, Pour conclure, l'atout principal des systèmes expérimentaux conçus au cours de cette thèse est la possibilité d'obtenir des données quantitatives permettant de caractériser la perméabilité d'une membrane huileuse. Quant à l'aspect puce microfluidique, il offre une ouverture intéressante sur l, ces derniers

P. G. De-gennes, F. Brochard-wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, 2004.

J. B. Fournier and A. M. Cazabat, EuroPhys. lett, vol.20, issue.6, p.517, 1992.

J. Eggers and E. Villermaux, Rep. Prog. Phys, vol.71, issue.3, p.36601, 2008.

, J. Roof, Soc. Petrol. Engin. J, vol.10, p.85, 1970.

R. Lenormand, C. Zarcone, and A. Sarr, J. Fluid Mech, vol.135, p.337, 1983.

T. Nakashima, M. Shimizu, and M. Kukizaki, Adv. Drug Delivery Rev, vol.45, issue.1, p.47, 2000.

S. M. Joscelyne and G. Tragardh, J. Membr. Sci, vol.169, issue.1, p.107, 2000.

G. T. Vladisavljevic and R. A. Williams, Adv. Colloid Interface Sci, vol.113, issue.1, p.1, 2005.

T. Kawakatsu, Y. Kikuchi, and M. Nakajima, J. Am. Oil Chem. Soc, vol.74, issue.3, p.317, 1997.

G. T. Vladisavljevic, I. Kobayashi, and M. Nakajima, Microfluid. Nanofluid, vol.13, issue.1, p.151, 2012.

I. Kobayashi, M. Nakajima, K. Chun, Y. Kikuchi, and H. Fukita, AIChE J, vol.48, issue.8, p.1639, 2002.

C. Priest, S. Herminghaus, and R. Seemann, Appl. Phys. Lett, vol.89, issue.13, p.134101, 2006.

F. Malloggi, N. Pannacci, R. Attia, F. Monti, P. Mary et al., Langmuir, vol.26, issue.4, p.2369, 2010.

R. Dangla, S. C. Kayi, and C. N. Baroud, Proc. Natl. Acad. Sci. USA, vol.110, issue.3, p.853, 2013.

K. Van-dijke, G. Veldhuis, K. Schroen, and R. Boom, Lab Chip, vol.9, p.2824, 2009.

E. Amstad, M. Chemama, M. Eggersdorfer, L. R. Arriaga, M. P. Brenner et al., Lab Chip, vol.16, issue.21, p.4163, 2016.

A. G. Håti, T. R. Szymborski, M. Steinacher, and E. Amstad, Lab Chip, vol.18, issue.4, p.648, 2018.

N. Mittal, C. Cohen, J. Bibette, and N. Bremond, Phys. Fluids, vol.26, issue.8, p.82109, 2014.

I. Kobayashi, Y. Wada, K. Uemura, M. Nakajima, and M. , Nanofluid, vol.8, issue.2, p.255, 2010.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell et al., Angew. Chem., Int. Ed, vol.49, issue.34, p.5846, 2010.

J. Wang, J. Wang, and J. Han, Small, vol.7, issue.13, p.1728, 2011.

P. Gonzalez-tello, F. Camacho, and G. Blazquez, J. Chem. Eng. Data, vol.39, issue.3, p.611, 1994.

C. Cohen, R. Giles, V. Sergeyeva, N. Mittal, P. Tabeling et al., Microfluid. Nanofluid, vol.17, issue.5, p.959, 2014.

T. Kawakatsu, G. Tragardh, C. Tragardh, M. Nakajima, N. Oda et al., Colloids Surf., A, vol.179, issue.1, p.29, 2001.

M. L. Eggersdorfer, H. Seybold, A. Ofner, D. A. Weitz, and A. Studart, Proc. Natl. Acad. Sci, vol.115, p.9479, 2018.

K. Schroën, M. Ferrando, S. De-lamo-castellví, S. Sahin, and C. Güell, Membranes, vol.6, issue.2, p.26, 2016.

C. W. Park and G. M. Homsy, J. Fluid Mech, vol.139, p.291, 1984.

P. Garstecki, H. A. Stone, and G. M. Whitesides, Phys. Rev. Lett, vol.94, issue.16, p.164501, 2005.

B. Dollet, W. Van-hoeve, J. P. Raven, P. Marmottant, and M. Versluis, Phys. Rev. Lett, vol.100, issue.3, p.34504, 2008.

R. Dangla, E. Fradet, Y. Lopez, and C. N. Baroud, J. Phys. D: Appl. Phys, vol.46, issue.11, p.114003, 2013.

L. L. Shui, A. Van-den, and J. C. Berg, Eijkel, Microfluid. Nanofluid, vol.11, issue.1, p.87, 2011.

K. Van-dijke, I. Kobayashi, K. Schroen, K. Uemura, M. Nakajima et al., Microfluid. Nanofluid, vol.9, issue.1, p.77, 2010.

