loss. Concretely, when inferring the entire �eld from limited

observation, it increases signi�cantly the ill-posedness of the inverse problem where many

possible model parameters can result in a satisfactory result in the observation space. That

makes it very challenging to obtain good inferences with existing DA approaches. To this end,

concerning the ill-posedness of the �eld inversion problem, we propose a novel ensemble-based

data assimilation technique, namely regularized ensemble Kalman �lter, to constrain the analysis

step with auxiliary prior knowledge and thus provide more physical, accurate inference results.

Another issue about the uncertainty information loss is observed in both EnVar and ensemble

Kalman �lter. For the EnVar, the resampling around the updated posterior mean at each

iteration will only retain the sample mean and ignore the statistical information. While the

ensemble Kalman �lter is typically adopted for the dynamic systems and will underestimate

the posterior uncertainty when used for the stationary systems due to data repeatedly use. To

this end, we investigate di�erent widely used data assimilation techniques and evaluate their

performance as an e�cient, approximate Bayesian UQ method for CFD applications.

Regarding the empirical modeling, we conduct the RANS simulation with the advanced

two-equation turbulence model (k{ ! SST and SST-SAS) and compare the results with reliable

X-ray experimental measurements in the cavitating ows. Motivated by the results, we propose

a novel eddy viscosity modi�cation to improve the prediction in Reynolds shear stress by further

considering the e�ects of cavitation on the boundary layer.

The thesis includes �rstly the literature review focusing on di�erent data assimilation

methods and their applications since they are the main optimization methods used in this

work. In Chapter 3, a hybrid data assimilation method, namely ensemble-based variational

data assimilation method, is adopted for the Bayesian optimization of turbulent ow in the

convergent-divergent channel. In Chapter 4, a regularized ensemble Kalman method is proposed

to regularize the inference results with additional constraints on the inferred �eld. In Chapter 5,
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the performance of di�erent ensemble-based data assimilation methods is assessed and discussed

for uncertainty quanti�cation problems in CFD applications. In Chapter 6, we evaluate the

performance of di�erent RANS methods on the simulation of cavitating ows and propose a

modi�cation to better consider the e�ects of cavitation on the turbulence. Finally, we summarize

the conclusions and discuss the potentials and challenges in the applicability of data-driven

techniques for future investigations of cavitating ows.
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R�esum�e

La cavitation hydrodynamique dans les �ecoulements liquides est une vaporisation partielle

observ�ee lorsque le liquide subit une chute de pression brutale. Ce ph�enom�ene a�ecte les

�ecoulements internes �a grande vitesse dans les machines tournantes, les �ecoulements externes

sur les appendices de bateaux et les syst�emes de propulsion et, plus g�en�eralement, tout syst�eme

hydraulique o�u l'�ecoulement est soumis �a des acc�el�erations locales. La cavitation est obtenue

dans divers domaines d'application, tels que les h�elices et les appendices de navires rapides ou de

sous-marins dans le domaine naval, les pompes de centrales nucl�eaires, les moteurs cryog�eniques

dans le domaine spatial, ou encore les barrages hydrauliques. Les principaux e�ets n�efastes

de la cavitation dans ces applications comprennent une perte d'e�cacit�e et le d�eclenchement

d'instabilit�es, de vibrations, de bruit et d'�erosion. Les instabilit�es sont principalement engendr�ees

par le gradient de pression d�efavorable dans le sillage de la cavitation, qui induit des �ecoulements

recirculants �a grande �echelle et le d�etachement de nuages de bulles. L'implosion de ces bulles

engendre une combinaison d'ondes de pression et de micro-jets qui impactent de fa�con r�ep�etitive

les parois de l'objet qui induit la cavitation, provoquant notamment les probl�emes de bruit et

d'�erosion. D'un autre côt�e, la cavitation peut �egalement avoir des e�ets positifs dans divers

contextes. Par exemple, la cavitation engendr�ee volontairement au nez des v�ehicules sous-marins

peut être utilis�ee pour cr�eer une couche de gaz entre les parois et l'�ecoulement liquide, ce qui

r�eduit fortement le coe�cient de frottement. Il en r�esulte une baisse importante de la trâ�n�ee,

ce qui augmente sensiblement la vitesse du v�ehicule. La cavitation peut �egalement être utilis�ee

pour la lithotripsie via l'onde de pression produite par le collapse des bulles de vapeur. Pour

limiter les e�ets n�egatifs dans certains cas, tout en recherchant les e�ets positifs dans d'autres,

il est n�ecessaire de mieux comprendre les m�ecanismes physiques des instabilit�es de cavitation,

pour �nalement les contrôler. Quelques exemples d'e�ets de la cavitation sont pr�esent�es dans la

Fig. 1.4.

Les mesures exp�erimentales et les simulations num�eriques sont des outils courants pour

�etudier les �ecoulements cavitants. Les exp�eriences dans les �ecoulements multiphasiques �a fraction

de vide �elev�ee, comme les �ecoulements cavitants, sont g�en�eralement di�ciles: les mesures non

intrusives bas�ees sur l'imagerie optique, comme la V�elocim�etrie par Image de Particules (PIV),

sont rendues di�ciles par l'opacit�e du m�elange liquide / vapeur et la forte r�eexion de toute

lumi�ere incidente sur les bulles de cavitation. Des techniques sp�eci�ques doivent être utilis�ees,
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CHAPTER 1. INTRODUCTION

(a) Ecoulement cavitant dans une turbopompe (b) Ecoulement cavitant dans une h�elice

(c) �Ecoulement supercavitant autour d'un hy-
dropt�ere

(d) �Erosion par cavitation dans une pompe �a en-
grenages

Figure 1.4: Exemples d'e�ets de cavitation dans les machines hydrauliques. Extrait de [33]

comme l'utilisation de particules uorescentes en PIV, ou l'imagerie par rayons X au lieu

de l'imagerie optique. Le coût et la complexit�e de telles exp�eriences rendent les simulations

num�eriques tr�es attrayantes en tant qu'approche compl�ementaire pour �etudier les m�ecanismes

physiques.

Pour simuler num�eriquement un �ecoulement cavitant turbulent, l'approche la plus courante

consiste �a coupler l'approche RANS (Reynolds Averaged Navier-stokes equations) avec des

mod�eles de cavitation ou de changement de phase. Des m�ethodes de turbulence haute �d�elit�e,

telles que la simulation des grandes �echelles (LES) et la simulation num�erique directe (DNS),

ont �egalement �et�e introduites dans la simulation de cavitation. Elles fournissent g�en�eralement

des r�esultats plus pr�ecis pour un coût de calcul beaucoup plus �elev�e. Par exemple, Dittakavi et

al. [36] ont e�ectu�e une LES dans un Venturi en utilisant le mod�ele dynamique de Smagorinsky,

et ils ont analys�e les e�ets de la cavitation sur chaque terme dans l'�equation de transport de

tourbillon. Huang et al. [ 69] ont e�ectu�e la simulation LES avec le mod�ele Wall-Adapting Local

Eddy-viscosity (WALE) sur l'hydrofoil Clark Y et ont d�emontr�e la forte corr�elation entre la
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structure de la cavit�e et celle des tourbillons, par l'analyse de l'�equation de transport de la

vorticit�e. Ji et al. [ 74, 76] ont �egalement adopt�e le mod�ele WALE pour �etudier l'interaction

de la turbulence et de la vapeur en r�egime de cavitation instationnaire, et ils ont montr�e que

la cavitation pouvait favoriser la production de vortex. Gnanaskandan et Mahesh [57] ont

utilis�e l'approche LES avec un mod�ele de m�elange homog�ene et ont montr�e que les r�esultats de

simulation en termes de fraction volumique de vapeur �etaient en bon accord avec les donn�ees

exp�erimentales. �Znidar�ci�c [ 157] a propos�e un nouvel algorithme DNS rapide pour mieux �etudier

l'interaction cavitation-turbulence. Malgr�e le d�eveloppement de ces m�ethodes haute �d�elit�e, elles

ne sont toujours pas pratiques pour de nombreuses applications d'ing�enierie, principalement

en raison du coût de calcul prohibitif. Par cons�equent, la m�ethode RANS est toujours l'outil

principal pour les simulations de cavitation.

Inversement, le cadre actuel combinant l'approche RANS et la mod�elisation homog�ene de la

cavitation ne peut pas, en g�en�eral, pr�edire avec pr�ecision les di��erents r�egimes d'�ecoulements

cavitants. Les mod�eles de cavitation instationnaires peuvent être principalement divis�es en:

(a) cavitation attach�ee / stable : la cavit�e se forme sur une paroi en raison d'une acc�el�eration

locale de l'�ecoulement et reste g�en�eralement stable, avec des uctuations et des d�etachements

possibles �a di��erentes �echelles. Ce type de cavitation est illustr�e dans Fig. 1.5a.

(b) cavitation avec nuages de bulles : la partie principale de la cavitation se d�etache

p�eriodiquement de la paroi, formant des nuages de bulles �a grande �echelle qui sont

convect�es en aval, o�u ils implosent d�es que la pression augmente �a nouveau. Il s'agit du

sch�ema d'�ecoulement le plus agressif en ce qui concerne l'�erosion induite par la cavitation,

et �egalement celui qui g�en�erera des niveaux �elev�es de bruit, de vibrations et de uctuations

de pression. Ce mod�ele de cavitation est pr�esent�e dans Fig. 1.5b.

(c) cavitation de cisaillement : les structures de vapeur form�ees sont imm�ediatement

d�etach�ees de la paroi, et aucune cavit�e attach�ee ne peut être observ�ee. Ce type de

cavitation est illustr�e dans Fig. 1.5c.

(a) cavitation attach�ee (b) cavitation par nuages de bulles (c) cavitation de cisaillement

Figure 1.5: Les di��erents mod�eles de cavitation. Extrait de [6, 17, 110]

Dans certains cas sp�eci�ques comme la cavitation instable, un accord g�en�eral correct avec les

exp�eriences peut être obtenu [32, 52], mais les comparaisons locales de la fraction volumique de
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vapeur ou des pro�ls de vitesse pr�esentent g�en�eralement un mauvais accord avec les mesures

exp�erimentales disponibles [18]. De plus, les autres con�gurations d'�ecoulements de cavitation,

telles que la cavitation attach�ee ou la cavitation de cisaillement, ne sont g�en�eralement pas

pr�edites de fa�con satisfaisante [6, 34].

Cette mauvaise performance des m�ethodes actuelles peut être due �a de nombreux aspects.

(i) Premi�erement, le cadre RANS a des limites inh�erentes en raison de l'utilisation de

l'hypoth�ese de Boussinesq et de la notion implicite de turbulence isotrope. Il s'ensuit des

di�cult�es g�en�erales �a pr�edire la structure des �ecoulements cavitants. Plus pr�ecis�ement,

les �ecoulements cavitants engendrent g�en�eralement des �ecoulements d�etach�es et des

recirculations li�es �a un gradient de pression d�efavorable en aval de la cavit�e, ce qui est

typiquement une con�guration d'�ecoulement dans laquelle les mod�eles RANS ont montr�e

de fortes limitations. De plus, la plupart de ces mod�eles ne sont valid�es que pour des

�ecoulements incompressibles simples. Cependant, dans la mod�elisation de la cavitation,

l'utilisation de mod�eles homog�enes entrâ�ne des gradients de densit�e �elev�es et de forts

e�ets de compressibilit�e, qui ne sont g�en�eralement pas dans la plage de validit�e de ces

mod�eles. En outre, les mod�eles RANS surestiment g�en�eralement la viscosit�e turbulente

dans de nombreuses con�gurations d'�ecoulements cavitants [27, 35, 155], ce qui conduit �a

une mauvaise pr�ediction des e�ets instationnaires, aussi bien les �evolutions p�eriodiques �a

grande �echelle que les uctuations �a plus haute fr�equence.

(ii) Deuxi�emement, la plupart des mod�eles de cavitation existants utilisent une approche

homog�ene o�u la vitesse de glissement entre les deux phases est n�eglig�ee, la pression est

suppos�ee être la même dans le liquide et la vapeur, et la tension de surface ainsi que les

interactions entre bulles ne sont pas prises en compte. Les mod�eles couramment utilis�es

sont bas�es soit sur une loi d'�etat pour le m�elange (mod�ele barotrope), des m�ethodes

empiriques de d�etermination de termes sources de vapeur (telles que le mod�ele Merkle [104],

le mod�ele Kunz [87]), ou d�eduites de la dynamique d'une seule bulle (comme le mod�ele

Schnerr{Sauer [128], mod�ele Singhal [131]). Plus pr�ecis�ement, le mod�ele barotrope d�ecrit

le ph�enom�ene de changement de phase sur un intervalle de pression pr�ed�e�ni � pv. Si

la pression locale est sup�erieure �a la pression de vaporisation pv + 1
2 � pv, la densit�e

locale est consid�er�ee comme liquide pur. A l'oppos�e, si la pression locale est inf�erieure

�a pv � 1
2 � pv , la densit�e locale est consid�er�ee comme de la vapeur. Entre ces deux limites

de pression, une fonction sinuso•�dale est g�en�eralement utilis�ee pour d�e�nir la transition de

phase. A la di��erence du mod�ele barotrope, les mod�eles empiriques et les mod�eles bas�es

sur la dynamique des bulles estiment la densit�e du m�elange en r�esolvant une �equation de

transport pour la fraction volumique de vapeur comme:

(1.2)
@�
@t

+ r � (�U ) = m+ + m� ;
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o�u � est la fraction volumique de vapeur, U est la vitesse,m+ et m� repr�esentent

respectivement le terme source de vaporisation et de condensation. Un avantage de ces

m�ethodes, par rapport au mod�ele barotrope, est que les processus de vaporisation et de

condensation peuvent être pris en compte s�epar�ement, avec �eventuellement un d�ecalage

entre les variations de pression et de densit�e. La di��erence entre le mod�ele empirique et le

mod�ele bas�e sur la dynamique des bulles r�eside dans la technique d'estimation du taux de

vaporisation et de condensation. Les mod�eles empiriques sont bas�es sur la di��erence entre

la pression locale et la pression de vapeur saturante. Des coe�cients (constantes),Cprod et

Cdest, sont introduits pour contrôler respectivement l'amplitude du terme de vaporisation

et de condensation. Les mod�eles bas�es sur la dynamique des bulles sont d�eduits quant �a

eux de l'�equation de Rayleigh-Plesset, qui d�ecrit le comportement d'une bulle sph�erique

dans un champ de pression. Sur cette base, les termes de vaporisation et de condensation

dans Eq. 1.2 sont mod�elis�es en supposant que les bulles dans les �ecoulements cavitants

sont sph�eriques et ont toutes le même rayon initial. G�en�eralement, ces mod�eles incluent

des hypoth�eses fortes (bulles qui n'interagissent pas et ne se d�eforment pas) pour pouvoir

être appliqu�es �a des nuages de bulles de vapeur.

(iii) De plus, il a �et�e d�emontr�e par de nombreux travaux qu'il existe de fortes interactions

entre turbulence et cavitation. Par exemple, la cavitation peut provoquer la production de

vorticit�e [ 74], augmenter l'�epaisseur de la couche limite turbulente [127] et provoquer une

dissipation suppl�ementaire [35]. Des modi�cations sp�eci�ques des mod�eles de turbulence

standard pour prendre en compte ces interactions doivent être appliqu�ees mais n�ecessitent

encore des investigations suppl�ementaires.

En conclusion, la physique de la turbulence et de la cavitation est loin d'être comprise

enti�erement, sans parler de l'interaction entre la cavitation et la turbulence. Am�eliorer simul-

tan�ement l'e�cacit�e du mod�ele de turbulence et du mod�ele de cavitation est jusqu'�a pr�esent

trop ambitieux. D'un autre côt�e, les travaux de [ 57] ont montr�e que de meilleurs mod�eles de

turbulence (LES) combin�es avec les mêmes mod�eles de cavitation homog�enes pouvaient fournir

des r�esultats pr�edictifs en tr�es bon accord avec les donn�ees exp�erimentales, ce qui sugg�ere que

les mod�eles RANS doivent être principalement am�elior�es, plus que les mod�eles de cavitation

eux-mêmes. Par cons�equent, avant d'�etudier l'interaction cavitation-turbulence, il est crucial

d'avoir un meilleur mod�ele de turbulence, pouvant prendre en compte les changements impor-

tants et rapides de propri�et�es en termes de compressibilit�e et de viscosit�e, et les uctuations �a

di��erentes �echelles des �ecoulements cavitants. Plus pr�ecis�ement, les �ecoulements cavitants sont

g�en�eralement caract�eris�es par une forte instabilit�e, une s�eparation caus�ee par un gradient de

pression d�efavorable, et des variations rapides de densit�e et de pression, alors que les m�ethodes

RANS fonctionnent mal sdan ces conditions. Ce travail vise �a se concentrer sur l'optimisation

des mod�eles RANS, plus sp�eci�quement les mod�eles RANS �a 2 �equations, et �a am�eliorer les
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performances globales par des m�ethodes d'assimilation de donn�ees en conditions non cavitantes

et cavitantes.

Pour am�eliorer la pr�ecision des simulations des �ecoulements de cavitation, l'approche

conventionnelle consiste �a appliquer de meilleurs mod�eles RANS propos�es dans la communaut�e

de la turbulence et �a d�eduire de nouveaux mod�eles de cavitation int�egrant davantage de

physique dans l'expression des termes de transfert de masse. Di��erents travaux ont �et�e men�es

pour am�eliorer les performances pr�edictives des mod�eles RANS bas�es sur les connaissances

physiques. Par exemple, les mod�elesk-� , k-! et k-! shear stress transport (SST) ont �et�e

appliqu�ees successivement ces derni�eres d�ecennies aux simulations de cavitation. R�ecemment les

m�ethodes hybrides RANS/LES, telles que Detached Eddy Simulation (DES) et Scale-Adaptive

Simulation (SAS), qui prennent en compte une �echelle des turbulence locale, se sont d�evelopp�ee

rapidement et ont �et�e appliqu�ees aux �ecoulements instationnaires cavitants [ 34]. N�eanmoins,

le d�eveloppement du mod�ele RANS stagne depuis deux d�ecennies. Il n'existe toujours pas de

mod�eles universels capables de faire une pr�ediction satisfaisante �a un coût de calcul abordable

pour di��erents types d'�ecoulements. Cela est principalement dû au fait que les connaissances

sur la turbulence sont encore limit�ees et que la puissance de calcul n'est pas r�ealisable pour la

simulation haute �d�elit�e des �ecoulements dans les applications industrielles. Par cons�equent,

pour des �ecoulements sp�eci�ques, il est souvent n�ecessaire de tester di��erents mod�eles de

turbulence et choisir �nalement un compromis entre pr�ecision de la simulation et le coût de

calcul, ce qui est tr�es laborieux.

Compte tenu du fait que le d�eveloppement des mod�ele physique a stagn�e au cours des

derni�eres ann�ees, les m�ethodes bas�ees sur l'analyse de donn�ees, y compris l'assimilation de

donn�ees et l'apprentissage automatique, attirent de plus en plus l'attention dans la communaut�e

de la turbulence. L'assimilation de donn�ees est largement appliqu�ee dans divers contextes (par

exemple, g�eoscience, pr�evisions m�et�eorologiques, m�ecanique des uides, etc.). Cette m�ethode

peut int�egrer la simulation basse �d�elit�e �a des observations limit�ees issues d'exp�eriences ou de

simulations haute �d�elit�e, et elle est utilis�ee pour la quanti�cation de l'incertitude (UQ) et la

d�etermination de param�etres empiriques ou de termes sources sous-jacents dans les mod�eles

RANS. Une autre m�ethode, l'apprentissage automatique, a �emerg�e dans le domaine de la

CFD ces derni�eres ann�ees. Di��erente de l'assimilation de donn�ees, cette technique n'a pas

besoin d'incorporer le mod�ele physique et peut cr�eer une correspondance fonctionnelle entre les

caract�eristiques d'entr�ee et les quantit�es d'int�erêt. Il semble tr�es prometteur de combiner les

deux approches, i.e.am�eliorer la mod�elisation de la turbulence et construire un mod�ele pr�edictif

sur la base des informations du mod�ele sous-jacent extraites avec l'assimilation des donn�ees.

Dans ce travail, nous explorons l'am�elioration du mod�ele RANS par deux techniques

di��erentes et compl�ementaires : la mod�elisation inverse d'une part, et une approche empirique

d'autre part. La feuille de route g�en�erale de ce travail est pr�esent�ee sur la Fig. 1.6. La mod�elisation

inverse vise �a extraire des informations suppl�ementaires sur le mod�ele �a partir de comparaisons
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entre calculs et mesures de r�ef�erence, et ainsi �a am�eliorer la mod�elisation RANS. La mod�elisation

empirique quant �a elle vise �a obtenir une meilleure compr�ehension de la physique, pour l'int�egrer

dans les mod�eles existants et am�eliorer la pr�ediction.

Figure 1.6: Feuille de route de la th�ese

En ce qui concerne la mod�elisation inverse, nous nous concentrons principalement sur

l'approche d'assimilation de donn�ees (DA) et �etudions l'applicabilit�e de diverses m�ethodes DA

dans des probl�emes CFD complexes, dans le but �nal d'am�eliorer les mod�eles RANS pour les

�ecoulements cavitants. Concr�etement, avec la m�ethode d'assimilation de donn�ees, nous essayons

de quanti�er les incertitudes du mod�ele associ�ees aux composantes du tenseur de Reynolds

(i.e.,les corrections du mod�ele et les �ecarts dans le tenseur de Reynolds ou la viscosit�e turbulente),

sur la base de donn�ees haute �d�elit�e . Ces champs ne sont pas mesurables directement �a partir

d'exp�eriences, mais ils int�egrent la principale source d'incertitudes du mod�ele, que nous devons

quanti�er.

Pour atteindre cet objectif, nous introduisons d'abord une m�ethode hybride d'assimilation

de donn�ees, �a savoir la m�ethode variationnelle bas�ee sur l'ensemble (EnVar), pour am�eliorer

la simulation dans le canal convergent-divergent, qui est largement utilis�ee pour l'�etude des

�ecoulements de cavitation. Nous incorporons les donn�ees haute �d�elit�e (les r�esultats DNS et les

donn�ees exp�erimentales PIV) avec le mod�ele de turbulence k{ ! SST pour d�eduire la condition

aux limites optimale et les corrections du mod�ele sous-jacent, am�eliorant ainsi les performances

pr�edictives dans les �ecoulements sans cavitation. .

Bien que la m�ethode EnVar soit robuste et puisse am�eliorer consid�erablement les pr�edictions

num�eriques, deux probl�emes sont observ�es dans les r�esultats d'inf�erence et doivent être r�esolus

avant de s'appliquer plus avant aux �ecoulements cavitants: d'une part le probl�eme d'inversion

de champ est mal pos�e, et d'autre part on observe une perte d'information sur l'incertitude.

Concr�etement, quand on inf�ere un champ complet �a partir d'observations limit�ees, de nombreux
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param�etres di��erents du mod�ele peuvent aboutir �a un r�esultat satisfaisant dans l'espace

d'observation. Il est donc tr�es di�cile d'obtenir de bonnes inf�erences avec les approches DA

existantes. Pour r�esoudre ce probl�eme, nous proposons une nouvelle technique d'assimilation de

donn�ees bas�ee sur une m�ethode d'ensemble, �a savoir un �ltre de Kalman d'ensemble r�egularis�e,

pour contraindre l'�etape d'analyse avec des connaissances pr�ealables auxiliaires et ainsi fournir

des r�esultats d'inf�erence plus physiques et plus pr�ecis. . Un autre probl�eme concernant la perte

d'informations d'incertitude est observ�e �a la fois dans EnVar et dans le �ltre de Kalman. Pour

l'EnVar, le r�e�echantillonnage autour de la moyenne post�erieure mise �a jour �a chaque it�eration

ne conservera que la moyenne de l'�echantillon et ignorera les informations statistiques. Alors

que le �ltre de Kalman d'ensemble est g�en�eralement adopt�e pour les syst�emes dynamiques et

sous-estimera l'incertitude post�erieure lorsqu'il est utilis�e pour les syst�emes stationnaires en

raison de l'utilisation r�ep�et�ee des donn�ees. �A cette �n, nous �etudions dans ce m�emoire di��erentes

techniques d'assimilation de donn�ees largement utilis�ees et �evaluons leurs performances en tant

que m�ethode bay�esienne e�cace pour les applications de CFD.

En ce qui concerne la mod�elisation empirique, nous e�ectuons la simulation RANS avec des

mod�eles de turbulence �a deux �equations (k-! SST et SST-SAS) et comparons les r�esultats avec

des mesures exp�erimentales par imagerie de rayons X �ables dans les �ecoulements de cavitation.

Sur la base de ces r�esultats, nous proposons une nouvelle modi�cation de la viscosit�e turbulente

pour am�eliorer la pr�ediction de la contrainte de cisaillement de Reynolds en consid�erant

davantage les e�ets de la cavitation sur la couche limite.

La th�ese comprend tout d'abord une revue bibliographique portant sur les di��erentes

m�ethodes d'assimilation de donn�ees et leurs applications car ce sont les principales m�ethodes

d'optimisation utilis�ees dans ce travail. Dans le chapitre 3, une m�ethode hybride d'assimilation

de donn�ees, �a savoir la m�ethode d'assimilation d'ensemble de donn�ees variationnelles, est adopt�ee

pour l'optimisation bay�esienne de l'�ecoulement turbulent dans un canal venturi convergent-

divergent. Dans le chapitre 4, une m�ethode de Kalman r�egularis�ee est propos�ee pour r�egulariser

les r�esultats d'inf�erence avec des contraintes suppl�ementaires sur le champ d�eduit. Dans le

chapitre 5, la performance de di��erentes m�ethodes d'assimilation de donn�ees bas�ees sur un

ensemble est �evalu�ee et discut�ee pour les probl�emes de quanti�cation de l'incertitude dans les

applications CFD. Dans le chapitre 6, nous �evaluons les performances de di��erentes m�ethodes

RANS sur la simulation des �ecoulements cavitants et proposons une modi�cation pour mieux

prendre en compte les e�ets de la cavitation sur la turbulence. En�n, une synth�ese des travaux

clot ce m�emoire, o�u les probl�emes subsistants et les champs d'applications des techniques

d'assimilation de donn�ees sont discut�es pour le cas particulier des �ecoulements cavitants.
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Chapter 2

Review of Data Assimilation

Methods

2.1 Introduction

Data assimilation (DA) is widely used in the �eld of geoscience and meteorology to seek for the

optimal state estimate via combining the theoretic/physical model with sparse observations.

Also, it has been increasingly leveraged for the inference problem, for instance, to determine

the initial or boundary condition or �nd out optimal system parameters with consideration of

available data. This technique can be applied for either dynamic or stationary systems, and in

this work, we focus on the stationary scenario. Numerous methods mainly based on Kalman

�lter and variational method have been developed. In this chapter, we give a brief review of

di�erent data assimilation schemes mainly for the time-independent scenario, with emphasis on

the DA schemes adopted in the present work.

2.2 Data assimilation problem statement

The problem we intend to solve with DA can be briey sorted by three di�erent purposes.

First is the state estimation problem to estimate the state of the system by reducing the

mismatch between the model forecasting and the observation. The second is Bayesian uncertainty

quanti�cation problems where the interest is not only to capture the most con�dential value

(mode) but also estimate the posterior statistics of the state inputs as well as the model

outputs with given noised data. The �nal one is the inference problem to infer the latent �eld

or parameters of interest by incorporating the observation data. Before illustrating the DA

problem, two sources of information, i.e., the model and the observation, need to be further

explained. The model is the theoretical/physical description of the system but inaccurate to

some extent, for instance, the RANS model in CFD applications. The observation is theintuitive
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description via observations or measurements on the system. Conventionally, the model and

observation are both discretized in space, as we will do in this work.

In the discrete formulation, it is assumed that the state of the system, for instance, the uid

velocity , can be expressed asx 2 RM whereM is the dimension of the state after discretization.

The forward model is to propagate the state vector into the observation space, which can be

expressed as:

(2.1) ŷ = H [x];

where H : RM ! RD is generally the nonlinear model operator mapping the state space to

observation space. Note that the model hereby is the perfect model, and the model error is

not considered in this thesis. The noised observations can be represented as the observation

vector yo 2 RD and formulated as:

(2.2) yo = H[x+ ] + �;

where � is the observation noise, accounting for the epistemic and aleatoric uncertainty in the

measurements as well as the de�ciency of the observation operator;x+ is the reference trajectory

projecting to observation via the operator H . In most cases, the dimension of the state vector is

much higher than that of observation, i.e., M >> D . The information from data is insu�cient

to fully describe the system, and DA is capable of utilizing these information to propagate from

observed to unobserved areas and estimate the state of the system by incorporating the model.

The theoretical foundation of DA is the Bayes' theorem as:

(2.3) p(x j y) =
p(y j x)p(x)

p(y)
;

where p(x) is the prior distribution, reecting the knowledge before taking the new observation

into account, p(y j x) is the likelihood of data conditioned on the state x of the system, andp(y)

is the marginal distribution of the data, p(y) =
R

p(y j x)p(x)dx. It can be simply illustrated

as the posterior distribution is proportional to the prior and the likelihood of data given the

system model. Note that the distribution p(y) is independent on the statex and can be regarded

as a normalization constant. To obtain the full distribution of posterior, it typically needs at

least millions of samples, which is not practical for most partial-di�erential-equations-based

systems. To this end, in data assimilation, maximum a posteriori (MAP) estimate is used to

capture the peak of the posterior instead of the full posterior distribution, thus reducing the

amount of the sampling. Therefore, presuming that the prior and posterior are both Gaussian

distributed, the problem can be formulated as:

(2.4) p(x j y) / p(x)p(y j x) = e� J

In the above formula, J is the cost function as:

(2.5) J =
1
2

k xa � xf k2
P +

1
2

k y � H [xa] k2
R;
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where P is the model error covariance,R is the observation error covariance,k � k 2
A= � > A� 1� ,

and the superscript a and f stands for analysis and forecast, respectively. Therefore, the DA

problem is equivalent to �nd the optimal state vector x to minimize the cost function and

reduce the mismatch with data in the observation space.

