. .. Modélisation-de-la-consommation, 154 6.3.1 Modélisation des volumes annuels de consommation par secteur, p.162

. .. , ACV de scénarios énergétiques intégrant la contrainte d'adéquation temporelle production-consommation, p.169

. .. Conclusion-du-chapitre,

, Single crystal growth of silicon by float zone fz and czochralski cz methods

. Histoire-de-la-voiture-Électrique, , 2009.

, Global Status Report, issue.2, 2018.

, Trends in Atmospheric Carbon Dioxide, 2019.

, ABB. ProductdeclarationStarTrafo500(1).pdf, vol.35, p.57

A. Machine, Type AMI 900, 22500 kW.pdf, p.57, 2000.

A. Machine, Type AMI 800, 15000 kW.pdf, 2000.

A. Machine, Type AMI 710, 9400 kW.pdf, p.57, 2000.

. Abb.-productdeclarationstartrafo500, , vol.URL https, 2003.

A. , Un mix électrique 100% renouvelable ? Analyses et optimisations, vol.15, p.30, 2015.

A. Vers-l'autonomie, . En, . Non, and . Al, HORIZON, vol.2030, p.164, 2019.

A. Ademe, O. , and E. , Vers l'autonomie énergétique en Zone Non Interconnectée à l'horizon 2030, vol.17, p.154, 2017.

N. Alazard-toux, P. Criqui, and E. Hache, Scénario « Loi de Transition Energétique pour la Croissance Verte » (LTECV), vol.15, p.16, 2016.

K. Altfeld and D. Pinchbeck, Admissible hydrogen concentrations in natural gas systems, 2013.

W. Aluminium, LIFE CYCLEINVENTORY DATA AND ENVIRONMENTAL METRICS FOR THE PRIMARY ALUMINIUM INDUSTRY, vol.49, p.51, 2015.

P. D. Andersen, A. Bonou, J. Beauson, and P. Brøndsted, Recycling of wind turbines, vol.8, p.35, 2014.

F. Asdrubali, G. Baldinelli, F. , and F. Scrucca, Life cycle assessment of electricity production from renewable energies : Review and results harmonization, Renewable and Sustainable Energy Reviews, vol.42, pp.1113-1122, 2015.

R. J. Barthelmie, S. C. Pryor, S. T. Frandsen, K. S. Hansen, J. G. Schepers et al., Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms, Journal of Atmospheric and Oceanic Technology, vol.27, issue.8, pp.1302-1317, 2010.

P. Berrill, A. Arvesen, Y. Scholz, H. C. Gils, and E. G. Hertwich, Environmental impacts of high penetration renewable energy scenarios for Europe, Environmental Research Letters, vol.11, issue.1, p.18, 2016.

R. Besseau, R. Sacchi, I. Blanc, and P. Pérez-lópez, Past, present and future environmental footprint of the Danish wind turbine fleet with LCA_wind_dk, an online interactive platform. Renewable and Sustainable Energy Reviews, vol.75, p.182, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02130055

P. Bihouix and B. Guillebon, Quel futur pour les métaux ? Raréfaction des métaux : un nouveau défi pour la société, vol.11, p.12, 2010.

I. Blanc, How to calculate the environmental impact of renewable energy, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01248287

H. Blanco and A. Faaij, A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage, Renewable and Sustainable Energy Reviews, vol.81, pp.1049-1086, 2018.

S. Bouckaert, Contribution des Smart Grids à la transition énergétique : évaluation dans des scénarios long terme, vol.193, p.25, 2013.

S. Bouckaert, V. Mazauric, and N. Maïzi, Expanding Renewable Energy by Implementing Demand Response, Energy Procedia, vol.61, pp.1844-1847, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01102915

L. V. Bremen, Large-Scale Variability of Weather Dependent Renewable Energy Sources, pp.189-206, 2010.

I. Buchmann, Batteries in a Portable World : A Handbook on Rechargeable Batteries for Non-Engineers, Fourth Edition, p.15, 2017.

B. Burger, C. Bauer, and P. S. Institut, , vol.86, p.35, 2007.

G. Ceballos, P. R. Ehrlich, A. D. Barnosky, A. García, R. M. Pringle et al., Accelerated modern human-induced species losses : Entering the sixth mass extinction, Science Advances, vol.1, issue.5, p.10, 2015.

R. O. Cebolla and C. Navas, Supporting hydrogen technologies deployment in eu regions and member states : The smart specialisation platform on energy (s3penergy), International Journal of Hydrogen Energy, vol.44, issue.35, p.82, 2019.