Z. Li, A. M. Leshansky, L. M. Pismen, and P. Tabeling, Lab Chip, vol.15, issue.4, p.1023, 2015.

S. Barkley, E. R. Weeks, and K. Dalnoki-veress, Eur. Phys. J. E, vol.38, issue.12, p.138, 2015.

S. Barkley, S. J. Scarfe, E. R. Weeks, and K. Dalnoki-veress, Soft Matter, vol.12, issue.35, p.7398, 2016.

C. Clanet and J. C. Lasheras, J. Fluid Mech, vol.383, p.307, 1999.

H. Mahani, T. Sorop, D. J. Ligthelm, D. Brooks, P. Vledder et al., Analysis of field responses to low-salinity waterflooding in secondary and tertiary mode in Syria, SPE EUROPEC/EAGE Annual Conference and Exhibition, 2011.

P. P. Jadhunandan and N. Morrow, Spontaneous imbibition of water by crude oil/brine/rock systems, 1991.

P. P. Jadhunandan, N. R. Morrow, and P. Recovery, Effect of Wettability on Waterflood Recovery for Crude-Oil/Brine/Rock Systems, SPE Reservoir Engineering, vol.10, issue.01, pp.40-46, 1995.

G. Q. Tang and N. R. Morrow, Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery, Journal of Petroleum Science and Engineering, vol.24, issue.2-4, pp.99-111, 1999.

J. C. Seccombe, A. Lager, K. J. Webb, G. Jerauld, and E. Fueg, Improving Wateflood Recovery : LoSalTM EOR Field Evaluation, SPE Symposium on Improved Oil Recovery, pp.1-19, 2008.

P. Mcguire, J. Chatham, F. Paskvan, D. Sommer, and F. Carini, Low Salinity Oil Recovery : An Exciting New EOR Opportunity for Alaska&apos ;s North Slope, SPE Western Regional Meeting, pp.1-15, 2005.

A. Lager, K. J. Webb, C. J. Black, M. Singleton, and K. S. Sorbie, Low Salinity Oil Recovery -an Experimental Investigation, Petrophysics, vol.49, pp.1-12, 2006.

K. S. Sorbie and I. Collins, A Proposed Pore-Scale Mechanism for How Low Salinity Waterflooding Works, SPE Improved Oil Recovery Symposium, 2010.

J. Buckley, Y. Liu, and S. Monsterleet, Mechanisms of Wetting Alteration by Crude Oils, SPE Journal, vol.3, pp.54-61, 1998.

R. A. Nasralla, M. A. Bataweel, and H. A. Nasr-el-din, Investigation of Wettability Alteration by Low Salinity Water, 2011.

K. Sandengen, A. Kristoffersen, K. Melhuus, and L. O. Jøsang, Osmosis as Mechanism for Low-Salinity Enhanced Oil Recovery, SPE Journal, vol.21, issue.04, pp.1227-1235, 2016.

;. S. Bibliographie, A. U. Fredriksen, M. A. Rognmo, and . Fernø, Pore-scale mechanisms during low salinity waterflooding : Oil mobilization by diffusion and osmosis, Journal of Petroleum Science and Engineering, pp.1-11, 2017.

B. Cabane and S. Henon, Liquides : solutions, dispersions, émulsions, gels, 2007.

K. H. Jensen, J. Lee, T. Bohr, H. Bruus, N. M. Holbrook et al., Optimality of the Münch mechanism for translocation of sugars in plants, Journal of the Royal Society Interface, vol.8, issue.61, pp.1155-1165, 2011.

T. Y. Cath, A. E. Childress, and M. Elimelech, Forward osmosis : Principles, applications, and recent developments, Journal of Membrane Science, vol.281, issue.1-2, pp.70-87, 2006.

P. G. Saffman and G. Taylor, The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid, Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.245, pp.312-329, 1958.

R. Lenormand, C. Zarcone, and A. Sarr, Mechanisms of the displacement of one fluid by another in a network of capillary ducts, Journal of Fluid Mechanics, vol.135, pp.337-353, 1983.

J. Chen and D. Wilkinson, Pore-Scale Viscous Fingering in Porous Media, Physical Review Letters, vol.55, issue.18, 1985.

S. A. Setu, I. Zacharoudiou, G. J. Davies, D. Bartolo, S. Moulinet et al., Viscous fingering at ultralow interfacial tension, The Royal Society of Chemistry, pp.1-7, 2010.