In the following sections, we give a brief review of di�erent data assimilation techniques,

including the variational DA methods, ensemble-based DA methods, hybrid DA methods, and

the particle �lter.

2.3 Variational data assimilation method

The variational data assimilation method equates the maximum a posterior estimation as

the minimization of the cost function (2.5) under the Gaussian assumption on the prior and

likelihood function. To minimize the objective function J , the 3D variational data assimilation

method [24] adopts the gradient-based optimization technique. The gradient of the cost function

can be derived by di�erentiating (2.5) with respect to the state xa as follows:

(2.6) r J = P� 1(xa � xf ) + ( H 0[xa])> R� 1(y � H [xa]);

where the H 0[xa] is the Jacobian of the observation operator. At the minimum, the gradient

should vanish as zero. Hence, we can obtain the optimal point from:

(2.7) P� 1(xa � xf ) = � (H 0[xa])> R� 1(y � H [xa]):

The value that minimizes the cost function corresponds to the mode of the posterior distribution.

For dynamic systems, the forecast model need to be embedded to propagate the system state in

time. Thus, the 3DVar can be extended to be 4DVar method (e.g., [53, 136, 158]) by introducing

Lagrangian associated with the forecast model. The reader is referred to [70] for further details.

Numerous works based on the variational method have been investigated in CFD applications.

For instance, Gronskis et al. [61] used variational methods to infer inows and initial conditions

for DNS simulations. Foures et al. [51] proposed a DA framework based on the variational

formulation to reconstruct the mean velocity �eld by �nding the optimal forcing term. Mons et

al. [107] applied the variational DA method to reconstruct the ow around a cylinder in the

presence of coherent gust, through inferring the inlet and initial conditions. Symon et al. [134]

reproduced the ow over an idealized airfoil by incorporating the PIV experimental data with

the variational method.

2.4 Kalman �lter

The original Kalman �lter [ 78] can be derived from the Bayesian formulation under several

assumptions (i.e., the statistical error is Gaussian, both observational and dynamical models
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are linear). Accordingly, the dynamical and observational models can be rewritten as:

(2.8)
xk = Mk� 1xk� 1 + � k ; � k � N (0; Qk )

yk = Hxk + � k ; � k � N (0; Rk );

where Qk is the dynamic model error covariance, the dynamic model error� k and observation

error � k are subjected to zero mean multivariate normal distribution N . The derivation is similar

to variational method through equating the MAP to the minimization of the cost function, and

the details are omitted for clarity. The Kalman �lter can be divided into two steps: the forecast

step and analysis step. The forecast step is to propagate the current state and covariance matrix

to the next time as:

(2.9) xf
k+1 = Mkxa

k ; Pf
k+1 = MkPa

kM>
k + Qk+1

The analysis step is to update the state and covariance through:

(2.10)

Kk = Pf
k H> (R + HPf

k H> ) � 1

xa
k = xf

k + Kk (yk � Hxf
k )

Pa
k = ( I � KkH)Pf

k

Given the model operator (H, M), error covariance matrix (Q, R), and initial state mean x0

and covarianceP0, the Kalman �lter can sequentially estimate the state by assimilating the

available data. The solution of the Kalman �lter is also known as the Best Linear Unbiased

Estimator (BLUE) [4].

However, the Kalman �lter is not practical to be applied for large scale problems like uid

mechanics. Because it needs store and propagate in time the covarianceP, which presents a

daunting computational burden [50]. Hence, the reduced-order Kalman �lter is proposed when

applying to CFD problems. For instance, Lee et al. [90] derived a feedback controller for drag

reduction of turbulent channel ow. They applied a reduced model of the linearized Navier{

Stokes equations to reduce the dimension of the system. Meldi and Poux [100] proposed the

reduced-order Kalman �lter based on the model reduction strategies to reduce the computational

cost. The framework has been further applied in di�erent ow con�gurations, including three-

dimension unsteady ows.

2.5 Ensemble-based data assimilation methods

Ensemble-based DA method is an approximate Bayesian method with the Monte Carlos

technique. The model error covariance is estimated with limited samples. This type of method

includes ensemble Kalman �lter or smoother and its variants. Here, we give a review of three

widely used ensemble-based DA methods, namely ensemble Kalman �lter, ensemble randomized

maximum likelihood method, and ensemble Kalman �lter with multiple data assimilation.
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2.5.1 Ensemble Kalman �lter

Among the ensemble-based DA methods, the most extensively used one is ensemble Kalman

�lter or smoother [ 48]. The di�erence between ensemble Kalman �lter and smoother is that

ensemble Kalman �lter utilizes the data sequentially, while smoother consider the data at all

times simultaneously. This method is motivated by the Kalman �lter [ 140] which is derived from

Bayesian formulation for linear systems under Gaussian assumption. It was initially proposed

by Evensen [47] and further revised with an ensemble observation to avoid too low posterior

variance by Burger et al. [15]. The method uses the Monte Carlo technique to prescribe the prior

statistics around the �rst guess, and thus the error statistic is represented with an approximate

ensemble state instead of storing the full covariance matrix. The state matrix can be expressed

as:

(2.11) Xf
i = f xf

i;j gM
j =1 ;

where M is the ensemble size,i is the iteration index, j is the sample index. Further, the model

error covariancePi can be represented as:

(2.12) Pi =
1

M � 1
(Xf

i � �Xf
i )(Xf

i � �Xf
i )> ;

where �Xf
i is the mean of the ensembleXf

i :

(2.13) �Xf
i =

1
M

MX

j =1

xf
i;j :

The update scheme for each ensemble samplexj at the time i can be formulated as:

(2.14) xa
i;j = xf

i;j + K(yi;j � Hxf
i;j );

whereK is the Kalman gain matrix K = Pi H> (HPi H> + R) � 1, H is the tangent linear observation

operator, and yi;j is the ensemble observation through adding the perturbation subject to

Gaussian distribution with zero mean and covariance matrixR to the measurementyo. The

equation (2.14) can imply that the ensemble mean is updated in the similar form. It is shown

by Evensen [46] and Burger [15] that the analyzed covariance matrixPa can be derived as:

(2.15) Pa = ( I � KH)Pf ;

which proves that the ensemble Kalman �lter is consistent with the Kalman �lter. Since the

covariance represented by the ensemble anomalies will be rank-de�cient to substitute the full

rank true one, it usually has to introduce the localization [65, 68, 115] and ination [ 3, 92, 106]

technique to consider the spurious correlations between the elements of the state variable. A

body of work has explored to apply the EnKF into CFD problems for state estimate, inference as

well as inverse uncertainty quanti�cation. For instance, Colburn et al. [23] leveraged the EnKF
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to estimate the turbulent channel ow at a low Reynolds number based on wall information.

Kato et al. [79] used the EnKF to determine the optimal empirical parameters in the Spalart{

Allmaras turbulence model. Xiao et al. [148] applied the method to quantify and reduce the

model-form uncertainty associated with Reynolds stress.

2.5.2 Ensemble randomized maximum likelihood

The ensemble randomized maximum likelihood (EnRML) method was initially proposed by

Gu et al. [62] to address the data assimilation application with nonlinear system models. They

demonstrated the methods could have better results for nonlinear problems than the EnKF

approach. Essentially, the state variable in this DA scheme is updated iteratively to minimize

the cost function (2.5) via the Gauss{Newton method as:

(2.16) xa
i;j = xf

i;j +  (
@J2

@2x
) � 1 @J

@x
;

where  is the parameter to adjust the step length. The derived update formulation can be

expressed as follows:

(2.17)
xa

i;j =  xf
0;j + (1 �  )xf

i;j �  P0(H 0[xf
i;j ])> (R + ( H 0[xf

i;j ])
>

P0H 0[xf
i;j ]) � 1

(H [xf
i;j ] � yj � H 0[xf

i;j ](xf
i;j � xf

0;j )) ;

where P0 is the initial ensemble covariance which is not changed with iterations, andH 0[x] is

the sensitivity matrix which is computed from the ensemble realizations at every iteration by

solving:

(2.18) � di = H 0[xf
i ]� xi :

In the above formula, � di and � xi are deviation realizations of the predicted data and the

deviation realizations of the state variables from the mean, respectively. The singular value

decomposition is usually needed to calculate the inverse of �xi since it is not full rank. The

approximate sensitivity matrix is not accurate as the analytic gradient with adjoint code unless

the ensemble variability is small and the ensemble size is large.

For highly nonlinear systems, it is necessary to iteratively update the state vector in order

to have a satisfactory data match. Because the nonlinearity will increase the number of local

minimums, and thus it is inevitable to have a \many to one" mapping and accordingly increase

the ill-posedness of the problem. On the other hand, EnKF can be regarded as a full step

of Gauss{Newton analysis where the linearization is introduced to circumvent the adjoint

code [49], to the optimal point, which may change the solution of the nonlinear problem. The

EnRML method leverages the Gauss{Newton to iteratively update the state variables, thus

partly keeping the nonlinearity of the problem. Further, Chen and Oliver [20] describe the

batch-EnRML as the iterative ensemble smoother to assimilate the data at di�erent times for

the highly nonlinear problem. This method has been applied extensively for history matching

problem [21, 111] but has not gained attention in the CFD community.
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2.5.3 Ensemble Kalman �lter with multiple data assimilation

EnKF can be regarded as the Gauss{Newton method, where the averaged sensitivity matrix

and a full step in the search direction are adapted. While a full Gauss{Newton step in the early

iterations may arise overcorrections on the state variables when the model output is far from

the data. From this point of view, Emerick et al. [ 44] proposed the ensemble smoother with

multiple data assimilation to alleviate the drawbacks by inating the observation errors. They

demonstrated the outperformance of EnKF-MDA to EnKF for data match and uncertainty

quanti�cation.

From the Bayesian formulation, it can be illustrated to represent a single EnKF step with

recursion of the likelihood as:

(2.19) f (x j y) / f (x)
NmdaY

i =1

f (y j H [xi � 1])
1

� i

The parameter � i is subject to
P Nmda

i =1 � i = 1 where Nmda is the total iteration number in one

data assimilation window. The model and observation error covariance is estimated the same

as in EnKF. Further, we can obtain the analysis scheme of EnKF-MDA as:

(2.20) xa
i;j = xf

i;j + Pi H> (HPi H> + � i R) � 1(d +
p

� i � i;j � Hxf
i;j )

The choice ofNmda can be constant or a decreasing function which need some trials and errors.

Le et al. [89] proposed an adaptive ensemble smoother with multiple data assimilation to

adaptively choose the ination factor.

2.6 Hybrid data assimilation methods

Variational DA methods and the ensemble-based DA methods are now both intensively used.

Ensemble-based DA methods aforementioned only perform the linear update in the search

direction. Hence, for the nonlinear scenario, the variational method with optimization techniques

can outperform to ensemble methods. On the other hand, variational methods need much extra

e�ort for the adjoint code to calculate model derivation, while ensemble-based DA methods can

give an estimation of the model gradient with the ensemble realizations, thus circumventing

the need for the adjoint model. This motivates the occurrence of the hybrid data assimilation

method to combine the variational methods and the ensemble-based methods, thereby keeping

the merits from both. In this section, we give a brief introduction to three commonly used

hybrid methods.

2.6.1 Hybrid methods

From Bayes' formulation, the posterior is analyzed from prior explicitly. Hence, the posterior

results with data assimilation are very sensitive to the prior statistics. That is, the proper prior
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statistics is critical for the performance and robustness of the Bayesian analysis. However, to

characterize the prior statistics is signi�cantly di�cult [ 5]. To this end, Hamill and Snyder [64]

proposed to blend the model error covariance from the variational method and that one from

the ensemble-based DA method as:

(2.21) P = � B + (1 � � )Xf (Xf )> ;

whereB is the error covariance as in variational DA method andXf is the matrix of the ensemble

anomalies. By changing the� from 0 to 1, the covariance changed from the ow-dependent,

ensemble-based covariance to the original covariance used in variational DA scheme. By doing

so, the model covariance does not strictly depend on either of these two approaches, and the

sampling error in the ensemble-based statistics can be alleviated by the added variational

method. Zhang and Zhang [151] coupled the EnKF with 4DVar and demonstrated that this

hybrid method is more e�ective than the EnKF and 4DVar on a Lorenz96 model.

2.6.2 Ensemble-based variational methods

The notable weakness of the variational method is the demand for the adjoint code, which needs

the tedious task for complex computational models. While the ensemble-based method can give

an estimation on the model derivative with the Monte Carlo samples, thereby circumventing

the adjoint code, but use the optimization method implicitly. The ensemble-based variational

method [94] is proposed to combine the variational data assimilation method with EnKF.

The prior statistics are estimated with the Monte Carlo sampling technique, and the adjoint

operator is estimated by the ensemble samples as the ensemble-based methods. Under several

mild assumptions, this method transforms the problem to be the optimal control problem

where the optimal control vector can be searched in the subspace with the explicit optimization

approach, such as Gauss{Newton or BFGS method. On the other hand, only the ensemble

mean is updated, and the distributions are re-estimated at each DA iteration, which can ease

the inuence from the improper prior and sample collapse.

In the EnVar scheme, the ensemble of state vector can be expressed as

(2.22) X = �X + E 0�;

where � is the control vector. E 0 is the ensemble anomalies as:

(2.23) E 0 = ( X1 � �X; X2 � �X; : : : ; XM � �X):

Further, the cost function J is formulated as:

(2.24) J =
1
2

k X � �X k2
P +

1
2

k d � y k2
R;

whered is the RANS realizations in observation space based on state vectorX, y is the observation.

The di�erence between RANS prediction in observed quantities and the observation, weighed
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by the ensemble covarianceP and observation error covarianceR, respectively. d can be realized

by the linearizations as in the following formulas:

(2.25) d = H[�X] + H 0�

(2.26) H 0 = ( H [X1] � H [�X]; H [X2] � H [�X]; : : : ; H [XM ] � H [�X]):

Using P ' 1
Nen � 1E 0E 0> and substituting X with Eq. (2.22), the cost function in Eq. (2.24)

can be rewritten as a quadratic equation on control vector� :

(2.27) J =
1
2

(M � 1)�� > +
1
2

kH[�X] + H 0� � yk2
R:

The gradient and Hessian ofJ can be derived as:

(2.28)
@J
@�

= ( M � 1)� + H 0>R� 1(H [�X] + H 0� � y);

(2.29)
@J2

@2�
= ( M � 1)I + H 0>R� 1H 0:

In order to minimize the cost function (2.27), one iteration of gradient (downhill) method is

performed with Eq. (2.28) and Eq. (2.29). The obtained � is used to update the state vector�

according to Eq. (2.22).

2.6.3 Iterative ensemble Kalman �lter

Sakov et al. [126] proposed the iterative ensemble Kalman �lter to address the strongly nonlinear

system. They [12] further extended the approach as the iterative ensemble Kalman smoother to

be comparable to 4DVar. To be simpli�ed, the associated cost function for a stationary system

can be formulated as:

(2.30) J =
1
2

�� > + k y � H [�X + E 0� ] k2
R;

where � is the control vector, E 0 is the ensemble anomalies;H is system model which map the

state to the observation space.

The minimization of the cost function can be performed in the subspace spanned by the

ensemble realizations with di�erent optimization approaches, such as Gauss{Newton method [10],

Levenberg{Marquardt method [96], or the trust{region method [ 124]. Similar to EnVar, the

update scheme with Gauss{Newton method can be formulated as:

(2.31) � a = � f +
�

@J2

@2�

� � 1 @J
@�
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However, the implementation of estimating H 0[E 0] is di�erent from the EnVar based on the

linear assumption. Sakov et al. advocate to use the �nite-di�erence estimate of the tangent

linear operate as follow:

(2.32) H 0 =
1
"

�
H

� �X + "E 0� �
1

M
H

� �X + "E 0� 1
�

;

where 1 = [1 ; 1; : : : ; 1]> is the vector of M , and " � 1 is the scaling factor orbundle variant.

The anomalies update is computed using an approximate Hessian of this cost function, using

the retrospective ensemble analysis as:

(2.33) E 0a =
p

M � 1E 0f
�

@J2

@2�

� � 1=2

U;

where U is the orthogonal matrix. IEnKS is well understandable at the theoretical level, and

its performance has been supported by many numerical evidence (Lorenz models [10, 11], 2D

turbulence [12] and 2D barotropic vorticity model [ 9]). It not only can keep the merits of 4DVar

for nonlinear problems and but also that of EnKF for the ow dependence of the error statistics.

2.7 Particle �ltering

The above derived ensemble-based methods are all the approximate Bayesian methods based

on several mild assumptions (e.g., the linearization and the Gaussian distribution). As for the

exact Bayesian analysis, the big obstacle is the calculation of conditioned probability density,

at least for the high dimension cases. Moreover, within the approximate Bayesian method,

the Gaussian assumption is applied for the prior and likelihood function. That may lead to

wrong solutions when considering the strong nonlinearity and the non-Gaussian distribution in

many realistic systems. Hence, the direct approach, namely particle �lter (PF) or the sequential

Monte Carlo, is proposed in the data assimilation community and worth attention for future

investigations.

In PF, the posterior distribution can be expressed as a weighted sum of delta{Dirac masses.

Each one is centered onxn
k .

(2.34) p(xk j yk� 1:) =
NX

n=1

! n
k� 1� (xk � xn

k );

wherexn refers to then th particles (i.e.,ensemble samples),yk: is the sequence of the observation

from the far past to the current time k, yk: = yk ; yk� 1; : : : ; y0. � is the Dirac measure at the

time k. ! is the importance weight which needs to be normalized to one as:

(2.35)
NX

n=1

! n
k� 1 = 1 :
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The analysis step in particle �lter is constructed from the Bayes theorem:

(2.36) p(xk j yk:) / p(xk j yk� 1:)p(yk j xn
k ) =

NX

n=1

! n
k� 1p(yk j xn

k )� (xk � xn
k ):

Thus, the normalized importance weights can be expressed:

(2.37) ! n
k / ! n

k� 1p(yk j xn
k ):

The proportionality factor in the above formula needs to take into account the condition that

the normalized updated weights summing up to 1. By applying Chapman-Kolmogorov equation,

the analysis can be further simpli�ed as:

(2.38)

p(xk+1 j yk:) =
Z

dxkp(xk+1 j xk )p(xk j yk:)

=
NX

n=1

Z
dxkp(xk+1 j xk )! n

k � (xk � xn
k )

=
NX

n=1

! n
k p(xk+1 j xn

k ):

There are two approaches to implement the particle �ltering. One is sequential importance

sampling (SIS) particle �lter or bootstrap PF [ 59] to obtain a delta-Dirac pdf from Eq. (2.38).

For each particle, we samplexn
k+1 from the density p(xk+1 jxn

k ) by simply forecasting xn
k from tk

to tk+1 using the (possibly stochastic) model associated with the transition densityp(xk+1 jxk ),

which yields:

(2.39) p(xk+1 j yk:) �
NX

n=1

! n
k � (xk+1 � xn

k+1 )

The another one is sequential importance resampling PF which add the resampling step before

the forecast to avoid the sample degeneracy. That is, when the e�ective particle number is less

than the threshold one, we need resampleN particles from current statistic with consideration

of their importance weight to replace the origin particles. Then the equivalent weight ! = 1=N

is put on these new particles which yields:

(2.40) p(xk+1 jyk:) �
1
N

NX

n=1

� (xk+1 � xn
k+1 )
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Chapter 3

Bayesian Optimisation of RANS

Simulation with Ensemble-based

Variational Method in

Convergent{Divergent Channel

3.1 Introduction

Despite signi�cant development of Computational Fluid Dynamics (CFD) for several decades,

the high-�delity resolution Direct Numerical Simulation (DNS) and Large Eddy Simulation

(LES) is still computationally intractable for most applications, especially with high Reynolds

numbers. Reynolds-Averaged Navier-Stokes (RANS) simulation will remain dominant for

industrial applications in the near future. However, it has been noted that RANS model cannot

make accurate predictions for the turbulent ows in the convergent-divergent channel where

there exist mean curvature and pressure gradient, due to the ambiguous boundary condition

and the inadequate turbulence model. On the other hand, experimental investigations have

to be faced with the challenges of the sparse measurements in the limited observable �eld,

noise contamination and insu�cient resolution for the small scale ow. To address these issues,

data assimilation (DA) approach widely used in the oceanography and geography gains the

spotlights over the past few years in the turbulence community. Based on Bayes theorem, data

assimilation can integrate the low-�delity RANS calculation with the high-�delity resolution

from LES/DNS or sparse experimental measurements to infer the unknown boundary condition

or underlying model information and thus optimize the RANS predictions.

Data assimilation can be sorted by variational data assimilation method, Ensemble Kalman

Filter (EnKF) method, and hybrid methods. All these methods leverage the Maximum a

Posteriori (MAP) estimation, while in the variational method, MAP is formulated as the
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minimization of the cost function through adjoint optimal least square techniques. A body

of works based on the variational method has demonstrated its inferential performance and

robustness to replicate the ow status. A. Gronskis et al. [61] established a data assimilation

framework based on the variational method incorporating with adjoint optimization method

to generate the inows condition for DNS. Foures et al. [51] applied the variational method

to minimize the discrepancy between the time-averaged velocity �elds of a DNS resolution

and an incompressible RANS simulation for the two-dimensional ow past a circular cylinder

at a Reynolds number ofRe = 150. S. Symon et al. [134] applied the variational method to

reconstruct the ows with relatively high Reynolds number of 13500 around an idealized airfoil

by assimilating the mean velocity �eld from time-averaged Particle Image Velocimetry (PIV)

measurements.

Also, the EnKF method where the state statistics are updated with an ensemble of realizations,

have been intensively applied to quantify and reduce the uncertainty in RANS simulation.

Colburn et al.[23] used EnKF to estimate the near-wall turbulent ow based on the wall

information from DNS resolution. Kato and Obayashi [79] applied EnKF to infer the optimal

parameters in the Spalart-Allmaras turbulence model for zero-pressure gradient at plate

boundary layer at Mach number of 0.2 and Reynolds number of 5� 106. They [80] also used

the Ensemble Transform Kalman Filter to integrate the CFD and experimental uid dynamics

(EFD) to replicate the transonic turbulent ows over RAE 2822 airfoil and ONERA M6 wing

through estimating the proper angle of attack, Mach number, and turbulent viscosity. Xiao et

al. [148] introduced uncertainty in Reynolds stress directly and adopted an iterative ensemble

Kalman method to reduce the model-form uncertainty in k-� model for the ow over periodic

hills and the ow in a square duct by assimilating very sparse observations.

Despite both the variational data assimilation method and EnKF have demonstrated their

applicability for the Bayesian optimization of CFD problems, the intrusiveness of variational

method makes it di�cult to implement, and the high sensitivity to the prior statistics for

EnKF causes the inference results prone to be inferior. Recently, a hybrid method, namely

ensemble-based variational method(EnVar), gains attention to solve the inverse problem for

CFD simulation with both robustness and non-intrusiveness. Mons et al. [107] �rst explored

the applicability of this kind of data assimilation technique into unsteady ows with coherent

gust and assessed the robustness of variational data assimilation method, Ensemble Kalman

Smoother and EnVar method to reconstruct the ows around a cylinder. They demonstrated

that the ensemble-based variational method could be robust as the variational method and

circumvent the e�orts on the adjoint model by estimating the prior statistics with ensemble

realizations. Meanwhile, the inferential performance can be very satisfactory and is not very

sensitive to prior and observation statistics comparing to ensemble Kalman smoother.

The current study investigates the applicability of the ensemble-based variational method

to optimize the RANS simulation from the perspective of inferring improved inlet boundary
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condition and underlying model corrections by incorporating with DNS resolution or sparse

experimental observation. The test cases from low dimension (D=20) to high dimension

(D=2400) of input parameters all demonstrated the merits of the proposed approach. It is

worth noting that the limited observation from the PIV experimental measurements is also

integrated with RANS simulation to recover the ow status.

The rest of this paper is structured as follows. The ensemble-based variational scheme is

presented in Section 3.2. The CFD code and the practical implementation of the data assimilation

framework are described in Section 3.3. The applications of this framework to infer inlet velocity

and model corrections are presented in Section 3.4 and Section 3.5, respectively. Section 3.6 is

dedicated to the conclusion and perspectives.

3.2 Data assimilation framework

3.2.1 Ensemble-based variational scheme

The ensemble-based variational method is a hybrid data assimilation approach that combines

the variational data assimilation method with EnKF. Compared to the variational method,

the formulation of EnVar uses a Monte Carlo ensemble to estimate the prior statistics thus

circumventing the e�orts on the adjoint operator. This method equates MAP to the optimal

control problem where the optimal control vector is searched based on gradient-decent opti-

mization to update prior information. Meanwhile, the prior distributions are re-estimated at

each DA iteration thus counteracting the inuence from the improper prior, while in EnKF

scheme the Kalman gain matrix to update the prior distribution, is directly constructed from

the approximated prior statistics.

The state vector is the input parameters, representing the quantities to be inferred. For simpli�-

cation, the vector is assumed to be Gaussian distributed. The mean of this normal distribution

corresponds to the initial guessed or prior state vector, and the vector can be expressed as

(3.1) � = � (e) + E 0� ;

where � is the control vector with dimension of Nen. Nen is the ensemble size.E 0 = ( � (1) �

� (e) ; � (2) � � (e) ; : : : ; � (Nen ) � � (e) )

Regarding the observation, it is the reference data (e.g., friction/pressure coe�cient, velocity

�elds, and so on) from high-�delity simulation or experiment that have a substantial inuence

on the inferred quantities. Random measurement noise in observation is assumed to be Gaussian

distributed with zero mean, uncorrelated, and are characterized by the relative standard

deviation � o. The observation y can be prescribed as

(3.2) y = h(� + ) + � ;

where h is the observation operator that maps the state space to observation space,� + is

reference trajectory projecting to the observation and� is the possible random measurement
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error.

Based on the Bayes theorem, to maximize the posterior is equivalent to minimize the cost

function J

(3.3) p(� j y) / p(� )p(y j � ) / e� J ! J =
1
2

k� � � (e)k2
P� 1 +

1
2

kd � yk2
R� 1 ;

whered is the RANS realizations in observation space based on state vector� , y is the observation

from DNS solutions or the experimental measurements,k � k 2
P� 1 = � > P� 1� ;k � k 2

R� 1 = � > R� 1� .

As in (3.3), the cost function J is composed of two parts: the di�erence between the prior

and its realizations, and the di�erence between RANS prediction in observed quantities and

the observation, weighed by the model error covarianceP and observation error covarianceR,

respectively. d can be realized by the linearizations as in the following formula:

(3.4) d = h(� (e) ) + H 0� ;

H 0 = ( h(� (1) ) � h(� (e) ); h(� (2) ) � h(� (e) ); : : : ; h(� (Nen ) � � (e) )) :

Using P ' 1
Nen � 1E 0E 0T and substituting � with (3.1), the cost function in (3.3) can be

rewritten as a quadratic equation on control vector � :

(3.5) J =
1
2

(Nen � 1)�� > +
1
2

kh(� (e) ) + H 0� � yk2
R� 1 :

The gradient and hessian ofJ can be derived straightforwardly as

(3.6)
@J
@�

= ( Nen � 1)� + H 0>R� 1(h(� (e) ) + H 0� � y) ;

(3.7)
@J2

@2�
= ( Nen � 1)I + H 0>R� 1H 0 :

In order to minimize the cost function (3.5), one iteration of Newton CG method is performed

with (3.6) and (3.7). The obtained � is used to update the state vector� according to (3.1).

This iterative process is continued until the converge criterion is reached. The procedure of the

ensemble-based variational method is shown in Figure 3.1 and the details can be summarized

as follows:

Step 1. Give a �rst guessed or prior state vector � (e) , and prescribe the prior and

observation statistics respectively;

Step 2.RealizeNen samples around the mean vector� (e) ;

Step 3.Propagate each sample of state vector to observation space through solving RANS

equation;

Step 4.Analyze the control vector � by minimizing cost function with (3.6) and (3.7);
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Figure 3.1: Schematic illustration of EnVar method

Step 5. Update the mean of state vector with the analyzed control vector� based on

(3.1);

Step 6. Return to Step 2 and resample around the updated ensemble mean until the

�tting criterion or maximum iteration is reached.

3.2.2 Fitting criterion

The goal of the data assimilation approach is to best �t the numerical prediction with DNS

or experiments. Hence in order to evaluate the optimal performance, it is �rst necessary to

calculate the ratio of cost function value before and after the data assimilation process in order

to assess the extent to which the cost function is reduced. The ratio of cost functionJ can be

de�ned as:

(3.8) r J =
Jend

J0
:

Moreover, the cost function is constituted of two parts as illustrated in the formula (3.5) and

thus reduction of the cost function may not directly reect the decrease of the discrepancy

between the numerical prediction and the observation in the quantities of interest. Therefore,

the formula (3.9) is introduced to measure this distance:

(3.9) Job =
1
2

ky � h(� (e) )k2 ;
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where k � k is Euclidean norm. In this work, the data assimilation process is terminated as

Job < 10� 3. The ratio of the assimilated and initial Job is also introduced to evaluate the

e�ciency of the optimization process

(3.10) r Job =
Jobend

Job0

:

3.3 Numerical setup

3.3.1 CFD solver

A 2D steady incompressible solver is used to perform the numerical simulations on two-equation

RANS turbulence model. The governing equations can be expressed as:

(3.11) div(Fc � Fv) = S ;

with Fc =

0

B
@

�u �v

�u 2 + p �uv

�uv �v 2 + p

1

C
A and Fv =

0

B
@

0 0

2�S xx + � xx 2�S xy + � xy

2�S xy + � xy 2�S yy + � yy

1

C
A ,

where � is density; u and v is stream-wise and wall-normal mean velocity;Fc and Fv denote

the convective and viscous ux densities;� , S and � represent molecule viscosity, mean strain

rate, and Reynolds stress respectively;S is the source term.

The Reynolds stress term� is modelled by Menter's k � ! SST model [102]. And the code uses

the HLPA (Hybrid Linear / Parabolic Approximation) non-oscillatory second-order scheme

for the convective term. The SIMPLE (Semi-implicit Method for Pressure-Linked Equations)

algorithm is applied to solve the coupled mass and momentum conservation equations, on

two-dimensional structured curvilinear-orthogonal meshes.

