, S,Se) 2 : 1. Caractéristiques adéquates (flexibilité, légèreté, esthétisme (uniforme), bonne performance dans des conditions de faible luminosité) pour répondre aux besoins technologiques de demain : intégration aux bâtiments

, Architecture standard = Substrat verre/Mo/CIGS/CdS/ZnO/ZnO:Al 4. Architecture alternative à haut rendement = Substrat verre/Mo/CIGS/Zn(O,S,OH)/(Zn,Mg)O/ZnO:B Atomic Layer Deposition (ALD) : 1. Avantages : dépôt uniforme, couvrant sur de grandes surfaces

, Concept de la cellule chalcogénure de type CIGS "tout-ALD" = cellule de type CIGS avec absorbeur et face-avant déposés par ALD

, tri-chlorure d'indium

N. Indium and N. '-diisopropylacetamidinate,

, indium guanidinate 1. cuivre(II) bis-tétra-méthyl-heptanedionate 2. bis(N,N'-bi-sec-butylacetamidinato) bi-cuivre(I)

, chlorure de cuivre(I)

, Du 1 er au 25è me cycle environ, la croissance se caractérise par des variations de masse lors de chaque pulse de précurseur et le GPC moyen vaut 0,15 Å/cycle (voir Figure 4.42(b)). Tous les cycles affichent un gain de masse excepté le premier pour lequel une perte de masse intervient lors du pulse de H 2 S

, Du 25è me au 55è me cycle environ, la croissance est nettement ralentie mais la masse continue de varier lors de chaque pulse de précurseur

, Au cours de ce régime, la variation de masse lors du pulse d'H 2 S diminue pour atteindre une variation nulle à partir du 95è me cycle environ. Ainsi, au-delà, la masse ne varie que lors du pulse de Cu(acac) 2 . Pour finir, l'aspect d'un cycle se distingue des premiers cycles du dépôt par une augmentation de masse, i.e. vitesse d'adsorption

Å. , L. Perte-de-masse-intervient-ici-dès, and L. , er cycle (vs le 5è me et le 15è me cycle) et durant un pulse d'H 2 S (non durant un pulse de Cu(acac) 2 ). Ce phénomène reste pour le moment inexpliqué. Il pourrait être lié à un état de surface initial différent du film d, vol.1

, La densité électronique de la couche dépend de la position de l'angle critique de réflexion spéculaire. Plus il sera élevé et plus la densité sera importante

, Quand la période diminue, cela signifie que l'épaisseur augmente. Le nombre d'oscillations est aussi un indicateur de l'épaisseur du film

, La rugosité dépend de l'atténuation du signal. Quand l'atténuation est rapide, cela signifie que la rugosité est élevée

, Les épaisseurs présentées dans cette thèse ont majoritairement été déterminées par XRR car cette mesure est rapide, fiable, précise et l'appareil était disponible

, Avenue Henri Poincaré, Cité Scientifique, vol.60069, p.652, 91460.

C. Annexe, Synthèse du sulfure d'indium

L. Tableau and F. , On en conclut que le programme 0,3/0,5/0,3/0,5 s est suffisant pour saturer la chambre de réaction et réaliser un dépôt de GPC maximal, résume les caractéristiques de croissance (épaisseur, rugosité et GPC) pour trois films obtenus

G. Le, est pas constant en fonction du nombre de cycles. Il suit la même tendance que dans le réacteur Beneq TFS-200 en diminuant légèrement à 0,12 Å/cycle pour un dépôt de 3000 cycles

. Le,

. L'homogénéité-n, est pas parfaite puisque l'épaisseur semble supérieure sur la partie basse des substrats, soit dans la région proche de l'entrée des gaz. De plus, la rugosité est plus élevée dans cette région

, proche des valeurs référencées pour la phase stoechiométrique (Cu 2 S)

, Résultats et discussion Les cartographies en composition (% at. en Cu et In) des films mesurées par XRF pour différents ratios

, En effet, la zone "vert-clair" correspondant à une concentration en Cu et In similaire (50/50 at. %) ne s'étend jamais sur toute la surface des substrats. Le 1 Global Footprint Network, Earth overshoot day, 2018.

, REN21, Renewables 2018. global status report. (Renewable Energy Policy Network for the 21st Century, 2018.

I. Fraunhofer, C. Kost, and T. Schlegl, Study : Levelized Cost Of Electricity -Renewable Energy Technologies, mar, 2018.

. Rte, Syndicat des énergies renouvelables, Enedis et ADEeF, Panorama de l'électricité renouvelable en france en 2017, pp.1-51, 2018.

, Ministère de l'environnement, de l'énergie et de la mer, Programmation pluriannuelle de l'énergie, 2016.

B. Opinionway, les français et les énergies renouvelables" vague, vol.8, 2018.

M. Aneke and M. Wang, Energy storage technologies and real life applications -a state of the art review, vol.179, pp.350-377, 2016.

J. Wu, Y. Hirai, T. Kato, H. Sugimoto, and V. Bermudez, ) 2 thin-film solar cells, 7th world conference on photovoltaic energy conversion, 2018.

P. Kratzert, S. Weeke, M. Zimmer, S. Haaf, S. Hartnauer et al., « World record 18,7% thin film module conversion efficiency, 7th world conference on photovoltaic energy conversion, 2018.

M. Ritala and M. Leskela, « Deposition and processing of thin films, Handbook of thin film materials, t. 1, p.103, 2001.

C. Bugot, « Elaboration d'oxydes et de sulfures à grande bande interdite pour les cellules photovoltaïques à base de Cu(In,Ga)Se 2 par dépôt chimique en phase vapeur par flux alternés (ALD) activé par plasma, 2015.

P. Genevée, Synthèse de couches minces à base de sulfures et d'oxydes par dépôt chimique en phase vapeur à flux alternés (ALCVD) pour applications photovoltaïques dans les cellules à base de disélénure de cuivre, d'indium et de gallium (CIGS) », thèse de doct, 2012.

F. Donsanti, P. Genevée, N. Schneider, M. Jubault, and D. Lincot, « Deposition of ultra thin CuInS 2 absorber layers by ALD for thin film solar cells, pp.2324-2328

M. E. Becquerel, « Mémoire sur les effets électriques produits sous l'influence des rayons solaires, Comptes rendus hebdomadaires des séances de l'Académie des sciences, vol.9, pp.561-567, 1839.

I. Fraunhofer, Photovoltaics report, 2018.

, Energy Union Choices, Plus propre, plus intelligent, moins cher : saisir les opportunités dans un système électrique européen en transition, pp.1-28, 2018.

. Lazard, Lazard's levelized cost of energy analysis -Version 11, 2017.

D. Abou-ras, T. Kirchartz, and U. Rau, Advanced characterization techniques for thin film solar cells, 2011.

R. Scheer and H. Schock, Chalcogenide photovoltaics : physics, technologies, and thin film devices, vol.384, 2011.

S. Suckow, 2/3-diode fit" », 2014.

W. Shockley and H. J. Queisser, « Detailed balance limit of efficiency of p-n junction solar cells », Journal of applied physics, vol.32, pp.510-519, 1961.