B. Levaché and D. Bartolo, Revisiting the Saffman-Taylor experiment : Imbibition patterns and liquid-entrainment transitions, Physical Review Letters, vol.113, issue.4, pp.1-5, 2014.

C. Cottin, H. Bodiguel, and A. Colin, Influence of wetting conditions on drainage in porous media : A microfluidic study, Physical Review E, vol.84, issue.2, pp.1-8, 2011.

D. E. Tognisso, Ecoulements de fluides complexes en milieu poreux : Utilisation de Micelles Géantes pour la Récupération Améliorée du Pétrole, 2011.

G. Tang and N. Morrow, Salinity, Temperature, Oil Composition, and Oil Recovery by Waterflooding, SPE Reservoir Engineering, vol.12, issue.04, pp.269-276, 1997.

Z. Hua, M. Li, X. Ni, H. Wang, Z. Yang et al., Effect of injection brine composition on wettability and oil recovery in sandstone reservoirs, Fuel, vol.182, pp.687-695, 2016.

N. Morrow and J. Buckley, Improved Oil Recovery by Low-Salinity Waterflooding, Journal of Petroleum Technology, vol.63, issue.05, pp.106-112, 2011.

J. J. Sheng, Critical review of low-salinity waterflooding, Journal of Petroleum Science and Engineering, vol.120, pp.216-224, 2014.

M. D. Jackson, J. Vinogradov, G. Hamon, and M. Chamerois, Evidence, mechanisms and improved understanding of controlled salinity waterflooding part 1 : Sandstones, Fuel, vol.185, pp.772-793, 2016.

A. Lager and K. Webb, Impact of brine chemistry on oil recovery, Symposium, CJJ Black -IOR, 2007.

Y. Zhang and N. R. Morrow, Comparison of Secondary and Tertiary Recovery With Change in Injection Brine Composition for Crude-Oil/Sandstone Combinations, SPE/DOE Symposium on Improved Oil Recovery, 2006.

H. Pu, X. Xie, P. Yin, and N. R. Morrow, Application of Coalbed Methane Water to Oil Recovery by Low Salinity Waterflooding, SPE Symposium on Improved Oil Recovery, issue.1, pp.1-11, 2008.

B. Soraya, C. Malick, C. Philippe, H. J. Bertin, and G. Hamon, Oil Recovery by Low-Salinity Brine Injection : Laboratory Results on Outcrop and Reservoir Cores, SPE Annual Technical Conference and Exhibition, 2005.

T. Hassenkam, A. C. Mitchell, C. S. Pedersen, L. L. Skovbjerg, N. Bovet et al., The low salinity effect observed on sandstone model surfaces, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.403, pp.79-86, 2012.

Y. K. Suman, Evalutation of low saline "Smart Water" enhanced oil recovery in light oil reservoirs, 2014.

, The Theory and Practice of Pharmaceutical Technology|Digital Textbook Library

K. K. Mohan, R. N. Vaidya, M. G. Reed, and H. S. Fogler, Water sensitivity of sandstones containing swelling and non-swelling clays, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.73, issue.C, pp.237-254, 1993.

T. Austad, Water-Based EOR in Carbonates and Sandstones : New Chemical Understanding of the EOR Potential Using "Smart Water, 2013.

T. S. Arnason and R. G. Keil, Adsorption of marine pore water organic matter to montmorillonite, Marine Chemistry, vol.71, pp.309-320, 2000.

T. Underwood, V. Erastova, P. Cubillas, and H. C. Greenwell, Molecular dynamic simulations of montmorillonite organic interactions under varying salinity : An insight into enhanced oil recovery, Journal of Physical Chemistry C, vol.119, issue.13, pp.7282-7294, 2015.

D. N. Rao, Wettability Effects in Thermal Recovery Operations, SPE Reservoir Evaluation & Engineering, vol.2, issue.05, pp.420-430, 1999.

R. A. Nasralla, M. A. Bataweel, and H. A. , Investigation of wettability alteration and oil-recovery improvement by low-salinity water in sandstone rock, Journal of Canadian Petroleum Technology, vol.52, issue.2, pp.144-154, 2013.

A. Y. Zekri, M. S. Nasr, and Z. I. Al-arabai, Effect of LoSal on Wettability and Oil Recovery of Carbonate and Sandstone Formation, International Petroleum Technology Conference, International Petroleum Technology Conference, 2011.