. Climeworks, Capturing CO2 from Air

J. Cochran, T. Mai, and M. Bazilian, Meta-analysis of high penetration renewable energy scenarios, Renewable and Sustainable Energy Reviews, vol.29, p.30, 2014.

D. Connolly, H. Lund, B. Mathiesen, and M. Leahy, A review of computer tools for analysing the integration of renewable energy into various energy systems, Applied Energy, vol.87, issue.4, pp.1059-1082, 2010.

B. L. Cox, MOBILITY AND THE ENERGY TRANSITION : A LIFE CYCLE ASSESSMENT OF SWISS PASSENGER TRANSPORT TECHNOLOGIES INCLUDING DEVELOPMENTS UNTIL 2050, p.30, 2018.

M. Rodríguez, L. Dupont-courtade, and W. Oueslati, Air pollution and urban structure linkages : Evidence from European cities, Renewable and Sustainable Energy Reviews, vol.53, pp.1-9, 2016.

K. Dai, D. , and E. , Update of Life Cycle Analysis of Lithium-ion Batteries in the GREET Model, 2017.

B. R. Deemer, J. A. Harrison, S. Li, J. J. Beaulieu, T. Delsontro et al., Greenhouse Gas Emissions from Reservoir Water Surfaces : A New Global Synthesis, BioScience, vol.66, issue.11, p.91, 2016.

. Dome-solar, , p.49, 2019.

. Dome-solar, , p.49, 2019.

. Electrochaea, , 2019.

L. A. -w.-ellingsen, C. R. Hung, and A. H. Strømman, Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions, Transportation Research Part D : Transport and Environment, vol.55, pp.82-90, 2017.

B. Elmegaard and W. Brix, Efficiency of Compressed Air Energy Storage, vol.13, p.95

. Energinet, , 2015.

. Energinet and . Data, Oversigt over energisektoren, vol.111, p.113, 2016.

. Enfsolar, Annuaire Panneaux Solaires, 2019.

E. Commission and . Joint-research-centre, ILCD handbook : general guide for life cycle assessment : detailed guidance. Publications Office of the European Union, 2010.

, ILCD-Handbook-General-guide-for-LCA-DETAIL-online

P. M. Fearnside, Greenhouse gas emissions from brazil's amazonian hydroelectric dams, Environmental Research Letters, vol.11, issue.1, p.55, 2016.

M. Fischer, ITRPV 9th edition 2018 -report release and key findings, vol.42, p.51, 2017.

. Fraunhofer, , vol.47, p.46, 2019.

R. Frischknecht, R. Itten, P. Sinha, M. Wild-scholten, J. Zhang et al., Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems, vol.1561526, p.51, 2015.

R. Frischknecht, R. Itten, F. Wyss, I. Blanc, G. A. Heath et al., Life Cycle Assessment of Future Photovoltaic Electricity Production from Residential-scale Systems Operated in Europe, 2015.

R. Fu, D. Feldman, and R. U. Margolis, Solar Photovoltaic System Cost Benchmark : Q1 2018. Renewable Energy, vol.47, p.124, 2018.

, List of Hydro PowerPlants -GEO, 2019.

S. Gerbinet, S. Belboom, and A. Léonard, Life cycle analysis (lca) of photovoltaic panels : A review, Renewable and Sustainable Energy Reviews, vol.38, p.47, 2014.

M. Gimeno-gutiérrez and R. Lacal-arántegui, Assessment of the European potential for pumped hydropower energy storage -A GIS-based assessment of pumped hydropower storage potential, vol.74, 2013.

T. Göçmen and G. Giebel, Estimation of turbulence intensity using rotor effective wind speed in lillgrund and horns rev-i offshore wind farms. Renewable energy, vol.99, p.36, 2016.

R. Groupe, Time for Energy Payback :How quickly can a solar module amortize its energy debt ?, 2018.

B. Gschwind, M. Lefevre, I. Blanc, T. Ranchin, A. Wyrwa et al., Including the temporal change in PM2.5 concentration in the assessment of human health impact : Illustration with renewable energy scenarios to 2050, Environmental Impact Assessment Review, vol.52, pp.62-68, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01069694

C. A. Hall, J. G. Lambert, and S. B. Balogh, EROI of different fuels and the implications for society, Energy Policy, vol.64, p.11, 2014.

M. B. Harfoot, D. P. Tittensor, S. Knight, A. P. Arnell, S. Blyth et al., Present and future biodiversity risks from fossil fuel exploitation, Conservation Letters, vol.11, issue.4, p.12448, 2018.

J. E. Harlow, X. Ma, J. Li, E. Logan, Y. Liu et al., A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies, Journal of The Electrochemical Society, vol.166, issue.13, p.100, 2019.