The non-slip condition is used on the wall. The �rst grid for all cases in this paper is well placed

in the viscous layer and the wall function is not incorporated therefore to eliminate the e�ects

of assumptive wall boundary condition.

3.3.2 Data assimilation implementation

Firstly, an initial guess of the input parameter is given as prior, and then Nen samples are

constructed around the �rst guess based on Gaussian process. To ensure the smoothness of

the obtained samples, a non-diagonal covariance matrix to describe the prior distribution is

prescribed as:

(3.12) � i;j = � (x i )� (x j )b2exp(�
kx i � x j k2

l2c
) ;

where the variance � (x) is constructed based on the discrepancy between the prediction

from initial RANS simulation and the observation in order to inform where large or small

perturbations are expected;b refers to the characteristic values, for inlet velocity reconstruction
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it is based on inlet bulk velocity while for model correction inference, it is taken as 1;lc is

constant correction length based on the height of the channel at inlet;x i refers to the position

of the i th control volume. With mean vector � (e) and covariance matrix � i;j , the Nen samples

around the �rst guess could be realized.

The observation error is assumed to be the uncorrelated Gaussian distribution with zero mean.

For simpli�cation, the covariance matrix R is constructed as a diagonal matrix based on the

observation error which is de�ned as�� > . The resolution in the observation space is mapped from

the state vector forwardly with CFD solver. The posterior is obtained by solving the Bayesian

optimization problem based on the ensemble-based variational scheme. For the optimization

method, Newton-CG is used to minimize the cost function.

3.4 Inlet velocity inference

The proper inlet velocity has critical implications for the performance of numerical prediction,

and many forward methods have been proposed to generate the inow condition for DNS and

LES, such as the recycling-based method and synthetic turbulence generators [146], whereas

high computational e�orts are required in these methods. In this section, the ensemble-based

variational method is explored to infer the inlet velocity pro�le based on the limited quantities

from DNS resolution or experimental measurements. Two test cases are used to evaluate the

performance of the data assimilation scheme on the reconstruction of the inlet velocity pro�le.

The �rst one is turbulent ow in the WallTurb Bump where DNS dataset is available, and the

other one is non-cavitating ow in Venturi where the experimental X-ray measurements can be

considered as the reference data. A summary of data assimilation experiments for inlet velocity

inference is given in Table 3.1.

Geometry � Prior dim(� ) y Nen r J r Job

Bump
inlet velocity

parabolic
30 Cf 30

0.0025 0.20
at 0.002 0.157

Venturi parabolic 20 u 20 2:7 � 10� 4 2 � 10� 5

Table 3.1: Data assimilation results for inlet velocity inference

3.4.1 WallTurb Bump

3.4.1.1 Flow con�guration

The turbulent ow in WallTurb Bump [ 97] is one canonical ow and widely used to verify the

performance of numerical methods [88][85][73]. The Reynolds number for this ow is 12600.

The computational domain is � 5:22 < x < 7:34; 0< y < 2. In order to simulate this ow, the

structured curvilinear-orthogonal mesh is generated with 125 cells in stream-wise direction and
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60 cells in the normal-to-wall direction. The y+ of �rst mesh adjacent to the wall is around 1.

The mesh of the WallTurb Bump is shown in Figure 3.2.

Figure 3.2: Mesh of WallTurb Bump

For the setup of data assimilation, the input parameters are the lower half of inlet velocity

with the dimension of 30, and the ensemble sizeNen is set to be consistent with the dimension

of input space. The variance �eld � is based on the discrepancy �eld of the prior inlet velocity

and the DNS velocity with a multiplication of 10 � 3. The value of multiplication need some

trials and errors since large variance will increase the spatial extent of subspace where the

optimal solution is searched, and thus result in the instability of the optimization process, while

too small variance will make the process robust but very slow.

In order to infer the inlet velocity pro�le for this case, the friction coe�cient Cf is regarded

as the observation in consideration of the strong correlation between the velocity and the

friction coe�cient. The skin friction coe�cient is de�ned by:

Cf =
� w

0:5�U 2
ref

where � w is the wall shear stress� w = � du
dy jy=0 and Uref is reference velocity, which is taken as

the dimensionless inlet bulk velocity 1. Since presumably the friction coe�cient is not sensitive

to the inlet condition in the region with the bump where the ow encounters the strong pressure

gradient, the observation is con�ned near the inlet region and exclude the part adjacent to the

inlet. Thus, the observation includes the friction coe�cient on the bottom wall from x = � 4:2

to � 1:9, and the standard deviation of observation error is taken as 5� 10� 4.

The Newton-CG method is applied to minimize the cost function. As in this case the

ensemble size is quite small, the Hessian of the cost function can be explicitly expressed, and

the Newton-CG is more robust compared to the quasi-Newton method with approximated

Hessian matrix such as BFGS. The comparison of Newton CG and implicit BFGS method to

infer inlet velocity for the bump is presented in Appendix A.1.
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3.4.1.2 Physical constraints

Due to the non-uniqueness of the optimal solution, data assimilation process may result in

the inferred inlet velocity losing physical meaning, for instance too high velocity adjacent to

the wall and non-symmetric inlet velocity pro�le for this case, which may also bring about the

divergence problem for CFD solver. Therefore, three constraints are given based on physical

knowledge. Firstly, the dimensionless velocity at the �rst grid to the bottom wall is �xed at

2 � 10� 3 via interpolation from DNS resolution to avoid the steep velocity gradient near the

boundary and have a reasonabley+ at the inlet. Secondly, the reconstructed inlet velocity pro�le

may lead to the variation of ux and accordingly change the ow condition. Therefore, the ux

at the inlet is corrected after each data assimilation iteration, by multiplying the ratio of the

updated ux and reference ux to ensure the ux constant. Besides, in this case, the inow

into the channel should be developed turbulent ow and presumably symmetric. On the other

hand, only the friction coe�cient on the bottom wall is considered as the observation; hence

the inlet velocity near the top wall is not able to be recovered due to lack of information. Thus

only the bottom half pro�le is taken as the input parameter, while another half is constructed

by symmetric projection.

3.4.1.3 Results

Two di�erent �rst guess is imposed as the prior inlet velocity: the parabolic and the at pro�le.

The assimilated results of inlet velocity and observed friction coe�cient are presented in Figure

3.3 with the comparison to the prior and DNS. The inferred inlet velocity pro�les are both

quite close to the DNS data as shown in Figure 3.3(a)(c). Accordingly, the predictions in terms

of friction coe�cient presented in Figure 3.3(b)(d) also have a good agreement with DNS data

in the observed region. Generally, both cases can obtain a good inference on inlet velocity and

improve the prediction on Cf by assimilating the friction coe�cient from DNS.

Figure 3.4 shows the evolution of cost function to the iteration number. For both cases, the

cost function is reduced signi�cantly while with the prior of parabolic pro�le the minimization is

more e�cient and converged in the �rst �ve iterations. In concrete, the cost function J reduces

from 32386 to 80 in the case with parabolic prior, and the ratior J � 0:0025, while for the prior

with at inlet pro�le, the cost function J reduces from 57607 to 114 andr J � 0:002. The norm

of discrepancy between numerical prediction and reference with �rst guessed parabolic inlet

velocity is reduced from 0.0155 to 0.0031 andr Job � 0:20 while the discrepancy for the case

with the at inlet velocity pro�le can be reduced from 0.0191 to 0.0030 and r Job � 0:157.

The contour plots of the velocity U �eld with �rst guessed parabolic velocity are presented

in Figure 3.5. The visible improvements can be observed near the inlet and the favorable

pressure gradient region. However, in the adverse pressure gradient region, the prediction is

not improved with optimal inlet velocity, which is not surprising since it is a consensus that

RANS model cannot give good predictions with con�dence when it encountered strong adverse

37



CHAPTER 3. OPTIMIZATION OF RANS SIMULATION WITH ENVAR METHOD

Figure 3.3: Data assimilation results about the inferred inlet velocity and the prediction in Cf :
(a) (b) for the prior of parabolic velocity; (c) (d) for the prior of at velocity

Figure 3.4: Data assimilation results of cost functionJ and Job: (a)(b) for the prior of parabolic
inlet velocity; (c)(d) for the prior of at inlet velocity

pressure gradient. A large-scale separation after the summit of the bump can be seen in RANS

calculation, whereas in the DNS solution the reattachment occurs in the downstream near

the starting point of separation and thus there is no noticeable separation. In other words,

the prediction of velocity U in the adverse pressure gradient region is insensitive to the inlet

velocity, and the poor prediction may be due to the RANS model inadequacy. This section

is mainly to explore the applicability of data assimilation to optimize inlet velocity, so the
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uncertainty in the model is not concerned.

(a)

(b)

(c)

Figure 3.5: Velocity U �eld with the �rst guess of parabolic velocity for prior(a), posterior(b)
and DNS(c)

3.4.2 Venturi

The second case is for Venturi channel, which is extensively used in the investigations of

turbulent cavitating ows [ 30] [19]. The �eld information near the throat is quite challenging to

be captured by current RANS model due to abrupt curvature change. In this work, the data

assimilation approach is applied to infer the proper inlet velocity in non-cavitating ow by

assimilating one velocity pro�le from experimental data.

3.4.2.1 Flow condition

The experiments were conducted by I Khlifa et al. [82]. Through applying ultrafast X-Ray

imaging into the turbulent ows, the velocity was measured within a Venturi-type test section

with 18� convergence angle and 8� divergence angle. The cross-section in the entry of the Venturi

is a rectangle of 17mm � 4mm, and the height of the throat is 15:34mm. In the experiment,

the ux rate is 55 :5L=min , representing the entry bulk velocity at 13:6m=s. Reynolds number

is 2:3 � 105. The time-averaged velocity u is obtained by averaging all the instantaneous

stream-wise velocity processed from the high speed photography images. For the numerical
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setup, the structured mesh is generated with 200 grid in the stream-wise direction and 70 grids

in the normal to the wall direction. The y+ of the �rst grid near the wall is ranged from 1 to 3.

The mesh of the venturi-type section is shown in Figure 3.6.

Figure 3.6: Mesh of the Venturi-type section

However, since the measured area is in the adverse pressure gradient region where the

velocity �eld is not sensitive to the inlet condition, the data assimilation experiment within

Venturi turned out to be a failure. The results are presented in Appendix A.2. In view of this,

we simpli�ed the Venturi geometry as a divergent channel with the resolution domain starting

from the throat of the Venturi section. Thus the measured �eld is quite close to the inlet, and

the ow status can be very sensitive to the inlet condition. The structured mesh is generated

with 131 cells in the x-wise direction and 70 cells in they-wise direction.

3.4.2.2 Data assimilation setup

In the Venturi-type section, the measured window is placed near the bottom wall and quite

small compared to the height of the channel. Therefore, only the inlet velocity pro�le adjacent

to the bottom wall is considered as the input parameters, and the velocity in the other area is

�xed at constant 1.1 to keep the ux consistent. The dimension of the input parameters is 20.

The velocity at the �rst grid is also �xed at 2 � 10� 3 to have a reasonabley+ .

As for the observation, the velocity �eld can be captured by the PIV experimental measurements

while other turbulent quantities of interest on the wall such as skin friction coe�cient are not

straightforward to measure. Hence, we regarded the velocity pro�le atx = 0 :0008m as the

observation which is quite close to the inlet boundary, thereby ensuring that the velocity at

this speci�c position can be a�ected exibly by inlet condition. The ensemble size, in this case,

is set as 20. The variance� (x) is constructed based on the discrepancy of the RANS simulation

and experimental velocity pro�le at the observed position and the added multiplication is 10� 5.

The standard deviation of observation is� o = 10 � 6, which represents high con�dence in the

experimental data since the observed position and the inlet is almost linearly correlated, and

thus the inverse problem is well posed for this case.
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3.4.2.3 Results

Figure 3.7 shows the assimilated and prior results for inlet velocity and the observed velocity

pro�les. Figure 3.7(a) presents the evolution of inferred inlet velocity pro�le every 5 iterations,

while Figure 3.7(b) presents the improved prediction on the velocity pro�le at x = 0 :0008m. It

can be seen that EnVar method can reconstruct the inlet velocity to �t quite well with the

reference velocity pro�le at the speci�c position near the inlet.

Figure 3.7: Data assimilation results of velocity at inlet(a) and velocity at x = 0 :0008m(b)

Figure 3.8 shows that the evolution of cost function with respect to the iterations. The cost

function J is reduced signi�cantly from 5:2 � 1011 to 1:4 � 108 after 20 iterations with ratio r J

of 2:7 � 10� 4 and r Job of 2 � 10� 5.

Figure 3.8: Data assimilation results of cost functionJ (a) and Job(b)
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Figure 3.9 presents the contour plots of velocityu of prior, posterior and experiment.

Noticeable improvements can be seen in the observed positionx = 0 :0008m comparing to the

prior. However, in the other areas, the ow status is entirely di�erent, since substantially the

ows in Venturi cannot be represented with the divergent channel.

(a) (b)

(c)

Figure 3.9: Velocity u �eld for prior(a), posterior(b) and experiment(c)

3.5 Model correction

As illustrated in section 4.2, in Venturi-type section the measured �eld is mainly in the adverse

pressure gradient region, where the velocity is insensitive to the inlet condition, and the RANS

method is incapable of making accurate prediction due to the convex curvature. Therefore,

in this section, the RANS model-form uncertainty is considered through the �eld inversion

approach [129]. The conventional k and ! transport equation in k � ! SST model is inadequate

especially in the presence of adverse pressure gradient. Thus, the underlying source term is

introduced in the k � ! SST model by three di�erent means depending on where the correction

terms are inserted (TKE equation or ! equation). The sensitivity of these corrections concerning

the observation is analyzed, and accordingly, the correction �elds are inferred through solving

the inverse problem with EnVar approach. The summary of DA experiments for model correction
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inference is presented in Table 3.2.

� dim (� ) y Nen r J r Job

� c in k equation 1200
TKE and u 50

0.43 0.17
� c in ! equation 1200 0.25 0.13
� c in k and ! equation 2400 0.087 0.13

Table 3.2: Summary of DA experiments for model correction inference

3.5.1 Correction in k equation

3.5.1.1 Data assimilation setup

In the TKE transport equation of the k � ! SST model, the sum of turbulent-transport

term and pressure di�usion term is represented through Boussinesq assumption in analogy to

molecular transport process [142] which probably result in poor prediction for complex ows.

The correction variable � c is introduced in front of the production term in TKE transport

equation to account for the model uncertainty as:

(3.13)
@k
@t

+
@(uj k)

@xj
= � cP � � � !k +

@
@xj

[(� + � k � t )
@k
@xj

];

which is equivalent to introduce a source term (1� � c) � P in the TKE transport equation.

Thus with data assimilation, the ow status can be recovered through �nding out the optimal

correction �eld to have a good agreement with reference data.

Since the measurement region is only near the throat, in order to reduce the dimension of

input space and guarantee that the inferred correction and observation are locally correlated,

the range of input parameters are con�ned in the area with extension to the observed region

instead of the whole computational domain. The correction variables are well imposed on the

mesh grids. The dimension of input parameters is 1200 with 40 points along thex-wise direction

and 30 points along they-wise direction.

As for the observation, four pro�les on the velocity u and TKE are concerned. For each

pro�le, there are 24 measurement points. Given that the numerical solution is imposed on

the mesh points while the experimental data is on a uniform Cartesian grid, to compare the

numerical resolution with the measurements, each experimental data is interpolated on the

numerical mesh points. Besides, since the initial discrepancy of velocity and TKE causes the

weight of the two observed quantities on the cost function to be di�erent, TKE is normalized

by multiplying the ratio of the initial discrepancy between prediction and reference data in

velocity to that in TKE, thereby keeping them in the consistent range.

For the data assimilation setup, as it is not practical to draw all the samples for high

dimension case, we drew 50 samples with truncated Singular Value Decomposition(SVD) which

can capture more than 99 percent of the variance. The standard deviation of observation
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� o is 10� 1. It is noted that the large observation error represents the experimental instinct

uncertainty from both measurements and post-processing[82]. Moreover, because the model

error is not considered in this work, it can be regarded as the whole process error including the

data error as well as the model error. Also, the strong non-linearity for this case will increase the

ill-posedness of the optimization problem, hence for the ensemble-based methods, the ination

on the observation error covariance matrix is commonly adopted to regularize the problem. The

large observation error here can be regarded as the implicitly inated one. The variance �eld as

shown in Figure 3.10 is constructed through interpolation based on the discrepancy between

RANS results and very sparse experimental data in TKE where the added correction term has

a direct impact. And the multiplication of the variance is taken as 1 � 10� 3. The �rst guessed

input parameter is set as 1 in the domain of interest.

Figure 3.10: Variance� (x) of � c in TKE transport equation

3.5.1.2 Results

Figure 3.11 shows the reduction of cost function values with respect to iterations. It can be seen

that the data assimilation process is well converged and the cost function is reduced signi�cantly

in the �rst 20 iterations from 5 :1 � 105 to around 2:2 � 105 with the descending ratio of 0.43,

while Job is decreased with a ratio of around 0.17 at the end of optimization.

Figure 3.12 is the comparison of TKE and stream-wise velocityu among the prior, posterior

and experimental data along pro�les. The pro�les of prior TKE are quite distant from the

reference pro�les. The RANS model cannot capture the high TKE near the wall and throat

region. After the data assimilation process, a noticeable improvement can be seen comparing to

prior, and the prediction in TKE has a good agreement with experimental data especially at

the �rst two positions as shown in Figure 3.12(b). However, from Figure 3.12(a) the prediction

on velocity u is not quite improved. The correction embedded in the TKE transport equation

may not have substantial e�ects on the observed velocity, that is to say, the perturbations
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Figure 3.11: Data assimilation results of cost functionJ (a) and Job (b)

on the corrections can impact signi�cantly on the prediction of TKE obviously, but have no

su�cient inuences on velocity u.

The contour plots of posterior TKE and velocity u with correction in the k transport

equation are shown in Figure 3.22(c)(d). The apparent improvement can be found in TKE,

and the region near the wall with high TKE can be recovered. However, for the velocity, no

apparent improvements can be seen, and the relatively low value in the region near the wall

cannot be captured even though with the correction in thek equation.

3.5.2 Correction in ! equation

3.5.2.1 Data assimilation setup

The speci�c dissipation ! transport equation in k � ! SST turbulence model is heavily modelled

with an ad-hoc form. The underlying source term in this equation is also probably responsible

for the poor predictive performance on the velocity and TKE. In this subsection the correction

� c is introduced in ! transport equation as the following formula:

(3.14)
@!
@t

+
@(uj ! )

@xj
= � c


� t

P � �! 2 +
@

@xj
[(� + � ! � t )

@!
@xj

] + Ssst

The range of input parameters and observations are the same in section 5.1 as well as the

ensemble size. The standard deviation of observation is also taken as 10� 1. The variance � (x)

is taken based on the discrepancy between RANS and experimental data on velocityu since

the correction in ! transport equation can have strong correlations with velocity based on our

prior study. The multiplication on variance � (x) is 1 � 10� 3. The variance �eld is shown in

Figure 3.14. The �rst guessed input parameter is set as 1 in the inferred domain as well.
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(a)

(b)

Figure 3.12: Comparison in velocity u (a) and TKE (b) along pro�les among prior, posterior
and experiment

3.5.2.2 Results

Figure 3.15 shows that the convergence curve of the cost function with correction in the!

equation. It can be seen that the ratio of cost functionJ can reduce to 0.13 and forJob it can

decline to 0.25. And after approximately 30 iterations, no visible improvement can be reached.

Figure 3.16 presents the evolution of RANS prediction in observation space. With the
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Figure 3.13: Inferred � c pro�les

Figure 3.14: variance� (x) of � c in ! transport equation

Figure 3.15: data assimilation results in cost functionJ (a) and Job (b)
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correction in the ! transport equation, the stream-wise velocity u can be signi�cantly improved

even though TKE becomes inferior. With the velocity approaching the experimental data,

the gradient of velocity near the wall is gradually reduced which results in the production

term in the TKE transport equation related to the velocity gradient decrease accordingly.

That is why it can be observed that the improvements in velocity u and TKE are mutually

impeded: Once the prediction on velocityu is improved, the velocity gradient near the wall

will become reduced, which results in the reduction of TKE and the further departure from

the experimental measurements. The contour plots of the posterior with correction in the!

equation are presented in Figure 3.22(e)(f). The velocity �eld is well reconstructed comparing

to the experiments, especially in the upstream.

3.5.3 Correction in k and ! equation

3.5.3.1 Data assimilation setup

Because of the corrections in the TKE and special dissipation transport equation having

dominant e�ects on the prediction of TKE and velocity u respectively, in this subsection the

correction terms are introduced simultaneously in TKE and ! transport equation. The input

space has 2400 dimensions including correction variables in both TKE and dissipation transport

equation. Other parameters are uniform with the former subsections.

3.5.3.2 Results

Figure 3.18 shows that the results of the cost function with corrections in bothk and ! equations.

It can be seen that the value of cost function reduces signi�cantly within 45 iterations with

ratio r J of 0.087 andr Job of 0.13. Compared with the previous cases, the e�ciency of EnVar

method decrease as the dimension of input parameters is increased. Figure 3.19 presents the

evolution of the velocity u and TKE pro�les by comparison with prior and experimental data.

The predictions in both u and TKE is improved; however, the improvements of the predictions

in the two observation are mutually restrained, which leads to that the further optimization of

the velocity would deteriorate the prediction on TKE.

From the contour plots in Figure 3.22(g)(h), the apparent improvement on the prediction

of velocity u and TKE can be seen comparing to prior. However, there is still a signi�cant

departure from the experiments. The reason why the optimized results cannot get further close

to the reference data may be due to two aspects: �rst the experimental data has its instinct

uncertainty including the measurement noise, insu�ciency resolution and so on; secondly, it has

been noted that the primary source of uncertainties in the RANS model is from Reynolds stress.

The correction in the scalar k and ! equation is still under the frame of linear eddy-viscosity

assumption; hence it can only concern the magnitude of Reynolds stress tensor but cannot

take the orientation of Reynolds stress into considerations. In other words, the impact of these
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(a)

(b)

Figure 3.16: Comparison in velocityu (a) and TKE (b) along pro�les among prior, posterior
and experiment

corrections on the observations may be not su�cient to represent the structural uncertainty in

the RANS model. To this end, this work can be extended to the framework in [148] to infer

the uncertainties directly in the Reynolds stress term. Moreover, the measured TKE may be

di�cult to be replicated by the modeled TKE since the modeled TKE cannot be equivalent to

the "true" TKE in a real ow.

Figure 3.13 3.17 3.20 3.21 are the inferred model correction pro�les at the corresponding
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Figure 3.17: Inferred � c pro�les

Figure 3.18: Data assimilation results of cost functionJ (a) and Job (b)

position for each case. Generally, the production term in TKE and dissipation transport equation

are both increased by the introduced corrections. With the production term in k equation

increasing, the resolution on the TKE increase as well. Thus, the prediction onk in the near wall

region can be improved signi�cantly comparing to the initially underestimated value. However

for the region away from the wall, the production term itself becomes trivial, and thus TKE

will reduce the sensitivity to the multiplicative correction of the production term; hence the

assimilated results are almost similar to prior, especially for the case with corrections in bothk

and ! transport equation. Also, the resolution on ! gets increased with the optimal correction

in the ! equation, which leads to that the modeled Reynolds stress tend to decrease, while the

velocity near the wall is reduced accordingly and get close to the experimental measurements.

Nevertheless, in the area far from the wall, the inferred correction is also increased but has

few e�ects on velocity since the region is in the outer layer where the Reynolds stress is not

dominant.
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(a)

(b)

Figure 3.19: Comparison in velocityu (a) and k (b) along pro�les among prior, posterior and
experiment

3.6 Conclusion

The ensemble-based variational method is presented to optimize RANS simulation by infer-

ring improved inlet velocity and underlying model corrections in k � ! SST model. This

approach combines the variational data assimilation method and ensemble Kalman method

by transforming the MAP as the optimal control problem and meanwhile using the ensemble
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Figure 3.20: Inferred � c pro�les in k equation

Figure 3.21: Inferred � c pro�les in ! equation

technique to estimate prior statistics so that it can sustain the advantages of both robustness

and intrusiveness.

Firstly, two representative ows in the convergent-divergent channel, the turbulent ow

in the WallTurb Bump where DNS resolution is available and non-cavitating ow in Venturi-

type section with the X-rays experimental observation, were tested with the proposed data

assimilation approach to infer the ambiguous inlet velocity pro�le. With improved inlet velocity,

the �eld of velocity u can be reconstructed in good agreement with reference data mainly

near the inlet region, while the velocity u in the APG region is not quite sensitive to the inlet

condition. Further, the underlying model corrections in k � ! SST model were inferred for

the non-cavitating ow in Venturi. The sensitivity of the correction term in the k and the !

equation is analyzed respectively. The predictions in velocityu and TKE both can be improved

with corrections in the k and ! equation but still have large discrepancies comparing to the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.22: Contour plots of velocity u (�rst column) and TKE (second column): (a)(b) prior;
(c)(d) posterior with correction in k transport equation; (e)(f) posterior with correction in !
transport equation; (g)(h) posterior with correction in both k and ! transport equation; (i)(j)
experiment
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experiments which may be due to the insu�ciency of the correction in the frame of Boussinesq

hypothesis. The robustness of ensemble-based variational method for the inverse problem in

complex turbulent ows is demonstrated.

In light of the limitation of the RANS model-form uncertainty under the frame of linear

eddy viscosity assumption, current work is being conducted to explore the applicability of this

data assimilation scheme to quantify and reduce uncertainties in Reynolds stress directly. Also,

the EnVar method used in this work is the standard incremental ensemble version, where the

background error covariance is estimated with low-rank linear approximation and independent

between consecutive data assimilation iterations. The ensemble update with consideration of

the associated error covariance update will be investigated in future work.[150] Besides, the

method utilizes the limited ensemble realizations to estimate the sensitivity matrix which may

result in that the optimization process is prone to diverge especially for the high dimension

problem. Hence, the regularization technique will be explored to be introduced in this data

assimilation scheme to address this issue. Moreover, the machine learning technique will be

explored to extract the model knowledge based on the inferred source term �eld which can be

expected to be used for industrial applications.[130]
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Chapter 4

Regularization of Ensemble Kalman

Method for Inverse Problems

4.1 Introduction

Inverse problems are frequently encountered in computational physics applications such as

complex uid ows where physical �elds need to be inferred. A classic example of inverse

problems is to estimate the stationary background ow velocity �eld from the concentration of

passive scalars (e.g., pollutant or dye) that are advected by, and di�using within, the uid [ 13].

The data that are available and used in such an inversion are often partial, noisy observations

of the concentration �eld. The inverse problem is motivated by the fact that concentrations

are often easier to measure than velocities. The forward problem corresponding to the above-

mentioned inverse problem is computing the concentration �eldz(x ), where x denotes spatial

coordinates, by solving the steady-state advection{di�usion equation

(4.1) u � r z � � r 2z = 0

with a given background velocity �eld u(x ), along with other auxiliary constraints such as

boundary conditions and physical properties (e.g., di�usivity � ) of the passive scalar. Hence, the

partial di�erential equation (PDE)-based forward model above implies a functional mapping

M : u 7! z, or more concisely,z = M (u). Another example of solving inverse problems is the

data assimilation used for weather forecasting, where partial, time-dependent observations of

the atmosphere (e.g., wind speed, temperature, humidity) and numerical simulations are jointly

used to infer the full initial state of the system. Inverse problems are typically many times

more expensive to solve than the corresponding forward problems. This is not only due to the

limited amount of observation data compounded by the uncertainties therein, but also due to

the nonlinearity of the PDE-governed system and its high-dimensional state space that leads to

ill-posed inverse problems.

55



CHAPTER 4. REGULARIZATION OF ENSEMBLE KALMAN METHOD

The example of inferring background velocities can be posed as an optimization problem, i.e.,

�nding a velocity �eld u opt that leads to a concentration �eld best matching the observations

(zobs) at the measured locations. That is,

u opt = arg min
u

k eH [M (u)] � zobsk2,(4.2)

where M (u) involves solving the PDE for the concentration, eH is the observation operator

(e.g., extracting values at the observed locations from the concentration �eld), andk � k denotes

a norm in a Hilbert space (e.g.,L 2 norm in Euclidean space or that weighted by the state

covariance). In a terminology consistent with that used in the data assimilation community,

the velocity �eld to be inferred is referred to as the state (x), and the measured concentrations

called observations (y). We further de�ne H � eH � M as a composition of the model operator

M and the observation operator eH . The inverse problem above can thus be written as:

(4.3) xopt = arg min
x

J with J (x) = kH[x] � yk2,

where J (x) is the cost function to be minimized, which corresponds to the discrepancy between

the model outputs and the observations.

4.1.1 Adjoint- vs. ensemble-based inversion methods

In order to solve the optimization problem in the �eld inversion, the gradient descent method or

one of its variants is often used, where the search of the optimal solution is guided by following

the local gradient @J=@x of the cost function J with respect to the control parameter x. Note

that x usually resides in the space of very high dimensions (corresponding to the number

of degrees of freedom of the discretized velocity �eld in the above example, which can be

in the order of millions). A highly e�cient way to compute such a derivative is the adjoint

method [56], where the derivative is obtained by solving an adjoint equation at a cost similar

to solving the PDEs in the forward model (referred to as primal equation). Adjoint methods

have been used for di�erent uid mechanics problems. Dow and Wang [37] proposed an adjoint-

based Bayesian inversion method to quantify the structural uncertainty in Reynolds-averaged

Navier{Stokes simulations. Gronskis et al. [61] adopted the variational method to infer the

inow and initial condition for a problem using direct numerical simulation (DNS) of the

Navier{Stokes equations. Papadimitriou and Papadimitriou [116] applied a Bayesian framework

coupled with a high-order adjoint approach to quantify the uncertainty in the parameters in the

Spalart{Allmaras turbulence model [133]. Singh and Duraisamy [129] proposed an approximate

Bayesian inference framework based on the adjoint method to infer the multiplicative correction

term in the Spalart{Allmaras model and the k{ ! model [141]. Foures et al. [51] used the

adjoint-based variational method and Lagrange multipliers to reconstruct the full velocity �eld

from coarse-grid particle image velocimetry (PIV) measurements of velocity magnitude from
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only part of the domain. They imposed the Reynolds-averaged Navier{Stokes equations as a

constraint in the minimization and used the Reynolds stress divergence as a control parameter.

