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Chapter 1

Introduction

1.1 General overview and context

Energy transition calls for multiple efforts at all levels, involving actions from gov-
ernments, industry, stakeholders and citizens. A low-carbon society has been part
of the public discussion during the last decades, with several historical landmarks,
some more mediatized than others, such as the 1992 United Nations Framework
Convention on Climate Change (UNFCCC), the Kyoto Protocol in 1997, or the the
21st Conference of the Parties (CoP) to the UNFCCC in 2015, held in Paris.

There seems to be a consensus of the parties on the importance of limiting the
temperature rise below 2 degrees Celsius and also on the challenges that this limit
imposes at political, technical and economical levels [1]. To face the challenges of
energy transition, at European authority-level in particular, the European Commis-
sion issued in 2016 the package of measures Clean Energy for All Europeans with
ambitious goals in the areas of energy efficiency and renewable energies, but and
also accounting for fair deals for consumers [2]. To decrease dependency on carbon,
the energy sector must suffer a transformation, in which renewable energy resources
(RES), digitalized/decentralized systems and energy efficiency are key role players.

This transformation and its main drivers are compatible (and dynamically in-
teract) with the concept of smart grids, which has been matter of ample discussion
during the last years in the energy-related specialized literature. Although multiple
definitions for smart grids have been proposed, broadly speaking, it is generally ac-
cepted that a smart grid integrates, at least, the following features: the increasing
presence of Distributed Energy Resources (DER), advanced metering/automation
and multiple-way communication for optimal decision making. The vision of 2050
proposed by The European Technology and Innovation Platform for Smart Net-
works for the Energy Transition (ETIP-SNET), under the EU Horizon 2020 Pro-
gramme [3], also points out that smart energy systems should aim for: protecting
the environment, creating affordable and market-based energy services; and ensure
security, reliability and resilience. In concrete, special attention is drawn towards
the importance of participation of citizens as active consumers. These ideas are
condensed in figure 1.1 by showing an outline of the transition and the differences
with the current state of energy systems.

In order to face these challenges and promote consumers (and their aggregators)
as key role players, multiple research opportunities arise. To mention a few, regula-
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Figure 1.1: Vision 2050 of energy systems by ETIP-SNET. Taken from [2]

tory frameworks and new market designs should be further explored, residential-level
multi-energy systems have to be coordinated and managed, new and improved mon-
itoring and automation systems have to be developed to support decision-making,
new optimization models have to be proposed to exploit end-users capabilities within
these emerging context, forecast and uncertainty models have to be enhanced in or-
der to face decision-making under uncertainty, breakthrough technological advances
have to be made to: a) decrease equipment costs, b) improve energy storage devices
and capabilities, c) increase data-handling capabilities.

This thesis is circumscribed in the field of optimization models to facilitate aggre-
gator’s decision-making processes and scheduling of residential devices for participa-
tion in energy markets. Given the multiple sources of uncertainty, the mathematical
models presented here emphasize on optimization alternatives that can maintain op-
timality and feasibility under uncertainty coming from these sources: energy prices,
local RES production and consumer’s demand.

1.2 Challenges and research opportunities

1.2.1 Motivation

Energy Storage Systems (ESS) and Demand Side Management (DSM) play an im-
portant role to support decisions made by the multiple actors present in power
systems. In the case of Distributed Energy Resources (DER), management of de-
vices is also important to locally offset variation in load or RES, and also to achieve
minimum cost operation. When it comes to Distribution System Operator’s (DSO)
potential opportunities, we can list many technical and economical advantages such
as voltage support, reactive power compensation, congestion management, invest-
ment deferral, loss reduction, among others. In addition, the presence of microgrids
(MG) in lower layers of the distribution grid in the form of aggregated smart build-
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ing/homes or energy communities, makes it possible for active load management and
storage devices to support operational decisions and to increase/decrease profit/cost
when market rules permit trading flexibility services in the wholesale, reserve or lo-
cal markets. Different actors can be involved in the ownership and operation of
the DER, hence, the models and the potential of the multiple services that these
resources can provide need to be explored.

Review [4] points out the lack of a common framework for defining and classifying
flexibility in the new contexts of power systems. In addition, a clear distinction
of the impacts that reliability and flexibility have on power systems should also
be developed accounting also for inclusion of probabilistic flexibility metrics. The
latter, considering that intermittent sources and disturbance are ruled by uncertain
behaviour, and this uncertainty might lead to technical and economical issues.

The existing limitations are logical, given that markets were designed before
the massive penetration of RES and distributed generation. Hence, the redefinition
of responsibilities and roles for retailers, aggregators, Virtual Power Plants (VPP),
MG, and other actors, must be aligned with the current needs and gaps in the
regulation. Moreover, decentralized and coordinated request for flexibility should
be possible for DSOs and Transmission System Operators (TSO).

A distinction between technical and market flexibility is carried out in [5] to con-
clude that flexibility can be used for balancing the system and solving constraints,
and on the other hand, available flexibility can be used by different market players
for maximizing individual portfolios. Authors argue that this scenario can produce
conflict of interests not only among grid owners at different levels, but also among
participating actors. In the concrete case of local flexibility trading, authors high-
light three main directions: 1) taking advantage of current markets (Day-Ahead,
intraday, balancing); 2) creating new and separate markets; and 3) contracting flex-
ibility as a system reserve. At medium-voltage (MV) and low-voltage (LV) levels,
not only ESS are called to play an important role in the flexible grid operation, but
also the aggregation of resources at the building and home level must play an impor-
tant role in portfolio optimization of different actors while providing flexibility [6].

European authorities have highlighted the importance of promoting consumer
participation in energy markets by creating the necessary marketplaces or by remov-
ing market barriers to enable participation of local energy communities [7]. This
stimulation of consumers in order to put them at the center of the energy market
can be done from individual participation standpoints or by aggregated mecha-
nisms. In this context, DSOs are also encouraged to manage challenges imposed by
renewable generation by using local strategies, which is also in line with promoting
coordination frameworks between consumers and DSO. This change of paradigm al-
lows consumers to increase integration of local generation for self consumption and
market participation, so that they become prosumers.

In this thesis, the definition of prosumer is in line with the report of the European
Commission, which defines residential prosumers as consumers that can produce
their own energy, with a focus on onsite generation by means of small-scale solar
PV [8]. It is worth to mention that solar PV is one of the most widespread generation
technologies at the residential level [9].

The current recommendations for enabling prosumers as key players in the en-
ergy transition process, emphasize on promoting storage technologies, consumers’
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engagement with aggregators, empowering them to participate in the electricity
market with adequate remuneration of flexibility. In order to contribute in the
mentioned directions and established priorities by industry and government, new
mathematical models to optimally manage prosumers’ resources and exploit flexi-
bility have to be developed. Given that direct participation of prosumers might not
be possible, aggregators appear as an option to bridge the gap. However, besides
the well-known market barriers depending on the evolution of different regulatory
frameworks, uncertainty has to be accounted for in the new mathematical optimiza-
tion models and also imposes additional complexity to the decision-making process.

In general, the main current challenges can be summarized as follows:

1. Need for development of uncertainty management models in the smart grid
context and specifically for prosumer-oriented emerging frameworks.

2. Analysis of regulation approaches and development of business models to de-
fine appropriate frameworks for integration of prosumers in flexibility aggre-
gation schemes and allow participation in energy markets, ancillary markets
and local flexibility markets.

3. Definition of the devices’ mathematical models into these aggregation schemes
and inclusion of operational costs into decision-making formulations (i.e. bat-
tery energy storage systems) in order to adequately quantify flexibility costs
and remuneration.

1.2.2 Literature review

This literature review aims to identify the high-level research gaps addressed in this
thesis. A more detailed review of these topics is presented in each chapter.

Several research papers have concluded on and recommended the importance of
including uncertainty in a smart grid context [4,10]. For instance, to bid properly in
day-ahead energy markets, some knowledge about the next day’s prices is required to
hedge risk. In addition, uncertainty about both demand and the RES installed at the
residential level can lead to sub-optimal scheduling plans for residential aggregators
due to the imbalances produced by the actual production and load patterns during
the operation day [11, 12]. This risk has to be properly quantified and embedded
in the operation and scheduling of flexibility, and remains an open field of research
due to the complexity of uncertainty modelling and the algorithms required to solve
this type of optimization problems.

One common practice to facilitate these processes is Stochastic Optimization
(SO), which typically aims to determine the optimal solution among a number of
expected predefined scenarios [13]. However, drawbacks of SO include factors such as
the requirements for probabilistic information of uncertain variables, the implemen-
tation of specialized scenario generation and afterwards reduction techniques, and
the computational burden related to large number of scenarios, as also concluded
in [4]. For an adequate modeling of uncertain variables in residential aggregation
applications, advanced scenario auto-correlation analysis for RES and load should
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be conducted to find a coherent set of scenarios. This leads to increasing the com-
plexity and the burden on the pre-processing of the necessary information to build
up the optimization model.

An alternative approach which has gained substantial attention in recent years
is Robust Optimization (RO) [14], which is an interval-based optimization method.
RO does not require knowledge of the Probability Density Function (PDF) of un-
certain variables, but rather requires moderate information, i.e. an uncertainty set
for each uncertain variable. RO provides a robust optimal solution that is feasible
(immunized) within the confidence interval.

Some research has been recently published to exploit RO capabilities for handling
uncertainty in medium-size DER and microgrids. Price uncertainty is modeled
in [15,16], and RES and/or load uncertainty modelling is proposed in [17–22].

Very little work has been published regarding home-level storage management
using RO. Robust management for home appliances is presented in [23] to minimize
electricity bills in a single house and include uncertainty in comfort variables. Re-
garding robust aggregation of storage at the residential level, reference [24] proposes
a scheme for real-time decision-making considering batteries and price uncertainty.
Reference [25] does not include battery aggregation, but instead considers exploita-
tion of thermal storage at the residential level in a 20-household testbed, using RO
to account only for thermal demand uncertainty. Although this research does not
include price or electrical load uncertainty, or RES integration, is does give an in-
teresting insight into the scalability of the proposed model. Reference [26] presents
a community energy management system disregarding batteries, but including PV
and wind power. RO is used to include uncertainty in RES and prices.

One common critique of RO is its over-conservative solutions, given that RO in
its original formulation takes into account all potential deviations of the uncertain
parameters or coefficients. This can be countered by Adjustable Robust Optimiza-
tion (ARO) [27] through the introduction of robust control parameters. In the case
of MV-level MG, limited analysis of control parameters has been proposed. For
the case of residential aggregators, and to the author’s knowledge, research on the
impacts of uncertainty budget is virtually inexistent.

The specialized literature has presented some models for residential aggregation
with RES and storage technologies, in which different objectives are pursued, such
as energy and reserve market participation [28], and definition of billing systems and
incentive mechanisms [29]. Uncertainty was included by means of SO and chance-
constrained method in [28], and Model Predictive Control (MPC) in [29].

Different storage technologies and their coordination can also help provide flex-
ibility and counter uncertainty in scheduling tasks. However, aggregation models
that analyse interactions of thermal and electrochemical storage at the residential
level are not commonly present in the literature. The model proposed in [30] com-
bines thermal and electrical storage for a residential microgrid with the purpose of
shaving demand peak and enhancing the system’s self-sufficiency. The day-ahead
stochastic model in [31] does not include Battery Energy Storage Systems (BESS),
but features electro-thermal storage from a retailer’s perspective. Moreover, sizing
and operation of storage devices in smart buildings is presented in [32], including
electrical and thermal storage. These two types of storage were also modelled in [33]
to analyse cooperative schemes among smart residential buildings. The approach
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in [34] presents a methodology for intraday management of PV and Electric Water
Heaters (EWH) in an LV network, with the EWH acting as a flexible load in order
to achieve minimum operation costs.

From the analysis of the current published research, and up to the author’s
knowledge, optimization models that integrate uncertainty of multiple sources with
residential-based storage, have received little attention in the literature.

When including electrochemical storage, unconstrained cycling patterns can lead
to faster degradation of BESS and loss of life. The aging process of storage de-
vices is complex, and depends on the degradation of active materials due to cycling
and aging of non-active components [35, 36]. Among the aggregation schemes cur-
rently published, few present details of storage cycling characteristics for inclusion
of equivalent degradation costs, in spite of their importance in energy bidding and
scheduling-related problems [37,38].

Although some previous MG management referenced papers include at least one
battery in their respective test systems, none includes the non-linear relation of
DoD to account for impacts on degradation and cycling aging. At most, a simpli-
fied linear cost (function of power charge and discharge) is included in [15, 18, 19].
The proposed models are simplified and neglect DoD vs cycles characteristic, which
presents highly non-linear behaviour and depends on internal chemical reactions
with electrode interfaces. The linear costs in [15,18,19] assume that degradation is
proportional to power charge and discharge, but no further identification of cycles
and the respective DoD is proposed. This can lead to suboptimal bidding strategies
and device schedules. Moreover, references [17,20,21] neglect cycling aging impacts.

Another potential of residential aggregation with storage devices and RES, is
the provision of local flexibility services. Local markets are still an emerging topic
and subject of conceptual discussion. However, aggregators have to be capable of
adjusting device scheduling and energy bids in order to provide these local services
to DSOs or to other third parties requesting flexibility, when price signals are con-
venient. Research that articulates local flexibility and prosumers has emerged in
recent years. One common practice is to directly include local flexibility scheduling
in distribution power flow calculations to solve voltage and congestion issues [39–43]
assuming that the DSO and aggregator form a unique entity, which is able to perform
grid analysis.

Separate local market schemes or services have been proposed to provide upward
or downward regulation [44], transactive models among energy communities [45],
and ramping products [46]. Other studies have also addressed the importance of
managing ramping at the distribution level by smoothing net exchanges [17, 47].
In the case of [17], ramping capabilities are not traded locally but in traditional
wholesale and ancillary markets.

Reference [48] proposes a local energy system in which an aggregator acts as an
intermediate between multi-energy resources and the wholesale market. Although
the aggregation is local, the market interaction takes place with the wholesale market
only, and assumes that local flexibility is traded in this centralized environment.
Similarly [15,49] propose bidding schemes in traditional wholesale markets.
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1.2.3 Identified research gaps

From the previous literature review, the following research gaps are identified:

1. Degradation effects and equivalent cycling aging of BESS can be included in
energy market participation to capture batteries’ aging costs. Most studies
present simplified models of cycling equivalent costs and efforts are mainly
dedicated to the field of electric vehicles.

2. There is a lack of optimization models that holistically integrate the following
features from the aggregator standpoint:

(a) Residential aggregation models to participate in day-ahead markets that
include uncertainty of prices, RES production and demand in a unique
model, are still very scarce in the literature.

(b) Among the published research, few works have studied storage aggrega-
tion along with impacts of uncertainty. The closest studies usually pur-
sue different objectives, such as frequency response services or congestion
management from the DSO’s perspective.

(c) Thermal and electrical storage coordination/aggregation models that con-
sider uncertainty, not only in thermal demand, need to be proposed.
When thermal demand uncertainty is considered, other sources of uncer-
tainty such as prices, electrical demand and RES production, are usually
neglected of partially covered.

3. Exploitation of residential flexibility through aggregation can be used to pro-
vide local flexibility services. Strategic and robust schemes for bidding in both
energy and local emerging markets are still open research interests.

In line with the philosophy of the previous ideas, in this thesis we carried out
research that intends to contribute in areas of interest not only for the academic
community regarding mathematical models and research gaps but also aligned with
recommendations made by European authorities and taking into account current
industry interests.

1.3 Scientific objectives

The objective of this research is to evaluate the benefits and limitations of mathemat-
ical models under uncertainty for aggregators of prosumer’s flexibility participating
in day-ahead energy market and local flexibility markets. The aggregator manages
residential storage devices and RES as sources of flexibility to minimize operational
costs. From the previous general objective, three specific objectives are detailed:

• To include storage-based flexibility at the residential level from the perspec-
tive of an aggregator, taking into account aging and degradation models for
electrochemical storage. Residential storage is composed by thermal and elec-
trochemical storage capabilities installed at the home-level.
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• To include uncertainty from different sources (prices, RES generation, load)
into the mathematical formulation in order to test the solutions performance
for the adequate participation in energy markets.

• To determine the optimal day-ahead schedules that result in cost minimization
for the flexibility aggregator, including traditional energy market and new
schemes for local flexibility provision.

1.4 Main contributions

The main contributions of this thesis are listed below:

1. Two alternatives for including battery’s cycling aging cost are presented. First,
an approach called Storage Disaggregation Algorithm (SDA) based on La-
grangian relaxation and the Rainflow Counting Algorithm (RCA) is presented.
This approach allows decomposing the battery cycling problem solved by the
SDA and the day-ahead scheduling of resources. This problem separation
logic for scheduling resources of an aggregator has never been used by any
previous research in order to solve the resulting scheduling problem including
cycling aging of BESS. Second, explicit modeling of battery cycling cost is
presented by means of special ordered sets. This degradation modeling allows
to capture the non-linear relation between DoD and total life cycling to bid
adequate quantities in the day-ahead markets. This contribution is in line
with challenge 3 and research gap 1, and has lead to support the publications
[CF-1,CF-2,CF-6] detailed in subsection 1.5.

2. A model for optimal operation and coordinated aggregated management of
prosumers’ resources is proposed, which takes into account the following sources
of uncertainty: electrical and thermal demand, PV production and energy
prices. These uncertainties are included in the mathematical model by means
of ARO theory and a methodology is proposed to detect the best robust solu-
tions for day-ahead participation in energy markets based on Pareto-optimality
theory. This approach allows to analyze the performance of multiple robust
day-ahead decisions and select the Pareto front offering solutions with the best
trade-off between cost and risk. In this case, the risk is measured by the stan-
dard deviation after running Monte Carlo simulation for multiple uncertainty
realizations. This contribution is in line with challenges 1,3 and research gap
2, and has lead to support the publications [CF-2,CF-4,CF-5,CF-7,CF-8].

3. A new local flexibility management strategy is proposed, which is based on two
products: 1) flexibility bids in a local market; and 2) local constraint support
for the DSO in the form of maximum allowed net power and net ramping rate.
Numerical results demonstrate that the strategic bidding framework is robust
enough to enable coordinated participation in three different marketplaces (en-
ergy, local flexibility and bilateral trading with DSO) with diverse settlement
mechanisms. This contribution is in line with challenge 2 and research gap 3,
and has lead to support the publications [CF-3,CF-5,CF-8].
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1.5 List of publications

The following publications were developed as a result of this thesis:

Journal Papers

CF-1 Carlos Adrian Correa-Florez, Alexis Gerossier, Andrea Michiorri, Georges
Kariniotakis, “Stochastic operation of home energy management systems in-
cluding battery cycling”, Applied Energy, Volume 225, 2018, Pages 1205-
1218, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2018.04.130. Ref-
erence [50].

www.sciencedirect.com/science/article/pii/S0306261918306597

https://hal-mines-paristech.archives-ouvertes.fr/hal-01809270

CF-2 Carlos Adrian Correa-Florez, Andrea Michiorri, Georges Kariniotakis,
“Robust Optimization for Day-ahead Market Participation of Smart-Home
Aggregators”. Applied Energy, Volume 229, 2018, Pages 433-445, ISSN 0306-
2619, https://doi.org/10.1016/j.apenergy.2018.07.120. Reference [51].

www.sciencedirect.com/science/article/pii/S0306261918311553

https://hal-mines-paristech.archives-ouvertes.fr/hal-01862545

CF-3 Carlos Adrian Correa-Florez, Andrea Michiorri, Georges Kariniotakis,
“Optimal Participation of Residential Aggregators in Energy and Local Flex-
ibility Markets”, under review in IEEE Transactions on Smart Grid.

CF-4 Carlos Adrian Correa-Florez, Andrea Michiorri, Georges Kariniotakis,
“Comparative Analysis of Adjustable Robust Optimization Alternatives for
the Participation of Aggregated Residential Prosumers in Electricity Markets”,
in revision in MDPI Energies journal.

CF-5 Carlos Adrian Correa-Florez, Alexis Gerossier, Andrea Michiorri, Georges
Kariniotakis, “Hybrid stochastic-robust optimization for management of pro-
sumers aggregation considering grid flexibilities”, in preparation to be submit-
ted to the International Journal of Electric Power and Energy Systems, after
invitation received from Medpower 2018 organizing committee.

Conference proceedings

CF-6 C. A. Correa, A. Gerossier, A. Michiorri and G. Kariniotakis, “Optimal
scheduling of storage devices in smart buildings including battery cycling”,
2017 IEEE Manchester PowerTech, Manchester, 2017, pp. 1-6. doi: 10.1109/
PTC.2017.7981199. Reference [52].

https://ieeexplore.ieee.org/document/7981199

https://hal-mines-paristech.archives-ouvertes.fr/hal-01520365

CF-7 C. A. Correa-Florez, A. Gerossier, A. Michiorri, R. Girard and G. Karin-
iotakis, “Residential electrical and thermal storage optimisation in a market
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environment”, in CIRED - Open Access Proceedings Journal, vol. 2017, no.
1, pp. 1967-1970, 10 2017. doi: 10.1049/oap-cired.2017.1086. Reference [53].

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8316208&isnumber=
8315543

https://hal.archives-ouvertes.fr/hal-01518380

CF-8 Carlos Adrian Correa-Florez, Alexis Gerossier, Andrea Michiorri, Georges
Kariniotakis, “Day-Ahead Management of Smart Homes Considering Uncer-
tainty and Grid Flexibilities”, Mediterranean Conference on Power Genera-
tion, Transmission, Distribution and Energy Conversion (MedPower 2018).
Dubrovnik, Croatia. Reference [54].

https://hal.archives-ouvertes.fr/hal-01948634

This paper was warded as 2nd best paper of the conference MED-
POWER 2018: http://medpower2018.com/best-paper-award/

CF-9 Pedro Castro, Ricardo André, Alexandre Neto, Gisela Mendes, Clara Gouveia,
Olli Kilkki, Carlos Correa, André Madureira, Andrea Michiorri, “Demand
Side Management in a rural area", CIRED Workshop 2018 on Microgrids and
Local Energy Communities.

https://hal-mines-paristech.archives-ouvertes.fr/hal-01813262

1.6 Layout of the document

This document is organized as follows:
Chapter 2 presents the details of the mathematical formulation. This chapter

shows the modelling of the prosumers’ devices and the interaction at the Point of
Common Coupling (PCC). The BESS equivalent cycling costs models are described.
In concrete, two models are presented, 1) a Lagrangean based algorithm, and 2)
explicit modeling by means of special ordered sets. In addition, interactions of both
BESS and Thermal Energy Storage (TES) are presented to show the advantages of
coordinated operation of storage devices.

Chapter 3 introduces uncertainty into the model presented in chapter 2. The
robust counterpart of the deterministic model is presented to model price, demand
and PV production uncertainty. A methodology to evaluate performance of the
robust solutions is presented and comparison with the deterministic approach is
carried out. Moreover, comparisons with hybrid Robust/Stochastic approaches are
presented. In this case, stochastic optimization and backward scenario reduction is
used as an alternative to model day-ahead price uncertainty.

Chapter 4, extends the day-ahead participation of aggregators under uncertainty
towards the inclusion of local flexibility markets. This section presents a robust
bidding mechanism in day-ahead energy markets and also for local flexibility service
provision. The sequence of actions to create robust bids is described and different
situations of bid acceptance by a Local Market Operator are presented to test the
methodology.

Finally, chapter 5 outlines the main conclusions of this thesis and the future
research opportunities.
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The thesis is complemented by four appendices. Appendix A presents additional
details of the SDA, regarding a correction algorithm when batteries reach energy
boundary values. Appendix B shows the outline of the extension of the SDA for
scenario-based optimization models. Afterwards, appendix D shows a specific con-
tribution made during the development of this thesis to the Horizon 2020 project
SENSIBLE (Storage ENabled SustaInable energy for BuiLdings and communitiEs -
https://www.projectsensible.eu/) in the framework of the use case “Flexibility and
demand side management in market participation” [55]. Two algorithms are briefly
described, which aim to determine average cost of residential flexibility and to dis-
aggregate flexibility signals to be followed by the devices installed at the residential
level. Finally, appendix E presents an extended abstract of the thesis in French
language.

A flowchart showing the location of the main models in the present thesis can
be seen in figure 1.2.
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Figure 1.2: Graphical outline of the main body of the thesis
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Chapter 2

Mathematical modelling of
flexibility for residential
aggregation

This chapter presents a discussion and a literature review of flexibility aggre-
gation at building/home levels for participation in energy markets. It also
presents the details of the mathematical formulation for the devices present in
the test system, a brief overview of the PV and load forecasts used in the model
and the description of the test system used in this thesis for validation of the
optimization algorithms. In addition, the chapter presents two alternatives for
including battery degradation costs in the optimization model for participation
of an aggregator in the wholesale energy market.

The models and results presented in this chapter led to publications [CF-1,CF-
2,CF-6,CF-7].

Flexibility in power systems covers a wide area of applications such as: peak
shaving, demand side management, investment deferral, imbalance reduction, fre-
quency regulation, voltage and reactive power support and reserve markets. In
addition, penetration of variable renewable generation such as PV and wind, might
jeopardize grid security when high shares of RES supply instantaneous power. In
this context, ESS and their fast response characteristics constitute a promising al-
ternative to provide reserves and offset the differences in predicted and actual RES
power output to achieve economical and reliable service [56]. In general, BESS act
as a key component in the provision of flexibility in power systems in the attempt
of mitigating disturbances of any kind present in the system during its operation.
Classical definition of flexibility comprises power, ramp and energy as the metrics
to assess the operational flexibility resources and requirements [57]. Flexibility pro-
vision based on storage devices, has been demonstrated to impact positively in the
operation of power systems from the technical and economic standpoint. Techni-
cally, some of the advantages of using storage include grid voltage support, grid
frequency support, grid angular stability, spinning reserve, power reliability and
unbalanced load compensation. Financial benefits resulting in cost reduction or
revenue increase are achieved by energy arbitrage, avoiding new generation instal-
lation, ancillary services, transmission congestion, reduced demand charges, load
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shifting [58,59].

2.1 Literature review

2.1.1 Effects of cycling aging in the operation of storage devices

Charging and discharging patterns of BESS impact on the battery life. Taking
into account this particularity of BESS behaviour, allows to manage the devices
in a more realistic way and leads to more accurate definition of capabilities and
operation costs.

Battery life in general can be expressed in terms of the actual lifespan of the
device (calendar life) or the number of achievable charge and discharge cycles (cycle
life). This aging process is complex and depends on the rates of charging/discharging,
the consequent chemical reactions with electrode interfaces, and the degradation of
active materials due to cycling and aging of non-active components resulting in an
accumulated history of voltages, currents and temperatures [35, 60]. In general,
this degradation process can be tracked and modelled by determining the cycling
patterns, the respective Depth of Discharge (DoD) and the rate at which this pro-
cess occurs. Although the detailed analysis of this set of interactions is beyond the
scope of this thesis, it is important to explore how aging is considered in storage
management optimization models for smart grid applications.

To include this process in the operation of decentralized sources, some ap-
proaches use predefined limits for the total energy that can be cycled, in the form
of equivalent State of Charge (SOC) or DoD values. For example, the work pre-
sented in [61] evaluates the impacts of peak shaving when demand response (DR)
potential is enhanced through different storage technologies. To include cycling of
storage devices, a set of values of the energy that can be cycled are predefined and
analysed. Reference [62] presents a model which calculates cycle life depreciation
based on a predefined lifespan of 10 years and 3000 cycles for li-ion BESS, and cal-
culating a proportional cost with the net energy input. This calculation method
disregards partial cycling of the BESS, and thus can lead to underestimation of
actual depreciation cost.

A more detailed [63] electro-thermal battery model is used for determining sav-
ings in the secondary reserve market for system operator owned BESS. This model
includes variable dispatch cost for batteries by parameter fitting analysis includ-
ing terminal voltage, currents, temperature and SOC. Although this is a more de-
tailed model of the internal interactions in the BESS, this approach would require
parametrization for each analyzed storage unit.

Authors in [64] develop a short-term cost model for the BESS, in order to solve
a 24h resource scheduling problem. Number of cycles and the DoD for a given time
horizon, are explicitly included in the optimization problem. Given that relation
of DoD and life cycles is non-linear, the operation costs of the BESS are based
on linearization by segments, and assigning charging cycle variable and constant
cost. Similar linearization based modelling is used in [65,66], for the case of electric
vehicles battery degradation.

Following the same logic of the previous work, the research [67] presents an
explicit cost function that models battery degradation, which is used to implement
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a MPC peak shaving algorithm that includes a 1 MW BESS. The authors achieve
the explicit formulation of the degradation costs by detecting transitions between
charging/discharging and idle mode by state representation. This way, a quadratic
cost function that captures cycling stress in terms of power, DoD and SOC, can be
found. One advantage of this approach is the possibility of embedding the aging
model into an optimization problem, without adding major complexity in terms of
non-linear equations. Another interesting model that considers explicit cycling by
counting state transition for the case of EHV is presented in [68].

Quadratic explicit modelling is proposed in [69] to calculate battery degradation
costs. This expression does not consider state transitions and is only dependant on
the power profile as a sum of a linear and quadratic function. In a different attempt
compared to the previous logic, the research in [70] includes detailed behaviour of
battery voltages and currents due to operating DoD, with the aim of managing
resources in residential microgeneration systems.

Cycling aging is considered in [71] to complement a bidding strategy for DA,
spinning reserve and regulation markets. By identifying local adjacent extreme
energy points extracted from the SOC curve, and the energy difference between
these points is assumed as the DoD at which half cycle occurs. After this, with each
DoD, an equivalent cycling is calculated for a complete day.

Another way of taking into account battery aging is by using the rainflow count-
ing algorithm (RCA) [72] originally proposed by Downing in [73] for metal fatigue
cycles calculation. This method was recently used in [74] for counting complete and
incomplete cycling of batteries that provide fast and slow response to offset wind
power variation. The use of the RCA allows assessment of the lifetime depreciation
for the provided services. It is important to note that this method is not embedded
into an optimization model but is used after a specific SOC is obtained. A similar
approach is presented in [75] for battery life estimation adding a step for equivalent
life estimation due to incomplete cycles.

Other recent research, attempts to mathematically mirror the state transition
identification and counting of the RCA, to find a tractable and convex equivalent
model, so as to embed the formulation and solve electricity related problems [37,
38]. These contributions represent an important tool to overcome the difficulty of
including the RCA logic in optimization problems in future research. In general,
these seem to be a consensus on the accuracy of RCA to include equivalent cycling
aging cost as a measure of BESS cycling marginal cost, hence the importance of
exploring this one and other options that include transition detection for BESS
aggregation studies.

Discussion

For the treatment of cycling aging into battery scheduling problems, three main
alternatives are identified:

• First, calculating equivalent cycling offline for a defined time horizon, after
a scheduling program has been obtained, i.e. the DoD. Given the non-linear
relation between DoD and cycling, this calculation has to be done by means
of rainflow methods. Although this appears to be the most accurate way to
calculate equivalent aging [38], the disadvantage is the difficulty of accurately
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capturing the non-linearities within an optimization problem. A research op-
portunity that appears in this case, is related to the use of algorithms that
allow iterative cycling calculation. If an algorithm, i.e. a metaheuristic, pro-
poses charging/discharging patterns, this information can be used as data for
the RCA and for the remaining optimization problem, and then obtaining a
total fitness function (i.e. total operation cost). According to the performed
literature review no evidence of previous research using this philosophy was
found.

• Second, the explicit modelling of this process into an optimization problem as
proposed in [67]. The explicit modelling aims to capture, identify and count
the state transitions (charging/discharging/idle) and minimize them at the
same time, by means of equations containing binary variables. The continu-
ous cycling is penalized in the objective function by assigning an equivalent
cost that might come from the actual battery costs. Although this implies a
linearization of the DoD-cycling relation, this approach gives the opportunity
of keeping tractability on the optimization problem and the possibility of using
commercial optimization solvers.

• Third, the inclusion of equations containing relations between DoD, voltages
and currents are shown as an option. However, these models are more useful
when detailed circuit models of devices are needed, or if voltages and currents
are available. For the case of management of flexibilities in market participa-
tion of aggregators, voltages and current are not always available or necessary,
or could increase the computational effort of an algorithm, which leads to
conclude that this might not be a useful for energy market applications.

Cycling life versus calendar life

Besides cycling life to account for battery degradation, another measure is related
calendar life. Even if both models (cycle life - calendar life) are interdependent, it
is difficult to exactly model all interactions. However, the reasons to opt for cycling
life in this thesis instead of calendar life, are threefold:

1. From the perspective of short term electrical markets, such as day-ahead,
cycle life is commonly used provided that: a) it allows to calculate an equivalent
operation cost of using the batteries to trade energy and include it to the total
cost of the system operation for bidding purposes. Multiple research works consider
cycling instead of calendar life, such as [64,65,71], among many others.

2. This thesis uses the information available in [76], in which the curve of cycles
Vs DoD is available. The curve indirectly includes calendar life information, given
that 70 % capacity at EOL (End Of Life) is considered to build the curve. This
available information from manufacturers allows to explicitly model cycling into the
optimization problem as later decribed in sections 2.4 and 2.5.

3. The models presented in this thesis can be used for aggregation applications
in order to offer services in ancillary markets and local flexibility markets, in which
cycling of batteries is a key factor to consider. This modelling alternative suits the
remainder of this thesis and also justifies the use of cycling.
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2.1.2 Aggregation of prosumers

New approaches featuring decentralized generation and coordination with demand
side flexibility have gained substantial attention in recent years. Some of these new
schemes are being developed in the medium and low voltage grid, and most recently
at building and home level, leading to the development of concepts such as Smart
Residential Buildings (SRB) and Home Energy Management Systems (HEMS) [77].
The control capabilities and IT platforms allow management of the resources present
in these home/building levels to maximize profit by offering grid services or by
minimizing overall operational costs.

Home/Building optimal management with BESS

Sizing and operation of storage devices in smart buildings is presented in [32], in-
cluding electrical and thermal storage. This study concludes about the importance
of thermal storage for saving energy costs. However, it does not take into account
cycling aging and points out that batteries might not be economical due to invest-
ment costs and short lifetime. Other approaches have also proposed models for
optimal management of resources, in which the same general objective is pursued:
minimizing daily energy cost while complying with technical constraints and occu-
pants comfort. For example, in [78] a model to control appliances at the home level
is presented, taking into account variable pricing; in [79] a multi-objective model
is proposed for finding trade-off solutions with different levels of energy saving and
comfort; authors in [80] propose an architecture for real time pricing in order to
achieve cost-effective management at the home device level; a day-ahead method
for resource scheduling in a HEMS and building energy management system is pre-
sented in [81], this scheme presents a three stage optimization process for prediction,
supply control and demand control.

Thermal and electric energy storage coordination

Regarding management models for joint thermal and electric storage technologies
at the residential level, approaches include the one presented in [30], which proposes
a residential microgrid in which thermal and electric storage make it possible to
shave the demand peak and enhance the system’s self-sufficiency. An intra-day
methodology is presented in [34] to manage EWH as a flexible load.

Reference [31] presents an optimization problem for the day-ahead market that
minimizes retailer costs represented by imports/exports, and gas costs, along with
expected balancing costs in real-time operation. The model does not include BESS,
but does include thermal load and electro-thermal storage, which can generate or
consume power. An interesting feature of this approach, is the inclusion of thermal
discomfort, which is measured and penalized by means of deviation of expected
temperature.

A recent paper [33] presents a cooperative scheme of Smart Residential Build-
ings (SRB) for optimal management of resources, considering batteries, thermal
storage and electric vehicles. Although cycling is not taken into account, this study
constitutes an interesting benchmark given that different network configurations
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are presented, showing the importance of exploiting operational flexibilities when
various interactions are analyzed.

A multi-energy microgrid was recently proposed in [40], in which thermal and
electrical storage, and heat sources are used to reduce operation costs and alleviate
network capacity issues at the PCC. Although it accounts for neither battery cy-
cling nor uncertainties, this paper presents a thorough modeling of different energy
sources and their interactions, and is tested on a system comprising 300 households.

From the previous literature review, research opportunities are identified related
to prosumers aggregation from the residential perspective, by combining electrical
and thermal storage, and also considering cycling aging equivalent costs for BESS
into optimization models. The remainder of this chapter introduces the deterministic
mathematical model for an aggregator of prosumers that participates in day-ahead
energy markets. Details of the devices modelling and the way of including equivalent
BESS degradation costs are presented.

2.2 Mathematical modeling of prosumer’s aggregation
for participation in the day-ahead energy market

The proposed general HEMS to be used for modeling purposes is composed of solar
panels, li-ion batteries, EWHs with storage capabilities, a connection to the main
grid and a number of households. Each household comprises a total electrical base
load to be supplied and a thermal load that has to be met by an EWH, which also
stores energy in the form of heat, hence acts as a flexible load. The interaction of
all devices allows flexible operation of the system to achieve minimum cost.

In general, EWH input and electrical load during the 24h period can be met by
the main grid, the solar panels, and the power injected from the batteries. The idea
is to achieve a minimum operation cost by adjusting the setting of the devices in
order to optimally manage resources. The diagram of the proposed aggregation of
resources is shown in figure 2.1.

One feature of the proposed HEMS is the possibility to independently control
the BESS and the EWH when the latter has storage and control capabilities. This
means that the LV grid does not directly feed the thermal load (Qt,h). In other
words, this load is fed by the available stored energy in the TES, and the input for
the EWH (Ht,h) is seen as a load from the LV network. This can be interpreted as
a flexible load which responds depending on the price of opportunity captured by
the optimization model by storing hot water even if it is not immediately used by
the occupants.

The following paragraphs introduce the mathematical optimization model for
minimization of operation cost from the standpoint of an aggregator.

2.2.1 Objective function

The present model suposes an aggregator of residential flexibility that participates
in the day-ahead energy market by controlling the set-points over a predefined hori-
zon of 24-hour (T ) time-steps. The objective function aims to minimize the energy
purchases in the wholesale market and the overall operational costs. This model
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Figure 2.1: Schematic diagram of the proposed HEMS

takes into account day-ahead energy prices (πt) and the possibility of purchasing or
selling energy (PE

t ) at the point of common coupling (PCC). In addition, the ag-
gregator offsets day-ahead purchase deviations with actual generation and demand
levels, by participating in the imbalance market, where I−t (I+

t ) indicates additional
imports (exports) in real time. The present model supposes that energy require-
ments or surplus at the PCC can be traded in the wholesale market without market
or regulation barriers.

As shown in Eq. (2.1), the proposed model minimizes the expected day-ahead
operation cost, in which the decision is associated with:

•
T∑
t=1

πtP
E
t : The cost of the day-ahead traded energy in the wholesale market.

•
T∑
t=1

µ−t I
−
t,s − µ

+
t I

+
t,s: The cost of purchasing additional blocks of energy (neg-

ative imbalance) and the amount received for selling energy surplus (positive
imbalance) due to deviations with respect to the day-ahead committed en-
ergy. Imbalance prices suppose an indirect penalization given that they are
less attractive than day-ahead settled prices.