A. Slaoui, D. Lincot, J. Guillemoles, and L. Escoubas, Photovoltaics : nanomaterials for photvoltaic conversion, 2017.

A. Marti and G. L. Araújo, « Limiting efficiencies for photovoltaic energy conversion in multigap systems, Solar Energy Materials and Solar Cells, vol.43, pp.203-222, 1996.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-ebinger et al., Solar cell efficiency tables (version 51) », Progress in Photovoltaics : Research and Applications, vol.26, pp.3-12, 2018.

D. M. Chapin, C. S. Fuller, and G. L. Pearson, « A new silicon p-n junction photocell for converting solar radiation into electrical power », Journal of Applied Physics, vol.25, pp.676-677, 1954.

, Effiency chart, 2018.

. Pv-tech, , 2018.

. Iw-cigstech, White paper for CIGS thin film solar cell technology, 2015.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger et al., Progress in thin film CIGS photovoltaics -research and development, manufacturing, and applications : progress in thin film CIGS photovoltaics, vol.25, pp.645-667, 2016.

S. Wagner, J. L. Shay, P. Migliorato, and H. M. Kasper, CuInSe 2 /CdS heterojunction photovoltaic detectors, Applied Physics Letters, vol.25, pp.434-435, 1974.

D. Abou-ras, S. Wagner, B. J. Stanbery, H. Schock, R. Scheer et al., « Innovation highway : breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint, Thin Solid Films, vol.633, pp.2-12, 2017.

J. I. Parra, « Optimisation d'un procédé hybride de co-pulvérisation/ évaporation pour l'obtention de cellules solaires à base de Cu(In,Ga)Se 2 », thèse de doct, 2015.

K. A. Horowitz, R. Fu, and M. Woodhouse, « An analysis of glass-glass CIGS manufacturing costs, Solar Energy Materials and Solar Cells, vol.154, pp.1-10, 2016.

J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt et al., Se 2 /thin film solar cells with improved performance, Photovoltaic specialists conference (PVSC), pp.364-371, 1993.

F. Kessler and D. Rudmann, « Technological aspects of flexible CIGS solar cells and modules, Solar Energy, vol.77, pp.685-695, 2004.

A. Chiril?, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener et al., « Highly efficient Cu(In,Ga)Se 2 solar cells grown on flexible polymer films, vol.10, pp.857-861, 2011.

, H2020 european project : ARCIGS-m, 2014.

D. Abou-ras, G. Kostorz, D. Bremaud, M. Kälin, F. Kurdesau et al., « Formation and characterisation of MoSe 2 for Cu(In,Ga)Se 2 based solar cells », Thin Solid Films 480-481, pp.433-438, 2005.

T. Klinkert, B. Theys, G. Patriarche, M. Jubault, F. Donsanti et al., « New insights into the Mo/Cu(In,Ga)Se 2 interface in thin film solar cells : formation and properties of the MoSe 2 interfacial layer, The Journal of Chemical Physics, vol.145, p.154702, 2016.

K. Orgassa, H. Schock, and J. Werner, « Alternative back contact materials for thin film Cu(In,Ga)Se 2 solar cells », Thin Solid Films 431-432, pp.387-391, 2003.

T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, and T. Mise, Se 2 thin film solar cells using transparent conducting oxide back and front contacts, « Novel device structure for Cu, vol.77, pp.739-747, 2004.

T. Klinkert, Se 2 par co-évaporation en tant qu'absorbeur pour le développement de cellules solaires en couches minces à très haut rendement. », thèse de doct, Compréhension et optimisation du dépôt de Cu(In,Ga), 2015.

J. E. Jaffe and A. Zunger, « Electronic structure of the ternary chalcopyrite semiconductors CuAlS 2 , CuGaS 2 , CuInS 2 , CuAlSe 2 , CuGaSe 2 , and CuInSe 2 », Physical Review B, vol.28, p.5822, 1983.

M. A. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero et al., Se 2 solar cells with improved energy conversion efficiency, Progress in Photovoltaics : Research and Applications, vol.20, pp.843-850, 2012.

F. Mollica, Optimization of ultra-thin Cu(In,Ga)Se 2 based solar cells with alternative back-contacts », thèse de doct, 2016.

D. Lincot, J. Guillemoles, S. Taunier, D. Guimard, J. Sicx-kurdi et al., Chalcopyrite thin film solar cells by electrodeposition, vol.77, pp.725-737, 2004.

W. Witte, D. Abou-ras, K. Albe, G. H. Bauer, F. Bertram et al., « Gallium gradients in Cu(In,Ga)Se 2 thin-film solar cells, Progress in Photovoltaics : Research and Applications, vol.23, pp.717-733, 2015.

D. Colombara, F. Werner, T. Schwarz, I. Infante, Y. Fleming et al., « Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers », Nature Communications, vol.9, 2018.

N. Naghavi, D. Abou-ras, N. Allsop, N. Barreau, S. Bücheler et al., S,Se) 2 based thin film photovoltaics : present status and current developments, Buffer layers and transparent conducting oxides for chalcopyrite Cu, vol.18, pp.411-433, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00628412

T. Minemoto and J. Julayhi, « Buffer-less Cu(In,Ga)Se 2 solar cells with new transparent electrode for band offset control », in Photovoltaic specialists conference (PVSC), pp.1577-001579, 2012.

M. Gloeckler and J. Sites, « Efficiency limitations for wide-band-gap chalcopyrite solar cells, Thin Solid Films, vol.480, pp.241-245, 2005.

K. Orgassa, U. Rau, Q. Nguyen, H. Werner-schock, and J. H. Werner, « Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se 2 thinfilm solar cells, Progress in Photovoltaics : Research and Applications, vol.10, pp.457-463, 2002.

D. Schmid, M. Ruckh, F. Grunwald, H. W. Schock, and . Chalcopyrite, Journal of Applied Physics, vol.73, pp.2902-2909, 1993.

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte et al., « Effects of heavy alkali elements in Cu(In,Ga)Se 2 solar cells with efficiencies up to 22,6% », physica status solidi (RRL)-Rapid Research Letters, vol.10, pp.583-586, 2016.

M. J. Furlong, M. Froment, M. C. Bernard, R. Cortes, A. N. Tiwari et al., Aqueous solution epitaxy of CdS layers on CuInSe, vol.2, pp.114-122, 1998.

U. Rau and M. Schmidt, « Electronic properties of ZnO/CdS/Cu(In,Ga)Se 2 solar cells -aspects of heterojunction formation, Thin Solid Films, vol.387, pp.141-146, 2001.

C. Köble, D. Greiner, J. Klaer, I. Lauermann, and R. Klenk, « The role of undoped ZnO in CuInS 2 based thin film solar modules, 24th european photovoltaic solar energy conference, pp.21-25, 2009.