. Bibliographie,

C. Drummond and J. Israelachvili, Fundamental studies of crude oil-surface water interactions and its relationship to reservoir wettability, Journal of Petroleum Science and Engineering, vol.45, issue.1-2, pp.61-81, 2004.

W. Bartels, H. Mahani, S. Berg, R. Menezes, J. A. Van-der-hoeven et al., Oil Configuration Under High-Salinity and Low-Salinity Conditions at Pore Scale : A Parametric Investigation by Use of a Single-Channel Micromodel, SPE Journal, pp.1-12, 2017.

K. Sandengen and O. Arntzen, Osmosis During Low Salinity Water Flooding, 2013.

P. Guiraldenq, Diffusion dans les métaux. Editions T.I. | Techniques de l'Ingénieur, 1994.

J. Crank, The mathematics of diffusion, 1975.

E. Cussier, Diffusion : Mass Transfer in Fluid Systems, 2007.

V. Vitagliano and P. A. Lyons, Diffusion Coefficients for Aqueous Solutions of Sodium Chloride and, vol.78, pp.1549-1552, 1956.

J. H. Van't-hoff, The role of osmotic pressure in the analogy between solutions and gases, Z. Phys. Chem, vol.1, pp.481-508, 1887.

J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh et al., Self-Motile Colloidal Particles : From Directed Propulsion to Random Walk, Physical Review Letters, vol.99, issue.4, pp.8-11, 2007.

B. Sabass and U. Seifert, Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer, Journal of Chemical Physics, vol.136, issue.6, pp.1-16, 2012.

J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin, Living crystals of light-activated colloidal surfers, Science, vol.339, issue.6122, pp.936-940, 2013.

A. Reinmüller, H. J. Schöpe, and T. Palberg, Self-organized cooperative swimming at low reynolds numbers, Langmuir, vol.29, issue.6, pp.1738-1742, 2013.

J. L. Anderson, Colloid transport by interfacial forces, 1989.

J. L. Anderson and D. Prieve, Migration of Colloidal Particles in Gradients of Solute Concentration, Sep Purif Rev, vol.13, pp.67-103, 1984.

D. C. Prieve and R. Roman, Diffusiophoresis of a Rigid Sphere through a Viscous Electrolyte Solution, J Chem Soc, vol.83, issue.8, pp.1287-1306, 1987.

B. Abécassis, C. Cottin-bizonne, C. Ybert, A. Ajdari, and L. Bocquet, Boosting migration of large particles by solute contrasts, Nature Materials, vol.7, issue.10, pp.785-789, 2008.

C. N. Baroud, F. Gallaire, and R. Dangla, Dynamics of microfluidic droplets, Lab on a Chip, vol.10, issue.16, pp.2032-2045, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01020657

C. C. Maass, C. Krüger, S. Herminghaus, C. Bahr, C. Kr et al., Swimming Droplets, Annual Review of Condensed Matter Physics, vol.7, issue.1, pp.171-193, 2016.

A. Kar, T. Chiang, I. O. Rivera, A. Sen, and D. Velegol, Enhanced Transport into and out of Dead-End Pores, ACS Nano, vol.9, 2015.

P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics, 1995.

R. Shimizu and H. Tanaka, A novel coarsening mechanism of droplets in immiscible fluid mixtures, Nature Communications, vol.6, pp.1-11, 2015.

I. Lifshitz and V. Slyozov, The kinetics of precipitation from supersatured solid solutions, J. Phys. Chem. Solids, vol.19, issue.1, pp.35-50, 1961.

V. C. Wagner, Theorie der Alterung von Niederschliigen durch Umlosen, Bd, vol.65, issue.7, 1961.

P. Voorhees, Ostwald ripening of two-phase mixtures, Annu. Rev. Maler. Sci, vol.22, pp.197-215, 1992.

E. D. Siggia, Late stages of spinodal decomposition in binary mixtures, Physical Review, vol.20, issue.2, 1979.

A. J. Bray, Theory of phase-ordering kinetics, Advances in Physics, vol.43, pp.357-459, 1994.

A. Onuki, Phase Transition Dynamics, 2002.

K. J. Lissant, Emulsification and Demulsification -Historical Overview, Colloids and Surfaces, vol.29, pp.1-5, 1988.

A. J. Webster and M. E. Cates, Stabilization of Emulsions by Trapped Species, Langmuir, vol.14, issue.8, pp.2068-2079, 1998.

A. Kabalnov, K. Makarov, A. Pertzov, and E. Shchukin, Ostwald Ripening in Emulsions, Journal of Colloid and Interface Science, vol.138, issue.1, pp.98-104, 1990.

