E. Huang, C. Swanson, J. Lin, W. Schuman, . Stinson et al., Optical coherence tomography. Science, vol.254, issue.5035, pp.1178-1181, 1991.

J. Fujimoto and D. Huang, Foreword: 25 Years of Optical Coherence Tomography, Investigative Opthalmology & Visual Science, vol.57, issue.9, 2016.

P. Viacheslav-mazlin, E. Xiao, K. Dalimier, K. Grieve, J. Irsch et al., In vivo high resolution human corneal imaging using full-field optical coherence tomography, Biomedical Optics Express, vol.9, issue.2, p.557, 2018.

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-jalmes, Full-field optical coherence microscopy, Optics Letters, vol.23, issue.4, p.244, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02372514

, Ocular surface visible through slit-lamp

A. Edward, J. Boettner, and R. Wolter, Transmission of the ocular media, Investigative Ophthalmology & Visual Science, vol.1, issue.6, p.1962

R. Yadav, K. Lee, J. P. Rolland, J. M. Zavislan, J. V. Aquavella et al., Micrometer axial resolution OCT for corneal imaging, Biomedical Optics Express, vol.2, issue.11, p.3037, 2011.

M. J. Hogan, J. A. Alvadaro, and J. E. Weddell, Histology of the Human Eye: An Atlas and Textbook, 1971.

R. A. Thoft and G. Smolin, Smolin and Thoft's The Cornea: Scientific Foundations and Clinical Practice, 2004.

J. Mark, E. J. Mannis, and . Holland, Cornea: Fundamentals diagnosis and management, 2017.

N. Lagali, . Bb-peebo, . Germundsson, . Edén, . Danyali et al., Laser-scanning in vivo confocal microscopy of the cornea: Imaging and analysis methods for preclinical and clinical applications, confocal laser microscopy -principles and applications in medicine, biology, and the food sciences. IntechOpen, 2013.

D. William, T. E. Mathers, and . Daley, In vivo observation of the human tear film by tandem scanning confocal microscopy, Scanning, vol.16, issue.5, pp.316-319, 2008.

B. A. Nichols, M. L. Chiappino, and C. R. Dawson, Demonstration of the mucous layer of the tear film by electron microscopy, Investigative Ophthalmology & Visual Science, vol.26, issue.4, pp.464-473, 1985.

P. E. King-smith, J. J. Nichols, R. J. Braun, and K. K. Nichols, High Resolution Microscopy of the Lipid Layer of the Tear Film, The Ocular Surface, vol.9, issue.4, pp.197-211, 2011.

H. Owens and J. Phillips, Spreading of the tears after a blink: Velocity and stabilization time in healthy eyes, Cornea, vol.20, issue.5, pp.484-487, 2001.

E. Holland, W. Mannis, and . Lee, Ocular Surface Disease: Cornea, Conjunctiva and Tear Film, 2013.

H. Chen, S. Yamabayashi, B. Ou, Y. Tanaka, S. Ohno et al., Structure and composition of rat precorneal tear film. Investigative Ophthalmology Visual Science, vol.38, pp.381-387, 1997.

R. F. Guthoff, C. Baudouin, and J. Stave, Atlas of Confocal Laser Scanning In-vivo Microscopy in Ophthalmology, 2006.

D. A. Dartt, D. P. Bex, P. D. Reza, D. L. Mcloon, and N. J. , Ocular Periphery and Disorders, 2011.

R. A. Copeland and N. Afshari, Copeland and Afshari's Principles and Practice of Cornea, JP Medical Ltd, 2013.

J. P-d-yurchenco and . Schittny, Molecular architecture of basement membranes, The FASEB Journal, vol.4, issue.6, pp.1577-1590, 1990.

T. Utsunomiya, T. Nagaoka, K. Hanada, T. Omae, H. Yokota et al., Imaging of the Corneal Subbasal Whorl-like Nerve Plexus: More Accurate Depiction of the Extent of Corneal Nerve Damage in Patients With Diabetes, Investigative Opthalmology & Visual Science, vol.56, issue.9, p.5417, 2015.

Y. Komai and T. Ushiki, The three-dimensional organization of collagen fibrils in the human cornea and sclera, Investigative Ophthalmology Visual Science, vol.32, issue.8, pp.2244-2258, 1991.

