, On connait néanmoins grâce aux équations qui régissent la transformation SAR, l'importance de l'angle de propagation de la houle dans cet apport non linéaire. La méthode que j'ai choisi d'utiliser est applicable pour les houles se déplaçant majoritairement dans la direction radiale. C'est là une des principales limites à l'application de ma méthode

, Sur l'océan Atlantique, en particulier au large de l'île d'Oléron, il est possible de trouver un grand nombre d'images capturées à des instants propices à l'imagerie de la houle dans des conditions quasi linéaires, Pour les besoins de cette étude, j'ai choisi des images SAR dans lesquelles on pouvait voir visuellement les vagues de houle se propager

, L'étude des 16 images que j'ai pu traiter mène à un résultat satisfaisant. La valeur du RMSE atteinte 2,8 m (Figure 59), permet d'espérer de meilleurs résultats en traitant une plus grande quantité d'images

. Bibliographie,

«. Base-platform-user and . Workshop, , 2017.

J. Dubranna, « Production and dissemination of Marine Renewable Energy resource information », présenté à European Wave and Tidal Energy Conference, pp.8-2015

«. Iec and . Marine-energy--wave, Wave energy resource assessment and characterization », IEC 62600-101 TS, sept, tidal and other water current converters -Part, vol.101, 2014.

S. Armstrong, « Wave Energy Measurement Methodologies for IEC Technical Specifications, p.69

S. Wiehle, « The BASE-Platform service: Producing bathymetry from combined satellite and crowd sourced data, pp.30-2017

C. Stewart, A. Renga, V. Gaffney, and G. Schiavon, « Sentinel-1 bathymetry for North Sea palaeolandscape analysis, International Journal of Remote Sensing, vol.37, issue.3, pp.471-491, 2016.

W. Alpers and C. Bruening, « On the relative importance of motion-related contributions to the sar imaging mechanism of ocean surface waves, 1986.

V. Boccia, A. Renga, A. Moccia, and E. S. Zoffoli, « Tracking of Coastal Swell Fields in SAR Images for Sea Depth Retrieval: Application to ALOS L-Band Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.8, issue.7, pp.3532-3540, 2015.

V. Boccia, « L-band SAR image processing for the determination of coastal bathymetry based on swell analysis, Geoscience and Remote Sensing Symposium (IGARSS), pp.5144-5147, 2014.

S. Brusch, P. Held, S. Lehner, W. Rosenthal, and E. A. Pleskachevsky, Underwater bottom topography in coastal areas from TerraSAR-X data, vol.32, pp.4527-4543, 2011.

F. M. Monteiro, Advanced Bathymetry Retrieval from Swell Patterns in High-Resolution SAR Images, 2013.

J. Filipot, Nearshore wave processes in the Iroise Sea: field measurements and modelling, p.605, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00879930

A. Renga, « SAR Bathymetry in the Tyrrhenian Sea by COSMO-SkyMed Data: A Novel Approach, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.7, issue.7, pp.2834-2847, 2014.

A. Renga, « Analysis of spaceborne SAR monitoring capabilities for coastal areas bathymetry with COSMO-SkyMed and ALOS data, p.888808, 2013.

A. Pleskachevsky, S. Lehner, T. Heege, and C. Mott, « Synergy and fusion of optical and synthetic aperture radar satellite data for underwater topography estimation in coastal areas, Ocean Dynamics, vol.61, pp.2099-2120, 2011.

A. Pleskachevsky and S. Lehner, Estimation of Underwater Topography using Satellite High Resolution Synthetic Aperture Radar Data. », in 4. TerraSAR-X Science Team Meeting, 2011.

, Encyclopedia of Natural Resources: Water, 2016.

«. Shom and ». Hydrographie--le-fonctionnement-du-multifaisceau,

J. L. Irish and T. E. White, Coastal engineering applications of high-resolution lidar bathymetry, vol.35, pp.47-71, 1998.

D. R. Lyzenga, Shallow-water bathymetry using combined lidar and passive multispectral scanner data, International Journal of Remote Sensing, vol.6, issue.1, pp.115-125, 1985.

C. Vanroye, Evolution des pratiques de suivi topo-bathymetrique du littoral en, pp.311-314, 2009.

S. Jay, « Estimation et détection en imagerie hyperspectrale: application aux environnements côtiers, p.126

T. Heege, P. Hausknecht, H. Kobryn, «. Hyperspectral-seafloor, . Mapping et al., , p.8

S. Capo, A. Dehouck, B. Lubac, and N. Senechal, Coastal Bathymetry Mapping Using High-Resolution Optical Imagery », présenté à Sentinel 2 Preparatory Symposium, Frascati -Italie, pp.29-2017

G. De and S. Hyperspectral, Synthèse sur l'imagerie hyperspectrale, 2008.

M. L. Mcintyre, D. F. Naar, K. L. Carder, B. T. Donahue, and D. J. Mallinson, Coastal Bathymetry from Hyperspectral Remote Sensing Data: Comparisons with High Resolution Multibeam Bathymetry, vol.27, pp.129-136, 2006.

