. .. Microstructure, 2.2 FE modeling, results and analysis

.. .. Bibliography,

, Outlooks and conclusion 169

. .. Outlooks, 170 6.1.1.4 Adaptation for industrial use, vol.170

. .. At-the-micro-scale, 171 6.1.2.2 Influence of the spherulite morphology, vol.173

. .. Towards-the-nano-scale, 174 6.1.3.1 Molecular dynamics, a quick review

.. .. Bibliography,

. .. Art, 181 7.2.1 Polyamide 6,6 renforcé

C. De-durée-de-vie and .. .. ,

. .. Mécanismes-d'endommagement, , p.185

. .. Approfondissement,

. .. Structure-de-la-sphérolite-orientée, , p.188

. .. Retour-au-matériau-composite, , p.189

. .. 4échelle-macroscopique,

. .. 5échelle-microscopique, 196 7.5.1.3 Principaux mécanismes d'endommagement

. .. Calculséléments-finis,

.. .. Conclusion,

L. Gránásy, T. Pusztai, T. Börzsönyi, G. I. Tóth, G. Tegze et al., Polycrystalline patterns in far-from-equilibrium freezing: A phase field study, Philosophical Magazine, vol.86, issue.24, pp.3757-3778, 2006.

B. Crist and J. M. Schultz, Progress in Polymer Science Polymer spherulites : A critical review, Progress in Polymer Science, vol.56, p.11, 2016.

P. J. Flory, On the Morphology of the Crystalline State in Polymers, Journal of the American Chemical Society, vol.84, issue.15, pp.2857-2867, 1962.

S. Balijepalli and G. C. Rutledge, Conformational statistics of polymer chains in the interphase of semi-crystalline polymers, Computational and Theoretical Polymer Science, vol.10, issue.1-2, pp.103-113, 2000.

A. Keller and J. R. Waring, The spherulitic structure of crystalline polymers. Part III. Geometrical factors in spherulitic growth and the fine-structure, Journal of Polymer Science, vol.17, issue.86, p.12, 1955.

N. Tien, Y. Nishikawa, M. Hashimoto, M. Tosaka, S. Sasaki et al., Threedimensional analyses of spherulite morphology in poly(oxyethylene) and its blends with amorphous poly(d,l-lactic acid) using X-ray computerized tomography, Polymer Journal, vol.47, issue.1, p.11, 2015.

A. S. Vaughan, On morphology and polymer blends: polystyrene and polyethylene, vol.33, p.11, 1992.

A. King, P. Reischig, S. Martin, J. Fonseca, M. Preuss et al., Grain mapping by diffraction contrast tomography: extending the technique to sub-grain information, Risø International Symposium on Materials Science, p.11, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00531696

F. P. Price, The Structure of High Polymer Spherulites, Journal of Polymer Science, vol.XXXVII, p.11, 1958.

L. Laiarinandrasana, N. Selles, O. Klinkova, T. Morgeneyer, H. Proudhon et al., Structural versus microstructural evolution of semi-crystalline polymers during necking under tension: Influence of the skin-core effects, the relative humidity and the strain rate, Polymer Testing, vol.55, pp.297-309, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01717685

V. Ferreiro and G. Coulon, Shear banding in strained semicrystalline polyamide 6 films as revealed by atomic force microscopy: Role of the amorphous phase, Journal of Polymer Science Part B: Polymer Physics, vol.42, issue.4, p.38, 2004.

F. Detrez, S. Cantournet, and R. Seguela, Plasticity/damage coupling in semicrystalline polymers prior to yielding: Micromechanisms and damage law identification, Polymer, vol.52, issue.9, p.39, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00592106

F. Zok, Environmental fatigue crack growth in spherulitic polyethylene, Journals of Mateilas science Letters, vol.3, p.12, 1994.

M. Aboulfaraj, C. Sell, B. Ulrich, and A. Dahoun, In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope, Polymer, vol.36, issue.4, p.12, 1995.

C. Regrain, L. Laiarinandrasana, S. Toillon, and K. Saï, Multi-mechanism models for semi-crystalline polymer: Constitutive relations and finite element implementation, International Journal of Plasticity, vol.25, issue.7, p.12, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00390737

N. Selles, P. Cloetens, H. Proudhon, T. Morgeneyer, O. Klinkova et al., Voiding Mechanisms in Deformed Polyamide 6 Observed at the Nanometric Scale, Macromolecules, vol.50, issue.11, p.41, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01549074

H. B. Hamouda, L. Laiarinandrasana, and R. Piques, A local approach to creep fracture by slow crack growth in an MDPE : Damage modelling, International Journal of Pressure Vessels and Piping, vol.86, issue.2-3, p.41, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00367963

C. Devilliers, Chemical degradation of PE and its influence on the creep response, damage and failure: application to lifetime assessment on pipes subjected to internal pressure.T h e s e s ,École Nationale Supérieure des Mines de Paris, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00711486

X. Lefebvre, Fissuration fragile lente du polyamide 11 : mécanismes et durées de vie en fluage.T h e s e s, 2002.

H. Rolland, N. Saintier, I. Raphael, N. Lenoir, A. King et al., In-situ fatigue damage mechanisms in short fibre reinforced PA66 as observed by synchrotron Xray microtomography, Composites Part B: Engineering, vol.143, pp.217-229, 2017.

A. Keller, The spherulitic structure of crystalline polymers. Part II. The problem of molecular orientation in polymer spherulites, Journal of Polymer Science, vol.17, issue.85, p.12, 1955.

J. Mann and L. Roldan-gonzalez, Orientation in nylon spherulites: A study by X-ray diffraction, Journal of Polymer Science, vol.60, issue.169, p.12, 1962.

J. H. Magill, Formation of spherulites in polyamide melts: Part III. Even-even polyamides, Journal of Polymer Science Part A, vol.2, issue.2, pp.243-265, 1966.

A. Keller and M. J. Machin, Oriented Crystallization in Polymers, Journal of Macromolecular Science, vol.1, issue.1, pp.41-91, 1967.