R. Scheer, L. Messmann-vera, R. Klenk, and H. Schock, On the role of non-doped ZnO in CIGSe solar cells, Progress in Photovoltaics : Research and Applications, vol.20, pp.619-624, 2012.

P. Drude, The theory of optics, 1925.

F. Tsin, « Développement d'un procédé sur grande surface d'électrodépôt d'oxyde de zinc comme contact avant transparent et conducteur de cellules solaires à base de Cu(In,Ga)Se 2 », thèse de doct, 2016.

R. Kamada, T. Yagioka, S. Adachi, A. Handa, K. F. Tai et al., ) 2 thin film solar cell efficiency beyond 22% », in Photovoltaic specialist conference (PVSC), New world record Cu, pp.1-5, 2017.

T. M. Friedlmeier, P. Jackson, A. Bauer, D. Hariskos, O. Kiowski et al., Se 2 solar cells : from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free », Improved photocurrent in Cu, vol.5, pp.1487-1491, 2015.

T. Kobayashi, Z. Li-kao, T. Kato, H. Sugimoto, and T. Nakada, 1-y ) 2 thin film solar cells », A comparative study of Cd-and Zn-compound buffer layers on Cu, vol.24, pp.389-396, 2015.

S. Spiering, A. Nowitzki, F. Kessler, M. Igalson, and H. Maksoud, « Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation, vol.144, pp.544-550, 2016.

J. Lindahl, J. T. Wätjen, A. Hultqvist, T. Ericson, M. Edoff et al., Se 2 solar cells, The effect of Zn 1-x Sn x O y buffer layer thickness in 18.0% efficient Cd-free Cu, vol.21, pp.1588-1597, 2013.

F. Larsson, O. Donzel-gargand, J. Keller, M. Edoff, and T. Törndahl, Se 2 solar cells with KF post-deposition treatment, Atomic layer deposition of Zn(O,S) buffer layers for Cu, vol.183, pp.8-15, 2018.

A. Wachau, J. Schulte, P. Agoston, F. Hübler, A. Steigert et al., « Sputtered Zn(O,S) buffer layers for CIGS solar modules-from lab to pilot production : sputtered Zn(O,S) buffer layers for CIGS solar modules, Progress in Photovoltaics : Research and Applications, vol.25, pp.696-705, 2017.

N. Bibliographie-70, S. Naghavi, T. Temgoua, and J. Hildebrandt, Guillemoles et D. Lincot, « Impact of oxygen concentration during the deposition of window layers on lowering the metastability effects in Cu(In,Ga)Se 2 /CBD Zn(S,O) based solar cell, Progress in Photovoltaics : Research and Applications, vol.23, pp.1820-1827, 2015.

C. Platzer-björkman, T. Törndahl, A. Hultqvist, J. Kessler, and M. Edoff, « Optimization of ALD-(Zn,Mg)O buffer layers and (Zn,Mg)O/Cu(In,Ga)Se 2 interfaces for thin film solar cells, Thin Solid Films, vol.515, pp.6024-6027, 2007.

J. Cha, S. Kwon, J. A. Bae, S. H. Yang, and C. Jeon, Effect of the deposition process of window layers on the performance of CIGS solar cells, Journal of Alloys and Compounds, vol.708, pp.562-567, 2017.

B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff et al., « Employing si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se 2 solar cells, Progress in Photovoltaics : Research and Applications, vol.22, pp.1023-1029, 2014.

R. L. Puurunen, « Surface chemistry of atomic layer deposition : a case study for the trimethylaluminum/water process », Journal of Applied Physics, vol.97, p.121301, 2005.

N. Schneider and F. Donsanti, Atomic layer deposition (ALD) -principes généraux, matériaux et applications, 2016.

J. Bachmann, Atomic layer deposition in energy conversion applications, vol.308, 2017.

S. M. George, « Atomic layer deposition : an overview, Chemical Reviews, vol.110, pp.111-131, 2010.

T. Belmonte, Dépôts chimiques à partir d'une phase gazeuse, 2010.

N. P. Dasgupta, H. J. Jung, O. Trejo, M. T. Mcdowell, A. Hryciw et al., « Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces, Nano Letters, vol.11, pp.934-940, 2011.

N. Schneider, M. Bouttemy, P. Genevée, D. Lincot, and F. Donsanti, « Deposition of ultra thin CuInS 2 absorber layers by ALD for thin film solar cells at low temperature (down to 150°C), Nanotechnology, vol.26, p.54001, 2015.

J. Elam, Z. Sechrist, S. George, and . Zno, Al 2 O 3 nanolaminates fabricated by atomic layer deposition : growth and surface roughness measurements, Thin Solid Films, vol.414, pp.43-55, 2002.

C. Goehry and N. Schneider, « Chemical processes involved in atomic layer deposition of gallium sulfide : insights from theory, The Journal of Physical Chemistry C, vol.121, pp.5871-5881, 2017.

S. D. Elliott, Atomic-scale simulation of ALD chemistry, Semiconductor Science and Technology, vol.27, p.74008, 2012.

R. L. Puurunen and W. Vandervorst, « Island growth as a growth mode in atomic layer deposition : a phenomenological model, Journal of Applied Physics, vol.96, pp.7686-7695, 2004.

J. A. Venables, G. D. Spiller, and M. Hanbucken, Reports on Progress in Physics, vol.47, p.399, 1984.

T. P. Brennan, P. Ardalan, H. Lee, J. R. Bakke, I. Ding et al., Bent, « Atomic layer deposition of CdS quantum dots for solid-state quantum dot sensitized solar cells, Advanced Energy Materials, vol.1, pp.1169-1175, 2011.

R. Vallat, R. Gassilloud, B. Eychenne, and C. Vallée, « Selective deposition of Ta 2 O 5 by adding plasma etching super-cycles in plasma enhanced atomic layer deposition steps, Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.35, pp.1-104, 2017.

G. S. Oehrlein, D. Metzler, and C. Li, Atomic layer etching at the tipping point : an overview, ECS Journal of Solid State Science and Technology, vol.4, pp.5041-5053, 2015.

H. Lee, M. N. Mullings, X. Jiang, B. M. Clemens, and S. F. , Bent, « Nucleation-controlled growth of nanoparticles by atomic layer deposition, Chemistry of Materials, vol.24, pp.4051-4059, 2012.

S. Daniele, Chimie des précurseurs pour le procédé ALD, 2016.

C. S. Hwang, Atomic layer deposition for semiconductors, 2014.

I. Nuta and E. Blanquet, Evaluation thermodynamique des précurseurs ALD, 2016.

J. S. Chickos and W. E. Acree, Enthalpies of vaporization of organic and organometallic compounds, vol.32, pp.519-878, 2003.

J. Kools, Réacteurs ALD, 2016.

D. Muñoz-rojas, Dépôts par couche atomique spatiale (SALD), 2016.

J. A. Van-delft, D. Garcia-alonso, and W. M. Kessels, Atomic layer deposition for photovoltaics : applications and prospects for solar cell manufacturing, Semiconductor Science and Technology, vol.27, p.74002, 2012.