•
N∑

h=1

f cych (·): Cycling or equivalent degradation cost for the batteries installed in

each house h, which is a function of the SOC vector (Xh = [X1,h, ..., X1,T ]
′),

i.e. the SOC of each battery during the day-ahead operation time horizon,
provided that the SOC represents the cycling pattern.

Subscripts t and h index time step and household, respectively. Parameters πt,
µ−t , -µ+

t , represent respectively, spot price, negative imbalance cost and positive
imbalance cost.
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minimize

T∑
t=1

(πtP
E
t + µ−t I

−
t − µ

+
t I

+
t ) +

N∑
h=1

f cych (Xh) (2.1)

All of the terms in the objective function are linear, except the one related to
the cycling. This term includes the corresponding non-linearities associated with the
chemical reactions occurring in the batteries due to temperature changes. This terms
creates a complication in the model given the difficulty of accurately expressing
this phenomenon in a closed form. Two alternatives for including degradation are
presented in this chapter in sections 2.4 and 2.5.

2.2.2 Load balance constraints

Constraint (2.2) represents power balance, in which the exchange with the wholesale
market at the PCC should meet the net required power by aggregated prosumers in
the portfolio, as also shown in figure 2.1.

P g
t + I−t − I

+
t + ∆t

H∑
h=1

Pnet
t,h = 0,∀t (2.2)

Pnet
t,h = PPV

t,h − P c
t,h + P d

t,h −Dt,h −Ht,h,∀t,∀h (2.3)

0 ≤ PPV
t,h ≤ P

PVmax
t,h ,∀t,∀h (2.4)

It is important to note that the net power in each house, as per (2.3), considers
the battery charging (P c

t,h) and discharging (P d
t,h), the PV injection (PPV

t,h ), the
electrical load (Dt,h) and the power required by the EWH (Ht,h). In addition, if a
household is not provided with an EWH that has storage capabilities, the variable
H becomes the same thermal load.

2.2.3 BESS constraints

Constraints (2.5) - (2.10) describe the energy state for the BESS. Binary variables
ut,h,s and vt,h,s are introduced to avoid charging and discharging batteries at the
same time. Hence, constraints (2.7)-(2.9) introduce a mixed integer characteristic
into the model. Constraint (2.6) ensure the continuity of the operation from one
day to another in terms of available stored energy.

Xt,h = Xt−1,h + ηc∆tP c
t−1,h −∆tP d

t−1,h/η
d, ∀t, t 6= 1,∀h, (2.5)

X1,h = XT,h,∀h (2.6)

ut,h + vt,h ≤ 1, ∀t,∀h (2.7)

0 ≤ P c
t,h ≤ P̄ c

h · ut,h,∀t,∀h (2.8)

0 ≤ P d
t,h ≤ P̄ d

h · vt,h, ∀t,∀h (2.9)

Xh ≤ Xt,h ≤ X̄h,∀t,∀h (2.10)
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2.2.4 TES constraints

When the EWH present in a house has storage capabilities, then it is denoted as a
TES device. In this case, it is assumed that he device can be operated for immediate
hot water use or also for storing heat for later use in order to comply with user’s
expected thermal demand (Qt,h). The energy state (Yt,h) is represented by the inter-
temporal constraint (2.11). Given that TES is capable of heating water for direct
consumption (shower, appliances, etc.) or for space heating for upcoming hours,
energy losses are present in the model by including R and C (thermal resistance and
capacitance, respectively) in equation (2.11), which represent the energy dissipation,
in line with [31].

Yt,h = Yt−1,h + ∆tHt−1,h − Yt−1,h/RhCh −∆tQt−1,h, ∀t, t 6= 1,∀h (2.11)

Y1,h = YT,h, ∀h (2.12)

Y t,h ≤ Yt,h ≤ Ȳt,h, ∀t,∀h (2.13)

0 ≤ Ht,h ≤ H̄t,h,∀t,∀h (2.14)

When the EWH has no storage or control capabilities Ht,h takes the value of
the thermal demand (Qt,h) as it can be easily inspected in equation (2.11). In other
words, in the absence of TES, the total load to be supplied in each house is given
by adding electrical and thermal load.

Equation (2.12) ensures continuity of the thermal storage and equations (2.13)
and (2.14) are respectively the boundaries of energy and power of the TES device.

The deterministic Mixed-Integer Linear Programming (MILP) problem presented
in equations (2.1)-(2.14) joins flexibilities of three types to be managed by an aggre-
gator: PV production, electrochemical storage and thermal storage. The result of
this optimization returns the set-points of all devices and the energy exchanged with
the wholesale market in order to achieve minimum operation cost for the portfolio,
while complying with electrical and thermal demand in each house.

2.3 Description of the test case used for simulations

The location of the HEMS in the real life distribution network and the resources
present in each house are shown in figure 2.2. The 25 houses are located in an LV-
rural network in Evora, Portugal, comprising the distribution of resources shown in
the figure. In total, there are 25 PV panels, 16 BESS and 15 EWH that can act as
TES. The testcase is composed by the HEMS and the control capabilities that an
aggregator has on the device settings. The operation and control of the MV and LV
distribution networks is carried out by the DSO and are not part of the aggregator’s
capabilities or responsibilities.

The charging and discharging efficiency of the batteries is assumed to be 95%.
15 batteries are rated 3kW / 3.3 kWh, and the remaining battery is a 10kW / 20
kWh device. All PV panels are rated 1.5 kWp. The cycling behavior is based on the
li-ion battery information available on the market for residential applications, and
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Figure 2.2: Composition and location of the proposed 25-household HEMS

the curve fitting values to obtain the relation of cycle life versus depth of discharge
(DoD) are taken from its technical specifications [76].

The battery’s initial cost is assumed to be 500 e /kWh, according to the informa-
tion provided by IRENA on residential storage systems for European countries [82].
The rated power/energy for all EWH is 1.5 kW / 3 kWh according to the information
available from the real life demonstrator and typical values from technical specifica-
tions, and thermal resistance/capacitance are 568 (◦C/kW)/0.3483 (kWh/◦C) taken
from [31].

2.3.1 Available forecasts used as data input

Electrical load and PV forecasts

To predict the electrical demand of one household for the next day, the model uses
the demand during the previous week and the outside temperature predicted for
the next day. By means of quantile smoothing spline fitting [83], it is possible to
predict day-ahead demand. After quantile regression, a set of forecast quantiles is
obtained. Instead of a single-point value, 10%, 20%, . . . , 90% values can be obtained
and respectively associated with a 10%, 20%, . . . , 90% chance of measuring a lower
actual demand at the instant predicted. For further details readers are advised to
review reference [83].

The PV production forecasting model takes into account solar irradiance fore-
casts. Parameters such as the orientation of the PV panels, shadowing effects and
other meteorological factors are estimated depending on the time frame.

Probabilistic forecasts were generated for each time of day covering the en-
tire distribution of PV production. These quantile forecasts are given in steps of
the nominal probability, hence obtaining PV forecasts associated with quantiles
10%, 20%, . . . , 90% in a similar fashion to the load forecast. For more details on the
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PV forecast method, reference [84] is suggested as complementary reading. The fore-
casts are generated using the methods described above and based on data collected
from smart meters and Numerical Weather Predictions from ECMWF (European
Centre for Medium-Range Weather Forecasts).

An example of the forecasts of electrical load and PV used in this thesis are
shown in figures 2.3 and 2.4.

To model user’s thermal consumption, a normalized thermal load pattern is
taken from [34] and scaled with the total forecast demand in each household. This
is done given the absence of data for thermal load in the real life demonstrator. An
example of the obtained synthetic data is shown in figure 2.5. This data can also be
interpreted as the thermal comfort interval of each household in normalized power
units. This information is specially useful for defining comfort confidence intervals
in robust optimization formulations as shown in chapter 3.
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Figure 2.3: Example of normalized electrical load probabilistic forecasts
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Figure 2.4: Example of normalized PV probabilistic forecasts
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Figure 2.5: Example of normalized thermal load probabilistic forecasts

Energy price forecasts

In this thesis, unless stated otherwise, electricity prices are taken from the ENTSOE
database [85], by using data from the last three months prior to the day of dispatch.
To form the training set, the data during this period for the same weekday is consid-
ered. This is done to consider a realistic case in which an aggregator, when defining
day-ahead purchases, does not have the settled prices. Hence, by taking the prices
for the same day in the three preceding months, available input data to make de-
cisions is obtained. With this input, the Kernel Density Estimation (KDE) of the
Python package “scikit-learn” [86] is used, which also can be used after the model is
trained, in order to generate samples of price trajectories.

An example of sampling output coming from the KDE python package with a
calculation of percentiles 10% and 90%, is shown in figure 2.6.
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Figure 2.6: Example of forecasted confidence intervals for spot price uncertainty in
a typical day in November 2015

Remarks on the size of the test system It is important to consider that the
number of households (25) and the rating of their flexible devices is an available
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real test case. The use of real measured data is considered a cornerstone of the
thesis and a coherent dataset as the one used represents an opportunity to merge
optimization algorithms with real life data.

Some European countries have day ahead and intra-day minimum bidding sizes
of 0.1 MW [87]. This value can be attained in residential aggregation applications
such as the case of this thesis or in commercial buildings applications, which have
larger demand and heating and ventilating systems. In any case, the algorithms and
approaches described in this thesis remain valid.

Current market rules and regulation remain in many cases still uncertain for
demand side participation and vary in each country. This limitation is frequent,
considering current market barriers since most energy markets have been designed
before the development and expansion of distributed generation and storage. Some
recent studies have analyzed this situation and conclude that the market should be
flexible enough to allow exploitation of resources at the residential level, by allowing
different emerging agents (VPP, aggregators, etc.) to participate in the market and
facilitate the inclusion of distributed storage units, demand side management and
prosumers participation [5, 88, 89].

One of the motivations of using the 25-household test system configuration comes
from the participation in the European Project SENSIBLE [55], specifically in the
use case “Flexibility and demand-side management in market participation” that
assumes a retailer or other energy service company, which aggregates a number of
customers and participates in a market in order to optimize its electricity costs and
add value to the flexibilities that customers can offer.

The next sections will be dedicated to tackle the modelling of the cycling aging of
the BESS modeled in section 2.2.3 in order to capture its equivalent cost and include
it in the objective function described in equation (2.1). Hence, the alternatives for

including the non-linear term
N∑

h=1

f cych (Xh) and solve the optimization algorithm

(2.1)-(2.14) will be described.

2.4 Solution approach 1: Decomposition method to solve
model (2.1)-(2.14)

Battery life in general can be expressed in terms of the actual lifespan of the device
(calendar life) or the number of achievable charge and discharge cycles (cycle life)
[60]. As already mentioned, the aging process is complex and depends on the cycling
patterns, rates of charging/discharging, and consequent chemical reactions resulting
in an accumulated history of voltages, currents and temperatures [35]. This work
considers battery degradation costs as a function of the cycle life intrinsic behaviour
and as a function of the DoD. In general, the maximum number of charge/discharge
cycles for a battery at a certain value d of DoD, is given by the following expression
[71]:

nd = n100d
−kp (2.15)

where kp is a constant that depends on the life cycle - DoD curve given by the
manufacturer, and can be extracted from curve fitting. The quantity n100 is the
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equivalent number of cycles before failure for d = 100%. An example of a fitted
curve for a 3 kW / 3.3 kWh battery is shown in figure 2.7.
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Figure 2.7: Fitted curve for a real life li-ion battery

Cycle counting for a specific DoD is identified from local extreme points based
on the SOC curve (vector X), and equivalent half or full cycles are defined. This is
carried out following the logic of the Rainflow Counting Algorithm (RCA), which is
explained in detail in [72].

Once the cycles counting and their respective DoDs for the 24h period have
been calculated, an equivalent cycling cost is obtained according to the following
expression:

f cyc(X) = Ccyc(dj) =
∑
j∈Ω

Lj
Cini

n100
d
kp
j (2.16)

where Ω is the set of DoDs for the analyzed period, and Cini is the initial cost of
the battery. The information of full or half cycles for each dj is given by Lj , taking
values of 1 or 0.5 respectively. The obtained Ccyc for a specific SOC is the equivalent
cost due to the battery’s aging process, and should be added to the total dispatch
cost. This is a measure of the battery’s operational cost and is useful for bidding
more accurate quantities in energy markets.

It should be noted that parameters kp and n100 in equation (2.16) are a direct
result of curve fitting, and dj and Lj are a result of the RCA for a given X.

2.4.1 Outline of the Decomposition approach

Given the difficulty of mathematically embedding the transitions/cycling counting of
the RCA that results in (2.16) into the optimization model, the problem formulated
in (2.1)-(2.14), can be reformulated in such a way that an algorithm iteratively
proposes SOC to be analyzed from two perspectives: 1) the equivalent aging cost
that this SOC will produce; and 2) the minimum day-ahead operation attained by
the aggregator considering the proposed SOC.

If an algorithm is used to generate SOCs, the RCA can be applied to calculate
an equivalent degradation cost by using equation (2.16), which is the equivalent of
N∑

h=1

f cych (·) in the objective function (2.1), and iteratively achieve a minimum cost

solution. In this work, Competitive Swarm Optimizer (CSO) is proposed as the
metaheuristic. The specifics of the CSO are detailed in subsection 2.4.4.
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The complete optimization problem can be decomposed into two subproblems:
one of them analyzes batteries’ SOC proposals and calculates the corresponding
cycling aging equivalent cost; the second subproblem takes this SOC as a fixed
value and calculates the day-ahead cost due to the procurement of energy in the
wholesale market and the settings for the remaining HEMS resources. Once the
two subproblems are solved, the total cost can be obtained by simply adding both
results (day-ahead purchase and cycling cost). The outline is presented in figure
2.8.

Complete MINLP 

w 

  

Cycling 

subproblem 

Thermal 

subproblem 

Minimize (2.1) 

Subject to: (2.2)-(2.14) 

z 

Minimize (2.30) 

Subject to: (2.31) 

Solved with the SDA 

   fitness = w + z (2.32) 

iteratively solved 

with CSO  

Decomposition 

Figure 2.8: Scheme of the decomposition approach

Each solution (also called individual or particle) proposed by the CSO should
contain the information of SOC in each time-step and each battery, which would
yield a T ×N dimensional search space. Given that a) the aggregation of prosumers
usually have several batteries to be exploited; and b) the metaheuristics are sensitive
to the size of the search space, it becomes important to reduce the size of the particles
to avoid prohibitive computational times.

This thesis proposes a virtual aggregation of the batteries in the system so as to
reduce the search space from T ×N to T . With this approach, the dimension will
be the same even if the system contains a high number of batteries. Given that an
infinite number of possibilities exist to allocate individual SOCs, when an aggregated
SOC is proposed, there should be a cost-efficient disaggregation/allocation of charge
for each of the batteries, and this is carried out by applying a Storage Disaggregation
Algorithm (SDA), as explained in the next section.

2.4.2 Cycling cost subproblem, the storage disaggregation algo-
rithm (SDA)

When a certain aggregated SOC (Xagg) is proposed in each iteration by the meta-
heuristic logic, it has to be optimally allocated/dissagregated in each battery. This
depends on each battery’s cycling aging characteristics and the associated SOC.
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This subproblem can be mathematically formulated as follows:

minimize w =
N∑

h=1

f cych (Xh) (2.17)

s.t.

Xagg
t =

∑
h

Xt,h,∀t (2.18)

The problem is general enough to take into account a different cycling function
f cych for each battery installed in each house h. Additionally, Xh = [X1,h, ..., XT,h]

′ ,
represents the 24-hour vector of SOC for each battery h. The objective function
(2.17) attempts to minimize overall cycling cost for the complete set of batteries in
the system and for a given Xagg. Note that constraint (2.18) is defined for each time-
step. Hence, Xagg

t is the aggregated SOC of all batteries in the specific time-frame
t.

When applying Lagrangian relaxation to this optimization problem (2.17)-(2.18),
one multiplier (λt) appears for each time-frame, as shown in the function:

L =
N∑

h=1

f cych (Xh) +
T∑
t=1

λt(X
agg
t −

∑
h

Xt,h) (2.19)

After applying optimality conditions to the langrangian function (2.19) (i.e.,
derivative with respect to Xt,h and λt), the obtained equations are:

∂L
∂Xt,h

=
∂f cych (Xh)

∂Xt,h
+ λt = 0,∀t,∀h (2.20)

∂L
∂λt

= Xagg
t −

∑
h

Xt,h = 0,∀t (2.21)

From equation (2.20) it is concluded that the derivative for each time step is
battery invariant. This is a very important condition meaning that for a given t,
the derivatives of each battery must be the same:

∂f cyc1 (X1)

∂Xt,1
= · · · =

∂f cych (Xh)

∂Xt,h
= · · ·

· · · =
∂f cycN (XN )

∂Xt,N
= −λt, ∀t (2.22)

To calculate the derivatives in condition (2.20) an additional difficulty arises,
given that there is no analytic function to express f cych . To solve this issue, numerical
differentiation is used to iteratively find the Xt,h that leads to (2.22) while satisfying
(2.21):

λ
(h)
t ≈

f cych (Xh)− f cych (Xh + ∆Xt,h)

∆Xt,h
(2.23)

Superindex (h) is introduced to denote that a multiplier λ(h)
t should be calculated

for each battery h, and the iterative process should correct the values Xt,h until
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the multiplier is the same for all batteries (until λ(1)
t = ... = λ

(N)
t = λt). The

evaluation of f cych (·) in (2.23), can be easily performed by using RCA and then
applying equation (2.16).

This disaggregation algorithm is initialized by selecting a Xt,h in such a way
that eq. (2.18) (same as eq. 2.21) is met. After this, λ(h)

t are calculated by using
(2.23). Given that Xt,h, in each t, needs to be updated to achieve equal λ(h)

t for all
batteries, a deviation for each (h) is calculated by:

∆λ
(h)
t = λ

(h)
t − λ̄t (2.24)

where,
λ̄t =

∑
h

λ
(h)
t /N (2.25)

Equation (2.24) measures the deviation of each battery’s derivative with respect
to the mean, hence, a simple heuristic rule is used to update SOC values according
to:

Xnew
t,h = Xold

t,h + φ ·∆λ(h)
t (2.26)

where φ is a tuning parameter. Once the SOC is updated for each battery,
eq. (2.23) is used again and the process is repeated until all deviations for each t
are lower than a tolerance threshold. One very important feature of the presented
method is that in this iterative process, optimality condition (2.21) (equivalent to
constraint (2.18)) is always automatically ensured, given that

∑
∆λ

(h)
t = 0. This

allows the aggregation of all batteries to equal the aggregated SOC at any time and
scenario.

The outline of the proposed disaggregation algorithm is shown in figure 2.9.
If any of the Xt,h exceeds the boundaries at a certain iteration of the SDA (to
ensure constraint 2.10), a correction procedure is applied to maintain the feasible
operation of devices, which is explained in annex A. The SDA then returns individual
(disaggregated) SOC for each battery h and the total cycling equivalent cost.

2.4.3 Day-ahead thermal subproblem

When a certain SOC is generated with a metaheuristic and then disaggregated by
means of the SDA, the problem in equations (2.1)-(2.14) has to be reformulated.
This subproblem is called the Thermal Subproblem, given that once an SOC is
known, the remaining set points that need to be determined in each household are
those associated with the EWH.

Note that after the SDA is applied, the SOC for each battery is found, hence,
all batteries’ settings can be calculated, and variables Xt,h, P c

t,h and P d
t,h become

known parameters that can be fed into the model. In addition, BESS constraints
(2.5)-(2.10) are no longer required.

First, P c
t,h and P d

t,h can be easily determined by using equation (2.5) and solving
for P c

t,h and P d
t,h. The fact that charging and discharging cannot happen at the same

time is conveniently used to apply the following rule:

39



START Read input SOC: 𝑋𝑡 
𝑎𝑔𝑔

 

END 

Calculate derivative 

𝜆𝑡
(ℎ)

 

t = 1  

h = 1  

Use RCA to calculate 

𝑓ℎ
𝑐𝑦𝑐

𝐗ℎ  and 

𝑓ℎ
𝑐𝑦𝑐

𝐗ℎ + ∆𝑋𝑡,ℎ
  

h = N?  Calculate 𝜆 𝑡, ∆𝜆𝑡
(ℎ)

  

Update 𝑋𝑡,ℎ
  

Max{∆𝜆𝑡}≤ 𝜀? 

t = t +1 

h = h +1 

Initialize 𝑋𝑡,ℎ 
  

t = 24?  

YES 

NO 
YES 

YES 

NO 

NO 

 𝐗ℎ ≤ 𝐗ℎ ≤ 𝐗 ℎ 
YES NO 

Correct 𝜆𝑡
(ℎ)

  

Figure 2.9: Flowchart of the SDA

P c
t−1,h =

{
(Xt,h −Xt−1,h)/(ηc∆t), if Xt,h −Xt−1,h > 0

0, otherwise
(2.27)

P d
t−1,h =

{
(Xt−1,h −Xt,h)ηd/∆t, if Xt−1,h −Xt,h ≥ 0

0, otherwise
(2.28)

It is worth noting that constraint (2.6) implies that both P c
t,h and P d

t,h have to be zero
for the last time frame (t = T ) in order to match the SOC for the first time frame
of the following day. Thus, equations (2.27) and (2.28) are valid for t : {2, ..., T}.

In addition, this simple rule eliminates the Mixed-Integer Non-Linear nature
of the complete problem expressed in constraints (2.5)-(2.10), given that equations
(2.27)-(2.28) avoid charging and discharging at the same time, which is the reason
why binary variables (ut,h and vt,h) were necessary in the initial complete formula-
tion.

Once P c
t,h and P d

t,h have been ascertained, a verification of these values is needed
to determine if they are higher than the nominal power. If so, the analyzed SOC
is infeasible and a penalization of this proposal is required. This penalization is
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calculated as follows:

Z =
N∑

h=1

T∑
t=1

[(P ch
t,h − P̄ c

h) ·H(P c
t,h − P̄ ch

h )− (P d
t,h − P̄ d

h ) ·H(P d
t,h − P̄ d

h )] (2.29)

where H(·) denotes the Heaviside step function. From (2.29), whenever P c
t,h or

P d
t,h are outside the boundaries, Z measures the proportion of the limit violation;

and if feasible operation is achieved, then Z = 0.
Once the values of Xt,h, P c

t,h, P
d
t,h and Z are known, the model (2.1)-(2.14) can

be rewritten in the following way as a linear programming problem:

minimize z =

T∑
t=1

(πtP
E
t + µ−t I

−
t − µ

+
t I

+
t ) + βZt (2.30)

s.t.

Constraints : (2.2)− (2.4), (2.11)− (2.14) (2.31)

where β is a penalization factor.
For each specific SOC proposal generated by the metaheuristic, the correspond-

ing fitness function is calculated by adding the results from (2.17) and (2.30):

fitness = w + z (2.32)

where w is obtained after using the SDA and z after solving (2.1)-(2.14). In order to
iteratively find an SOC that returns the minimum cost, swarm-based metaheuristics
can be used. This is because of their ability to handle real variables and its conve-
nience for integrating the two subproblems described in the previous paragraphs.

2.4.4 Competitive Swarm Optimizer

The CSO algorithm is a metaheuristic optimization technique based on population
behavior, first proposed in 2015 [90] and suitable for large optimization problems,
following some of the principles of Particle Swarm Optimization. The algorithm
assumes the existence of M particles. These particles move iteratively in an R-
dimensional search space, where the i-th particle can be represented by a vector
xi = (xi1, ..., xiR). The velocity of each particle is denoted by vi = (Vi1, ..., ViR).

For this algorithm, M/2 pairs of particles are randomly formed, ensuring that
each particle is selected only once. Each pair competes, and the particle with the
best fitness function is designated as the winner (xwm(k)) and promoted into the next
iteration. The loser (xlm(k)) has to update its position and velocity by learning from
the winner.

For the m-th competition (m ∈ [0,M/2]), the loser’s particle velocity and its
position for iteration k + 1 are updated according to (2.33) and (2.34):

V l
m(k + 1) = r1V

l
m(k) + r2(xwm(k)− xlm(k))

+ψr3(x̄m(k)− xlm(k))
(2.33)

xlm(k + 1) = xlm(k) + V l
m(k + 1) (2.34)
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where x̄m(k) is the mean position of the particles in iteration k; and r1, r2 and r3

are three random vectors with uniform distribution in the range (0,1). Finally, ψ is
a parameter that controls the influence of x̄m(k).

The algorithm ends when at least one of the following criteria is met: 1) a
maximum number of iterations is achieved, or 2) a maximum number of iterations
without improving the fitness function is achieved.

To adapt the optimization problem described in the previous subsections to be
solved by the CSO, the codification of the particles must be determined. In this
case, each particle refers to an aggregated SOC for the batteries, which is composed
of T continous values, associated with the time steps in each scenario for the day-
ahead dispatch. Each particle must be assigned with a fitness function according
to equation (2.32). This means that for each particle in the swarm, the cycling and
thermal subproblems described in subsections 2.4.2 and 2.4.3 need to be solved.

The initialization of the swarm is performed by randomly assigning SOC values
to each specific time frame and scenario, to avoid homogenization of the swarm and
avoid premature convergence to local optima. The stop criterion used in this work is
related to consecutive cycles without improving the fitness function. The complete
outline of the proposed algorithm is shown in figure 2.10.

START 
Random swarm 

initialization and fitness 
calculation 

¿Stop criteria 
met? 

m = 0  

Obtain cycling 
cost with SDA 

Solve thermal 
subproblem from 

(2.30)-(2.31) 

Promote winner to 
the next iteration 

m = m +1 

Calculate fitness 
with (2.32) 

m = M/2?  

NO 

YES 

END 

Pair two particles 

Include updated 
particle in the 

swarm 

Update loser’s 
velocity and 
position with 

(2.33) and (2.34) 

For the updated 
loser’s position 

YES 
NO 

Figure 2.10: Flowchart of the CSO algorithm used

2.4.5 Performance of the SDA

Some tests are performed to analyze the adequacy of the algorithm proposed in
section 2.4.2 to optimally allocate the individual SOC for each battery. Two initial
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Figure 2.11: Convergence evolution the disaggregation algorithm under 100 random
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tests are performed: first, 100 randomly generated aggregated SOC patterns are
subject to the disaggregation process with random initialization, in order to deter-
mine the convergence capabilities by analyzing the evolution of ∆λmax; second, a
specific SOC is selected and subject to 100 different random initialization tests to
prove that the algorithm converges to close values, by measuring the evolution of the
total cycling cost. Note that the first test is analyzed from the standpoint of ∆λmax,
given that each of the 100 SOCs to be dissagregated are different, and the intention
is to test the convergence capabilities despite the final cycling value (convergence
test). The second test, verifies that the same SOC generates similar degradation
equivalent cost in spite of the initialization of the algorithm (optimality test).

The converge criterion is set at |∆λmax| ≤ 0.001. As seen in figure 2.11, for all
the cases run, the algorithm reaches low values of |∆λmax| after a few iterations. In
addition, the convergence is achieved in 32 iterations on average for the 100 cases.

When one particular aggregated SOC is selected to be analyzed multiple times
under different initial conditions, it is expected that the minimum total cycling cost
obtained is the same or at least close for each simulation, given the non-linear char-
acteristic of the cycling function. Figure 2.12 shows the evolution of the total cycling
cost for one particular aggregated SOC under 100 different initial conditions. The
minimum and maximum obtained cycling costs are 0.96 e and 1.02 e , respectively;
and the mean is 0.98. This shows that the algorithm is robust towards different ini-
tialization values and that, for the specific case of monetary units, only one decimal
place is enough to express currency in real-life applications, without losing sensitive
information for DA electrical markets.

2.4.6 Results of the decomposition technique

To analyze the impacts on the battery operation when different sources of flexibility
are taken into account, the model is run using forecasted values for PV and load,
during the complete month of November 2015, given the availability of the data.
All presented values correspond to a daily average resulting from running the 30
independent DA models for each day. Considering only PV injection and no battery
or thermal storage, results in an average cost of 1.0 p.u., which is defined as the
base case for comparison purposes. Different cases are tested to assess how each

43



0 10 20 30 40 50 60 70
Iteration

0

5

10

15

20

T
o
ta

l 
cy

cl
in

g
 c

o
st

 [
E
U

R
]

Figure 2.12: Cost evolution evolution of the disaggregation algorithm for 100 random
initialization values

technology contributes in reducing costs, as shown in table 2.1.

Table 2.1: Cost of resource management for the deterministic scheme. Average
daily costs. *Includes cycling effects in the optimization. **Calculated after the
optimization

Used flexibility Equiv. cost Total operation Improvement with
Case BESS TES cycling [e ] cost [p.u.] respect to base case
Base No No N.A. 1.00 N.A.
1* Yes No 0.1 0.97 2.15%
2* Yes Yes 0.1 0.81 18.7%
3 Yes No 3.8** 1.23 -22.7%
4 Yes Yes 3.7** 1.21 -20.9%

Cases 1 and 2 in table 2.1 correspond to the problem detailed in equations
(2.1)-(2.14), which considers the cycling equivalent cost within the optimization
model. This approach allows to determine device settings and energy exchanges
such that the total operation cost (energy purchases + equivalent cycling aging) is
minimized at once. Specifically, case 1 disregards the possibility of thermal storage
and only considers electrochemical storage. When thermal storage is not allowed,
a 2.15% cost reduction is achieved by using only the battery to minimize the cost.
When thermal and power storage are permitted (case 2), a greater cost reduction
is obtained, showing that including thermal storage as another flexibility leads to a
decrease in the cost. Case 2 shows a reduction of 18.7 % with respect to the base
case.

The cost evolution for the complete month for all of the proposed cases can be
found in figure 2.13. The cost evolution in the figure shows that not only are the
average values (in table 2.1) for case 2 lower, but that improvements are achieved
for each of the analyzed days. The costs savings compared to the base case, range
from 14.0% to 32.5% with a median of 18.5%.

In order to demonstrate the value of taking into account the cycling cost embed-
ded in the model, (as done for cases 1 and 2), two more cases are proposed, in which
the optimization model only attempts to minimize the energy purchased and the
battery cycling cost is disregarded and only calculated afterwards with the obtained
SOC. This analysis corresponds to cases 3 and 4. Once again, it is shown that
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Figure 2.13: Evolution of daily cost for the deterministic model under the analyzed
cases and for the whole month of November

including EWH adds flexibility to the model and allows cost reduction. However,
these cases show that when cycling is not explicitly considered in the optimization
model, the batteries are subject to deeper cycling, resulting in higher cycling aging
and leading to higher total costs when compared to cases 1 and 2. The most critical
case corresponds to an operation cost of 1.23 p.u. (case 3). It can be concluded that
if cycling cost is ignored in the optimization model, batteries can cycle without any
constraint of frequency or depth, which results in suboptimal operating points for
the aggregator.

Analysis for one single day For the sake of example, one typical day is ana-
lyzed by selecting the aggregated SOC pattern for the four cases, shown in figure
2.14. As stated before, cases 3 ( ) and 4 ( ) present deeper and more frequent
cycling of batteries than cases 1 ( ) and 2 ( ). The coordinated scheduling of
BESS and EWH with the complete optimization model (case 2) represents the best
improvement with respect to the base case given the efficient scheduling of batteries
and the full exploitation of BESS and EWH capabilities. The energy purchase for
this deterministic case is shown in figure 2.16 ( ) and it can be seen that around
noon the energy requirements are minimized due to PV availability; on the other
hand, purchases increase during late night and morning hours.

As explained before, the PV and load forecast used for these four cases corre-
spond to the median (quantile 50%). When the deterministic scheduling described
for case 2, is subject to all the combinations of quantiles 10% to 90% (9 × 9 = 81
scenarios) of both load and PV forecasts, the aggregator must face penalties asso-
ciated to imbalances, given that the committed energy and device settings do not
meet the realization of the uncertainties condensed in the 81 scenarios for both PV
and load, i.e., constraint 2.2 must be met by adjusting the quantities I−/I+, which
results in extracosts in the operation. The minimum levels of penalty, as shown in
figure 2.15, are associated with high PV quantiles and low load quantiles, given that
excess of solar energy reduces the need of offsetting imbalances and maintains fea-
sible operation of the system. On the other hand, when load quantiles increase and
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Figure 2.14: Aggregated SOC for deterministic cases 1 ( ), 2 ( ), 3 ( ) and
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PV quantiles decrease, the scarcity of renewable generation leads to imbalances and
consequent penalty. From the set of the 81 combined quantiles, 53 (65%) present
penalties different from zero, ranging up to 6.1 e for the case of load quantile 90%
and PV quantile 10%.

Computational performance of the CSO for the 25-household testbed
To test the performance of the CSO, several runs were carried out for a single
day in order to determine the quality and consistency of the obtained solutions.
Tests consist in running the algorithm 20 times for a 30-particle swarm, setting the
stop criteria to 30 iterations without improving the best solution. In addition, the
maximum number of iterations is set to 300. In these conditions, the CSO is run,
and after each simulation the information saved is: best solution, computational
time in achieving the best solution and iterations in achieving best solution.

Table 2.2 shows that the CSO presents feasible computational times for day-
ahead, achieving good quality and stable solutions in the range of 729-1999s.

Table 2.2: Computational performance of the CSO for one typical day in November
Characteristic CSO (ψ = 0.3)

Best solution [e ] 19.00
Best solution range [e ] 19.00 - 19.06
Best solution average [e ] 19.03
Best solution SD [e ] 0.02

Average time [s] 1433
Time range [s] 729-1999
Time SD [s] 391

Average iterations for achieving best solution 209

The previous methodology is one of the proposals to model cycling aging of
batteries. The second alternative which is based on explicit modelling of cycling
constraints is shown in the next section.
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Figure 2.15: Negative imbalance (I−) costs for deterministic case when all combined
PV and load quantiles are analized

2.5 Solution approach 2: Explicit modeling of BESS degra-
dation costs to solve (2.1)-(2.14)

The second alternative to capture the non-linear relation of life cycles vs. DoD, is
a piecewise linearization approach.

The motivation for linearizing the cost characteristic lies in the fact that if the
DoDs at which each cycle occurs can be identified by means of a set of equations,
then an equivalent cycling cost can be determined in such a way that these equations
can be explicitly modelled and fed into a commercial optimization solver. In the
decomposition approach developed in the previous section, the difficulty of express-
ing RCA based degradation equations in closed form, impedes feeding the complete
optimization problem into optimization solvers. This section presents an option to
introduce a set of equations that capture and identify charging cycles by means of
auxiliary variables and constraints, also known as special ordered sets. This way,
the use of a meta-heuristic is avoided and instead a MILP problem is obtained and
solved with off-the-self optimization software.

This explicit modelling consists in identifying the beginning of each charging
cycle by means of constraint (2.35). This constraint detects the transition between
an idle or charging state in t− 1 to a charging state in t. In this situation, variable
xt−1,h takes the value of 1, capturing the immediate time step before charging occurs.
This transition detection is possible given that binary variable ut,h identifies when
the battery is in charging mode. yt−1,h is a binary auxiliary variable that takes the
value of 0 when no change in state occurs, or -1 when the battery stops charging.
Constraint (2.37) ensures a mutually exclusive unitary value for the special ordered
sets.

In general, equation (2.35) can take three possible values, i.e. 0, -1 or 1. The
zero value means that ut,h = ut−1,h, which can also have four interpretations: a)
the battery is in charging mode for both t− 1 and t; b) the battery is in idle mode
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Figure 2.16: Energy purchased on the energy market for the deterministic ( )
case

in both time-steps; c) the battery is going from idle to discharging; or d) battery
is going from discharging to idle. Second, if constraint (2.35) equals -1, this means
that ut,h = 0 and ut−1,h = 1, which means that the battery is charging in t− 1 and
is going to discharging or idle mode. Third, if equation (2.35) takes the value of 1,
this is interpreted as a change from idle/discharging to charging mode. This latter
situation is the one of interest, given that the proposed approach intends to identify
only the beginning of charging cycles.

xt−1,h − yt−1,h = ut,h − ut−1,h,∀t, t 6= 1, ∀h (2.35)

xT,h − yT,h = u0,h − uT,h,∀h (2.36)

xt,h + yt,h ≤ 1, xt,h, yt,h ∈ {0, 1} ,∀t,∀h (2.37)

Following the identification of the beginning of a charging cycle, the DoD at
which this cycle occurs can be extracted. Constraint (2.39) allows a value different
from zero to be stored in XD, right before the beginning of a charging cycle. To
assign the proper value of depth of discharge, constraint (2.38) is used. The right-
hand side of this constraint calculates the DoD in per unit of the rated battery
energy. XDf is a dummy variable to balance the equation each time a charging
cycle is not identified (xt,h = 0) and activated through constraint (2.40). Note that
when xt,h = 0, no DoD needs to be identified because no beginning of charging
cycle has taken place, hence per equation (2.39), XD = 0. and additionally, XDf

takes the value of the current DoD, but this DoD has no impacts on cycling cost
calculation, as expected, given that is does not correspond to the beginning of a
charging cycle.

XD
t,h +XDf

t,h = 1−Xt,h/E
rated
h , ∀t,∀h (2.38)

XD
t,h ≤ xt,h,∀t,∀h (2.39)

XDf
t,h ≤ 1− xt,h, ∀t,∀h (2.40)
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Note that conflicting definitions of DoD exist in the literature. The present study
takes the definition of DoD as the energy discharged compared to 100 % SOC; in
addition, the aging model is based on the assumption that each full charging cycle
is accompanied by another full discharging event. Constraint (2.6) ensures that all
charging events must equal the discharging level in order to reach the same initial
and final SOC each day.

With constraints (2.35)-(2.40), the DoD at which each charging cycle occurs is
identified as XD. To extract the appropriate piece-wise cost function, the corre-
sponding segment of the cost curve must be active. This is achieved by means of
constraints (2.41)-(2.43). Constraint (2.42) forces the identified DoD to fall within
the corresponding linearization segment and also leads to activation of a binary
variable lt,h,s for the related active segment s.

S∑
s=1

XDs
t,h,s = XD

t,h, ∀t,∀h (2.41)

lmin
s lt,h,s ≤ XDs

t,h,s ≤ lmax
s lt,h,s, lt,h,s ∈ {0, 1} ∀t,∀h (2.42)

S∑
s=1

lt,h,s = xt,h, ∀t,∀h (2.43)

Note that one difference between this approach and other previous explicit cy-
cling models [64, 65], is that lt,h,s is efficiently used in the objective function (2.44)
to include the parameter bh,s when needed. In a similar manner, XDs

t,h,s is used as
the independent variable of the aging cost function.

Quantities ah,s and bh,s in (2.44), correspond to the piece-wise approximation
parameters of the cycling aging cost.