P. H. Lindenmeyer, A molecular theory of polymer chain folding, Journal of Polymer Science Part C: Polymer Symposia, vol.20, issue.1, pp.145-158, 1967.

A. J. Pennings, J. M. Van-der-mark, and A. M. Kiel, Hydrodynamically induced crystallization of polymers from solution, Kolloid-Zeitschrift & Zeitschrift für Polymere, vol.238, issue.1-2, p.544, 1970.

D. M. Huong, M. Drechsler, M. Möller, and H. J. Cantow, Electron spectroscopic imaging of the morphology of in situ polyethylene 'shish kebabs, Journal of Microscopy, vol.166, issue.3, pp.317-328, 1992.

H. Zuidema, Flow Induced Crystallization of Polymers Application to Injection Moulding, 2000.

J. D. Menczel and M. Jaffe, How did we find the rigid amorphous phase?, Journal of Thermal Analysis and Calorimetry, vol.89, issue.2, pp.357-362, 2007.

E. Parodi, L. E. Govaert, and G. W. Peters, Glass transition temperature versus structure of polyamide 6: A flash-DSC study, Thermochimica Acta, vol.657, p.14, 2017.

J. J. Horst, Influence of fibre orientation on fatigue of short glassfibre reinforced Polyamide, vol.51, 1997.

A. Bernasconi, F. Cosmi, and D. Dreossi, Local anisotropy analysis of injection moulded fibre reinforced polymer composites, Composites Science and Technology, vol.68, issue.12, p.27, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00509047

M. F. Arif, Damage mechanisms in short glass fiber reinforced polyamide-66 under monotonic and fatigue loading : Effect of relative humidity and injection molding induced microstructure, ENSAM, vol.15, p.42, 2014.

M. F. Arif, N. Saintier, F. Meraghni, J. Fitoussi, Y. Chemisky et al., Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66, Composites Part B: Engineering, vol.61, p.15, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00973379

A. Ayadi, Modélisation et analyses expérimentales basées sur la caractérisation microstructurale par imageries a rayons X : application aux composites thermoplastiques renforcés par des fibres de verre courtes, p.15, 2016.

H. Rolland, N. Saintier, P. Wilson, J. Merzeau, and G. Robert, In situ X-ray tomography investigation on damage mechanisms in short glass fi bre reinforced thermoplastics : Effects of fibre orientation and relative humidity, Composites Part B, vol.109, p.52, 2017.

H. Rolland, Comportement en fatigue et mécanismes d'endommagement du polyamide 6,6 renforcé de fibres courtes, vol.53, 2017.

K. Noda, M. Tsuji, A. Takahara, and T. Kajiyama, Aggregation structure and molecular motion of (glass-fiber/matrix nylon 66) interface in short glass-fiber reinforced nylon 66 composites, Polymer, vol.43, issue.14, p.16, 2002.

A. Bergeret, L. Ferry, and P. Ienny, Influence of the fibre/matrix interface on ageing mechanisms of glass fibre reinforced thermoplastic composites (PA-6,6, PET, PBT) in a hygrothermal environment, Polymer Degradation and Stability, vol.94, issue.9, p.24, 2009.

S. Rudzinski, L. Häussler, C. H. Harnisch, E. Mäder, and G. Heinrich, Glass fibre reinforced polyamide composites: Thermal behaviour of sizings, Composites Part A: Applied Science and Manufacturing, vol.42, issue.2, p.16, 2011.

Y. Gabet, Étude et optimisation des interfaces fibre-matrice polymère de composites structurauxà base thermoplastique, p.16, 2019.

E. and M. Seignobos, Compréhension des mécanismes physiques de fatigue dans le polyamide vierge et renforcé de fibres de verre, vol.16, p.39, 2009.

M. L. Shiao, S. V. Nair, P. D. Garrett, and R. E. Pollard, Effect of glass-fibre reinforcement and annealing on microstructure and mechanical behaviour of nylon 6,6 -Part I Microstructure and morphology, Journal of Materials Science, vol.29, issue.7, p.16, 1994.

A. Bernasconi, P. Davoli, A. Basile, and A. Filippi, Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6, International Journal of Fatigue, vol.29, issue.2, pp.199-208, 2007.

K. Tanaka, T. Kitano, and N. Egami, Fatigue Crack Propagation in Short-Fiber Reinforced Plastics, The 10th International Conference on Multiaxial Fatigue & Fracture, vol.34, pp.309-317, 2015.

P. K. Mallick and Y. Zhou, Effect of mean stress on the stress-controlled fatigue of a short E-glass fiber reinforced polyamide-6,6, International Journal of Fatigue, vol.26, issue.9, pp.941-946, 1920.

H. Oka, R. Narita, Y. Akiniwa, and K. Tanaka, Effect of Mean Stress on Fatigue Strength of Short Glass Fiber Reinforced Polybuthyleneterephthalate, Key Engineering Materials Vols, vol.341, p.28, 2007.

M. Eftekhari and A. Fatemi, Creep-fatigue interaction and thermo-mechanical fatigue behaviors of thermoplastics and their composites, International Journal of Fatigue, vol.91, p.20, 2016.

G. Robert, O. Moulinjeune, and M. Houba, Fatigue of glass fibers reinforced polyamides: Mean stress effects as a function of glass fibers orientation, ICCM International Conferences on Composite Materials, p.20, 2015.

A. Fatemi, S. Mortazavian, and A. Khosrovaneh, Fatigue Behavior and Predictive Modeling of Short Fiber Thermoplastic Composites, Procedia Engineering, vol.133, pp.5-20, 1921.

A. Bernasconi and R. M. Kulin, Effect of Frequency Upon Fatigue Strength of a Short Glass Fiber Reinforced Polyamide 6: A Superposition Method Based on Cyclic Creep Parameters, Polymers and Polymer Composites, vol.21, p.35, 2009.