B. Heard, B. Brook, T. Wigley, and C. Bradshaw, Burden of proof : A comprehensive review of the feasibility of 100% renewable-electricity systems, Renewable and Sustainable Energy Reviews, vol.76, pp.1122-1133, 2017.

E. G. Hertwich, T. Gibon, E. A. Bouman, A. Arvesen, S. Suh et al., Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies, Proceedings of the National Academy of Sciences, vol.112, pp.6277-6282, 2015.

S. Hilpert, C. Kaldemeyer, U. Krien, S. Günther, C. Wingenbach et al., The Open Energy Modelling Framework (oemof) -A New Approach to Facilitate Open Science in Energy System Modelling, 2018.

M. Hiremath, K. Derendorf, and T. Vogt, Comparative Life Cycle Assessment of Battery Storage Systems for Stationary Applications, Environmental Science & Technology, vol.49, issue.8, pp.4825-4833, 2015.

W. F. Holmgren, C. W. Hansen, and M. Mikofski, pvlib python : a python package for modeling solar energy systems, J. Open Source Software, vol.3, issue.29, p.50, 2018.

M. Howells, H. Rogner, N. Strachan, C. Heaps, H. Huntington et al., OSeMOSYS : The Open Source Energy Modeling System, Energy Policy, vol.39, issue.10, pp.5850-5870, 2011.

. Hydrogenics and . Electrolyzer, , 2019.

. Icef, . Energy, and . Roadmap, , 2017.

, Renewable energy sources and climate change mitigation : special report of the Intergovernmental Panel on Climate Change, Choice Reviews Online, vol.49, issue.11, pp.49-6309, 2012.

, Climate change 2014 : synthesis report. Intergovernmental Panel on Climate Change, vol.8, p.171, 2015.

R. Itten, LCA of future photovoltaics electricity production, p.50, 2015.

, ILCD handbook : general guide for life cycle assessment : detailed guidance. Publications Office of the European Union, 2010.

, ILCD-Handbook-General-guide-for-LCA-DETAIL-online

N. Jungbluth, M. Tuchschmid, and M. De-wild-scholten, Life cycle assessment of photovoltaics : update of ecoinvent data v2. 0. ESU-services Ltd, p.50, 2008.

. Kaeser, Réservoirs d'air comprimé, 2019.

J. Koornneef, T. Van-keulen, A. Faaij, and W. Turkenburg, Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of co2, International journal of greenhouse gas control, vol.2, issue.4, p.86, 2008.

V. Krakowski, E. Assoumou, V. Mazauric, and N. Maïzi, Feasible path toward 40-100% renewable energy shares for power supply in France by 2050 : A prospective analysis, Applied Energy, vol.171, pp.501-522, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01293627

T. Leu, J. Yu, Y. Tsai, J. Miau, T. Wang et al., Assessment of iec 61400-1 normal turbulence model for wind conditions in taiwan west coast areas, International Journal of Modern Physics : Conference Series, vol.34, p.1460382, 2014.

. Loulou, , vol.16, p.27, 2005.

A. Louwen, W. G. Van-sark, A. P. Faaij, and R. E. Schropp, Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development, Nature Communications, vol.7, p.13, 2016.

H. Lund, EnergyPLAN-Documentation-V11-2013.pdf, 2013.

G. Majeau-bettez, T. R. Hawkins, and A. H. Strømman, Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles, Environmental Science & Technology, vol.45, issue.10, pp.4548-4554, 2011.

A. Marquand, S. Bezelgues-courtade, A. Beylot, M. Marchand, and I. Blanc, RP-62538-FR.pdf, 2013.

. Megavind, Strategy for Extending the Useful Lifetime of a Wind Turbine, 2016.

J. Moore and B. Shabani, A Critical Study of Stationary Energy Storage Policies in Australia in an International Context : The Role of Hydrogen and Battery Technologies, Energies, vol.9, issue.9, p.81, 2016.

T. Motmans, Environmental and Economic Assessment of Advanced Adiabatic Compressed Air Energy Storage, vol.2, p.95

C. Mutel, Brightway : An open source framework for Life Cycle Assessment, The Journal of Open Source Software, vol.2, issue.12, p.20, 2017.

M. S. Muylaert-de-araújo, C. Silva, and C. P. Campos, Land use change sector contribution to the carbon historical emissions and the sustainability-Case study of the Brazilian Legal Amazon, Renewable and Sustainable Energy Reviews, vol.13, issue.3, pp.696-702, 2009.

, Nexans. nex_windparks_engl0805.pdf, 2008.

. Négawatt, , 2017.