Recently, Beneddine et al. [7] further extended this technique to the reconstruction of the

unsteady behavior of a round jet at a Reynolds number ofRe = 3300 from the mean ow �eld

and unsteady measurements at a single point. Meldi and Poux [100] integrated the Kalman �lter

into the structure of a segregated CFD solver and imposed the zero-divergence condition for the

velocity �eld. They further proposed model reduction strategies to reduce the computational

costs within the Kalman analysis. The framework has been used to reconstruct di�erent ow

con�gurations including three-dimensional unsteady ows [100] with comprehensive sensitivity

analysis performed [99].

A major shortcoming of the adjoint method, however, is the e�ort required to develop

the adjoint solver. For the discrete adjoint method, which is the most commonly used adjoint

method in computational uid dynamics (CFD) applications, this involves di�erentiating each

operation (i.e., each line of code) in the primal solver [55, 109]. This is a laborious process

and a daunting task for complex simulation codes such as CFD solvers. Taking CFD for

example, while some codes intended for design and optimization have been developed with

adjoint capability [e.g., 8, 38], many other popular solvers are not equipped with a native,

production-level adjoint capability. Most notably, the CFD code OpenFOAM [ 113] does not

have any native discrete adjoint solver capabilities. Although there have been e�orts to build

one for OpenFOAM based on automatic di�erentiation [135], it is not yet at a production level

at this time.

The limited availability of physical simulation codes with adjoint capability has prompted the

inverse modeling community to develop ensemble-based, derivative-free optimization methods.

The iterative ensemble Kalman method proposed by Iglesias et al. [71] is among such attempts

for general inverse problems. In the data assimilation community, ensemble methods [47{ 49]

have been developed to complement or replace the traditional variational (adjoint) methods

(e.g., 3DVar, 4DVar) [25, 53]. In ensemble methods, the covariance estimated from the ensemble

is used in lieu of the derivatives to guide the optimization. A number of primal simulations

with di�erent samples of the system states are run, which is in contrast to solving adjoint

equations along with the primal equations. A critical advantage of ensemble methods over

adjoint methods is that it is non-intrusive, i.e., the forward model (primal solver) does not need

to be changed, and adjoint solvers are not needed. Many works have used ensemble methods

for inverse problems in uid mechanics. For instance, Kato and Obayashi [79] leveraged the

ensemble Kalman �lter to infer the value of empirical parameters in the Spalart{Allmaras

turbulence model and demonstrated the e�ectiveness of ensemble Kalman methods for CFD

problems. Mons et al. [107] applied di�erent ensemble-based methods including the ensemble

Kalman �lter to infer the inlet and initial conditions for CFD simulations and thus reconstruct

the unsteady ow around a cylinder. Xiao et al. [148] used an iterative ensemble Kalman method
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to infer the Reynolds stress discrepancy �eld and reconstruct the velocity �eld accurately for

ows over periodic hills as well as ows in a square duct. However, compared to adjoint methods,

ensemble methods do not have the exibility to introduce regularization to tackle ill-posed

inverse problems. This shortcoming shall be examined in more detail below.

4.1.2 Ill-posedness and regularization of inverse problems

We introduce the concept of ill-posedness by examining the operatorH in the optimization

formulation of the inverse problem as in Eq.(4.3). As described above, computing the costJ (x)

associated with the statex involves

1. solving the forward model (e.g., Eq. (4.1) with the given velocity �eld),

2. mapping the results to observation space (e.g., sampling at speci�c locations), and

3. comparing with the observationsy to �nd the discrepancy.

While the advection{di�usion equation happens to be linear, in many other problems (e.g.,

inferring the velocity �eld from partial observations of itself) the model M is highly nonlinear.

Moreover, the operator eH typically maps a high-dimensional state space, whereM (x) is in,

to a low-dimensional observation space, wherey is in. For example, the concentration �eld

discretized with a mesh of millions of cells may be observed at only a few locations. Because of

these two factors,H typically results in a many-to-one mapping. In other words, many di�erent

velocity �elds lead to the same agreement with the observations and thus the same costJ .

Consequently, the inverse problem formulated as the optimization in Eq.(4.3) does not have a

unique solution and is thus ill-posed.

To tackle the ill-posedness, inverse problems can be regularized by introducing an additional

term Jr into the cost function J in Eq. (4.3), i.e.,

(4.4) J = kH[x] � yk2 + Jr .

The term Jr serves to di�erentiate among the states that previously led to identical costs.

Desired properties of the states that are commonly used for regularization include:

Spatial smoothness i.e., preferring smooth �elds over non-smooth �elds among the candidate

states [see, e.g.,37, 114]. The corresponding cost function in Eq. (4.3) becomesJ =

kH[x] � yk2 + � kr xk2, where Jr = � kr xk2 is the regularization term and � is an

algorithmic parameter corresponding to the strength of the regularization.

Prior mean values i.e., preferring candidate states closer to the prior meanx0 over those

further away [see, e.g., 129]. The regularization isJr = � kx � x0k2.
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Physical constraints e.g., in the example above where the state is the background velocity,

this can be preferring velocity �elds that satisfy the mass conservation (divergence-free

condition for incompressible ows) [66]. The regularization is thus Jr = � kr� xk2. Similarly,

other physical constraints include positivity of turbulent kinetic energy or eddy viscosity

and realizability of Reynolds stresses [148].

There exist many more types of prior knowledge than those enumerated above. For example,

one could use regularization to favor (or penalize) speci�c wave numbers or pattern in the �eld

to be inferred, or to favor smaller (or larger) values in certain regions. Essentially, regularization

utilizes prior knowledge on the state to be inferred to constrain the optimization process.

Consequently, the regularization terms to be introduced are inevitably problem-speci�c and

can have a wide range of forms in di�erent applications.

Implementation of such regularization in optimization schemes is much more challenging

for ensemble methods than for adjoint methods. In the adjoint-based inversion, regularization

involves modifying the cost function with an additional term, which in turn may necessitate

modifying the adjoint solver. This is usually straightforward (albeit laborious) process. In

contrast, it has been far from clear how to implement a generic regularization in ensemble-based

inversion methods. So far, a general procedure to introduce prior knowledge-based regularization

to ensemble methods is still lacking. The di�culty partly stems from the fact that ensemble

methods do not directly optimize a cost function. Rather, they use an analysis scheme to

optimize the cost function implicitly. Nevertheless, it is well known that the adjoint-based and

ensemble-based Bayesian inverse modeling methods are equivalent under some mild assumptions

(e.g., Gaussian priors on the states, normal distribution of observation uncertainties, linear

model) [49, 125]. Speci�cally, under these assumptions the maximum a posteriori (MAP)

estimate from the Bayesian approach is equivalent to the minimization problem in adjoint-based

methods. Therefore, one can naturally expect that the regularization methods reviewed above

for adjoint methods can be equally introduced into ensemble methods for inverse modeling.

4.1.3 Related works and contributions of present work

Enforcing constraints in ensemble-based methods has drawn increasing attention in the past

few years, and a body of works has focused on attempting to enforce constraints in ensemble

Kalman methods. Wang et al. [138] presented the projection method and the accept/reject

method to constrain the estimated state and parameters. To achieve this, the former method

projects the ensemble samples into the constrained space, and the latter method will reject

the ensemble update and resample the model and observation errors if the updated samples

violate the constraints. Prakash and Patwardhan [119] proposed a constrained ensemble Kalman

method where the analysis step is formulated as solving a constrained optimization problem.

Similarly, Janji�e et al. [ 72] formulated the analysis scheme of the conventional ensemble Kalman

methods as a set of quadratic programming problems and applied physical constraints to ensure
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the mass conservation and non-negativity of the ensemble members. Recently, inspired by the

above works, Albers et al. [2] provided a unifying framework to enforce equality and inequality

constraints in ensemble Kalman methods. In their framework, the updated samples produced

by the standard methods that violate the constraints are replaced by those obtained through

solving a constraint optimization problem. They demonstrated the equivalence between the

analysis scheme in ensemble Kalman methods and the minimization problem, as well as the

well-de�niteness of the constrained optimization problem.

In an alternative approach, Wu et al. [144] proposed a method where after a standard

Kalman update the ensemble samples are reweighted based on the Gaussian statistical model

associated with the constraint term. However, as with particle �lter methods, this method is

potentially susceptible to sample degeneration [93], i.e., a few samples can have large weights and

dominate all other samples, reducing the e�ective sample size. Moreover, it is not straightforward

to specify inequality constraints by using the Gaussian statistical model they adopted.

All the aforementioned methods introduce a post-processing step to enforce constraints after

the analysis step of the standard ensemble Kalman methods. They require either the adjoint

code to solve the constraint optimization problem or the reweighing of each sample. In our

work, we propose a method that integrates constraints into the analysis scheme and involves

only an algorithmic modi�cation to the standard ensemble Kalman methods. This modi�cation

leads to a derivative-free method that incorporates constraints in a mathematically equivalent

manner as the commonly used adjoint-based inversion methods, i.e., by implicit minimization

of a regularized cost function.

Speci�cally, we propose a method to introduce general regularization terms (including but

not limited to the types reviewed above) into the ensemble Kalman methods. This is achieved by

deriving an analysis scheme starting from the modi�ed cost function. The result is an analysis

scheme with minor modi�cations to achieve the desired regularization. The derivation is valid

for ensemble Kalman methods in general, including the iterative ensemble Kalman method

in [71] and the ensemble Kalman �lter [47, 48]. Note that we aim to derive a scheme to impose

general constraints through modi�cation of the analysis schemes. Applications to the speci�c

type of constraints (e.g., smoothness, prior mean) as discussed above will be illustrated in

further examples presented in a companion paper.

The rest of the paper is organized as follows. Section 4.2 presents the derivation of the

regularized ensemble Kalman method for optimization and its implementation. Modi�cation

compared to its traditional counterpart is highlighted. Section 4.3 evaluates the proposed method

on three inverse modeling problems of increasing di�culty levels ranging from optimization of a

nonlinear function of scalars to inferring the closure �eld in the Reynolds-averaged Navier{Stokes

(RANS) equations. The RANS equation closure problem is of signi�cant importance in uid

dynamics and engineering applications since the closure models are considered the main source

of uncertainty in the predictions. Finally, Section 4.4 concludes the paper.
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4.2 Methodology

The two main approaches for solving inverse problems, adjoint-based optimization approach

and maximum a posteriori (MAP) estimation based Bayesian approach, are equivalent under

mild assumptions, with ensemble Kalman methods being an example of the MAP approach.

The objective of this section is to bridge the gap between enforcing constraints (regularization)

for the two approaches. Speci�cally, we show that a generic constraint introduced into the cost

function for the optimization approach can be equivalently implemented as modi�cations to

the analysis scheme of the ensemble Kalman methods.

4.2.1 Equivalence between optimization and maximum a posteriori

approaches

The optimization approach for solving the inverse problem is presented above in Eq.(4.3). In

contrast, from the Bayesian perspective, solving the inverse problem amounts to �nding the

probabilistic distribution P(x j y) of the state x conditioned on observationy. Based on Bayes'

theorem, this is:

(4.5) P(x j y) / P(x)P(y j x),

where P(x) is the prior distribution before incorporating the observation data and P(y j x) is

the likelihood indicating the probability of observing y given state x. For the likelihood, the

following relation is assumed betweenx and y:

(4.6) y = H[x] + � ,

where � is a stochastic observation error. Estimating the full posterior distribution P(x j y)

(e.g., by using Markov Chain Monte Carlo sampling) can be prohibitively expensive, as it

requires millions of evaluations of the forward model and often must resort to surrogate

models [39, 40, 42, 121]. Therefore, in practical applications, one often �nds the state x that

maximizes the posterior, which is referred to as MAP estimation [43]. The derivation assumes

that both the prior and the observation noises are Gaussian processes [120], i.e.,

P(x) =
1

Np (2� )N det(P)
exp

�
�

1
2

(x � xf)> P� 1(x � xf)
�

/ exp
�

�k x � xfk2
P� 1

�
;(4.7)

P(� ) =
1

Dp (2� )D det(R)
exp

�
�

1
2

� > R� 1�
�

/ exp
�
�kH [x] � yk2

R� 1

�
:(4.8)

wherexf is the prior mean, P and R are the covariance matrices of the statex and the observation

errors � , respectively, and the normk � k2
W is de�ned as kvk2

W = v> Wv for a vector v and weight

matrix W. The posterior is thus

(4.9) P(x j y) / exp
�

�k x � xfk2
P� 1 � kH [x] � yk2

R� 1

�
:
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Maximizing the posterior amounts to minimizing its negative logarithm, i.e.,

(4.10) xopt = arg min
x

J with J (x) = kx � xfk2
P� 1 + kH[x] � yk2

R� 1 ,

which is equivalent to the optimization approach in Eq. (4.3) with the prior based regularization

presented in Section 4.1.2.

More general regularization terms can be introduced into the cost function. These are

formulated as a norm of some di�erentiable function G[x] that needs to be minimized. The cost

function is then

(4.11) J (x) = kx � xfk2
P� 1 + kH[x] � yk2

R� 1 + � kG[x]k2
W ,

where the parameter� controls the strength of the regularization, and W is the weight matrix

de�ning the norm to be minimized. For example, to promote spatial smoothness of the inferred

�eld, the regularization term can be G[x] = r x with W proportional to the discretization of the

�eld. In light of equivalence between the two approaches, we show that the analysis scheme in

ensemble Kalman methods can be derived from the optimization formulation of the inverse

problem. We will reproduce such derivations below and introduce the modi�cation needed to

incorporate the constraint G[x] along the way.

4.2.2 Derivation of the regularized ensemble Kalman method

Here we present the derivation of the regularized ensemble Kalman method. Some algebra has

been omitted for brevity and ease of understanding, but the full derivations are given in B.1. In

ensemble Kalman methods, the prior in Eq.(4.7) and the likelihood in Eqs. (4.6) and (4.8) are

represented as ensemblesf xf
j g and f yj g, respectively, wherej = 1 ; � � � ; M with M being the

number of samples in the ensemble. For each pair of ensemble memberxf
j and observation yj ,

the analysis scheme aims to �nd a posterior realizationxa
j that minimizes the cost function

J (xj ), i.e.,

(4.12) xa
j = arg min

x
J with J (xj ) = kxj � xf

j k2
P� 1 + kH[xj ] � yj k2

R� 1 ,

which is the ensemble-based representation of the optimization formulation in Eq.(4.10). If

a regularization term is to be introduced to the cost function, the formulation in Eq. (4.12)

becomes:

(4.13) J (xj ) = kxj � xf
j k2

P� 1 + kH[xj ] � yj k2
R� 1 + � kG[xj ]k2

W ,

This amounts to �nding the xa
j that leads to @J=@xj = 0. For Eq. (4.13) this becomes

(4.14) P� 1(xa
j � xf

j ) + ( H 0[xa
j ])> R� 1(H [xa

j ] � yj ) + � G0[xa
j ]> WG[xa

j ] = 0.
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Assuming the observation operator H has only modest nonlinearity, one can introduce a

linearization around xf
j :

H [xa
j ] � H [xf

j ] + H 0[xf
j ](xa

j � xf
j ),

H 0[xa
j ] � H 0[xf

j ],

where 0 denotes derivative with respect to the state. Similarly, we introduce two assumptions

for the regularization term:

G[xf] � G [xa] and G0[xf] � G 0[xa].

Di�erent from H[x], we assume a convergence condition forG[x] (i.e., the �rst derivative term

is ignored) to simplify the derivation. Furthermore, we introduce the tangent linear operator

H for the observation operator H so that H 0[x] = H and H[x] = Hx. Equation (4.14) is then

simpli�ed to:

(4.15) P� 1(xa
j � xf

j ) + H> R� 1(Hxf
j � yj + H(xa

j � xf
j )) + � G0[xf

j ]> WG[xf
j ] = 0.

After some algebra (details in B.1), this leads to the following analysis scheme:

(4.16) xa
j = xf

j + PH> (R + HPH> ) � 1(yj � Hxf
j )

| {z }
Kalman correction

� P(I + H> R� 1HP) � 1 � G0> WG
| {z }

regularization term

,

where the argument xf
j for the function G and its derivative G0 are omitted for brevity of

notation. This analysis scheme introduces two corrections to the prior realizationsxf
j . The �rst,

Kalman correction, comes from the classical ensemble Kalman methods and corresponds to

the observation mis�t term kH[xj ] � yj k2
R in the cost function in Eq. (4.13), and the second

correction corresponds to the regularization term� kG[xj ]k2
W . Note that multiple regularization

terms can be added in Eq. 4.16, each with their own functionGi , weight matrix Wi , and

parameter � i .

The analysis scheme in Eq.(4.16) can be further simpli�ed to facilitate interpretation and

to gain insight into its relationship with that of classical Kalman update. First, we can expand

the term � P(I + H> R� 1HP) � 1 in Eq. (4.16) to

� P + PH> (R + HPH> ) � 1HP

by using the Woodbury formula [63] (see details in B.1). Following the convention in the data

assimilation literature, we write the Kalman gain matrix K = PH> (R+ HPH> ) � 1. Consequently,

the Kalman correction term and the regularization term become

(4.17) K(yj � Hxf
j ) and � � PG0> WG+ KH� PG0> WG,

respectively. We further denote

(4.18) � = � � PG0> WG,
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with which the analysis scheme Eq. (4.16) then takes the following simpli�ed form:

(4.19) xa
j = xf

j + � + K(yj � H(xf
j + � )),

or alternatively written as a two-step scheme:

~xf
j = xf

j + �;(4.20a)

xa
j = ~xf

j + K(yj � H~xf
j ).(4.20b)

Note that Eq. (4.20b) has the same form as the analysis scheme of regular ensemble Kalman

methods, i.e.,xa
j = xf

j + K(yj � Hxf
j ). In other words, the regularized analysis scheme introduces a

pre-correction � to the state vector xf
j to obtain ~xf

j (see Eq.(4.20a)). This pre-correction is what

enforces the desired constraints. This is then followed by the Kalman correction (Eq.(4.20b)) to

assimilate the observations. To enforce multiple constraints simultaneously, the regularization

term can be written as a sum as follows:

� = �
X

p

� pPG0>
p WpGp ,

where the subscriptp denotes index of di�erent constraints. A case with multiple regulariza-

tion terms is shown in Section 4.3.1. The proposed regularized ensemble Kalman method is

schematically illustrated in Fig. 4.1 by using ensemble Kalman �ltering (EnKF) procedure as

an example, where our modi�cation to the baseline EnKF is highlighted.

4.2.3 Implementing regularization procedure for an iterative ensemble

Kalman method

As presented above the regularized Kalman update is general for the numerous ensemble

Kalman methods, including the ensemble Kalman �lter and the ensemble Kalman smoother. In

the test cases in this paper, we use an iterative ensemble Kalman method to solve steady-state

inverse problems iteratively. The analysis step is modi�ed to incorporate the regularized update

derived above. The analysis step is further modi�ed here to overcome the e�ects of sample

collapse on the regularization term and to avoid the dominance of the regularization term

during early iterations. The details of this regularized iterative ensemble Kalman method used

are presented below. The method described below di�ers from the iterative ensemble Kalman

method for steady problems [71] only in the pre-correction step in the analysis. The proposed

method requires only a small algorithmic modi�cation. The unmodi�ed method is used as a

baseline for the test cases in Section 4.3.

Sample collapse is a common issue when using ensemble Kalman methods [48]. Moreover,

for iterative methods on stationary systems, the observation data are used repeatedly, which

further exacerbates the sample collapse problem. This is partly addressed by perturbing the

observations (based on the observation error) at each iteration in addition to perturbing them
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Figure 4.1: Schematics of ensemble Kalman methods by using ensemble Kalman �ltering (EnKF)
as example. The proposed regularization scheme consists of an additional correction� , de�ned
in Eq. (4.17), to the forecast statesxf before the Kalman correction. Such a correction enforces
constraints and is equivalent to penalty term � kG[x]k2

W in adjoint methods as in Eq. (4.11). Our
contribution that di�erentiates the present method to baseline ensemble Kalman methods is
highlighted in red/grey box. The Kalman correction in the regularized EnKF has the identical
form as that in standard EnKF except that it acts on the pre-corrected states ~xf:

for each sample. Once the samples collapse, the covariance matrixP approaches zero, and the

regularization parameter � has to be very large in order to keep the regularization e�ective

(i.e., to keep it of a similar order of magnitude as the data discrepancy term. To overcome this

issue further, we recast the pre-correction term� in Eq. 4.18 as follows:

(4.21) � = �
�

kPkF
PG0> WG,

where kPkF is the Frobenius norm of matrix P. Compared to the original derivation, we have

written the algorithmic parameter as

(4.22) � � �= kPkF .

Essentially, parameter � is dynamically adjusted based onkPkF with � kept constant. In doing

so, only the \direction" of the covariance matrix P (i.e., information on the correlation of the

samples) is preserved, which overcomes the detrimental e�ects of sample collapse on the added

constraint. This makes it more intuitive to choose the algorithmic constant � .

65



CHAPTER 4. REGULARIZATION OF ENSEMBLE KALMAN METHOD

During the �rst few iterations of an iterative method, a large penalty parameter can lead to

the regularization term being dominant and consequently the observations being ignored. For

this reason, the parameter� is further modeled using a ramp-up function as

(4.23) � (i ) = 0 :5� 0

�
tanh

�
i � S

d

�
+ 1

�
,

where � 0 is the maximum value of � and i denotes the iteration step. The parametersS and d

control the slope of the ramp-up curve and are chosen to be 5 and 2, respectively, for all test

cases in this paper.

In the iterative ensemble Kalman method, the forward modelM is not linearized, and an

iterative method is used to deal with this nonlinearity. Rather than linearizing

(4.24) H � eH � M � H;

only the observation operator is linearized, aseH � eH. Given the prior distribution of the state

vector P(x), observation valuesy and error covariance matrix R, and the constraint function G

with the weight matrix W and parameter � , the following steps are taken:

1. (Sampling step)

Generate initial ensemble of state vectors, consisting ofM samplesf x(0)
j gM

j =1 , from the

prior distribution of the states.

2. (Prediction step)

For each sample, run the forward model to obtain the modeled observable �elds.

3. (Analysis step)

i) Estimate the sample meanx(i ) and covarianceP(i ) as:

x(i ) =
1

M

MX

j =1

x(i )
j ,(4.25)

P(i ) =
1

M � 1
X(i ) (X(i ) )> ,(4.26)

where X(i ) denotes the matrix formed by stacking the mean-subtracted sample

vectors, i.e., X(i ) =
h
(x(i )

1 � x(i ) ); : : : ; (x(i )
M � x(i ) )

i
.

ii) Compute the Kalman gain matrix

(4.27) K(i ) = P(i )H> (R + HP(i )H> ) � 1

iii) Generate an ensemble of observationsf y(i )
j gM

j =1 from the joint normal distribution

N (y; R).

66



4.3. RESULTS

iv) For each sample, constrain the statex with a pre-correction � as:

� (i )
j = � � P(i ) (G0[x(i )

j ])> WG[x(i )
j ];(4.28a)

~x(i )
j = x(i )

j + � (i )
j ,(4.28b)

with the regularization parameter � determined from Eqs. (4.22) and (4.23).

v) For each sample, update the constrained state~x:

(4.29) x(i+1)
j = ~x(i )

j + K(i )
�

y(i )
j � H~x(i )

j

�
.

4. Return to step 2 until the ensemble is statistically converged.

We emphasize that the procedure described above di�ers from the baseline ensemble

Kalman methods only in the additional pre-correction step in Eq. (4.28). That is, the proposed

regularization only requires such small algorithmic modi�cation to existing ensemble Kalman

methods and is thus very straightforward to implement. The Python code for the proposed

method and the test case from Section 4.3.1 are provided in a publicly available GitHub

repository [154].

4.2.4 Generality and possible extensions to other ensemble Kalman

methods

In Section 4.2.3, we described how the proposed regularized Kalman update was implemented

for the speci�c iterative method used in the test cases in this paper. However, we emphasize

that it can be implemented into other ensemble Kalman methods straightforwardly. As an

example take the ensemble Kalman �lter used in data assimilation. The �elds inferred are the

initial conditions of the �elds observed, and the forward model propagates these �elds through

time. The observations occur at di�erent times and are assimilated as they occur. Similar to

the method above the forward model is not linearized, but unlike the method above only a

single analysis is done at each time. Because of these di�erences, the speci�c implementation

for the two methods would obviously be di�erent, but the modi�cation to the analysis step will

be the same in all cases. Similarly, the speci�c methods for dealing with the problem of sample

collapse will vary from study to study, and the choice to model the parameter� as described in

Section 4.2.3 is particular to this study.

4.3 Results

We use three di�erent test cases to showcase the use and performance of the proposed regularized

ensemble Kalman method. First, we use it for the parameter estimation problem used by Wu

et al. [144], which consists of a global minimization problem and for which the true solution

is known. Parameter estimation problems typically have more observations than inferred
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parameters, and the inferred parameters are discrete scalars. For the case tested, however, the

number of observations is of less than but of the same order of magnitude as the number of

inferred parameters, making it ill-posed. For this case we test a number of di�erent constraints

and prior mean (initial guess) and show that the proposed regularized method is e�ective in

removing the ill-posedness of the data assimilation problem, making a better inference on the

parameters. Parameter estimation problems in uid mechanics include, for instance, determining

the values of empirical parameters in speci�c turbulence models. Second, we test a �eld inversion

problem: the one-dimensional di�usion equation on a �nite domain with boundary conditions.

The quantity to be inferred is a discretization of a continuous �eld, which is fundamentally

di�erent from the discrete scalars inferred in the �rst case. In this case, the number of inferred

values is much larger than the number of observations. Finally, we test the proposed method

for a more complex and relevant �eld inversion problem: the RANS closure problem. In this

case, we infer the eddy viscosity �eld for a two-dimensional turbulent ow over periodic hills.

For all cases, we show the advantage of the proposed regularized method over the traditional

Kalman method in inferring the correct parameters or �eld by overcoming the ill-posedness

intrinsic to inversion problems.

Both parameter estimation and �eld inversion problems have applications in computational

uid dynamics (CFD). In the case of �eld inversion, an important application is inferring

the correct Reynolds stress �eld, and this is showcased in the third test case in this section.

In the case of parameter estimation, one important application is inferring the parameters

for the constructive turbulence models. Typically, many of these empirical parameters have

underlying constraints determined from their theoretical derivation or numerical tests. For

instance, Poroseva and Bezard [118] recommend the relationship � " =� k = 1 :5 in the k{ "

model [77] for aerodynamic simulations. Oliver and Moser [112] used a Bayesian approach to

quantify the uncertainty of model parameters and indicated that the parameter k and cv1 in

the Spalart{Allmaras model are linear. These are equality constraints. As an example of an

inequality constraint, it has been shown through numerical experiments by Ray et al. [122] that

the parameters in the k-" model have to satisfyC"2 > C "1. The physical reason behind this

delineation is that the ratio C"2=C"1 corresponds to the spreading rate of a free jet. A ratio of

C"2=C"1 < 1 would lead to a contracting jet, which is non-physical [147]. Nevertheless, most

current works on ensemble-based parameter inferences neglect such underlying constraints,

partly because of the di�culty in enforcing constraints in existing ensemble-based inversion

methods.

4.3.1 Parameter estimation

The �rst test case is the parameter estimation problem used by Wu et al. [144]. The observable

quantities z 2 R2 is a vector related to two parameters! (the state to be inferred) by the
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forward model F as follows:

(4.30) z =

"
z1

z2

#

= F [! ] =

"
exp(� (! 1 + 1) 2 � (! 2 + 1) 2)

exp(� (! 1 � 1)2 � (! 2 � 1)2)

#

;

! = [ ! 1; ! 2]> is the parameter vector, andF is the forward model. The observation map is

given by

(4.31) y = H z = HF [! ];

with H = [ � 1:5; � 1:0]. Given the observation y = � 1:0005, the inverse problem consists of

inferring the parameters ! opt that minimize the discrepancy between the observationy and

model output F [! ] (after the latter being projected to the observation space). That is,

J[! ] = k y � HF [! ] k2 ,(4.32)

! opt = arg min
!

J[! ].(4.33)

A contour plot of J is shown in Figure 4.2. This case has two groups of local minima: (Group

I) the single point at ! = (1 :0; 1:0), and (Group II) the circle of points de�ned by

(4.34) (! 1 + 1) 2 + ( ! 2 + 1) 2 = log 1:5:

Numerous local minima result in satisfactory agreement with the observation, which makes

the inference of the true parameter! challenging. Fundamentally, this results from insu�cient

information from the observations, and the goal of the proposed regularized method is to

guide the inference to the true values of the parameters by incorporating additional sources

of information. Here the robustness of the method is tested by using di�erent constraints and

three di�erent prior means for the parameters, similar to Wu et al. [144].

4.3.1.1 Case details

The ensemble Kalman method is a Bayesian data assimilation framework and requires a prior

distribution for the parameters. A Gaussian process is used with mean! p, equal standard

deviation � p = 0 ; 1 for both parameters, and zero covariance. Three di�erent prior means are

tested: ! p 2 f (� 1; � 1); (0; 0); (2; 2)g. For the observation, the true value of the parameters is

taken to be ! = (1 :0; 1:0), and the observation to bey = � 1:0005 with standard deviation � y =

0:01. Three di�erent sets of constraints are enforced: an equality constraint, an inequality

constraint, and multiple inequality constraints. Combined with the three prior distributions, a

total of nine constrained cases were tested in addition to three baseline cases with no constraints.

We consider three di�erent sources of information on the quantity ! 1 + ! 2: equal to 2,

greater than 1, and less than 3, with corresponding constraint equations:

heq[! ] = ! 1 + ! 2 � 2 = 0,(4.35)

hin1 [! ] = � ! 1 � ! 2 + 1 < 0,(4.36)

hin2 [! ] = ! 1 + ! 2 � 3 < 0.(4.37)
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Figure 4.2: Contour plot of the discrepancy J[! ]. The two groups of local minimums are
indicated with the red/gray cross \ + " (Group I) and the red/gray circle (Group II).