D. M. Maurice, The structure and transparency of the cornea, The Journal of Physiology, vol.136, issue.2, pp.263-286, 1957.

J. V. Jester, Corneal crystallins and the development of cellular transparency, Seminars in Cell & Developmental Biology, vol.19, issue.2, pp.82-93, 2008.

W. S. Holt and J. H. Kinoshita, The soluble proteins of the bovine cornea, Invest Ophthalmol, vol.12, issue.2, pp.114-140, 1973.

T. Kuwabara, H. Cil_10944, and . Sapiens,

T. Zheng, Q. Le, J. Hong, and J. Xu, Comparison of human corneal cell density by age and corneal location: an in vivo confocal microscopy study, BMC Ophthalmology, vol.16, issue.1, 2016.

J. Amann, P. Glenn, S. Holley, H. F. Lee, and . Edelhauser, Increased endothelial cell density in the paracentral and peripheral regionsof the human cornea, American Journal of Ophthalmology, vol.135, issue.5, pp.584-590, 2003.

K. Ilene and . Gipson, The epithelial basement membrane zone of the limbus, Eye, vol.3, issue.2, pp.132-140, 1989.

M. Goldberg and A. Bron, Limbal palisades of vogt, Transactions of the American Ophthalmological Society, vol.80, pp.155-71, 1982.

K. Bizheva, B. Tan, B. Maclellan, Z. Hosseinaee, E. Mason et al., In-vivo imaging of the palisades of Vogt and the limbal crypts with sub-micrometer axial resolution optical coherence tomography, Biomedical Optics Express, vol.8, issue.9, p.4141, 2017.

V. Dipika, T. Patel, C. N. Sherwin, and . Mcghee, Laser Scanning In Vivo Confocal Microscopy of the Normal Human Corneoscleral Limbus. Investigative Opthalmology & Visual Science, vol.47, p.2823, 2006.

D. Pascolini and S. P. Mariotti, Global estimates of visual impairment, British Journal of Ophthalmology, vol.96, issue.5, pp.614-618, 2010.

J. P. Whitcher and M. P. Upadhyay, Corneal blindness: a global perspective, Bulletin of the World Health Organization : the International Journal of Public Health, vol.79, issue.3, pp.214-221, 2001.

, Universal eye health: a global action plan, 2013.

J. P. Guillon, Non-invasive Tearscope Plus routine for contact lens fitting, Contact Lens & Anterior Eye: The Journal of the British Contact Lens Association, vol.21, issue.1, pp.31-40, 1998.

J. Zhang and D. V. Patel, The pathophysiology of Fuchs' endothelial dystrophy -A review of molecular and cellular insights, Experimental Eye Research, vol.130, pp.97-105, 2015.

, Clinical Infectious Disease, 2015.

J. R. Nicholas, R. Maycock, and . Jayaswal, Update on Acanthamoeba Keratitis: Diagnosis, Treatment, and Outcomes, Cornea, vol.35, issue.5, pp.713-720, 2016.

K. Winchester, W. Mathers, J. Sutphin, and T. Daley, Diagnosis of Acanthamoeba Keratitis In Vivo with Confocal Microscopy, Cornea, vol.14, issue.1, pp.10-17, 1995.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl et al., Anterior segment optical coherence tomography, Progress in Retinal and Eye Research, vol.66, pp.132-156, 2018.

H. Yip and E. Chan, Optical coherence tomography imaging in keratoconus, Clinical and Experimental Optometry, vol.102, issue.3, pp.218-223, 2019.

. Keratoconus,

, IDF diabetes atlas -2017 Atlas

N. Papanas and D. Ziegler, Corneal confocal microscopy: Recent progress in the evaluation of diabetic neuropathy, Journal of Diabetes Investigation, vol.6, issue.4, pp.381-389, 2015.

R. M. Shtein and B. C. Callaghan, Corneal Confocal Microscopy as a Measure of Diabetic Neuropathy, Diabetes, vol.62, issue.1, pp.25-26, 2013.

M. Nubile, M. Lanzini, A. Miri, A. Pocobelli, R. Calienno et al., In Vivo Confocal Microscopy in Diagnosis of Limbal Stem Cell Deficiency. American Journal of Ophthalmology, vol.155, issue.2, pp.220-232, 2013.

M. L. Berliner, Biomicroscopy of the Eye: Slit Lamp Microscopy of the Living Eye, vol.1, 1943.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications. 2, 2015.