O. Ocde, World Energy Outlook, 2014.

L. Oliveira, M. Messagie, J. Mertens, H. Laget, T. Coosemans et al., Environmental performance of electricity storage systems for grid applications, a life cycle approach, Energy Conversion and Management, vol.101, pp.326-335, 2015.

P. Padey, R. Girard, D. Boulch, and I. Blanc, From LCAs to Simplified Models : A Generic Methodology Applied to Wind Power Electricity, Environmental Science & Technology, vol.47, issue.3, pp.1231-1238, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00771401

R. Pant, J. Garcia, F. Reale, and S. Sala, European Commission, and Joint Research Centre. Life cycle assessment for the impact assessment of policies, Publications Office, vol.2, p.12, 2016.

S. Pascuzzi, A. Anifantis, I. Blanco, and G. Scarascia-mugnozza, Electrolyzer performance analysis of an integrated hydrogen power system for greenhouse heating. a case study, Sustainability, vol.8, issue.7, p.88, 2016.

P. Perez-lopez, R. Besseau, M. Marchand, F. Amblard, and I. Blanc, Life cycle assessment of prospective energy scenarios for 2030 in an insular context : Guadeloupe case study, vol.4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01686058

A. Poisson and C. Hall, Time Series EROI for Canadian Oil and Gas. Energies, vol.6, issue.11, pp.5940-5959, 2013.

M. Pradel, J. Garcia, and S. Vaija, Guide de bonnes pratiques pour la prise en compte des ressources minérales et de leur criticité en Analyse du Cycle de Vie, vol.88, p.72, 2019.

P. Group, . Giulio, . Cable, and . Shipspecification, , 2008.

P. Quirion, L'effet net sur l'emploi de la transition énergétique en France : Une analyse input-output du scénario négaWatt, p.41, 2013.

A. Rabl, J. V. Spadaro, and M. Holland, How Much Is Clean Air Worth ?: Calculating the Benefits of Pollution Control, p.10, 2014.

H. Ringkjøb, P. M. Haugan, and I. M. Solbrekke, A review of modelling tools for energy and electricity systems with large shares of variable renewables, Renewable and Sustainable Energy Reviews, vol.96, pp.440-459, 2018.

. Rte, , vol.15, p.30

J. Rugolo and M. J. Aziz, Electricity storage for intermittent renewable sources, Energy & Environmental Science, vol.5, issue.5, pp.1754-5706, 2012.

R. Réunion, Rapport-PPE_reunion.pdf, p.154, 2015.

R. Sacchi, R. Besseau, P. Pérez-lópez, and I. Blanc, Exploring technologically, temporally and geographically-sensitive life cycle inventories for wind turbines : A parameterized model for Denmark, Renewable Energy, vol.132, p.182, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01876984

O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson et al., Future cost and performance of water electrolysis : An expert elicitation study, International Journal of Hydrogen Energy, vol.42, issue.52, p.88, 2017.

T. S. Schmidt, M. Beuse, X. Zhang, B. Steffen, S. F. Schneider et al., Additional Emissions and Cost from Storing Electricity in Stationary Battery Systems, Environmental Science & Technology, vol.53, issue.7, pp.3379-3390, 2019.

G. S. Seck, V. Krakowski, E. Assoumou, N. Maïzi, and V. Mazauric, Reliability-constrained scenarios with increasing shares of renewables for the French power sector in 2050, Energy Procedia, vol.142, pp.3041-3048, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01689596

E. Sei, . Systemes, L. A. Insulaires, and . Reunion, , p.148, 2017.

, SUNNY CENTRAL STORAGE 2500-EV / 2750-EV / 3000-EV. Lightning protection, p.49, 2018.

, Onduleurs photovoltaïques, vol.51, p.83, 2019.

L. J. Sonter, S. H. Ali, and J. E. Watson, Mining and biodiversity : key issues and research needs in conservation science, Proceedings of the Royal Society B : Biological Sciences, vol.285, 1892.

I. Staffell and S. Pfenninger, Using bias-corrected reanalysis to simulate current and future wind power output. Energy, vol.114, p.113, 2016.

W. Stahl, Steel Industry in Germany | stahl-online.de, vol.35, p.44, 2017.

P. Stenzel, A. Schreiber, J. Marx, C. Wulf, M. Schreieder et al., Environmental impacts of electricity generation for Graciosa Island, Azores. Journal of Energy Storage, vol.15, p.18, 2018.

P. Stolz and R. Frischknecht, Life cycle assessment of current photovoltaic module recycling, vol.37, p.49, 2018.

. Sunpower, Panneaux solaires Maxeon, 2019.