For inequalities of the form hin [! ] < 0 a penalty function � [hin [! ]] of the form

G[! ] = � [hin [! ]] =

(
0 for hin [! ] < 0

hin [! ]2 for hin [! ]] � 0
(4.38)

is used. The derivative can be obtained from chain-rule forhin1 [! ]:

G0[! ] = � 0[hin [! ]] =

(
(0; 0) for hin [! ] < 0

(� 2hin [! ]; � 2hin [! ]) for hin [! ] � 0
.(4.39)

The three constraints used as regularization are summarized in Table 4.1. The last case

consists of multiple inequalities and serves as an illustration of combining multiple sources

of information into the framework. For the inequality constraints, the penalty function is

only active when the constraint is violated. The penalties in Table 4.1 are implemented as in

Eq. (4.21), with covariance set to the identity matrix W = I . A regularization parameter of

� 0 = 0 :1 is used.

Table 4.1: Summary of the constraints used in the parameter estimation problem.

case constraint type penalty function
C1 equality G(! ) = heq[! ]
C2 inequality G(! ) = � [hin1 [! ]]
C3 multiple G(! ) = � [hin1 [! ]] + � [hin2 [! ]]
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Table 4.2: Results of the baseline and regularized inference with di�erent constraints.

method initial ! inferred ! HF [! ] error (! ) error (HF [! ])
truth/observation | (1:0; 1:0) � 1:0005 | |

Baseline (� 2; � 2) (� 1:52; � 0:63) � 1:0010 (252%; 163%) 0:05%
(0; 0) (� 1:55; � 1:30) � 1:0108 (255%; 230%) 1:03%
(2; 2) (0:94; 0:95)) � 0:9947 (6%; 5%) 0:58%

C1 (� 2; � 2) (1:06; 0:93)) � 0:9921 (6%; 7%) 0:84%
(0; 0) (1:06; 0:93) � 0:9921 (6%; 7%) 0:84%
(2; 2) (1:02; 0:98) � 0:9997 (2%; 2%) 0:08%

C2 (� 2; � 2) (1:07; 1:03) � 0:9946 (7%; 3%) 0:59%
(0; 0) (0:96; 0:98) � 0:9986 (4%; 2%) 0:19%
(2; 2) (0:94; 0:96) � 0:9956 (6%; 4%) 0:49%

C3 (� 2; � 2) (1:03; 0:94) � 0:9961 (3%; 6%) 0:44%
(0; 0) (1:01; 0:93) � 0:9956 (1%; 7%) 0:48%
(2; 2) (0:95; 0:94) � 0:9947 (5%; 6%) 0:58%

4.3.1.2 Results

As a baseline, the ensemble Kalman method is used without any regularization (constraints)

for each of the three prior distributions considered. The results are shown in Fig. 4.3a and

Table 4.2. It is noticeable that for di�erent priors the inference will converge to a di�erent

local minimum, with the priors with mean of ( � 2; � 2) and (0; 0) converging to local minima

belonging to Group II. Next, the proposed regularized method is tested using the equality

constraint (case C1). The results are shown in Fig. 4.3b and Table 4.2. Using the equality

constraint the inference converges around the truth for all three priors considered.

Similarly, the inequality constraint (case C2) is able to make the inference converge around

the truth for all three priors considered, completely avoiding the Group II local minima. These

results are shown in Fig. 4.3c and Table 4.2. It should be noted that the penalty term in this

case is only active when the constraint is violated. This results in that while this constraint

can avoid inference dropping into the local minima in Group II it cannot further enhance the

optimization result, as in the case with the equality constraint. Finally, the method is tested

with multiple inequality constraints (case C3) in order to showcase how to incorporate multiple

sources of information. Once again, the inference converges around the truth for all three priors

considered, and the results are shown in Fig. 4.3d and Table 4.2.

The errors in the inferred quantities are quanti�ed based on the agreement with their

corresponding true values. The error on quantityq is de�ned as:

(4.40) error =
kqtruth � qestimate k

kqtruth k
:

The errors on the parameters! and the observed point are shown in Table 4.2. For all constraints

and prior means considered, the proposed regularized method can infer the parameters accurately,
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(a) Baseline (no constraint) (b) Regularized, Case C1

(c) Regularized, Case C2 (d) Regularized, Case C3

Figure 4.3: Results of paramter estimation problem using the baseline and proposed regularized
methods with di�erent constraints. For all methods three di�erent prior means (green/gray
dots) are considered. (a) Baseline case; (b) Case C2: proposed method withG[! ] = h1[! ] where
penalty function is indicated by the black straight line ; (c) Case C2: proposed method with
G[! ] = � [hin 1[! ]]. The blue/gray region indicates where the constraint is inactive; (d) Case C3:
proposed method with G[! ] = � [hin 1[! ]] + � [hin 2[! ]]. The blue/gray region indicates where
the constraint is inactive. With the baseline method, di�erent priors converge to the di�erent
local minima. With the proposed regularized method all priors can converge to the true local
minimum (1; 1), indicated as blue/gray triangle.
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comparable to the baseline case with prior mean of (� 2; � 2). For the estimated observation

error, all cases, including the unregularized baseline, can give a satisfactory estimation in the

observation space.

It should be noted that the regularization parameter � in the penalty term in the cost

function is inated as in Eq. (4.23) to ensure the robustness of the analysis step. The hyper-

parameters in the ramp-up function may a�ect the inference performance. Concretely, the

parameter � 0 has to be inated su�ciently to regularize the inference but not so much as to

ignore the observations. If the penalty term is too small is cannot drag the inference away from

the erroneous local minima. The hyper-parameters� 0, S, and d in Eq. (4.23) were chosen based

on a parameter study. The parameter study suggests that the equality constraint is robust with

a large range of parameters leading to correct inference. However, the inequality constraint

was found to be signi�cantly more sensitive to these parameters. This is due to the nature

of such constraints and not caused by the intrinsic limitations of the proposed method. The

equality constraint embeds more information about the truth, which can further enforce the

inference to the expected point. In contrast, inequality constraints can only drag the inferred

parameters out of the region where the constraint is violated but cannot further inform the

inference process as the equality constraint does. Consequently, too large a penalty term may

result in over-correction and lead to inference divergence, while too small a penalty term may

not be su�cient to force the parameters out of the constraint-violating region and away from

the undesired local minima. Detailed results of the parameter studies are presented in B.2.

4.3.2 Field inversion

The second test case is a �eld inversion case, in which observations of a �eld described by a partial

di�erential equation (PDE) are used to infer a latent �eld in the PDE. Speci�cally, we infer the

di�usivity �eld in the one-dimensional di�usion equation by observing the temperature at a

few locations. As is the case in general for �eld inversion problems, the number of observations

is much smaller than the dimensions of the discretized domain. This increases the ill-posedness

of the problem and makes it challenging to infer the true latent �eld. We apply the proposed

method to regularize the problem and demonstrate its ability to infer the correct �eld by

incorporating additional knowledge into the inversion scheme.

The di�usion equation is given by

(4.41) �
d

dx

�
� [x]

du
dx

�
= f [x]

where x is the one-dimensional spatial coordinate,u is the quantity being di�used which is

considered the output observable �eld, f [x] is a source term in units ofu per time, and � [x]

is the di�usivity �eld which is regarded as the latent �eld to be inferred. Here we consider

the di�usion of a non-dimensional quantity u (e.g., normalized by a reference value), but the

equation can be used for many di�erent applications. For instance, it could be used for heat
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distribution along a rod, where u is temperature, f is distribution of heat sources, and� is

thermal di�usivity of the material. Another common application is pollutant concentration

in a uid, where u is concentration density, f is distribution of pollutant sources, and � is

mass di�usivity of the pollutant in that medium. We consider a domain of length L x , a source

term f [x] = 100 sin(2�x=L x ), and homogeneous boundary conditionsujx=0 = ujx= L x = 0. The

domain is discretized into 50 equal length cells, and the equation is discretized using the central

di�erence scheme. The output �eld u is observed at nine equally spaced locationsx=L x =

0:1; 0:2; � � � ; 0:9, and the goal is then to infer the value of the discretized di�usivity �eld at each

of the 50 cells.

4.3.2.1 Case details

The values of the discretized di�usivity �eld are not independent, and some sort of spatial

correlation needs to be enforced. Furthermore, di�usivity is a �eld with physical meaning

and subject to the physical constraint that it must be non-negative. To ensure positivity,

the logarithm of di�usivity log[�=� 0] is inferred, where� 0 is a reference di�usivity value. To

enforce spatial correlation and smoothness, the �eldlog[�=� 0] is assumed to be a sample of a

Gaussian processlog[�=� 0] = GP(0; K) with correlation kernel K. Using Karhunen-Lo�eve (KL)

decomposition the �eld can be written as

(4.42) log[�=� 0] =
nX

i =1

! i

p
� i � i ;

where � i and � i are the eigenvalues and unit eigenvectors of the kernelK, and ! i are coe�cients.

While n is theoretically equal to the discretization size, it is common to set it to a much

smaller value due to the rapid decrease of the magnitude of the eigenvalues. This also results in

dimensionality reduction, which can be bene�cial in large 2- or 3-dimensional problems with

large discretization. The problem now consists of inferring the coe�cients ! i rather than the

discretized log[�=� 0] or � �elds directly. We use the square exponential kernel with standard

deviation � p and length scalel , which for two points x and x0 is given by

(4.43) K(x; x 0) = � 2
p exp

�
�

kx � x0k2

l2

�
:

A standard deviation of � p = 1 :0 is used, and the length scale is chosen asl = 0 :02L x , a

relatively small value to allow for noisy inferred �elds, making the problem arti�cially more

di�cult. The �rst �ve modes scaled by their respective eigenvalues are shown in Fig. 4.4. It can

be seen that higher modes correspond to higher frequencies and that the magnitudes of the

modes decrease slowly.

For the Bayesian inversion scheme, the prior distribution oflog[�=� 0] is considered to be

the Gaussian process described earlier with uniform mean� p[x] = � 0. A total of 80 samples

are used, created using the KL decomposition in Eq.(4.42) with random coe�cients with
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Figure 4.4: First 5 KL modes in the di�usion case scaled by their corresponding eigenvalues.

independent standard normal distributions, i.e. ! i � N (0; 1). The truth is constructed using

the same decomposition in Eq.(4.42) with only the �rst three modes, each with coe�cient

equal to 1, i.e., ! 1 = ! 2 = ! 3 = 1 :0 and ! j = 0 for j > 3. The observations inu are obtained by

propagating this true di�usivity �eld through the di�usion equation and using an observation

standard deviation of � y = 0 :0001. Fig. 4.5 shows the prior samples for the di�usivity �eld as

well as the propagated output �eld for di�erent number of modes as will be discussed later.

The synthetic truth is constructed with only 3 modes, and the magnitude of the eigenvalues

of the kernel decreases slowly due to the small length scale used in the correlation kernel.

Because of these two facts, by setting the number of modesn used in the representation of the

�eld (Eq. 4.42), we can control the dimension of the inference space and the level of ill-posedness

of the problem. Speci�cally, if a large number of modes is used, many di�erent di�usivity �elds

with increasingly di�erent qualitative shapes can result in matching the observations in the

output space. We consider as an additional source of knowledge that the �rst three modes are

the most important, and use REnKF to embed this information into the data assimilation

process. To embed this information, we use a penalty function of the form:

(4.44) G[! ] = ! ;

with a weight matrix

(4.45) diag (0; 0; 0; 1; : : : ; 1) ;

where the last n � 3 modes are penalized. We use the ramp-up in Eq.(4.23) with � 0 = 10. With

this constraint, the �rst three modes are not penalized while the value of the coe�cients for any

other modes contributes to the cost function. It is noted that this is a soft constraint, which

still allows for higher modes if they contribute to improving the agreement with observations.

To test the performance of the proposed method, we perform the �eld inversion with both

the baseline and regularized ensemble Kalman methods using di�erent number of modes. Here
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the results with 3, 5, and 20 modes are presented. In this case, the regularized method with 3

modes is equivalent to the baseline and is not repeated. Fig. 4.5 shows the prior distributions

(samples) for the three test cases using an increasing number of modes. Note that with more

modes there are much higher oscillations in the di�usivity �elds in the prior, leading to samples

that look very noisy. Nonetheless, even with the high noise all cases have similar distributions in

the output �eld. This clearly shows the ill-posedness of this �eld inversion problem. Di�usivity

�elds that are qualitatively very di�erent still result in very similar output �elds, where the

observation is made. The traditional ensemble Kalman method has no way to prefer one of

these over the others as long as they match well with the observations in the output space.

(a) � , 3 modes (b) � , 5 modes (c) � , 20 modes

(d) u, 3 modes (e) u, 5 modes (f) u, 20 modes

Figure 4.5: Prior samples of di�usivity � (top) and corresponding output �elds u (bottom)
for di�erent number of modes.

4.3.2.2 Results

The results of the inferred �eld � are shown in Figure 4.6. With di�erent modes, both EnKF

and REnKF are able to give a satisfactory agreement in the observed �eld, and these results are

omitted since they are visually indistinguishable. The di�erence between the results from the

di�erent methods lies in their ability to infer the correct latent di�usivity �eld. The baseline

method with only three modes results in the correct di�usivity �eld as expected, since this

problem is not ill-posed. However, when there is more freedom with the increased number of

modes and hence increased dimensionality of the space of possible latent �elds, the baseline

method infers increasingly more qualitatively wrong di�usivity �elds while still matching the
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observations and true output �eld. Incorporating the additional knowledge through the proposed

regularized method results in the correct di�usivity �eld being inferred even in the cases with a

large number of modes. This is clearly seen in Fig. 4.6.

(a) Baseline, 3 modes

(c) Baseline, 5 modes (d) Regularized, 5 modes

(e) Baseline, 20 modes (f) Regularized, 20 modes

Figure 4.6: Inferred di�usivity by using the baseline methods (left column; panels a, b, and d)
and the proposed regularized methods (right column; panels c and e) for di�erent number
of modes.

The inferred KL coe�cients for the di�erent methods are shown in Fig. 4.7 for the cases
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with 20 modes. It is noticeable that the baseline method uses all the available modes, while

the regularized method only uses the �rst three modes as expected. Moreover, the inferred

coe�cients with the regularized method have good agreement with the synthetic truth values.

The errors in the inferred di�usivity for the di�erent methods are shown in Fig. 4.8 as a function

of the number of modes used in the representation. It can be seen that with increasing number

of modes, the baseline method gives increasingly worse inference on the di�usivity, while with

the regularized method the error remains relatively constant. The regularized method can

provide satisfactory inference regardless of the number of modes used in the representation.

Figure 4.7: Comparison of inferred KL coe�cients for the di�usion case by using the baseline
method and the regularized method with 20 modes.

Figure 4.8: Errors in the inferred di�usivity in the di�usion case for the baseline method and
the regularized methods as a function of number of modes used in the �eld representation.
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4.3.3 RANS equations closure

As a �nal case we test the proposed regularized method for a �eld inversion problem of practical

interest in uid mechanics: closure of the Reynolds-averaged Navier{Stokes (RANS) equations.

The RANS equations describe the mean ow of uid accurately; however, they are unclosed.

The Reynolds stress term requires a turbulence model, and no universally good model exists.

In practice, this means that complex ows cannot be con�dently predicted in regions with

separation or high pressure gradients. It is therefore of tremendous interest to infer the Reynolds

stress in regions where the ow is too complex to be captured by current turbulence models.

This can be achieved by incorporating sparse observations using inversion schemes such as the

ensemble Kalman methods. Here we consider the steady two-dimensional incompressible RANS

equations with linear eddy viscosity assumption. This means that a single scalar �eld, the eddy

viscosity �eld, needs to be inferred rather than the full Reynolds stress tensor �eld. The RANS

equations can then be written as

@Ui
@xi

= 0(4.46a)

Uj
@Ui
@xj

= �
@p
@xi

+
@

@xi

�
(� + � t )

�
@Ui
@xj

+
@Uj
@xi

��
;(4.46b)

using Einstein summation notation, where i 2 1; 2 denotes spatial direction,U is velocity, x

is spatial coordinate, p is a pseudo pressure term,� is the uid viscosity, and � t is the eddy

viscosity �eld to be inferred.

For this test case, we use the canonical ow over periodic hills [14] which has been

extensively used for the investigation of numerical methods in CFD [60]. A single hill is modeled

with periodic boundary conditions. The domain is discretized with 50 cells in the stream-wise

direction x1 and 30 cells in the wall-normal direction x2. The dimensionless wall distancey+ of

the �rst cell is small enough to lie in the viscosity layer, and no wall model is used. All spatial

coordinates are normalized by hill heightH and all velocities by the bulk velocity Ub at the

hill crest. The Reynolds number based onH and Ub is 2800.

In this case, we use OpenFOAM, an open-source CFD platform based on �nite volume

discretization, to simulate the incompressible, steady-state turbulent ows. The SIMPLE (Semi-

Implicit Method for Pressure Linked Equations) algorithm is used to solve the RANS equations.

The second-order spatial discretization schemes are applied to discretize the equations on an

unstructured mesh. The prior mean and synthetic truth are both created from RANS simulations

using the built-in simpleFOAM solver but with di�erent turbulence models. The synthetic

truth is obtained using the k{ " model [77] and the prior mean using the Spalart{Allmaras

model [133]. To propagate eddy viscosity to the velocity �eld, a modi�ed solver was created

that uses a constant speci�ed eddy viscosity �eld rather than using a turbulence model. This

modi�ed solver is the forward model which gives the output �elds (velocities and pressure)

given an input �eld (eddy viscosity).
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4.3.3.1 Case details

The latent �eld to be inferred is the eddy viscosity �eld � t . Like the di�usivity �eld in the

former case, the eddy viscosity is non-negative, and the same representation is used for it as

for � in Eq. (4.42), inferring the logarithm of the �eld and using KL decomposition. That

is, log[� t =� t0 ] = GP(0; K), where � t0 is a reference eddy viscosity value. Again the square

exponential covariance in Eq.(4.43) is used, with length scalel = 0 :25H and variance � 2 = 1 :0.

The �rst eight modes of the decomposition are shown in Fig. 4.9. The lower modes represent

the larger scale characteristics of the constructed �eld, while the higher modes have more

oscillations. For the prior we use the results from a RANS simulation with Spalart{Allmaras

turbulence model and a standard deviation of� p = 1 :0. These results are projected into the

KL modes to get the prior coe�cients ! i and 100 samples are created. The prior distribution

of eddy viscosity and the propagated streamwise velocity are shown in Fig. 4.10. Note the

high oscillations in the prior eddy viscosity and the relatively smooth propagated streamwise

velocities, which highlights the ill-posedness of the problem. The results from a RANS simulation

with k-" turbulence model are taken as the truth which is used to create synthetic observations.

The observations consist of streamwise velocityU1 at 18 points, shown in Fig. 4.10b, with

observation error � y = 0 :001.

(a) mode 1 (b) mode 2 (c) mode 3 (d) mode 4
//

(e) mode 5 (f) mode 6 (g) mode 7 (h) mode 8

Figure 4.9: Contour plots of �rst 8 modes from KL decomposition for the periodic hills case.
The modes are scaled by their corresponding eigenvalues.

As a baseline, the inverse problem is solved using the traditional ensemble Kalman method.

As before, di�erent number of modes are used to study cases which are progressively more

ill-posed. The results for all cases are summarized but we choose to highlight the results for the

case with 200 modes in more detail as a sample case. As can be seen from the prior samples in

Fig. 4.10a, the eddy viscosity �eld can have a qualitatively very di�erent shape from the truth

and still result in satisfactory results in the observation space. This problem can be exacerbated

in the inference where the inferred values of the coe�cients! i are not restrained unlike in the

prior where they are speci�ed to sample from a standard normal distribution. This means that
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(a) eddy viscosity (b) streamwise velocity

Figure 4.10: Prior realizations of eddy viscosity� t and propagated streamwise velocityU1 for
the periodic hills case. The locations of the observations are indicated by crosses (� ).

the inferred coe�cients for higher modes can be very large. However, the modes from the KL

decomposition have intrinsic importance embedded in them, indicated by the magnitude of

their corresponding eigenvalues, and while this information is used in constructing the prior

samples, it is ignored in the inference step. We use this relative importance of the modes as

an additional source of information to create a regularization constraint. Among equally �t

candidate solutions, we will prefer the simplest one, i.e., the one that uses the fewest modes (e.g.,

low pass �lter). We use this preference as the regularization and use the relative importance

of the modes to embed this preference into the inversion through the proposed method. To

achieve this, a penalty function

(4.47) G[! ] = !

is used with covarianceW constructed from the inverse of the eigenvalues as

(4.48) diag
�

1
� 1

; : : : ;
1

� n� 1
;

1
� n

�

A value of � 0 = 0 :1 is used for the ramp-up in Eq. (4.23).

4.3.3.2 Results

The case with 200 modes is used to show the performance of the proposed regularized method.

Pro�les of the inferred eddy viscosity �elds, as well as the propagated stream-wise velocity �elds,

are shown in Fig. 4.11 using both the baseline and regularized methods. The baseline method is

able to improve the velocity pro�les in most of the domain. The regularized method is similarly

able to improve the velocity �eld in the entire domain. Although the baseline method improves

the predicted velocity, the inferred eddy viscosity �eld is much farther from the true �eld than

the prior. The inferred eddy viscosity �eld in Fig. 4.11a have magnitudes many times larger

than the truth and exhibit much more oscillations. Embedding the additional information into

inversion using the regularized method can result in improved results. The inferred �eld in
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Fig. 4.11b is still worse than the prior, but many of the problems in the inferred �eld with

the baseline method have been signi�cantly reduced. Speci�cally, the inferred �eld is smoother

and has smaller magnitudes. The entire inferred �elds are shown in Fig. 4.12, which more

clearly shows the qualitative di�erence between the true �eld and the inferred �elds using either

method. The �eld inferred with the regularized method can be seen to reduce the magnitude

and number of the oscillations compared to the �eld inferred with the baseline ensemble Kalman

method. To further improve the inferred eddy viscosity, more information such as smoothness

could be embedded as constraints in the regularized ensemble Kalman method.

(a) baseline, eddy viscosity (b) baseline, streamwise velocity

(c) regularized, eddy viscosity (d) regularized, streamwise velocity

Figure 4.11: Inferred eddy viscosity �eld and propagated streamwise velocity �eld for the
baseline and regularized methods using 200 modes.

The magnitudes of the inferred coe�cients for both methods are shown in Fig. 4.13. The

baseline ensemble Kalman method uses the modes indiscriminately, and the KL coe�cients for

the higher modes are still large. By contrast, the regularized method uses less of the higher

modes, successfully enforcing our preference. Furthermore, the trend of the decay of magnitudes

of the inferred coe�cients is proportional to the eigenvalues as expected. This is due to the

speci�ed weight matrix in Eq. (4.48) penalizing each mode by the reciprocal 1=� i of its respective

eigenvalue.

The error in the inferred eddy viscosity is calculated using Eq.(4.40). The errors for the

di�erent methods are shown in Fig. 4.14 as a function of number of the modes used in the

representation. The inference with regularized method has a lower error for all cases tested. It

should be noted that this measure of error accounts for the entire �eld not only observation

points. With too few modes, the error is large because the number of modes is insu�cient to
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(a) prior mean (b) truth

(c) posterior mean, baseline method (d) Posterior mean, regularized method

Figure 4.12: Contour plots of the inferred (posterior) eddy viscosity� t with with the baseline
and regularized methods using 200 modes.

Figure 4.13: Magnitudes of the inferred KL coe�cients for the periodic hills case using the
baseline and regularized methods with 200 modes.

represent the �eld. Consequently, in order to �t the observations well, the inversion scheme

drives the �eld in the unobserved areas to depart signi�cantly from the truth. However, the

error tends to atten out as the number of modes is increased.
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Figure 4.14: Error in the inferred eddy viscosity in the periodic hill case by using the baseline
and regularized methods as a function of the number of modes used in the �eld representation.
Note that a logarithmic scale is used for the errors.

4.4 Conclusion

Inverse problems are common and important in many applications in computational physics.

They consist of inferring causal parameters in the model from observations of model output. The

parameters can be scalar model parameters or physical �elds, and the observations are typically

sparse point observations of some, possibly di�erent, physical �elds. The most straightforward

way to solve such problems is minimizing a cost function that penalizes the discrepancy of the

inferred results with the observations. This cost function is minimized using gradient-based

methods with the gradients computed from the adjoint of the model. However, many physical

models used in practice do not have the readily available adjoint capability, and development of

these capability requires signi�cant e�ort. This has prompted the development of ensemble-based

models, such as the ensemble Kalman methods, which are widely used in practice. Ensemble

methods use the sample covariance rather than the gradient to guide the optimization. The

ensemble Kalman methods implicitly solve the same minimization problem and both ensemble-

and gradient-based methods are equivalent under mild assumptions.

A problem with inverse problems is that they are generally ill-posed, with many possible

solutions of the parameters leading to satisfactory results in the observation space. This is

typically solved by regularizing the problem by adding some additional constraint to the

cost function. For instance, smoothness can be enforced by penalizing the magnitude of the

gradient of the �eld. When directly optimizing the cost function with adjoint methods, this is

straightforward to implement; however, it is not straightforward to implement such constraints

in ensemble-based methods. Here we propose a regularized ensemble Kalman update capable of

embedding such additional knowledge into ensemble Kalman methods. Additional constraints

are added into the Bayesian formulation, and a derivative-free updating scheme is derived from
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an optimization perspective. This e�ectively bridges the gap between the ability to regularize the

problem in both classes of methods and allows for general constraints to be enforced implicitly

in the data assimilation problem.

Here we presented three di�erent cases of increasing complexity, including inferring scalar

parameters as well as one- and two-dimensional �elds. For the �nal test case we used the method

to infer the closure �eld in the Reynolds-averaged Navier{Stokes equations, a case of signi�cant

practical importance in computational uid dynamics. Compared to using a traditional ensemble

Kalman method, the proposed method performs just as well in the observation space, but by

incorporating additional knowledge as regularization, the inference in the parameter space is

greatly improved. The results demonstrate that the proposed method correctly embeds the

additional constraints.
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Chapter 5

Evaluation of Iterative Ensemble

Methods for Quantifying

Uncertainties in Steady Flows with

Limited Ensemble Sizes

5.1 Introduction

5.1.1 Bayesian uncertainty quanti�cation for CFD

In computational uid dynamics (CFD) applications, Reynolds averaged Navier{Stokes (RANS)

method still is the workhorse to inform the important decision-making during engineering

design processes. However, RANS models cannot provide accurate results for many cases in the

presence of complex turbulent ows. That necessitates quantifying uncertainties in the numerical

simulations so that we could obtain additional con�dence/statistics information on the simulated

results [143]. The conventional approach to quantify uncertainties is to forwardly propagate the

presumed uncertainty of system inputs through the system model to the quantity of interests

(QoIs). There have been numerous works [37, 54, 108] and methods [67, 83, 98] developed

on it. Nowadays, as the discovery of underlying information in the RANS model becomes an

increasingly active topic in the CFD community, the Bayesian approach has been drawing more

and more attention. With this method, we can backwardly quantify and reduce the uncertainty

of QoIs as well as the system inputs (e.g., model parameters or underlying terms) through

accounting for the available data from high �delity simulations or experiments [148, 153]. The

procedure is illustrated in the schematic in Fig. 5.1.

Numerous works have been conducted to apply Bayesian uncertainty quanti�cation (UQ)

approaches into diverse applications, including RANS simulations. The pioneering work of

Kennedy and O'Hagan [81] presented a Bayesian calibration technique to quantify di�erent
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Figure 5.1: Schematic of Bayesian uncertainty quanti�cation. Bayesian approach can combine
the prior information (red dashed line) and the data to quantify the posterior uncertainty (blue
solid line) in the quantities of interest as well as the input.

types of uncertainties for complex models. Cheung et al. [22] applied the Bayesian calibration

framework for the Spalart{Allmaras turbulence model to calibrate the model parameters by

incorporating experimental measurements. They evaluated their approach on the boundary

layer ows to reduce computational costs and pointed out the necessity to develop tractable UQ

approaches for computationally expensive cases. Oliver and Moser [112] further extended their

work by introducing the stochastic representations for uncertainties in eddy viscosity turbulence

models. The uncertainty representations based on the multiplicative error in mean velocity

and the additive error in Reynolds shear stress are developed and applied into the channel

ows. Edeling et al. [40] proposed a Bayesian-model-scenario-averaging (BMSA) method to

estimate the k{ � turbulence model error for a class of boundary layer ows with di�erent

pressure gradient. More recently, Edeling et al. [43] leveraged Maximum a Posteriori (MAP)

estimate to reduce the computational cost and thus make their BMSA approach applicable for

complex ows.

The aforementioned works mainly focus on the simple ow cases where uncertainty propaga-

tion through CFD solver is computationally inexpensive. Hence, the Markov chain Monte Carlo

(MCMC) which typically requires samples of at least O(105) � O (106) is feasible. However, it

will be computationally intractable to deal with the complex ow cases of engineering interests.

In order to reduce the computational cost, the conventional approach is to apply surrogate

models, for instance, the polynomial chaos methods [41, 95, 152] to replace the CFD code.

Nevertheless, such approach is not feasible for high dimension problems due to the curse

of dimensionality. Ensemble technique has been proposed and discussed extensively for UQ

problem in the data assimilation (DA) community. It can reduce signi�cantly sample size to

O(102) and provide a satisfactory estimation of posterior uncertainty with limited samples.

Therefore, the ensemble methods can potentially play a role as an approximate Bayesian UQ

approach for the computationally expensive ow cases. The ensemble-based data assimilation
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methods will be further discussed below.