With this reformulated calculation of the aging cost, the objective function (2.1)
can be re-written as:

minimize
T∑
t=1

{
πtP

E
t + µ−t I

−
t − µ

+
t I

+
t +

N∑
h=1

S∑
s=1

(ah,sX
Ds
t,h,s + bh,slt,h,s)

}
(2.44)

The equivalent cost due to the battery’s aging process for an specific value of
DoD, should be added to the total dispatch cost. The accumulated cycling cost of
aging for the identified DoDs is shown in the fourth term of equation (2.44), and the
parameters ah,s, bh,s are obtained by linearizing equation (2.16) in segments. An
example for a 3 kW / 3.3 kWh li-ion battery is shown in figure 2.17. In this case,
a 5-segment linearization is performed for the referred BESS with the mentioned
parameters. First, six equally spaced points are evaluated with equation (2.16).
Next, curve fitting is performed within each segment and parameters ah,s and bh,s
are obtained.

2.5.1 Results for piecewise linearization approach

In order to determine the impact of the number of segments on the optimization
problem, different values are tested. Figure 2.18, shows the evolution of the objective
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Figure 2.17: Example of piecewise linearization. Cycling Cost Vs. DoD for a selected
li-ion battery

function 2.44 when subject to values of S (number of segments) that range from 2
to 40. It can be seen that after a few segments the value stabilizes and variations
with respect to the final value (40 segments) are minimum.
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Figure 2.18: Impact of number of segments on the value of the objective function

When the error of each solution is calculated, taking the value for 40 segments
as the reference value, it can be seen from figure 2.19 that error drops significantly
after a few segments, and that this error is never higher than 0.05% after 6 segments.
This is a positive outcome, given that fewer segments are desired in the formulation
to avoid a large number of binary variables, which can lead to convergence issues
and prohibitive computational times.

2.5.2 Results for piecewise linearization: impacts of cycling aging

When the optimization problem is solved by selecting 6 segments for the piecewise
linearization and the same selected day for the CSO simulations in table 2.2 , the
obtained total cost is 18.56e , from which 0.11 e correspond to equivalent cycling
aging. The accumulated SOC for all batteries in the system can be seen in figure 2.20
( ). If the cycling cost is neglected from the model, i.e., assuming zero cost for
degradation, the obtained day-ahead operation cost is 18.24 e , in appearance lower
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Figure 2.19: Error of the objective function as a function of the number of segments

than the cost of 18.56e . However, ignoring degradation leads to deeper and more
frequent cycling, as shown in the SOC ( ). In this case, this cycling pattern has an
hidden associated cost of 5.29e , leading to a real total operation cost of 18.24e+
5.29e= 23.53e , which in turn represents an increase of 26.7% with respect to
the complete formulation when piecewise linearization is included. This shows the
importance of taking into account degradation factors into the day-ahead scheduling
of storage devices.
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Figure 2.20: Accumulated SOC when cycling cost is included ( ). Accumulated
SOC when cycling cost is neglected ( )

2.5.3 Comparative remarks of the decomposition and explicit mod-
elling approaches

If the optimal solutions of the decomposition approach in subsection 2.4 and the
explicit modelling in subsection 2.5 are compared for the same day of simulation
(November 15th), the summarized costs are the ones in table 2.3. This result ev-
idence a difference in both the equivalent cycling aging cost and the cost of the
day-ahead committed energy in the wholesale market. Despite the fact that the
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simulations were carried out for the same test system and the same day of schedule,
differences are expected for the following reasons.

First, the logic used for the calculation of equivalent battery cycling is different
in both cases. For the decomposition approach, the direct calculation of the cycling
aging is based on the RCA, which calculates equivalent charging or discharging
half- (or full-) cycles and identifies the DoD range at which this cycles occur. This
methodology differs from the one proposed in the explicit modelling, given that the
latter identifies only full charging cycles, based on the assumption that discharging
will always occur at a latter (or earlier) hour given that SOC has to be the same for
the first and last time-frames. Hence, it comes natural that both approaches result
in a different value of battery equivalent degradation even for a rare event in which
SOC are the same.

Table 2.3: Cost comparison for the optimal solution obtained with the decomposition
and explicit cycling aging approaches

Equiv. cost Energy Total operation
Case cycling [e ] purchases [e ] cost [e ]

Decomposition approach 0.016 18.98 19.00
Explicit cycling 0.11 18.45 18.56

Second, given that there exists an underlying difference in cycling calculation, the
optimal solution will also remain different not only for the resulting SOC, but also for
the rest of the optimization variables, given the inherent correlation. So, day-ahead
energy purchase will be different in order to attain minimum cost solution. This
fact makes that the two approaches cannot be directly compared to conclude that
one of them dominates the other, but what can be concluded, is that each approach
separately presents better performance when compared to the case in which cycling
aging is neglected. Despite the approach that is used, savings will be obtained in
terms of overall operational costs and batteries will have less equivalent degradation.

To demonstrate that both approaches lead to different optimal solutions, ag-
gregated SOC is shown in figure 2.21. This figure shows that each algorithm has
different search spaces and hence the optimization process travels towards differ-
ent points in this search space. In addition, it can be seen that the decomposition
method (RCA based) presents higher variability in therms of the values taken by
the SOC. This means that more control signals have to be sent to batteries in this
approach. On the other hand, explicit modeling has lower charging and discharging
values different from zero. For instance, charging only occurs during time frames
18h-19h and discharging only during time frame 22h. On the contrary, for the de-
composition approach, all time frames have associated charging or discharging, even
if those have low associated values. In addition, the cycling is shallower, which is
also evidenced in the equivalent cycling aging cost (0.016 e ).

2.6 Conclusions

Regarding aggregation of flexibility and device interaction This chapter
presents the models of the devices that provide flexibility at the residential level for
aggregation and participation in the day-ahead energy market. The optimization
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Figure 2.21: Accumulated SOC when for the explicit modeling of cycling ( ).
Accumulated SOC for cycling cost modelled with the decomposition approach ( )

model aims to minimize energy purchase while complying with the electrical and
thermal demand in each household. The alternatives presented in this chapter allow
to capture approximate cost of battery cycling. In this way, the philosophy of the
proposal is in line with very recent research that intends to present models such
that battery owners, operators, aggregators are able to reflect operating costs and
recover at least equivalent battery loss of life during the operation and market
participation [37,38].

The presented deterministic model joins the flexibility related to the BESS and
EWH with the objective of presenting a framework to optimally manage HEMS
resources by integrating several aspects such as: Electric/Thermal load and storage,
battery degradation costs and home/building level management. These aspects,
analyzed from the stand point of an aggregator participating in DA and imbalance
market.

For the particular test case, when BESS are included in the model, a reduction
of 2.15% is achieved, with respect to a base case in which no storage technology
is included. In addition, the inclusion EWHs with storage capabilities, shows a
reduction of 18.7%. The EWHs in this case, act as a flexible load, given that hot
water can be stored for later use given certain price of opportunity.

In addition, inclusion of thermal storage flexibility indirectly descreases battery
cycling given that in this case, BESS are subject to shallower and less frequent
cycling leading to lower equivalent degradation costs.

Regarding BESS cycling Two approaches were used to account for battery
degradation effects. In general, the model includes cycling equivalent aging as a
function of the number of the equivalent cycles during a day and the proportion of
loss of life based on the initial cost of the battery. The number of equivalent cycles
is affected by the non-linear relation of total cycles and DoD.

The first approach proposed for battery aging is a decomposition method. This
decomposition attempts to solve two subproblems, i.e. 1) a cycling aging subproblem
and 2) a thermal subproblem. The input for the aging subproblem is an aggregated
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SOC (all batteries) that comes from a metaheuristic, in this case CSO was used.
Once an aggregated SOC is proposed by the CSO, the individual SOC for each
battery has to be determined in such a way that minimum aging cost is achieved.
This is done by using an algorithm called SDA. The SDA is a Lagrangian based
technique that uses numerical differentiation and the RCA to iteratively find opti-
mal disaggregated SOCs. Afterwards, the setpoints of the EWH and the day-ahead
purchase commitment are found by the thermal subproblem. With this decomposi-
tion approach, the cycling of the batteries is less deep, hence equivalent cycling and
overall operation cost are reduced.

The same decomposition presented in this thesis can be used not only in residen-
tial level storage management, but in any level of storage facilities to be integrated
for market participation. For instance, storage and resources at the commercial
building level, often have higher rated power/energy and thus higher possibilities
of complying with minimum bid levels. Additionally, this framework can also fit
into models in which other agents with batteries at the DSO/TSO levels are willing
to participate in energy and ancillary markets. In all cases, despite the agent, the
ownership or the battery size, the decomposition approach will still be valid. Most
certainly with low computational burden given that grid scale storage is not usually
installed (and owned) in large numbers.

The second proposed alternative to include cycling was explicit modeling. For
this approach, special ordered sets were used to detect charging cycles and the
DoD at which this charging cycles occur. With the identification of this DoD, an
equivalent cost can be found by means of piecewise linearization. With this scheme,
a 21.12% decrease in operation costs was found, when compared to a model that
disregards cycling aging. For the explicit modeling, 6 segments were used to model
cycling cost non-linearities.

With explicit cycling there is also minimization of partial cycling. This is due
to the identification charging cycles when previous state is idle or discharging. This
makes that charging-idle-charging sequence results in costly operation from the
degradation standpoint. In this case, this state sequence impacts on the objec-
tive function, given that when passing from idle/discharging to charging, DoDs are
again captured and additional costs are activated. A consequence of this particu-
larity is the minimization of control signals that the aggregator needs to send to the
BESS controller.

All optimization models run in this chapter used deterministic information for
PV, electrical base load, thermal load and energy prices. The next chapter will
introduce the changes in the model when uncertainty is taken into account.
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Chapter 3

Residential flexibility aggregation
under uncertainty

This chapter presents a literature review about uncertainty issues in smart
grid applications. In addition, it presents a two-stage stochastic alternative
to model prosumer’s flexibility by using an extension of the decomposition al-
gorithm presented in the previous chapter. After that, an adjustable robust
optimization approach is also developed and performance analysis is presented
to show the advantages over deterministic and hybrid stochastic/robust for-
mulations.

The models and results presented in this chapter led to publications [CF-1,CF-
2,CF-4,CF-5].

3.1 Literature review

In the smart grid context, uncertainty plays an important role in the process of
decision making. One common practice to facilitate these optimization processes is
Stochastic Optimization (SO), which typically aims to optimize over the expectation
of a number of predefined scenarios [13]. However, factors such as the requirements
for probabilistic information of uncertain variables, the implementation of special-
ized scenario generation/reduction techniques and the computational burden related
to large number of scenarios, are some of the drawbacks of SP. Several research has
addressed the problem of uncertainty in optimization models in a smart grid con-
text. For instance, authors in [91] propose a scheme for joint PV and ESS grid
connected management. The ESS has to be managed accordingly to face deviations
of the forecasted PV injection. This way, penalizations are minimized (for com-
mited energy deviations), while considering predicted PV production and future
energy prices uncertainty. This model takes into account reduced ESS capacity due
to saturation resulting from cycling. Market participation for the commitment of
energy is based on an intraday (ID) scheme that allows rescheduling of resources for
six sessions during the operation day. This way, the management of the resources
can be adjusted when new forecast information is available and costs minimization
avoids potential imbalance operation. The ID optimization problem is solved by a
MPC defined as a Linear Programmming (LP) problem. PV is continously adjusted
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according to real time methereological conditions and estimated by the help of a
parameter called Cloudiness Coefficient.

The work presented in [92], deals with DA and ID decisions by means of a two-
stage model for scheduling of ESS and DR in the context of transmission networks.
The wind uncertainty is treated by dividing the power output into several intervals
with a given probability. Afer this, there is a scenario reduction methodology based
on Kantorovich distance, in order to delete scenarios that are close to each other
based on computed probability. For the DA, a unit commitment problem is solved
to schedule the thermal plants to face potential shortage of wind power. After this,
adjustments are made for hour-ahead scheduling when the latest forecasts of wind
generation are known. This way, storage SOC and DR are revised to minimize
costs. The implemented methodology to solve this two-stage optimization problem
is a chaotic binary particle swarm optimization algorithm for different test cases
combining inclusion/exclusion of ESS and DR.

A DA strategy is proposed in [49], considering several PV, wind turbines, battter-
ies and HVAC systems to maintainin the indoor temperature within certain confort
ranges. In this case, the MG aggregator controls the HVAC systems and the other
resources to maximize profit, and minimize RES spillage and load curtailment while
maintaining systems operational constraints. The considered uncertainties in this
study are independent and correspond to wind speed, electricity prices, temperature,
solar radiation and demand. Monte Carlo, Latin hypercube and scenario reduction
are performed to build a two-stage optimization model.

Following a similar logic, [93] proposes a two-stage stochastic model for opti-
mizing operation costs of a microgrid in the DA market. The first stage defines
the commitment of DGs and the energy to be purchased/sold from/to the main
distribution grid, then, a second stage includes wind and PV scenarios for mod-
elling uncertainty. The model includes also electric vehicles, ESS and power flow
constraints.

The work presented in [94] proposes daily operation of pumped hydro storage to
compesate uncertainty of wind injection and maximize profits. The mathematical
model includes asociated costs for pumping and generating, as well as penalization
for output deviations. The technical constraints of the pumped storage are also
taken into account and the source of uncertainty is solely the wind power output,
with the forecast error represented by a normal distribution. Two solution methods
are proposed to solve the stochastic optimization problem: chance constrained and
scenario-based optimization; and these are compared with a deterministic approach.
When the different approaches are subject to analysis under randomly generated
scenarios, the stochastic optimization is able to better withstand the fluctuations in
the wind output and guarantee higher levels of profit.

The approach in [34] presents a methodology for ID management of PV and
EWH in a LV network. The EWH act as flexible load to achieve minimum operation
cost for a 24h horizon. The uncertainty of PV is considered, and an MPC is used
for dispatching the flexible load while minimizing also PV shedding and switching
of EWH. The MPC allows the adjustment of the hourly dispatch for the EWH to
cope with the uncertainties introduced by PV forecasts. This work also investigates
the grouped and distributed control signals sent by the MPC and the impact on
energy shedding and total costs.
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3.1.1 Robust optimization for uncertainty treatment

An approach which has gained substantial attention in the recent years is Robust
Optimization (RO) [14], which is an interval based optimization method. RO does
not require knowledge of the Probability Density Function (PDF) of the uncertain
variables, and instead it requires moderate information, i.e. an uncertainty set for
each uncertain variable. RO will provide a robust optimal solution that is feasible
(immunized) within the confidence interval.

RO has been successfully used to tackle uncertainty mainly in large scale power
systems problems with a variety of objectives. For instance, it has been used to
capture load and wind uncertainty in Unit Commitment [95]. In the case of large-size
battery participation in energy and ancillary markets, RO was used in [96] to capture
uncertainty in prices. In transmission expansion planning, this methodology has
been used to cope with demand and renewable generation uncertainty [97]. In [98],
strategic bidding for a wind farm and battery was achieved by inclusion of price and
wind power uncertainty. Stand alone wind systems for market participation have
also included RO analysis [99].

Although most of the applications of RO are related to large power systems
applications, the increasing interest towards decentralized and distributed energy
has pushed research community to explore this approach.

Although there is still little research for exploiting RO capabilities in residential
storage based energy systems, some work has began be published in the recent years,
specifically related to medium size DG/microgrid management. For instance, [17]
presents a model for strategic bidding in energy and ancillary markets for a microgrid
consisting of RES, a microturbine and a battery, in which RO is used to include RES
uncertainty and SO is used to tackle price uncertainty. For bidding purposes in
day-ahead and real time markets, reference [15] proposes a hybrid stochastic/robust
approach, in which RO captures uncertainty in real time prices, while stochastic
optimization is used to include wind and PV scenarios. Both approaches ( [15, 17])
assume deterministic demand.

Robust resource scheduling of MG components is analyzed in [18, 19] with un-
certainty in load and RES, but neglecting uncertainty in price information. In [20],
a DR program for industrial customers is presented. Uncertainties with RO are
considered in load and PV, and a multi-objective algorithm is used for minimizing
cost and emissions. In [21], robust energy management is achieved for a MG con-
sisting on a train station and a district. The model features complete uncertainty
inclusion for PV, wind, load and energy prices. Although this model includes robust-
ness for all uncertain parameters, it does not analyze different levels of uncertainty
budget, immunizing the solution against any uncertainty realization but leading to
over-conservative solutions.

Reference [22] proposes energy and reserve market participation using RO for
wind uncertainty and considers PV and dispatchable units at MV level. Also in MV
level, reference [16] includes uncertainty in net load and heat demand with chance
constrained optimization and price uncertainty with RO.

Some of the previous work consider full uncertainty budget, i.e. worst case
realization of uncertain variables to protect against realization [18, 21]. However,
these solutions could lead to over-conservatism, given that it is very unlikely that
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all uncertainties take extreme values at the same time, hence, robust parameter
analysis can be introduced to achieve less expensive solutions [100]. This logic is
used in [15,16,22] to present a sensitivity analysis for different values of the robust
parameters, given that only one source of uncertainty is considered. When several
sources of uncertainty are included, the interaction of different robust parameters
can lead to find promising solutions. However, in [17, 19, 20], these interactions
are neglected, and instead, all robust parameters are forced to assume the same
arbitrary values.

Although some of the previous MG management approaches include at least
one battery in their respective test systems, none of them includes the non-linear
relation of DoD to account for impacts on degradation and cycling aging. At most,
a simplified linear cost (function of power charge and discharge) is included in [15,
18,19], and references [17,20,21] neglect cycling aging impacts. In this thesis, when
using RO approaches, explicit modeling of BESS degradation is proposed, by means
of piecewise linearization of the curve that describes the non linear relation of DoD
and equivalent life cycles.

Very little work has been pusblished reagarding home level storage management
using RO. Robust management for home appliances is presented in [23] to miminize
electricity bill in a single house and including uncertainty in comfort variables. Re-
garding robust aggregation of storage at the residential level, reference [24] proposes
a scheme for real-time decision making considering batteries and price uncertainty.
Reference [25] does not include battery aggregation, but instead considers exploita-
tion of thermal storage at the residential level in a 20-household testbed, using RO
to account only for thermal demand uncertainty. Although this research does not
include price or electrical load uncertainty, nor RES integration, is does present an
interesting insight on scalability of the proposed model. Reference [26] presents a
community energy managent system disregarding batteries, but including PV and
wind power. RO is used to include uncertainty in RES and prices.

Despite its valuable contribution on participation in multiple markets, [26] lacks
of an insight for budget of uncertainty analysis regarding the three considered robust
parameters. Similarly, predefines parameters for both outdoor temperature and hot
water use, and then presents a sensibility analysis by adjusting a parameter that
influences both uncertain variables in the same amount. In addition, reference [25]
does not consider adjustable parameters and only presents the worst case solution.

A more common practice in the specialized literature to account for aggregation
of residential/building storage under uncertainty, is by using MPC and/or stochastic
optimization. For instance, stochstic optimization and chance constrained methods
are used in [28] for energy and reserve market participation by aggregating residential
batteries and heating. This work presents inclusion of uncertainty in prices, weather
and realized frequency. MPC based models for aggregation of distributed storage
devices (at DSO level) is presented in [101] to provide local and frequency services;
in [29] an aggregation of appartment buildings with multiple EWHs, EVs and a
single battery is presented; and MPC is also used in [102] for the case of regulation
services by aggregation of industrial thermal loads.
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3.1.2 Discussion

Given the multiple sources of uncertainty in scheduling of flexibility resources, new
optimization methods have to be used. For the treatment and modeling of uncer-
tainty within an optimization problem, three main directions are identified.

First, if no information regarding the probability density functions of the un-
certain variables is available, one possible approach is to use robust optimization
(RO) theory. If uncertain variables remain within known boundaries, RO defines
an uncertainty budget and a new optimization problem that has to be feasible for
all realizations of uncertainty is defined, leading to a very conservative solution, as
shown in [15, 66, 103]. For the flexibility management, a robust solution should be
able to withstand any load scenario and RES realization, while maintaining feasible
operation of all devices.

A second group is related to stochastic optimization. In this group, a selection
of scenarios with a certain probability must be predefined and embedded into the
optimization formulation. To define the scenarios, multiple methods can be used,
such as point estimation methods, Taguchi orthogonal arrays, Kantorovich distance
or clustering methods in general. This approach is not as robust as RO, given that
the optimal solution is feasible for a finite number of uncertainty realizations, but
at the same time leads to less expensive and less conservative solutions. In this
group of proposals, two-stage optimization problems can be found [31, 49, 92, 93]
for finding an expected operation value. The idea is to define a first stage (or
here an now decision) with variables and decisions that usually correspond to the
committed energy purchases in the DA market and the generation commitment for
the conventional generation. After this, a set of second (or recourse) decisions is
made, according to the realizations of the uncertain variables. This approach also
has the advantage of simplicity in its modeling, with the trade-off of increasing the
number of variables depending in the scenarios to be analyzed in the second stage.

A third group is associated to MPC theory. This appears to be suitable for
rolling horizon decisions, such as the ones that have to be taken in ID and real-time
(RT) markets, where the latest information of forecast might change some device
settings for the remaining operation schedule.

RO approaches use a confidence interval for each uncertain variable. In this
thesis, probabilistic forecasts for PV and demand are used as input to creating these
intervals. An index to classify each simulation day depending on the characteristics
of these invervals is defined in the next subsection. This information helps classifying
days to develop specific simulations.

3.2 Characterization of uncertainty

To measure the amplitude of the net load in each day, an index is defined. This
index is obtained by calculating the mean neat load interval (MI) for a 24-h period.
First, the maximum/minimum net load is calculated by using (3.2)/(3.3). Then,
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the MI for each day m is calculated by:

MIm =
1

T

T∑
t=1

D̄net
t,m −Dnet

t,m

D̄net
t,m

× 100% (3.1)

where,

D̄net
t =

N∑
h=1

(Dq90%
t,h − P pv10%

t,h ) (3.2)

Dnet
t =

N∑
h=1

(Dq10%
t,h − P pv90%

t,h ) (3.3)

The index MI gives an idea of how wide the uncertainty set is, from the net load
stand point, and it is used to classify each day according to the level of MI. For
example, figure 3.1 depicts the MI for each day in November 2015. This information
to run simulations on three representative days of high (Nov. 5th), medium (Nov.
15th) and low (Nov. 27th) MI and avoid arbitrary selection of days for Day-ahead
simulations. In addition, figure 3.2 shows an example of net load confidence intervals
for two selected days: November 5th and 27th.
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Figure 3.1: Average net load intervals calculated with equation (3.1)
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Figure 3.2: Net load interval for two days. November 5th ( ) and November 27th
( )
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3.3 Quantile-based two-stage stochastic optimization with
SDA

This section presents an alternative for including PV and demand uncertainty into
the optimization model described in chapter 2. This alternative is based on stochas-
tic optimization in which PV and demand scenarios are created according to the
information provided by the available probabilistic forecast.

The proposed two-stage stochastic optimization model minimizes the expected
HEMS day-ahead operation cost by scheduling the batteries’ power charge and dis-
charge, and the power injected into the EWHs, the TES pattern, and exchanges
with the energy market.

Objective function

As shown in Eq. (3.4), the two-stage stochastic optimization model minimizes the
expected DA operation cost, in which the first-stage decision is associated with the
DA purchase commitment (PE

t ), and second-stage (recourse) expected costs are
related to the import/exports (I−t,e/I

+
t,e) imbalance and the expected cycling cost

(f cych (·)) for the batteries installed in each house h, which is a function of the SOC
vector (Xh,e). Subscript e index scenarios and pe is the probability of scenario e.

min
T∑
t=1

πtP
E
t +

ES∑
e=1

pe

{
T∑
t=1

(µ−t I
−
t,e − µ

+
t I

+
t,e) +

N∑
h=1

f cych (Xh,e)

}
(3.4)

All of the terms in the objective function are linear, except the one related to
the cycling. The decomposition method explained in section 2.4 is used to solve this
two-stage stochastic problem.

The decomposition approach iteratively solves two subproblems: cycling sub-
problem and thermal subproblem.

Cycling subproblem

The main difference with the SDA already explained in subsection 2.4, is the fact
that in this case a number of scenarios has to be included. Hence the complete algo-
rithm has to be adjusted for stochastic formulations. The details of the generalized
SDA for scenario-based optimization are shown in annex B and the outline of the
decomposition approach to solve the cost minimization problem when considering
scenarios, is shown in figure 3.3.

The outcome of the SDA is the SOC for each battery in the system in each
scenario. With this information, the thermal subproblem can be solved for the
two-stage stochastic proposed alternative.

Thermal subproblem

When a certain SOC is generated with the CSO and then disaggregated by means
of the SDA the remaining set points that need to be determined in each household
are those associated with the EWH.
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Figure 3.3: Flowchart of the SDA to two-stage stochastic approaches

First, P c
t,h,e and P d

t,h,e can be easily determined by applying the following rule:

P c
t−1,h,e =

{
(Xt,h,e −Xt−1,h,e)/(η

c∆t), if Xt,h,e −Xt−1,h,e > 0

0, otherwise
(3.5)

P d
t−1,h,e =

{
(Xt−1,h,e −Xt,h,e)η

d/∆t, if Xt−1,h,e −Xt,h,e ≥ 0

0, otherwise
(3.6)

To maintain continuity of the BESS, both P c
t,h,e and P d

t,h,e have to be zero for the
last time frame (t = T ) in order to match the SOC for the first time frame of the
following day. Thus, equations (3.5) and (3.6) are valid for t : {2, ..., T}.

Once P c
t,h,s and P d

t,h,s have been ascertained, a verification of these values is
needed to determine if they are higher than the nominal power. If so, the analyzed
SOC is infeasible and a penalization of this proposal is required. This penalization
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is calculated as follows:

Z =
ES∑
e=1

N∑
h=1

T∑
t=1

[(P c
t,h,e − P̄ c

h) ·H(P c
t,h,e − P̄ c

h)−

(P d
t,h,e − P̄ d

h ) ·H(P d
t,h,e − P̄ d

h )]

(3.7)

From (3.7), whenever P c
t,h,e or P d

t,h,e are outside the boundaries, Z measures the
proportion of the limit violation; and if feasible operation is achieved, then Z = 0.

Once the values of Xt,h,e, P c
t,h,e, P

d
t,h,e and Z are known, the model can be

rewritten in the following way as a linear programming problem:

min z =
T∑
t=1

πtP
E
t +

ES∑
e=1

pe

{ T∑
t=1

(µ−t I
−
t,e − µ

+
t I

+
t,e)
}

+ βZt (3.8)

Subject to:

PE
t + I−t,e − I

+
t,e + ∆t

H∑
h=1

Pnet
t,h,e = 0,∀t,∀s (3.9)

Pnet
t,h,e = PPV

t,h,e − P c
t,h,e + P d

t,h,e −Dt,h,e −Ht,h,e, ∀t,∀h,∀e (3.10)

0 ≤ PPV
t,h,e ≤ P

PVmax
t,h,e , ∀t,∀e,∀h (3.11)

Yt,h,e = Yt−1,h,e + ∆tHt−1,h,e

−Yt−1,h,e/RhCh −∆tQt−1,h,e, ∀t, t 6= 1,∀e,∀h (3.12)

Y1,h,e = YT,h,e,∀e,∀h (3.13)

Y t,h,e ≤ Yt,h,e ≤ Ȳt,h,e (3.14)

0 ≤ Ht,h,e ≤ H̄t,h,e (3.15)

where β is a penalization factor.
For each specific SOC proposal generated by the metaheuristic, the correspond-

ing fitness function is calculated by adding the results of the cost obtained by the
SDA and z.

It is worth noting that the two-stage characteristic is maintained in both sub-
problems, given that the aggregated SOC proposals created by the metaheuristic
contain the SOC for each of the recourse decisions, and that the thermal subproblem
is a two-stage linear problem containing the information for the remaining second
stage variables.

3.3.1 Creation of scenarios

The results of the quantile forecast are used to select a central value for both PV
and load, by specifically using the median (quantile 50%) as this central forecast.
To avoid defining arbitrary values of deviations from the central forecast to create
scenarios, quantiles 10% and 90% are taken as the lower and upper bounds of forecast
values. In this way, all central and deviated values of PV and load are combined to
form a set of nine scenarios, representative of all potential combinations of minimum,
maximum and central values according to realistic information from measurements

63



and predictions and assuming uncorrelation between demand and PV forecasts.
These nine scenarios (e1-e9), shown in table 3.1 are used as input data for the
second stage formulation or recourse problem defined in the next section.

Table 3.1: Scenarios included in the stochastic scheme
Scenario e1 e2 e3 e4 e5 e6 e7 e8 e9

Load quantile 10 10 10 50 50 50 90 90 90
PV quantile 10 50 90 10 50 90 10 50 90

An example for a typical day of the normalized aggregated values for PV and
load, containing the central, upper and lower values is shown in figure 3.4.
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time[h]
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.

load 10% load 50% load 90%
PV 10% PV 50% PV 90%

Figure 3.4: Normalized load and PV curves for each of the quantiles needed for
scenario generation

It is important to emphasize that three groups can be identified from the nine
scenarios described in table 3.1:

1. a conservative group: formed by the scenarios featuring high load and low PV
quantiles (i.e. e4, e7 and e8);

2. an equilibrated group: formed by scenarios with similar quantiles for both
load and PV (i.e. e1, e5 and e9);

3. and optimistic group: with scenarios featuring low demand and high PV quan-
tiles (i.e. e2, e3 and e6).

The presence of these three groups of scenarios in the stochastic framework,
allows a balance of optimality and robustness in the obtained solution, by combining
the robustness introduced by the conservative group which generally leads to higher
costs, but balanced by the potential low costs associated to optimistic scenarios,
and complemented by the balance created resulting from the equilibrated scenarios.
This set of nine scenarios, allow feasible and robust operation of the HEMS in the
interval of extreme quantile realizations of demand and PV production, and allows
exploitation of the probabilistic forecast methodology.
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A visual representation of the aggregated net load (load minus PV) resulting
from the nine scenarios for a typical day, can be seen in figure 3.5. The plot shows
that curves e7 ( ), e4 ( ) and e8 ( ) tend to have higher neat load during
most of the 24 h horizon, which can be more clearly seen during the daytime when
PV has values different from zero. In addition, e7 and e8 have also higher net load
during nightime given that they are formed by using the 90% load quantile. This is
a logical outcome, provided that these three scenarios (e4, e7 and e8) are indeed the
ones classified in the conservative group. These scenarios will push the stochastic
formulation to higher expected costs, in order to supply the required energy to be
purchased in the market or injected from stored energy in the batteries.

Following the same logic, the optimistic scenarios can be identified as e2 ( ),
e6 ( ) and e3 ( ), with a clear tendency of low comparative values of net load,
and even negative values for some time steps, meaning that available PV production
is higher than the demand to be supplied. This situation could lead the stochastic
formulation to take advantage of this available energy to store energy, supply load
or sell back to the market.
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Figure 3.5: Normalized neat load per scenario

The proposed two-stage stochastic optimization model minimizes the expected
prosumer’s aggregation day-ahead operation cost by scheduling the batteries’ power
charge and discharge, and the power injected into the EWHs, the TES pattern, and
exchanges with the energy market.

When the complete two-stage stochastic optimization model is solved for each
of the 30 days, the first-stage variable obtained determines the day-ahead purchase
commitment on the wholesale market. This two-stage model is run by defining the
nine second-stage scenarios already explained.

The average expected daily cost of the stochastic solution (SS) is taken as the
base value for comparison purposes (1 p.u.) and the associated cost for each of the 30
days is presented in figure 3.6 ( ). This cost is the result of the DA commitment
and the expected imbalance settling cost plus the expected battery cycling cost, for
each of the nine scenarios, as per equation 3.4. To test the adequacy of the presented
stochastic formulation, VSS (Value of Stochastic Solution) index is used [13].

To calculate the VSS, which measures the cost of ignoring uncertainty to make
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Figure 3.6: Evolution of daily cost for the deterministic case under the analyzed
cases and for the whole month of November. Values in p.u. of mean SS

a decision, a quantity called the expected value problem (EVV ) needs to be deter-
mined. The EVV consists in solving the stochastic problem using the second stage
containing all the necessary scenario information, but fixing the first-stage variables
with the result of the deterministic solution. This allows to find a second-stage
optimal solution as a function of the first-stage variables obtained using the central
forecast (quantile 50%). Then, the index is calculated by: VSS = EVV − SS. The
value of EVV for the complete month is shown in figure 3.6 ( ). The VSS is pos-
itive each day, as shown in curve ( ). Average values VSSmean and VSS%mean

are afterwards calculated using:

VSSmean = 1/30

30∑
1

(EVVi − SSi) (3.16)

VSS%mean = 1/30
30∑
1

EVVi − SSi
EVVi

· 100% (3.17)

As a result, VSSmean = 0.06 p.u.. By using equation (3.17), the stochastic
approach allows a reduction of operating costs by VSS%mean = 5.8% on average
through the analyzed month, which is also the mean value of the curve ( ). The
VSS gives an idea of how well the optimization under uncertainty performs. In this
case, the two-stage stochastic optimization represents the best option, given that it
allows a reduction of the expected average cost when compared to the deterministic
approach for taking the DA purchase decisions (given by EVV ).

The boxplot distribution created by the 30 day-ahead purchase commitments in
each time frame, is shown in figure 3.7. From the figure it can be seen that interaction
with the grid decreases in the time frames around noon, given the available PV.
Concretely, the 12h and 13-15h time frames present respectively 22 and 23 days on
which zero kW purchased on the wholesale market. In addition, time frames around
midnight, such as the interval 23h-3h, indicate a low dispersion of purchased energy
throughout the whole month.
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Figure 3.7: Power purchase boxplot for each DA timeframe

3.3.2 Analysis of a single day

Given that day-ahead purchase commitment variable is fixed for all scenarios (first-
stage variable), second-stage imbalances allow feasible operation of the system in
such a way that the expected cost is minimized. For this study case, imbalance is
required at different time steps and for all of the second-stage scenarios, as shown
in figure 3.8. The boxplots show that additional energy (negative imbalance) must
be purchased in order to overcome shortages for the realizations of the different sce-
narios. In particular, scenarios 1, 4 and 7 present higher median and third quartile.
These imbalance needs in fact, correspond to the scenarios with the lowest levels
of PV production, so the aggregator has to purchase additional energy from the
wholesale market to offset the energy imbalance.
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Figure 3.8: Imbalance boxplot for each scenario in the stochastic optimization

Regarding the accumulated SOC for all 16 batteries in the system, it can be
seen from figure 3.9 that there is a pattern for all nine scenarios and that storage
generally increases around 5h and 16h. It is interesting to point out that scenarios
4 and 7 tend to have higher SOC just before noon. This is explained by
the fact that these scenarios feature low levels of PV, hence the energy discharge
is treated in a more conservative way. The lowest degradation value is related to
scenario 1 ( ), which has minimum levels of both load and PV.
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Figure 3.9: Aggregated SOC for each scenario in the stochastic approach

3.3.3 Computational performance of the CSO for the 25-household
testbed

To test the performance of the CSO, several runs were carried out for a specific day
in order to determine the quality and consistency of the obtained solutions. Tests
consist in running the algorithm 20 times for different population sizes, setting the
stop criteria to 30 iterations without improving the best solution. In addition, the
maximum number of iterations is set to 300. In these conditions, the CSO is run,
and after each simulation the information saved is: best solution and computational
time in achieving the best solution. In addition, the performance of the implemented
CSO is compared with the performance of a Particle Swarm Optimization (PSO)
algorithm in order to have another swarm based metaheustic comparison. The
values of the parameters used for the PSO are 0.9, 2.0 and 2.0, for inertia, cognitive
and social parameters, respectively.

Table 3.6 shows the results for both CSO and PSO and the different population
sizes. It can be observed that the CSO presents lower computational times for
solutions close to those ones obtained with the PSO. Although the average best
solutions obtained with the PSO are lower than those obtained with CSO, the
computational times may be prohibitive for day-ahead decisions, given the need to
run the algorithm for several hours. In contrast, the CSO achieves good quality
and stable solutions in the range of 6500-12000s for population sizes of 30 and 50
particles.

The faster evolution of the CSO is explained by the constant update of the loser’s
velocity and the permanence in the swarm of the best paired particles, which allows
good quality solutions to be maintained in each iteration and promoted into the
next generational cycles.

3.3.4 Performance of the CSO for larger test systems

To test the performance of our algorithm for a larger number of households to
be aggregated, four additional test cases with 50, 100, 150 and 226 households
(referenced as A-50, A-100, A-150 and A-226 respectively) that belong to the same
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Table 3.2: Computational performance of the CSO and PSO for one typical day in
November

CSO (ψ = 0.3) PSO
Population 30 50 80 30 50 80
Best solution [e ] 5.29 5.27 5.26 5.24 5.24 5.22
Best sol. range
[e ]

5.29-
5.37

5.27-
5.31

5.26-
5.34

5.24-
5.31

5.24-
5.27

5.22-
5.26

Best sol. mean
[e ]

5.33 5.30 5.28 5.28 5.26 5.24

Best sol. SD [e ] 0.02 0.02 0.02 0.02 0.01 0.01
Mean time [s] 6867 11103 17194 13455 25176 41351
Time range [s] 6571-

7262
9750-
12087

16121-
18547

12750-
14280

23574-
26330

38687-
43111

Time SD [s] 217 662 765 538 947 1624

neighbourhood in Evora, Portugal were included. All of the buildings are within a
circle of 250 m radius, mainly residential, with some restaurants and stores.

Although PV, ESS and EWH in the real life are only installed in the 25 house-
holds of the original testbed, we mirrored the distribution of resources as outlined
in figure 2.2 and we assigned a proportional number of resources in each case, based
on the original 25-household HEMS.

For this performance analysis, the CSO was run 20 times for each test system
with the following parameters: 30-particle population, ψ = 0.3 and stop criteria set
to 30 iterations without improving the best solution and the maximum number of
iterations is set to 300. The results are condensed in the following table:

Table 3.3: Computational Performance for different test systems
Test system Best sol. mean (SD) [e ] Mean time (SD) [s]

A-50 -1.72 (0.05) 7811 (2053)
A-100 -3.36 (0.04) 9767 (2941)
A-150 -5.05 (0.05) 10372 (3809)
A-226 -7.62 (0.08) 11523 (2794)

As expected, the results show that the computational time increases when the
number of households to aggregate is larger. However, the computational times
for the larger test system (A-226 households) remains reasonable for day-ahead
decision making with an average of 11523 s, and ranging from 5590 to 14632 s.
This is an important result, provided that it demonstrates that the algorithm can
deal with larger aggregation without leading to prohibitive computational burden.
Negative results of the objective function indicate that management of larger number
of resources leads to increased profits.

There are two main reasons to explain why the presented approach can withstand
the proposed test systems within reasonable times: 1) the size of each particle is
determined by the time step and the number of scenarios, but is independent of the
number of batteries in the system. This allows to keep the search space of the CSO
invariant and battery-independent; 2) the SDA returns the charging/discharging
pattern for each battery; this information is used by the thermal subproblem, with
the advantage that this subproblem is a linear programming problem, thus avoiding
explosion of problem size and binary variables.
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The presented stochastic model is a first approach to deal with the uncertainties
introduced by PV and load. This model is fed by scenarios that come from the
quantile-based forecast information in order to create different combinations of PV
and demand levels. The next section will present a second alternative which is
related to robust optimization, not only to model PV and demand uncertainty but
also to include uncertain effects of prices.