P. Poodt, D. C. Cameron, E. Dickey, S. M. George, V. Kuznetsov et al., « Spatial atomic layer deposition : a route towards further industrialization of atomic layer deposition », Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.30, p.10802, 2011.

C. Frijters, P. J. Bolt, P. Poodt, R. Knaapen, J. Van-den et al., « Atmospheric spatial atomic-layer-deposition of Zn(O,S) buffer layer for flexible Cu(In,Ga)Se 2 solar cells : from lab-scale to large area roll to roll processing, Photovoltaic specialists conference (PVSC), pp.1449-1451, 2016.

R. L. Puurunen, « A short history of atomic layer deposition : tuomo suntola's atomic layer epitaxy : a short history of atomic layer », Chemical Vapor Deposition, vol.20, pp.332-344, 2014.

E. Ahvenniemi, A. R. Akbashev, S. Ali, M. Bechelany, M. Berdova et al.,

S. Hwang, T. Jen, J. Kallio, I. Kanervo, D. H. Khmelnitskiy et al.,

T. Kääriäinen, L. Kääriäinen, A. A. Lamagna, M. ?apicki, H. Leskelä et al., Review article : recommended reading list of early publications on atomic layer deposition -outcome of the "virtual project on the history of ALD" », vol.35, p.10801, 2017.

T. Suntola and J. Antson, , 1977.

T. Maindron and M. Bedjaoui, Encapsulation des diodes organiques électroluminscentes et microbatteries par ALD, 2016.

X. Meng, X. Wang, D. Geng, C. Ozgit-akgun, N. Schneider et al., Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology, Materials Horizons, vol.4, pp.133-154, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02148667

I. J. Raaijmakers, « Current and future applications of ALD in micro-electronics, ECS Transactions, vol.41, pp.3-17, 2011.

M. Gros-jean and A. Mantoux, ALD en microélectronique. applications, équipements et productivité, 2016.

C. Marichy and M. Bechelany, ALD pour des applications capteurs, biocapteurs et membranes, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01702135

J. R. Bakke, K. L. Pickrahn, T. P. Brennan, and S. F. , Bent, « Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition, Nanoscale, vol.3, p.3482, 2011.

W. Niu, X. Li, S. K. Karuturi, D. W. Fam, H. Fan et al., Applications of atomic layer deposition in solar cells », vol.26, p.64001, 2015.

L. Santinacci, Utilisation de l'ALD pour la photoélectrolyse de l'eau, 2016.

M. Cassir, D. Dallel, A. Melendez-ceballos, and M. , ALD pour les piles à combustible à haute température, 2016.

A. F. Palmstrom, P. K. Santra, and S. F. Bent, Atomic layer deposition in nanostructured photovoltaics : tuning optical, electronic and surface properties, Nanoscale, vol.7, pp.12266-12283, 2015.

J. Park, H. Chae, H. K. Chung, and S. I. Lee, Thin film encapsulation for flexible AM-OLED : a review, vol.26, p.34001, 2011.

. Bibliographie,

H. T. , « Procédé permettant de former un diélectrique de grille sur une surface de graphène

D. Pelissier and N. Schneider, ALD pour les cellules photovoltaïques, 2016.

L. Ma, R. B. Nuwayhid, T. Wu, Y. Lei, K. Amine et al., Atomic layer deposition for lithium-based batteries, Advanced Materials Interfaces, vol.3, p.1600564, 2016.

A. H. Brozena, C. J. Oldham, and G. N. Parsons, « Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles », Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.34, p.10801, 2016.

G. N. Parsons, H. G. Kevin, J. C. Spagnola, and P. Qing, « Procédé de modification de polymères, de fibres et de supports textiles, 2009.

B. J. O'neill, D. H. Jackson, J. Lee, C. Canlas, P. C. Stair et al., Catalyst design with atomic layer deposition, vol.5, pp.1804-1825, 2015.

S. A. Skoog, J. W. Elam, and R. J. Narayan, « Atomic layer deposition : medical and biological applications, International Materials Reviews, vol.58, pp.113-129, 2013.

M. Makela, P. Soininen, and S. Sneck, Protective coating of silver », brev. europ. 2468921A1 (Beneq, 2014.

A. E. Marquardt, E. M. Breitung, T. Drayman-weisser, G. Gates, and R. J. Phaneuf, « Protecting silver cultural heritage objects with atomic layer deposited corrosion barriers, Heritage Science, vol.3, p.37, 2015.

R. W. Johnson, A. Hultqvist, and S. F. , Bent, « A brief review of atomic layer deposition : from fundamentals to applications, Materials Today, vol.17, pp.236-246, 2014.

E. Alvaro and A. Yanguas-gil, Characterizing the field of atomic layer deposition : authors, topics, and collaborations, vol.13, p.189137, 2018.

J. Schmidt, F. Werner, B. Veith, D. Zielke, R. Bock et al., « Industrially relevant Al 2 O 3 deposition techniques for the surface passivation of Si solar cells, Proceedings of the 25th european photovoltaic solar energy conference, pp.1130-1133, 2010.

R. Gortzen, Translating 2nd generation InPassion ALD into significant financial gains, 2016.

I. W. Group, International technology roadmap for photovoltaic (ITRPV) -results 2016, including maturity report

B. Vermang, H. Goverde, A. Uruena, A. Lorenz, E. Cornagliotti et al., « Blistering in ALD Al 2 O 3 passivation layers as rear contacting for local Al BSF Si solar cells, Solar Energy Materials and Solar Cells, vol.101, pp.204-209, 2012.

B. Macco, D. Deligiannis, S. Smit, R. Van-swaaij, M. Zeman et al., « Influence of transparent conductive oxides on passivation of a-Si :H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO, Science and Technology, vol.29, p.122001, 2014.

A. Dip, G. M. Eldallal, P. C. Colter, N. Hayafuji, and S. M. Bedair, Atomic layer epitaxy of GaAs with a 2 µm/h growth rate, vol.62, pp.2378-2380, 1993.

N. Hayafuji, G. M. Eldallal, A. Dip, P. C. Colter, N. A. El-masry et al., Atomic layer epitaxy of device quality AlGaAs and AlAs, vol.82, pp.18-22, 1994.

E. Thimsen, S. C. Riha, S. V. Baryshev, A. B. Martinson, J. W. Elam et al., Atomic layer deposition of the quaternary chalcogenide Cu 2 ZnSnS 4, vol.24, pp.3188-3196, 2012.

M. Pessa, P. Huttunen, and M. A. Herman, « Atomic layer epitaxy and characterization of CdTe films grown on CdTe (110) substrates », Journal of Applied Physics, vol.54, pp.6047-6050, 1983.

S. Sinha, D. K. Nandi, S. Kim, and J. Heo, « Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials : a review, Solar Energy Materials and Solar Cells, vol.176, pp.49-68, 2018.

J. Löckinger, S. Nishiwaki, T. P. Weiss, B. Bissig, Y. E. Romanyuk et al., « TiO 2 as intermediate buffer layer in Cu(In,Ga)Se 2 solar cells, Solar Energy Materials and Solar Cells, vol.174, pp.397-404, 2018.