Y. Zhou and P. K. Mallick, Fatigue Performance of an Injection-Molded Short E-Glass Fiber-Reinforced Polyamide 6,6, Polymers and Polymer Composites, vol.21, pp.230-237, 2006.

B. Mouhmid, A. Imad, N. Benseddiq, S. Benmedakhène, and A. Maazouz, A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6: Experimental investigation, Polymer Testing, vol.25, issue.4, p.22, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00124246

K. Handa, A. Kato, and I. Narisawa, Fatigue characteristics of a glass-fiber-reinforced polyamide, Journal of Applied Polymer Science, vol.72, issue.13, pp.1783-1793, 1999.

L. P. Razumovskii, V. S. Markin, and G. Y. Zaikov, Sorption of water by aliphatic polyamides. Review, Polymer Science U.S.S.R, vol.27, issue.4, pp.751-768, 1985.

R. Puffr and J. ?ebenda, On the Structure and Properties of Polyamides. XXVII. The Mechanism of Water Sorption in Polyamides, Journal of Polymer Science Part C: Polymer Symposia, vol.16, issue.1, pp.79-93, 1967.

J. Karger-kocsis and K. Friedrich, Skin-core morphology and humidity effects on the fatigue crack propagation of pa-6.6, Plastics, Rubber and Composites, vol.12, issue.1, pp.63-68, 1989.

D. Ferreño, I. Carrascal, E. Ruiz, and J. A. Casado, Characterisation by means of a finite element model of the influence of moisture content on the mechanical and fracture properties of the polyamide 6 reinforced with short glass fibre, Polymer Testing, vol.30, issue.4, pp.420-428, 2011.

P. E. Bretz, R. W. Hertzberg, and J. A. Manson, Influence of absorbed moisture on fatigue crack propagation behaviour in polyamides -Part 1 Macroscopic response, Journal of Materials Science, vol.16, issue.8, p.39, 1981.

S. Barbouchi, V. Bellenger, A. Tcharkhtchi, P. Castaing, and T. Jollivet, Effect of water on the fatigue behaviour of a pa66/glass fibers composite material, Journal of Materials Science, vol.42, issue.6, pp.2181-2188, 2007.

E. H. Boasson, B. Kamerbeek, A. Algera, and G. H. Kroes, The photooxidation of nylon 6 and 66, Recueil, vol.81, p.24, 1962.

I. Ksouri, O. D. Almeida, and N. Haddar, Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: physicochemical, mechanical and morphological characterization, Journal of Polymer Research, vol.24, issue.8, p.24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01620027

O. and O. Diogo, Thermo-oxydation des polyamides, ENSAM, p.24, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01346299

J. Karger-kocsis, Effects of processing induced microstructure on the fatigue crack propagation of unfilled and short fibre-reinforced PA-6, Composites, vol.21, issue.3, p.26, 1990.

J. L. Way, J. R. Atkinson, and J. Nutting, The effect of spherulite size on the fracture morphology of polypropylene, Journal of Materials Science, vol.9, issue.2, p.26, 1974.

H. W. Starkweather and R. E. Brooks, Effect of spherulites on the mechanical properties of nylon 66, Journal of Applied Polymer Science, vol.1, issue.2, p.26, 1959.

D. Taylor, Geometrical effects in fatigue: a unifying theoretical model, International Journal of Fatigue, vol.21, issue.5, p.25, 1999.

P. Luo, W. Yao, L. Susmel, and P. Li, Prediction methods of fatigue critical point for notched components under multiaxial fatigue loading, Fatigue & Fracture of Engineering Materials & Structures, vol.27, pp.1-12, 2019.

B. Klimkeit, S. Castagnet, Y. Nadot, A. E. Habib, G. Benoit et al., Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30, Materials Science and Engineering A, vol.528, issue.3, p.35, 2011.

E. C. Monkman and N. J. Grant, An empirical relationship between rupture life and minimum creep rate in creep-rupture test, Proc. Am. Soc. Test. Mater, p.35, 1956.

A. Pawlak and A. Galeski, Plastic deformation of crystalline polymers: The role of cavitation and crystal plasticity, Macromolecules, vol.38, issue.23, p.37, 2005.

A. Pawlak, Plastic deformation and cavitation in semicrystalline polymers studied by X-ray methods, Polimery/Polymers, vol.59, issue.7-8, p.39, 2014.

Z. Bartczak and A. Galeski, Plasticity of semicrystalline polymers, Macromolecular Symposia, vol.294, issue.1, p.39, 2010.

S. Huguet, N. Godin, R. Gaertner, L. Salmon, and D. Villard, Use of acoustic emission to identify damage modes in glass fibre reinforced polyester, Composites Science and Technology (UK), vol.62, p.38, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00475466

B. Mouhmid, Etude de l'endommagement et de la rupture d'un polyamide 66 chargé en fibres de verre courtes, p.38, 2007.

C. Thomas, V. Ferreiro, G. Coulon, and R. Seguela, In situ AFM investigation of crazing in polybutene spherulites under tensile drawing, Polymer, vol.48, issue.20, p.38, 2007.

C. Thomas, R. Seguela, F. Detrez, V. Miri, and C. Vanmansart, Plastic deformation of spherulitic semi-crystalline polymers: An in situ AFM study of polybutene under tensile drawing, Polymer, vol.50, issue.15, p.38, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00779181

A. Galeski, A. S. Argon, and R. E. Cohen, Changes in the morphology of bulk spherulitic nylon-6 due to plastic-deformation, Macromolecules, vol.21, issue.9, p.38, 1988.

H. Kausch, R. Gensler, C. Grein, C. J. Plummer, and P. Scaramuzzino, Crazing in semicrystalline thermoplastics Crazing in Semicrystalline Thermoplastics, Journal of Macromolecular Science, Part B: Physics, vol.38, p.39, 1999.

E. Raphaël and P. G. De-gennes, Rubber-rubber adhesion with connector molecules, Journal of Physical Chemistry, vol.96, issue.10, p.39, 1992.