3.4 Adjustable robust optimization approach

Robust optimization approaches aim to find optimal and feasible solutions over an
interval of values that represent uncertainty. When inspecting the deterministic
model in (2.1)-(2.14), four sources of uncertainty are identified: prices, PV produc-
tion, electrical demand and thermal demand.

The robust counterpart of a deterministic problem can be found by maximiz-
ing the deviation of the uncertain parameters within each constraint. A tractable
resulting problem is obtained with strong duality theorem. Interested readers can
find detailed formulation in [100]. The details of the formulation of the robust coun-
terpart and the relation with the model in this thesis is provided in the Appendix
C

When applying strong duality due to energy price uncertainty in the objective
function, the following equations are obtained:

T∑
t=1

N∑
h=1

S∑
s=1

(ah,sX
Ds
t,h,s + bh,slt,h,s) +

T∑
t=1

∧
πtP

E
t +

T∑
t=1

qct + Γczc (3.18)

zc + qct ≥
1

2
(π̄t − πt)yct , ∀t (3.19)

− yct ≤ PE
t ≤ yct , ∀t (3.20)

zc, qct , y
c
t ≥ 0,∀t,∀h (3.21)

Where zc, qct , yct are dual variables of the robust counterpart. For price uncer-
tainty, a robust parameter allows to control conservatism of the solution (Γc). This
value can be adjusted in the range [0,T ], given that T is the maximum number of un-
certain parameters in the objective function (energy price). For instance, if Γc = T ,
means that the solution will remain optimal and feasible for T price deviations from
the central value. Or in other words, the solution is capable of withstanding the
worst case scenario.

Uncertainty in constraint (2.2) is introduced by PV and electrical load. Hence,
a single uncertain right-hand parameter can be obtained by finding the net load in
each time step (PV minus load). The robust counterpart of this constraint is given
by equations (3.22)-(3.24).

PE
t + ∆t

N∑
h=1

P d
t,h − P c

t,h −Ht,h = Dnet
t + qDt + ΓD

t z
D
t , ∀t (3.22)

zDt + qDt ≥
1

2
(D̄net

t −Dnet
h )yDt ,∀t (3.23)
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zDt , q
D
t ≥ 0, yDt ≥ 1, ∀t (3.24)

where,

Dnet
t =

1

2
(D̄net

t +Dnet
h ) (3.25)

In this case, net load uncertainty indirectly captures electrical load and PV
uncertainty. Robust parameter ΓD

t controls the robustness in each constraint t. For
simplicity, in the remainder of this document the subindex t is eliminated from this
parameter and instead ΓD is used to control net load robustness. Cardinality of ΓD

is [0,1], provided that there is maximum one uncertain parameter in each constraint.
Constraint (2.11), contains another uncertain parameter: thermal load. Appli-

cation of strong duality results in the following constraints:

Yt,s,h = Yt−1,s,h + ∆tHt−1,s,h − Yt−1,s,h/RhCh

−∆t(
∧
Qt−1,s,h + qtht−1,h + Γth

t−1,hz
th
t−1,h),∀t,∀h

(3.26)

ztht,h + qtht,h ≥
1

2
(Q90%

t,h −Q
10%
t,h )ytht,h,∀t (3.27)

ztht,h, q
th
t,h ≥ 0, ytht,h ≥ 1, ∀t,∀h (3.28)

For simplicity, we eliminate the subindex t, h from Γt,h and instead we assume a
general parameter to control robustness in thermal load: Γth. Note that Γth ∈ [0, 1].

The complete adjustable robust MILP counterpart (ARO) is represented by the
following equations:

minimize (3.18) (3.29)

s.t.

Constraints : (2.5)− (2.10), (2.12)− (2.14), (3.30)
(2.35)− (2.43), (3.19)− (3.24), (3.26)− (3.28) (3.31)

where:

• (3.18): is the robust counterpart of the objective function.

• (2.5)-(2.10): are the BESS constraints.

• (2.12)-(2.14): are the EWH constraints

• (2.35)-(2.43): are the BESS cycling piece-wise linearization constraints.

• (3.19)-(3.24): are the robust counterpart constraints related to power balance
and net demand uncertainty.

• (3.26)-(3.28): are the robust counterpart constraints related to thermal de-
mand uncertainty.
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This is a tractable MILP problem that can be solved with off-the-self commercial
solvers. Three robust control parameters can be tuned to obtain different robust day-
ahead bids: ΓDA, ΓD and Γth. Each one controls conservatism against uncertainty
in energy prices, net load and thermal load, respectively.

For the simulations presented in the next section, electricity prices are taken
from the EPEX-European Power Exchange database [104], and a persistence model
is used to forecast the day-ahead and imbalance prices, consisting in assuming the
last known data for the same weekday. This is done to consider a realistic case in
which an aggregator, when defining day-ahead purchases, does not have the settled
prices. Hence, by taking the prices for the same day in the previous week, we obtain
available input data to make decisions. In line with [21, 24], price deviation from
forecasted values are assumed to be ±10%, in order to create confidence intervals
for the ARO formulation.

The confidence intervals for the the net load and thermal demand are created
by taking the 10% and 90 % quantiles of the probabilistic forecast.

3.4.1 Results for the robust approach

The following results present the behaviour of the main variables after solving the de-
terministic model presented in equations (2.1)-(2.14) and the adjustable robust opti-
mization counterpart in (3.29)-(3.31), for a medium MI day (Nov. 15th). When solv-
ing the deterministic problem, the obtained day ahead operational cost is 14.93e .
On the other hand, a cost of 29.88e is found as the robust solution when ΓDA = 24,
ΓD = 1 and Γth = 1, which corresponds to considering the full uncertainty bud-
get for all the uncertain variables in the model. This robust DA operation cost,
establishes an upper bound for the operation cost, while the deterministic solution
is a lower bound. For the deterministic solution, this means that any uncertainty
realization different from the central forecasts for prices, load and PV; would imply
penalization due to imbalances. On the other hand, any realization of the uncer-
tainty set within the budget, would never yield an operation cost higher than 29.88
e , acting as a guaranteed minimum.

Figure (3.10) shows the accumulated (all BESSs) SOC for both deterministic
and ARO cases.

The deterministic ( ) SOC shows, in general, a similar evolution when com-
pared to the ARO. However, a particular difference is evident in timeframes 12h-16h,
which coincides with PV production hours. In the ARO, there is a discharging pat-
tern of the batteries during these time frames provided that a highly conservative
scenario is implicitly assumed within the model when ΓD=1 and Γth=1: minimum
PV production and maximum demand. This situation leads the optimal solution to
set BESS in discharging mode to compensate low levels of available PV. The ARO
indicates a more conservative discharging-charging, given that stored energy dur-
ing these time frames avoids a setting point close the boundaries, in order to cope
with potential uncertainty realizations in a more cost-efficient way. For instance,
if during time frames 12h-15h, uncertainty realizations were those of higher than
forecasted PV values, the ARO solution would allow more room for power injection
into the grid. On the contrary, the deterministic solution would be more limited to
exploit this potential situation, given that the settings of BESSs would not allow

72



5 10 15 20
0

20

40

60

time[h]

S
O
C
[k
W

h]

Figure 3.10: Accumulated SOC when cycling cost is included: Deterministic ( ),
ARO ( ). Accumulated SOC when cycling cost is neglected: Deterministic ( ),
ARO ( ).

additional storage. However, next subsection will analyze potential savings and cost
advantages of the ARO versus the deterministic approach in more detail.

In addition, a simulation was carried out neglecting cycling aging cost (second
term in equation (2.44) also for the deterministic ( ) and ARO ( ) cases. This
simulation shows that deeper cycling is found for time frames: 3h-5h, 14h-16h and
20h-22h. This is an expected result provided that the omission of aging in the model,
will cause the battery to cycle without degradation constraints and present deeper
and more frequent cycling.
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Figure 3.11: Day-ahead energy purchase: deterministic ( ), ARO ( )

The energy purchase commitment for both cases is shown in figure 3.11. Ex-
cepting two time frames (20h and 23h), purchase commitment for the ARO ( )
is always higher than the deterministic approach ( ). This is an expected result
given that, as explained before, the robust solution is conservative and represents a
cost upper bound to withstand different uncertainty realizations while maintaining
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final operation under this maximum assured cost.
When the aggregator bids in the day-energy energy market and determines the

operation of its devices for each hour, there might be imbalances due to deviations,
as explained in subsection 3.4.4. In this case, energy shortage/excess should be
purchased/sold at the imbalance price, increasing final operational costs.

Robustness can be visualized by analyzing imbalances due to deviations when
DA purchase commitment is subject to multiple random realizations of prices, PV
production and demand. To generate boxplots of imbalance for deterministic and
ARO solutions, MC simulation is used by assuming uniform distribution for prices,
and the inverse cumulative distribution function (ICDF) for PV and load resulting
from the real probabilistic forecast. Figure 3.12 shows a comparison of the imbal-
ances (same selected day: 15th Nov.) for each time frame. For this specific case, it
can be seen that the robust solution (ΓDA = 24, ΓD = 1 and Γth = 1) does not inc-
cur in negative imbalances (additional purchases), but only in selling energy excess,
(positive imbalance) during all time periods, with particular higher median values
during 5h and 6h and around noon. This is explained by the fact that the ARO
returns a solution that is feasible for the lowest realizations of PV production and
the highest load scenarios, leading to energy excess when different realizations of
this uncertainty are analyzed. The early hours positive imbalance coincide with the
high energy purchase (see figure (3.11)) used for battery charging (see figure(3.10)),
which becomes an energy excess and is sold back to the market. In opposition, when
the deterministic solution is subject to uncertainty realizations, negative imbalance
appears in all time steps, given its limitation for handling realizations of uncertainty
which are different from the central forecasted values, specially when load is higher
and PV production is lower.
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Figure 3.12: Comparison of imbalance needs for the deterministic and the robust
approach when ΓDA = 24, ΓD = 1 and Γth = 1
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3.4.2 Interaction of devices in the deterministic and robust ap-
proaches

Another simulation was carried out for the complete month of analysis. In this case,
the interaction of different sources of flexibility was analyzed for the deterministic
and ARO cases. The proposed test system has two technologies for storing energy:
electrochemical batteries and EWHs. The possibility of using the EWHs to store
thermal energy allows this device to act as a flexible load. Average costs were
obtained for different cases as shown in table 3.4.

Table 3.4: Average daily costs of resource management
Used flexibility Equiv. cost Total operation

Case BESS TES cycling [e ] cost [e ]
Deterministic Yes No 0.20 15.7
Deterministic Yes Yes 0.20 15.19

RO Yes No 0.19 28.89
RO Yes Yes 0.18 28.14

The table shows that for both cases (deterministic and ARO) better results are
obtained when TES is allowed as a form of flexibility. In specific, when EWHs are
used to store heat, deterministic and ARO approaches achieve 3.2% and 2.6% cost
decrease respectively, when compared to cases in which only batteries are used to
store energy. This shows the importance of allowing control of the EWHs’ settings
in order to store hot water to be used in later hours.
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Figure 3.13: Daily average operation (state of charge) of BESS and EWHs

For instance, figure 3.13 shows the average stored heat of all EWHs in the test
system. From the figure it can be concluded that the robust approach presents
higher levels of stored heat versus the deterministic case. This is explained by the
fact that the ARO is protected against potential variations of thermal load including
the maximum values in the confidence interval. Hence the available hot water should
be enough to face this extreme scenario in each time step.
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The figure also shows aggregated average SOC for the BESS. In this case, stored
energy for the ARO case differs from deterministic mainly around noon hours, pre-
senting lower DoD, or similarly: available stored energy. This difference in stored
energy also leads to lower average cycling aging in the robust case. For instance, 10%
equivalent cycling average cost decrease is achieved in ARO versus the deterministic,
due to the difference in the batteries’ SOC.

3.4.3 Impacts of battery efficiency on cost

In this work, no information was available for the existing storage system in the test
system regarding charging/discharging (or roundtrip) efficiency, hence we neglected
inverter losses (as well as PV) and assumed the value of 95% for the batteries in
line with previous research for residential applications [24,105–109] in which close or
equal values were used. We are aware that efficiency of the system might certainly be
lower than 95% and that this leads to changes in device settings and overall system
profit/cost. However, provided that changes in η will affect both deterministic and
ARO simulations, the philosophy of the general conclusions on advantages of ARO
over deterministic will remain unchanged. Only specific numerical values of average
costs / SD, etc., will suffer an offset according to the specific value of η.

To determine the impacts of charging and discharging efficiency on the total
operation cost obtained by the deterministic and ARO approaches (with ΓDA=24,
ΓD=1 and Γth=1), a sensitivity analysis is carried out.

This analysis consists on changing the value of η = ηc = ηd in equation 2.5 and
solving for each day during the analyzed month. Afterwards, the monthly average
cost is calculated and associated to each η value. After this procedure is completed,
the obtained values are depicted in figure 3.14.
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Figure 3.14: Sensitivity analysis for variations of charging and discharging efficiency.
Average daily cost for November. Deterministic ( ) and Robust case ( )

This figure shows that lower values of efficiency lead to average cost increase
for both cases: deterministic and ARO. For the case of the deterministic approach,
when losses are neglected (η = 1) the cost is 14.74e , and increases up to 8.6% when
an efficiency of 0.8 is considered for the storage system.

For the ARO case, an average cost of 27.69e is obtained when losses are ne-
glected, and cost increase reaches 8.3%. The direct comparison of the ARO and
deterministic solutions shows that when losses are neglected, ARO presents an ex-
tracost of 87.85% when compared to the deterministic. Extracost of 81.1% is ob-
tained for the case of η = 0.8, showing that despite large variations in η, the robust
solutions present a higher guaranteed costs than the deterministic. This may lead
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to different scheduling of devices and absolute costs for each methodology, but as
expected, ARO solutions always present higher maximum guaranteed cost, as also
explained in section 3.4.1.

3.4.4 Performance assessment of robust solutions

In order to analyze different levels of conservatism when bidding in the day-ahead
energy market, different combinations of ΓDA, ΓD and Γth must be analyzed. When
a solution is obtained for any combination, the energy purchase commitment (PE

t )
and the device settings are determined. The performance of this day-ahead plan
is evaluated by calculating the imbalances I−t /I

+
t in each time step due to energy

mismatch. Negative/positive imbalance implies energy shortage/excess that has to
be purchased/sold at higher/lower prices which leads to overcost in the operation.
Each plan is subject to performance analysis under several realizations of energy
price, PV, electrical and thermal load by means of Monte Carlo (MC) simulation.

START 

Read system parameters 
Read forecast data 

Calculate condifence intervals 
Perform Piecewise linearization 

END 

Generate  MC scenario 

Γ𝐷𝐴 = 0  

Run ROMILP 
Eq. (3.29)-(3.31) 

Calculate imbalances 

Γ𝑡ℎ=1?  

YES 

NO 

Γ𝐷 = 0  

Γ𝑡ℎ = 0  

Stop criteria met? 

Calculate performance 
of solution: 

- Average cost 
- Standard Deviation 

Γ𝑡ℎ ← Γ𝑡ℎ+k 

Γ𝐷=1?  

Γ𝐷 ← Γ𝐷+j 

Γ𝐷𝐴=24?  

Γ𝐷𝐴 ← Γ𝐷𝐴+i 

Find Pareto 
Front 

YES 

YES 
YES 

NO 

NO 

NO 

Figure 3.15: Flowchart of the algorithm to find best trade-off solutions

After several MC scenarios are generated and analyzed, the performance of the
robust solution is assigned two attributes: average cost and standard deviation (SD).
A decision maker is interested in minimizing both, to achieve low expectation of cost
and minimize risk at the same time. Since a single day-ahead dispatch has as many
average costs and SD as combinations of Γs, Pareto optimality theory is used to
select the set of control parameters that yield better performance for both average
cost and SD [110]. A complete outline of the methodology to find the Pareto front
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for a specific day-ahead optimization, is shown in figure 3.15.
In the following subsection (3.4.5), to generate MC scenarios we consider the uni-

form distribution around a central persistence forecast for energy price [0.9∧π,1.1∧π],
and for the case of PV and load, we consider the inverse cumulative distribution
function (ICDF) resulting from the real forecast described in subsection 2.3.1. Since
quantile information is discrete, interpolation to obtain proper values in-between
quantiles is carried out. This is done to avoid arbitrary PDFs to generate data and
to take advantage of available quantile forecast. Stop criteria for MC simulation is
set to 1000 scenarios. Confidence levels of minimum 95% and margins of error less
than 1%, were verified even below 1000 trials.

3.4.5 Results of the performance analysis

The selection of the budget of uncertainty influences the performance of obtained
day ahead operation, hence the choice of using ARO approach in the presented
thesis. In order to determine better choices of budget, the procedure explained
in figure 3.15 is used. This allows to use MC for several combinations of ΓDA,
ΓD and Γth, and determine average cost and SD. This way, a set of uncertainty
budgets can be found such that the average cost and deviation are minimized. Two
days are selected to develop this analysis: November 5th (High MI) and 27th (Low
MI). The steps for ΓDA, ΓD and Γth are i = 6, j = 0.2 and k = 0.2 respectively,
therefore, 180 combinations are generated to be analyzed under the performance
evaluation methodology. After running MC simulation for each of the 180 budgets
of uncertainty, the costs and deviations in figure 3.16 are obtained. Note that the
values are normalized by using the deterministic values as the base (1 p.u.). The
plot shows the performance for the deterministic solution as a blue square: ( ).

This simulation shows that in both cases, the deterministic solution tends to have
higher standard deviation when compared to the robust approach under different
uncertainty budgets. This indicates that robust solutions tend to be more reliable
and steady in terms of imbalances and the subsequent penalization, hence represent
less risky operation for the aggregator.

In particular, the simulation for Nov. 5th shows that only 8 ARO have higher
standard deviation than the deterministic solution, and the fourth largest for Nov.
27th. With the robust formulation, SD can be reduced in 27.3% and 36.4% for each
day, respectively.

Regarding the performance costs obtained with ARO, and compared to the de-
terministic approach, costs can be reduced in average by 5.7% and 2.6% respectively
for each day. In addition, the min-min Pareto front can be found by determining
the non-dominated set of points according to Pareto optimality criteria [110]. This
Pareto front (depicted by: •) represents the best set of solutions from the perspective
of average performance cost and SD.

Table 3.5 shows the points that comply with the following two conditions: 1)
form the Pareto front and 2) independently dominate the deterministic solution.
The table also shows operation cost improvement with respect to the deterministic
solution, obtaining cost improvements in the ranges of 5.2%-5.7% and 2.1%-2.6%
for each day, respectively. In addition, the ranges of improvement for SD are 7.7%-
27.2% and 17.5%-36.4%, respectively.
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Figure 3.16: Average operation cost for two days under different budgets of uncer-
tainty and Pareto front

Table 3.5: Details of the Pareto fronts values and improvement with respect to
deterministic solution

Day ΓDA / ΓD / Γth Cost [p.u.] SD [p.u.]

Nov. 5th

ΓD5
1 : 12 / 0 / 0.4 0.948 0.728

ΓD5
2 : 12 / 0 / 0.8 0.944 0.780
ΓD5
3 : 24 / 0 / 0 0.943 0.923

ΓD5
4 : 24 / 0 / 0.8 0.943 0.906

Nov. 27th

ΓD27
1 : 18 / 0.2 / 0.2 0.974 0.825

ΓD27
2 : 18 / 0.2 / 0.6 0.975 0.729
ΓD27
3 : 24 / 0.4 / 0 0.979 0.636

ΓD27
4 : 24 / 0 / 0.2 0.977 0.692

It should be noted that the Pareto front for Nov. 5th contains only zero values
for ΓD. This result shows that for high mean net load interval days, the methodol-
ogy avoids using high values of this uncertainty budget, given the over-conservatism
that this values yield. As for November 27th (low mean net load interval), ARO
formulation performs in several cases even with values different from zero for all
uncertainty budget parameters. This result is explained by the fact that the uncer-
tainty realizations for load are contained in narrower intervals and close to central
forecasts.

For further analysis, the ARO solutions in the Pareto front are selected to build
Cumulative Density Functions (CDF) and compare performance versus the deter-
ministic solution from the cost standpoint. As per figure 3.17, the ARO solutions
for both days, independently, show similar behavior among themselves, and they all
share a common feature in each day: the associated costs are lower than the ones
obtained in the deterministic approach. This result shows again the robustness of
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the proposed model to handle uncertain parameters and their potential realizations.
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Figure 3.17: Performance Cumulative Density Functions for selected Robust Solu-
tions

For instance, for November 5th the probability that the ARO solutions have
lower cost than the deterministic average, lays in the range from 91.2% to 96.3%.
For November 27th, there is a probability between 79.0% and 85.4%, for the ARO
solutions to have better performance that the deterministic mean. These values can
be simply found by intersecting the curves where cost equals 1 p.u. and determining
the respective cumulative density. In general, the leftmost solutions represent better
performance.

It can also be noted that the CDFs for November 27th are less scattered when
compared to those of November 5th. This is again an expected solution, provided
that this day presents a lower MI, so it is expected that robust and deterministic
solutions will have a closer performance and behavior.

3.4.6 Effects of considering cycling aging in the model

To analyze this impact, the same day used in subsection 3.4.1 (Nov. 15th) and the
following arbitrary values for the uncertainty budget are used: ΓDA=12, ΓD=0.5
and Γth=0.5. Three cases are run and their performances are calculated with MC:

Naive Solution (NS) Consists of neglecting the cycling aging cost described by
equations (2.35)-(2.43) (cycling aging constraints) and the first term in objective
function (3.18) (piece-wise degradation term). This solution allows unconstrained
cycling of the batteries.
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Real Cost of Naive Solution (RCNS) This solution is obtained by adding
two terms: 1. obtained cost of NS, and 2. the equivalent cycling aging cost of this
solution. This way, the real cost in which the NS incurs can be obtained.

Complete Robust Solution (ARO) This is the solution obtained by solving
the complete formulation in equations (3.29)-(3.31).

After running the simulations and finding the respective performances, the fol-
lowing average costs are found: 14.43e , 22.04e and 14.53e for the NS, RCNS and
ARO, respectively. These results show the importance of taking into account the
degradation model within the optimization, so as to obtain an overall lower opera-
tion cost. The naive approach has a lower cost in appearance, but as the battery is
allowed to cycle without constraints, there is a hidden cost that increases operation
from 14.43e to 22.04e . When the ARO complete formulation we propose is used,
a 34.07% cost reduction is achieved when compared to the RCNS.

When the CDFs are analyzed, as depicted in figure 3.18 it can be seen that
the NS could lead to think that lower costs are achieved as this curve presents more
leftmost points. However, the real cost of ignoring the cycling model can be observed
by the rightmost CDF.
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Figure 3.18: Cumulative Density Functions for the robust model when cycling is
considered and neglected

3.4.7 Remarks about computational time

To give an insight on the solution time for each of the solution alternatives: ARO,
NS and deterministic; additional simulations were carried out. These simulations
consisted on running each alternative for each day in November and determining
the computational time in seconds. Figure 3.19 shows the obtained simulation time
in each day of the month. It can be seen that the NS presents lower computational
times in each day and it is an expected outcome provided that this alternative does
not include the additional constraints and binary variables used to calculate cycling
aging of the battery.

In addition, the deterministic case presents higher computational times in aver-
age, compared to NS. This is explained by the fact that the deterministic alternative
includes cycling aging, thus increasing the size of the problem and the number of
binary variables.

Table 3.6 shows the behavior and comparison of the computational time for each
alternative. As expected, the complete ARO formulation presents higher compu-
tational times given that it includes constraints and binary variables to calculate
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Figure 3.19: Solution time for ARO ( ), NS ( ) and deterministic ( ) case

cycling aging, and also includes the additional constraints and dual variables that
appear in the robust counterpart. This leads to higher average solution time and
also higher SD. Average computational times of ARO solutions are 3.6 times higher
than those of the deterministic approach.

Table 3.6: Daily average computational performance of the ARO, NS and determin-
istic approaches

ARO NS Deterministic
Mean time [s] 4.59 1.11 1.28
Time range [s] 2.41-16.05 1.07-1.21 1.01-1.89
Time SD [s] 2.77 0.03 0.25

3.5 Comparative analysis of ARO modified models and
hybrid formulations

Besides ARO for including price uncertainty, another option is to use the KDE
sampling tool to create multiple price scenarios and use them for stochastic opti-
mization. Given the nature of the available KDE sampling for price forecasts as
explained in section 2.3.1, a set of scenarios can be obtained and included in the
optimization model by means of stochastic programming. The information of the
non-parametric KDE over the 90 days previous to the day of operation is used to
create a number of price scenarios. At first, each scenario in the set is given the same
probability. Given that a large number of scenarios may lead to long computational
times, a scenario reduction technique is implemented. In this thesis, when scenarios
are considered to model price uncertainty, a backward reduction algorithm based
on Kantorovich Distance (KD) [111] is used to obtain a reduced representative set,
consisting on the following steps:

1. Create a number of initial samples using KDE, and define a target number of
scenarios.

2. Calculate KD for each pair of scenarios in the current set. This calculation
leads to a Kantorovich Distance Matrix (KDM).
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3. For each scenario, identify its closest neighbour j. This can be done by iden-
tifying the lowest value in each row i of the KDM.

4. For each closest neighbour j in each row i, calculate KDi,j×pe(i), where pe(i)
is the probability of scenario i.

5. From the i-position vector containing of all values of KDi,j × pe(i), select the
lowest value. Identify scenario i.

6. Eliminate scenario i and assign probability of i to pe(j). Update matrix KDM.

7. Repeat steps 3-6 until the target number of scenarios is obtained.

An graphical example of the application of this reduction technique is shown in
figure 3.20. In this case, a total of 100 initial price scenarios were generated (dashed
lines), and the reduction technique is applied until 10 representative scenarios (con-
tinuous lines) are obtained. For this specific example case, final probabilities of each
scenario are: 0.166, 0.096, 0.16 , 0.085, 0.089, 0.088, 0.071, 0.091, 0.087, 0.067.

Figure 3.20: Example of KDE sampling and scenarios obtained after backward
reduction technique for energy prices

In the remainder of this thesis, KDE is also used to create the confidence intervals
of energy and imbalance prices. This is done by sampling multiple price trajectories
and afterwards calculating the 10% and 90% quantiles. This information is used as
the uncertainty intervals for ARO formulations in order to generate the confidence
intervals needed to the robust optimization approach [112].

3.5.1 Alternatives of the ARO formulation

Modifications regarding objective function

Following robust optimization to account for uncertainty of energy prices, and after
obtaining the reduced scenarios and corresponding probabilities with the method-
ology explained in the previous subsection, a stochastic optimization problem can
be formulated. In this case, objective function 2.1 and constraint 2.2 have to be
reformulated as follows:
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minimize

Ne∑
e=1

pe

T∑
t=1

(πt,eP
E
t + µ−t,eI

−
t,e − µ

+
t,eI

+
t,e) +

N∑
h=1

f cych (Xh) (3.32)

P g
t + I−t,e − I

+
t,e + ∆t

H∑
h=1

Pnet
t,h = 0,∀t,∀e (3.33)

This stochastic formulation, represents an alternative to include price uncer-
tainty in the day-ahead dispatch formulation and can be combined either with a
deterministic formulation for load and PV production, or with robust formulation
for load and PV uncertainty. If price uncertainty is accounted for with these scenar-
ios and PV/demand uncertainty is treated with ARO, the remaining problem is a:
Hybrid stochastic/robust (HSR) optimization problem. If only ARO is used to
model uncertainties, this formulation will be referred to from now on as: Complete
ARO.

The motivation of including also hybrid stochastic/robust schemes for compar-
ison purposes, lies on the fact that in real-life applications it may not feasible to
create high quality scenarios for all forecasted variables needed by the stochastic
optimisation approach. To generate such scenarios one should take into account
spatio-temporal correlations among the variables. For instance, creating PV and
demand correlated scenarios for stochastic optimization can be a complex task and
remains as an open research field, whereas defining an uncertainty interval for ro-
bust optimization is a more straightforward task, which does not necessarily need
correlation analysis. In addition, suitable scenarios to model price uncertainty, inde-
pendently of the available PV and demand information, can be practically created
and used in stochastic optimization. The hybrid approach permits flexibility to
consider probabilistic forecasts that may be provided in practical cases in different
formats (i.e. in the form of scenarios or ensembles and in the form of prediction
intervals).

Modifications regarding PV and demand uncertainty

The formulation presented in (3.22)-(3.24) to model uncertainty in PV and load,
considers a unified uncertain parameter per constraint t: Dnet

t . This leads to a
single Γ parameter to control net load in which both PV and load uncertainty
behaviour are condensed. Another option to model PV and demand uncertainty is
to treat both uncertain parameters separately in such a way that separate robust
parameters and dual variables are obtained, as follows:

PE
t + I−t,e −

+
t,e +∆t

N∑
h=1

P pv
t,h + P d

t,h − P c
t,h −Ht,h = D̂t + qDt + ΓD

t z
D
t , ∀t,∀e (3.34)

zDt + qDt ≥
1

2
(D90%

t −D10%
t )yDt , ∀t (3.35)

N∑
h=1

P pv
t,h = P̂ pv

t − q
pv
t − Γpv

t z
pv
t , ∀t (3.36)
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zpvt + qpvt ≥
1

2
(P 90%

t − P 10%
t )yDt ,∀t (3.37)

zDt , q
D
t , z

pv
t , q

pv
t ≥ 0, yDt , y

pv
t ≥ 1,∀t (3.38)

The alternative ARO formulation presented in (3.34)-(3.38) to model PV and
electrical demand uncertainty is called: separated approach, to reflect that two
robust parameters, ΓD

t and Γpv
t result to control respectively demand and PV pro-

duction. In the separated approach, it is assumed that ΓD = Γth The initial for-
mulation in (3.22)-(3.24), in which net demand is used to compact load and PV, is
called unified approach.

Modifications regarding control parameter Γ

Another simple modification is introduced in parameter Γ for controlling conser-
vatism of the robust solutions, by using Γ2 values instead of traditional Γ. The
effect of this alternative is a more intensive search for solutions for values of Γ closer
to zero for the same steps predefined for the robust parameter. Closer values to zero
in the robust model avoid over-conservative solutions, provided that household level
uncertainties tend to offset in the presence of aggregation.

3.5.2 Comparison of ARO alternatives

The input for the alternatives was composed of the information of the devices, the
forecasts, and the uncertainty budget Γ : {ΓDA,ΓD/PV ,Γth}. For unified ARO
schemes, ΓD was used, and ΓPV was used for separated approaches. The outcome
of each uncertainty budget analyzed was an energy schedule to be purchased or sold
in the wholesale market PE . This solution was then tested with the performance
scheme such that an average cost and an SD deviation were obtained. These two
results describe the performance of each robust solution.

There were four main robust optimization problems according to the alternatives
defined in the previous paragraphs, which corresponded to solving the following
problems:

• Unified Complete ARO (UCARO):

minimize (3.18) (3.39)
s.t.

constraints : (2.5)–(2.10), (2.12)–(2.14), (2.35)–(2.43), (3.40)
(3.19)–(3.24), (3.26)–(3.28) (3.41)

which corresponds to the robust counterpart when all sources of uncertainty
are treated with ARO and PV and demand uncertainty are compacted in the
form of net load. The resulting single parameter ΓD was employed to model
these two sources of uncertainty.
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• Separated Complete ARO (SCARO):

minimize (3.18) (3.42)
s.t.

constraints : (2.5)–(2.10), (2.12)–(2.14), (2.35)–(2.43), (3.43)
(3.19)–(3.21), (3.34)–(3.38), (3.26)–(3.28) (3.44)

which is the robust counterpart when all sources of uncertainty are treated
with ARO and PV and demand uncertainty are treated in separate forms,
resulting in two different uncertainty budgets, i.e., ΓPV and ΓD. In this case,
it was assumed that Γth = ΓD, to reflect equal uncertainty budget values for
both electrical and thermal demand.

• Unified Hybrid Stochastic Robust Optimization (UHSRO):

minimize (3.32) (3.45)
s.t.

constraints : (2.5)–(2.10), (2.12)–(2.14), (2.35)–(2.43), (3.46)
(3.22)–(3.24), (3.26)–(3.28) (3.47)

This problem corresponds to the robust counterpart when stochastic optimiza-
tion is used to model price uncertainty and ARO is used to model thermal con-
sumption, PV, and electrical demand uncertainty, with the latter two treated
in a unified form.

• Separated Hybrid Stochastic Robust Optimization (SHSRO):

minimize (3.32) (3.48)
s.t.

constraints : (2.5)–(2.10), (2.12)–(2.14), (2.35)–(2.43), (3.49)
(3.34)–(3.38), (3.26)–(3.28) (3.50)

This is the robust counterpart when stochastic optimization is used to model
price uncertainty and ARO is used to model thermal consumption, PV, and
electrical demand uncertainty, with the latter two treated in a separate form.

Comparisons are performed as a result of considering several combinations of
aspects according to the different formulations, i.e. complete ARO versus hybrid
stochastic/robust approaches, traditional Γ versus Γ2, and unified robust parameter
versus separated PV-load robust parameter. All of the combinations result in eight
alternatives to be evaluated, which are detailed as follows:

• Alternative 1: UCARO scheme with traditional Γ.

• Alternative 2: SCARO scheme with traditional Γ.

• Alternative 3:UCARO scheme with Γ2.
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• Alternative 4: SCARO scheme with Γ2.

• Alternative 5: UHSRO scheme with traditional Γ.

• Alternative 6: SHSRO scheme with traditional Γ.

• Alternative 7: UHSRO scheme with Γ2.

• Alternative 8: SHSRO scheme with Γ2.

A sensitivity analysis of the impact of scenarios was carried out to analyze the
behavior of the stochastic formulation. A number of samples were first created by
using the KDE, and afterwards, the scenario reduction technique was used to run
several stochastic optimization problems ranging from 3–50 scenarios. In this case,
uncertainty in PV and demand was neglected to isolate price scenarios’ impact and
visualize stabilization of the solution. The solution for 50 scenarios was taken as the
base value to calculate the error of each stochastic problem. The result is shown in
Figure 3.21.

Figure 3.21: Error evolution as a function of price scenarios for the stochastic solu-
tion for three independent trials.

The error showed a decreasing behavior as the number of scenarios increased.
For the simulations run, the range of 10–20 scenarios ensured, for the most part,
errors below 0.5%. In the case of the present paper, we used 12 scenarios to solve
the hybrid stochastic/robust formulations (Alternatives 5–8). With this selection,
low values of error were achieved while avoiding an increase in the problem size and
the consequent increase in computational effort.

The eight alternatives are evaluated with several combinations of budgets of
uncertainty to calculate average cost and SD. The solutions with the best trade-off
between cost and SD from the Pareto optimality standpoint are selected as the best
solutions, hence eight Pareto fronts can be found and depicted, each belonging to
each alternative.

The performance of the alternatives is calculated based on the algorithm pre-
sented in subsection 3.4.4. To define the uncertainty budgets to be evaluated, a
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step of 6 is defined for ΓDA, resulting in the following values: 0, 6, 12, 18 and 24,
provided that cardinality is 24, i.e. the maximum number of parameters that can
deviate from central values. For the remaining Γs, a step of 0.2 is used, resulting in
the set of values: 0, 0.2, 0.4, 0.6, 0.8 and 1. All of these values are combined in order
to map and analyse different levels of robustness and determine which combinations
are the best from cost and SD standpoint. For complete ARO schemes (Atlernatives
1-4), there are 5 × 6 × 6 = 180 possible combinations of budgets. For the hybrid,
there are 6× 6 = 36 combinations provided that there is no uncertainty budget for
prices.

Figure 3.22 shows the eight Pareto fronts (black dots •) for the proposed alterna-
tives. The green dots ( ) represent dominated solutions (from the Pareto-optimality
perspective) associated with different combinations uncertainty budget, but that,
in all cases, turn out to be less attractive from the cost or SD point of view. The
deterministic solution is depicted as a blue square ( ).

In all cases, solutions always exist that result in more attractive cost and SD at
the time, compared to the deterministic solution. This means that certain combi-
nations of ΓDA, ΓD/PV and Γth exist that outperform deterministic and some other
conservative robust solutions. These solutions are of particular interest to define an
appropriate day-ahead energy commitment plan in the wholesale market, as they
can guarantee lower operational cost and risk when facing uncertainty during real-
time operation. The selection of a particular solution, corresponding to a particular
uncertainty budget, will depend upon the aggregator and its strategy to prioritize
expected cost or decrease risk. In general, complete robust approaches (alternatives
1-4) present lower associated costs than hybrid schemes (alternatives 5-8). In ad-
dition, Pareto fronts are formed, in general, by a higher number of points, also for
alternatives 1-4.

Table 3.7 shows the values of Γ that lead to the points of each Pareto. Each of
the Γ configurations present in the Pareto front can be read in the following form:
Γ(m,n) represents the m-th point in the n-th Pareto front, or in alternative n. For
instance, for Pareto front 1 in table 3.7 there are 8 points, denoted by super-index
1. The points in this Pareto front are the best obtained with the complete robust
approach (UCARO - alternative 1).

When inspecting each of the found Pareto fronts it can be seen that Complete
ARO formulations (alternatives 1-4) outperform HSR approaches (alternatives 5-
8). The best obtained solution from the perspective of average cost is Γ(4,8), which
belongs to alternative 4: SCARO formulation with Γ2. This solution improves the
cost performance of the deterministic solution in 6.5%. The best obtained solution
from the perspective of SD is Γ(3, 2), which belongs to alternative 3: UCARO
formulation with Γ2. This solution improves the SD of the deterministic solution in
40.9%.

It is also found that the number of iterations in the Monte Carlo simulation
to achieve performance convergence is related to the chosen alternative for Γ. For
instance, the number of Monte Carlo iterations before convergence for each of the
alternatives 1 to 8, is respectively: 766, 762, 389, 394, 920, 872, 403, 402. By
inspecting this result, the lower number of iterations is associated with alternatives
3, 4, 7, 8, which are those related to Γ2.

Other descriptors used to assess the performance of each individual alternative
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Figure 3.22: Performance points (green dots) and Pareto fronts (•) for each alter-
native 1 to 8. Deterministic solution in blue squares

are shown in table 3.8. In this case, there are nine descriptors based on the results
shown in 3.22, which are described as follows:

• Descriptor 1 - Average cost of all points: Average value of the y-axis points
belonging to each alternative.

• Descriptor 2 - Average cost of Pareto points: Average value of the y-axis Pareto
points belonging to each alternative.