F. Leal-calderon, V. Schmitt, and J. Bibette, Emulsion science : basic principles, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00801651

Y. Skhiri, P. Gruner, B. Semin, Q. Brosseau, D. Pekin et al.,

V. Griffiths, J. C. Taly, and . Baret, Dynamics of molecular transport by surfactants in emulsions, Soft Matter, vol.8, issue.41, pp.10618-10627, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02148774

P. M. Short and T. Rhodes, Effect of Nonionic Surfactants on the Transport of Testosterone across a Cellulose Acetate Membrane, vol.59, pp.995-998, 1970.

G. E. Amidon, W. I. Higuchi, and N. F. Ho, Theoretical and experimental studies of transport of micelle-solubilized solutes, Journal of Pharmaceutical Sciences, vol.71, issue.1, pp.77-84, 1982.

Ø. Mathisen, O. Schistad, and M. Strand, Role of Osmosis in Biliary NaCl Secretion and Bile Formation, Scandinavian Journal of Gastroenterology, vol.20, issue.8, pp.971-977, 1985.

R. E. Pattle, Production of Electric Power by mixing Fresh and Salt Water in the Hydro-electric Pile, Nature, vol.174, p.660, 1954.

T. Thorsen and T. Holt, The potential for power production from salinity gradients by pressure retarded osmosis, Journal of Membrane Science, vol.335, pp.103-110, 2009.

N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schi, L. A. Hoover et al., Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients, Environmental Science & Technology, pp.4360-4369, 2011.

E. Ottmar, P. Ramón, S. Youba, S. Kristin, M. Patrick et al., IPCC Special Report on renewable Energy Sources and Climate Change Mitigation. Cambridge

K. Gerstandt, K. V. Peinemann, S. E. Skilhagen, T. Thorsen, and T. Holt, Membrane processes in energy supply for an osmotic power plant, Desalination, vol.224, issue.1-3, pp.64-70, 2008.

S. Loeb, Osmotic Power Plants, Science, vol.189, 1975.

S. Loeb, Large-scale power production by pressure-retarded osmosis , using river water and sea water passing through spiral modules, Desalination, vol.143, pp.0-7, 2002.

A. Achilli and A. E. Childress, Pressure retarded osmosis : From the vision of Sidney Loeb to the fi rst prototype installation -Review, DES, vol.261, issue.3, pp.205-211, 2010.

K. Lee, R. Baker, and H. Lonsdale, Membranes for power generation by pressureretarder osmosis, Journal of Membrane Science, vol.8, pp.141-171, 1980.

B. E. Logan and M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, vol.488, issue.7411, pp.313-319, 2012.

J. Su, Q. Yang, J. F. Teo, and T. Chung, Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes, Journal of Membrane Science, vol.355, issue.1-2, pp.36-44, 2010.

S. Zhao, L. Zou, C. Y. Tang, and D. Mulcahy, Recent developments in forward osmosis : Opportunities and challenges, Journal of Membrane Science, vol.396, pp.1-21, 2012.

R. K. Verma, B. Mishra, and S. Garg, Osmotically Controlled Oral Drug Delivery, vol.26, pp.695-708, 2000.

R. K. Verma, S. Arora, and S. Garg, Osmotic Pumps in Drug Delivery, Critical Reviews in Therapeutic Drug Carrier Systems, vol.21, issue.6, pp.477-520, 2004.

V. Malaterre, J. Ogorka, N. Loggia, and R. Gurny, Oral osmotically driven systems : 30 years of development and clinical use, European Journal of Pharmaceutics and Biopharmaceutics, vol.73, issue.3, pp.311-323, 2009.

B. P. Gupta, N. Thakur, N. P. Jain, J. Banweer, and S. Jain, Osmotically Controlled Drug Delivery System with Associated Drugs, vol.13, pp.571-588, 2010.

C. H. Babu, M. P. Rao, and V. R. , Controlled-porosity osmotic pump tablets -An overview, JPRHC, vol.2, issue.1, 2010.

T. Ghosh and A. Ghosh, Drug delivery through osmotic systems -An overview, Journal of Applied Pharmaceutical Science, vol.01, issue.02, pp.38-49, 2011.

A. , ALZET® Osmotic Pumps -Implantable pumps for research

F. Theeuwes and S. Yum, Principles of the Design and Operation of Generic Osmotic Pumps for the Delivery of Semisolid or liquid Drug Formulations, Annals of Biomedical Engineering, vol.4, pp.343-353, 1976.

Y. H. Li and Y. C. Su, Miniature osmotic actuators for controlled maxillofacial distraction osteogenesis, Journal of Micromechanics and Microengineering, vol.20, issue.6, pp.1685-1687, 2010.