T. C. Mcleish, C. J. Plummer, and A. M. Donald, Crazing by disentanglement: nondiffusive reptation, Polymer, vol.30, issue.9, p.39, 1989.

P. Bretz, J. Manson, and R. Hertzberg, The Effect of Molecular Weight on Fatigue Crack Propagation in Nylon 66 and Polyacetal, Journal of Applied Polymer Science, vol.27, p.39, 1982.

N. Selles, Cavitation et rupture du Polyamide 6 sousétat de contrainte multiaxial en traction monotone, fluage et fatigue. Dialogue entre imagerie 3D et modélisation pa? e lé m e n t s fi n i s, PSL, vol.40, 2018.

H. Rolland, N. Saintier, and G. Robert, Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests, Composites Part B: Engineering, vol.90, pp.365-377, 2016.

N. Sato, T. Kurauchi, S. Sato, and O. Kamigaito, Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation, Journal of Materials Science, vol.26, issue.14, p.42, 1991.

H. Nouri, F. Meraghni, and P. Lory, Fatigue damage model for injection-molded short glass fibre reinforced thermoplastics, International Journal of Fatigue, vol.31, issue.5, p.42, 2009.
URL : https://hal.archives-ouvertes.fr/pastel-00005669

L. Toubal, M. Karama, and B. Lorrain, Damage evolution and infrared thermography in woven composite laminates under fatigue loading, International Journal of Fatigue, vol.28, issue.12, p.42, 2006.

G. Boisot, Mécanismes et modélisation mécanique de la déformation, de l'endommagement et de la rupture du PolyAmide 11 pur et renforcé choc.P h Dt h e s i s , Ecole Nationale Supérieure des Mines Paris, vol.45, p.47, 2009.

S. Nikolov and I. Doghri, A micro/macro constitutive model for the small-deformation behavior of polyethylene, Polymer, vol.41, issue.5, p.46, 2000.

N. Selles, N. Saintier, and L. Laiarinandrasana, Voiding mechanisms in semi-crystalline polyamide 6 during creep tests assessed by damage based constitutive relationships and finite elements calculations, International Journal of Plasticity, vol.86, p.46, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421403

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth, Journal of Engineering Materials and Technology, vol.99, issue.76, p.47, 1977.

V. Tvergaard and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metal lurgica, vol.32, issue.1, p.48, 1984.

J. Besson, D. Steglich, and W. Brocks, Modeling of crack growth in round bars and plane strain specimens, International Journal of Solids and Structures, vol.38, p.47, 2001.

V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, International Journal of Fracture, vol.17, issue.4, p.47, 1981.

M. Lafarge, Modélisation couplée comportment endommagement et critère de rupture dans le domaine de la transition vitreuse du {PVDF}, p.47, 2004.

J. Besson, Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms, International Journal of Plasticity, vol.25, issue.11, p.48, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00438822

C. C. Chu and A. Needleman, Void Nucleation Effects in Biaxially Stretched Sheets, Journal of Engineering Materials and Technology, vol.102, issue.3, p.48, 1980.

P. F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids, Acta Metal lurgica, vol.33, issue.6, p.48, 1985.

N. Carrere, F. Laurin, and J. F. Maire, Micromechanical-based hybrid mesoscopic 3D approach for non-linear progressive failure analysis of composite structures, Journal of Composite Materials, vol.46, p.49, 2012.

N. Despringre, Y. Chemisky, F. Meraghni, J. Fitoussi, G. Robert et al., Fatigue Damage in Short Glass Fiber Reinforced Pa66 : Micromechanical Modeling and Multiscale, 20th International Conference on Composite Materials, no. July, p.49, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01217553

B. Klimkeit, Etude experimentale et modélisation du comportement en fatigue multiaxiale d'un polymère renforcé pour application automobile, ENSMA, vol.49, 2009.

E. Belmonte, M. De-monte, T. Riedel, and M. Quaresimin, Local microstructure and stress distributions at the crack initiation site in a short fiber reinforced polyamide under fatigue loading, Polymer Testing, vol.54, pp.250-259, 2016.

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, p.49, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01282728

C. Moos, An Algorithm for Damage Mechanics Based on the Fast Fourier Transform, p.49, 2013.

J. Spahn, An Efficient Multiscale Method for Modeling Progressive Damage in Composite Materials, vol.49, p.53, 2015.

A. S. Argon and J. G. Hannoosh, Initiation of crazes in polystyrene, Philosophical Magazine, vol.36, issue.5, p.52, 1977.

S. Swaminarayan and C. Charbon, A Multiscale Model for Polymer Crystallization. I: Growth of Individual Spherulites, Polymer Engineering & Science, vol.38, issue.4, p.53, 1998.

C. Charbon and S. Swaminarayan, A Multiscale Model for Polymer Crystallization. II: Solidification of a Macroscopic Part, Polymer Engineering & Science, vol.38, issue.4, 1998.

M. Asanishi, T. Takaki, and Y. Tomita, Polymer Spherulite Growth Simulation during Crystallization by Phase-Field Method, International Conference on Advances and Trends in Engineering Materials and their Applications, p.53, 2007.

Y. H. Gong, F. Detrez, Y. M. Luo, and L. Chevalier, Simulation of polymer crystallization induced by temperature using the phase field method: Focus on the Avrami rate constant, AIP Conference Proceedings, vol.1896, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645005

J. A. Dommelen, D. M. Parks, M. C. Boyce, W. A. Brekelmans, and F. P. Baaijens, Micromechanical modeling of intraspherulitic deformation of semicrystalline polymers, Polymer, vol.44, p.55, 2003.

M. Uchida, T. Tokuda, and N. Tada, Finite element simulation of deformation behavior of semi-crystalline polymers with multi-spherulitic mesostructure, International Journal of Mechanical Sciences, vol.52, issue.2, p.55, 2010.

Y. Tomita and T. Adachi, Network models for glassy polymer and prediction of instability propagation, Materials Science Research International, vol.3, issue.3, p.54, 1997.