• Descriptor 3 - Median cost of all points: Median of the y-axis points belonging
to each alternative.
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Table 3.7: Details of the Pareto front values and improvements with respect to the
deterministic solution. *ΓD is valid for the unified approach and ΓPV is valid for
the separated approach

Pareto Front ΓDA / ΓD/PV * / Γth Cost [p.u.] SD [p.u.]

Pareto 1

Γ(1,1): 12 / 0 / 0.6 0.941 0.738
Γ(1,2): 12 / 0.2 / 0.2 0.938 0.790
Γ(1,3): 12 / 0.2 / 0.8 0.949 0.694
Γ(1,4): 12 / 0.2 / 1 0.950 0.677
Γ(1,5): 12 / 0.4 / 0 0.943 0.714
Γ(1,6): 12 / 0.4 / 0.6 0.943 0.715
Γ(1,7): 12 / 0.4 / 0.8 0.952 0.626
Γ(1,8): 12 / 0.6 / 0.6 0.964 0.622

Pareto 2

Γ(2,1): 12 / 0 / 0.4 0.952 0.713
Γ(2,2): 12 / 0 / 0.6 0.962 0.651
Γ(2,3): 12 / 0.2 / 0.2 0.944 0.768
Γ(2,4): 12 / 0.2 / 0.4 0.945 0.715
Γ(2,5): 12 / 0.4 / 0.6 0.972 0.626
Γ(2,6): 12 / 0.6 / 0 0.956 0.673
Γ(2,7): 12 / 0.8 / 0.2 0.961 0.666

Pareto 3

Γ(3,1): 12 / 0 / 0.4 0.937 0.753
Γ(3,2): 12 / 0 / 1 0.956 0.591
Γ(3,3): 12 / 0.2 / 0 0.945 0.741
Γ(3,4): 12 / 0.2 / 0.2 0.949 0.710
Γ(3,5): 12 / 0.2 / 0.6 0.949 0.687
Γ(3,6): 12 / 0.2 / 1 0.952 0.686

Pareto 4

Γ(4,1): 12 / 0 / 0 0.945 0.715
Γ(4,2): 12 / 0.2 / 0.2 0.937 0.739
Γ(4,3): 12 / 0.8 / 0 0.951 0.696
Γ(4,4): 18 / 0 / 0.2 0.943 0.718
Γ(4,5): 18 / 0 / 0.4 0.952 0.691
Γ(4,6): 18 / 0.2 / 0.4 0.954 0.646
Γ(4,7): 18 / 0.6 / 0 0.939 0.724
Γ(4,8): 18 / 0.6 / 0.2 0.935 0.821

Pareto 5 Γ(5,1): Stochastic / 0.2 / 0.2 0.984 0.864

Pareto 6 Γ(6,1): Stochastic / 0.0 / 0.4 0.968 0.645
Γ(6,2): Stochastic / 0.2 / 0 0.973 0.633

Pareto 7

Γ(7,1): Stochastic / 0.0 / 0.8 0.959 0.859
Γ(7,2): Stochastic / 0.2 / 0 0.963 0.836
Γ(7,3): Stochastic / 0.2 / 0.4 0.969 0.816
Γ(7,4): Stochastic / 0.2 / 0.6 0.962 0.855
Γ(7,5): Stochastic / 0.4 / 0.2 0.978 0.769

Pareto 8
Γ(8,1): Stochastic / 0.0 / 0.2 0.958 0.850
Γ(8,2): Stochastic / 0.2 / 0 0.966 0.797
Γ(8,3): Stochastic / 0.4 / 0 0.961 0.834

• Descriptor 4 - Average SD of all points: Average value of the x-axis points
belonging to each alternative.

• Descriptor 5 - Average SD of Pareto points: Average value of the x-axis Pareto
points belonging to each alternative.

• Descriptor 6 - Median SD of all points: Median of the x-axis points belonging
to each alternative.

• Descriptor 7 - Number of points in the global Pareto: When all points of the
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Table 3.8: Descriptors (Desc.) and assessment of each alternative.
Desc. Desc. Desc. Desc. Desc. Desc. Desc. Desc. Desc.

Alt. 1 2 3 4 5 6 7 8 9
1 0.994 0.948 0.985 0.8355 0.697 0.817 4 No No
2 0.995 0.956 0.985 0.8426 0.688 0.810 0 No No
3 0.986 0.947 0.976 0.870 0.695 0.834 3 No Yes
4 0.982 0.945 0.972 0.890 0.719 0.855 4 Yes No
5 1.029 0.984 1.012 0.946 0.865 0.928 0 No No
6 1.025 0.970 1.012 0.925 0.639 0.934 0 No No
7 0.997 0.966 0.980 0.902 0.827 0.874 0 No No
8 0.991 0.962 0.979 0.913 0.827 0.904 0 No No

performance of each alternative are combined, the number of points present
in the global Pareto from each alternative.

• Descriptor 8 - Best Cost: Identifies if the alternative was able to find the best
global cost.

• Descriptor 9 - Best SD: Identifies if the alternative was able to find the best
global SD.

Table 3.8 shows the results of the descriptors calculated for each individual
alternative. The results show that alternative 4 tends to perform better than the
rest for the cost-related descriptors. In addition, this alternative presents 4 points
in the final global Pareto front after combining all of the alternatives. Moreover,
only one descriptor associated with hybrid approaches performs better, which is the
case for alternative 6.

When we analyse the results in table 3.8 from the perspective of the proposed
modifications to the model, i.e. complete ARO or hybrid ARO, separated or unified
budget, Γ or Γ2, the following results are obtained. Complete ARO schemes are
present in 8/9 of the best ranked descriptors’ values. In addition, separate alter-
natives are present in 7/9 of the best values obtained for the descriptors. Finally,
Γ2 modifications participate in 6/9 best values. Additionally, as mentioned before,
better convergence capabilities in the performance evaluation are shown by option
Γ2. The results demonstrate the tendency of advantage when using complete ARO
schemes versus hybrid, show that separate formulations perform better than unified
approaches, and that Γ2 outperforms Γ. These three performing features identi-
fied are all present together in alternative 4, which is in fact the most interesting
alternative from the perspective of cost-related descriptors.

If the information contained in Pareto 4 and 8 are analysed, the different so-
lutions obtained for alternatives 4 and 8 can be detailed. Figure 3.23 shows this
information. It can be seen that the dominant points from the standpoint of average
cost and SD are associated with the ARO formulation (blue dots). Although some
solutions for the HSR approach (red crosses) outperform the deterministic solution
and some ARO solutions, alternative 4 always features better solutions.

Figure 3.25 shows the eight obtained Pareto fronts combined in the same axis.
This figure allows to visualize the descriptor "Global Pareto", which helps to deter-
mine the best global solutions from cost and SD standpoints. For instance, the best
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Figure 3.23: Performance points for alternative 4 (blue dots) and alternative 8 (red
crosses). Deterministic solution in green square.

trade-off set of solutions is formed by 11 points, four belonging to alternative 1 (blue
circles), three to alternative 3 (green X) and four to alternative 4 (red stars). These
11 solutions contain the best combinations of both measured quantities after the
performance evaluation. The remaining points represent dominated solutions, i.e.
one can always find at least one point among the 11 trade-off solutions, that is better
in both objectives at the same time. It can also be visualized that hybrid solutions
(alternatives 5-8) tend to be less attractive when compared to robust approaches.
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Figure 3.24: Comparison of all Pareto points.

Figure 3.25 presents the boxplots of computational times for the eight alterna-
tives presented in the previous subsection. In general, Alternatives 1–4 presented
higher dispersion of data in several cases with computational times ranging from 1–3
min. These solutions are related to the combinations of robust parameters mainly for
ΓDA different from zero. Hybrid stochastic/robust (Alternatives 5–8) solutions had
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more consistent computational times even if the median was in some cases higher
than those obtained for complete ARO cases (Alternatives 1–4). Due to the com-
binations of control parameters, 180 robust optimization problems had to be solved
for Alternatives 1–4, and 36 hybrid problems had to be solved for Alternatives 5–8,
leading to more intensive overall times for complete robust approaches.
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Figure 3.25: Computational time boxplots for each optimization alternative. Each
datum corresponds to the optimization time for a given combination of control
parameters.

Table 3.9 shows a summary of different obtained values for each alternative.
Higher overall times for Alternatives 1–4 are explained by the fact that more

individual optimization problems had to be solved to cope with the combinations of
budgets of uncertainty. Moreover, lower median values were obtained for complete
robust alternatives. However, average times were higher when compared to hybrid
schemes. This is explained by the presence of high-value outliers for Alternatives 1–4.
Although the hybrid schemes had more attractive overall computational times, the
quality of the solutions obtained remained a drawback when compared to complete
robust approaches, as explained in detail in the previous subsection.

Table 3.9: Details of computational time for each alternative.
Alternative 1 2 3 4 5 6 7 8

Overall computational time (s) 4274 4323 5717 4004 631 631 686 321
Median (s) 11 13 15 11 16 15 17 8
Average (s) 23 24 31 22 17 17 19 9

3.6 Conclusions

Three sources of uncertainty were included in the optimization model for simula-
tions: energy prices, electrical load, thermal load and PV production.
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Regarding two-stage quantile-based stochastic approach The decomposi-
tion logic is applied to a two-stage approach in which PV and demand scenarios are
created by combining extreme scenarios based on quantile forecasts. This formula-
tion is assessed by using the Values of Stochastic Solution (VSS) as a measure of
performance. For the analyzed cases, the VSS shows better performance that the
deterministic case.

The two-stage stochastic approach, shows the importance of taking into account
uncertainties arising from PV and load, in order to avoid higher expected operation
costs in comparison to deterministic approaches. In our case, the benefit of using a
stochastic approach is demonstrated by means of the VSS. The average monthly re-
duction in operation cost measured by the VSS is 5.8%, and the interval of reduction
ranges from 3.6% to 9.0%. These results show that considering a stochastic model
with battery cycling leads to savings when compared to deterministic approaches.

The computational times for larger test systems remain adequate for day-ahead
decision-making. The characteristic of the aggregated virtual battery by means of
the SDA, makes that the increase of batteries in the test system does not impact
proportionally time effort even in the case of stochastic approaches. However, given
that the structure proposed in the literature to evaluate stochastic solutions (VSS)
is based on the universe of scenarios created, the defined second stage variables
(imbalances, devices’s settings) and their performance, are evaluated (and valid)
only for the combined proposed scenarios.

Regarding robust apporaches For the case of uncertainty in price, two ap-
proaches were considered: stochastic programming and robust optimization. For
uncertainty handling in load and PV production, robust optimization was consid-
ered.

The model shows that including the explicit degradation cost into the optimiza-
tion model leads to cost savings due to less cycling of the battery. In the concrete
case of the presented results, a 34.07% reduction was achieved.

The proposed approach, which can also be applied by aggregators of medium
and large size equipment, shows that by using ARO for load and PV, and analyz-
ing interactions of robust parameters, different levels of cost reduction versus the
deterministic approach can be achieved. For the performed simulations, up to 5.7%
cost savings were obtained. For the case of SD, the best result reduced in 36.4% the
performance of the deterministic solution. This shows that not only expected costs
can be reduced but also lower risk is associated with decision-making under this ap-
proach. The results prove that using ARO, also increases the probability of having
lower expected costs. When compared to the deterministic scheme, probabilities of
up to 96.33% are obtained by analyzing CDFs.

In addition, the robust optimization approach shows better performance than
deterministic solution despite the net load confidence intervals, measured by means
of the MI.

For the case of HSR, price scenarios were created by using KDE. A backward
reduction technique based on Kantorovich Distance is used to obtain a reduced set
of scenarios. For the run simulations, The hybrid approach shows to have better
performance than the deterministic approach and some of the ARO solutions. How-
ever, there are ARO solutions that present better performance than the HSR from
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both the average cost and SD standpoints.
In particular, alternative 4: separated complete ARO with Γ2 presents better

performance that the rest of alternatives in several of the measured descriptors.
In also presents the lower average operational cost from all run simulations. In
this case, separate treatment of uncertainty for load and PV allows finding a dual
equivalent (robust counterpart) and hence two separate robust parameters to adjust
and achieve lower costs and SDs.
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Chapter 4

Aggregation of flexibility for
participation in multiple markets

This chapter presents the mathematical model for robust bidding in energy
markets and local flexibility markets. At first, an hybrid stochastic/robust
approach is presented to analyze changes in net exchanged energy power at
the point of common coupling. Afterwards, a complete robust framework is
presented to bid in both energy and local markets. The models are preceded
by a detailed literature review on home level aggregation for the provision of
services.

The models and results presented in this chapter led to publications [CF-3,CF-
5,CF-8].

4.1 Literature review

4.1.1 Traditional grid scale approach

Several research has addressed the problem of provision of ancillary service through
the use of grid scale ESS. For example, the analysis presented in [113] gives an insight
on the possibilities of ESS for the provision of different services. Authors claim that
only considering storage for arbitrage leads to underuse and limited exploitation of
the resources. This case shows how ESS can be used for energy (day-ahead and real
time) and ancillary services (regulation), and the sources of revenue come from the
effective payment due to the participation in these markets. The model returns the
amount of energy to be offered in the regulation market, as well as the energy that
should be exchanged in DA and RT markets. It is shown that revenue is increased
but the authors also point the importance of exploring the provision of other grid
functions. Inclusion of uncertainties of different nature is an identified opportunity
of improvement for this work.

Following this research line, [114], presents a methodology for spinning reserve
and frequency regulation, in which multiple grid ESS are considered, while system
reliability is evaluated. Authors in [115] also analyse the benefits of using ESS to
provide ancillary services in the context of the Nordic Power Market. In concrete,
provision of services such as reactive power, reserve, regulation and restoration is
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analysed. In general, frequency regulation services show to be an important part of
the revenue in wholesale power markets, as demonstrated in [116].

4.1.2 Provision of services in the presence of RES

Inclusion of RES calls for special attention regarding provision of services in this new
context and tackle the inherent fluctuations. A framework for provision of ancillary
services is presented in [117]. The analysis include day-ahead and real-time unit
commitment, economic dispatch and frequency support. The control scheme is able
to respond to different time scales and to control signals corresponding to AGC and
Primary Frequency Control (PFC). Authors show that the control strategy allows to
bid and provide primary and secondary frequency response and that the inclusion of
the BESS allows a wind power plant to effectively commit to the DA market while
achieving better performance.

A comparison of different storage technologies for regulation services is presented
in [118]. The analysis includes flywheels, superconductive magnetic energy storage;
pumped hydrostorage, compressed air energy storage (CAES), super capacitors,
electrochemical battery types and demand-side control. Different aspects to provide
fast regulation services were analyzed, such as power output change, ramping rates,
life time, costs, among others.

An optimal ESS sitting and sizing problem is developed in [119] to reduce system
cost with consideration of energy and reserve markets. The mathematical formula-
tion consists on an upper level problem that returns ESS investment decisions and
a lower level that minimizes operation costs. One interesting feature of this study
is the fact that the methodology is tested on the 240-bus Western Electricity Co-
ordinating Council real life power system and also considers two types of storage
technologies: CAES and li-ion BESS. Although CAES results in lower total system
costs, the authors warn that this technology is still at the pilot stage.

Reference [120] also presents a model for including ESS in energy and reserve
markets in systems with wind penetration. A particularity of this work is the fact
that it is assumed that the ESS is owned by an independent actor, and considers
that the market treats this ESS as any other energy and reserve resource present
in the system. The bidding scheme allows the independent ESS maximize its profit
in spite of wind farm penetration into the grid. This is achieved by scheduling the
ESS in the DA and hour-ahead markets by means of stochastic programming.

Paper [121] presents a method for handling imbalances due to increasing wind
penetration. It considers ESS and conventional generation. The mathematical
model includes spinning reserve and minimizes fuel costs for a power system con-
taining an open cycle gas turbine and wind generation. Other research has also
addressed the importance of ESS to offset power imbalance due to wind produc-
tion [122,123].

Authors in [124] present a coordinnated dispatch model to reduce the impacts
of wind power fluctuations. The scheme determines the power capacity of the BESS
and improves wind dispatchability even in the case of wind forecast error, finding
that not only imbalances can be mitigated but also BESS lifetime can be extended.
ESS services with reneable integration can also include peak absorbing, valley su-
pression and charging/discharging during fast ramping [125,126].
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4.1.3 Home/building aggregation for flexibility services

Besides optimal management of building resources, it is interesting to determine the
impacts that the resource management at this level have on the system. Locally,
the building/home resources should not jeopardize grid constraints and could also
provide local services to DSO. The flexibility can also be used to participate in the
wholesale market to offer different types of services and increase revenue.

In order to provide frequency regulation services, the authors of [127] aggregate
commercial buildings to determine the robust bids while achieving minimum oper-
ation costs by adjusting HVAC systems. Although storage is not considered in this
research, the proposed framework gives an insight on the potential of buildings to
offer secondary frequency services while maintaining occupant comfort under perfect
predictions of weather and occupancy, which means that uncertainties in this study
are not present. MPC is used here to determine HVAC setting each 30 minutes,
and the feedback control readjusts settings in real time. The authors developed an
improved version of this paper in [128] by including a combination of robust and
stochastic optimization. In the same line of frequency regulation services, [129] pro-
posed thermodynamic storage in commercial buildings to adjust power consumption
in the intra-day market based on the Swiss regulatory framework.

Another work that considers participation in regulating and day ahead market is
developed by Kilkki et al. in [130]. An electricity aggregator is the proposed actor for
taking decisions on customers’ storage, while minimizing costs of purchasing energy
from the spot market, and scheduling flexibility to maximize profit from the reserve
market, by using a weighted sum multi-objective method. An interesting remark of
this model consists on the scaled simulation for 5000 households. However, potential
improvements are inclusion of uncertainty and extension to other ESS devices, given
that the authors only consider electric storage space heating.

A methodology for minimizing data sharing between a building aggregator and
a DSO is presented in [131]. One interesting remark of this proposal is that DSO
does not need to deal with demand uncertainty, and that task is left to the aggre-
gator to locally offset imbalances. The method deals with congestion alleviation in
the distribution network by means of the flexibility provided by buildings, provided
by an HVAC fan based system. Distribution locational marginal prices (DLMP)
are calculated by means of robust optimization theory, in which the uncertainty
set is formed by solar irradiation, electronic device disturbances and building occu-
pancy. After this, another calculation for DLMP is performed in real time in order
to reduce the conservatism of the robust optimization step. In addition, authors
use a dual decomposition approach to minimize the need for data sharing between
the actors. The authors also recommend that future studies should take into ac-
count market mechanisms and coordination between TSO and DSO and faster power
flow methods for improving computational times. Although this paper has a thor-
ough mathematical background, it should be noted that the service provided by the
building aggregation is only circumscribed to congestion alleviation by power flow
constraints, which leads to think that more complex flexibility products and services
could be an improvement of the proposed model. Another potential improvement
is the inclusion of other storage technologies to increase the flexibility capabilities
of the building aggregator.
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A deterministic model for medium and large consumers aggregation is presented
in [132]. This model attempts to minimize the total energy cost for a portfolio of
energy consumers. In this deterministic scheme, the aggregator participates in the
wholesale energy market to purchase energy and also in the reserve market to offer
capacity services. The authors aggregate 9 medium size commercial consumers and
the flexibility is associated to heating loads, oil/gas substitution, air conditioning,
lighting; in addition, the aggregator manages a lead-acid ESS which is another
source of flexibility. This is an interesting and straightforward model, however,
an important drawback is the lack of uncertainty in the optimization, which is a
potential improvement for a study of similar characteristics.

Other research has also attempted to calculate the available flexibility given
by home aggregation. For example, in [133] a generic battery model is used to
represent thermostatically controlled loads (TCL) as providers of regulation service
provision; in [134], residential aggregation of thermal energy storage is carried out
in the Californian system to provide ancillary services showing potential earning for
loads participating in this market; authors in [135] also use demand side flexibility
provided by TCL to participate in the Portuguese tertiary DA reserve market; in
[136] reserve services are offered by using flexibility coming from domestic thermal
loads.

When it comes to the aggregation of multiple customers, there is still a lack
of detail in the modelling of available flexibility options that could appear in this
context. For example, the previous literature, although it presents a thorough in-
sight on the possibilities of services to be provided, doesn’t account for inclusion
of multi-energy systems (MES), which are an opportunity to increase the flexibility
options in home/building levels [4, 137]. MES include other devices such as CHP
plants, heat pumps, boilers, heat storage, etc., and the coordination possibilities
with active demand, ESS and RES become an interesting opportunity not only
to minimize operation costs, but also to offer local and energy/reserve services by
reaching minimum bid quantities. This integration for the provision of flexibility
services does not appear to be yet very explored in the specialized literature. In
addition, the interaction of smart homes/building with the local grid must also be
taken into account as another possibility of revenue, even if market rules for these
exchanges are not widely develop.

4.1.4 Local flexibility of prosumers and decentralized storage

Given that prosumers are physically connected to the distribution grid, market
environment and products must be geographically defined to allow local trading [5].
In addition, communication and coordination of DSO and new local energy agents
is necessary to avoid upstream operative problems.

Research that articulates local flexibility and prosumers has emerged in recent
years. One common practice is to directly include local flexibility scheduling in
distribution power flow calculations to solve voltage and congestion issues [39–43].
This approach assumes that the DSO and aggregator form a unique entity and de-
cisions about flexibility exploitation are driven by grid state analysis through power
flows. However, these schemes might not be applicable in all real-life cases, due to
the inherent separation of agents’ activities, ownership of the resources connected to
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the grid and privacy-related constraints. For instance, the authors in [131] discuss
about these privacy issues for solving the problem of locational marginal pricing of
building aggregators for alleviating grid congestion problems.

In contrast with the reference above, [44] presents an optimization model that
receives external signals from the DSO and schedules resources to provide the re-
quired flexibility service. This service is provided in the form of upward or downward
regulation with respect to a baseline scenario. Moreover, it proposes a local mar-
ket platform in which energy cooperatives and prosumers offer flexibility and DSO
purchases this product.

Authors in [45] present a mathematical optimization model to analyze the par-
ticipation of an energy community controlled by an aggregator, in wholesale and
local markets. This work is centered on the market modelling and clearing process
in a transactive environment in which multiple aggregators interact among them-
selves and the wholesale market. However, in this paper, local market prices are
assumed as a percentage of wholesale energy prices.

The research presented in [46] analyzes a microgrid that schedules devices tak-
ing into account distribution net ramping into the model. These constraints act as
a service required by the utility. In addition, this study integrates inter-hour and
intra-hour interactions, grid connected and islanded operation, however, disregards
uncertainty and considers resources and load from a broad perspective without de-
tailing building or home level integration. Other studies have also addressed the
importance of managing ramping at the distribution level by smoothing net ex-
changes [17, 47]. In the case of [17] ramping capabilities are not traded locally but
in traditional wholesale and ancillary markets.

Reference [48] proposes a local energy system in which an aggregator acts as
an intermediate of multi-energy resources and the wholesale market. Although the
aggregation is local, the market interaction is only with the wholesale market, and
supposes that local flexibility is traded in this centralized market. Similarly [15,49],
propose bidding schemes in traditional wholesale markets.

When it comes to residential/building aggregation with storage technologies,
MPC and/or SO are typically used to include uncertainty. For instance, stochas-
tic optimization and chance constrained methods are used in [28] for energy and
reserve market participation by aggregating residential batteries and heating. This
work presents inclusion of uncertainty in prices, weather and realized frequency.
MPC based models for aggregation of distributed storage devices (at DSO level)
is presented in [101] to provide local and frequency services; and MPC is also used
in [102] for the case of regulation services by aggregation of industrial thermal loads.

Although most efforts to model uncertainties with robust optimization have been
directed at large power systems applications, some work related to medium size
DG/microgrids has begun to be published, as developed with more level of detail
in subsection 3.1.1. For instance, [17] presents a model for strategic bidding in
energy and ancillary markets for a microgrid consisting on RES, a microturbine
and a battery, in which RO is used to include RES uncertainty and SO is used to
tackle price uncertainty. For bidding purposes in day-ahead and real-time markets,
reference [15] proposes a hybrid stochastic/robust approach, in which RO captures
uncertainty in real time prices, while stochastic optimization is used to include
wind and PV scenarios. Both approaches ( [15, 17]) assume deterministic demand.
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References [22,26] also include robust participation in multiple markets, specifically
in energy and ancillary markets.

Robust models for home-level aggregation are still very scarce in the literature.
Some proposals aim to minimize electricity bills [23], while others propose real-time
decision-making for batteries [24] or the management of thermal storage systems [25].

In contrast with [15, 17, 22, 26, 28, 29, 48, 49, 101], and in line with [44–46], this
thesis proposes a bidding strategy that establishes a difference between wholesale
and local energy markets for flexibility bidding purposes; considering that local
flexibility markets (LFM) constitute an independent trading space/platform with
specific bidding rules, following the recommendations of [5, 7, 138]. Unlike [44],
which presents a thorough model for DG participation in LFM, this thesis presents a
bidding strategy that takes into account uncertainty of multiple sources and includes
bidding in the traditional wholesale market, in addition to the local market. This
chapter shows a model from the stand-point of a residential aggregator, unlike [45],
which solves the problem from the market operator perspective in a transactive
environment. In addition, the approach presented here differs from [46], in that:
1) we include uncertainty effects, storage systems, 2) we solve the problem from
the perspective of residential storage aggregation and not from an MV-level DG
standpoint, and 3) in the sense that we include a local flexibility trading strategy,
in addition to the local constraint support. The latter being a valuable contribution
of the authors in the mentioned reference. Finally, in contrast to [39–43] we do not
consider power flow calculations to be part of the flexibility aggregator’s tasks.

This chapter aims to fill an existing gap in the literature, related to bidding
strategies of smart-home aggregators for coordinated participation in both wholesale
energy markets and emerging local flexibility markets, also considering uncertainties
in prices, PV production and demand. To the author’s knowledge, these combined
aspects have never been addressed holistically from the standpoint of an aggregator
that controls residential flexibilities, in this case, provided by PV panels and thermal
and electro-chemical storage.

4.2 A first hybrid approach: impacts of local flexibility
provision in day-ahead scheduling

To demonstrate the impacts of local flexibility provision on the aggregation of re-
sources and the day-ahead committed energy, a simplified model neglecting battery
cycling will be used at first. This model uses a scenario-based modelling of prices
and robust optimization for PV and demand uncertainty.

The flexibility aggregator participates in the day-ahead and imbalance markets
to optimize its portfolio, while complying with physical microgrid limitations and the
signals sent from the local DSO regarding flexibility products for load management.
Bidirectional power flows can occur at the PCC with the local DSO grid. The
DSO flexibility requirements in the PCC are of two types: a) power flexibility,
which imposes limits or certain power exchange patterns according to grid needs at
specific times; b) ramping flexibility, which limits the net load ramping seen by the
local DSO (see upper part of figure 4.1).

The DSO and the aggregator establish communication to send/receive informa-
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tion, while only the aggregator has communication and control capabilities with
devices at home level. It is supposed the existence of the necessary IT and com-
munication platform, so that the aggregator controls devices at the home level and
decides over their set-points.

Decisions regarding DSO flexibility requirements and products at the PCC corre-
spond to grid analysis concerning voltage limits, congestion management, equipment
degradation, and scheduled maintenance, among others. The definition of these re-
quirements and the market design of the payment of this service are out of the scope
of this thesis.

4.2.1 Mathematical model

The proposed hybrid stochastic/robust optimization model minimizes the DA ex-
pected operation cost, in which the cost is associated with the day-ahead net ex-
change (PE

t ) expected costs and the import/exports (I−t,s/I
+
t,e) imbalance as ex-

pressed in equation (4.1), where subscripts t, e and h index time step, scenario
and household, respectively. Parameters πt,e, µ−t,e, -µ

+
t,e, represent respectively spot

price, negative imbalance cost, and positive imbalance cost. In addition, pe is the
probability of scenario e.

minimize

ES∑
e=1

pe

{
T∑
t=1

[
πt,eP

E
t + µ−t,eI

−
t,e − µ

+
t,eI

+
t,e

]}
(4.1)

Next, the operational constraints describe the behavior of the devices and bal-
ance the load of the proposed system. Constraint (4.2) represents the power balance
and includes the robust counterpart for including electrical demand and PV uncer-
tainty in terms of net load (demand minus PV). This constraint includes the robust
parameter ΓD

t for controlling conservatism of net demand uncertainty. Constraints
(4.3)-(4.4) are additional constraints of the robust counterpart that result from
strong duality theorem.

PE
t + I−t,e − I

+
t,e + ∆t

N∑
h=1

P d
t,h − P c

t,h −Ht,h =

Dnet
t + qDt + ΓD

t z
D
t ,∀t,∀e

(4.2)

zDt + qDt ≥
1

2
(D̄net

t −Dnet
h )yDt ,∀t (4.3)

zDt , q
D
t ≥ 0, yDt ≥ 1, ∀t (4.4)

Constraints (4.5) and (4.10) describe the energy state for batteries and the TES,
respectively, and Xt,h, Yt,h represent the stored energy of these devices. Constraints
(4.10)-(4.12) are the resulting robust counterpart of considering uncertainty in ther-
mal load, with Γth

t controlling thermal load conservatism.

Xt,h = Xt−1,h + ηcP c
t−1,h − P d

t−1,h/η
d, ∀t, t 6= 1, ∀h (4.5)

X1,h = XT,h,∀h (4.6)

0 ≤ P c
t,h ≤ P̄ c

h · ut,h, ut,h ∈ {0, 1} ,∀t, t 6= 1, ∀h (4.7)
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0 ≤ P d
t,h ≤ P̄ d

h · (1− ut,h),∀t,∀h (4.8)

Xh ≤ Xt,h ≤ X̄h,∀t,∀h (4.9)

Yt,h = Yt−1,h + ∆tHt−1,h − Yt−1,h/RhCh−

∆t(
∧
Qt−1,h + qtht−1,h + Γth

t−1,hz
th
t−1,h), ∀t,∀h

(4.10)

ztht,h + qtht,h ≥
1

2
(Q90%

t,h −Q
10%
t,h )ytht,h,∀t,∀h (4.11)

ztht,h, q
th
t,h ≥ 0, ytht,h ≥ 1, ∀t,∀h (4.12)

Y1,h = YT,h,∀h (4.13)

Y t,h ≤ Yt,h ≤ Ȳt,h, ∀t,∀h (4.14)

0 ≤ Ht,h ≤ H̄t,h,∀t,∀h (4.15)

The grid flexibility constraints describe the requirements or signals sent by the
utility grid, in terms of net ramping (Rt) and net allowed power exchanges. Con-
straints (4.16)-(4.19) model the ramping flexibility, which represents the maximum
allowed net power change in consecutive time steps. Constraint (4.16) ensures that
the day-ahead commitment respects maximum ramping, and in the same way, con-
straint (4.18) also includes negative and positive imbalance exchanges in each sce-
nario. Constraints (4.17), (4.19) ensure continuity between the last and first time
steps of the operation day. Constraints (4.20)-(4.21) model the maximum allowed
power flexibility. Parameters PPCCmin

t /PPCCmax
t are the min/max net power in the

PCC.
These last two constraints are general enough to represent any DSO signal in

terms of net power exchange, as shown in figure 4.1 (powercap, power requirement,
load trajectory).

|PE
t − PE

t−1| ≤ Rt, ∀t, t 6= 1 (4.16)

|PE
1 − PE

T | ≤ Rt (4.17)

|PE
t + I−t,e − I

+
t,e − (PE

t−1 + I−t−1,e − I
+
t−1,e)| ≤ Rt, ∀t, t 6= 1,∀e (4.18)

|PE
1 + I−1,e − I

+
1,e − (PE

T + I−T,e − I
+
T,e)| ≤ Rt,∀e (4.19)

PPCCmin
t ≤ PE

t ≤ P
PCCmax
t ,∀t (4.20)

PPCCmin
t ≤ PE

t + I−t,e − I
+
t,e ≤ P

PCCmax
t ,∀t,∀e (4.21)

The previous model is the complete hybrid stochastic/robust problem. When
only one scenario for price is considered and ΓD

t = Γth
t = 0, the model is the

deterministic equivalent.
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Figure 4.1: Schematic diagram of the proposed framework

4.2.2 Results for the Hybrid stochastic/robust model with DSO
flexibility requirements

The hybrid stochastic-robust optimization model described in (4.1)-(4.21) is consid-
ering all flexibilities provided by the microgrid and also including different values
for grid flexibility requirements (PPCCmax

t and Rt). When DSO flexibility require-
ments are present in the model, the energy committed and the devices’ scheduling
must adjust to comply with maximum net power and ramping constraints. In this
hybrid case, the operation cost without considering flexibility constraints is e24.92
(unconstrained case). Table 4.1 shows the costs obtained for different combinations
of PPCCmax

t and Rt. For instance, when ramping is limited to 0.01 MW/h and
maximum power to 0.03 MW, the operation cost of the aggregator is e25.49, which
represents a 2.3% increase with respect to the unconstrained case. This means that
if the DSO sends this signal, the HEMS aggregator would have to adjust its settings
and incur extra costs to satisfy the DSO’s needs.

The different operation points lead to different committed energy on the day-
ahead market. For example, if Rt is kept constant at 0.03 MW/h and PPCCmax

t

assumes different values, the energy that should be exchanged in the wholesale
market is shown in figure 4.2. While the changes in the operation cost range between
e24.97 and e25.40, the changes in committed energy are more evident so as to
comply with the different values of maximum power.
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Table 4.1: Operation costs for different values of flexibility requirements
PPCCmax
t

Rt 0.03 MW 0.05 MW 0.07 MW
0.01 MW/h 25.49 25.20 25.20
0.03 MW/h 25.40 24.99 24.97
0.06 MW/h 25.39 24.98 24.94
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Figure 4.2: Day-ahead committed energy for PPCCmax
t = 0.03 MW ( ),

PPCCmax
t = 0.05 MW ( ), PPCCmax

t = 0.07 MW ( ) when constant Rt = 0.03
MW/h

The day-ahead energy commitment for different allowed ramping values and
fixed PPCCmax

t = 0.05MW is shown in figure 4.3. In this case, it can be seen that
peaks are shaved at the level of 50 kW, and that Rt = 0.06MW ( ) allows more
unconstrained ramping, as is the case for time frames 13h-14h-15h and 21h-22h-
23h. In general, each case leads to a different operation point and the operation cost
ranges from e24.98 to e25.20. It can be seen that operational costs for the flexibility
aggregator increase when flexibility needs from utilities narrow their margins, which
in turn signals the remuneration that an aggregator should receive for providing
flexibility services to the grid.

In addition, the signals from the utility force a reshaping of the net load at the
PCC, hence leading to an adjustment of the devices’ settings.

4.2.3 A first proposal for bidding in the local market

Demand bidding curves

Figure 4.4 shows the demand bidding curves for two different hours. These piece-
wise curves show the hourly bids made by the aggregator for economical operation
when only wholesale market participation is allowed and no other local flexibility
market exists. The curves are built using the hybrid stochastic/robust approach by
varying the day-ahead energy price at the specific hour. The variations range from
the 10% to the 90% percentile of the price predicted by the KDE. It is important to
note that bids for hour 21 have higher associated prices given the history of prices
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Figure 4.3: Day-ahead committed energy for Rt = 0.01 MW/h ( ), Rt = 0.03
MW/h ( ), Rt = 0.06 MW/h ( ) when constant PPCCmax

t = 0.05 MW

for these night-time frames.
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Figure 4.4: Demand bidding curves for t = 14h (green), t = 21h (orange)

Local flexibility supplying curves

If a local market is established to define the appropriate flexibility prices to be
provided by the aggregator at the PCC, then the construction of supplying bidding
curves could give an idea of the appropriate remuneration that the aggregator should
receive for modifying the net power exchange coming from a DSO signal. This option
is shown in figure 4.5. These curves measure the extra cost of the aggregator’s
operation when deviating from the committed day-ahead energy. Hence, this price
is the minimum that should be paid to the aggregator if the DSO requires flexibility.
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Figure 4.5: flexibility supply bidding curves for t = 14h (green), t = 21h (orange)

4.3 Complete robust framework for local flexibility pro-
vision

4.3.1 Description of the aggregators’ interactions

The present approach proposes a bidding strategy for an aggregator of smart-homes,
which are present in an energy community that is connected to the main distribu-
tion grid. Some of the households have solar panels, li-ion batteries and heat storage
devices. This strategy is composed by interactions of the aggregator with three en-
tities: wholesale market, DSO and local flexibility market. The interaction with
the wholesale market is established in a traditional manner, in which the aggre-
gator commits certain amount of energy in the day-ahead market, and during the
operation day, deviations are settled in the form of negative and positive imbalances.

The interaction with the DSO, as previously explained for the hybrid case, is
given in terms of operational constraint support at the PCC. In concrete, two types
of constraints/products that might be activated by the DSO, if needed, are con-
sidered in this work: 1) ramping constraints (Rt [MW/h]) and 2) Power-Max, in
which the aggregator ensures that its local portfolio will not exceed PPCCmax

t [kW].
Ramping products are motivated by the need to offset variability of the increasing
renewable penetration in distribution grids; and Power-Max allows peak modulation
to control overloads or to promote investment deferral [139, 140]. Given the diffi-
culty of creating a tuple to describe the temporality/quantity of these products so
they can fit into traditional auction architectures, bilateral contracts are considered
between the two agents [138,139] to remunerate the service. Gaming opportunities
are reduced for the aggregator provided that highly-priced offers won’t be attractive
for the DSO and standard grid-control actions might be preferred. Also because
artificial/forced congestion will lead the aggregator to sub-optimal scheduling and
bidding plans.

The aggregator and the Local Market Operator (LMO) interact in such a way
that when flexibility is needed by the DSO (or other third party. i.e. BRP), the
LMO communicates with the aggregator in order to request a flexibility bid. If the
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flexibility is awarded to the aggregator, it will receive the bid price (pay-as-bid) for
providing the service, as it is commonly used for ancillary and service markets [5],
and also to avoid price increase of the local flexibility services. The specifics of the
market design concept and architecture, the flexibility clearing algorithm, which is
a task performed by the LMO, are not part of this thesis’s scope and objectives.
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Figure 4.6: Sequence of actions

4.3.2 Main steps of the proposed framework

The main steps and timeline of the process that involves the participation of the
aggregator, are described in the sequence depicted in figure 4.6 and detailed as
follows:

First, the aggregator gathers the information related to PV forecasts, device
availability, consumption forecasts and energy price forecast. With this information,
the aggregator determines a baseline (unconstrained) or provisional schedule (in
figure 4.6, referenced as action A ) that minimizes total operation costs supposing
no operational constraints imposed by the DSO at the PCC. The DSO proceeds
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to determine the expected operation state of the grid and sends ramping or power-
limit constraints to the aggregator (and/or all distributed resources connected to
the distribution grid) if needed, as detailed in subsection 4.3.3. If no constraint
support is required by the DSO, there are no changes in the provisional schedule.
On the other hand, if constraint support is needed, a bilateral transaction takes
place between the DSO and the aggregator, in which the aggregator has to be paid
the incurred extra-cost of rescheduling its devices to provide the adjustments needed
by the DSO. After this, with or without constraint support, the aggregator sends
its definitive day-ahead energy commitment to the wholesale market (action B ).