S. Tannous, R. Besseau, A. Prieur-vernat, J. Clavreul, M. Payeur et al., A parameterized model for the estimation of life-cycle environmental impacts of crystalline pv systems, vol.5, p.182, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02417266

. Thewindpower, Wind energy database, 2019.

N. Thonemann and D. Maga, Life Cycle Assessment of German Energy Scenarios, Progress in Life Cycle Assessment, pp.165-175, 2019.

O. Torres, Life cycle assessment of a pumped storage power plant, vol.134, p.14, 2011.

K. Treyer and C. Bauer, The environmental footprint of UAEs electricity sector : Combining life cycle assessment and scenario modeling, Renewable and Sustainable Energy Reviews, vol.55, pp.1234-1247, 2016.

K. Treyer and C. Bauer, Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database-part I : electricity generation, The International Journal of Life Cycle Assessment, vol.21, issue.9, pp.1236-1254, 2016.

, The Hidden Costs of Fossil Fuels, 2019.

L. Vandepaer and T. Gibon, The integration of energy scenarios into LCA : LCM2017 Conference Workshop, vol.23, pp.970-977, 2017.

L. Vandepaer, J. Cloutier, and B. Amor, Environmental impacts of Lithium Metal Polymer and Lithium-ion stationary batteries, Renewable and Sustainable Energy Reviews, vol.78, pp.46-60, 2017.

I. Varun, R. Bhat, and . Prakash, LCA of renewable energy for electricity generation systems-A review, Renewable and Sustainable Energy Reviews, vol.13, issue.5, pp.1067-1073, 2009.

K. Volkart, N. Weidmann, C. Bauer, and S. Hirschberg, Multi-criteria decision analysis of energy system transformation pathways : A case study for Switzerland, Energy Policy, vol.106, pp.155-168, 2017.

D. Weisser, A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies, Energy, vol.32, issue.9, p.14, 2007.

G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-ruiz et al., The ecoinvent database version 3 (part I) : overview and methodology, The International Journal of Life Cycle Assessment, vol.21, issue.9, pp.1218-1230, 2016.

. Wikipedia, List of run-of-the-river hydroelectric power stations, 2018.

. Wikipedia, List of conventional hydroelectric power stations, 2019.

, World Bank Open Data, 2019.

, Xylem. epd92_3.1.pdf, p.57, 2012.

C. Yang, S. Li, R. Yang, J. Bai, and Z. Guo, Recovery of silicon powder from kerf loss slurry waste using superconducting high gradient magnetic separation technology, Journal of Material Cycles and Waste Management, vol.20, issue.2, pp.937-945, 2018.

V. Zepf and J. Simmons, Universität Augsburg, and British Petroleum Company. Materials critical to the energy industry : an introduction, 2014.

X. Zhang, C. Bauer, C. L. Mutel, and K. Volkart, Life Cycle Assessment of Power-to-Gas : Approaches, system variations and their environmental implications, Applied Energy, vol.190, p.85, 2017.

T. Zimmermann, Parameterized tool for site specific LCAs of wind energy converters, The International Journal of Life Cycle Assessment, vol.18, issue.1, pp.49-60, 2013.

. Mots-clés,

, Analyse de Cycle de Vie, impacts environnementaux, scénarios é?ergétiques, stockage d'é?ergie, adéquation production-consommation

, Le modèle énergétique actuel, qui supporte l'ensemble des activités économiques mondiales, cause d'importants impacts environnementaux en contribuant au changement climatique et à l'épuisement de ressources, mais aussi en dégradant la biodiversité et la santé humaine. Les impacts environnementaux de l'énergie sont évalués, non pas en considérant la seule phase de production d'énergie, mais l, RÉSUMÉ Ces travaux de thèse portent sur l'évaluation des impacts environnementaux de l'énergie

, Dans un premier temps, des modèles paramétrés d'inventaires de cycle de vie ont été développés pour chaque filière de production et de stockage d'énergie. Ils permettent de tenir compte de la variabilité technologique, spatiale et temporelle de la performance environnementale de ces systèmes qui peut être importante. Dans un second temps, une approche reposant sur le développement et le couplage de modèles paramétrés de séries temporelles de production et de consommation a été mise au point, La production d'énergie renouvelable étant météo-dépendante, des systèmes de stockage d'énergie peuvent devenir nécessaires pour assurer l'adéquation temporelle entre la production et la consommation lorsque les taux de pénétration d'énergies renouvelables deviennent importants

, La méthode globale dynamique et paramétrique d'évaluation d'impacts environnementaux par Analyse de Cycle de Vie (ACV) alors développée a été appliquée à des scénarios d'autoconsommation puis au territoire insulaire de La Réunion