5.1.2 Ensemble-based data assimilation methods

Ensemble-based DA becomes increasingly popular and has been applied to diverse contexts

including uid mechanics, weather forecasting, geoscience, and so on, due to its non-intrusiveness

and robustness. Among the ensemble-based DA methods, the most extensively used one is

ensemble Kalman �lter (EnKF) [ 48]. For the CFD applications, EnKF has been leveraged

to estimate uncertain parameters and model discrepancy in the RANS closure problem. For

instance, Kato and Obayashi [79] explored the applicability of the EnKF method to estimate

the uncertainty of empirical parameters in the Spalart{Allmaras RANS model. However, due to

the strong nonlinearity of the RANS problem, we need to iteratively assimilate data even for the

stationary scenario, thus enhancing the performance. To this end, Iglasias et al. [71] proposed

an iterative form of the standard EnKF as a derivative-free regularized optimization method for

inverse problems. In their framework, the analysis step of EnKF iterates with the arti�cial time

for stationary systems based on the state augmentation. Xiao et al. [148] applied this iterative

EnKF to quantify and reduce the RANS model-form uncertainty within the Reynolds stress.

They demonstrated that the posterior mean with EnKF could have remarkably good agreement

with benchmark data. The readers are referred to the recent review of Xiao and Cinnella [147]

for recent progress in model-form uncertainty quanti�cation in RANS simulations.

For highly nonlinear systems, the ill-posedness of the problem is signi�cantly increased. To

search for the optimal point, EnKF takes full gradient descent step where the linearization

assumption is leveraged for simpli�cation [49]. That possibly changes the original nonlinear

problem and leads to wrong solutions. Moreover, iterative form of EnKF for UQ problems has

not been fully analyzed. On the other hand, several iterative ensemble methods have been

proposed and discussed for UQ of nonlinear systems in the data assimilation community, but

they haven't been applied into CFD applications. For instance, Gu and Oliver [62] proposed

the ensemble randomized maximum likelihood (EnRML) method to iterate the analysis step

with Gauss{Newton algorithm. They applied this method in both static and dynamic problems,

demonstrating the outperformance of the EnRML method than EnKF, especially for nonlinear

problems. Chen and Oliver [20] treated the EnRML method as an iterative ensemble smoother

and tested it on the history match problem. Similarly, Emerick and Reynolds [44] proposed

the ensemble Kalman �lter with multiple data assimilation (EnKF-MDA) and demonstrated it

can provide better data match than EnKF with comparable computational cost. This method

performs Bayesian analysis with recursion of the likelihood through inating the observation

error.

The ensemble-based DA methods mentioned above can be deduced similarly by solving the

minimization problem under several assumptions (e.g., the Gaussian distribution, linearization,

and ensemble gradient representation) [49]. Nevertheless, these assumptions may result in a
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departure of the estimated posterior distribution from the Bayes'. Recently, several authors

investigated why ensemble methods were not able to estimate uncertainties accurately. For

instance, Oliver and Chen [111] reviewed the progress of MCMC, EnKF, and EnRML on

the history matching problem. They summarized that the EnRML method could provide the

probability distribution in better agreement with MCMC at a low computational cost, compared

to the EnKF method. Ernst et al. [ 45] analyzed the EnKF method for nonlinear stationary

systems. They demonstrated EnKF can provide the statistical information as uncertainty

indicator but is not suitable for rigorous Bayesian inference. Recently, Evensen [49] derived

and analyzed di�erent ensemble methods from the view of model gradient representations, and

compared the analytic gradient and the ensemble representative gradient based on several scalar

cases. He concluded that none of these methods could provide the exact posterior probability

density function (PDF) for highly nonlinear models, but they can serve as the uncertainty

estimator at least for weakly nonlinear cases. Besides, a su�ciently large number of samples

is used to obtain accurate statistical estimation in his work, and the performance of these

methods with limited ensemble sizes is not fully analyzed. These iterative ensemble methods

are useful for estimating uncertainties in QoIs in industrial CFD applications, and they warrant

further investigations.

5.1.3 Objective of the present work

In this work, we present the derivations of three di�erent ensemble-based data assimilation

methods (EnKF, EnRML, and EnKF-MDA) from the optimization perspective, and compare

their performances in quantifying uncertainties for RANS simulations with limited ensemble

sizes. Moreover, the e�ect of limited ensemble sizes on the performance of each ensemble method

is evaluated in a scalar case by comparison with Bayesian distribution from MCMC.

The rest of the paper is structured as follows. In Section 5.2, we give the brief derivation of

the three most commonly used ensemble-based DA methods (EnKF, EnRML, and EnKF-MDA).

A scalar case is presented in Section 5.3 to discuss the performance of each method with di�erent

ensemble sizes. In Section 5.4, a CFD case is tested to identify the most suitable approach to

quantify the uncertainty in the RANS model. Section 5.5 concludes the paper.

5.2 Ensemble-based data assimilation methods

Here we summarize the brief derivation of the three di�erent ensemble-based DA methods,

namely EnKF, EnRML, and EnKF-MDA from the optimization perspective. For the clarity

and without loss of generality, we assume a multi-variate state-space model with multiple

observations.
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5.2.1 Minimization problem

Consider that the system model can be expressed as:

(5.1) ŷ = H [x];

where H is the model function mapping the state to observation spaceRN ! RD , x is the

state vector or input parameter x 2 RN , and ŷ is the model prediction in the observation

spaceŷ 2 RD . We give an initial guess on the PDF of statep(x) as the prior knowledge based

on Gaussian assumption. Given the datay = d + � where d is the observation and� is the noise,

the Bayesian UQ approach can �nd the posterior uncertainty conditioned by the observation.

The Bayes' theorem can be formulated as:

(5.2) p(x j y) / p(x)p(y j H [x]):

It is illustrated that the posterior distribution p(x j y) is proportional to the multiplication

of the prior distribution p(x) and likelihood function p(y j H [x]) of data y conditioned by the

model H [x].

With the assumption of Gaussian distribution for prior p(x) and likelihood p(y j H [x]), we

can express the Bayes' formula as follows:

(5.3) p(x j y) / p(x)p(y j H [x]) / e� J ;

In the formula above, J is the cost function written as:

(5.4) J =
1
2

�
xa � xf

� >
P� 1

�
xa � xf

�
+

1
2

(H [xa] � y)> R� 1 (H [xa] � y) ;

whereP is the model error covariance,R is the observation error covariance, and the superscripta

and f represent the \analysis" and \forecast", respectively. For nonlinear systems, the iterative

form of data assimilation scheme is needed to enhance the optimization performance. We can

write the cost function for each ensemble realization in an iterative form as:

(5.5) J =
1
2

�
xa

i;j � xf
i

� >
P� 1

i

�
xa

i;j � xf
i;j

�
+

1
2

�
H [xa

i;j ] � y
� > R� 1 �

H [xa
i;j ] � y

�
;

where i is the iteration number and j stands for the sample index. To obtain the true error

covariance is quite di�cult for most realistic cases. The ensemble-based DA methods apply

the Monte Carlo technique to draw limited samples. With these samples, we can construct the

ensemble representations for the model error covarianceP and the observation error covarianceR

as:

(5.6)
Pi =

1
M � 1

( Xi � �Xi ) (Xi � �Xi )> ;

R = � i � >
i ;
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CHAPTER 5. ITERATIVE ENSEMBLE METHODS FOR UQ PROBLEM

where X = f xj gM
j =1 . Note that the estimated error covariance matrix are both symmetric.

Further, the maximum a posteriori (MAP) analysis can be applied to estimate the posterior

distribution. That is, to maximum the posterior is equivalent to minimize the cost function J .

Given that, we can derive the three di�erent data assimilation methods, namely EnKF, EnRML,

and EnKF-MDA, from the perspective of minimizing the cost function with di�erent gradient

descent techniques.

5.2.2 EnKF

From the cost function (5.5), we can derive the gradient as:

(5.7)
@J

@xa
i;j

= P� 1
i

�
xa

i;j � xf
i;j

�
+

�
H 0[xa

i;j ]
� > R� 1 �

H [xa
i;j ] � yj

�
:

At the minimum of the cost function, the gradient should vanish. The formulation of EnKF

can be derived by setting the gradient of cost function (5.7) to be zero as:

(5.8) P� 1
i

�
xa

j � xf
j

�
= �

�
H 0[xa

j ]
� > R� 1 �

H [xa
j ] � yj

�
;

where only the terms H 0[xa
j ]) and H[xa

j ] are unknown. The assumption of linearization is

introduced to have an estimation on the two unknown terms as:

H [xa
j ] � H [xf

j ] + H 0[xf
j ]

�
xa

j � xf
j

�
;(5.9a)

H 0[xa
j ] � H 0[xf

j ] + H 00[xf
j ]

�
xa

j � xf
j

�
;(5.9b)

where second derivative in Eq.(5.9b) can be neglected. The model gradientH 0[xf ] can be

solved with the adjoint code, but that need much extra e�orts for complex systems. With

ensemble technique, the model in observation space is randomized around the mean valueH[�xf ].

After expanding H[x] around the ensemble meanH[�X] [49], we can representH [xf
j ] with the

model function gradient as:

H [xf
j ] � H [�Xf ] + H 0[xf

j ]
�

xf
j � �Xf

�
(5.10a)

We introduce the tangent linear model H [x] = Hx, and thus the gradient representation can be

expressed asH. Accordingly, the update step of EnKF can be derived and formulated as:

(5.11) xa
i;j = xf

i;j + Pi H>
�

R + HPi H>
� � 1 �

yj � Hxf
i;j

�
:

Note that in EnKF the model linear operator H usually is not needed to be calculated directly

through reformulating Pi H> and HPi H> as:

Pi H> =
1

M � 1

�
Xi � �Xi

� �
H [Xi ] � H [�Xi ]

� > ;(5.12a)

HPi H> =
1

M � 1

�
H [Xi ] � H [�Xi ]

� �
H [Xi ] � H [�Xi ]

� > :(5.12b)

Further details of the derivation are presented in C.1.
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5.2.3 EnRML

The ensemble randomized maximum likelihood method [62] is to update the initial guessed

state vector iteratively with Gauss{Newton algorithm. The cost function can be written as:

(5.13) J =
1
2

(xi;j � x0;j )> P� 1
0 (xi;j � x0;j ) +

1
2

(H [xi;j ] � yj )> R� 1 (H [xi;j ] � yj ) ;

where x0 is the initial guess, P0 is the initially estimated model error covariance before the

data assimilation process. The gradient and Hessian of the cost function(5.13) can be derived

similarly as in EnKF:

@J
@xi;j

= P� 1
0 (xi;j � x0;j ) + H 0[xi;j ]> R� 1 (H [xi;j ] � yj ) ;(5.14a)

@2J
@2xi;j

= P� 1
0 + H 0[xi;j ]> R� 1H 0[xi;j ]:(5.14b)

Instead of reaching to zero-gradient minimum directly as in EnKF, the prior x0 is iteratively

updated based on Gauss{Newton method as:

(5.15) xa
i;j = xf

i;j � 

 
@2J

@2xf
i;j

! � 1
@J

@xf
i;j

;

where  is the step length parameter. The Gauss{Newton approach can reduce the step length

and ease the inuence of the linearization assumption during the analysis step. With the

gradient (5.14a) and the Hessian(5.14b) of the cost function we can obtain the analysis scheme

for the EnRML method as follows:

(5.16)
xa

i;j =  xf
0;j + (1 �  ) xf

i;j �  P0H 0[xf
i;j ]>

�
R + H 0[xf

i;j ]> P0H 0[xf
i;j ]

� � 1

�
H [xf

i;j ] � yj � H 0[xf
i;j ]

�
xf

i;j � xf
0;j

��
:

In the EnRML method, the model error covariance P remains as the initial one and does not

change with the iteration number. As a result, the sensitivity matrix H 0[X] has to be evaluated

at each iteration through:

(5.17) H 0[Xi ] �
�
H [Xi ] � H [�Xi ]

� �
Xi � �Xi

� � 1

The singular value decomposition (SVD) is usually used to estimate the inverse of the non-full

rank matrix. The details of the derivation can be found in C.2.

5.2.4 EnKF-MDA

From the derivation above, EnKF can be regarded as the Gauss{Newton update but uses full

step in the search direction at every iteration. That may lead to overcorrection on the state

vector, particularly for the nonlinear problem. This de�ciency can be alleviated through the
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ination of the observation error covariance. Motivated by this de�ciency, EnKF-MDA [ 44] is

proposed to assimilate data with an inated observation error covariance. From the Bayesian

perspective, the likelihood function in EnKF-MDA is in a recursive form as:

(5.18) p(x j y) / p(x)
NmdaY

i =1

p(y j H [xi � 1])
1

� i ;

where
P Nmda

i =1
1
� i

= 1, Nmda is the total data assimilation iteration number, and � can be chosen

simply as Nmda . The cost function J can be expressed as:

(5.19)

J (xa
i;j ) =

1
2

�
xa

i;j � xf
i;j

� >
P� 1

i

�
xa

i;j � xf
i;j

�
+

1
2

�
d +

p
� i � i;j � H [xa

i;j ]
� > (� i R) � 1 �

d +
p

� i � i;j � H [xa
i;j ]

�
:

The gradient of the cost function can be formulated as:

(5.20)
@J(xa

i;j )

@xa
i;j

= P� 1
i

�
xa

i;j � xf
i;j

�
+ H 0[xa

i;j ]> (� i R) � 1 �
d +

p
� i � i;j � H [xa

i;j ]
�

:

Similar to the derivation of EnKF method, we set the gradient of cost function to zero. Further,

with linearization assumption (5.9) and ensemble gradient representation(5.10), we have the

update scheme as:

(5.21) xa
i;j = xf

i;j + Pi H 0[xf
i;j ]>

�
H [xf

i;j ]Pi H[xf
i;j ]> + � i R

� � 1 �
d +

p
� i � i;j � H [xf

i;j ]
�

:

By introducing the tangent linear operator H , we can obtain the analysis step of EnKF-MDA

as:

(5.22) xa
i;j = xf

i;j + Pi H>
�

HPi H> + � i R
� � 1 �

d +
p

� i � i;j � Hxf
i;j

�

Given the prior distribution of QoIs to be inferred and ensemble observations with error

covariance matrix R, the implementation steps for the three data assimilation methods are

summarized as presented in Table 5.1.

5.2.5 Remarks

From the derivations above, we apply the iterative form, linearization assumption, and ensemble

gradient representation to obtain the derivative-free analysis scheme. Here, we give some

discussions on the e�ects of each issue.

1. Iterative form is necessary to obtain satisfactory inference results for the inverse problem

of nonlinear systems. However, the iterative EnKF takes the posterior distribution as

the prior for the next iteration and uses the same observation at every analysis step for

stationary systems. This may result in that the samples collapse in early iteration steps

and lead to the underestimation of uncertainty. Moreover, the model error covariance for
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EnKF EnKF-MDA EnRML
a. sampling step: a. sampling step:

generate initial ensemble state vectorsf x0;j gM
j =1 1. generate initial ensemble state

vectors f x0;j gM
j =1 ;

2. estimate the mean �Xf
0 and

model error covarianceP0 of the en-
semble.

b. prediction step: b. prediction step:
i) Propagate from current state i � 1 to next

iteration level i based on forward model(i > 0).
i) Propagate from current state

i � 1 to next iteration level i based
on forward model(i > 0).

xf
i;j = F [xa

i � 1;j ] xf
i;j = F [xa

i � 1;j ]
ii) Estimate the ensemble mean�Xf

i and model
error covariancePi of the current iteration.

ii) Estimate the ensemble model
gradient by (5.17).

c. analysis step c. analysis step c. analysis step
update the state vec-
tor by (5.11) and re-
turn to step b until the
convergence criteria are
reached.

update the state vec-
tor by (5.22) and re-
turn to step b until the
convergence criteria are
reached.

update the state vector by (5.16) and
return to step b until the conver-
gence criteria are reached.

Table 5.1: Schematic comparison of EnKF, EnRML and EnKF-MDA

next iteration become quite small, and the �rst term in Eq. (5.5) prescribing the prior

distribution will dominate the cost function. That means the data assimilation analysis

does not take e�ects and the update only depends on the prior afterward. By contrast,

the EnRML method and EnKF-MDA iterate the update step through Gauss{Newtion

algorithm and likelihood recursion, respectively, which can avoid the data overuse and

samples collapsing.

2. Linearization assumption is introduced in our derivation for simpli�cation. However, for

strongly nonlinear systems, the linear assumptions may signi�cantly a�ect the optimal

solution and lead to the wrong inference results. EnKF takes a full update step to the

optimal point, while the EnRML method and EnKF-MDA split one EnKF step by several

small steps through Gauss{Newton method and likelihood recursion, respectively. From

this point of view, the EnRML method and EnKF-MDA can alleviate the inuence

of linearization assumption and partly preserve the nonlinear property. Therefore, the

EnRML method and EnKF-MDA are more suitable for the uncertainty quanti�cation of

stationary nonlinear systems than EnKF.

3. Another assumption, ensemble gradient representation, is leveraged in the ensemble-based

DA methods as presented in our derivations. That is, the model gradient is approximated

by ensemble realizations rather than derivative analytically to the state vector. This may
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arise the propagated posterior distribution to be not accurate compared to the exact

Bayesian distribution [49]. However, unlike the linearization assumption, the impacts

of which can be eased through other optimization approaches, the e�ects of ensemble

gradient representation are inevitable within the ensemble-based DA framework unless

the adjoint method is applied to calculate the analytic gradient.

Besides, the parameter and Nmda concerning the length of update step are introduced in the

EnRML method and EnKF-MDA, respectively. They can be constant or adaptive based on the

convergence judgment. Speci�cally, if the discrepancy in observation space is larger than that

in the last iteration, we can reduce the step length by decreasing the step length parameter

or increasing ination parameter Nmda . Oppositely, if the discrepancy gets reduced, we can

increase the in EnRML or reduce the Nmda in EnKF-MDA to speed up the convergence.

5.3 Scalar case

First we test the three ensemble-based Bayesian UQ approaches derived in Section 5.2 on a

simple case used by Evensen [49]. In his work, the e�ects of the model gradient representation

are investigated mainly under the su�cient large sample size. Here, we focus on the e�ects

of limited ensemble sizes and the performance of the ensemble methods with a small sample

size. In this case, the computing time for the forward model is negligible. Hence, we can obtain

Bayesian posterior from MCMC and ensemble methods with a large sample size for comparison.

5.3.1 Problem statement

The forward model is de�ned as:

(5.23) ŷ = 1 + sin( � x) + q;

where x is the state variable, ŷ is the model output in observation space, andq is the added

model error for better visualization q � N (0; 0:032). The goal is to quantify and reduce the

uncertainty of x and ŷ with Bayesian approaches.

The Bayesian UQ approaches need the statistical information on the prior state and the

observation. We assume that the state variablex and data y both obey to the Gaussian

distribution as x � N (0; 0:12), y � N (1; 0:12). Besides, we set the step length parameter in

the EnRML method as 0:5 and the ination parameter Nmda in EnKF-MDA as 30 to obtain

convergence results. The performance of the ensemble-based DA methods is assessed with

two di�erent ensemble size of 106 and 102, and the e�ects of limited ensemble sizes on the

propagated uncertainties are investigated. The probability density in this case is estimated

from the samples through kernel density estimation (KDE) using the Gaussian kernel.

From the derivation in Section 5.2, it has been noted that two assumptions (linearization

and ensemble gradient representation) are introduced to obtain the derivative-free analysis step.
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The model gradient can be represented by the analytic gradient or estimated by the ensemble

samples. Although the analytic model gradient can give more accurate results compared to the

ensemble gradient representation [49], it is not practical for complex models and beyond the

scope of this work. Here, we focus on the ensemble gradient and also investigate the e�ects of

ensemble sizes on the ensemble gradient.

5.3.2 Results

We �rst evaluate the performance of each ensemble-based DA method with large ensemble

sizeM = 106. The joint and marginal PDFs in comparison of di�erent ensemble methods can

be seen in Fig. 5.2 and Fig. 5.3, respectively. The Bayesian benchmark is obtained based on

the Markov chain Monte Carlo (MCMC) approach using the DREAM package [137]. From the

results, it can be seen that all the three ensemble-based DA methods can capture the posterior

mean. However, it is noticeable that the iterative EnKF method leads to overcon�dence in

the mean value and signi�cantly underestimates the posterior variance compared to the exact

Bayesian distribution from MCMC. In contrary, both the EnRML method and EnKF-MDA

can provide an estimation on the posterior distribution in good agreement with the benchmark

data. It is not surprising, since the iterative EnKF repeat using same data, while the EnRML

method and EnKF-MDA can avoid data overuse by introducing the Gauss{Newton method or

the observation error ination, as we remarked in Section 5.2. In conclude, with large ensemble

size, the EnRML method and EnKF-MDA can perform comparably to the MCMC, while EnKF

signi�cantly underestimate the posterior uncertainty due to data repeatedly used.

Further, we explore the e�ects of small ensemble size on this case and evaluate which

method can outperform others with limited samples. Because for many realistic cases, the

propagation with large ensemble size is computationally prohibitive, and ensemble methods

typically can use less than 102 samples to describe the statistical information. Hence, we set

the ensemble size to be 102, and other set-ups are consistent with the previous. The joint

PDFs results with di�erent ensemble-based DA methods are shown in Fig. 5.4. It can be

seen that with the limited ensemble size, the iterative EnKF method is similar as with the

large ensemble size. Speci�cally, all samples converge to the observations, and the posterior

distribution has a low variance. By contrast, the EnRML method and EnKF-MDA not only

can capture the posterior mean value but also provide the statistical information to indicate

the uncertainty with ensemble realizations. For better visualization, the marginal PDFs in

comparison of the three ensemble-based DA methods with 102 samples are shown in Fig. 5.5.

We can see that the EnRML method and EnKF-MDA give satisfactory estimations on the

uncertainty, while the mode value with EnKF is approximately three times higher than that

with MCMC. Generally, with limited ensemble size, EnKF performs similarly as with large

ensemble size, which underestimate the posterior variance. The performance of EnRML and

EnKF-MDA is still satisfactory but inferior to with large ensemble size.
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(a) Bayes (b) EnKF

(c) EnRML (d) EnKF-MDA

Figure 5.2: Joint PDFs with 106 samples in comparison of Bayes, EnKF, EnRML, and
EnKF-MDA for the scalar case.

Figure 5.3: Marginal PDFs for x with 106 samples in comparison of EnKF, EnRML, EnKF-
MDA, and Bayes for the scalar case.
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(a) Bayes (b) EnKF

(c) EnRML (d) EnKF-MDA

Figure 5.4: Joint PDFs with 102 samples in comparison of Bayes, EnKF, EnRML, and
EnKF-MDA for the scalar case

Figure 5.5: Marginal PDFs for x with 102 samples in comparison of EnKF, EnRML, EnKF-
MDA, and Bayes for the scalar case.
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Not surprisingly, the estimation of uncertainty with limited ensemble size slightly deviates

from the Bayes'. It is probably caused by that the limited samples are inadequate to describe

the statistical information and may also increase the error in estimating the model gradient,

especially for the nonlinear model. To illustrate this point, we present the plots of prior joint

PDF with the large and small ensemble size, as shown in Fig. 5.6. It is obvious that the

small ensemble size is not su�cient to describe the prior distribution. Moreover, we give the

model gradient estimated by ensemble samples in comparison with the analytic gradient. The

analytic gradient of this model is � cos� x, and the ensemble gradient can be represented by
sin( � X)� sin( � �X)

X� �X . Ideally, if the mean of samples onx is estimated as zero sincex obey to zero-mean

Gaussian distribution, we can have

lim
x! 0

sin(� x)
� x

= cos(� x):

Based on this formula, we can see that the samples close to the sample mean are approximately

equal to the analytic one. Given that the model gradient is not subject to the Gaussian

distribution, we use the cosine kernel to obtain the probability density, as shown in Fig. 5.7. It

is noticeable that the di�erence between the analytic gradient and ensemble gradient can be

eased with large ensemble size. The discontinuity in the case with 102 samples is mainly due

to that the limited ensemble realizations are insu�cient to prescribe the in�nite distribution.

The limited ensemble size can remarkably reduce the computational cost but arise additional

errors in the statistical description and the model gradient estimation. To ensure the error in

an acceptable range, the choice of the ensemble size need numerical tests. For highly nonlinear

system, the reduction of errors in model gradient estimation will not bene�t from large ensemble

size unless the analytic gradient is adopted.

(a) with 10 6 samples (b) with 10 2 samples

Figure 5.6: Results of prior joint PDF with large (106) and small (102) ensemble size for the
scalar case
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(a) with 10 6 samples (b) with 10 2 samples

Figure 5.7: Comparison of analytic gradient and ensemble gradient. The light/pink shaded region
represents analytic gradient and the dark/blue shaded region represents ensemble gradient. (a):
106 samples; (b): 102 samples

5.4 RANS equation

CFD is of signi�cant importance for many engineering applications. Considering the computa-

tional cost, the RANS model is still the essential tool to characterize the turbulence behavior

in CFD simulations. However, the unknown term \Reynolds stress" in RANS equations is

commonly solved with di�erent closure models under Boussinesq assumption, which will intro-

duce the model uncertainty and reduce the con�dence on the predictive performance. In this

section, we apply the three ensemble-based data assimilation methods (EnKF, EnRML, and

EnKF-MDA) on the RANS problem and evaluate their performance to quantify and reduce the

uncertainty of the predicted velocity by incorporating the DNS data.

5.4.1 Problem statement

The RANS equations can be expressed as:

@Ui
@xi

= 0(5.24a)

@Ui
@t

+
@(Ui Uj )

@xj
= �

@P
@xi

+
1

Re
@2Ui

@xj @xj
�

@u0
i u

0
j

@xj
;(5.24b)

where U; P is the dimensionless mean velocity and pressure, andRe is the Reynolds number. In

the momentum equation (5.24b), � = u0
i u

0
j is the Reynolds stress which is the main uncertain

source in RANS simulations. The Reynolds stress from RANS simulation coupling with the
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linear eddy{viscosity model is regarded as the baseline. Then we can introduce the discrepancy

term � � representing the uncertainty into the baseline as:

(5.25) � = � RANS + � �:

Further, we can quantify the uncertainty in the predicted velocity with the three ensemble-based

DA methods by reducing the discrepancy in Reynolds stress with observation data.

5.4.2 Methodology

The data assimilation framework to quantify and reduce the model-form uncertainty in Reynolds

stress was proposed by Xiao et.al [148]. Here, we give a brief introduction on this methodology.

Before the data assimilation process, we represent the Reynolds stress baseline� RANS

with three discrepancy variables k, � , and � through eigendecomposition and coordinate

conversion [148]. The variable k represents the magnitude of Reynolds stress, and� and �

represent the shape of the Reynolds stress. Further, the additive uncertainties� k , � � , and � �

are injected into these projected variables as:

logk(x) = log kRANS (x) + � k (x);(5.26a)

� (x) = � RANS (x) + � � (x);(5.26b)

� (x) = � RANS (x) + � � (x):(5.26c)

The logarithm on k is to ensure the non-negativity.

The dimension of the variable logk(x), � (x), and � (x) is consistent with the mesh grid. To

infer the entire �eld with very sparse observation increases the ill-posedness of the problem

dramatically. Hence, it is necessary to reduce the dimension of the state space. In this case, we

leverage the Karhunen|Lo�eve (K{L) expansion with truncated orthogonal modes to represent

the �eld for each quantity to be inferred. The discrepancy variables� k , � � , and � � are constructed

by the random �eld subject to zero-mean Gaussian processGP(0; K). The kernel function K is

formulated as:

(5.27) K(x; x 0) = � (x)� (x0) exp(�
jx � x0j2

l2
):

In the formula above, � (x) is the variance �eld to indicate the region where large discrepancy is

expected.l is the characteristic length. The K{L mode can be formulated as:� i (x) =
p

�̂ �̂ i (x),

where �̂ and �̂ are the eigenvalues and eigenvectors of the kernelK, respectively. The discrepancy

variables can be constructed from the deterministic K{L modes� (x) and random variable ! as
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follows:

� k (x) =
NX

i =1

! k
i � i (x);(5.28a)

� � (x) =
NX

i =1

! �
i � i (x);(5.28b)

� � (x) =
NX

i =1

! �
i � i (x):(5.28c)

The prior ! is given as zero-mean, uni-variance Gaussian random numbers. With! and K{L

modes� (x), we can reconstruct the �eld of each discrepancy quantity and recover the random

�eld of Reynolds stress tensor.

Based on the Reynolds stress representation and dimension reduction presented above, the

ensemble-based data assimilation can be performed to quantify and reduce the uncertainty

in velocity. The procedure of the RANS model-form uncertainty quanti�cation framework is

summarized as below:

1. Preprocessing step:

(1) Perform RANS simulation to obtain � RANS as the baseline.

(2) Project � RANS onto the �eld of k, � , and � .

(3) Conduct K{L expansion to generate the K{L basis sets or modesf � i (x)gm
i =1 , where m

is the number of truncated modes.

(4) Generate the initial value of ! with a zero-mean uni-variance normal distribution.

2. Data assimilation step:

(a) Recover the discrepancy variables of� k , � � , and � � with coe�cient ! and basis

sets � (x).

(b) Reconstruct the ensemble realizations on� through mapping (k; �; � ) ! � and solve

the RANS equation to obtain the velocity �eld given each realization of � .

(c) Perform the Bayesian analysis with data assimilation technique to reduce the uncer-

tainty of velocity by incorporating DNS data.

(d) Return to step (a) till the convergence criteria or maximum iteration number is

reached.

5.4.3 Case details

The test case is turbulent ow over the periodic hill where DNS data [14] is regarded as the

benchmark. The Reynolds number is 2800. The periodic boundary condition is imposed on

the inlet, and the non-slip boundary condition is applied on the wall. A structured mesh

is constructed with 50 cells in the stream-wise direction and 30 cells in the normal to wall

direction. The number of modes fork, � , and � is set to 8. The ensemble size is 60. The length
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scale is set as constant 1 for simpli�cation. The relative observation error is set as 0:1. We

take 18 observations into account to quantify and reduce the uncertainty in velocity. The

simulation results with the Launder{Sharma RANS model are regarded as the baseline. The

step parameter  in the EnRML method is chosen as 0:5 and the ination parameter Nmda in

EnKF-MDA is set as 30 to obtain the convergence results based on our calibration study. For

this case, the MCMC sampling is impractical to verify the estimated posterior uncertainty due

to the high dimensionality of the state space and the high costs of numerical simulation.