Next, the local flexibility market opens and receives requests from the DSO
or other parties (i.e. BRP) specifying a tuple with location, time-frame (tfl) and
quantity (P fl) of the required flexibility. With this information, the LFO calls
flexibility bids from all potential flexibility providers, amongst which, the aggregator.
If the aggregator has available flexibility to offer, a bid containing quantity and
price for the required time frame is sent to the LMO (action C ). This bid, has
to be robust enough to withstand: energy- and imbalance-price uncertainties, PV
production and demand uncertainties, and additionally, has to be robust towards
acceptance or not of the flexibility bid. After this, the LMO clears all flexibility bids
and informs the aggregator if its bid is accepted.

The aggregator’s schedule (action D ) is such that takes into account the men-
tioned sources of uncertainty, the awarded flexibility and the constraint support,
while minimizing total operational costs.

Next, during the operation day, given the fluctuations of PV production and
demand, deviations have to be met by additional purchase/sell of energy. This
leads to negative/positive imbalances settled by the wholesale market. The total
real time operation cost (action E ) will be given by the combination of the day-
ahead energy commitment, the imbalance penalizations, the bilateral trading with
the DSO (if called upon) and the flexibility service provided through the LFM (if
called upon). Given the uncertain nature of the imbalance prices, the aggregator
bidding strategy in all markets has to be robust in the sense of predicting potential
deviations, and in consonance, value accordingly the services to offer.

4.3.3 Mathematical model for local provision of flexibilities

Deterministic model

Objective function The day-ahead operation of the aggregation of houses aims
to minimize costs given by energy purchase in the wholesale market, imbalance
penalization and cycling equivalent cost of the batteries. This objective function is
shown in equation (4.22).

minimize

T∑
t=1

[π̂+
t P

E
t + µ̂−t I

−
t − µ̂

+
t I

+
t +

N∑
h=1

S∑
s=1

(ah,sX
Ds
t,h,s + bh,slt,h,s)] (4.22)

The second term in the objective function corresponds to the piece-wise lineariza-
tion of the battery degradation equivalent cost, in line with [51] and supported on
constraints (4.30)-(4.38). The presence of this term in the objective function allows
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to capture the interdependence of cycling patterns with energy prices and more
accurately value the opportunity cost during the day-ahead operation.

Operational constraints Equation (4.23) describes the energy balance of the
physical system and the net exchange at the PCC with the distribution grid. The
negative and positive imbalance guarantee equilibrium in the case of deviations
but its activation implies a monetary penalization as already expressed in objective
function (4.22).

PE
t + I−t − I

+
t + ∆t

N∑
h=1

(P pv
t,h − P

c
t,h + P d

t,h − D̂t,h −Ht,h) = 0, ∀t (4.23)

Devices’ constraints PV production is limited to the forecasted values as ex-
pressed in constraint (4.24). In this case, the total forecasted power of all panels in
each time frame is compacted in P̂ pv

t .

N∑
h=1

P pv
t,h ≤ P̂

pv
t , ∀t (4.24)

Equations (4.25)-(4.29) describe the behaviour of the BESS in terms of the
intertemporal charging/discharging pattern and the energy/power limits of each
device. Equations (4.27) and (4.28), and binary variable ut,h ensure that charging
and discharging of the battery are mutually exclusive.

Xt,h = Xt−1,h + ηc∆tP c
t−1,h −∆tP d

t−1,h/η
d, ∀t, t 6= 1,∀h (4.25)

X1,h = XT,h,∀h (4.26)

0 ≤ P c
t,h ≤ P̄ c

h · ut,h, ut,h ∈ {0, 1} ,∀t, t 6= 1, ∀h (4.27)

0 ≤ P d
t,h ≤ P̄ d

h · (1− ut,h) (4.28)

Xh ≤ Xt,h ≤ X̄h (4.29)

The model to identify the adequate cost segment of the batteries’ degradation
linearized cost function, is expressed by equations (4.30)-(4.38). Special ordered sets
and auxiliary constraints/variables are used to identify the beginning of charging
cycles, expressed by binary variable xt−1,h.

xt−1,h − yt−1,h = ut,h − ut−1,h,∀t, t 6= 1, ∀h (4.30)

xT,h − yT,h = u0,h − uT,h,∀h (4.31)

xt,h + yt,h ≤ 1, xt,h, yt,h ∈ {0, 1} ,∀t,∀h (4.32)

XD
t,h +XDf

t,h = 1−Xt,h/E
rated
h , ∀t,∀h (4.33)

XD
t,h ≤ xt,h,∀t,∀h (4.34)

XDf
t,h ≤ 1− xt,h, ∀t,∀h (4.35)
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S∑
s=1

XDs
t,h,s = XD

t,h, ∀t,∀h (4.36)

lmin
s lt,h,s ≤ XDs

t,h,s ≤ lmax
s lt,h,s, lt,h,s ∈ {0, 1} ∀t,∀h (4.37)

S∑
s=1

lt,h,s = xt,h, ∀t,∀h (4.38)

After the beginning of a charging cycle is identified by constraints (4.30)-(4.32),
the appropriate value of Depth of Discharge (DoD) (XD

t,h) at which this charg-
ing cycle occurs, is extracted by constraints (4.33)-(4.35). Finally, the appropriate
parameters of the linearized cost segment s (ah,s and bh,s in equation (4.22)) are
activated when XDs

t,h,s and lt,h,s take values different from zero. A more detailed
description of the methodology for including equivalent degradation battery costs
can be found in [51] and also explained in section 2.5.

The presence of the BESS binary variables in the model increases complexity
and turns it into a Mixed-Integer Linear Programming (MILP) problem.

The TES capabilities provided by the EWHs that are present in the energy
community are modeled by constraints (4.39)-(4.42), in which inter-temporal energy
storage behaviour, energy losses and variable limits are described.

Yt,s,h = Yt−1,s,h + ∆tHt−1,s,h − Yt−1,s,h/RhCh −∆tQ̂t−1,s,h,∀t, t 6= 1,∀s, ∀h (4.39)

Y1,s,h = YT,s,h,∀s, ∀h (4.40)

Y t,h,s ≤ Yt,h,s ≤ Ȳt,h,s (4.41)

0 ≤ Ht,h,s ≤ H̄t,h,s (4.42)

Grid operational requirements

When the DSO directly requests grid support to the aggregator in the form of
maximum power exchanges (PPCCmax

t ) or ramping constraint (Rt) at the PCC,
additional equations must be included in the day-ahead scheduling problem for the
aggregator in order to capture extra-costs and determine new schedules. Constraints
(4.43)-(4.46) model the allowed ramping, which represent the maximum allowed net
power change in consecutive time steps. Constraint (4.43) ensures that the day-
ahead commitment respects maximum ramping, and in the same way, constraint
(4.45) includes also negative and positive imbalance exchanges. Constraints (4.44),
(4.46) ensure continuity between the last and first time steps of the operation day.
Constraints (4.47)-(4.48) model the maximum allowed power exchange. Parameters
PPCCmin
t /PPCCmax

t are the min/max net power at the PCC.
These last two constraints are general enough to represent any DSO signal in

terms of net power exchange, even for more complex power flexibility products
[44,140].

|PE
t − PE

t−1|/∆t ≤ Rt∆t,∀t, t 6= 1 (4.43)

|PE
1 − P

g
T |/∆t ≤ Rt∆t (4.44)

|PE
t + I−t − I

+
t − (PE

t−1 + I−t−1 − I
+
t−1)|/∆t ≤ Rt∆t,∀t, t 6= 1 (4.45)
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|PE
1 + I−1 − I

+
1 − (PE

T + I−T − I
+
T )|/∆t ≤ Rt∆t (4.46)

PPCCmin
t ≤ PE

t ≤ P
PCCmax
t ,∀t (4.47)

PPCCmin
t ≤ PE

t + I−t − I
+
t ≤ P

PCCmax
t ,∀t (4.48)

As explained before, if these constraints were to be activated to support grid op-
eration, their inclusion will likely lead to a different schedule and operation point
for the aggregator, when compared to the provisional schedule. Hence, any extra-
cost due to these constraints will determine the minimum fixed cost that the DSO
has to pay the aggregator for providing this service, and settled through a bilateral
contract between these two parties, as explained in subsection 4.3.3.

Robust counterpart

The previous deterministic model has multiple sources of uncertainty, namely, energy
and imbalance prices, PV production and electrical and thermal demand. Strong
duality theorem is used to find an adjustable robust optimization (ARO) counterpart
[27] and rewrite all constraints with uncertain parameters and coefficients.

For the case of the objective function (4.22), the cost coefficients of PE
t , I−t and

I+
t present uncertainty and the equivalent dual robust counterpart is represented by
constraints (4.49)-(4.56).

T∑
t=1

N∑
h=1

S∑
s=1

(ah,sX
Ds
t,h,s + bh,slt,h,s) +

T∑
t=1

(π̂tP
E
t + µ̂−t I

−
t − µ̂

+
t I

+
t )

+
T∑
t=1

(qct + q−t + q+
t ) + Γczc + Γ−z− + Γ+z+

(4.49)

zc + qct ≥
1

2
(π̄t − πt)yct , ∀t (4.50)

− yct ≤ PE
t ≤ yct , ∀t (4.51)

z− + q−t ≥
1

2
(µ̄−t − µt−)y−t ,∀t (4.52)

− y−t ≤ I
−
t ≤ y

−
t , ∀t (4.53)

z+ + q+
t ≥

1

2
(µ̄+

t − µt+)y+
t ,∀t (4.54)

− y+
t ≤ I

+
t ≤ y

+
t , ∀t (4.55)

zc, qct , y
c
t , z
−, q−t , y

−
t , z

+, q+
t , y

+
t ≥ 0, ∀t,∀h (4.56)

To control conservatism for the uncertainty in energy, negative and positive im-
balance prices, three parameters appear: Γc, Γ− and Γ+, respectively. Each of these
parameters can take values from zero (deterministic case) to T , in correspondence
with the maximum number of coefficients that can deviate from the central forecast.

Constraints (4.23) and (4.24) include additional uncertain parameters: electri-
cal demand and PV production, respectively. The robust counterpart includes the
robust parameters ΓD

t and Γpv
t for controlling conservatism of demand and PV un-

certainty. Constraints (4.57)-(4.61) represent the robust counterpart that results
from strong duality theorem. The adjustable robust counterpart alternative is the
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separated version explained in the previous chapter for the treatment of PV and
demand uncertainty. In addition, the alternative of using Γ2 is selected.

PE
t + I−t,s −

+
t,s +∆t

N∑
h=1

P pv
t,h + P d

t,h − P c
t,h −Ht,h = D̂t + qDt + (ΓD

t )2zDt , ∀t,∀s (4.57)

zDt + qDt ≥
1

2
(D90%

t −D10%
t )yDt , ∀t (4.58)

N∑
h=1

P pv
t,h = P̂ pv

t − q
pv
t − Γpv

t z
pv
t , ∀t (4.59)

zpvt + qpvt ≥
1

2
(P 90%

t − P 10%
t )yDt ,∀t (4.60)

zDt , q
D
t , z

pv
t , q

pv
t ≥ 0, yDt , y

pv
t ≥ 1,∀t (4.61)

Constraints (4.62)-(4.64) are the resulting robust counterpart of considering un-
certainty in thermal load, with Γth

t controlling thermal load conservatism and car-
dinality [0,1].

Yt,h = Yt−1,h + ∆tHt−1,h − Yt−1,h/RhCh

−∆t(Q̂t−1,h + qtht−1,h + (Γth
t−1,h)2ztht−1,h), ∀t,∀h (4.62)

ztht,h + qtht,h ≥
1

2
(Q90%

t,h −Q
10%
t,h )ytht,h,∀t,∀h (4.63)

ztht,h, q
th
t,h ≥ 0, ytht,h ≥ 1, ∀t,∀h (4.64)

The previous equations are the building block to optimally manage the resources
of the aggregator in multiple markets and taking into account uncertainty. The
relation of this mathematical model with the actions A - E depicted in figure 4.6,
will be explained in the following subsections.

Provisional and robust reschedule with grid support

The provisional schedule (action A ) corresponds to the robust optimization problem
when no grid constraint support is considered and minimization of the operation
cost is pursued. Action A is achieved by solving the following adjustable robust
counterpart MILP:

minimize CA = (4.49) (4.65)
s.t.

Constraints : (4.25)− (4.38), (4.66)
(4.40)− (4.42), (4.50)− (4.64) (4.67)

where:

• (4.49): is the robust counterpart of the objective function.

• (4.25)-(4.38): are the BESS constraints.
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• (4.40)-(4.42): are the EWH constraints.

• (4.50)-(4.64): are the remaining robust counterpart constraints.

When this unconstrained baseline robust schedule is determined, the net power
exchange is communicated to the DSO to check if constraint support is needed:
action B . If this is the case, Rt and P

PCCmax/min

t values are received and the
following ROMILP is solved:

minimize CB = (4.49) (4.68)
s.t.

Constraints : (4.43)− (4.48), (4.69)
(4.66), (4.67) (4.70)

Where (4.43)-(4.48) are the local flexibility constraints.
The minimum remuneration for the aggregator in the bilateral transaction for

providing the service of ramping and max. power, is given by the difference: πdso =
CB − CA.

Algorithm for bidding local flexibility

If the LMO asks the aggregator for a flexibility bid, the robust flexibility bidding
process, action C , followed by the aggregator is the following:

Step 1 Find the cost of the baseline (constrained) case, CB, by solving (4.68)-
(4.70).

Step 2 Flexibility request sent by the LMO is received by the aggregator in terms
of: time-step of required flexibility, tfl; required power flexibility, P fl.

Step 3 The aggregator determines its robust cost to provide the required flexibility
(Cfl) by solving (4.68)-(4.70) and including constraint:

∆t
N∑

h=1

P pv
tfl,h

+ P d
tfl,h − P

c
tfl,h −Htfl,h − D̂tfl − qDtfl − ΓD

tflz
D
tfl = P fl (4.71)

Step 4 Compute the flexibility bid: πfl = Cfl − CB, and send bid to LMO.

The minimum price that should be paid to the aggregator for providing the
required flexibility is given by πfl. Constraint (4.71) allows to ensure that flexibility
will be met by adjusting device settings of smart-homes. This set of control signals,
settings and expected penalties is called action D in the timeline of figure 4.6.
Additionally, the robust characteristic of the formulation permits the inclusion of
potential imbalances, and the corresponding penalties paid to the wholesale market
which are assumed by the aggregator. In this approach, these costs are accounted
for in the bidding process to protect the aggregator against uncertainties. Note that
when no local constraint support is needed by the DSO, calculated CB in step 1,
becomes the same CA.
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This bidding methodology is general enough to bid in local market schemes that
accept no only single point bids, but also bidding curves. The characteristic of the
robust bid will depend upon the capabilities of the clearing algorithm used by the
LMO. To construct a flexibility bidding curve for an specific time-frame tfl, steps
1-4 need to be repeated for a range of values of P fl = [P fl

min, P
fl
max], given by the

LMO or determined by the technical flexibility capabilities of the aggregator for the
specific period of time.

Real time performance evaluation

The performance aims to evaluate the ability of the aggregator to comply with:
1) the committed day-ahead energy; 2) the constraint support; and 3) the local
awarded flexibility, while minimizing total operation cost when facing the multiple
sources of uncertainty. Montecarlo simulation is used to test the robustness of the
proposed approach for several patterns of random generated prices, consumption
and PV production during the operation day. The total cost calculation when these
random values are generated and used as input, is given by the day-ahead energy
payments, the equivalent cycling cost of the batteries, the revenues for providing
constraint support to the DSO, the revenues for providing local flexibility and the
penalization due to imbalances produced by real time production/consumption in
each household. Montecarlo simulation returns a measure of the performance in
terms of average cost and standard deviation (SD), as a measure of the risk related
to a particular robust bidding strategy.

Calculate cost
average and  SD
from stored data

START

Bid flexibility with steps in
II-F 

Generate random energy and
imbalance prices, load and PV

production

Evaluate real
time cost

Store operation
cost

Stop criteria met?

Input parameters:  ,  , 
, flexibility request

Γ Rt

P
PCC

max

t

END

No

Yes

Montecarlo Simulation

Figure 4.7: Real time performance evaluation: action E

The outline of the performance methodology is presented in figure 4.7. The
number of simulations (stop criteria) is limited to the maximum between a) 1000
trials, and b) the number of trials in achieving a margin of error of maximum 1%
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with a confidence interval of 95%.
The cost of each trial is given the following expression:

Ctrial = Cws − πdso − πfl + Ccyc (4.72)

Where Cws is the result of solving the following optimization problem:

minimize Cws = (4.22) (4.73)
s.t.

Constraints : (4.23)− (4.48), (4.71) (4.74)

Given that each trial corresponds to a deterministic optimization problem, cy-
cling constraints (4.30)-(4.38) are included in model, but equivalent degradation
cost (Ccyc) is calculated after the optimization process with the last term of equa-
tion (4.22). This helps to reduce computational time while taking into account the
equivalent degradation costs into the performance evaluation.

4.3.4 Results of robust participation in the wholesale market

Local constraints unactivated

If the provisional schedule (action A ) does not jeopardize grid operation, this sched-
ule will remain as the robust day-ahead bid (action B ). Figure 4.8 shows the de-
mand bidding curves for t=14, when energy prices are varied in the range 10%-90%
percentile of the predicted priced by the KDE. These piece-wise curves show the
hourly bids of the aggregator for economical operation when only wholesale market
participation is allowed and no other local flexibility market exists. Hence, these
curves show the interaction of local net power with the price variations in the whole-
sale market. They can also be interpreted as the bids if flexibility could be traded
in the centralized wholesale market, as proposed in [15,48,49].
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Figure 4.8: Demand bidding curves in the wholesale market for t = 14h and different
levels of robustness without local constraint support (Action A = Action B).

The results show that increasing robustness (higher values of Γ) results in bids
that can withstand higher purchase energy prices for similar values of bidding power,
and for most part of the bidding range. It can be seen that the green curve (full
robustness) tends to be the right-most.
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Impact of local constraints

If ramping and PPCCmax
t constraints are locally activated during the day-ahead

scheduling, the committed power in the wholesale market and the devices’ settings,
change in order to comply with the ramping and power requirements. Figure 4.9
shows the day-ahead energy commitment for different allowed ramping values and
fixed PPCCmax

t = 0.07MW . In this case, it can be seen that peaks are shaved at the
level of maximum 70 kW, and that Rt = 0.06MW ( ) allows more unconstrained
ramping as the case for time frame sequences 5h-10h and 17h-19h.
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Figure 4.9: Day-ahead committed energy for Rt = 0.01 MW/h ( ), Rt = 0.03
MW/h ( ), Rt = 0.06 MW/h ( ) when constant PPCCmax

t = 0.05 MW

In general, each case leads to a different operation point and the robust operation
cost ranges from e33.90 when no local constraints are considered, to e35.03 when
ramping and power-max values are activated. For instance, when ramping is limited
to 0.01 MW/h and maximum power to 0.04 MW, the operation cost of the HEMS
is e35.03, which represents a 3.3% increase with respect to the unconstrained case.
This means that if the DSO sends these signals, the HEMS aggregator would have
to adjust its settings and incur in extracosts to satisfy DSO needs. This fixed
remuneration (πdso) component is shown in table 4.2 for different values of PPCCmax

t

and Rt and for the case in which full robustness is considered (ΓDA = ΓPV = ΓD

= Γth = 1).

Table 4.2: Remuneration πdso for the aggregator for different values of allowed
ramping and maximum power

PPCCmax
t

Rt 0.04 MW 0.05 MW 0.07 MW
0.01 MW/h 1.13 1.10 1.10
0.03 MW/h 1.04 1.00 0.99
0.06 MW/h 1.04 1.00 0.97

117



4.3.5 Robust bidding in the local flexibility market

If a local market is set in place to define appropriate prices for flexibility to be
provided by the aggregator at the PCC, construction of supplying bidding curves
could give an idea of the proper remuneration that the aggregator should receive for
modification of the net power exchange coming from flexibility requests. This option
is shown in figure 4.3.5. These curves measure the extracost of the aggregator’s
operation when deviating from the committed day-ahead energy. Hence, this price
is the minimum that should be paid to the aggregator if DSO requires flexibility.
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Figure 4.10: Local flexibility bidding curves for t = 21h

When the local flexibility bidding algorithm described in subsection 4.3.3 (action
C ) is ran for a range of flexibility requested values, the bidding curves in figure are
obtained. From these figures it can be seen that when flexibility is requested at
the PCC, the remuneration increases as the requested deviation from he original
day-ahead schedule increases. For instance, original day-ahead schedule for the
aggregator when ΓDA=12, ΓPV =0.2, ΓD=0.4 (blue dotted curve) in hour 21h is
29.2 kW, which is the point with the lowest flexibility bidding price and maintaining
this power will be less costly for the aggregator. When other values of flexibility
are requested, the remuneration starts increasing due to the activation of home
flexibility and the potential imbalance costs that should be settled in the wholesale
market and foreseen by the aggregator.

Given that the aggregator has to manage residential resources to supply the
offered flexibility and also foresee PV and demand deviations, imbalances might
occur and have to be accounted for in the flexibility bids. For instance, due to the
fact that the aggregator bids also in the energy market, the flexibility offered in
figure 4.3.5 (blue dotted curve), includes the expected robust imbalances shown in
figure 4.11 to be capable of adjusting device’s settings and also supply local electrical
and thermal demand. The aggregator is responsible for negotiating these quantities
in the wholesale market which act as a form of penalization or deviation from the
original day-ahead committed energy. In this approach, the formulation allows also
to account for imbalance price uncertainty when determining bidding quantities and
prices. This protects the aggregator from the inherent uncertainty of demand, PV
production, electricity prices and the subsequent penalizations due to deviations.
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The levels of protection against uncertainty explain the difference in the bidding
prices in figure 4.3.5. When full robustness is considered (green dotted curve), the
aggregator is protected against all deviations in forecasted imbalance prices, PV
production and load. The trade-off being that flexibility bids are higher and might
not be awarded by the LMO in the clearing process. It is important to mention
that the imbalances boxplot is associated to the imbalance pattern resulting from
each point in figure 4.3.5 and is not associated to the real time expected deviations
after uncertainty realization. The analysis related to the performance when the
aggregator is facing multiple random realizations of the uncertainties in real time,
is developed in subsection 4.3.6.
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Figure 4.11: Boxplots of expected negative and positive imbalances to comply with
robust flexibility bids in figure 4.3.5, for t=21h

In order to bid different quantities in the local market in the presence of uncer-
tainty, not only imbalances occur, but also changes in the devices’ settings. The
average behavior of the storage devices (all HEMS batteries aggregated) resulting
from the points of the bidding curve, is shown in figure 4.12. For instance, the
energy stored in the batteries changes slightly during most of the time frames, but
changes more actively during time-frames 21h and 22h to provide the necessary flex-
ibility. Similarly, the stored energy in the EWHs presents higher variation during
time-frames prior to t=21h, to adjust the operation for provision of flexibility and
supply local thermal residential load.

4.3.6 Assessing the performance when facing uncertainties

To measure the performance, a first test is developed by comparing deterministic
and robust approaches when the aggregator participates in both wholesale energy
and local flexibility markets. This test is based on the methodology explained in
figure 4.7 and considering an arbitrary flexibility request of -10 kW by the LMO
for demonstration purposes. After running the performance algorithm by setting
margin of error to maximum 1% with a confidence interval of 95%, the expected real
time operation costs are 26.15e for the deterministic solution and 22.05e , 22.42e ,
22.48e for ARO1 (ΓDA,PV,D = 12, 0.2, 0.4), ARO2 (ΓDA,PV,D = 18, 0.2, 0.2) and
ARO3 (ΓDA,PV,D = 12, 0.4, 0.6) respectively. Improvement of the proposed robust
approach in expected operation cost ranges from 14.0% to 15.7% when compared
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Figure 4.12: Average (organge) state of charge and boxplots (blue) of batteries and
EWHs for the bidding quantities in t=21h

to the deterministic case, showing the ability of the robust formulation to optimize
participation in the wholesale market and comply with the local flexibility despite
the uncertainty in prices, PV and load.

The CDF (cumulative density function) of the performance is depicted in figure
4.13. This CDF shows that the leftmost curves are the ones related to the proposed
ARO approach, which shows that probabilities of having lower associated costs
are higher for the ARO cases. For instance, the ARO cases have between 91%
to 96% probability of presenting an operation cost lower than the deterministic
mean (1.0 p.u.). The standard deviation is also measured to determine related risk
of decision-making. The obtained SD values are 3.47e , 2.15e , 2.91e , 2.49e for
the deterministic, ARO1, ARO2 and ARO3 cases respectively. In all cases, robust
solutions improve the deterministic SD in the ranges from 16.1% to 38.0%.
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Figure 4.13: Performance CDF of different bidding strategies : deterministic,
ARO1: ΓDA,PV,D = 12, 0.2, 0.4, ARO2: ΓDA,PV,D = 18, 0.2, 0.2 ARO3: ΓDA,PV,D =
12, 0.4, 0.6, for november 15th and flexibility activated of -10 kW (up regulation).

In addition to the analysis of participation in energy and local markets (case 1)
in table 4.3) performance was evaluated for local constraint activation (case 2) and
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for the case in which flexibility bid is not accepted by the local market (case 3). For
case 3, performance is not jeopardized by the rejection of the flexibility offer, given
that ARO bidding strategy outperforms the deterministic solution in the range of
9.1%-9.7%.

However, if the local flexibility offer is accepted, dispatched and remunerated,
there are improvements in the operation. For the ARO-1 case, for example, accep-
tance of the local flexibility offer (case 1) implies a cost reduction when compared to
the case of offer rejection (case 3). This reduction represents a 6.4% improvement
in real time expected cost.

ARO approaches also show better behavior when local constraint support (case
2) is included, and improvement is achieved in comparison to participation in only-
energy market.

Cost reduction exist in all cases when ARO approaches are compared to the
deterministic solution. Additionally, when each robust case is analyzed separately,
improvements persist for the cases in which local flexibility market participation
is included. This shows the ability of the proposed approach to optimally bid in
multiple market platforms even with different settlement schemes. Cases 1 and 2
imply a probability of acceptance of the flexibility bid of 100%, whereas case 3
implies 0% acceptance probability.

Table 4.3: Performance for participation in different markets with different robust
bidding strategies. ∗Rt = 30kW/h, PPCCmax

t = 50kW
Case Market Det. ARO1 ARO2 ARO3
1 Energy + Local Market accepted

bid
26.15 22.05 22.42 22.48

2 Energy + Local Market accepted
bid + Local Constraint Support∗

26.21 22.25 22.43 22.81

3 Only Energy (local market rejected
bid)

26.13 23.57 22.69 23.74

4.3.7 Analysis of the probability of bid acceptance

The expected operation cost is also dependant on the acceptance or not of the bid by
the LMO. The acceptance of the bid depends on many factors, such as the bidding
price, which depends also on the desired level of robustness, the hour, the quantity,
etc.. The higher the robustness, the higher the bidding prices (as seen in figure
4.3.5). The trade-off is that the lower the price is, the more probabilities that the
flexibility will be awarded and dispatched. However, the remuneration is lower.

For the sake of example, this fact can be seen in figure 4.14. Two cases are shown:
average cost for the deterministic case and an arbitrary ARO case with ΓDA,PV,D =
12, 0.5, 0.5. The simulation consists in generating bids for hour t = 21 and for -10 kw
of required flexibility by the LMO. When analyzing performance of each alternative,
not only Montecarlo simulation is used for price, PV and demand values, but also
uniform random values are generated to be compared with different bid acceptance
probabilities. If the random value is lower than the predefined probability, then the
bid is accepted and dispatched. The obtained results show that the robust bidding
strategy becomes more appealing than the deterministic only if the probability of
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Figure 4.14: Average expected costs for different levels of flexibility bid accetpance.
Simulation for november 15th and flexibility activated of -10 kW (up regulation).

the acceptance of the bid is higher than 27%.
Another case is shown in figure 4.15, in which the deterministic and the full

robust case are compared. In this case, it can be analyzed that the probability of
acceptance has to be higher in order for the robust approach to be more attractive
than the deterministic. In addition, the cost for the robust case has a steeper slope.
This is explained by the fact that higher robustness means higher cost for providing
the flexibility, hence a higher remuneration when flexibility is awarded.
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Figure 4.15: Comparison of average expected costs for different levels of flexibility
bid acceptance. Simulation for november 15th and flexibility activated of -10 kW
(up regulation).

The combination of the three preceding cases is depicted in figure 4.16. This
figure shows that the complete robust approach becomes the most interesting alter-
native only for high acceptance probabilities (>70%). However, as stated before, the
bids of the robust approach are more expensive and hence have lower probabilities of
being accepted. Moreover, for these three case, the deterministic approach results
more attractive for lower bid acceptance probabilities. The figure also evidences
the difference in the slope of both proposed robust bidding strategies, showing that
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case ΓDA,PV,D = 12, 0.5, 0.5 has a descending behavior due to the remuneration of
flexibility, but not as steep as the complete robust scheme.
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Figure 4.16: Average expected costs for different levels of flexibility bid acceptance.
Simulation For november 15th and flexibility activated of -10 kW (up regulation).

When the robust strategy ARO1: ΓDA,PV,D = 12, 0.2, 0.4 already analyzed in
table 4.3 is subject to the same analysis taking into account probability of bid ac-
ceptance, the obtained evolution of average costs is obtained in figure 4.17. In this
case, this strategic bidding has lower average costs when compared to the determin-
istic, despite the probability of bid accetpance. This is a very important result given
that full certainty of bid acceptance cannot be foreseen when sending the bid to the
LMO. This means that the proposed strategy is robust enough to withstand uncer-
tainties not only coming from demand, prices and PV, but also performs towards
bid acceptance uncertainty.
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Figure 4.17: Average expected costs for different levels of flexibility bid acceptance.
Simulation For november 15th and flexibility activated of -10 kW (up regulation).
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4.4 Conclusions

The proposed approach presents a mathematical model to include local flexibility
in the form of 1) maximum allowed net power exchange and ramping at the PCC
and 2) participation in local flexibility markets. The simulations analyzed different
cases in which the aggregator participates in wholesale and flexibility markets and
determines the changes in the devices’ schedule to achieve minimum operation cost
while complying with DSO’s flexibility constraints, flexibility requests and energy
committed in the day-ahead market. These adjustments in the operation of HEMS
allow an aggregator to participate in the electricity market while cooperating with
the local DSO to enhance network operation and promote decentralization of the
electrical system.

When no limits are imposed, that net power exchange may yield values that
jeopardize upstream operation, such as violation of voltage limits, congestion in
distribution lines, among others. This makes it necessary to take into account DSO
signals and enhance cooperation between agents in order to minimize potential risks.

For the stochastic/robust case and flexibility values analyzed, the operation cost
for the aggregator increases up to 2.3% with respect to a base case in which no DSO
flexibility signals are considered. This information is useful to determine potential
remuneration for the aggregator for providing local flexibility services, given that
scheduling of resources has to change to provide the needed flexibility.

For proper remuneration of provision of flexibility needs, the variations of op-
erational cost of the microgrid must be taken into account, to achieve benefitial
market environment for all participants. For instance, if a local market is set in
place, bidding curves can be submitted in order to correctly price and remunerate
the service provided by the microgrid.

For the analyzed complete robust framework, the expected cost outperforms the
deterministic case up to 15.7% when participation in multiple markets is allowed.
In addition, participation in LFM allows to decrease operational costs due to remu-
neration of providing flexibility service. The robust approach allows to place bids in
all markets and schedule devices in such a way that cost is minimized while facing
uncertainties produced by energy prices, PV production and load.

The remuneration of the flexibility is related to the level of robustness. If robust
parameters are set to high values, the cost for providing flexibility also increases
provided that the aggregator includes the expected cost for potential deviations of
prices, demand and PV production. In addition, there is a trade-off between level of
robustness and possibilities of being awarded the flexibility service, given that higher
cost for providing the service will have less possibility of being dispatched by the
LMO. However, for the analyzed case, there exist combination of robust parameters
that yield better costs than the deterministic scheme despite the probability of bid
acceptance.
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Chapter 5

Concluding remarks

5.1 General conclusions

In this section we synthesize the overall conclusions that have been separately pre-
sented in detail at the end of each chapter. The partial conclusions in each preced-
ing chapter focus also on covering quantitative results. However, here we emphasize
mainly on the general contributions.

Aggregation of resources at the residential level is drawing increasing attention
in the energy transition context given its importance to integrate energy consumers
into the smart grids paradigm. This thesis presented a literature review in which
the current trends for treating uncertainty in the smart grid context were identified,
and the opportunities of using robust optimization for prosumers’ aggregation was
detected, specifically for the case of the adjustable version. In addition, cycling
aging cost calculation alternatives were analyzed and the adequate options for short-
term electrical markets were identified. The literature review also presented the
current opportunities for proposing comprehensive models including uncertainty,
battery degradation and exploitation of prosumers’ flexibility in multiple markets,
with special emphasis on local flexibility markets.

The main contributions of this thesis are related to the modeling of uncertainty
into the optimization model for participation of an aggregator in short-term energy
markets. Energy prices, demand and PV production are included as sources of
uncertainty through ARO. In this context, battery cycling models are also included
and participation and bidding in traditional day-ahead energy markets and new
local flexibility markets are proposed.

This thesis was developed in three main parts: chapter 2, presented the general-
ities of the deterministic mathematical model and two alternatives for inclusion of
battery aging. Chapter 3 developed the model in the presence of uncertainties and
finally chapter 4 presented a strategy for robust bidding in local flexibility markets.

Aggregation and interaction of different sources of flexibility lead to operation
cost decrease for a market agent in charge of controlling several devices at the
residential level. In the case of the present work, and specifically in chapter 2,
interactions of PV, electric water heaters and batteries are analyzed. The best
behavior from the standpoint of operational costs for day-ahead market participation
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is obtained when all sources of flexibility are included. In the case of EWHs, which
act as thermal storage, the behavior is similar to that of a flexible load, given that
the pattern of consumption varies depending on the cost of opportunity and the
thermal load needs.

Aggregators usually have multiple assets to manage and get profit from. This
would help to overcome potential market barriers regarding minimum installed ca-
pacities or minimum bid quantities (power/energy) for bidding in energy and/or
ancillary markets. An aggregator can also have a portfolio mix of resources such as
medium/large size storage, pumped hydro plants, wind turbines, heat-ventilating
systems, other building aggregations, electrical vehicles, etc. In this context, the
proposed HEMS would be a part of the resources to manage.

The first part of chapter 2 was also dedicated to present a decomposition tech-
nique to include degradation of batteries into the aggregator’s model. When the
SDA is used to disaggregate a SOC value sent by a metaheuristic algorithm, a par-
ticule with only T positions is needed, despite the number of batteries in the test
system. This is important, provided that any metaheuristic will require higher com-
putational effort if the dimension of the decision variable increases. Hence, the SDA
allows to keep solutions’ size constant.

If the SDA is to be used in a stochastic optimization framework, the size of the
solution will depend on the definition of the first and second stage variables and
the corresponding number of scenarios (Ne). The decomposition method avoids the
complexity of dealing with a MINLP problem and can be used and adjusted in other
applications in which battery degradation costs need to be accounted for to bid in
energy markets.

The presented explicit modeling alternative in the last part of chapter 2 for
including degradation directly into the optimization model, is based on piecewise
linearization of the equivalent cost function. This cost is represented as a function
of the DoD at which each charging cycle occurs. It is important to mention that the
degradation cost obtained with this alternative is different from a cost obtained with
an expost calculation with the RCA, given that the cycle counting differs from one
method to another, hence direct comparison of the two methods is not adequate.
The explicit modeling efficiently uses the binary auxiliary variables introduced to
detect state transitions and beginning of charging cycles. This variables are present
also in the objective function to activate the corresponding independent term of the
linearized cost function.

Explicit modeling achieves accurate approximations for a moderate number of
segments. For instance, in this work, 6 segments are enough to guarantee errors lower
than 0.05% in the final day-ahead operation cost. Errors in the isolated degradation
function are higher and were not used to select the number of segments. This is
explained by the fact that the cycling cost function is more sensitive to changes in
the number of segments, provided that each option may lead to a different final set-
point of batteries, thus changing the equivalent value of degradation. Therefore, it is
more logical to analyze the error of the total day-ahead operation objective function.

In chapter 3, uncertainties of the following types were considered in the mathe-
matical formulation with either SO or ARO: energy prices, electrical load, thermal
load and PV production.
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When using strong duality to obtain the robust counterpart of the deterministic
model, and for the specific case of PV and electrical load, an additional calculation
was established to obtain net load in each time step. This results in one unified
budget of uncertainty to control conservatism of net load. In addition, 3 × T dual
variables and 2×T new constraints are introduced. An alternative was also explored,
by maintaining separate budgets and dual variables for electrical load and PV. Al-
though this formulation results in a larger optimization problem, separate handling
of both sources of uncertainty lead to impacts on the performance of the solutions
and better mitigation of over-conservatism. An additional modification was made
to the model by using Γ2 budget of uncertainty. This allows to better exploit lower
values of the budget in closer intervals and also counter over-conservatism of the
solutions. In general, ARO ensures a guaranteed minimum cost and lower imbal-
ances. Depending on the market design for aggregators and imbalance prices to
settle deviations, overall performance and absolute values of cost and SD decrease
can vary.

The proposed performance analysis consisted of detecting the combination of
robust parameters that yielded in the set of Pareto optimal solutions from the
standpoint of cost and standard deviation, when the obtained solution is subject
to random realizations of the uncertain variables. Hybrid stochastic/robust and
complete robust alternatives were compared. For some combinations of robust pa-
rameters, the deterministic solution outperforms some HSR and complete ARO
solutions. Nonetheless, HSR and complete ARO solutions can always be found in
such a way that both cost and SD outperform the deterministic approach. The
proposed descriptors to evaluate the modified models allow to conclude that alter-
native 4 outperforms the remaining complete ARO models, the hybrid models and
the deterministic solution from the standpoint of risk and cost.

Local provision of flexibilites was explored in chapter 4. In this case, a framework
that allows participation in three different market places was proposed. First, day-
ahead energy and imbalance market participation; second, bilateral transaction of
local flexibility with DSO; and third, participation in a local flexibility market to
sell flexibility to the DSO or other third parties.

Coordination between residential aggregators and DSOs is necessary and leads
to an natural inherent transaction for both agents. This is explained by the fact that
unrestricted scheduling of devices at the residential level might lead to operational
problems in the upstream network. This thesis proposes two types of flexibility prod-
ucts to be traded directly with the DSO: maximum allowed power at the PCC and
net ramping rate. The activation of these products lead to change in the operation
of the devices and hence a different sub-optimal setpoint that increases operational
costs. This cost increase acts as a price signal to remunerate the provision of flex-
ibility. Given that uncertainties are taken into account, the deviations to respect
flexibility commitment are minimum while maintaining minimum operational cost
for the aggregator.