M. Keith, C. Meek, and . Knupp, Corneal structure and transparency, Progress in Retinal and Eye Research, vol.49, pp.1-16, 2015.

Y. Huang and K. M. Meek, Swelling Studies on the Cornea and Sclera: The Effects of pH and Ionic Strength, Biophysical Journal, vol.77, issue.3, pp.1655-1665, 1999.

M. Yanoff and J. S. Duker, Ophthalmology, 2018.

L. Csaba, C. F. Martonyi, R. F. Bahn, and . Meyer, Slit Lamp: Examination and Photography, 2007.

B. Deane, G. Judd, and . Wyszecki, Color in Business, Science, and Industry, 1973.

, Confocal Microscopy -Resolution and Contrast in Confocal Microscopy | Olympus Life Science

W. , M. Petroll, M. Weaver, S. Vaidya, J. P. Mcculley et al., Quantitative 3-Dimensional Corneal Imaging In Vivo Using a Modified HRT-RCM Confocal Microscope, Cornea, vol.32, issue.4, pp.36-43, 2013.

N. Pritchard, K. Edwards, and N. Efron, Non-contact laser-scanning confocal microscopy of the human cornea in vivo, Contact Lens and Anterior Eye, vol.37, issue.1, pp.44-48, 2014.

S. Allgeier, S. Maier, R. Mikut, S. Peschel, K. Reichert et al., Mosaicking the Subbasal Nerve Plexus by Guided Eye Movements, Investigative Opthalmology & Visual Science, vol.55, issue.9, p.6082, 2014.

S. Allgeier, A. Bartschat, S. Bohn, S. Peschel, K. Reichert et al., 3d confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus, Scientific Reports, vol.8, issue.1, 2018.

S. Bohn, K. Sperlich, S. Allgeier, A. Bartschat, R. Prakasam et al., Cellular in vivo 3d imaging of the cornea by confocal laser scanning microscopy, Biomedical Optics Express, vol.9, issue.6, p.2511, 2018.

S. Bohn, K. Sperlich, H. Stolz, R. F. Guthoff, and O. Stachs, In vivo corneal confocal microscopy aided by optical coherence tomography. Biomedical Optics Express, vol.10, issue.5, p.2580, 2019.

W. Drexler, G. James, and . Fujimoto, Optical coherence tomography: Technology and applications, 2015.

J. A. Izatt, Micrometer-Scale Resolution Imaging of the Anterior Eye In Vivo With Optical Coherence Tomography, Archives of Ophthalmology, vol.112, issue.12, p.1584, 1994.

F. Roger, D. Steinert, and . Huang, Anterior Segment Optical Coherence Tomography, 2008.

C. Robert, S. Youngquist, D. E. Carr, and . Davies, Optical coherence-domain reflectometry: a new optical evaluation technique, Optics Letters, vol.12, issue.3, p.158, 1987.

K. Takada, I. Yokohama, K. Chida, and J. Noda, New measurement system for fault location in optical waveguide devices based on an interferometric technique, Applied Optics, vol.26, issue.9, p.1603, 1987.

A. F. Fercher, K. Mengedoht, and W. Werner, Eye-length measurement by interferometry with partially coherent light, Optics Letters, vol.13, issue.3, p.186, 1988.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography, Journal of Biomedical Optics, vol.7, issue.3, p.457, 2002.

F. Johannes, B. De-boer, B. Cense, M. C. Park, G. J. Pierce et al., Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography, Optics Letters, vol.28, issue.21, p.2067, 2003.

M. Choma, M. Sarunic, C. Yang, and J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Optics Express, vol.11, issue.18, p.2183, 2003.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source, Optics Letters, vol.22, issue.5, p.340, 1997.

M. René, S. Werkmeister, D. Sapeta, G. Schmidl, G. Garhöfer et al., Ultrahigh-resolution OCT imaging of the human cornea, Anca Pantalon, Harminder Dua, and Leopold Schmetterer, vol.8, p.1221, 2017.

B. Tan, Z. Hosseinaee, L. Han, O. Kralj, L. Sorbara et al., 250 kHz, 1,5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea, Biomedical Optics Express, vol.9, issue.12, p.6569, 2018.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag et al., Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera, Optics Express, vol.17, issue.6, p.4842, 2009.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu et al., Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers, Biomedical Optics Express, vol.3, issue.11, p.2733, 2012.