H. E. Oktay and E. Gürses, Modeling of spherulite microstructures in semicrystalline polymers, Mechanics of Materials, vol.90, p.55, 2015.

L. Laiarinandrasana, Stress Heterogeneity Leading to Void Nucleation within Spherulites for Semi-Crystalline Polymers, Crystals, p.55, 2019.

J. J. Horst, Influence of fibre orientation on fatigue of short glassfibre reinforced Polyamide, p.108, 1997.

E. and M. Seignobos, Compréhension des mécanismes physiques de fatigue dans le polyamide vierge et renforcé de fibres de verre, p.108, 2009.

A. Bernasconi and R. M. Kulin, Effect of Frequency Upon Fatigue Strength of a Short Glass Fiber Reinforced Polyamide 6: A Superposition Method Based on Cyclic Creep Parameters, Polymer Composites, p.108, 2009.

H. Rolland, Comportement en fatigue et mécanismes d'endommagement du polyamide 6,6 renforcé de fibres courtes, vol.108, p.109, 2017.

I. Raphael, N. Saintier, H. Rolland, G. Robert, and L. Laiarinandrasana, A mixed strain rate and energy based fatigue criterion for short fiber reinforced thermoplastics, International Journal of Fatigue, vol.127, p.127, 2019.

P. Santharam, Y. Marco, V. L. Saux, M. L. Saux, G. Robert et al., Fatigue criteria for short fiber-reinforced thermoplastic validated over various fiber orientations , load ratios and environment conditions, p.115

Y. Cheng, L. Laiarinandrasana, L. Helfen, H. Proudhon, O. Klinkova et al., 3D Damage Micromechanisms in Polyamide 6 Ahead of a Severe Notch Studied by in Situ Synchrotron Laminography, Macromolecular Chemistry and Physics, vol.217, issue.5, p.116, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01402600

E. Belmonte, M. De-monte, T. Riedel, and M. Quaresimin, Local microstructure and stress distributions at the crack initiation site in a short fiber reinforced polyamide under fatigue loading, Polymer Testing, vol.54, p.119, 2016.

H. Rolland, N. Saintier, and G. Robert, Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests, Composites Part B: Engineering, vol.90, p.119, 2016.

N. Selles, F. Nguyen, T. F. Morgeneyer, H. Proudhon, W. Ludwig et al., Comparison of voiding mechanisms in semi-crystalline polyamide 6 during tensile and creep tests, Polymer Testing, vol.49, p.121, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01269595

H. Rolland, N. Saintier, I. Raphael, N. Lenoir, A. King et al., In-situ fatigue damage mechanisms in short fibre reinforced PA66 as observed by synchrotron X-ray microtomography, Composites Part B: Engineering, vol.143, p.141, 2017.

E. Belmonte, M. De-monte, C. Hoffmann, and M. Quaresimin, Damage mechanisms in a short glass fiber reinforced polyamide under fatigue loading, International Journal of Fatigue, vol.94, p.125, 2017.

C. Phaniraj, B. K. Choudhary, K. Bhanu-sankara-rao, and B. Raj, Relationship between time to reach Monkman-Grant ductility and rupture life, Scripta Materialia, vol.48, issue.9, p.129, 2003.

C. Brinkman and S. Duffy, Life prediction methodologies and data for ceramic materials, ASTM West, p.129, 1994.

E. I. Samuel, B. K. Choudhary, D. P. Rao-palaparti, and M. D. Mathew, Creep deformation and rupture behaviour of P92 steel at 923 K, Procedia Engineering, vol.55, p.129, 2013.

G. Boisot, Mécanismes et modélisation mécanique de la déformation, de l'endommagement et de la rupture du PolyAmide 11 pur et renforcé choc, p.129, 2009.

N. Selles, N. Saintier, and L. Laiarinandrasana, Voiding mechanisms in semi-crystalline polyamide 6 during creep tests assessed by damage based constitutive relationships and finite elements calculations, International Journal of Plasticity, vol.86, p.139, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421403

K. Refai, Mécanismes d'endommagement au sein d'un compositeà matrice thermoplastique, tech. rep., I2M, p.146, 2016.

J. Spahn, An Efficient Multiscale Method for Modeling Progressive Damage in Composite Materials, p.149, 2015.

E. Belmonte, M. De-monte, C. Hoffmann, and M. Quaresimin, Damage mechanisms in a short glass fiber reinforced polyamide under fatigue loading, International Journal of Fatigue, vol.94, p.149, 2017.

S. Fliegener, T. Kennerknecht, and M. Kabel, Simulation of the damage mechanisms of glass fiber reinforced polypropylene based on micro specimens and 1/1 models of their microstructure, vol.17, p.149, 2016.

J. J. Horst, Influence of fibre orientation on fatigue of short glassfibre reinforced Polyamide, p.149, 1997.

H. Rolland, Comportement en fatigue et mécanismes d'endommagement du polyamide 6,6 renforcé de fibres courtes, vol.150, p.153, 2017.

B. Klimkeit, Etude experimentale et modélisation du comportement en fatigue multiaxiale d'un polymère renforcé pour application automobile, ENSMA, p.153, 2009.

R. Estevez and E. Van-der-giessen, Modeling and Computational Analysis of Fracture of Glassy Polymers, Advanced Polymer Science, vol.188, p.155, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00436850

A. S. Argon and J. G. Hannoosh, Initiation of crazes in polystyrene, Philosophical Magazine, vol.36, issue.5, p.155, 1977.

E. and M. Seignobos, Compréhension des mécanismes physiques de fatigue dans le polyamide vierge et renforcé de fibres de verre, p.155, 2009.

I. Arganda-carreras, V. Kaynig, C. Rueden, K. W. Eliceiri, J. Schindelin et al., Trainable Weka Segmentation : a machine learning tool for microscopy pixel classification, Bioinformatics, vol.33, issue.15, p.161, 2017.

C. Geuzaine, Gmsh : A 3-D finite element mesh generator with built-in pre-and postprocessing facilities, Int. J. Numer. Meth. Engng, vol.79, p.161, 2009.