When flexibility is traded in a local flexibility market, the proposed framework
assumes that there exists a local market operator to clear the market. If flexibility
is needed, the aggregator can submit bids if required. The flexibility bids explored
in chapter 4 have different levels of robustness depending on the predefined budget
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of uncertainty. The obtained flexibility bidding curves show that the price of the
flexibility tends to be higher if robust parameters have also higher values. This
is explained by the fact that the robust model is protected against uncertainty
measured by the deviations and the consequent penalization (imbalance). Hence,
the optimal robust solution takes into account the changes in devices’ settings and
potential needs of the aggregator for incurring in extracosts in the case of deviations
of the uncertain parameters. This information is traduced in price of flexibility and
the bids sent to the LMO.

For the simulations ran, a combination of robust parameters can be found to ob-
tain a solution that has better performance than deterministic approaches, despite
the probability of bid acceptance. This is carried out by analyzing only performance
of participation in the energy market, given that this is the more conservative sce-
nario, and taking into account that bid acceptance leads to remuneration, in the
case it is accepted. Hence it is not necessary to run an exhaustive performance
analysis for all bid acceptance scenarios. The proposed robust approach is capable
of finding robust optimal solutions even in absence of knowledge of the probabilities
of bid acceptance.

However, if probability of acceptance was to be incorpored into the model, his-
torical data would be necessary for building an appropriate model. This shows the
importance of the robust approach for local emerging flexibility markets, provided
that there is still a lack of sufficient historical information to create proper scenario
based models and stochastic optimization approaches.

5.2 Perspectives and future work

The study carried out during this thesis has also led to identification of potential
improvements and future work, which are condensed in the following lines.

On prosumers and aggregators:

• Inclusion of multi-energy systems/hubs, as identified in the literature review.
MES include other devices such as CHP plants, heat pumps, boilers, heat
storage, etc., and the coordination possibilities with active demand, ESS and
RES become an interesting opportunity not only to minimize operation costs,
but also to offer local and energy/reserve services and by reaching minimum
bid quantities.

• Comparison of remuneration schemes for aggregation approaches versus peer-
to-peer (transactive) frameworks.

• Determination of billing mechanism and contract framework between aggre-
gators and end-users to enhance active citizen participation.

• Management/operation and market frameworks for energy communities and
energy democracy related tendencies through cooperatives. Multi-objective
approaches for aggregators/communities can arise as an option to include sev-
eral "hard-to-monetize" objectives: environmental, social and other external-
ities.
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On specifics of mathematical models:

• Combined sizing and operation optimization models for decision making re-
garding resource planning for energy communities and aggregators.

• Extension of the proposed decomposition approach in this thesis in the cases
of DSO/TSO ownership of batteries. This case will require iterative calcu-
lation of battery aging and optimal power flow methods to achieve pursued
objective (minimize losses, economic dispatch, reliable operation, congestion
management, etc.).

• Hybrid Robust/MPC models can be developed to account for uncertainties
with rolling horizon in the context of intra-day market participation.

• Analyze scalability of ARO schemes for aggregation or large number of cus-
tomers. Machine learing methods appear as an option to decrease compu-
tational burden of performance evaluation by predicting attractive ranges of
uncertainty budget.

On market participation and architectures:

• Extension of aggregator’s bidding mechanisms and capabilities for day-ahead,
intra-day and real-time markets. In addition to models for participation in
energy, local flexibility and traditional ancillary markets (i.e. tertiary regula-
tion).

• Local flexibility service characterization. For instance, inclusion of reactive
power products for congestion management and voltage support. Addition-
ally, and given the unbalanced nature of the distribution grids, “unbalanced
flexibility products” can also be explored.

• Architectures and clearing schemes for local flexibility markets from the lo-
cal market operator perspective in order to develop a complete test-case and
create historical synthetic data for the research community. There is a lack
of historical information for local flexibility markets: activation probabilities,
required flexibility, actual dispatched flexibility, prices, etc.

• Decentralized and coordinated request for flexibility should be possible for
DSOs and TSOs. A discussion on the hierarchy between DSO and TSO must
be addressed to avoid potential conflicts (or to promote cooperation) in the
provision of flexibility in different levels.
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Appendix A

SDA correction algorithm

When performing the SDA and after updating the variables by using (2.26), some
of the variables may exceed the boundaries. If this happens, a correction procedure
involves each multiplier λ(j) associated to each violating variable xj . Let ΛY be the
set that contains the violating variables, ΛN the set of the non-violating variables,
and x∗j indicates the minimum or the maximum allowed value for xj . For each
variable in ΛY , a correction that complies with the following equation needs to be
carried out:

xj + φ ·∆λ(j) = x∗j (A.1)

Reorganizing the terms we obtain the following:

x∗j − xj = φ
( 1

N

∑
i∈ΛN

λ(i) +
1

N

∑
i∈ΛY

λ(i) − λ(j)
)

=
φ

N

∑
i∈ΛY
i 6=j

λ(i) +
φ

N

∑
i∈ΛN

λ(i) + (
φ

N
− 1)λ(j)

If all of the equations in ΛY are written, a linear system of the type A ·λnew = b
is generated, where A is a square matrix, b is a column vector and λnew is the vector
with the multipliers in ΛY that have to be corrected. To solve this system, the
elements of A are calculated as follows:

Ajj =
φ

N
− 1 (A.2)

and,

Aji =
φ

N
(A.3)

where Ajj are the elements in the diagonal and Aji the elements outside the
main diagonal. Elements of b, are calculated with the following expression:

bj = x∗j − xj −
φ

N

∑
i∈ΛN

λ(i) (A.4)

After the linear system is solved, a set of multipliers is obtained such that the update
of xj , ∀j ∈ ΛY is in the bounds.
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Appendix B

Generalized SDA for
scenario-based stochastic
approaches

When a certain SOC (Xagg
t,e ) is determined by the CSO logic, where e corresponds

to a scenario, it has to be optimally allocated/dissagregated in each battery. This
depends on each battery’s cycling aging characteristics and the associated SOC.
This subproblem can be mathematically formulated as follows:

min w =
Ne∑
e=1

N∑
h=1

f cych (Xh,e) (B.1)

s.t.

Xagg
t,e =

∑
h

Xt,h,e, ∀t,∀e (B.2)

When applying Lagrangian relaxation to this optimization problem, one multi-
plier appears for each time step in each scenario (λt,e), as shown in the function:

L =

Ne∑
e=1

N∑
h=1

f cych (Xh,e) +

Ne∑
e=1

T∑
t=1

λt,e(X
agg
t,e −

∑
h

Xt,h,e) (B.3)

After applying optimality conditions to the langrangian function (B.3) (i.e.,
derivative with respect to Xt,h,e and λt,e), the equations obtained are:

∂L
∂Xt,h,e

=
∂f cych (Xh,e)

∂Xt,h,e
+ λt,e = 0, ∀t,∀h,∀e (B.4)

∂L
∂λt,e

= Xagg
t,e −

∑
h

Xt,h,e = 0, ∀t,∀e (B.5)

From equation (B.4) it is concluded that the derivative for each time step and
scenario is battery invariant. This is a very important condition given that, in other
words, the derivative of each battery should be the same for any given t and e:
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∂f cyc1 (X1,e)

∂Xt,1,e
= · · · =

∂f cych (Xh,e)

∂Xt,h,e
= · · ·

· · · =
∂f cycN (XN,e)

∂Xt,N,e
= −λt,e, ∀t,∀e (B.6)

To calculate the derivative adn given that there is no analytic function to express
f cych , numerical differentiation is used in order to iteratively find the Xt,h,e that leads
to (B.6) while satisfying (B.5):

λ
(h)
t,e ≈

f cych (Xh,e)− f cych (Xh,e + ∆Xt,h,e)

∆Xt,h,e
(B.7)

Superindex (h) is introduced to denote that a multiplier λ(h)
t,e should be calculated

for each battery h, and the iterative process should correct the values Xt,h,e until
the multiplier is the same for all batteries (until λ(1)

t,e = ... = λ
(N)
t,e = λt,e).

This disaggregation algorithm is initialized by selecting a Xt,h,e in such a way
that eq. (B.2) (same as eq. B.5) is met. After this, λ(h)

t,e are calculated by using
(B.7). Given that Xt,h,e, in each t and e, needs to be updated to achieve equal λ(h)

t,e

for all batteries, a deviation for each (h) is calculated by:

∆λ
(h)
t,e = λ

(h)
t,e − λ̄t,e (B.8)

where,
λ̄t,e =

∑
h

λ
(h)
t,e /N (B.9)

Equation (B.8) measures the deviation of each battery’s derivative with respect
to the mean, hence, a simple heuristic rule is used to update SOC values according
to:

Xnew
t,h,e = Xold

t,h,e + φ ·∆λ(h)
t,e (B.10)

where φ is a tuning parameter. Once the SOC is updated for each battery, eq.
(B.7) is used again and the process is repeated until all deviations for each t and e
are lower than a tolerance threshold. One very important feature of the presented
method is that in this iterative process, optimality condition (B.5) (equivalent to
constraint (B.2)) is always ensured, given that

∑
∆λ

(h)
t,e = 0. This allows the aggre-

gation of all batteries to equal the aggregated SOC at any time and scenario.
The outline of the proposed disaggregation algorithm is shown in figure 3.3.
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Appendix C

Obtention of the robust
counterpart

To introduce uncertainty in the decision making process through RO, the following
canonical optimization problem is defined:

minimize c′x (C.1)
s.t.

Ax ≤ b (C.2)
x ≥ 0 (C.3)

If uncertainty in cost coefficients (c) is present in the model in such a way that
maximum deviation for a given coefficient j is given by (cj + cmax

j ), an optimal
solution (x∗) must satisfy the worst case scenario (robust solution):

minimize c′x + max

{ ∑
j∈J0

cmax
j |xj |

}
(C.4)

s.t.

Ax ≤ b (C.5)
x ≥ 0 (C.6)

A quantity Γ ∈ [0, |J0|] is introduced such that |J0| is the maximum number of
uncertain coefficients. For a vector (x∗), the following problem is defined:

maximize
∑
j∈J0

cmax
j |x∗j |wi (C.7)

s.t. ∑
j∈J0

wj ≤ Γ (C.8)

0 ≤ wj ≤ 1, j ∈ J0 (C.9)

In the previous problem, Γ aims to measure the level of protection of an optimal
solution (x∗) in the original problem, against Γ deviations of (c). Auxiliary variable
wj takes values between 0 and 1 in order to impact cost coefficients and maximize
deviation for a given Γ.
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Next, by strong duality, if problem (C.7)-(C.9) is feasible and bounded, the dual
problem is also feasible and bounded, and their objective function values are the
same. The equivalent dual problem is then:

minimize
∑
j∈J0

qj + Γz (C.10)

s.t.

qj + Γz ≥ cmax
j |x∗j |, j ∈ J0 (C.11)

z, qj ≥ 0, j ∈ J0 (C.12)

If the previous dual problem is substituted in (C.4)-(C.6), and auxiliary variable
yi is introduced, the following equivalent problem is obtained:

minimize c′x +
∑
j∈J0

qj + Γz (C.13)

s.t.

Ax ≤ b (C.14)
qj + Γz ≥ cmax

j yi, j ∈ J0 (C.15)
−yi ≤ xj ≤ yi, j ∈ J0 (C.16)
z, qj , yi ≥ 0, j ∈ J0 (C.17)

x ≥ 0 (C.18)

where z, qj are dual variables. The problem in (C.13)-(C.18) is the robust coun-
terpart when cost coefficients present uncertainty. The robust control parameter Γ
controls conservatism of the solution. If Γ = 0, the resulting problem is the de-
terministic one in (C.1)-(C.3). This procedure is applied to the objective function
(2.44) to reflect uncertainty in coefficients πt, µ−t and µ+

t .
When the uncertainty is related to the right-hand side (RHS) (b) of the opti-

mization problem (i.e. uncertainty in PV and load), the equivalent optimization
problem that has to be solved to satisfy the worst case scenario is the following:

minimize c′x (C.19)
s.t. ∑

j
aijxj −max {bmax

i } ≤ bi, ∀i (C.20)

xj ≥ 0, ∀j (C.21)

After defining the maximization problem for the deviation of the RHS, the equiv-
alent dual problem associated with each constraint i, is the following:

minimize qi + Γzi (C.22)
s.t.

qi + Γzi ≥ bmax
i yi (C.23)

zi, qi ≥ 0 (C.24)
yi ≥ 1 (C.25)
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After substitution of the previous robust counterpart in each constraint i of
(C.19)-(C.21), the equivalent takes the following form:

minimize c′x (C.26)
s.t. ∑

j
aijxj ≤ bi + qi + Γzi, ∀i (C.27)

qi + Γzi ≥ bmax
i yi, ∀i (C.28)

zi, qi ≥ 0, ∀i (C.29)
yi ≥ 1, ∀i (C.30)
xj ≥ 0, ∀j (C.31)

In the formulation of this thesis, the following RHS quantities present uncertain
behavior: electrical demand D̂t,h, PV production P̂ pv

t and thermal demand Q̂t−1,s,h.
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Appendix D

General outline of “Home
Analytics” tool for project
SENSIBLE

The presented work is within the scope of the project SENSIBLE (Storage Enabled
Sustainable Energy for Buildings and Communities) which is a Horizon 2020 funded
initiative. According to the SENSIBLE use case “Flexibility and demand side man-
agement in the market participation”, the proposed model is focused specifically on
the day-ahead time frame with the purpose of optimizing clients energy through the
management of flexibilities at the building level, where it is assumed that clients
are equipped with management tools and flexible loads, which is the case in Evora’s
Demostrator in Portugal. In the framework of this project, the “Home Analytics”
tools aimed to provide a calculation of the individual (per household) and aggre-
gated available flexibility coming from the devices installed in the test system. In
addition to the availability, the tool returns an estimation of the cost of using this
flexibility.

The Home Analytics tools is composed by two algorithms: 1) Flexibility forecast
and 2) flexibility dispatch. Each algorithm takes into account the topology of the
HEMS in which certain points of aggregation (or buses) have a number of households
and devices to be controlled down-stream. For instance, as it can be seen in figure
D.1, the bus 676 has 16 houses downstream with a total of 16 PV panels, 11 batteries
and 11 electric water heaters. The calculation of the flexibility capabilities will
depend on the analysed point of aggregation (a bus or a house) and the downstream
associated devices that can inject or withdraw power. Each aggregation point/device
is classified as parent or child depending on the topology. For instance, bus 676 acts
as a parent node for 16 houses that are classified as children, and house 3 is classified
as parent of three children devices (one EWH, one PV and one battery). All of this
information is contained in a topology input file.

D.0.1 Flexibility forecast

The Flexibility Forecast algorithm was developed in Python environment with the
purpose of calculating the equivalent cost of injecting/absorbing power in different
nodes of the system. The cost calculation takes into account the topology to deter-
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Figure D.1: Topology of the test system.

mine the downstream devices to be aggregated for cost calculation. For the case of
batteries, an equivalent cost of operation is calculated by determining the associ-
ated DoD (Depth of Discharge) for full charging/discharging at each time step, and
then calculating the equivalent cost from the DoD-cycling curve. For the case of the
EWH, an operation cost was integrated by using the equivalent cycling for each time
step and the cost information provided by the utility in Portugal. The algorithm
returns a file for each aggregation point and each time step. The information in this
file contains also the minimum and maximum values of energy and power that can
be used for flexibility purposes. The main steps of the flexibility forecast algorithm
are the following:

1. Read the topology and devices static information file.

2. List and loop over each parent in the topology file.

3. For the parent under analysis, list and loop over the downstream children.

4. Depending on the characteristic of the children,

• if children is a battery, compute charging/discharging cycling cost,

• if children is a PV, compute discharging cost,

• if children is an EWH, compute charging cycling cost,

• if children is not a device, look for downstream devices and repeat this
step.

Repeat this step until all children are analysed.

5. For the aggregated results in 4, calculate the maximum charging/ discharg-
ing power, the maximum energy storage capacity and the equivalent average
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charging/discharging cost per kW associated to the parent, and then go to
step 2.

6. Write the file with the results after repeating steps 2-5 for each time step.

D.0.2 Flexibility dispatch

The Flexibility Dispatch algorithm receives a file containing flexibility requirements
to be disaggregated and assigned to the devices. The allocation and disaggregation
is carried out by assigning power injection/absorption to the most economic devices,
and giving priority to the ones with more energy availability for the case of same cost.
This allows minimization of control actions on the entire system. The algorithm
returns a set-point plan for each device and time step. The main steps of the
flexibility dispatch algorithm are the following:

1. Read the flexibility request file.

2. Loop over each time step.

3. Identify the aggregation points (buses) with flexibility needs to be dispatched.
Loop over those points.

4. For the downstream children of the point with flexibility needs, adjust device
settings according to the following rule:

• If the flexibility need is positive (power from network to devices):

– List the batteries downstream the aggregation point in descending
order of equivalent cycling cost and start filling flexibility request by
setting the batteries in charging mode. If more flexibility is needed
to complete the request,

– list the EWHs downstream the aggregation point in descending order
of available storage and start filling flexibility request by charging
EWHs. If more flexibility is needed to complete the request,

– list the PV downstream the aggregation point in descending order
of forecasted PV production and start decreasing filling flexibility
request by decreasing the PV production.

• If the flexibility need is negative (injection from devices to network):

– List the batteries downstream the aggregation point in descending
order of equivalent cycling cost and start filling flexibility request by
setting the batteries in discharging mode.

5. Update the state of all devices and go to step 2 if more time steps need to be
analysed, otherwise go to 6.

6. Write the file with the power stetting for each device as calculated in 4.
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Appendix E

Extended abstract in French

E.1 Résumé du chapitre: Introduction

Les systèmes de stockage d’énergie (ESS) et la gestion de la demande (DSM) jouent
un rôle important pour soutenir les décisions prises par les multiples acteurs présents
dans le système. Dans le cas des ressources énergétiques distribuées (DER), la ges-
tion des appareils est également importante pour compenser localement les varia-
tions de charge ou de sources d’énergie renouvelables, ainsi que pour atteindre un
coût d’exploitation minimal. En ce qui concerne les opportunités potentielles des
opérateurs de réseau de distribution, nous pouvons énumérer de nombreux avantages
techniques tels que le support de tension, la compensation de puissance réactive, la
gestion de la congestion, le report de l’investissement, le suivi de la charge, la ré-
duction des pertes, entre autres. En outre, la présence de microgrids (MG) dans
les couches inférieures du réseau de distribution sous la forme de aggrégateurs bâ-
timents/domiciles intelligents ou de communautés énergétiques positionne des dis-
positifs de gestion active de la charge et de stockage afin de faciliter les décisions
opérationnelles et d’augmenter/réduire les bénéfices / coûts lorsque les règles du
marché permettent de négocier des services de flexibilité sur les marchés de gros,
locaux ou de services auxiliaires. Différents acteurs peuvent être impliqués dans la
propriété et le fonctionnement du DER. Par conséquent, les modèles et le potentiel
des multiples services que ces ressources peuvent fournir doivent être explorés.

Review [4] souligne l’absence d’un cadre commun permettant de définir et de
classifier la flexibilité dans les nouveaux contextes des systèmes d’alimentation. En
outre, une distinction claire des impacts de la fiabilité et de la flexibilité sur les
systèmes électriques doit également être développée, en tenant compte également
de l’inclusion de mesures de flexibilité probabilistes. Ces derniers, considérant que
les sources d’intermittence et de perturbation sont régies par un comportement
incertain, et que cette incertitude pourrait entraîner des problèmes techniques et
économiques.

Les barrières existantes sont logiques, étant donné que les marchés ont été conçus
avant la pénétration massive des énergies renouvelables et de la production décen-
tralisée. Par conséquent, la redéfinition des responsabilités et des rôles des agréga-
teurs, des centrales électriques virtuelles (VPP), des MG et d’autres acteurs doit
être alignée sur les besoins actuels et les lacunes de la réglementation. En outre,
une demande de flexibilité décentralisée et coordonnée devrait être possible pour
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les gestionnaires du réseau de distribution (DSO) et les gestionnaires du réseau de
distribution (TSO).

Dans l’article [5] une différence est établie entre la flexibilité technique et celle du
marché pour conclure que la flexibilité peut être utilisée pour équilibrer le système
et résoudre les contraintes, tandis que la flexibilité disponible peut être utilisée par
différents acteurs du marché afin de maximiser les portefeuilles individuels . Les au-
teurs soutiennent que ce scénario peut générer des conflits d’intérêts non seulement
entre les propriétaires de réseaux à différents niveaux, mais également entre les ac-
teurs participants. Dans le cas concret des échanges de flexibilité locaux, les auteurs
soulignent trois directions principales: 1) tirer parti des marchés actuels (journalier,
intra-journalier, équilibrage); 2) créer des marchés nouveaux et distincts; et 3) la
flexibilité des contrats en tant que réserve système. Avec le développement récent des
possibilités de production et de contrôle des énergies renouvelables décentralisées,
les modèles, les règles du marché et le cadre permettant la flexibilité dans les couches
inférieures du réseau font toujours défaut. Au niveau MT et BT, non seulement ESS
est appelé à jouer un rôle important dans le fonctionnement du réseau flexible, mais
l’agrégation des ressources au niveau des bâtiments et des logements doit également
jouer un rôle important dans l’optimisation du portefeuille des différents acteurs
tout en offrant de la flexibilité [6].

Les autorités européennes ont souligné qu’il importait de promouvoir la partic-
ipation des consommateurs aux marchés de l’énergie en créant les marchés néces-
saires ou en supprimant les barrières commerciales pour permettre la participation
des communautés locales de l’énergie [7]. Cette stimulation des consommateurs à
les placer au centre du marché de l’énergie peut être réalisée à partir de points de
vue individuels ou par des mécanismes agrégés. Dans ce contexte, les DSO sont
également encouragés à gérer les défis posés par la production d’énergie renouve-
lable en utilisant des stratégies locales, ce qui est également conforme à la promo-
tion des cadres de coordination des consommateurs et des DSO. Ce changement
de paradigme permet aux consommateurs d’intégrer davantage la production locale
aux fins d’autoconsommation et de participation au marché, leur permettant ainsi
de devenir des consommateurs potentiels.

Dans cette thèse, la définition de «prosommateur» correspond au rapport de
la Commission européenne, qui définit les consommateurs résidentiels comme des
consommateurs capables de produire leur propre énergie, l’accent étant mis sur la
production sur site au moyen de systèmes photovoltaïques solaires à petite échelle [8].
Il convient de mentionner que l’énergie solaire photovoltaïque est l’une des technolo-
gies de production les plus répandues dans le secteur résidentiel [9]. Les recomman-
dations actuelles visant à permettre aux utilisateurs potentiels d’agir comme ac-
teurs clés du processus de transition énergétique mettent l’accent sur la promotion
des technologies de stockage, l’engagement des consommateurs auprès des agréga-
teurs, leur permettant de participer au marché de l’électricité avec une rémunération
adéquate de la flexibilité. Afin de contribuer aux orientations mentionnées et aux
priorités établies par l’industrie et le gouvernement, de nouveaux modèles mathé-
matiques permettant de gérer de manière optimale les ressources des futurs con-
sommateurs et d’exploiter la flexibilité doivent être développés. Étant donné que la
participation directe des prosommateurs rencontre encore des obstacles, les agréga-
teurs apparaissent comme une option permettant de combler le fossé. Cependant,
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outre les barrières de marché bien connues dépendant de l’évolution des différents
cadres réglementaires, les nouveaux modèles d’optimisation mathématique doivent
tenir compte de l’incertitude et imposer une complexité supplémentaire au proces-
sus de prise de décision. L’objectif de cette recherche est d’évaluer les avantages
et les limites des modèles mathématiques sous incertitude pour les agrégateurs de
la flexibilité du client potentiel participant au marché énergétique journalière et
aux marchés de la flexibilité locaux. L’agrégateur gère les dispositifs de stockage
résidentiels et les sources d’énergie renouvelables en tant que sources de flexibilité,
participant directement au marché de l’énergie libéralisé et offrant plusieurs services
afin de minimiser les coûts opérationnels.

À partir de l’objectif général précédent, trois objectifs spécifiques sont détaillés:

• Inclure la flexibilité basée sur le stockage au niveau résidentiel du point de vue
d’un agrégateur, en tenant compte des modèles de vieillissement et de dégra-
dation pour le stockage électrochimique. Le stockage résidentiel est composé
des capacités de stockage thermique et électrochimique installées au niveau de
la maison.

• Inclure l’incertitude de différentes sources (prix d’electricité, production re-
nouvelable, consommation) dans la formulation mathématique afin de tester
la performance des solutions pour une participation adéquate aux marchés de
l’énergie.

• Déterminer les calendriers optimaux pour le lendemain, qui se traduisent par
une minimisation des coûts pour l’agrégateur de flexibilité, y compris le marché
de l’énergie traditionnel et de nouveaux systèmes d’offre de flexibilité locale.

Les principales contributions de cette thèse sont énumérées ci-dessous:

• Les interactions entre le stockage agrégé électrique et thermique sont analysées
dans le contexte de la flexibilité résidentielle dans des conditions d’incertitude,
et les avantages du fonctionnement coordonné sont détaillés.

• Deux alternatives pour inclure le coût de vieillissement de la batterie sont
présentées. Tout d’abord, une approche originale appelée algorithme de désagré-
gation de stockage (SDA) basée sur la relaxation lagrangienne et l’algorithme
de comptage Rainflow (RCA) est présentée. Cette méthode est présentée pour
la première fois dans la littérature et permet de gérer le comportement cyclique
complexe et de réduire l’espace de recherche d’optimisation. Deuxièmement,
la modélisation explicite du coût du cycle de la batterie est présentée au moyen
d’ensembles ordonnés spéciaux. Cette modélisation de la dégradation permet
de saisir la relation non linéaire entre le DoD et le cycle de vie total afin de
proposer des quantités suffisantes sur les marchés à un jour.

• Une stratégie de décomposition complétée par un optimiseur d’essaim con-
currentiel est proposée. Cette approche permet de résoudre séparément le
problème de cyclage de la batterie résolu par le SDA et la planification des
ressources pour le lendemain. Cette logique de séparation des problèmes pour
les ressources de planification d’un agrégateur n’a encore jamais été utilisée
par des recherches afin de résoudre le problème de planification résultant, no-
tamment le vieillissement cyclique de BESS.
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• Les sources d’incertitude suivantes sont prises en compte: demande d’électricité
et de chaleur, production photovoltaïque et prix de l’énergie. Ces incertitudes
sont incluses dans le modèle mathématique au moyen de la théorie ARO.

• Une méthodologie est proposée pour détecter les meilleures solutions robustes
pour la participation au jour le jour sur les marchés de l’énergie, basée sur
la théorie de Pareto-optimality. Cette approche permet d’analyser la perfor-
mance de plusieurs décisions robustes prises au jour le jour et de sélectionner
le front de Pareto contenant des solutions offrant le meilleur compromis en-
tre coût et risque. Dans ce cas, le risque est mesuré par l’écart type après
l’exécution de la simulation de Monte Carlo.

• Une nouvelle stratégie de gestion de la flexibilité locale est proposée, qui repose
sur deux produits: 1) des offres de flexibilité sur un marché local; et 2) prise
en charge de contraintes locales pour le DSO sous la forme de la puissance
nette et du taux nette du rampe autorisés.

• Un modèle ARO est proposé pour la gestion coordonnée des ressources de la
communauté énergétique et les enchères sur les marchés de gros et de flexibilité
locaux. La contrepartie robuste comprend l’incertitude des prix de l’énergie
/ déséquilibre, la production photovoltaïque, la demande en électricité et la
consommation thermique.

• Les résultats numériques démontrent que le cadre d’enchères stratégique est
suffisamment robuste pour permettre une participation coordonnée sur trois
marchés différents (énergie, flexibilité locale et échanges bilatéraux avec DSO)
avec divers mécanismes de règlement.

E.2 Résumé du chapitre: Modélisation mathématique
de la flexibilité pour l’agrégation résidentielle

Le système de gestion énergétique des maisons intelligentes (HEMS) proposé à des
fins de modélisation est composé de panneaux solaires, de batteries Li-ion, de batter-
ies de stockage en ligne dotées de capacités de stockage, d’une connexion au réseau
principal et d’un certain nombre de foyers. Chaque ménage comprend une charge de
base électrique totale à fournir et une charge thermique qui doit être satisfaite par
un EWH, qui stocke également de l’énergie sous forme de chaleur, jouant ainsi le
rôle de charge flexible. L’interaction de tous les appareils permet un fonctionnement
flexible du système pour atteindre un coût minimum.

En général, l’entrée EWH et la charge électrique pendant la période de 24h
peuvent être satisfaites par le réseau principal, les panneaux solaires et la puissance
injectée par les batteries. L’idée est d’obtenir un coût d’exploitation minimal en
ajustant les paramètres des appareils afin de gérer les ressources de manière optimale.

Une des caractéristiques du système HEMS proposé est la possibilité de contrôler
indépendamment le BESS et le EWH lorsque ce dernier dispose de capacités de
stockage et de contrôle. Cela signifie que le réseau BT n’alimente pas directement
la charge thermique. En d’autres termes, cette charge est alimentée par l’énergie
stockée disponible dans le TES et l’entrée pour l’EWH est considérée comme une
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charge du réseau BT. Ceci peut être vu comme une charge flexible qui réagit en
fonction du prix d’opportunité saisi par le modèle d’optimisation en stockant de
l’eau chaude même si elle n’est pas utilisée immédiatement par les occupants.

Le modèle actuel suppose un agrégateur de flexibilité résidentielle qui participe
au marché de l’énergie journalière en contrôlant les points de réglage sur un horizon
prédéfini de pas de temps de 24 heures (T ). La fonction objectif vise à minimiser
les achats d’énergie sur le marché de gros et les coûts opérationnels globaux. Ce
modèle prend en compte les prix de l’énergie et la possibilité d’acheter ou de vendre
de l’énergie au point de couplage commun (PCC). De plus, l’agrégateur compense
les écarts d’achat journaliers avec les niveaux de production et de demande réels en
participant au marché des déséquilibres.

Le problème déterministe présente trois types de flexibilités à gérer par un agré-
gateur: production photovoltaïque, stockage électrochimique et stockage thermique
. Le résultat de cette optimisation renvoie les consignes de tous les appareils et
l’énergie échangée avec le marché de gros afin d’obtenir un coût d’exploitation min-
imal pour l’ensemble du portefeuille, tout en respectant la demande électrique et
thermique de chaque maison.

Les 25 maisons d’étude de cas sont situées dans un réseau LV-rural à Evora, au
Portugal, comprenant la répartition des ressources indiquée dans la figure. Au total,
il y a 25 panneaux photovoltaïques, 16 systèmes de stockage d’énergie par batterie
(BESS) et 15 chauffe-eau électriques (EWH) pouvant agir en tant que stockage
d’énergie thermique (TES). Le cas de test est composé du HEMS et des capacités
de contrôle d’un agrégateur sur les paramètres du périphérique. L’exploitation et le
contrôle des réseaux de distribution MT et BT sont effectués par le DSO et ne font
pas partie des capacités ou des responsabilités de l’agrégateur.

Compte tenu de la difficulté d’incorporer mathématiquement le comptage des
transitions / cycles des batteries dans le modèle d’optimisation, le problème peut être
reformulé de manière à ce qu’un algorithme propose, de manière itérative, d’analyser
des état de charge (SOC) à partir de deux perspectives: 1) le coût de vieillissement
équivalent produit par ce SOC; et 2) le nombre minimal d’opérations journalières
atteintes par l’agrégateur compte tenu du SOC proposé.

Si un algorithme est utilisé pour générer des SOC, le Rainflow Copunting Al-
gorithm (RCA) peut être appliqué pour calculer un coût de dégradation équivalent
dans la fonction objectif, et réaliser de manière itérative une solution de coût mini-
mum. Dans ce travail, le Competitive Swarm Optimizer (CSO) est proposé comme
métaheuristique.

Le problème d’optimisation complet peut être décomposé en deux sous-problèmes:
l’un d’eux analyse les propositions SOC des batteries et calcule le coût équivalent
en vieillissement cyclique correspondant; le deuxième sous-problème prend ce SOC
comme une valeur fixe et calcule le coût journalier dû à l’achat d’énergie sur le
marché de gros et aux paramètres des ressources restantes liées à la HEMS. Une
fois les deux sous-problèmes résolus, on peut obtenir le coût total en additionnant
simplement les deux résultats (achat d’énergie et coût du vieillissement ).

Chaque solution (également appelée individu ou particule) proposée par le CSO
devrait contenir les informations de SOC dans chaque pas de temps et chaque bat-
terie, ce qui donnerait un espace de recherche dimensionnel T × N . Etant donné
que a) l’ensemble des prosommateurs a généralement plusieurs batteries à exploiter;
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et b) les métaheuristiques étant sensibles à la taille de la zone de recherche, il de-
vient important de réduire la taille des particules pour éviter des temps de calcul
prohibitifs.

Cette thèse propose une agrégation virtuelle des batteries du système afin de ré-
duire l’espace de recherche de T ×N à T . Avec cette approche, la dimension sera la
même, même si le système contient un nombre élevé de batteries. Etant donné qu’il
existe un nombre infini de possibilités d’attribution de SOC individuels, lorsqu’un
SOC agrégé est proposé, il devrait exister une désagrégation / attribution de charge
économique pour chacune des batteries, et ceci est effectué en appliquant un algo-
rithme de désagrégation de stockage (SDA) Lorsqu’un certain SOC est généré avec
une métaheuristique, puis désagrégé au moyen de la SDA, le problème complet doit
être reformulé. Ce sous-problème s’appelle le sous-problème thermique, puisqu’une
fois qu’un SOC est connu, les points de consigne restants à déterminer dans chaque
ménage sont ceux associés à l’EWH.

Notez que lorsque le SDA est appliqué, le SOC de chaque batterie est connu. Par
conséquent, tous les paramètres de batteries peuvent être calculés et deviennent des
paramètres connus pouvant être introduits dans le modèle. De plus, les contraintes
binaires du BESS ne sont plus nécessaires.

La seconde alternative permettant de capturer la relation non linéaire des cycles
de vie par rapport au DoD est une approche de linéarisation par morceaux.

La motivation de la linéarisation de la caractéristique de coût réside dans le fait
que si les définitions auxquelles chaque cycle se produit peuvent être identifiées à
l’aide d’un ensemble d’équations, un coût cyclique équivalent peut alors être déter-
miné de manière à ce que ces équations puissent être explicitement modélisées. et
alimenté à un résolveur d’optimisation commerciale. Dans l’approche de décompo-
sition développée dans la section précédente, la difficulté d’exprimer les équations
de dégradation basées sur RCA sous forme fermée empêche de traiter le problème
d’optimisation complet dans les résolveurs d’optimisation. On présente une op-
tion pour introduire un ensemble d’équations permettant de capturer et d’identifier
les cycles à l’aide de variables auxiliaires et de contraintes, également appelées en-
sembles ordonnés spéciaux. De cette façon, l’utilisation d’une méta-heuristique est
évitée et un problème MILP est obtenu et résolu avec un logiciel d’optimisation
autonome. Si les solutions optimales de l’approche de décomposition et de la mod-
élisation explicite sont comparées pour le même jour de simulation (15 novembre),
ce résultat met en évidence une différence entre le coût de vieillissement cyclique
équivalent et le coût de l’énergie journalière engagée sur le marché de gros. Bien
que les simulations aient été effectuées pour le même système de test et le même
jour du calendrier, des différences sont attendues pour les raisons suivantes.

Premièrement, la logique utilisée pour le calcul du nombre équivalent de cycles
de batterie est différente dans les deux cas. Pour l’approche de décomposition, le
calcul direct du vieillissement cyclique est basé sur la RCA, qui calcule des cycles de
charge ou de décharge équivalents demi (ou complet) et identifie la plage de DoD à
laquelle ces cycles se produisent. Cette méthodologie diffère de celle proposée dans
la modélisation explicite, dans la mesure où cette dernière identifie uniquement les
cycles de charge complets, en partant de l’hypothèse que la décharge aura toujours
lieu à une heure plus tardive (ou plus tôt), étant donné que SOC doit être identique
pour le premier et le dernière pas du temps. Il est donc naturel que les deux
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approches entraînent une valeur différente de la dégradation équivalente à la batterie,
même pour un événement rare dans lequel les SOC sont identiques.

Deuxièmement, étant donné qu’il existe une différence sous-jacente dans le cal-
cul du cycle, la solution optimale restera également différente non seulement pour
le SOC résultant, mais également pour le reste des variables d’optimisation, compte
tenu de la corrélation inhérente. Ainsi, l’achat d’énergie le lendemain sera différent
afin d’atteindre une solution de coût minimum. Ce fait explique pourquoi les deux
approches ne peuvent pas être directement comparées pour conclure que l’une d’elles
domine l’autre, mais on peut en conclure que chacune d’elles offre séparément de
meilleures performances que dans le cas où le vieillissement cyclique est négligé.
Malgré l’approche utilisée, des économies seront réalisées sur les coûts opérationnels
globaux et la dégradation des batteries sera moins équivalente. Le modèle déter-
ministe présenté associe la flexibilité liée aux systèmes BESS et EWH dans le but de
présenter un cadre permettant de gérer de manière optimale les ressources HEMS en
intégrant plusieurs aspects tels que: la charge et le stockage électriques/thermiques,
les coûts de dégradation de la batterie et la gestion au niveau de la maison/bâtiment.
Ces aspects, analysés du point de vue d’un agrégateur participant au marché jour-
nalièr et des déséquilibres. Pour le scénario de test particulier, lorsque BESS est
inclus dans le modèle, une réduction de 2,15% est atteinte, par rapport à un scénario
de base dans lequel aucune technologie de stockage n’est incluse. De plus, l’inclusion
des EWH avec des capacités de stockage montre une réduction de 18,7%. Dans ce
cas, les EWH agissent comme une charge flexible, étant donné que l’eau chaude peut
être stockée pour une utilisation ultérieure, moyennant un certain prix.

De plus, l’inclusion de la flexibilité de stockage thermique diminue indirectement
le cycle de la batterie, dans la mesure où, dans ce cas, les BESS sont soumis à des
cycles moins profonds et moins fréquents, ce qui entraîne des coûts de dégradation
équivalents moins élevés.

La même décomposition présentée dans cette thèse peut être utilisée non seule-
ment dans la gestion de stockage de niveau résidentiel, mais dans n’importe quel
niveau d’installations de stockage à intégrer pour une participation au marché. Par
exemple, le stockage et les ressources au niveau des bâtiments commerciaux ont sou-
vent une puissance/énergie nominale supérieure et, par conséquent, de meilleures
possibilités de respecter les niveaux de soumission minimaux. En outre, ce cadre
peut également s’intégrer dans des modèles dans lesquels d’autres agents disposant
de batteries au niveau DSO/TSO sont disposés à participer aux marchés de l’énergie
et des produits auxiliaires. Dans tous les cas, malgré l’agent, la propriété ou la taille
de la batterie, la méthode de décomposition sera toujours valable. Très certainement
avec une charge de calcul réduite étant donné que le stockage à l’échelle du réseau
n’est généralement pas installé (et possédé) en grand nombre.