T. M. Squires and S. R. Quake, Microfluidics : Fluid physics at the nanoliter scale, Reviews of Modern Physics, vol.77, pp.977-1026, 2005.

R. Daw and J. Finkelstein, Lab-on-a-chip, Nature, vol.442, issue.7101, pp.367-418, 2006.

N. T. Nguyen, S. A. Shaegh, N. Kashaninejad, and D. T. Phan, Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology, 2013.

A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays, Angewandte Chemie -International Edition, vol.46, pp.1318-1320, 2007.

K. Ohno, K. Tachikawa, and A. Manz, Microfluidics : Applications for analytical purposes in chemistry and biochemistry, Electrophoresis, vol.29, pp.4443-4453, 2008.

M. Wu, F. Xiao, R. M. Johnson-paben, S. T. Retterer, X. Yin et al., Single-and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation, Lab Chip, vol.12, pp.253-261, 2012.

G. M. Whitesides and A. D. Stroock, Flexible methods for microfluidics, Physics Today, vol.54, issue.6, p.42, 2001.

R. P. Hertzberg and A. J. Pope, High-throughput screening : new technology for the 21st century, Curr. Opin. Chem. Biol, vol.4, pp.445-451, 2000.

R. F. Service, Miniaturization Puts Chemical Plants Where You Want Them, Science, vol.282, pp.400-400, 1998.

G. F. Christopher and S. L. Anna, Microfluidic methods for generating continuous droplet streams, Journal of Physics D : Applied Physics, vol.40, issue.19, 2007.

N. Bremond, A. R. Thiam, and J. Bibette, Decompressing emulsion droplets favors coalescence, Physical Review Letters, vol.100, issue.2, pp.1-4, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00264516

A. R. Thiam, N. Bremond, and J. Bibette, Breaking of an emulsion under an ac electric field, Physical Review Letters, vol.102, issue.18, pp.1-4, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00401084

A. R. Thiam, N. Bremond, and J. Bibette, From stability to permeability of adhesive emulsion bilayers, Langmuir, vol.28, issue.15, pp.6291-6298, 2012.

J. C. Baret, F. Kleinschmidt, A. E. Harrak, and A. D. Griffiths, Kinetic aspects of emulsion stabilization by surfactants : A microfluidic analysis, Langmuir, vol.25, issue.11, pp.6088-6093, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02148749

N. Bremond, H. Doméjean, and J. Bibette, Propagation of drop coalescence in a two-dimensional emulsion : A route towards phase inversion, Physical Review Letters, vol.106, issue.21, pp.1-4, 2011.

P. Gruner, B. Riechers, B. Semin, J. Lim, A. Johnston et al., Controlling molecular transport in minimal emulsions, Nature Communications, vol.7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01276355

N. K. Karadimitriou and S. M. Hassanizadeh, A Review of Micromodels and Their Use in Two-Phase Flow Studies, Vadose Zone Journal, vol.11, issue.3, p.0, 2012.

V. A. Lifton, Microfluidics : An enabling screening technology for enhanced oil recovery (EOR), Lab on a Chip, vol.16, issue.10, pp.1777-1796, 2016.

C. Cottin, H. Bodiguel, and A. Colin, Drainage in two-dimensional porous media : From capillary fingering to viscous flow, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.82, issue.4, pp.1-10, 2010.

J. Polak, C. Lu, B. C. Lu, and C. Lu, Mutual solubilities of hydrocarbons and water at 0.deg. and 25.deg, Canadian Journal of Chemistry, vol.51, issue.24, pp.4018-4023, 1973.

P. Schatzberg, Solubilities of water in several normal alkanes from C7 to C16, The Journal of Physical Chemistry, vol.67, issue.4, pp.776-779, 1963.

C. Tsonopoulos, Thermodynamic analysis of the mutual solubilities of normal alkanes and water, Fluid Phase Equilibria, vol.156, issue.1-2, pp.21-33, 1999.

C. Tsonopoulos, Thermodynamic analysis of the mutual solubilities of hydrocarbons and water, Fluid Phase Equilibria, vol.186, issue.1-2, pp.185-206, 2001.

J. Hrabe, G. Kaur, and D. N. Guilfoyle, Principles and limitations of NMR diffusion measurements, Journal of medical physics, vol.32, pp.34-42, 2007.

G. Pagès, V. Gilard, R. Martino, and M. Malet-martino, Pulsed-field gradient nuclear magnetic resonance measurements (PFG NMR) for diffusion ordered spectroscopy (DOSY) mapping, Analyst, vol.142, issue.20, pp.3771-3796, 2017.