J. Besson, D. Steglich, and W. Brocks, Modeling of crack growth in round bars and plane strain specimens, International Journal of Solids and Structures, vol.38, p.164, 2001.

N. Selles, P. Cloetens, H. Proudhon, T. F. Morgeneyer, O. Klinkova et al., Voiding Mechanisms in Deformed Polyamide 6 Observed at the Nanometric Scale, Macromolecules, vol.50, issue.11, p.172, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01549074

P. Poulet, Effet de la variabilité microstructurale sur le comportement d'un composite UD verre / PA11 : de la caractérisation expérimentaleà la modélisation multi-échelle, p.173, 2017.

L. Laiarinandrasana, Stress Heterogeneity Leading to Void Nucleation within Spherulites for Semi-Crystalline Polymers, Crystals, p.173, 2019.

B. Sixou, Molecular dynamics simulation of the first stages of the cavitation process in amorphous polymers, Molecular Simulation, vol.33, issue.12, p.174, 2007.

M. A. Tschopp, J. L. Bouvard, D. K. Ward, and M. F. Horstemeyer, Atomic Scale Deformation Mechanisms of Amorphous Polyethylene under Tensile Loading, Supplemental Proceedings: Materials Fabrication, Properties, Characterization, and Modeling, vol.2, p.174, 2011.

I. H. Sahputra and A. T. Echtermeyer, Molecular dynamics simulations of straincontrolled fatigue behaviour of amorphous polyethylene, Journal of Polymer Research, vol.21, issue.11, p.174, 2014.

B. Monasse, S. Queyroy, and O. Lhost, Molecular Dynamics prediction of elastic and plastic deformation of semi-crystalline polyethylene, Int J Mater Form, p.174, 2008.

S. Lee and G. C. Rutledge, Plastic deformation of semicrystalline polyethylene by molecular simulation, Macromolecules, vol.44, issue.8, pp.3096-3108, 2011.

J. M. Kim, R. Locker, and G. C. Rutledge, Plastic deformation of semicrystalline polyethylene under extension, compression, and shear using molecular dynamics simulation, Macromolecules, vol.47, issue.7, p.174, 2014.

F. E. Boas and D. Fleischmann, CT artifacts: Causes and reduction techniques, Imaging Med, vol.4, pp.229-240, 2012.

G. R. Davis and J. C. Elliott, Artefacts in X-ray microtomography of materials, Materials Science and Technology, vol.22, issue.9, pp.1011-1018, 2006.

A. Buades, B. Coll, J. Morel, and J. M. , A review of image denoising algorithms, SIAM Interdisciplinary Journal, Society for Industrial and Applied Mathematics, vol.4, issue.2, pp.490-530, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00271141

F. Cosmi and C. Ravalico, Threshold identification for micro-tomographic damage characterisation in a short-fibre-reinforced polymer, Strain, vol.51, issue.3, pp.171-179, 2015.

H. Rolland, N. Saintier, P. Wilson, J. Merzeau, and G. Robert, In situ X-ray tomography investigation on damage mechanisms in short glass fi bre reinforced thermoplastics : Effects of fibre orientation and relative humidity, Composites Part B, vol.109, pp.170-186, 2017.

I. Newton, Philosophiae naturalis principia mathematica

J. P. Ewen, C. Gattinoni, F. M. Thakkar, N. Morgan, H. A. Spikes et al., A comparison of classical force-fields for molecular dynamics simulations of lubricants, Materials, vol.9, issue.8, pp.1-17, 2016.

S. L. Mayo, B. D. Olafson, and W. A. Goddard, DREIDING: A generic force field for molecular simulations, Journal of Physical Chemistry, vol.94, issue.26, pp.8897-8909, 1990.

M. A. Tschopp, J. L. Bouvard, D. K. Ward, and M. F. Horstemeyer, Atomic Scale Deformation Mechanisms of Amorphous Polyethylene under Tensile Loading, Supplemental Proceedings: Materials Fabrication, Properties, Characterization, and Modeling, vol.2, pp.789-794, 2011.

M. L. Colclough and R. Baker, Polymorphism in nylon 66, Journal of Materials Science, vol.13, issue.12, pp.2531-2540, 1978.

S. Dasgupta, W. B. Hammond, and W. A. Goddard, Crystal structures and properties of nylon polymers from theory, Journal of the American Chemical Society, vol.118, issue.49, pp.12291-12301, 1996.

H. A. Karimi-varzaneh, P. Carbone, and F. Müller-plathe, Fast dynamics in coarsegrained polymer models: The effect of the hydrogen bonds, Journal of Chemical Physics, vol.129, issue.15, pp.1-11, 2008.

, Structure of spherulites in a semi-crystalline thermoplastic as usually described

, 11 1.4 PA610 spherulites as observed using cross-polarized microscopy. From Magill [29]

, Shish-kebab structure in semi-crystalline thermoplastics, p.13

, Heterogeneous fiber orientation in an injection molded plate. From Rolland [43]

. .. , Fiber-matrix interface in fiber reinforced polymers, p.16

. .. , Specimen orientation in an injection molded plate, p.17

, Results from tensile testing for different specimen orientations

, Results from fatigue testing for different specimen orientations -RH50, R=0.1, 4Hz. From Bernasconi [50]

, Fatigue cracks in 0°, 45°and 90°notched specimens of under R=0.1. From Tanaka [51]

. .. , Schematics of fatigue crack propagation mechanisms, p.20

, Haigh diagram: Relationship between stress amplitude ? a and mean stress ? m , with modified Gerber equation

, Influence of temperature on the S-N curves of RH0 PA66GF33. From Handa [60]

, Model of displacement of sorbed water in PA6. From Puffr, vol.62

, Wet polyamide at saturated vapor pressure: 1, firmly bound water; 2, loosely bound water; 3, sites for capillary condensed water

. S-n-curves-for-pa66gf30, T. F. R=-1,-f=10hz, and . Barbouchi,

, 27 1.20 Influence of notches on the fatigue strength of PA66GF35. From Sonsino [75]