P. F. Carcia, R. S. Mclean, and S. Hegedus, « Encapsulation of Cu(In,Ga)Se 2 solar cell with Al 2 O 3 thin-film moisture barrier grown by atomic layer deposition, Solar energy materials and Solar cells, vol.94, pp.2375-2378, 2010.

V. Zardetto, B. L. Williams, A. Perrotta, F. D. Giacomo, M. A. Verheijen et al., Atomic layer deposition for perovskite solar cells : research status, opportunities and challenges, Sustainable Energy & Fuels, vol.1, pp.30-55, 2017.

A. Hultqvist, K. Aitola, K. Sveinbjörnsson, Z. Saki, F. Larsson et al., Atomic layer deposition of electron selective SnO x and ZnO films on mixed halide perovskite : compatibility and performance, ACS Applied Materials & Interfaces, vol.9, pp.29707-29716, 2017.

H. M. Yates, M. Afzaal, A. Walter, J. L. Hodgkinson, S. Moon et al., « Progression towards high efficiency perovskite solar cells via optimisation of the front electrode and blocking layer », Journal of Materials Chemistry C, vol.4, pp.11269-11277, 2016.

B. Macco, Y. Wu, D. Vanhemel, and W. M. Kessels, « High mobility In 2 O 3 :H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization », physica status solidi (RRL)-Rapid Research Letters, vol.8, pp.987-990, 2014.

C. Chang, K. Lee, W. Huang, H. Siao, and Y. Chang, Highperformance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition, Chemistry of Materials, vol.140, pp.5122-5130, 2015.

C. Chang, C. Chou, Y. Lee, M. Chen, and F. Tsai, « Thin-film encapsulation of polymer-based bulk-heterojunction photovoltaic cells by atomic layer deposition, Organic Electronics, vol.10, pp.1300-1306, 2009.

D. H. Kim, M. D. Losego, Q. Peng, and G. N. Parsons, Atomic layer deposition for sensitized solar cells : recent progress and prospects, Advanced Materials Interfaces, vol.3, p.1600354, 2016.

J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Tok et al., « Homogeneous photosensitization of complex TiO 2 nanostructures for efficient solar energy conversion, Scientific Reports, vol.2, p.451, 2012.

C. Platzer-björkman, T. Törndahl, D. Abou-ras, J. Malmström, J. Kessler et al., O,S) buffer layers by atomic layer deposition in Cu(In,Ga)Se 2 based thin film solar cells : band alignment and sulfur gradient », Journal of Applied Physics, vol.100, p.44506, 2006.

Y. Ohtake, K. Kushiya, M. Ichikawa, A. Yamada, M. Konagai et al., Se 2 thin-film solar cells with ZnSe buffer layers, vol.34, pp.5949-5955, 1995.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, « Highefficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD) », Progress in Photovoltaics, Research and Applications, vol.11, pp.437-443, 2003.

P. Genevée, A. Darga, C. Longeaud, D. Lincot, and F. Donsanti, Atomic layer deposition of ZnIn x S y buffer layers for Cu(In,Ga)Se 2 solar cells, Journal of Renewable and Sustainable Energy, vol.7, p.13116, 2015.

C. Bugot, N. Schneider, M. Bouttemy, A. Etcheberry, D. Lincot et al., « Study of atomic layer deposition of indium oxy-sulfide films for Cu(In,Ga)Se 2 solar cells, Thin Solid Films, vol.582, pp.340-344, 2015.

T. Törndahl, A. Hultqvist, C. Platzer-björkman, and M. Edoff, « Growth and characterization of ZnO-based buffer layers for CIGS solar cells, Proceedings SPIE 7603, oxide-based materials and devices, p.76030, 2010.

C. Bugot, N. Schneider, M. Jubault, D. Lincot, and F. Donsanti, « Temperature effect on zinc oxysulfide-Zn(O,S) films synthesized by atomic layer deposition for Cu(In,Ga)Se 2 solar cells », Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.33, pp.1-151, 2015.

E. B. Yousfi, B. Weinberger, F. Donsanti, P. Cowache, and D. Lincot, « Atomic layer deposition of zinc oxide and indium sulfide layers for Cu(In,Ga)Se 2 thin-film solar cells, Thin Solid Films, vol.387, pp.29-32, 2001.

D. Garcia-alonso and S. E. Potts, Atomic layer deposition of B-doped ZnO using triisopropyl borate as the boron precursor and comparison with Al-doped ZnO, Verheijen et W. M. M. Kessels, «, vol.3, pp.3095-3107, 2015.

B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, « Development of rear surface passivated Cu(In,Ga)Se 2 thin film solar cells with nano-sized local rear point contacts, Solar Energy Materials and Solar cells, vol.117, pp.505-511, 2013.

S. Prasert, S. Leizhi, L. S. Woon, P. H. Hejin, K. S. Bok et al., « Overcoming efficiency limitations of SnS-based solar cells, Advanced Energy Materials, vol.4, p.1400496, 2014.

S. C. Riha, A. A. Koegel, J. D. Emery, M. J. Pellin, and A. B. , Martinson, « Low-temperature atomic layer deposition of CuSbS 2 for thin-film photovoltaics, ACS Applied Materials & Interfaces, vol.9, pp.4667-4673, 2017.

M. Nanu, L. Reijnen, B. Meester, J. Schoonman, and A. Goossens, « CuInS 2 thin films deposited by ALD », Chemical Vapor Deposition, vol.10, pp.45-49, 2004.

M. Nanu, J. Schoonman, and A. Goossens, « Solar-energy conversion in TiO 2 / CuInS 2 nanocomposites, Advanced Functional Materials, vol.15, pp.95-100, 2005.

B. M. Sager, M. R. Roscheisen, and C. Leidholm, « Formation of CIGS absorber layer materials using atomic layer deposition and high throughput surface treatments on coiled flexible substrates. », brev. amér, vol.19, 2004.

, Les Echos investir, « Matières premières, 2018.

S. S. Ltd, « Singapore solar index -forward polysilicon pricing, 2018.

E. Commission, Study on the review of the list of critical raw materials 2017 -critical raw materials factsheets, 2017.

F. Tsin, A. Venerosy, J. Vidal, S. Collin, J. Clatot et al., « Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell, Scientific Reports, vol.5, p.8961, 2015.

G. M. Kimball, N. Mackie, M. Parker, and A. Bayman, « Evaluation of microand nanoscale uniformity in all-PVD Cu(In,Ga)Se 2 solar cells », in Photovoltaic specialist conference (PVSC), pp.2771-2774

E. B. Yousfi, Al 2 O 3 ) et de sulfures (ZnS, In 2 S 3 ) par la méthode de dépôt chimique en phase vapeur à flux alternés (ALE) : etude par microgravimétrie à quartz et application à la réalisation des cellules solaires à base de Cu, Etude de la croissance de couches minces d'oxydes (ZnO, 2000.