5.4.4 Results

Through solving RANS equations given the randomized Reynolds stresses, we can obtain the

prior uncertainty in the propagated velocity. The plots of the prior velocity are shown in

Fig. 5.8, and the location of observation is marked. It can be seen that the space spanned by

the ensemble realizations can indicate the statistical information. Also, the sample mean can

have a good �t with RANS results. That is reasonable since the random �eld is constructed by

perturbing the baseline from RANS simulation.

Figure 5.8: Prior ensemble realization of velocity pro�les at 8 locations, in comparison to DNS
and baseline. The location of observation is indicated with crosses(� ).

Further, we perform DA analysis with EnKF, the EnRML method, and EnKF-MDA to

quantify uncertainties in the velocity �eld by incorporating the observations at the speci�c

locations. The data assimilation results with di�erent DA schemes are presented in Fig. 5.9. It

is noticeable that with EnKF the posterior mean can �t well with DNS results. However, all

samples converge to the mean value, and the variance of the posterior becomes very low. By

contrast, the EnRML method and EnKF-MDA can give an estimation of the uncertainty, and

the mean value also has a good �t with DNS data. Based on our derivation and evaluation in

the former sections, that is probably due to that EnKF repeatedly uses the same DNS data

by full Gauss{Newton steps, while the EnRML method and EnKF-MDA can be regarded to

perform one EnKF step via several small analysis steps.
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(a) EnKF

(b) EnRML

(c) EnKF-MDA

Figure 5.9: Data assimilation Results with EnKF, EnRML, and EnKF-MDA in comparison to
baseline and DNS for the turbulent ow in a periodic hill.
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Here we present the comparison of 95% credible interval between the prior and posterior

in comparison of the three data assimilation methods. The results are shown in Fig. 5.10.

It is noticeable that the posterior uncertainty with EnKF is underestimated and too much

con�dence is placed in the mean value. With the EnRML method and EnKF-MDA, we can have

an estimation on the uncertainty indicated by samples. Besides, the uncertainty in the upper

channel estimated by the EnRML method and EnKF-MDA is similar to the prior. That is

reasonable since the variance� in this region is low [148] and no observation is informed as well.

Hence, the posterior should not change much from the prior distribution. Additionally, from the

e�ciency of each data assimilation technique, the EnRML method can converge in 8 iterations,

while EnKF-MDA needs at least 30 iterations to converge in the ination parameter Nmda .

From the overall performance, the iterative EnKF loss the statistical information due to data

overuse, while the other two methods can provide reasonable uncertainty information. Besides,

EnRML can outperform to EnKF-MDA in the convergence speed for this CFD problem.

5.5 Conclusion

This paper evaluates the performance of three widely used iterative ensemble-based data

assimilation methods (EnKF, EnRML, and EnKF-MDA) for UQ problems. We summarize the

derivations of these ensemble methods from an optimization viewpoint. The iterative EnKF

method performs several full Gauss{Newton steps during which same data is repeatedly used

for the stationary scenario. The EnRML method and EnKF-MDA can iteratively approach to

the optimal point with Gauss{Newton method or likelihood recursion, avoiding the data overuse

and alleviating the e�ects of linearization approximation simultaneously. From the numerical

investigation for a scalar case, we investigate the e�ects of limited ensemble sizes. The results

show that the EnRML method and EnKF-MDA can provide a satisfactory estimation on the

posterior uncertainty with limited ensemble size but inferior to that with large ensemble size.

Because the limited ensemble size is not su�cient to describe the statistical information and

also increase the error in the estimation of model gradient. Based on the comparison results

for both scalar case and CFD case, the posterior mean with all the three methods can have a

good agreement with benchmark data. However, the iterative form of EnKF discussed here

which use same data repeatedly for steady problem can prompt the data �t but underestimate

the posterior uncertainty. Other two methods, EnRML and EnKF-MDA, are capable of giving

an estimation of posterior uncertainty. Based on our comparison study, the EnRML method

is recommended since it can converge fast and provide the statistical information even in

complicated CFD cases. The applicability of these ensemble methods for parameter estimation

in CFD applications will be investigated in future studies.
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(a) EnKF

(b) EnRML

(c) EnKF-MDA

Figure 5.10: The 95% credible intervals of the prior (light/pink shaded region) and posterior
(dark/blue shaded region) samples of velocity pro�les for the turbulent ow in a periodic hill
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Chapter 6

Towards for Cavitation

In this chapter, we focus on empirical improvements of the RANS model based on experimental

measurements, without the use of data assimilation. It is an other way to achieve the model

improvement through analyzing in details the discrepancy between numerical simulations and

experiments. Although this approach mostly depends on the researcher'sintuition , rather than

a theoretical framework, we believe it's worth going in that direction in parallel, and eventually

see which method of empirical modelling and data-driven modelling could provide the most

e�cient improvements.

6.1 Introduction

Cavitation is the phenomenon of liquid vaporization due to changes of local pressure. It consists in

the formation of small vapor bubbles in areas of pressure drop: these bubbles expand and interact

until breakup as they reach a zone of higher pressure. Turbulent cavitating ows commonly

exist in many engineering applications involving high-speed ows, like rotating machinery

(such as propellers and pumps), injectors, and high speed vehicle motion. In such ows, the

formed cavity has underlying interactions with the turbulent ows, and di�erent investigations

have demonstrated the signi�cant e�ects of cavitation on turbulent ows. Speci�cally, the

cavitation can prompt the vortex production [ 75] and arise additional dissipation due to the

compressibility e�ects [35]. Therefore, it is pivotal to gain insights on the cavitation{turbulence

interaction, to improve the current turbulence model used in CFD, and eventually provide

predictive modellings that would enable, for example, to test the e�ects of ow control to

mitigate the e�ects of cavitation.

The mix of cavitation bubbles leads to an opaque ow which is very challenging to be

measured by current experimental techniques. Hence, the numerical simulations are still the

primary tool to investigate the cavitation. To simulate the cavitating ow, the widely used
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approach is �rst to regard the cavitation region as the homogeneous mixture as:

(6.1) � = (1 � � )� l + �� v ;

where � is the mixture density, � is the void fraction, � l and � v is the density of liquid and

vapor, respectively. Under this assumption, we can solve the Navier{Stokes equation coupling

with a single phase model/cavitation model where the slip between the two phases is neglected.

Di�erent cavitation models have been proposed to control the mass transfer or phase change.

They can be categorized by the barotropic model and the void fraction transport model based

on the pressure di�erence or bubble dynamics. Nevertheless, these cavitation models are all

obtained by empirical approaches or under ideal hypotheses. For instance, the barotropic model

is �rstly proposed in [ 149] based on the barotropic state law where the mixture density depends

only on the local pressure. Numerous works have been done with this model. Coutier-Delgosha et

al. used this model into di�erent con�gurations, such as Venturi [ 26], hydrofoil [91], inducer [28],

and centrifugal pump [29]. Frikha et al. [52] investigated the inuence of di�erent cavitation

model including the barotropic model for the simulation of cloud cavitation in a hydrofoil. The

another type of cavitation model is achieved by the void fraction transport equation as:

(6.2)
@�
@t

+ r (�u ) = � ;

where � is the source term, which is usually divided into two terms m+ and m� , representing

vaporization and condensation process, respectively. The pioneering work to govern the phase

change with transport equation is in [86]. Afterwards, di�erent cavitation models, such as Kunz

model, Merkle model, Singhal model Schnerr{Sauer model, etc. are developed to better describe

the mass transfer process and widely used for diverse applications. Speci�cally, in the Kunz

model [87] and Merkle model [104], the source terms � are based on the di�erence between local

pressure and vapor pressure. Moreover, they utilise the empirical coe�cientsCprod and Cdest to

control the amplitudes of evaporation or condensation of models. The di�erence between the

two models is that the condensation in Merkle model is only activated when the local pressure is

larger than the vaporisation pressure. Besides, the cavitation models, e.g., Singhal model [131]

and Schnerr{Sauer model [128], are proposed where the source terms � in Eq.(6.2) is deduced

from the Rayleigh{Plesset equation which describes the dynamics of a single spherical bubble.

As for the turbulence simulation, the high-�delity methods, such as large eddy simulation

(LES) and direct numerical simulation (DNS), are conducted [69, 74, 157] but still computa-

tionally prohibitive for the cavitating ows. Hence, the commonly used method is still Reynolds

averaged Navier{Stokes (RANS) models coupling with the cavitation model. It is well known

that in RANS equations, the unknown Reynolds stress, has to be modelled under di�erent

assumptions. After decades' developments, diverse RANS models have been proposed to address

this issue. The linear eddy viscosity model therein is the most used one due to its numerical

stability, which includes k{ � , k{ ! [141], and k{ ! SST [102]. Recently, the hybrid RANS/LES
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model is developed to solve RANS equations based on local turbulent length scales, such as de-

tached eddy simulation (DES) model [132] and the scale-adaptive simulation (SAS) model [101].

Moreover, it has been observed that in the presence of cavitation, the resolved eddy viscosity

with current RANS methods will be overestimated and damp the re-entrant jet, which leads to

that the unsteady cavitation shedding cannot be simulated. To this end, Reboud et al. [31, 123]

proposed an arti�cial modi�cation (called hereafter the Reboud correction) on the eddy viscosity

for unsteady cavitation. It can dramatically reduce the e�ective viscosity in the mixture and

thus capture the shedding behaviours, but there is still no quantitative validation due to lack of

experimental measurements on the turbulent quantities over the past two decades. The RANS

methods coupling with Reboud correction have been investigated extensively for cavitation

simulations. For instance, Coutier-Delgosha et al. [27] compared the standard and modi�ed k{ �

RNG model, and k{ ! model with and without compressibility e�ects. They demonstrated that

the Reboud correction could signi�cantly improve the numerical simulation results and the

compressibility e�ects have to be taken into account. Decaix and Goncalves [34] provided the

comparison of a class of RANS simulation based onk{ l transport equation model, including the

standard k{ l , k{ l SST and k{ l SAS model. They suggested that the SAS model with Reboud

correction could have a good agreement with experiments. However, in the above work, only one

component of the bubble velocities is considered in these comparisons; hence the comparison

with the velocity of the homogeneous mixture is questionable. Moreover, they mainly focus on

the time-averaged velocity and void fraction. The statistical turbulent quantities in cavitating

ows, such as the turbulent kinetic energy and Reynolds shear stress, are not well analyzed due

to the di�culty of experimental measurements on these quantities in cavitating regime. It is

well known that the Reynolds stress is the main uncertain source in RANS simulations. Hence,

to understand the discrepancy between RANS simulation and experimental measurements, it is

necessary to compare and analyze RANS model-form uncertainty associated with Reynolds

stress.

The recent development of fast X-ray imaging in experiments [82] provides a set of reliable

data for cavitating ows, including turbulent kinetic energy and Reynolds shear stress. That

makes it possible to gain some insights of the cavitation/turbulence interactions and further

improve current RANS models. This chapter will dedicate to compare the performance of

di�erent RANS models on the cavitating ows and investigate the e�ects of the Reboud

correction. As a result, we propose a modi�ed Reboud correction and validate its performance

based on experimental data and numerical tests.

6.2 Governing equations

To simulate cavitating ows, we assume that the two phases of liquid and vapor are strongly

coupled and the slip in the phases interface is neglected. Based on that, the two-phase ow is
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governed by one group of RANS equations as:

(6.3)
�

@ui
@t

+ �u j
@ui
@xj

= �
@P
@xi

+ �
@2ui

@xj @xj
�

�@u0
i u

0
j

@xj
@�
@t

+
@�ui

@xi
= 0 ;

The mixture density � as de�ned in (6.1) is resolved with the cavitation model associated

with local pressure. The Reynolds stress� � u0
i u

0
j in the momentum equation is estimated by

turbulence model. The turbulence models and cavitation model used in the present work will

be presented in the following subsections.

6.2.1 Turbulence models

Diverse turbulence models have been proposed over decades. Here, we mainly focus on two

advanced turbulence models, namelyk{ ! SST and SST{SAS. In this subsection, we give a

brief introduction on these models.

6.2.1.1 k{ ! SST model

The k{ ! SST is proposed by Menter [102] which combine the k{ � model and k{ ! model. In

the sub-layer of the boundary layer, the model adopts thek{ ! model, while in the free shear

layer away from the wall, it transforms to the k{ � model. Thus, this blend method can keep the

respective merits of the two models where they perform the best. Moreover, the model leverages

the Bradshaw assumption to ensure that the Reynolds shear stress varies as the turbulent

kinetic energy, which can avoid the overestimations of the Reynolds shear stress in the adverse

pressure gradient regions. The eddy viscosity is constructed by:

(6.4) � t =
a1�k

max (a1!; SF 2)

The transport equation for k and ! is formulated as follows:

@(�k )
@t

+
@(�u j k)

@xj
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@
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��
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�
(6.5a)

@(�! )
@t

+
@(�u j ! )

@xj
= 

!
k

Pk � ��! 2 +
@

@xj

�
(� + � ! � t )

@!
@xj

�
+ 2 (1 � F1)

�� ! 2

!
@k
@xj

@!
@xj

;

(6.5b)

where

F2 = tanh
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The limiter 10� � k! on the turbulent kinetic energy (TKE) production is recommended by

Menter [103]. The blend function F1 is de�ned as:

(6.7) F1 = tanh

8
<

:

(

min

"

max

 p
k

� � !y
;
500�
y2!

!

;
4� ! 2k

CDk! y2

#) 4
9
=

;
;

where

(6.8) CDkw = max
�

2�� ! 2
1
!

@k
@xi

@!
@xi

; 10� 10
�

:

The parameters in the model are blended from thek{ ! model and k{ � as:

(6.9) � = � 1F1 + � 2 (1 � F1) ;

where � 1 stands for the constant with subscript 1 while � 2 is the constant with subscript 2.

The constants in the model are given as:

(6.10)
 1 =

5
9

;  2 = 0 :44;� 1 =
5
9

; � 2 = 0 :44;� 1 =
3
40

; � 2 = 0 :0828;

� � =
9

100
; � k1 = 0 :85;� k2 = 1; � ! 1 = 0 :5; � ! 2 = 0 :856

6.2.1.2 Scale-adaptive simulation model

The scale-adaptive simulation (SAS) model is proposed by Menter and Egorov [101]. They

introduced the von Karman length-scale into the turbulent scale equation. Thus, the SAS

model can dynamically self-adjust to resolve the turbulent structure with unsteady Reynolds

averaged Navier{Stokes equations based on the von Karman length scale. The approach can

provide a LES-like behavior in the detached ow regions as DES model, but without explicit

grid dependence in the RANS regime. The formulation of the eddy viscosity and the transport

equations are same as thek{ ! SST model, except that a termQSAS is added in right hand of

the special dissipation! transport equation (6.5b). The QSAS is de�ned as:

(6.11) QSAS = � max

"

� 2�S 2
�

L
L vK

� 2

� C �
2k
� �

max
�

1
! 2

@!
@xj
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@xj

;
1
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@k
@xj

@k
@xj

�
; 0

#

In the formula above, L is the modelled length scale and theL vK is the von{Karman length

scale which is de�ned as:

L =
p

k=
�

c1=4
� � !

�
(6.12a)

L vK =
�S

jU00j
(6.12b)

�
�U00
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s
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@2Ui
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(6.12c)
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The model constants are given as:

(6.13) C = 2 ; � = 0 :8; � 2 = 3 :51; � � = 2=3:

The added SAS term can be considered as a source term in the! equation. It can detect the

regions of the instabilities based on the local turbulent length scale and adjust the turbulent

dissipation to reduce the turbulent viscosity.

6.2.2 Reboud correction

Cavitating ows are usually highly unstable with uctuations at various scales. The unsteady

cavitation typically have periodic behaviours with four di�erent stages in each cycle, as shown

in Fig. 6.4. The cavitation �rst expands along the wall and form the cloud cavitation. Then

the downstream cavity detaches from the wall and is driven by the main stream to the wake,

eventually breaking up in the zone of high pressure.

Figure 6.1: a cycle of cavitation behaviour

Cloud cavitation is characterized by a primary large scale instability based on the periodical

shedding of the rear part of the cavity. However, the conventional RANS models cannot capture

the shedding behaviour, because the eddy viscosity in the cavitation region is overestimated and

that will block the re-entrant jet which is main factor to arise the bubble separation. In order

to capture the shedding behaviour, Reboud et al. [123] imposed an arti�cial modi�cation f (� )

on the original eddy viscosity as a multiplicative correction. The modi�cation can reduce

dramatically the eddy viscosity in the cavitation regime based on the vaporization extent. The

formulation can be expressed as:

(6.14) f (� ) = � v + (1 � � )n (� l � � v):

The plot of f (� ) is shown in Fig. 6.2. When the void fraction is equal to zero,f (� ) equals the

liquid density, as in the original model. Oppositely, when the void fraction decreases down

to 1, f (� ) will be the vapor density. For intermediate values of void fraction, the function

reduces signi�cantly the original modelled eddy viscosity once there occurs the cavitation.

Di�erent investigations have been carried out and demonstrate the success of this modi�cation

for di�erent geometries [31, 75, 155]. With this modi�cation, the periodical behavior can be

correctly reproduced, usually with the right frequency.
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Figure 6.2: Plot of the Reboud correction function

6.2.3 Phase model

Regarding the phase model, we take the homogeneous assumption to treat the cavitation region

as a mixture. Further, we apply the barotropic state law to describe the phase change due to

its robustness. However, the barotropic model has some drawbacks. For instance, it is assumed

that the cavitation phenomenon is isothermal, and thermodynamic e�ects are neglected. On the

other hand, the barotropic law relates the pressure to the void fraction directly, and the void

fraction varies immediately with change of pressure, which is not physical since the time of phase

change is not took into account. Despite the limitations of barotropic model, a systematical good

agreement between the barotropic model and transport equation based model is obtained. [52]

Hence, basically there is no major improvement in using the transport equation model.

In the barotropic state model, the Tait equation and the perfect gas law are utilized for the

pure liquid and vapor, respectively, to estimate the relationship between the pressure and the

density. The formulations are shown as:

(6.15)

� l

� ref
= 7

s
P + P0

PT
ref + P0

;

P
� v

= C;

where PT
ref and � ref is the reference pressure and density,P0 = 3 � 108. In the mixture interval,

the state law is characterized with a sinusoidal transition. The maximum slope is de�ned by

1=A2
min , where Amin = @P=@�. The plots are shown in Fig. 6.3 with two di�erent Amin .
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Figure 6.3: Plot of barotropic state law for the mixture

6.3 Numerical evaluation of current SST-based models

6.3.1 Numerical setup

The numerical simulations are conducted in an home-made two-dimensional CFD code, which is

developed and validated over decades [31, 32, 58]. In the code, the second-order implicit scheme

is used for temporal discretization, and the �nite volume method is applied for the spatial

discretization. The second-order scheme will locally switch to the �rst order in the region in

presence of large pressure gradient to prevent the numerical oscillations. The oscillation-free

second-order HLPA scheme [156] is leveraged to estimate the convection term, and the central

di�erencing scheme is adopted for the di�usion term. The SIMPLE algorithm [117] is used to

solve the coupling of pressure and velocity.

The Venturi geometry is commonly used for the investigation of cavitation phenomenon.

Khlifa et al. [ 82] conducted the particle image velocimetry (PIV) experiments in a small

Venturi-type section through applying the ultra-fast X-rays imaging. The Venturi channel has

a convergent angle of 18 degree and a divergent angle of 8 degree as presented in Fig. 6.4. The

inlet section is a rectangular with 17mm � 4mm. The height of the throat is 15:34mm. The

ux of the ow condition is 35 :09L/min . The inlet velocity can be obtained as 8:6m/s . The

cavitation number is de�ned based on outlet pressure as:

(6.16) � =
Pout � Pref

1
2 �U 2

ref

In this case, the cavitation number is 1:15 and the Reynolds number is 1:9 � 105. The cavity

length is estimated around 10mm and the shedding frequency is around 210Hz. The 2D RANS

equations coupling with barotropic model are resolved to predict the cavitating ow. Since the

ow �eld is observed from one side in the experiment, the processed results can be regarded
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as the plane-averaged resolution. For the numerical setup, the mesh in the computational

domain has 260 cells in the stream-wise direction and 117 cells in the normal to wall direction.

The uniform velocity is imposed at the computational domain inlet, and the static pressure is

imposed at the outlet. Along the solid boundary, wall function is applied and the y plus in the

�rst mesh adjacent to the wall is range from 15 to 20. Based on previous works [27, 35], the

mesh is adequate to simulate cavitation in such Venturi type section. The arti�cial parameter n

in the Reboud correction is taken as 20 to have shedding frequency in good agreement with

experiments.

Figure 6.4: The geometry of the Venturi-type section. The red, numbered line in the enlarged
window indicate the pro�les for comparison.

6.3.2 Comparison results

In this subsection, attention is focused on the comparison between the turbulent quantities

derived from the x-ray imaging experiments and the numerical predictions obtained with the

aforementioned turbulence models. The cavitation number is slightly adjusted down to 1:12

(against 1:15 in the experiments) to obtain the shedding frequency and cavity length in good

agreement with the experimental data. The results are summarized in Table 6.1.

turbulence model cavitation number cavity length (mm) shedding frequency (Hz)
k{ ! SST 1:12 10 230
SST{SAS 1:12 10 222

exp 1:15 10 210

Table 6.1: Summary of simulation results with di�erent turbulence model with comparison to
the experiments
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The plots of the time evolution of cavity shape are presented as in Fig. 6.5. We can see

that both the RANS models arise the periodic shedding. Besides, for both thek{ ! SST and

SST{SAS, there is a small area of sheet cavity attached on the wall near the throat, and the

cavity is expanded based on that.

(a) k{ ! SST (b) SST{SAS

Figure 6.5: Time evolution of cavity shape with di�erent turbulence models. The color indicate
the minimum void fraction in each cross section, from the Venturi throat.

Fig. 6.6 represents the time-averaged composition of the cavitation area, i.e., the mixture

density, obtained with the two turbulence models and compared to the experiments. It can

be seen that the shape of the cavity is not well predicted. The position of detached cavity

is very upstream relative to the numerical simulation. The lowest density in the simulation

reaches to below 300kg/m 3, while experimental observation capture the minimum density

at around 600kg/m 3. The separated cavity in the numerical prediction is reattached in the

downstream and the total attached part is longer than the experimental measurements.

The contour plots of turbulent kinetic energy with comparison to experiments are presented

in Fig. 6.7. Both the k{ ! SST and SST{SAS method can capture the high turbulent kinetic

energy areas. However, at the downstream, the value is overestimated near the wall. The

comparison along pro�les is shown in Fig. 6.8. At the �rst position, the turbulent kinetic energy

can have a good �t with the experiments. As for the downstream, the TKE from the numerical

simulation decrease slowly, while from the experiment it is signi�cantly decreased, which leads

to the large discrepancy between the numerical simulation and experiments.

The results in Reynolds shear stress are shown in Fig. 6.9. It is noticeable that both the

turbulence models give a very low Reynolds shear stress compared to the experiments. Fig. 6.10

presents the comparison results in the Reynolds shear stress along pro�les. With Reboud

correction, we can have a good estimation in Reynolds shear stress in the downstream near

the wall region, which can reduce the damping of re-entrant jet ow and induce the shedding

118



6.3. NUMERICAL EVALUATION OF CURRENT SST-BASED MODELS

(a) k{ ! SST (b) SST{SAS

(c) experiment

Figure 6.6: Shape of time-averaged cavity.

behaviours. However, it may reduce the Reynolds shear stress in the region away from the wall

which leads to a large departure from the experiments.

To investigate the e�ects of Reboud correction, we recalculate the Reynolds shear stress

without the Reboud correction. The results are shown in Fig. 6.11. It can be seen that without

Reboud correction, both models can capture the region near the wall where exist high Reynolds

shear stress. The comparison with experiments along pro�les is shown in Fig. 6.12. At the

�rst position, a good agreement with experiments can be observed. While approaching to the

downstream, there will be a large discrepancy in the region near the wall, probably due to the

discrepancy in TKE as shown in Fig. 6.8.

6.3.3 Discussion

The numerical results show that k{ ! shear stress transport based methods cannot simulate

accurately the Reynolds shear stress which is the main uncertainty source in the RANS model.

As for the reasons, it can be due to many aspects. First, Reynolds shear stress is directly related

to TKE. In the �rst position, the TKE is well estimated, and it is possible to have a good

prediction in Reynolds shear stress without Reboud correction, compared to experimental data.

However, after position 2, the TKE are not correctly predicted. Speci�cally, TKE is signi�cantly

higher than that from experiment near the wall, which maybe responsible for the too large
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(a) k{ ! SST (b) SST{SAS

(c) experiment

Figure 6.7: The contour plots of time-averaged turbulent kinetic energy with di�erent turbulence
models compared to the experiments.

Figure 6.8: Comparison in turbulent kinetic energy between the di�erent turbulent models and
experiments with Reboud correction along pro�les.
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(a) k{ ! SST (b) SST{SAS

(c) experiment

Figure 6.9: Time-averaged Reynolds shear stress with Reboud correction.

Figure 6.10: Comparison in Reynolds shear stress between the di�erent turbulent models and
experiments with Reboud correction.
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(a) k{ ! SST (b) SST{SAS

(c) experiment

Figure 6.11: time-averaged Reynolds shear stress without Reboud correction.

Figure 6.12: Comparison in Reynolds shear stress between the di�erent turbulence models and
experiments without Reboud correction.
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Reynolds shear stress near the wall in Fig 6.12. The Reboud correction can reduce the Reynolds

shear stress in the whole cavity region and lead to a good agreement with experiments near the

wall. But in the region away from the wall where there exists large Reynolds shear stress, the

Reboud correction deteriorates the prediction.

On the other hand, cavitation can enlarge the turbulent boundary layer thickness and result

in the reduction of the TKE as well as Reynolds shear stress, since the cavity damps the main

stream velocity. However, this cannot be well captured by the present turbulence models, as

shown in the above numerical simulations. Moreover, Reboud correction reduces the Reynolds

shear stress signi�cantly in the entire cavitation occurring region. Nevertheless, depending only

on the mixture density may lead to wrong correction, as the cavity shape is not accurately

simulated in many cases (Fig. 6.6). It can capture the low Reynolds shear stress near the wall

but will deteriorate results in the phase interface regime where high shear stress is expected

from the experimental observation. To this end, a better modi�cation is possible to be achieved

based on enforcing the estimation of boundary layer thickness instead of only depending on the

simulated mixture density.

6.4 Modi�ed Reboud correction

In k{ ! shear stress transport based model, the eddy viscosity in the boundary layer is modi�ed

based on Bradshaw assumption. That is, the ratio of Reynolds shear stress and TKE is constant

as:

(6.17)
� u0v0

k
= c;

wherec is 0:31 for the incompressible turbulent ows. However, for the turbulent cavitating ow,

the ratio has to be reduced from the experimental observation [1]. In the work of [34], a reduced

constant c is adopted to improve the simulation and compared to the Reboud correction. They

use the constant 0:3 for the non-cavitating regime, while in the two-phase areas the constantc

is reduced to 0:1 or 0:2. It is demonstrated that with the reduced ratio c, it can also capture the

periodic behaviours as with Reboud correction and give a comparable prediction on velocity.

With our experimental measurements, we calculate the ratio of the Reynolds shear stress and

TKE, and compare to the Bradshaw assumption and the Reboud correction at two di�erent

measured windows as shown in Fig. 6.13. The �rst window is range fromx = 0 to x = 0 :0013,

the second window is range fromx = 0 :0013 to x = 0 :0026.

The comparison results for the two windows are shown in Fig. 6.14. It is obvious that both

the Reboud correction and the Bradshaw assumption withc = 0 :1 have large discrepancy with

experimental measurements.

Although the Reboud correction can have better agreement with the experiments and

reduce the eddy viscosity thus to alleviate the blockage of the re-entrant jet, the numerical

investigations in Section 6.3 indicate that the Reboud correction can reduce the eddy viscosity
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Figure 6.13: The schematic of two measured window for comparison

(a) window 1 (b) window 2

Figure 6.14: The comparison of the Reboud correction withn = 10 (red line), the Bradshaw
assumption with c = 0 :1 (blue line) and experimental data (grey dots)

near the wall thus arise the shedding behaviours, but in the areas away from the wall, it will

worsen the prediction. The reason is most likely due to that the phase model and the RANS

model cannot predict accurately the cavity shape. Also, the e�ects of slip velocity in the phases

interface are not considered in current models. In the experiments, we can see that the turbulent

kinetic energy and Reynolds shear stress is high in the interface of the mixture and pure liquid.

That may be caused by the slip velocity at the phase interface which increase the turbulent

kinetic energy production and Reynolds shear stress as well.

In light of the fact that the cavity shape may be not simulated accurately, it is problematic to

reduce the eddy viscosity only depending on the mixture density. Also, the constant exponentn

in the Reboud correction (6.14) reduces the turbulent viscosity to same extent as long as

they have same void fraction, which leads to the current correction cannot cover most of the

experimental data. Moreover, the Bradshaw assumption is deduced in the boundary layer, while

the Reboud correction does not consider the e�ects of boundary layer. It has been noted that the

cavitation will enlarge the boundary layer. Accordingly, we analyze four available experimental

measurements with di�erent ow conditions. Herein two ows have similar cavitation number

but di�erent Reynolds number, and three ows have similar Reynolds number while di�erent

cavitation number. We estimate the thickness of cavitating mixing layer based onu = 0 :9umax
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and �t the slope as shown in Fig. 6.15.

(a) Re = 1 :9 � 105 , � = 1 :15 (b) Re = 1 :9 � 105 , � = 1 :25

(c) Re = 2 :6 � 105 , � = 1 :15 (d) Re = 3 :0 � 105 , � = 1 :15

Figure 6.15: Fitting slope of the cavitating mixing layer

case Re � cavity length (mm) slope (exp) slope (Eq. (6.18) )
1 1:9 � 105 1.15 10 0.42 0.40
2 1:9 � 105 1.25 5 0.36 0.36
3 2:6 � 105 1.15 6 0.39 0.37
4 3:0 � 105 1.15 7 0.38 0.36

Table 6.2: Summary of slope of cavitating mixing layer for four di�erent ow condition with
comparison of experimental data and the results of �tting formula.