J. C. Sandidge and R. J. Holyer, « Coastal Bathymetry from Hyperspectral Observations of Water Radiance, Remote Sensing of Environment, vol.65, pp.341-352, 1998.

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, « Hyperspectral remote sensing for shallow waters I A semianalytical model, Applied Optics, vol.37, p.6329, 1998.

A. Poupardin, D. Idier, M. De-michele, and E. D. Raucoules, Water Depth Inversion From a Single SPOT-5 Dataset, vol.54, pp.2329-2342, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01251525

W. Alpers and I. Hennings, « A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar, J. Geophys. Res, vol.89, pp.10529-10546, 1984.

J. Vogelzang, « A comparison of the hydrodynamic modulation in some existing models, International Journal of Remote Sensing, vol.10, issue.9, pp.1503-1518, 1989.

C. F. De-valk and G. J. Wensink, et others, « Measuring the bathymetry of shallow seas using radar imagery from satellite and aircraft, Offshore Technology Conference, 2002.

J. Inglada and R. Garello, Underwater bottom topography estimation from SAR images by regularization of the inverse imaging mechanism, Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000, vol.5, pp.1848-1850, 2000.

J. Inglada and R. Garello, On rewriting the imaging mechanism of underwater bottom topography by synthetic aperture radar as a Volterra series expansion, IEEE Journal of Oceanic Engineering, vol.27, issue.3, pp.665-674, 2002.

W. The and . Group, The WAM Model -A third generation Ocean Wave Prediction Model », p.1988

N. Booij, R. C. Ris, and L. H. Holthuijsen, « A third-generation wave model for coastal regions: 1. Model description and validation, Journal of Geophysical Research: Oceans, vol.104, pp.7649-7666

H. L. Tolman and . Third, Generation Model for Wind Waves on Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents, p.1991

F. Ardhuin, T. H. Herbers, W. C. O'reilly, and «. Eulerian, Lagrangian Model for Spectral Wave Evolution with Application to Bottom Friction on the Continental Shelf, Journal of Physical Oceanography, vol.31, issue.6, pp.1498-1516, 2001.

P. A. Madsen, O. R. Sørensen, and H. A. Schäffer, « Surf zone dynamics simulated by a Boussinesq type model. Part II: surf beat and swash oscillations for wave groups and irregular waves, Coastal Engineering, vol.32, issue.4, pp.289-319, 1997.

J. Coignard, « Modélisation numérique des vagues à l'approche de la digue d'Esquibien, p.60, 2014.

J. Monbaliu, J. C. Hargreaves, J. Carretero, H. Gerritsen, and R. Flather, « Wave modelling in the PROMISE project, Coastal Engineering, vol.37, pp.379-407, 1999.

M. K. Mishra, D. Ganguly, P. Chauhan, and A. , « Estimation of Coastal Bathymetry Using RISAT-1 C-Band Microwave SAR Data, IEEE Geoscience and Remote Sensing Letters, vol.11, issue.3, pp.671-675, 2014.

F. M. Monteiro, Advanced Bathymetry Retrieval from Swell Patterns in High-Resolution SAR Images, p.77, 2013.

M. B. Kanevsky, Radar imaging of the ocean waves, 2009.

I. S. Robinson, Discovering the Ocean from Space, 2010.

S. Lehner and A. Pleskachevsky, Module 3603: Surface Waves

V. Boccia and . Bathymetric, Digital Elevation Model Generation from L-band and X-band Synthetic Aperture Radar Images in the Gulf of

D. Sur,

V. Boccia, « Linear Dispersion Relation and Depth Sensitivity to Swell Parameters: Application to Synthetic Aperture Radar Imaging and Bathymetry, The Scientific World Journal, vol.2015, pp.1-10, 2015.

W. R. Alpers, D. B. Ross, and C. L. Rufenach, « On the detectability of ocean surface waves by real and synthetic aperture radar, Journal of Geophysical Research, vol.86, p.6481, 1981.

G. J. Komen and É. , Dynamics and modelling of ocean waves, 1, 1996.

V. Roeber, , pp.2-2016

V. Roeber and . Boussinesq, type model for nearshore wave processes in fringing reef environment

V. Roeber, K. F. Cheung, and M. H. Kobayashi, « Shock-capturing Boussinesq-type model for nearshore wave processes », Coastal Engineering, vol.57, pp.407-423

J. Bougis, « Les états de mer naturels

. Ardhuin, «. Filipot, and . Ocean, , vol.1, 2016.

J. Dubranna, L. Menard, and T. Ranchin, « De l'échelle nationale à l'échelle du site, cartographie et description de la ressource en énergies marines renouvelables dans un format interopérable, pp.477-486, 2016.

«. V. Roeber, , 2017.

V. Communication-personnelle and ». Roeber,

C. Aristaghes and P. Aristaghes, « Théories de la houle -Houle réelle -Propagation de la houle, Centre d'Etudes Techniques Maritimes et Fluviales?, 1985.