L. Duclaux, F. Donsanti, J. Vidal, M. Bouttemy, N. Schneider et al., Simulation and growing study of Cu-Al-S thin films deposited by atomic layer deposition, Thin Solid Films, vol.594, pp.232-237, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02148655

F. Donsanti, « Comparaison de procédés de dépôt de couches minces semiconductrices à partir de précurseurs organométalliques. cas des réacteurs ALCVD et réacteur plasma diode hors équilibre (PACVD). », thèse de doct, 2003.

S. Li, « Optimization of precursor pulsing in ALD, 2008.

T. Pauporté and D. Lincot, Microbalance à cristal de quartz, 2006.

J. Friedt, « Introduction à la microbalance à quartz : aspects théoriques et expérimentaux », Bulletin de l'Union de Physiciens 97, pp.429-440, 2003.

K. Knapas and M. Ritala, « In situ studies on reaction mechanisms in atomic layer deposition, vol.38, pp.167-202, 2013.

K. Knapas and M. Ritala, « In situ reaction mechanism studies on atomic layer deposition of Ir and IrO 2 from Ir(acac) 3 », Chemistry of Materials, vol.23, pp.2766-2771, 2011.

X. Meng, J. A. Libera, T. T. Fister, H. Zhou, J. K. Hedlund et al., Atomic layer deposition of gallium sulfide films using hexakis(dimethylamido)digallium and hydrogen sulfide, Chemistry of Materials, vol.26, pp.1029-1039, 2014.

A. J. Mackus, C. Macisaac, W. Kim, and S. F. , Bent, « Incomplete elimination of precursor ligands during atomic layer deposition of zinc-oxide, tin-oxide, and zinc-tin-oxide, The Journal of Chemical Physics, vol.146, p.52802, 2017.

S. Sinha, N. Mahuli, and S. K. Sarkar, « Atomic layer deposition of aluminum sulfide thin films using trimethylaluminum and hydrogen sulfide », Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.33, pp.1-139, 2015.

E. Langereis, S. B. Heil, H. C. Knoops, W. Keuning, M. C. Van-de-sanden et al., « In situ spectroscopic ellipsometry as a versatile tool for studying atomic layer deposition, Journal of Physics D : Applied Physics, vol.42, p.73001, 2009.

J. Dendooven, E. Solano, M. M. Minjauw, K. V. Kerckhove, A. Coati et al., Detavernier, « Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition, Review of Scientific Instruments, vol.87, p.113905, 2016.

J. Dendooven, S. Sree, K. Keyser, D. Deduytsche, J. A. Martens et al., « In situ x-ray fluorescence measurements during atomic layer deposition : nucleation and growth of TiO 2 on planar substrates and in nanoporous films, The Journal of Physical Chemistry C, vol.115, pp.6605-6610, 2011.

K. Devloo-casier, J. Dendooven, K. F. Ludwig, G. Lekens, J. D'haen et al., « In situ synchrotron based x-ray fluorescence and scattering measurements during atomic layer deposition : initial growth of HfO 2 on Si and Ge substrates, Applied Physics Letters, vol.98, p.231905, 2011.

R. Boichot, L. Tian, M. Richard, A. Crisci, A. Chaker et al., « Evolution of crystal structure during the initial stages of ZnO atomic layer deposition, Chemistry of Materials, vol.28, pp.592-600, 2016.

M. Amlouk, M. B. Said, N. Kamoun, S. Belgacem, and N. Brunet, Barjon, « Acoustic properties of bêta-In 2 S 3 thin films prepared by spray, vol.38, p.26, 1999.

K. J. Lesker, Manuel opératoire de la QCM FTC-2800 -base de données des paramètres matériaux (densité, z), 2009.

A. Rahtu, T. Alaranta, and M. Ritala, « In situ quartz crystal microbalance and quadrupole mass spectrometry studies of atomic layer deposition of aluminum oxide from trimethylaluminum and water, Langmuir, vol.17, pp.6506-6509, 2001.

J. W. Elam, M. D. Groner, and S. M. George, « Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition, Review of Scientific Instruments, vol.73, pp.2981-2987, 2002.

J. W. Elam and S. M. George, Growth of ZnO/Al 2 O 3 alloy films using atomic layer deposition techniques, Chemistry of Materials, vol.15, pp.1020-1028, 2003.

M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Lowtemperature Al 2 O 3 atomic layer deposition, Chemistry of Materials, vol.16, pp.639-645, 2004.

Z. Gao, F. Wu, Y. Myung, R. Fei, R. Kanjolia et al., « Standing and sitting adlayers in atomic layer deposition of ZnO », Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.34, pp.1-143, 2016.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov et al., A comprehensive review of ZnO materials and devices », vol.98, p.41301, 2005.

C. Jagadish and S. J. Pearton, Zinc oxide bulk, thin films and nanostructures : processing, properties, and applications, vol.600, p.p, 2006.

K. Ellmer, A. Klein, and B. Rech, Transparent conductive zinc oxide : basics and applications in thin film solar cells, Series in Materials Science, vol.29, p.p, 2007.

K. Ellmer and A. Bikowski, « Intrinsic and extrinsic doping of ZnO and ZnO alloys », Journal of Physics D : Applied Physics, vol.49, p.413002, 2016.

L. Ding, S. Nicolay, J. Steinhauser, U. Kroll, and C. Ballif, Relaxing the conductivity/transparency trade-off in MOCVD ZnO thin films by hydrogen plasma, Advanced Functional Materials, vol.23, pp.5177-5182, 2013.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, « Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition, Thin Solid Films, vol.445, pp.263-267, 2003.

M. Ohyama, H. Kozuka, and T. Yoko, « Sol-gel preparation of transparent and conductive aluminum-doped zinc oxide films with highly preferential crystal orientation », Journal of the American Ceramic Society, vol.81, pp.1622-1632, 1998.

K. Ravichandran, N. Begum, S. Snega, and B. Sakthivel, « Properties of sprayed aluminum-doped zinc oxide films -a review, Materials and Manufacturing Processes, vol.31, pp.1411-1423, 2016.

T. Tynell, R. Okazaki, I. Terasaki, H. Yamauchi, and M. Karppinen, « Electron doping of ALD-grown ZnO thin films through Al and P substitutions », Journal of Materials Science, vol.48, pp.2806-2811, 2013.

A. Illiberi, R. Scherpenborg, Y. Wu, F. Roozeboom, and P. Poodt, « Spatial atmospheric atomic layer deposition of Al x Zn 1-x O », ACS Applied Materials & Interfaces, vol.5, pp.13124-13128, 2013.

M. Johnson, S. Fujita, W. Rowland, W. Hughes, J. Cook et al., Schetzina, « MBE growth and properties of ZnO on sapphire and SiC substrates », Journal of Electronic Materials, vol.25, pp.699-700, 1996.

J. L. Vossen, « Glow discharge phenomena in plasma etching and plasma deposition », Journal of the Electrochemical Society, vol.126, pp.319-324, 1979.