J. T. Su, P. B. Duncan, A. Momaya, A. Jutila, and D. Needham, The effect of hydrogen bonding on the diffusion of water in n -alkanes and n -alcohols measured with a novel single microdroplet method, Journal of Chemical Physics, vol.132, issue.4, pp.1-8, 2010.

B. J. Neely, J. Wagner, R. L. Robinson, and K. A. Gasem, Mutual solubility measurements of hydrocarbon-water systems containing benzene, toluene, and 3-methylpentane, Journal of Chemical and Engineering Data, vol.53, issue.1, pp.165-174, 2008.

F. P. Lees and P. Sarram, Diffusion Coefficient of Water in Some Organic Liquids, Journal of Chemical and Engineering Data, vol.16, issue.1, pp.41-44, 1971.

J. Ortega, Densities and refractive indices of pure alcohols as a function of temperature, Journal of Chemical and Engineering Data, vol.27, issue.3, pp.312-317, 1982.

B. E. Lang, Solubility of water in octan-1-ol from (275 to 369) K, Journal of Chemical and Engineering Data, vol.57, issue.8, pp.2221-2226, 2012.

J. G. Winkelman, G. N. Kraai, and H. J. Heeres, Fluid Phase Equilibria Binary , ternary and quaternary liquid -liquid equilibria in 1-butanol , oleic acid , water and n -heptane mixtures, vol.284, pp.71-79, 2009.

T. F. Yen and G. V. Chilingar, Asphaltenes and asphalts, vol.1, 1994.

O. C. Mullins, The modified yen model, Energy and Fuels, vol.24, issue.4, pp.2179-2207, 2010.

O. C. Mullins, H. Sabbah, J. Eyssautier, A. E. Pomerantz, L. Barré et al., Advances in asphaltene science and the Yen-Mullins model, Energy and Fuels, vol.26, pp.3986-4003, 2012.

, Pendant drop method -DataPhysics Instruments

J. N. Lee, C. Park, and G. M. Whitesides, Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices, Analytical Chemistry, vol.75, issue.23, pp.6544-6554, 2003.

Z. T. Cygan, J. T. Cabral, K. L. Beers, and E. J. Amis, Microfluidic platform for the generation of organic-phase microreactors, Langmuir, vol.21, issue.8, pp.3629-3634, 2005.

C. Harrison, J. T. Cabral, C. M. Stafford, A. Karim, and E. J. Amis, A rapid prototyping technique for the fabrication of solvent-resistant structures, Journal of Micromechanics and Microengineering, vol.14, issue.1, pp.153-158, 2004.

D. Bartolo, G. Degré, P. Nghe, and V. Studer, Microfluidic stickers, Lab on a Chip, vol.8, issue.2, pp.274-279, 2008.

P. Wu, H. Zhang, A. Nikolov, and D. Wasan, Rise of the main meniscus in rectangular capillaries : Experiments and modeling, Journal of Colloid and Interface Science, vol.461, pp.195-202, 2016.

E. P. Plueddemann, Silane Coupling Agents, 1991.

E. W. Washburn, The dynamics of capillary flow, Physical Review, vol.17, issue.3, pp.273-283, 1921.

W. Lauterborn, D. P. Institut, and U. Gottingen, Cavitation and Coherent Optics, Cavitation and Inhomogeneities in Underwater Acoustics, pp.3-12, 1980.

R. N. Traxler, The Effect of Temperature on Rate of Osmosis, The Journal of Physical Chemistry, vol.32, pp.127-141, 1927.

M. Guizar-sicairos, S. T. Thurman, and J. R. Fienup, Efficient subpixel image registration algorithms, Optics Letters, vol.33, issue.2, pp.156-158, 2008.

B. Levaché, Dynamiques d 'imbibition en milieu confiné, tech. rep, 2014.

A. M. Sereno, M. D. Hubinger, and J. F. Comesana, of Food Engineering -Prediction of water activity of osmotic solutions, ScienceDirect.com -Journal, vol.49, 2001.

K. S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, Journal of Physical Chemistry, vol.77, issue.2, pp.268-277, 1973.

C. Chen, Water Activity -Concentration Models for Solutions of Sugars, Salts and Acids, vol.54, issue.5, pp.1318-1321, 1989.

C. Chen, Predicting Water Activity in Solutions of Mixed Solutes, Journal of Food Science, vol.55, issue.2, pp.494-497, 1990.