Based on the experimental data, we give a boundary layer estimate as:

(6.18) � =
5:2

�Re 1=5
� x i ;

where � x i is the distance to the cavitation inception point. With this formula, the estimated

slope of cavitating mixing layer can have a good agreement with experiment as shown in Table 6.2.

With the estimated boundary layer thickness, we proposed a modi�ed eddy viscosity model to

trigger the eddy viscosity reduction within the boundary layer. The empirical parameter n in

the Reboud correction is modi�ed as in the formula:

(6.19) N =
n � 1

2
tanh C(� � y) +

n + 1
2

;

where C is the hyper-parameter and taken as 1000,n is the original parameter in the Reboud

correction, and y is the distance to the wall.
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6.5 Validation

To validate the new eddy viscosity model, we �rst compare the proposed modi�cation with

experimental data in the ratio of Reynolds shear stress and TKE at the two separated measured

windows. By using the experimental data, we can calculate the ratio of the time-averaged

Reynolds shear stress and TKE directly. Regarding the original and modi�ed Reboud correction,

the ratio is calculated with 0:3f (� ). For the conventional Bradshaw assumption, it adoptsc�

with a reduced c = 0 :1. The comparison results at the �rst window and second window are

shown in Fig. 6.16 and Fig. 6.17, respectively. It is noticeable that the proposed modi�cation

can have a better agreement with experimental measurements compared to the original Reboud

correction.

(a) Re = 1 :9 � 105 , � = 1 :15 (b) Re = 1 :9 � 105 , � = 1 :25

(c) Re = 2 :6 � 105 , � = 1 :15 (d) Re = 3 :0 � 105 , � = 1 :15

Figure 6.16: Experimental comparison at window 1. Red line: the Reboud correction with
n = 10; blue line: the Bradshaw assumption with c = 0 :1; grey dots: experimental data; blue
dots: modi�ed Reboud correction.

Further, to validate the modi�cation, we apply the new eddy viscosity correction into the

four numerical test cases in Table 6.2. The simulation results in the Reynolds shear stress

are presented in Fig. 6.18. It can be seen that for all the cases the results can remarkably �t

well with experimental data in � u0v0 compared to the original one. The new modi�cation can

improve signi�cantly the prediction in Reynolds shear stress, and also capture the unsteady

shedding behaviours.

However, although the Reynolds shear stress can be captured with the modi�ed eddy

viscosity model, the resolved velocity and mixture density is not improved. We chose the case 1

as example since in this case we can have the similar Strouhal number as in the measurement.

The results are presented in Fig. 6.19. It may be due to many aspects. First, this work are based

on 2D simulations, but cavitating ow, especially cloud cavitation, is typical 3D phenomenon. It
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(a) Re = 1 :9 � 105 , � = 1 :15 (b) Re = 1 :9 � 105 , � = 1 :25

(c) Re = 2 :6 � 105 , � = 1 :15 (d) Re = 3 :0 � 105 , � = 1 :15

Figure 6.17: Experimental comparison at window 2: Red line: the Reboud correction with
n = 10; blue line: the Bradshaw assumption with c = 0 :1; grey dots: experimental data; blue
dots: modi�ed Reboud correction.

(a) Re = 1 :9 � 105 , � = 1 :15 (b) Re = 1 :9 � 105 , � = 1 :25

(c) Re = 2 :6 � 105 , � = 1 :15 (d) Re = 3 :0 � 105 , � = 1 :15

Figure 6.18: Numerical comparison of the modi�ed Reboud correction with experiment and
original Reboud correction in Reynolds shear stress.
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(a) velocity (b) density

Figure 6.19: Comparison in velocity and density with modi�ed Reboud correction and original
Reboud correction.

has been demonstrated that the 3D simulation with LES model and same cavitation model can

perform remarkably well for cloud cavitation [57], and the 3D simulation is essential to capture

the cavitation{vortex interaction [ 74] and provide accurate shape of shedding cavitation [139].

Also, the present cavitation model is not su�ciently accurate to model the phase changes, which

may result in the underestimation of density near the wall. Speci�cally, in the experiment, the

cavity in the downstream (i.e., position 3 and position 4) is detached from the wall, and the

liquid occupy the regime below the cavity. While in the simulation, the cavitation detachment at

the near downstream is not captured. Moreover, the RANS equation is coupled with cavitation

model in terms of the mixture density. From the RANS equation, the too low mixture density

near the wall will overestimate the e�ects of the adverse pressure gradient near the wall.

That may be responsible for the signi�cant reverse velocity in the numerical simulation. The

discrepancy in pressure term may be dominant in the RANS model, and the improvement

in Reynolds stress is negligible. Further investigation need be conducted to consider both

the RANS model and cavitation model. At last, it may be due to the ill-conditioned RANS

equations. [145] That is, the small errors in the Reynolds stress can lead to large discrepancy

in the velocity.

6.6 Conclusion

In this work, we investigate numerically the e�ects of cavitation on the turbulent quantities,

i.e., turbulent kinetic energy and Reynolds shear stress, by comparing with the reliable X-ray

experimental data. The numerical results with k{ ! SST and SST-SAS model indicate that

Reboud correction can improve the results near the wall. While it approaches to the area

away from wall, the Reboud correction will deteriorate the prediction. This is possibly due

to the inaccurate predicted cavity shape, which leads to that the Reboud correction reduce

the Reynolds stress dramatically in all the cavity region. Moreover,k{ ! SST based models
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adopt the Bradshaw assumption in the boundary layer, while cavity can enlarge the boundary

layer and this e�ect is not considered in the current model. To this end, we give an empirical

estimation on the boundary layer thickness in cavitating ows. Based on that, we proposed a

model to adjust the empirical exponent n in the Reboud correction. That is, to active the eddy

viscosity correction, it has to be within not only the cavity but also the estimated boundary

layer. The validations with experimental data and numerical test both show that the modi�ed

model can have a good agreement with experimental data in the Reynolds shear stress.

However, the velocity and density with the modi�ed eddy viscosity model is not improved.

That may be due to the inaccurate mixture density by cavitation model. In future investigations,

further validations will be conducted with latest X-ray experimental data. Also, the data-driven

approach, such as data assimilation, will be applied to reduce the data mismatch by inferring

optimal model corrections in both turbulence model and cavitation model from experimental

data.
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Chapter 7

Conclusions and Perspectives

7.1 Conclusions

Cavitating ows are multiphase ow typically with adverse pressure gradient, large density

gradient, ow separation and recirculation. While it is well known that the current RANS

models cannot handle the ow with these characteristics. That will signi�cantly a�ect the

predictive performance of RANS methods for cavitation simulations. To this end, the present

work intends to optimize the RANS models to better predict the ow with separation and

adverse pressure gradient, and ultimately improve the prediction for cavitating ows.

The data assimilation technique has been widely used for state estimation, inverse problem,

and so on. In this work, we explore to adopt this approach to optimize the RANS modelling.

We �rst give a brief review of the existing data assimilation techniques with emphasis on

the used methods in this work. In Section 3, a hybrid data assimilation method, namely the

ensemble-based variational method, is applied to CFD simulation in the convergent-divergent

channel with the attempt of introducing the DA method into cavitating ows. The prediction

results are improved through inferring optimal inlet velocity and underlying model corrections.

However, the inferred �elds of model corrections are not accurate and physical, i.e., with large

departure from the original value and high oscillation, due to the ill-posedness of the inverse

problem. Moreover, the EnVar method only concerns the posterior mean, and the uncertainty

of the inferred value cannot be quanti�ed. To address these issues, in the following two sections,

the ill-posedness and uncertainty quanti�cation with ensemble-based DA methods are further

investigated. In Section 4, we propose a novel data assimilation method with regularization

for the �eld inversion problem. It is derived based on the conventional ensemble Kalman �lter

(EnKF) method, and we test this novel method in three cases which cannot be tackled by

the conventional method. The results show the remarkable improvement for the inference

results and demonstrate the outperformance of the proposed method comparing to the standard

EnKF. In Section 5, three ensemble-based data assimilation methods, namely ensemble Kalman

�lter, ensemble randomized maximal likelihood, and ensemble Kalman �lter{multiple data
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assimilation, are evaluated for the uncertainty quanti�cation problem from an optimization

viewpoint. These methods are applied to quantify the uncertainty of quantities of interest

(i.e., velocity) through perturbing the Reynolds stress. The simulation results suggest that

the EnRML method performs best to quantify the uncertainty due to its high e�ciency and

satisfactory performance.

In the aforementioned sections, we investigate the applicability of the data assimilation

technique mainly for the non-cavitating turbulent ows. In Section 6, for the cavitating ow,

we conduct the numerical investigation with di�erent existing turbulence models, including k{ !

SST and SST{SAS, with the comparison of the experimental data. Based on the simulation

results and experimental measurements, we propose a modi�cation on the empirical parametern

in the Reboud correction. The results show that the modi�ed correction can take into account

the e�ects of compressibility on the boundary layer and provide accurate results in the Reynolds

shear stress, compared to experimental data.

7.2 Perspectives

Cavitation is a very complicated phenomenon, where conventional physical modeling is chal-

lenging to capture the dynamic behaviors accurately. Data-driven approach based on data

assimilation and machine learning, is promising to make a way to extract the underlying model

information directly from experimental measurements, and thus gain physical insights into

the cavitation process. For future investigations, we envision that the data-driven approaches,

including data assimilation and machine learning, can be introduced into cavitation problems

to assist the modeling of both turbulence and cavitation. Generally, we can use the data

assimilation method to extract the model information from data, e.g., to infer the latent �eld

concerning the Reynolds stress. Further, the machine learning technique can be utilized to

construct predictive models for the inferred quantities of interest to augment the turbulence

modeling. The schematic diagram can be illustrated as in Fig. 7.1.

The current studies discussed the issue of ill-posedness and uncertainty quanti�cation we

encountered when applying the DA technique into the reconstruction of the steady non-cavitating

ows. The proposed regularised ensemble Kalman method can well remove the ill-posedness

of the inverse problem, and the ensemble randomized maximum likelihood (EnRML) method

and ensemble Kalman �lter with multiple data assimilation (EnKF-MDA) are suggested for

the UQ in CFD applications. To further improve the data assimilation scheme, it is feasible to

deduce the regularized EnRML method or EnKF-MDA, thus to address the ill-posedness and

uncertainty quanti�cation simultaneously in the near future.

On the other hand, the present work about the data assimilation mainly focuses on the

steady case. As the cavitation is a typical dynamic problem, the applicability of data assimilation

for cavitation problems warrants further investigations. First, uncertainty sources in cavitation
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Figure 7.1: The schematic diagram of data-driven modeling with data assimilation and machine
learning

simulations have at least two aspects: one is the Reynolds stress in the RANS model, and

another one is the mass transfer source term in the cavitation model. The Reynolds stress

discrepancy can be decomposed into several scalar �elds to represent the magnitude, shape,

and orientation of the stress tensor, as in Section 5. Also, it can be represented under the linear

eddy viscosity assumption. Speci�cally, we can quantify the uncertainty in the eddy viscosity

as in Section 4 or infer the auxiliary model source terms in the constitutive transport equation

as in Section 3. Besides, considering the computational cost, we can start from 2D simulation

to investigate the applicability of data-driven method into the cavitating ow. Even though the

2D simulations have some limitations to capture the cavitation behavior, it is still meaningful

to produce a better model for the 2D scenario which can provide satisfactory predictions at a

low computational cost.

Moreover, we can determine the optimal empirical model parameters in current turbulence

models. As for the mass transfer source term in the cavitation model, we can also use data

assimilation to infer the optimal model parameters in the cavitation models based on the

experimental data in void fraction and velocity. On the other hand, with the reliable high-

�delity X-ray transient experimental data, we can obtain phase-averaged data and directly

construct the mass transfer source term based on the void fraction transport equation. Once the

uncertainty term is inferred through the data assimilation or constructed from the experimental

data, machine learning can be leveraged to build a mapping from the di�erent ow conditions to

the inferred model uncertain terms, which can also contain the information about the dynamics.

The input feature for machine learning can include the Reynolds number, cavitation number,

turbulence kinetic energy, Reynolds stress, vorticity, mean strain rate, void fraction gradient,

and so on. In addition, the selection of these input feature is critical to obtain an e�cient

machine learning framework, and unsupervised learning can be leveraged to optimize the feature

selections. [16, 105]
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Aside from the data-driven modeling for the cavitating ow, it is also worthy of future

investigations to gain further physical insights into cavitation-turbulence interaction. In Section 6,

we consider the e�ects of the cavitation on the boundary layer and make speci�c modi�cation on

the current RANS model to improve the prediction on the Reynolds shear stress. However, the

results in velocity and void fraction are not greatly improved, most likely due to the inaccurate

prediction on void fraction. Hence, given that the strong correlation between turbulence and

cavitation, it is necessary �rst to apply other advanced cavitation model to have a good prediction

on the cavity shape, and then improve cavitation and turbulence model simultaneously in the

future investigations.
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Appendix A

Comparison of optimization

methods and test case in Venturi

with EnVar method

A.1 Comparison between BFGS and Newton-CG

In the framework of ensemble-based variational method as presented in Chapter 3, the per-

formance of the minimization method BFGS and Newton-CG is compared in the case of inlet

velocity inference for Bump geometry. Figure A.1 presents the evolution of cost functionJ to

the iteration with di�erent prior inlet velocity (parabolic or at velocity pro�le). Even though

both methods can result in a similar reduction in cost function after 16 iterations for the case

with parabolic inlet velocity, Newton CG is faster and more robust compared to BFGS. And

for the case with at one, the BFGS method cannot reach similar results as Newton-CG within

30 iterations.

Figure A.1: evolution of cost function between BFGS and Newton-CG. left: with parabolic inlet
velocity; right: with at inlet velocity

135



APPENDIX A. COMPARISON OF OPTIMIZATION METHODS AND TEST CASE IN
VENTURI WITH ENVAR METHOD

Figure A.2 presents the inference of the inlet velocity and the predictions inCf accordingly.

Comparing to the results with Newton CG presented in Chapter 3, it is apparent that the

eventually inferred velocity with Newton CG has a better agreement with DNS especially in

the case with the at velocity.

Figure A.2: Results in inference of inlet velocity and prediction in Cf :(a) (b) for prior parabolic
velocity; (c)(d) for prior at velocity

A.2 Test case of inlet velocity inference in Venturi

We conducted a test case to infer inlet velocity in Venturi-type section. The input parameters

are the inlet velocity at the �rst 30 grids adjacent to the bottom wall. The prior is given as the

parabolic curve. The results are shown in Figure A.3.

It can be seen that the cost function cannot be further reduced after three iterations and

the inferred velocity get almost stagnant, which concludes that the velocity at the region near

the throat of Venturi is not sensitive to the inlet velocity especially to the velocity near the

wall.
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Appendix B

Derivation of REnKF and sensitivity

study of algorithmic parameters

B.1 Derivation of regularized ensemble Kalman method

The detailed derivation of the regularized ensemble Kalman method is presented here. The cost

function with regularization term can be formulated as:

(B.1) J [xa
j ] = ( xa

j � xf
j )> P� 1(xa

j � xf
j ) + ( H [xa

j ] � yj )> R� 1(H [xa
j ] � yj ) + � (G[xa

j ]> WG[xa
j ])

The gradient of the cost function can be derived as:

(B.2)
@J[xa

j ]

@xa
j

= P� 1(xa
j � xf

j ) + ( H 0[xa
j ])> R� 1(H [xa

j ] � yj ) + � (G0[xa
j ])> WG[xa

j ]

To minimize the cost function, we set the gradient (B.2) to be zero, and have:

(B.3) P� 1(xa
j � xf

j ) + ( H 0[xa
j ])> R� 1(H [xa

j ] � yj ) + � (G0[xf
j ])> WG[xf

j ] = 0

The unknown terms H[xa
j ] and H 0[xa

j ] are estimated via linearization as:

H [xa
j ] � H [xf

j ] + H 0[xf
j ](xa

j � xf
j );(B.4a)

H 0[xa
j ] � H 0[xf

j ];(B.4b)

respectively. With the linearization assumption, we can reformulate the equation (B.3) as:

P� 1(xa
j � xf

j ) = � (H 0[xf
j ])> R� 1(H [xf

j ] + H 0[xf
j ](xa

j � xf
j ) � yj ) � � (G0[xf

j ])> WG[xf
j ](B.5a)

Similarly, we introduce linearization to the constraint term as:

(B.6) G[xf
j ] � G [xa

j ] and G0[xf] � G 0[xa]:
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Note that we consider a convergence condition forG[xa
j ] for simpli�cation. Furthermore, we

introduce the tangent linear operator H so that H [x] = Hx and H 0[x] = H. Thus (B.5a) can be

formulated and rearranged as:

P� 1(xa
j � xf

j ) + H> R� 1(Hxf
j + H(xa

j � xf
j ) � yj ) + � (G0)> WG[xf

j ] = 0(B.7a)

xa
j = xf

j + P(I + H> R� 1HP) � 1H> R� 1(yj � Hxf
j ) � P(I + H> R� 1HP) � 1� (G0)> WG;(B.7b)

where the argumentxf
j of function G and its derivative G0 are omitted for brevity of notation.

Consider the following equation:

(B.8) H> (I + R� 1HPH> ) = ( I + H> R� 1HP)H> :

Based on that, taking the left multiplication ( I + H> R� 1HP) � 1 and right multiplication

(I + R� 1HPH> ) � 1 for both sides, we can obtain:

(B.9) ( I + H> R� 1HP) � 1H> = H> (I + R� 1HPH> ) � 1:

By substituting ( I + H> R� 1HP)� 1H> in (B.7b) with H> (I + R� 1HPH> ) � 1 based on Eq.(B.9),

we can derive:

xa
j = xf

j + P(I + H> R� 1HP) � 1H> R� 1(yj � Hxf
j ) � P(I + H> R� 1HP) � 1� (G0)> WG(B.10a)

= xf
j + PH> (I + R� 1HPH> ) � 1R� 1(yj � Hxf

j ) � P(I + H> R� 1HP) � 1� (G0)> WG(B.10b)

= xf
j + PH> (R + HPH> ) � 1(yj � Hxf

j ) � P(I + H> R� 1HP) � 1� (G0)> WG:(B.10c)

Finally, expand (I + H> R� 1HP)� 1 in the last term of Eq.(B.10c) with the Woodbury formula [ 63]

as:

(B.11) (I + H> R� 1HP) � 1 = I � H> (R + HPH> ) � 1HP:

By substituting Eq. (B.11) into Eq. (B.10c), we have:

(B.12)

xa
j = xf

j + PH> (R + HPH> ) � 1(yj � Hxf
j ) � � PG0> WG+ PH> (R + HPH> ) � 1HP� G0> WG:

Furthermore, combine the second and last term in the right hand side of Eq.(B.12), and we

can deduce the regularized analysis scheme as:

(B.13) xa
j = xf

j + PH> (R + HPH> ) � 1(yj � Hxf
j + � HPG0> WG) � � PG0> WG:

By further denoting Kalman gain K and the correction � by the following:

K = PH> (R + HPH> ) � 1;(B.14)

� = � � PG0> WG;(B.15)

the �nal analysis scheme for the regularized ensemble Kalman method reads:

(B.16) xa
j = xf

j + � + K(yj � H(xf
j + � ))
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B.2. SENSITIVITY STUDIES OF ALGORITHMIC PARAMETERS IN REGULARIZATION

B.2 Sensitivity studies of algorithmic parameters in

regularization

As implemented in Chapter 4 the regularization parameter� has three hyper-paramters:� 0, S,

and d. We take � 0 = 0 :1, S = 5, and d = 2 as reference and investigate the e�ects of di�er-

ent � 0, S, and d, respectively. The inferred parameters with di�erent tunable parameters (� 0,

S, and d) for an equality constraint are shown in Table B.1. It can be seen that with an equality

constraint, the proposed method is robust, and there is a large range of hyper-parameters that

result in good inference.

Table B.1: Summary of inferred parameter ! with di�erent � 0, S, and d for the equality
constraint (Case C1) in the parameter estimation problem. The values in bold indicate the
reference.

parameter value prior ( � 2; � 2) prior (0 ; 0) prior (2 ; 2)
� 0 0:01 (0:86; 1:07) (0:81; 1:14) (0:93; 1:04)

0:1 (1:06; 0:93) (1:06; 0:93) (1:02; 0:98)
0:5 (0:94; 1:05) (0:94; 1:05) (0:98; 1:00)
1:0 (1:05; 0:94) (0:94; 1:06) (1:02; 0:98)

S 1 (0:92; 1:08) (1:07; 0:92) (0:98; 1:02)
5 (1:06; 0:93) (1:06; 0:93) (1:02; 0:98)
20 (1:09; 0:90) (1:07; 0:92) (1:04; 0:94)
50 (0:86; 1:13) (0:91; 1:08) (1:05; 0:94)

d 0:1 (1:08; 0:91) (1:07; 0:92) (1:01; 0:98)
2 (1:06; 0:93) (1:06; 0:93) (1:02; 0:98)
10 (1:09; 0:90) (1:08; 0:91) (1:00; 0:98)
50 (1:10; 0:89) (0:91; 1:08) (1:02; 0:98)

However, with inequality constraints the method is not as robust as with equality constraints.

The results are shown in Table B.2. With an inequality constraint, the method is more sensitive

to these hyper-parameters. If the inequality constraint overcorrects the inferred parameters and

then turns o�, this can lead to the inference diverging.
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Table B.2: Summary of inferred parameter ! with di�erent � 0, S, and d for the inequality
constraint (Case C2) in the parameter estimation problem. The values in bold indicate the
reference.

parameter value prior ( � 2; � 2) prior (0 ; 0) prior (2 ; 2)
� 0 0:01 (0:07; 0:07) (0:91; 0:96) (0:95; 0:96)

0:1 (1:07; 1:03) (0:96; 0:98) (0:94; 0:96)
0:5 (0:83; 0:98) (1:07; 0:94) (0:94; 0:94)
1:0 Diverge Diverge Diverge

S 1 Diverge (1:07; 0:92) (0:95; 0:96)
5 (1:07; 1:03) (0:96; 0:98) (0:94; 0:96)
20 (0:31; 0:31) (0:87; 1:07) (0:95; 0:93)
50 (0:29; 0:29) (1:00; 0:96) (0:95; 0:96)

d 0:1 (0:19; 0:19) Diverge (0:94; 0:95)
2 (1:07; 1:03) (0:96; 0:98) (0:94; 0:96)
10 Diverge (0:99; 0:93) (0:97; 0:95)
50 (1:01; 0:87) (0:96; 1:04) (0:96; 0:94)



Appendix C

Derivation of EnKF and EnRML

C.1 Derivation of EnKF

The cost function and its gradient for the iterative EnKF are formulated as:

J =
1
2

�
xa

i;j � xf
i;j

� >
P� 1

i

�
xa

i;j � xf
i;j

�
+

1
2

�
H [xa

i;j ] � y
� > R� 1 �

H [xa
i;j ] � y

�
;(C.1a)

@J
@xa

i;j
= P� 1

i

�
xa

i;j � xf
i;j

�
+ H 0[xa

i;j ]> R� 1 �
H [xa

i;j ] � yj
�

:(C.1b)

We approximate the unknown terms H[xa] and H 0[xa] in Eq. (C.1b) with the linear assumption

as:

H [xa
j ] � H [xf

j ] + H 0[xa
j ]

�
xa

j � xf
j

�
;(C.2a)

H 0[xa
j ] � H 0[xf

j ] + H 00[xf
j ]

�
xa

j � xf
j

�
;(C.2b)

where the second derivation can be neglected. Further, we set the gradient of the cost function

to be zero and substitute with Eq. (C.2) as:

(C.3) P� 1
i

�
xa

i;j � xf
i;j

�
= �H 0[xf

i;j ]> R� 1
�

H [xf
i;j ] + H 0[xf

i;j ]
�

xa
i;j � xf

i;j

�
� yj

�
:

We expand H[x] around the ensemble mean as:

H [xf
j ] � H [�Xf ] + H 0[xf

j ]
�

xf
j � �Xf

�
:(C.4a)

Afterwards, we assume thatH [x] = Hx, where H is the tangent linear operator. The model

function gradient H 0[xf ] can be estimated directly with the linear operator H based on Eq. C.4.

Hence, Eq. (C.3) can be formulated and rearranged as:

P� 1
i

�
xa

i;j � xf
i;j

�
= � H> R� 1

�
Hxf

i;j + H(xa
i;j � xf

i;j ) � yj

�
;(C.5a)

xa
i;j = xf

i;j + Pi

�
I + H> R� 1HPi

� � 1
H> R� 1

�
yj � Hxf

i;j

�
:(C.5b)
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Set Q = R� 1HPi and we have:

H>
�

I + QH>
�

=
�

I + H> Q
�

H> ;(C.6a)
�

I + H> Q
� � 1

H> = H>
�

I + QH>
� � 1

:(C.6b)

Now back to Eq. (C.5b), substituting ( I + H> R� 1HPi ) � 1H> with H> (I + R� 1HPi H> ) � 1 based

on Eq. (C.6b), we can derive:

xa
i;j = xf

i;j + Pi H>
�

I + R� 1HPi H>
� � 1

R� 1
�

yj � Hxf
i;j

�
;(C.7a)

xa
i;j = xf

i;j + Pi H>
�

R + HPi H>
� � 1 �

yj � Hxf
i;j

�
:(C.7b)

Eq. (C.7b) is the iterative formulation for the analysis step of the EnKF method.

C.2 Derivation of EnRML

To derive the analysis scheme of ensemble randomized maximal likelihood method, we start

from the gradient and Hessian of the cost function as:

@J
@xi;j

= P� 1
0 (xi;j � x0;j ) + H 0[xi;j ]> R� 1 (H [xi;j ] � yj ) ;(C.8a)

@2J
@x2

i;j
= P� 1

0 + H 0[xi;j ]> R� 1H 0[xi;j ]:(C.8b)

In the EnRML method, the state vector x is updated with Gauss{Newton method as:

(C.9) xa
i;j = xf

i;j � 

 
@2J
@x2

i;j

! � 1
@J

@xi;j
:

Through directly introducing the gradient and Hessian formulation into Eq. (C.9), we can have:

(C.10)

xa
i;j = xf

i;j � 
�

P� 1
0 + H 0[xf

i;j ]> R� 1H 0[xf
i;j ]

� � 1 �
P� 1

0 (xf
i;j � xf

0;j ) + H 0[xf
i;j ]> R� 1(H [xf

i;j ] � yj )
�

;

� 
�

I + P0H 0[x f
i;j ]> R� 1H 0[xf

i;j ]
� � 1 �

xf
i;j � xf

0;j + P0H 0[xf
i;j ]> R� 1

�
H [xf

i;j ] � yj

��
:

By expanding the last term, we obtain:

(C.11)
xa

i;j = xf
i;j � 

�
I + P0H 0[xf

i;j ]> R� 1H 0[xf
i;j ]

� � 1 �
xf

i;j � xf
0;j

�

� 
�

I + P0H 0[xf
i;j ]> R� 1H 0[xf

i;j ]
� � 1

P0H 0[xf
i;j ]> R� 1

�
H [xf

i;j ] � yj

�
:

We can further derive from (C.11) via Woodbury formula as follows:

(C.12)
xa

i;j = xf
i;j � 

�
I � P0H 0[xf

i;j ]>
�

R + H 0[xf
i;j ]P0H 0[xf

i;j ]>
� � 1

H 0[xf
i;j ]

� �
xf

i;j � xf
0;j

�

� 
�

I + P0H 0[xf
i;j ]> R� 1H 0[xf

i;j ]
� � 1

P0H 0[xf
i;j ]> R� 1

�
H [xf

i;j ] � yj

�
:
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After expanding the second term at right hand and rearranging, we can have:

(C.13)

xa
i;j =  xf

0;j + (1 �  ) xf
i;j +  P0H 0[xf

i;j ]>
�

R + H 0[xf
i;j ]P0H 0[xf

i;j ]>
� � 1

H 0[xf
i;j ]

�
xf

i;j � xf
0;j

�

� 
�

I + P0H 0[xf
i;j ]> R� 1H 0[xf

i;j ]
� � 1

P0H 0[xf
i;j ]> R� 1

�
H [xf

i;j ] � yj

�

Set Q = P0H 0[x]> , and we deduce:

QR� 1 �
R + H 0[x]Q

�
=

�
I + QR� 1H 0[x]

�
Q;(C.14a)

�
I + QR� 1H 0[x]

� � 1
QR� 1 = Q

�
R + H 0[x]Q

� � 1 :(C.14b)

Finally, by substituting Eq. (C.14b) into Eq. (C.13), we can obtain the analysis step for the

EnRML method as:

(C.15)

xa
i;j =  xf

0;j + (1 �  ) xf
i;j �  P0H 0[xf

i;j ]>
�

R + H 0[xf
i;j ]> P0H 0[xf

i;j ]
� � 1 �

H [xf
i;j ] � yj � H 0[xf

i;j ]
�

xf
i;j � xf

0;j

��
:
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This chapter presents a list of journal publications and participations in international confer-

ences related to the work presented in this thesis.
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� Xinlei Zhang, Thomas Gomez, and Olivier Coutier-Delgosha. Bayesian optimisation

of RANS simulation with ensemble-based variational method in convergent-divergent

channel. Journal of Turbulence (2019): 1-26. DOI: 10.1080/14685248.2019.1622016

� Xinlei Zhang, Carlos Mich�elen-Str•ofer, Heng Xiao. Regularization of Ensemble Kalman

Method for Inverse Problem. submitted, 2019. (arXiv:1910.01292)

� Xinlei Zhang, Heng Xiao, Thomas Gomez, Olivier Coutier-Delgosha, Evaluation of

Iterative Ensemble Method for Quantifying Uncertainties in Steady Flow with Limited

Ensemble Sizes. submitted, 2019.

� Carlos Mich�elen-Str•ofer, Xinlei Zhang, Heng Xiao, Olivier Coutier-Delgosha. Enforc-
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� Xinlei Zhang, Olivier Coutier-Delgosha, Thomas Gomez, Heng Xiao. Bayesian optimization
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