F. Larsson, J. Keller, M. Edoff, and T. Törndahl, « Evaluation of different intrinsic ZnO and transparent conducting oxide layer combinations in Cu(In,Ga)Se 2 solar cells, Thin Solid Films, vol.633, pp.235-238, 2017.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl et al., « All solution-processed chalcogenide solar cells -from single functional layers towards a 13.8% efficient CIGS device, Advanced Functional Materials, vol.25, pp.12-27, 2015.

E. B. Yousfi, T. Asikainen, V. Pietu, P. Cowache, and M. Powalla, Lincot, « Cadmium-free buffer layers deposited by atomic later epitaxy for copper indium diselenide solar cells, Thin Solid Films, pp.183-186, 2000.

S. State, Wurtzite polyhedra -public, 2006.

S. C. Abrahams and J. L. Bernstein, Remeasurement of the structure of hexagonal ZnO », vol.25, pp.1233-1236, 1969.

A. Janotti and C. G. Walle, « Fundamentals of zinc oxide as a semiconductor, Reports on Progress in Physics, vol.72, p.126501, 2009.

T. Tynell and M. Karppinen, Atomic layer deposition of ZnO : a review, vol.29, p.43001, 2014.

H. Yoshikawa and S. Adachi, « Optical constants of ZnO, Japanese Journal of Applied Physics, vol.36, p.6237, 1997.

E. B. Yousfi, J. Fouache, and D. Lincot, « Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry, Applied Surface Science, vol.153, pp.223-234, 2000.

J. D. Ferguson, A. W. Weimer, and S. M. George, « Surface chemistry and infrared absorbance changes during ZnO atomic layer deposition on ZrO 2 and BaTiO 3 particles, Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.23, pp.118-125, 2005.

P. Banerjee, W. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, « Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films, Journal of Applied Physics, vol.108, p.43504, 2010.

S. Yoshioka, F. Oba, R. Huang, I. Tanaka, T. Mizoguchi et al., Atomic structures of supersaturated ZnO-Al 2 O 3 solid solutions », Journal of Applied Physics, vol.103, p.14309, 2008.

J. W. Elam, D. Routkevitch, and S. M. George, Properties of ZnO/Al 2 O 3 alloy films grown using atomic layer deposition techniques », Journal of the Electrochemical Society, vol.150, pp.339-347, 2003.

K. Ellmer and R. Mientus, « Carrier transport in polycrystalline transparent conductive oxides : a comparative study of zinc oxide and indium oxide, Thin Solid Films, vol.516, pp.4620-4627, 2008.

M. Theelen, T. Boumans, F. Stegeman, F. Colberts, A. Illiberi et al., Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se 2 solar cells, Thin Solid Films, vol.550, pp.530-540, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988229

D. Lee, J. Kwon, S. Kim, H. Kim, and K. Kim, Effect of Al distribution on carrier generation of atomic layer deposited Al-doped ZnO films, Journal of the Electrochemical Society, vol.158, pp.277-281, 2011.

P. Genevée, F. Donsanti, G. Renou, and D. Lincot, « Study of the aluminum doping of zinc oxide films prepared by atomic layer deposition at low temperature, Applied Surface Science, vol.264, pp.464-469, 2013.

H. K. Park, B. S. Yang, S. Park, M. S. Kim, J. C. Shin et al., « Purgetime-dependent growth of ZnO thin films by atomic layer deposition, Journal of Alloys and Compounds, vol.605, pp.124-130, 2014.

H. Yuan, B. Luo, D. Yu, A. Cheng, S. A. Campbell et al., Gladfelter, « Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source : a comparison of two methods to deliver aluminum », Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.30, pp.1-138, 2012.

X. Qian, Y. Cao, B. Guo, H. Zhai, and A. Li, « Atomic layer deposition of Aldoped ZnO films using aluminum isopropoxide as the Al precursor, Chemical Vapor Deposition, vol.19, pp.180-185, 2013.

M. Li, X. Qian, A. Li, Y. Cao, H. Zhai et al., « A comparative study of growth and properties of atomic layer deposited transparent conductive oxide of Al doped ZnO films from different Al precursors, Thin Solid Films, vol.646, pp.126-131, 2018.

Y. Wu, S. E. Potts, P. M. Hermkens, H. C. Knoops, F. Roozeboom et al., « Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor, Chemistry of Materials, vol.25, pp.4619-4622, 2013.

M. Lin, J. Huang, C. Ku, C. Lin, and H. Juang, High mobility transparent conductive Al-doped ZnO thin films by atomic layer deposition, Journal of Alloys and Compounds, vol.727, pp.565-571, 2017.

Y. Choi, S. C. Gong, D. C. Johnson, S. Golledge, G. Y. Yeom et al., « Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition, Applied Surface Science, vol.269, pp.92-97, 2013.

J. Bibliographie, C. Huang, C. Ku, S. Lin, H. Chen et al., « In situ Aldoped ZnO films by atomic layer deposition with an interrupted flow, Materials Chemistry and Physics, vol.165, pp.245-252, 2015.

J. Y. Kim, Y. Choi, H. Park, S. Golledge, and D. C. Johnson, « Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films, Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.28, p.1111, 2010.

J. Na, Q. Peng, G. Scarel, and G. N. Parsons, Role of gas doping sequence in surface reactions and dopant incorporation during atomic layer deposition of Al-doped ZnO, Chemistry of Materials, vol.21, pp.5585-5593, 2009.

J. Na, G. Scarel, and G. N. Parsons, « In situ analysis of dopant incorporation, activation, and film growth during thin film ZnO and ZnO :Al atomic layer deposition, The Journal of Physical Chemistry C, vol.114, pp.383-388, 2010.

E. B. Pollock and R. J. Lad, « Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition, Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.32, p.41516, 2014.

R. C. Weast, M. J. Astle, and W. H. Beyer, CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data, 1983.

Y. Wu, A. D. Giddings, M. A. Verheijen, B. Macco, T. J. Prosa et al., « Dopant distribution in atomic layer deposited ZnO :Al films visualized by transmission electron microscopy and atom probe tomography, Chemistry of Materials, vol.30, pp.1209-1217, 2018.

C. Zhai, R. Zhang, X. Chen, Y. Zheng, S. Wang et al., Effects of Al doping on the properties of ZnO thin films deposited by atomic layer deposition, Nanoscale research letters, vol.11, p.407, 2016.

A. Yanguas-gil, K. E. Peterson, and J. W. Elam, « Controlled dopant distribution and higher doping efficiencies by surface-functionalized atomic layer deposition, Chemistry of Materials, vol.23, pp.4295-4297, 2011.

J. I. Pankove, Optical processes in semiconductors, vol.454, 1971.

E. Burstein, « Anomalous optical absorption limit in InSb, Physical Review, vol.93, pp.632-633, 1954.

J. Tauc, R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium », physica status solidi (b), vol.15, pp.627-637, 1966.

A. Sarkar, S. Ghosh, S. Chaudhuri, and A. K. , « Studies on electron transport properties and the burstein-moss shift in indium-doped ZnO films, Thin Solid Films, vol.204, pp.255-264, 1991.