, Schematic of a typical evolution of the cyclic strain and cyclic strain rate during fatigue loading, with controlled load. (For cyclic loading with controlled displacement, cyclic stress relaxation would be observed), p.29

. .. , 32 1.24 Comparison between experimental and assessed fatigue lives using a Principal Stress criterion on PBT-PET GF30 specimens at R=0.1. From Klimkeit [83]

, 33 1.26 Study of PA66GF30 specimens -RH50 -f = 3Hz -forced convection, Equivalent stress amplitude vs. fatigue life for PBT and PA6 specimens at various temperatures -R=-1 -0°, 18°, 45°, 90°.F r o mFat e m i, vol.56

, Section of polyethylene after fatigue showing "many inter-spherulitic cracks

]. .. , Damage at fiber tip and fiber failure as observed during in situ microtomography tensile testing, p.42

. .. , 43 1.31 Fatigue damage mechanisms as observed by synchrotron tomography, p.43

, Microcracks observed by micro-tomography and proposed damage mechanism as a function of spherulite organization -RH50 -0°specimen -N f =2468cycles

. .. , 46 1.34 Computed void volume fraction for PA6 axisymmetric specimens, Creep rate vs

, 50 1.36 Deformations at the fiber end. Overall imposed strain are indicated

, Comparison between X-Ray CT micrograph (a-c) and reconstructed model in the FEM code (b-d). Arrows indicate the direction of maximum principal stress during tensile loading

, Comparison of the crazing criterion with the damage observed by tomography. Tensile test on a 45°RH50 specimen

, Snapshot during an crystallization of a polymer (upper row) and numerical simulation of the crystallization process using the multi-phase field method (lower row)

. .. , 55 2.1 Fiber length and orientation distribution in the composite material

, Segmented fibers at the center of a 0°specimen as observed using synchrotron tomography. The core layer is visible, but only part of the shells can be seen in the field of view

, Spherulites in PA66 observed using polarized light microscopy on thin slices obtained by microtomy

, Spherulites observed using polarized light microscopy on thin slices of reinforced PA66 obtained by microtomy

, Note that they are the same for smooth and notched specimens

. .. Geometry, 72 2.7 Dimensions of notched specimens, stress concentration factor K T and stress triaxiality ratio ? (see definitions given in section 2.2.1.4), p.73

. Experimental and . .. Testing, 75 2.10 Position of the virtual extensometer on a notched U2 specimen for NOD measurement

, Example of the cyclic strain measurement for cyclic-creep evaluation during fatigue loading

, Experimental setups for in-situ testing, on the PSICHE beamline

, Secondary electron imagery in SEM

. .. Micro-tomography,

. .. Atomic-force-microscopy,

, Damage at fiber ends and crazing -RH50 -0°specimen -N f =2 4 6 8 cycles. Cavitation is evidenced by arrows, p.86

, Fiber failure induced by the proximity of a crossing fiber in the shell -U2 0°specimen -RH50 -f=0.5Hz -R=0.1 -Normalized ? max =0

, Note how difficult it can be to determine if, where and when adjacent fibers are actually in contact, vol.87

, Evidences of contact inducing damage and failure of fibers during fatigue loading -U2 0°specimen -RH50 -f=0.5Hz -R=0.1 -Normalized ? max = 0, vol.87

, Cavity distribution by diameter as obtained by various methods, p.88

, Detail view of cavitation ahead of crack tip in neat PA66 -U0.5 specimen -RH50 -f=0.5Hz -R=0.1 -Normalized ? max =0.30 -N f =2123, p.89

, Early stage of debonding at the interface, seen here at N/N f =2 0, p.89

, Damage at the interface along a transversely broken fiber after fatigue loading -0°specimen

, 90 3.10 Crack tip in a 0°PA66GF30 specimen as observed by microtomography -f=3Hz -RH50 -Normalized ? max =0.69 -N =2462, p.91

S. Geometries, , p.92

, Tomographic observation and segmentation of the crack tip in a PA66 notched specimen, test interrupted at 4221 cycles and 90% of estimated fatigue life

, Crack tip in a PA66 notched specimen as observed by microtomography, test interrupted at 2531 cycles and 95% of estimated fatigue life, p.95

, Short cracks in a 45°PA66GF30 smooth specimen as observed by microtomography, test interrupted at 1500 cycles and 98% of estimated fatigue life

. .. , Advance of the crack tip, segmented in a RH50 0°specimen and viewed in the plane orthogonal to the loading direction, p.96

, Fracture surface of a notched PA66 specimen after fatigue testing -Normalized ? max =0, vol.29

. .. , SEM fractography of a notched PA66 specimen (N f =917), p.98

, Spherulitic damage ahead of the fatigue crack in a notched U0.5 PA66 specimen after cryofractography, test interrupted at 4221 cycles and 90% of estimated fatigue life

, Schematic of the influence of the spherulitic structure of the polymer on fatigue crack advance

, Orientation of the 40 nuclei observed on 3 different PA66 specimens after fatigue testing

, SEM observations of the nuclei for three different specimens orientation

, 102 3.23 SEM fractography a notched "tomo" PA66 specimen -N/N f =7 3 %-f=0.5Hz -Normalized ? max =0

S. Complementary and . Fractography, PA66 specimen showing damage initiating from the nucleus -N/N f =7 3 %-f=0.5Hz -Normalized ? max =0

. .. , 103 3.26 SEM fractography a notched U0.5 90°PA66GF30 specimen -f=0.5Hz -Normalized ? max =0.34 -N f =24565

, Evolution of the mean strain for several load ratios and fatigue lives on smooth 0°PA66GF30 specimens -RH50 -f = 3Hz -forced convection, p.108

, 1) vs. experimental number of cycle to failure on smooth PA66GF30 45°specimens -f = 0.5Hz -free convection. Scatter band of factor 2 is marked in dashed lines