L. Ginner, T. Schmoll, A. Kumar, M. Salas, N. Pricoupenko et al., Holographic line field en-face OCT with digital adaptive optics in the retina in vivo, Biomedical Optics Express, vol.9, issue.2, p.472, 2018.

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel et al., Off-axis reference beam for full-field swept-source OCT and holoscopy, Optics Express, vol.25, issue.22, p.27770, 2017.

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke et al., In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography, Optics Letters, vol.41, issue.21, p.4987, 2016.

P. Xiao, K. Viacheslav-mazlin, J. Grieve, M. Sahel, A. C. Fink et al., In vivo high-resolution human retinal imaging with wavefrontcorrectionless full-field OCT, Optica, vol.5, issue.4, p.409, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01788875

. Anterion--multimodal, Imaging Platform Optimized for the Anterior Segment | Heidelberg Engineering

M. René, A. Werkmeister, S. Alex, A. Kaya, B. Unterhuber et al., Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography, Investigative Opthalmology & Visual Science, vol.54, issue.8, p.5578, 2013.

K. Bizheva, B. Tan, B. Maclelan, O. Kralj, M. Hajialamdari et al., Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas, Biomedical Optics Express, vol.8, issue.2, p.800, 2017.

M. Gora, K. Karnowski, M. Szkulmowski, J. Bartlomiej, R. Kaluzny et al., Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range, Optics Express, vol.17, issue.17, p.14880, 2009.

E. Auksorius and C. Boccara, Dark-field full-field optical coherence tomography, Optics letters, vol.40, issue.14, pp.3272-3275, 2015.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink et al., Smart optical coherence tomography for ultra-deep imaging through highly scattering media, Science Advances, vol.2, issue.11, p.1600370, 2016.

A. Dubois, Handbook of full-field optical coherence microscopy: technology and applications, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758479

W. Ghouali, K. Grieve, S. Bellefqih, O. Sandali, F. Harms et al., Full-Field Optical Coherence Tomography of Human Donor and Pathological Corneas, Current Eye Research, vol.40, issue.5, pp.526-534, 2015.

J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao et al., Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field OCT, Biomedical Optics Express, vol.10, issue.2, p.731, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02024973

J. Scholler, Dynamic Full Field OCT
URL : https://hal.archives-ouvertes.fr/hal-02024973

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel et al., In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography, Optics Express, vol.13, issue.16, p.6286, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00533146

J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, vol.82, pp.518-529, 2015.

Q. Tseng, E. Duchemin-pelletier, A. Deshiere, M. Balland, H. Guillou et al., Spatial organization of the extracellular matrix regulates cell-cell junction positioning, Proceedings of the National Academy of Sciences, vol.109, issue.5, pp.1506-1511, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00673247

S. Labiau, G. David, S. Gigan, and A. C. Boccara, Defocus test and defocus correction in full-field optical coherence tomography, Optics Letters, vol.34, issue.10, p.1576, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00448239

K. Grieve, D. Ghoubay, C. Georgeon, G. Latour, A. Nahas et al., Stromal striae: a new insight into corneal physiology and mechanics, Scientific Reports, vol.7, issue.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01630007

J. Roy-de-kinkelder, D. J. Kalkman, O. Faber, P. H. Schraa, F. D. Kok et al., Heartbeat-Induced Axial Motion Artifacts in Optical Coherence Tomography Measurements of the Retina, Investigative Opthalmology & Visual Science, vol.52, issue.6, p.3908, 2011.

V. Dipika, C. N. Patel, and . Mcghee, Mapping of the Normal Human Corneal Sub-Basal Nerve Plexus by In Vivo Laser Scanning Confocal Microscopy, Investigative Opthalmology & Visual Science, vol.46, issue.12, p.4485, 2005.

B. Simmons-shaheen, M. Bakir, and S. Jain, Corneal nerves in health and disease, Survey of Ophthalmology, vol.59, issue.3, pp.263-285, 2014.

E. Meijering, M. Jacob, J. F. Sarria, P. Steiner, H. Hirling et al., Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images, Cytometry, vol.58, issue.2, pp.167-176, 2004.

A. Cruzat, D. Pavan-langston, and P. Hamrah, In Vivo Confocal Microscopy of Corneal Nerves: Analysis and Clinical Correlation, Seminars in Ophthalmology, vol.25, issue.5-6, pp.171-177, 2010.