R. A. Robinson and R. H. Stokes, Electrolyte solutions, 1965.

R. H. Stokes and R. A. Robinson, Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria, Journal of Physical Chemistry, vol.70, issue.7, pp.2126-2131, 1966.

E. Y. Sheu, M. M. De-tar, D. A. Storm, and S. J. Decanio, Aggregation and kinetics of asphaltenes in organic solvents, Fuel, vol.71, issue.3, pp.299-302, 1991.

S. I. Andersen and K. S. Birdi, Aggregation of asphaltenes as determined by calorimetry, Journal of Colloid And Interface Science, vol.142, issue.2, pp.497-502, 1991.

F. Arteaga-larios, E. Y. Sheu, and E. Pérez, Asphaltene flocculation, precipitation, and Liesegang ring, Energy and Fuels, vol.18, issue.5, pp.1324-1328, 2004.

D. D. Eley, M. J. Hey, and J. D. Symonds, Emulsions of water in asphaltenecontaining oils 1. Droplet size distribution and emulsification rates, Colloids and Surfaces, vol.32, issue.C, pp.87-101, 1988.

C. Shi, L. Zhang, L. Xie, X. Lu, Q. Liu et al., Surface Interaction of Water-in-Oil Emulsion Droplets with Interfacially Active Asphaltenes, Langmuir, vol.33, issue.5, pp.1265-1274, 2017.

S. Bochner-de-araujo, M. Merola, D. Vlassopoulos, and G. G. Fuller, Droplet Coalescence and Spontaneous Emulsification in the Presence of Asphaltene Adsorption, Langmuir, vol.33, issue.40, pp.10501-10510, 2017.

S. I. Andersen, J. M. Del-rio, D. Khvostitchenko, S. Shakir, and C. Lira-galeana, Interaction and solubilization of water by petroleum asphaltenes in organic solution, Langmuir, vol.17, issue.2, pp.307-313, 2001.

L. Peltonen, J. Hirvonen, and J. Yliruusi, The behavior of sorbitan surfactants at the water-oil interface : Straight-chained hydrocarbons from pentane to dodecane as an oil phase, Journal of Colloid and Interface Science, vol.240, issue.1, pp.272-276, 2001.

L. Wen and K. D. Papadopoulos, Effects of surfactants on water transport in W1/O/W2 emulsions, Langmuir, vol.16, issue.20, pp.7612-7617, 2000.

A. Leo, C. Hansch, and D. Elkins, Partition coefficients and their uses, Chemical Reviews, vol.71, issue.6, pp.525-616, 1971.

A. J. Leo, Calculating log Poct Structures, Chem. Rev, vol.93, pp.1281-1306, 1993.

W. Z. Nernst, Über die Verteilung eines Stoffes zwischen zwei Lösunggsmitteln, Phys. Chem, vol.8, pp.110-139, 1891.

R. J. Young, D. V. Green, C. N. Luscombe, and A. P. Hill, Getting physical in drug discovery II : The impact of chromatographic hydrophobicity measurements and aromaticity, Drug Discovery Today, vol.16, issue.17, pp.822-830, 2011.

C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, No Title, Adv. Drug Delivery Rev, vol.64, pp.4-17, 2012.

J. Sangster, Octanol-Water Partition Coefficients of Simple Organic Compounds, J. Phys. Chem. Ref. Data, vol.18, issue.3, 1989.

N. Vladimirova, A. Malagoli, and R. Mauri, Diffusiophoresis of two-dimensional liquid droplets in a phase-separating system, Physical Review E -Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol.60, pp.2037-2044, 1999.

P. B. Petersen and R. J. Saykally, Adsorption of ions to the surface of dilute electrolyte solutions : The Jones-Ray effect revisited, Journal of the American Chemical Society, vol.127, issue.44, pp.15446-15452, 2005.

Y. H. Zhao and M. H. Abraham, Octanol/water partition of ionic species, including 544 cations, Journal of Organic Chemistry, vol.70, issue.7, pp.2633-2640, 2005.

M. F. Mazzobre, M. V. Román, A. F. Mourelle, and H. R. Corti, Octanol-water partition coefficient of glucose, sucrose, and trehalose, Carbohydrate Research, vol.340, issue.6, pp.1207-1211, 2005.

A. E. Kamholz and P. Yager, Theoretical analysis of molecular diffusion in pressuredriven laminar flow in microfluidic channels, Biophysical Journal, vol.80, issue.1, pp.155-160, 2001.

P. Jahromi, J. Karimi-sabet, Y. Amini, and H. Fadaei, Pressure-driven liquid-liquid separation in Y-shaped microfluidic junctions, Chemical Engineering Journal, vol.328, pp.1075-1086, 2017.