La deuxième alternative proposée pour inclure le cyclage était la modélisation
explicite. Pour cette approche, des ensembles ordonnés spéciaux ont été utilisés
pour détecter les cycles de charge et les DoDs auxquels ces cycles de charge ont
lieu. Avec l’identification de ce DoD, un coût équivalent peut être trouvé au moyen
d’une linéarisation par morceaux. Avec ce schéma, une réduction de 21,12% des
coûts d’exploitation a été constatée par rapport à un modèle qui tient compte du
vieillissement cyclique. Pour la modélisation explicite, 6 segments ont été utilisés
pour modéliser les non-linéarités des coûts de cycle.
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E.3 Résumé du chapitre: Agrégation de flexibilité rési-
dentielle sous incertitude

Étant donné les multiples sources d’incertitude dans la planification des ressources
de flexibilité, de nouvelles méthodes d’optimisation doivent être utilisées. Pour le
traitement et la modélisation de l’incertitude dans un problème d’optimisation, trois
directions principales sont identifiées.

Premièrement, si aucune information concernant les fonctions de densité de
probabilité des variables incertaines n’est disponible, une approche possible con-
siste à utiliser la théorie de l’optimisation robuste (RO). Si des variables incer-
taines restent dans des limites connues, RO définit un budget d’incertitude et définit
un nouveau problème d’optimisation devant être réalisable pour toutes les réalisa-
tions d’incertitude, ce qui conduit à une solution très conservatrice, comme indiqué
dans [15,66,103]. Pour la gestion de la flexibilité, une solution robuste doit pouvoir
résister à tout scénario de charge et à toute réalisation de système RES, tout en
maintenant le fonctionnement possible de tous les appareils.

Un deuxième groupe concerne l’optimisation stochastique. Dans ce groupe, une
sélection de scénarios avec une certaine probabilité doit être prédéfinie et intégrée à
la formulation d’optimisation. Pour définir les scénarios, plusieurs méthodes peuvent
être utilisées, telles que les méthodes d’estimation de points, les matrices orthog-
onales de Taguchi, les méthodes de distance de Kantorovich ou d’aggroupation en
général. Cette approche n’est pas aussi robuste que RO, étant donné que la solu-
tion optimale est réalisable pour un nombre fini de réalisations d’incertitude, tout
en aboutissant à des solutions moins coûteuses et moins conservatrices. Dans ce
groupe de propositions, des problèmes d’optimisation en deux étapes peuvent être
trouvés [31, 49, 92, 93] pour trouver une valeur de fonctionnement attendue. L’idée
est de définir une première étape (ou ici une décision maintenant) avec des variables
et des décisions qui correspondent généralement aux achats d’énergie engagés sur le
marché journalièr et à l’engagement de production pour la production convention-
nelle. Après cela, un ensemble de décisions secondaires (ou de recours) sont prises,
en fonction des réalisations des variables incertaines. Pour les cas analysés, les dé-
cisions de la deuxième étape sont liées aux paramètres des dispositifs contrôlables,
tels que les batteries, le stockage de chaleur, les installations de cogénération et la
demande active. Cette approche présente également l’avantage de la simplicité de
sa modélisation, avec le compromis d’augmenter le nombre de variables en fonction
des scénarios à analyser dans la seconde étape.

Un troisième groupe est associé à la théorie des MPC. Cela semble convenir
aux décisions à horizon glissant, telles que celles devant être prises sur les marchés
intra-journalièr et en temps réel, où les dernières informations de prévision peu-
vent modifier certains paramètres de périphérique pour le programme d’opérations
restant.

Les approches d’optimisation robustes visent à trouver des solutions optimales
et réalisables sur un intervalle de valeurs représentant l’incertitude. Pour trouver
une contrepartie robuste du problème déterministe, chaque contrainte contenant des
paramètres avec incertitude doit être transformée au moyen d’une théorie de la du-
alité forte. Lors de l’inspection du modèle déterministe, quatre sources d’incertitude
ont été identifiées: prix, production photovoltaïque, demande électrique et demande

146



thermique.
Une approche stochastique est mise en place en utilisant la méthode de décom-

position et le SDA. L’approche stochastique en deux étapes montre l’importance de
prendre en compte les incertitudes liées à la charge et au PV, afin d’éviter des coûts
d’exploitation plus élevés par rapport aux approches déterministes. Dans notre cas,
l’avantage de l’utilisation d’une approche stochastique est démontré au moyen du
VSS. La réduction mensuelle moyenne des coûts d’exploitation mesurée par le VSS
est de 5,8% et l’intervalle de réduction varie de 3,6% à 9,0%. Ces résultats mon-
trent que considérer un modèle stochastique avec cycle de batterie conduit à des
économies par rapport aux approches déterministes.

Les temps de calcul pour des systèmes de test plus grands restent adéquats pour
la prise de décision d’un jour à l’autre. La caractéristique de la batterie virtuelle
agrégée au moyen du SDA fait que l’augmentation du nombre de batteries dans le
système de test n’impacte pas proportionnellement l’effort en temps, même dans
le cas d’approches stochastiques. Cependant, étant donné que la structure pro-
posée dans la littérature pour évaluer les solutions stochastiques (VSS) est basée
sur l’univers des scénarios créés, les variables définies de deuxième étape (déséquili-
bres, paramètres des appareils) et leurs performances ne sont évaluées (et valides)
que pour les scénarios proposés.

La contrepartie robuste d’un problème déterministe peut être trouvée en max-
imisant l’écart des paramètres incertains au sein de chaque contrainte. Un problème
résultant est obtenu avec le théorème fort de la dualité.

Le résultat est un problème MILP qui peut être résolu avec des solveurs com-
merciaux standard. Trois paramètres de contrôle robustes peuvent être ajustés pour
obtenir différentes enchères robustes à un jour. Chacun contrôle le conservatisme
contre l’incertitude des prix de l’énergie, de la charge nette et de la charge thermique.

Afin d’analyser différents niveaux de conservatisme lors d’une enchère sur le
marché de l’énergie à un jour, différentes combinaisons de paramètres doivent être
analysées (ARO, version ajustable d’optimisation robuste). Lorsqu’une solution est
obtenue pour une combinaison quelconque, l’engagement d’achat d’énergie et les
paramètres de l’appareil sont déterminés. La performance de ce plan journalier est
évaluée en calculant les déséquilibres de chaque pas de temps dus au déséquilibre én-
ergétique. Un déséquilibre négatif/positif implique une manque/un excès d’énergie
qui doit être acheté/vendu à des prix plus élevés/plus bas, ce qui entraîne des coûts
supplémentaires pour l’opération. Chaque plan est soumis à une analyse de perfor-
mance pour plusieurs réalisations de prix de l’énergie, de PV et de charge électrique
et thermique au moyen d’une simulation de Monte Carlo (MC).

Outre ARO pour la modélisation de l’incertitude des prix, une autre option
consiste à utiliser l’échantillonnage KDE pour créer plusieurs scénarios de prix
et les utiliser pour une optimisation stochastique. Compte tenu de la nature de
l’échantillonnage KDE disponible pour les prévisions de prix, comme expliqué dans
la section 2.3.1, un ensemble de scénarios peut être obtenu et inclus dans le modèle
d’optimisation au moyen d’une programmation stochastique. Les informations du
KDE non paramétrique des 90 derniers jours précédant le jour de fonctionnement
sont utilisées pour créer un certain nombre de scénarios de prix. Au début, chaque
scénario de l’ensemble a la même probabilité. Étant donné qu’un grand nombre de
scénarios peut entraîner des temps de calcul élevés, une technique de réduction de
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scénario est mise en œuvre. Dans cette thèse, lorsque des scénarios sont envisagés
pour modéliser l’incertitude de prix, un algorithme de réduction arrière basé sur la
distance de Kantorovich (KD) [111] est utilisé pour obtenir un ensemble représen-
tatif réduit. Trois modèles d’incertitude ont été inclus dans le modèle d’optimisation
pour les simulations: prix de l’énergie, charge électrique, charge thermique et pro-
duction photovoltaïque. La logique de décomposition est appliquée à une approche
en deux étapes dans laquelle des scénarios PV et de demande sont créés en combi-
nant des scénarios extrêmes basés sur des prévisions quantiles. Cette formulation
est évaluée en utilisant les valeurs de la solution stochastique (VSS) comme mesure
de performance. pour les cas analysés, le VSS montre de meilleures performances
que le cas déterministe.

En cas d’incertitude de prix, deux approches ont été envisagées: la program-
mation stochastique et l’optimisation robuste. Pour la gestion des incertitudes
dans la production de charge et PV, une optimisation robuste a été envisagée.
Le modèle montre que l’inclusion du coût de dégradation explicite dans le modèle
d’optimisation permet de réaliser des économies de coûts grâce à un cycle moins long
de la batterie. Dans le cas concret des résultats présentés, une réduction de 34,07%
a été réalisée. L’approche proposée, qui peut également être appliquée par des agré-
gateurs d’équipements de moyenne et grande taille, montre qu’en utilisant l’ARO
pour la charge et le PV, et en analysant les interactions de paramètres robustes,
différents niveaux de réduction des coûts par rapport à l’approche déterministe peu-
vent être atteints. Pour les simulations effectuées, des économies de coûts pouvant
atteindre 5,7% ont été réalisées. Dans le cas de l’écart type (SD), le meilleur résultat
a réduit de 36,4% les performances de la solution déterministe. Cela montre que
non seulement les coûts escomptés peuvent être réduits, mais qu’un risque moins
élevé est également associé à la prise de décision dans le cadre de cette approche.

Les résultats prouvent que l’utilisation de ARO augmente également la proba-
bilité d’avoir des coûts prévus plus bas. En comparant le schéma déterministe, des
probabilités allant jusqu’à 96,33 % sont obtenues en analysant les CDF. En outre,
l’approche d’optimisation robuste affiche de meilleures performances que la solution
déterministe malgré les intervalles de confiance de la charge nette. Dans le cas de
l’approache hybride (HSR), des scénarios de prix ont été créés à l’aide de KDE. Une
technique de réduction en arrière basée sur la distance de Kantorovich est utilisée
pour obtenir un ensemble réduit de scénarios. Pour les simulations d’exécution,
l’approche hybride montre avoir de meilleures performances que l’approche déter-
ministe et certaines des solutions ARO. Cependant, certaines solutions ARO offrent
de meilleures performances que le système grande vitesse, tant du point de vue du
coût moyen que de celui du développement durable. En particulier, l’option 4: un
ARO complet séparé avec Γ2 présente de meilleures performances que le reste des
alternatives dans plusieurs des descripteurs mesurés. Il présente également le coût
opérationnel moyen inférieur de toutes les simulations effectuées. Dans ce cas, un
traitement séparé de l’incertitude pour la charge et la PV permet de trouver une
contrepartie robuste et, partant, deux paramètres robustes distincts permettant
d’ajuster et d’obtenir des coûts et des SD plus bas.
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E.4 Résumé du chapitre: Agrégation de flexibilité pour
la participation à plusieurs marchés

Ce chapitre vise à combler une lacune dans la littérature concernant les stratégies
d’appel d’offres des agrégateurs de maisons intelligentes pour une participation co-
ordonnée aux marchés de gros de l’énergie et aux marchés locaux de la flexibilité
émergents, en tenant compte également des incertitudes sur les prix, la production
et la demande de systèmes photovoltaïques. À la connaissance des auteurs, ces as-
pects combinés n’ont jamais été abordés du point de vue d’un agrégateur contrôlant
les marges de manœuvre résidentielles, données en l’occurrence par les panneaux
photovoltaïques et le stockage thermique et électrochimique.

Pour démontrer les effets de la flexibilité locale sur l’agrégation des ressources
et l’énergie engagée au lendemain, un modèle simplifié, qui néglige le cycle de la
batterie, sera utilisé dans un premier temps. Ce modèle utilise une modélisation des
prix basée sur des scénarios et une optimisation robuste pour l’incertitude de la PV
et de la demande.

L’agrégateur de flexibilité participe à l’optimisation de son portefeuille sur les
marchés du jour et du déséquilibre, tout en respectant les limites physiques des
micro-réseaux et les signaux envoyés par le DSO local concernant les produits de
flexibilité pour la gestion de la charge. Des flux d’énergie bidirectionnels peuvent se
produire au niveau du CCP avec le réseau DSO local. Les exigences de flexibilité du
DSO dans le PCC sont de deux types: a) la flexibilité de l’énergie, qui impose des
limites ou certains modèles d’échange d’énergie en fonction des besoins du réseau à
des moments spécifiques; b) la flexibilité en rampe, qui limite la rampe de charge
nette vue par le DSO local.

Le DSO et l’agrégateur établissent la communication pour envoyer / recevoir des
informations, tandis que seul l’agrégateur dispose de capacités de communication et
de contrôle avec des appareils situés au niveau local. Il est supposé l’existence de la
plate-forme informatique et de communication nécessaire, de sorte que l’agrégateur
contrôle les appareils au niveau du domicile et décide de leurs points de consigne.

Les décisions concernant les exigences de flexibilité des DSO et les produits au
niveau du CCP correspondent, entre autres, à une analyse du réseau concernant les
limites de tension, la gestion de la congestion, la dégradation des équipements et
la maintenance planifiée. La définition de ces exigences et la conception du marché
du paiement de ce service sont hors du champ de cette thèse. L’approche actuelle
propose une stratégie d’appel d’offres pour un agrégateur de maisons intelligentes,
présentes dans une communauté énergétique connectée au réseau de distribution
principal. Certains ménages disposent de panneaux solaires, de batteries li-ion et
de dispositifs de stockage de chaleur. Cette stratégie est composée d’interactions de
l’agrégateur avec trois entités: marché de gros, DSO et marché de la flexibilité locale.
L’interaction avec le marché de gros s’établit de manière traditionnelle, l’agrégateur
engageant une certaine quantité d’énergie sur le marché journalièr, et le jour de
l’exploitation, les écarts sont réglés sous forme de déséquilibres négatifs et positifs.

L’interaction avec le DSO, comme expliqué précédemment pour le cas hybride,
est donnée en termes de prise en charge de la contrainte opérationnelle au niveau du
CCP. Concrètement, deux types de contraintes / produits pouvant être activés par le
DSO sont pris en compte dans ce travail: 1) les contraintes de rampe (Rt [MW/h])
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et 2) Power-Max, dans lequel agrégateur veille à ce que son portefeuille local ne
dépasse pas PPCCmax

t [kW]. Les produits de rampe sont motivés par la nécessité
de compenser la variabilité de la pénétration croissante des énergies renouvelables
dans les réseaux de distribution; et Power-Max permet une modulation de crête pour
contrôler les surcharges ou promouvoir le report d’investissement [139,140]. Compte
tenu de la difficulté de créer un tuple pour décrire la temporalité / la quantité de
ces produits afin qu’ils s’intègrent aux architectures traditionnelles d’enchères, des
contrats bilatéraux sont envisagés entre les deux agents [138, 139] pour rémunérer
le service. Les possibilités de jeu sont réduites pour l’agrégateur, à condition que
les offres à prix élevé ne soient pas attractives pour le gestionnaire de réseau de
distribution et que des actions de contrôle de réseau standard puissent être préférées.
De plus, parce que la congestion artificielle / forcée conduira l’agrégateur à une
planification et à des plans d’enchères sous-optimaux.

L’agrégateur et l’opérateur de marché local (LMO) interagissent de manière à
ce que, lorsque le DSO (ou un autre tiers) ait besoin de flexibilité, le LMO commu-
nique avec l’agrégateur afin de demander une offre de flexibilité. Si la flexibilité est
accordée à l’agrégateur, il recevra le prix de l’offre (paiement en tant qu’offre) pour
la fourniture du service, comme c’est le cas pour les marchés des services auxiliaires
et des services, et pour éviter une augmentation du prix des services de flexibilité
locaux. Les spécificités du concept de conception du marché et de l’architecture,
l’algorithme de compensation de la flexibilité, qui est une tâche exécutée par le
LMO, ne font pas partie du cadre et des objectifs de cette thèse.

Les principales étapes et la chronologie du processus impliquant la participa-
tion de l’agrégateur sont décrites comme suit. Tout d’abord, l’agrégateur rassemble
les informations relatives aux prévisions PV, à la disponibilité des appareils, aux
prévisions de consommation et aux prévisions de prix de l’énergie. Avec ces infor-
mations, l’agrégateur détermine une planification de base (sans contrainte) ou pro-
visoire (dans la figure 4.6, référencée sous le nom action A ) qui minimise les coûts
totaux d’exploitation, en supposant que les contraintes opérationnelles imposées par
le DSO ne soient pas respectées. PCC. Le DSO détermine ensuite l’état de fonc-
tionnement attendu du réseau et envoie des contraintes de montée en puissance ou
de limite de puissance à l’agrégateur (et / ou à toutes les ressources distribuées con-
nectées au réseau de distribution) si nécessaire, comme indiqué dans la sous-section
4.3.3. Si aucune prise en charge de contrainte n’est requise par le DSO, il n’y a
aucun changement dans la planification prévisionnelle. D’autre part, si une prise en
charge de contraintes est nécessaire, une transaction bilatérale a lieu entre le ges-
tionnaire de réseau de distribution et l’agrégateur, dans laquelle l’agrégateur doit
payer le surcoût encouru pour le rééchelonnement de ses appareils afin de fournir
les ajustements requis par le gestionnaire de réseau de distribution. Après cela,
avec ou sans support de contrainte, l’agrégateur envoie son engagement énergétique
journalier définitif au marché de gros (action B ).

Ensuite, le marché local de la flexibilité s’ouvre et reçoit des demandes du DSO
ou d’autres parties (par exemple, BRP) spécifiant un tuple avec lieu, durée (tfl) et
quantité (P fl) de la flexibilité requise. Avec ces informations, le LFO appelle les
offres de flexibilité de tous les fournisseurs de flexibilité potentiels, parmi lesquels
l’agrégateur. Si l’agrégateur dispose de la flexibilité nécessaire pour offrir, une offre
contenant la quantité et le prix pour la période requise est envoyée à le LMO (action
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C ). Cette offre doit être suffisamment robuste pour supporter les incertitudes
liées aux prix de l’énergie et aux déséquilibres, à la production photovoltaïque et
à la demande, et doit en outre être solide face à l’acceptation ou non de l’offre de
flexibilité. Après cela, le LMO équilibre toutes les offres de flexibilité et informe
l’agrégateur si son offre est acceptée.

Le planning de l’agrégateur (action D ) est tel qu’il prend en compte les sources
d’incertitude mentionnées, la flexibilité attribuée et le support de contrainte, tout
en minimisant les coûts opérationnels totaux.

Ensuite, pendant la journée d’opération, compte tenu des fluctuations de la
production et de la demande de systèmes photovoltaïques, les écarts doivent être
compensés par des achats/ventes d’énergie supplémentaires. Cela conduit à des
déséquilibres négatifs/positifs réglés par le marché de gros. Le coût total de l’opération
en temps réel (action E ) sera donné par la combinaison de l’engagement énergé-
tique journalier, des pénalisations pour déséquilibre, des échanges bilatéraux avec
le DSO (s’il est demandé) et du service de flexibilité fourni par LFM (si demandé).
Compte tenu de la nature incertaine des prix de déséquilibre, la stratégie d’enchères
des agrégateurs sur tous les marchés doit être solide dans le sens où elle permet de
prévoir les déviations potentielles et, en conséquence, d’évaluer les services à offrir.

Le prix minimum qui devrait être payé à l’agrégateur pour fournir la flexibilité
requise est donné par πfl. Le modèle permet de garantir la flexibilité en ajustant les
paramètres de périphérique des maisons intelligentes. Cet ensemble de signaux de
contrôle, de paramètres et de pénalités prévues est appelé action D . De plus, la car-
actéristique robuste de la formulation permet l’inclusion des déséquilibres potentiels
et des pénalités correspondantes payées sur le marché de gros qui sont assumées par
l’agrégateur. Dans cette approche, ces coûts sont pris en compte dans le processus
d’appel d’offres afin de protéger l’agrégateur contre les incertitudes.

Cette méthode d’appel d’offres est suffisamment générale pour pouvoir soumis-
sionner sur des systèmes du marché local qui acceptent non seulement des offres
ponctuelles, mais également des courbes d’enchères. Les caractéristiques de la solide
offre dépendront des capacités de l’algorithme de compensation utilisé par le LMO.

La performance vise à évaluer la capacité de l’agrégateur à respecter: 1) l’énergie
journalière engagée; 2) le support de contrainte; et 3) la flexibilité allouée par le
local, tout en minimisant le coût total d’exploitation face aux multiples sources
d’incertitude. La simulation de Montecarlo est utilisée pour tester la robustesse
de l’approche proposée pour plusieurs modèles de prix, de consommation et de
production de PV générés de manière aléatoire au cours de la journée d’opération.
Le calcul du coût total lorsque ces valeurs aléatoires sont générées et utilisées en
tant qu’input est donné par les paiements d’énergie journaliers, le coût cyclique
équivalent des batteries, les revenus générés par le support sous contrainte du DSO,
les revenus générés par la flexibilité locale et la pénalisation due aux déséquilibres
produits par la production / consommation en temps réel dans chaque ménage.
La simulation de Montecarlo renvoie une mesure de la performance en termes de
coût moyen et d’écart-type (SD), en tant que mesure du risque lié à une stratégie
d’enchères robuste.

L’approche proposée présente un modèle mathématique incluant la flexibilité lo-
cale sous la forme 1) d’échange d’énergie net maximum autorisé et d’une rampe de
montée en puissance au niveau du PCC et 2) d’une participation aux marchés de la
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flexibilité locale. Les simulations ont analysé différents cas dans lesquels l’agrégateur
participait à des marchés de gros et de flexibilité et déterminait les modifications
à apporter au calendrier des dispositifs afin d’obtenir un coût d’exploitation min-
imal tout en respectant les contraintes de flexibilité, les demandes de flexibilité
et l’énergie investies par DSO sur le marché day-ahead. Ces ajustements dans le
fonctionnement de HEMS permettent à un agrégateur de participer au marché de
l’électricité tout en coopérant avec le DSO local pour améliorer le fonctionnement
du réseau et promouvoir la décentralisation du système électrique.

Lorsqu’aucune limite n’est imposée, cet échange d’énergie peut générer des valeurs
compromettant le fonctionnement en amont, telles que le non-respect des limites de
tension, la congestion des lignes de distribution, entre autres. Cela nécessite de
prendre en compte les signaux DSO et de renforcer la coopération entre les agents
afin de minimiser les risques potentiels.

Pour le cas stochastique / robuste et les valeurs de flexibilité analysées, le coût
de fonctionnement de l’agrégateur augmente jusqu’à 2,3% par rapport à un scénario
de base dans lequel aucun signal de flexibilité DSO n’est pris en compte. Ces
informations sont utiles pour déterminer la rémunération potentielle de l’agrégateur
pour la fourniture de services de flexibilité locaux, étant donné que la planification
des ressources doit être modifiée pour offrir la flexibilité nécessaire.

Pour bien rémunérer les besoins de flexibilité, il faut tenir compte des variations
des coûts opérationnels du microréseau afin de créer un environnement de marché
avantageux pour tous les participants. Par exemple, si un marché local a été mis en
place, des courbes d’enchères peuvent être soumises afin de tarifier et de rémunérer
correctement le service fourni par le microréseau.

Pour le cadre robuste complet analysé, le coût escompté est supérieur au cas
déterministe jusqu’à 15,7% lorsque la participation à de multiples marchés est au-
torisée. De plus, la participation à LFM permet de réduire les coûts opérationnels
grâce à la rémunération fournie pour la fourniture du service de flexibilité. Cette
approche robuste permet de placer des offres sur tous les marchés et de programmer
des appareils de manière à minimiser les coûts tout en faisant face aux incertitudes
générées par les prix de l’énergie, la production photovoltaïque et la charge.

La rémunération de la flexibilité est liée au niveau de robustesse. Si des paramètres
robustes sont définis sur des valeurs élevées, le coût associé à la flexibilité augmente
également, à condition que l’agrégateur inclut le coût prévu des éventuels écarts
de prix, de la demande et de la production photovoltaïque. En outre, il existe un
compromis entre le niveau de robustesse et les possibilités d’obtenir le service de
flexibilité, étant donné que des coûts plus élevés pour la fourniture du service au-
ront moins de chances d’être acheminés par le LMO. Cependant, dans le cas analysé,
il existe une combinaison de paramètres robustes générant de meilleurs coûts que le
schéma déterministe malgré la probabilité d’acceptation des offres.

E.5 Résumé du chapitre: Conclusions

L’agrégation de ressources au niveau résidentiel attire de plus en plus l’attention
dans le contexte de la transition énergétique, compte tenu de son importance pour
l’intégration des utilisateurs finaux dans le paradigme des réseaux intelligents. Cette
thèse a présenté une revue de la littérature dans laquelle les tendances actuelles en
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matière de traitement de l’incertitude dans le contexte du réseau intelligent ont
été identifiées, et les opportunités d’utilisation d’une optimisation robuste pour
l’agrégation de clients potentiels ont été détectées, en particulier dans le cas de
la version ajustable. En outre, les alternatives de calcul du coût de vieillissement lié
au cycle ont été analysées et les options adéquates pour les marchés de l’électricité à
court terme ont été identifiées. La revue de littérature a également présenté les op-
tions actuelles pour exploiter la flexibilité des consommateurs potentiels sur plusieurs
marchés, en mettant un accent particulier sur les marchés de flexibilité locaux. Les
principales contributions de cette thèse sont liées à la modélisation de l’incertitude
dans le modèle d’optimisation de la participation d’un agrégateur à des marchés de
l’énergie à court terme. Les prix de l’énergie, la demande et la production photo-
voltaïque sont inclus comme sources d’incertitude via ARO. Dans ce contexte, des
modèles de cycle de batterie sont également inclus et une participation et des offres
sur les marchés de l’énergie traditionnels ainsi que sur les nouveaux marchés de la
flexibilité locale sont proposées.

Cette thèse a été développée en trois parties principales: chapitre 2, a présenté
les généralités du modèle mathématique déterministe et deux alternatives pour
l’inclusion du vieillissement de la batterie. Le chapitre 3 a développé le modèle
en présence d’incertitudes et enfin le chapitre 4 a présenté une stratégie d’appel
d’offres robuste sur les marchés locaux de la flexibilité.

L’agrégation et l’interaction de différentes sources de flexibilité entraînent une
réduction des coûts d’exploitation pour un agent du marché en charge du contrôle
de plusieurs appareils au niveau résidentiel. Dans le cas du présent travail, et plus
particulièrement dans le chapitre 2, les interactions des systèmes photovoltaïques,
des chauffe-eau électriques et des batteries sont analysées. Le meilleur comportement
du point de vue des coûts opérationnels pour une participation au marché journalière
est obtenu lorsque toutes les sources de flexibilité sont incluses. Dans le cas des
EWH, qui agissent en tant que stockage thermique, le comportement est similaire à
une charge flexible, étant donné que le modèle de consommation varie en fonction
du coût de l’opportunité et des besoins en charge thermique.

Les agrégateurs ont généralement plusieurs actifs à gérer et à en tirer profit.
Cela aiderait à surmonter les obstacles potentiels du marché en ce qui concerne
les capacités installées minimales ou les quantités de soumission minimales (puis-
sance/énergie) pour les appels d’offres sur les marchés de l’énergie et / ou des
marchés auxiliaires. Un agrégateur peut aussi avoir un portefeuille combinaison
de ressources telles que stockage de taille moyenne/grande, centrales hydroélec-
triques pompées, éoliennes, systèmes de ventilation, autres aggrégations de bâti-
ments, véhicules électriques, etc. Dans ce contexte, la HEMS proposée ferait partie
des ressources à gérer. La première partie du chapitre 2 était également destinée à
présenter une technique de décomposition permettant d’inclure la dégradation des
batteries dans le modèle de l’agrégateur. Lorsque le SDA est utilisé pour désagréger
une valeur SOC envoyée par un algorithme métaheuristique, une particule avec
uniquement des positions T est nécessaire, malgré le nombre de batteries dans le
système de test. Ceci est important, à condition que toute métaheuristique nécessite
un effort de calcul plus important si la dimension de la variable de décision augmente.
Par conséquent, le SDA permet de maintenir la taille des solutions constante.

153



Si le SDA doit être utilisé dans un cadre d’optimisation en deux étapes, la taille
de la solution dépend de la définition des variables des première et deuxième étapes
et du nombre correspondant de scénarios (Ne). La méthode de décomposition évite
la complexité du traitement d’un problème MINLP et peut être utilisée et ajustée
dans d’autres applications dans lesquelles les coûts de dégradation de la batterie
doivent être pris en compte pour pouvoir soumissionner sur les marchés de l’énergie.

La variante de modélisation explicite présentée dans la dernière partie du chapitre
2 pour inclure la dégradation directement dans le modèle d’optimisation est basée
sur la linéarisation par morceaux de la fonction de coût équivalente. Ce coût est
représenté en fonction du DoD auquel chaque cycle de charge se produit. Il est
important de mentionner que le coût de dégradation obtenu avec cette alternative
est différent d’un coût obtenu avec un calcul expost avec le RCA, étant donné que le
comptage de cycles diffère d’une méthode à l’autre, la comparaison directe des deux
méthodes n’est donc pas adéquate. La modélisation explicite utilise efficacement
les variables auxiliaires binaires introduites pour détecter les transitions d’état et le
début des cycles de charge. Ces variables sont également présentes dans la fonction
objectif pour activer le terme indépendant correspondant de la fonction de coût
linéarisée. La modélisation explicite permet d’obtenir des approximations précises
pour un nombre modéré de segments. Par exemple, dans ce travail, 6 segments suff-
isent pour garantir des erreurs inférieures à 0,05% dans le dernier coût d’opération.
Les erreurs dans la fonction de dégradation isolée sont plus importantes et n’ont
pas été utilisées pour sélectionner le nombre de segments. Cela s’explique par le
fait que la fonction de coût de cycle est plus sensible aux changements du nombre
de segments, à condition que chaque option puisse conduire à un point de consigne
final différent pour les batteries, modifiant ainsi la valeur équivalente de dégrada-
tion. Par conséquent, il est plus logique d’analyser l’erreur de la fonction d’objectif
d’opération journalière totale.

Dans le chapitre 3, les incertitudes des types suivants ont été prises en compte
dans la formulation mathématique avec SO ou ARO: prix de l’énergie, consommation
électrique, consommation thermique et production PV.

Lors de l’utilisation du théorème fort de la dualité pour obtenir la contrepartie
robuste du modèle déterministe, et pour le cas spécifique de la PV et de la charge
électrique, un calcul supplémentaire a été établi pour obtenir la charge nette à chaque
pas de temps. Cette formulation permet d’avoir une équation de bilan énergétique
plus compacte, à condition que deux sources d’incertitude soient converties en une.
Il en résulte un budget unifié d’incertitude pour contrôler le conservatisme de la
charge nette. De plus, de nouvelles contraintes 3×T dual et 2×T sont introduites.
Une alternative a également été explorée, en maintenant des budgets séparés et des
variables doubles pour la charge électrique et la PV. Bien que cette formulation
entraîne un problème d’optimisation plus important, une gestion séparée des deux
sources d’incertitude a des répercussions sur la performance des solutions et une
meilleure atténuation du sur-conservatisme dans certains cas. Une modification
supplémentaire a été apportée au modèle en utilisant le budget d’incertitude Γ2.
Cela permet de mieux exploiter les faibles valeurs du budget dans des intervalles
plus rapprochés et de lutter contre le conservatisme excessif des solutions. En règle
générale, ARO garantit un coût minimum garanti et réduit les déséquilibres. En
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fonction de la conception du marché pour les agrégateurs et des prix de déséquilibre
permettant de corriger les écarts, les performances globales et les valeurs absolues
de réduction des coûts et du SD peuvent varier.

L’analyse des performances proposée a consisté à détecter la combinaison de
paramètres robustes générés dans l’ensemble des solutions optimales de Pareto du
point de vue du coût et de l’écart type, lorsque la solution obtenue est soumise à des
réalisations aléatoires des variables incertaines. Des solutions hybrides stochastiques
/ robustes et complètes robustes ont été comparées. Pour certaines combinaisons de
paramètres robustes, la solution déterministe surpasse certaines solutions HSR et
ARO complètes. Néanmoins, HSR et les solutions complètes ARO peuvent toujours
être trouvés de manière à ce que le coût et le SD surpassent l’approche déterministe.

La fourniture locale de flexibilites a été explorée au chapitre 4. Dans ce cas,
un cadre permettant la participation à trois marchés différents a été proposé. Pre-
mièrement, participation journalière au marché de l’énergie et des déséquilibres;
deuxièmement, transaction bilatérale de flexibilité locale avec DSO; et troisième-
ment, la participation à un marché local de flexibilité pour vendre de la flexibilité
au DSO ou à d’autres tiers.

La coordination entre les agrégateurs résidentiels et les DSO est nécessaire et
conduit à une transaction inhérente naturelle pour les deux agents. Cela s’explique
par le fait qu’une programmation illimitée des appareils au niveau résidentiel peut
entraîner des problèmes opérationnels dans le réseau en amont. Cette thèse pro-
pose deux types de produits de flexibilité à échanger directement avec le DSO:
la puissance maximale autorisée au PCC et le taux rampe nette. L’activation de
ces produits entraîne une modification du fonctionnement des appareils et donc un
point de consigne sous-optimal différent, qui augmente les coûts opérationnels. Cette
augmentation des coûts sert de signal de prix pour rémunérer la flexibilité fournie.
Étant donné que les incertitudes sont prises en compte, les écarts pour respecter
l’engagement de flexibilité sont minimes tout en maintenant un coût opérationnel
minimal pour l’agrégateur.

Lorsque la flexibilité est échangée sur un marché de flexibilité local, le cadre
proposé suppose qu’il existe un opérateur de marché local pour effacer le marché. Si
la flexibilité est nécessaire, l’agrégateur peut soumettre des offres si nécessaire. Les
offres de flexibilité explorées dans le chapitre 4 ont différents niveaux de robustesse
en fonction du budget d’incertitude prédéfini. Les courbes d’enchères de flexibilité
obtenues montrent que le prix de la flexibilité a tendance à être plus élevé si les
paramètres robustes ont également des valeurs plus élevées. Cela s’explique par le
fait que le modèle robuste est protégé contre l’incertitude mesurée par les déviations
et la pénalisation qui en résulte (déséquilibre). Par conséquent, la solution robuste
optimale prend en compte les modifications des paramètres des appareils et les
besoins potentiels de l’agrégateur en termes de coûts supplémentaires en cas de
déviations des paramètres incertains. Cette information est traduite en prix de
flexibilité et les offres envoyées au marché local. Pour les simulations exécutées, une
combinaison de paramètres robustes peut être trouvée pour obtenir une solution plus
performante que les approches déterministes, malgré la probabilité d’acceptation des
offres. Ceci est effectué en analysant uniquement les performances de la participation
au marché de l’énergie, étant donné qu’il s’agit du scénario le plus conservateur, et
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en tenant compte du fait que l’acceptation d’une offre conduit à une rémunération,
le cas échéant. Il n’est donc pas nécessaire de procéder à une analyse exhaustive des
performances pour tous les scénarios d’acceptation des offres. L’approche robuste
proposée est capable de trouver des solutions optimales robustes même en l’absence
de connaissance des probabilités d’acceptation des offres.

Cependant, si la probabilité d’acceptation devait être intégrée au modèle, des
données historiques seraient nécessaires pour créer un modèle approprié. Cela mon-
tre l’importance d’une approche solide pour les marchés émergents de flexibilité
locaux, à condition qu’il y ait toujours un manque d’informations historiques suff-
isantes pour créer des modèles appropriés basés sur des scénarios et une optimisation
stochastique.
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RÉSUMÉ

Cette thèse présente un cadre d’optimisation avec incertitude dans le cas où un agrégateur gère des dispositifs de
stockage résidentiels et des énergies renouvelables comme sources de flexibilité, participant directement au marché
journalier de l’énergie et proposant des services visant à minimiser les coûts opérationnels. Les actifs de flexibilité
résidentiels sont composés de batteries, de chauffe-eau électriques et de panneaux photovoltaïques, gérés et contrôlés
de manière optimale par l’agrégateur. Le modèle d’optimisation prend également en compte le coût de vieillissement de
la batterie, qui permet de capturer la relation non linéaire entre la profondeur de décharge et le cycle de vie total. Les
sources d’incertitude sont: la demande électrique et thermique, la production photovoltaïque et le prix de l’énergie. Ces
incertitudes sont incluses dans le modèle mathématique au moyen d’une optimisation robuste et une méthodologie est
proposée pour détecter les solutions offrant le meilleur compromis entre coût et risque. De plus, cette thèse présente
une stratégie de gestion de la flexibilité locale basée sur deux produits: 1) les offres sur un marché local; et 2) prise
en charge de contraintes locales pour le gestionnaire du réseau de distribution (GRD) sous la forme de la puissance
nette et de la rampe nette. Un modèle d’optimisation robuste ajustable est proposé pour la gestion coordonnée des
ressources et permet de démontrer que le cadre d’appel d’offres stratégique est suffisamment robuste rendant possible
une participation coordonnée sur trois marchés différents: l’énergie, la flexibilité locale et les échanges bilatéraux (GRD).

MOTS CLÉS

Aggregateurs, consommacteurs, marché d’electricité, stockage, réseaux intelligents, incertitude, optimisation
robuste, maisons intelligentes

ABSTRACT

This thesis presents an optimization framework under uncertainty for the case in which an aggregator manages residential
storage devices and renewable energy as sources of flexibility, participating directly in the day-ahead energy market and
offering services to minimize operational costs. Residential flexibility assets are composed by batteries, electric water
heaters and PV panels, which are optimally managed and controlled by an aggregator. The optimization model also
considers battery’s cycling aging cost which allows capturing the non-linear relation between depth of discharge and
total life cycling. The following sources of uncertainty are considered: electrical and thermal demand, PV production
and energy prices. These uncertainties are included in the mathematical model by means of robust optimization theory
and a methodology based on Pareto-optimality is proposed to detect the solutions with the best trade-off between cost
and risk. In addition, this thesis presents a local flexibility management strategy, which is based on two products: 1)
flexibility bids into a local market; and 2) local constraint support for the Distribution System Operator (DSO) in the form of
maximum allowed net power and net ramping rate. An adjustable robust optimization model is proposed for coordinated
management of resources and allows to demonstrate that the strategic bidding framework is robust enough to enable
coordinated participation in three different marketplaces: energy, local flexibility and bilateral trading with the DSO.

KEYWORDS

Aggregators, prosumers, electricity markets, storage, smart grids, uncertainty, robust optimization, smart
homes
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