E. Bernard, . Mccarey, F. Henry, M. Edelhauser, and . Lynn, Review of Corneal Endothelial Specular Microscopy for FDA Clinical Trials of Refractive Procedures, Surgical Devices, and New Intraocular Drugs and Solutions, vol.27, pp.1-16, 2008.

A. Khan, S. Kamran, N. Akhtar, G. Ponirakis, H. Al-muhannadi et al., Muhammad Faisal Wadiwala, Ashfaq Shuaib, and Rayaz A. Malik. Corneal Confocal Microscopy detects a Reduction in Corneal Endothelial Cells and Nerve Fibres in Patients with, Acute Ischemic Stroke. Scientific Reports, vol.8, issue.1, 2018.

A. Vogt and R. Heydt, Atlas of the Slitlamp-Microscopy of the Living Eye, 1921.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua et al., Three-dimensional structure of the mammalian limbal stem cell niche, Experimental Eye Research, vol.140, pp.75-84, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01191771

X. Shu, J. Wang, and L. Hu, A review of functional slit lamp biomicroscopy, Eye and Vision, vol.6, issue.1, p.15, 2019.

T. Akagi, A. Uji, A. S. Huang, R. N. Weinreb, T. Yamada et al., Conjunctival and Intrascleral Vasculatures Assessed Using Anterior Segment Optical Coherence Tomography Angiography in Normal Eyes, American Journal of Ophthalmology, vol.196, pp.1-9, 2018.

R. Poddar, J. Robert, D. E. Zawadzki, . Cortés, J. Mark et al., In vivo volumetric depth-resolved vasculature imaging of human limbus and sclera with 1 µ m swept source phase-variance optical coherence angiography, Journal of Optics, vol.17, issue.6, p.65301, 2015.

T. Inomata, M. Iwagami, Y. Hiratsuka, K. Fujimoto, Y. Okumura et al., Maximum blink interval is associated with tear film breakup time: A new simple, screening test for dry eye disease, Scientific Reports, vol.8, issue.1, 2018.

. Owens and J. Phillips, Spreading of the tears after a blink: velocity and stabilization time in healthy eyes, Cornea, vol.20, pp.484-487, 2001.

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik et al., Multi-MHz retinal OCT, Biomedical Optics Express, vol.4, issue.10, p.1890, 2013.

R. Munson and D. F. Young, Fundamentals of fluid mechanics, 1990.

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, Quantitative assessment of conjunctival microvascular circulation of the human eye, Microvascular Research, vol.79, issue.2, pp.109-113, 2010.

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-colón et al., Vessel Sampling and Blood Flow Velocity Distribution With Vessel Diameter for Characterizing the Human Bulbar Conjunctival Microvasculature, Science & Clinical Practice, vol.42, issue.2, pp.135-140, 2016.

A. Wartak, R. Haindl, W. Trasischker, B. Baumann, M. Pircher et al., Active-passive path-length encoded (APPLE) Doppler OCT, Biomedical Optics Express, vol.7, issue.12, p.5233, 2016.

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography, Optics Letters, vol.32, issue.5, p.506, 2007.

P. Aydin, A. Yonca, S. Akova, and . Kadayifçilar, Anterior segment indocyanine green angiography in scleral inflammation, Eye, vol.14, issue.2, pp.211-215, 2000.

B. Sebastian and P. S. Dittrich, Microfluidics to Mimic Blood Flow in Health and Disease, Annual Review of Fluid Mechanics, vol.50, issue.1, pp.483-504, 2018.

J. Németh, High-speed videotopographic measurement of tear film build-up time, Invest Ophthalmol Vis Sci, issue.43, pp.1783-1790, 2002.

P. Xiao, M. Fink, and C. Boccara, Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations, Optics letters, vol.41, issue.17, pp.3920-3923, 2016.

, ISO 15004-2:2007 -Ophthalmic instruments -Fundamental requirements and test methods -Part 2: Light hazard protection

, ISO 15004-1:2006 -Ophthalmic instruments -Fundamental requirements and test methods -Part 1: General requirements applicable to all ophthalmic instruments

. Iso/tr, Ophthalmic instruments -Background for light hazard specification in ophthalmic instrument standards, 2007.

, Bliblio.bib