, Analysis to establish a relationship between the number of cycle to failure N f , the anelastic energy W an and the cyclic strain rate? cycl -RH50 specimens -f = 3Hz -forced convection -all fiber orientations, p.110

, 4) vs. experimental number of cycle to failure -RH50 specimens -f = 3Hz -forced convection -all fiber orientations. Scatter bands of factor 2 and 10 are marked in dashed and dotted lines respectively

, Weight function f for various values of the parameter ?, p.112

, for all fiber orientations. Scatter bands of factor 2 and 10 are marked in dashed and dotted lines respectively

, Relative error on N f using the mixed criterion eq. (4.7) identified on various datasets

, Relative error on N f using several criteria

, Note that U2 and U0.5 refers to the notch geometry as defined in fig

, Tomographic slice of a notched "tomo" PA66 specimens during in-situ quasi-static tensile testing

, Tensile test on notched PA66GF30 specimens at? =10 ?3 s ?1, p.119

, Cyclic strain evolution and local strain rate as measured by timed DIC in a PA66 specimen -U0.5 notch -Normalized ? max =0.26, p.120

, Fatigue damage in a "tomo" notched PA66 specimen as observed by micro-tomography

, Segmented fatigue cracks in 3 interrupted notched "tomo" PA66 specimens as observed by micro-tomography -Number corresponds on the number of applied loading cycles before the test was interrupted for tomographic imaging -Normalized ? max =0

, SEM fractography of a notched U0.5 PA66 specimen -N f =917, p.122

. .. S-n-;, curves for notched reinforced PA66 specimens, p.123

, Maximum principal cyclic strain rate as measured on the surface of the specimens by timed DIC

, 124 4.21 Tomographic evaluation of fatigue damage in a notched "tomo" 0°spec-imen -Normalized ? max =0.60

, Identification of several fatigue criteria for notched PA66GF30 specimens -R=0.1 -0.5 Hz. Scatter band of factor 2 is marked in dotted lines, p.128

. .. , 130 4.24 Normalized stress vs. NOD for a U2 notched PA66 specimen during tensile testing

. .. , Shell-Core geometry and stress-strain curves for U2 notched PA66GF30 specimens during tensile testing at? =10 ?3 s ?1, p.132

, Cyclic loading of a notched U2 PA66 specimen with parameters from the quasi-static loading identification and the readjusted parameters for improved cyclic strain rate calculation -f=0.5Hz -R=0.1 -Normalized ? max =0

, Global axial cyclic strain rate for notched PA66 specimens (R=0.1 -f=0.5Hz), determined experimentally from the crosshead displacement and the top surface displacement in the numerical model, p.134

, Global axial cyclic strain rate for notched PA66GF30 specimens, p.135

. .. , Profile of the axial cyclic strain rate between notches during at N = N f /2.136 4.30 Notch opening rate for notched PA66 specimens, p.136

, Process to plot local cyclic strain rate maps, here on a U2 specimen, p.137

, Axial cyclic strain rate fields measured at N = N f /2 and calculated at the corresponding number of computed cycles

, Principal cyclic strain rate in composite specimens -U2 notch -Normalized ? max =0

, Principal cyclic strain rate in a 0°specimen during the secondary stage of cyclic creep -U2 notch -Normalized ? max =0

, Computed void volume fraction f in a notched PA66 "tomo" specimen -Normalized ? max =0

, Computed void volume fraction f and corresponding tomographic slice. Notched PA66 "tomo" specimen -Normalized ? max =0.36, p.140

, Cyclic strain rate and computed void volume fraction after 500 loading cycles in notched "tomo" specimens -Normalized ? max =0.36, p.141

, Comparison between computed N f and experimental values, p.142

, Slicing is made perpendicularly to the fiber direction

. .. , Example of segmented microstructure for FFT micro-modeling, p.149

, Strain rate distribution in the matrix and sensitivity of the matrix model to the imposed macroscopic strain rate -FFT modeling, p.150

, Experimental stress-strain curves vs. microstructure calculation -FFT modeling

, Local mechanical fields distribution in the matrix for different RH and fiber orientation at iso-macroscopic axial strain ? =3 .6% after loading at? =10 ?4 s ?1 -FFT modeling

. .. , Study of a short glass fiber failure -FFT modeling, p.154

, Modeling voiding at fiber end by an extra phase with degraded properties -FFT modeling. Small oscillations in the computed fields come from an aliasing effect as the conditions of the Nyquist-Shannon are not formally respected (high contrast between the phases)

, Results for monotonic tensile loading of a RH 50 -0°specimen at? = 10 ?4 s ?1 until a global strain of ? =3.6%-FFT modeling, p.156

, Hydrostatic stress in two microstructures after quasi-static loading a? ? =1 0 ?4 s ?1 until a global strain of ? =3 .6%. At this imposed strain, different stresses are reached depending on the fiber orientation, p.158

. .. , 159 5.13 Cartography of ?? 11 ?N max , with the locations of the cavities observed on the corresponding tomographic slice, in a RH 50 -45°specimen -FFT modeling

. .. , 162 5.16 Cyclic strain evolution for FE microstructure modeling -0°-RH50 -R=0.1 -f=0.5Hz -Normalized ? max =0

, Calculated void volume fraction after 10 loading cycles at a normalized ? max =0.21 overlaid on the corresponding tomographic slice, in a RH50 -0°specimen after 1500 loading cycles at a normalized ? max =0 .69 -FEM modeling

S. , curves for normal and nucleated matrix in composite material specimens

. .. , AFM imaging of a fatigue fracture surface in PA66, p.172

, Influence of the exposition to synchrotron radiation on the failure mode of PA66 under cyclic loading

, Molecular dynamics tensile test on amorphous PE at different imposed strain rates. 10 polymer chains, 1000 atoms per chain, p.175

, (a) to B.1(d)) and non-bonded (figs. B.1(e) to B.1(g)) interactions between atoms

X. B. , 3 Mapping between atomistic and CG models of PA66. The circles denote which atoms are joined into CG beads

X. ,