B. E. Sernelius, K. Berggren, Z. Jin, I. Hamberg, and C. , Granqvist, « Band-gap tailoring of ZnO by means of heavy Al doping, Physical Review B, vol.37, p.10244, 1988.

H. L. Tulzo, N. Schneider, D. Lincot, G. Patriarche, and F. Donsanti, « Impact of the sequence of precursor introduction on the growth and properties of atomic layer deposited Al-doped ZnO films, Journal of Vacuum Science & Technology A, vol.36, p.41502, 2018.

J. W. Elam, J. A. Libera, M. J. Pellin, and P. C. Stair, Spatially controlled atomic layer deposition in porous materials, vol.91, p.243105, 2007.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH image to ImageJ : 25 years of image analysis, 2012.

Y. Wu, P. M. Hermkens, B. W. Van-de-loo, H. C. Knoops, S. E. Potts et al., Kessels, « Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition, Journal of Applied Physics, vol.114, p.24308, 2013.

J. Y. Seto, « The electrical properties of polycrystalline silicon films, Journal of Applied Physics, vol.46, pp.5247-5254, 1975.

S. K. Sarkar, J. Y. Kim, D. N. Goldstein, N. R. Neale, K. Zhu et al., « In 2 S 3 atomic layer deposition and its application as a sensitizer on TiO 2 nanotube arrays for solar energy conversion, The Journal of Physical Chemistry C, vol.114, pp.8032-8039, 2010.

T. Muneshwar, K. Cadien, and «. Axbaxb, pulsed atomic layer deposition : numerical growth model and experiments », Journal of Applied Physics, vol.119, p.85306, 2016.

S. K. Kim, G. Choi, and C. S. Hwang, « Controlling the composition of doped materials by ALD : a case study for Al-doped TiO 2 films, Electrochemical and Solid-State Letters, vol.11, p.27, 2008.

L. Vegard, « Die konstitution der mischkristalle und die raumfüllung der atome, Zeitschrift für Physik, vol.5, pp.17-26, 1921.

N. Barreau, « Indium sulfide and relatives in the world of photovoltaics, Solar Energy, vol.83, pp.363-371, 2009.

J. Guillemoles, B. Canava, E. B. Yousfi, P. Cowache, A. Galtayries et al., « Indium-based interface chemical engineering by electrochemistry and atomic layer deposition for copper indium diselenide solar cells, Japanese Journal of Applied Physics, vol.40, p.6065, 2001.

M. A. Mughal, R. Engelken, and R. Sharma, « Progress in indium (III) sulfide (In 2 S 3 ) buffer layer deposition techniques for CIS, CIGS, and CdTe-based thin film solar cells, Solar Energy, vol.120, pp.131-146, 2015.

F. Couzinié-devy, L. Arzel, N. Barreau, C. Guillot-deudon, S. Harel et al., « Characterization of (In 1-x Al x ) 2 S 3 thin films grown by co-evaporation », Journal of Crystal Growth, vol.312, pp.502-506, 2010.

N. Jebbari, F. Saadallah, C. Guasch, N. K. Turki, N. Yacoubi et al., Applied Physics A, vol.116, pp.2011-2017, 2014.

N. Barreau, J. C. Bernede, C. Deudon, L. Brohan, and S. Marsillac, « Study of the new bêta-In 2 S 3 containing Na thin films part i : synthesis and structural characterization of the material », Journal of crystal growth, vol.241, pp.4-14, 2002.

A. Lafond, C. Guillot-deudon, S. Harel, A. Mokrani, N. Barreau et al., « Structural study and electronic band structure investigations of the solid solution Na x Cu 1-x In 5 S 8 and its impact on the Cu(In,Ga)Se 2 /In 2 S 3 interface of solar cells, Thin Solid Films, vol.515, pp.6020-6023, 2007.

M. Mathew, R. Jayakrishnan, P. M. Kumar, C. Kartha, K. P. Vijayakumar et al., « Anomalous behavior of silver doped indium sulfide thin films, Journal of Applied Physics, vol.100, p.33504, 2006.

M. Kraini, N. Bouguila, J. Koaib, C. Vázquez-vázquez, M. A. López-quintela et al., « Experiments on In 2 S 3 :Sn thin films with up to 1% tin content, Journal of Electronic Materials, vol.45, pp.5936-5947, 2016.

M. Mathew, M. Gopinath, C. S. Kartha, K. P. Vijayakumar, Y. Kashiwaba et al., « Tin doping in spray pyrolysed indium sulfide thin films for solar cell applications, Solar Energy, vol.84, pp.888-897, 2010.

R. F. Mccarthy, M. S. Weimer, R. T. Haasch, R. D. Schaller, and A. S. , Hock et A. B. F. Martinson, « V x In 2-x S 3 intermediate band absorbers deposited by atomic layer deposition, Chemistry of Materials, vol.28, pp.2033-2040, 2016.

N. Barreau, S. Marsillac, D. Albertini, and J. , Bernede, « Structural, optical and electrical properties of bêta-In 2 S 3-3x O 3x thin films obtained by PVD, Thin Solid Films, vol.403, pp.331-334, 2002.

C. Bugot, N. Schneider, D. Lincot, and F. Donsanti, « Synthesis of indium oxi-sulfide films by atomic layer deposition : the essential role of plasma enhancement. », Beilstein journal of nanotechnology, vol.4, pp.750-757, 2013.

P. Genevée, F. Donsanti, G. Renou, and D. Lincot, « Study of growth mechanism and properties of zinc indium sulfide thin films deposited by atomic layer chemical vapor deposition over the entire range of composition, The Journal of Physical Chemistry C, vol.115, pp.17197-17205, 2011.

P. Genevée, F. Donsanti, N. Schneider, and D. Lincot, « Atomic layer deposition of zinc indium sulfide films : mechanistic studies and evidence of surface exchange reactions and diffusion processes », Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.31, pp.1-131, 2013.

T. I. , for Diffraction Data Powder., « Diffraction file, 1970.

C. J. , Rooymans, « A new type of cation-vacancy ordering in the spinel lattice of In 2 S 3, Journal of Inorganic and Nuclear Chemistry, vol.11, pp.78-79, 1959.

W. Rehwald and G. Harbeke, « On the conduction mechanism in single crystal bêta-indium sulfide In 2 S 3, Journal of Physics and Chemistry of Solids, vol.26, pp.1309-1324, 1965.

N. Naghavi, R. Henriquez, V. Laptev, and D. Lincot, « Growth studies and characterisation of In 2 S 3 thin films deposited by atomic layer deposition (ALD), Applied Surface Science, vol.222, pp.65-73, 2004.

R. F. Mccarthy, M. S. Weimer, J. D. Emery, A. S. Hock, and A. B. , Martinson, « Oxygen-free atomic layer deposition of indium sulfide, ACS Applied Material Interfaces, vol.6, pp.12137-12145, 2014.

T. Asikainen, M. Ritala, and M. Leskelä, « Growth of In 2 S 3 thin films by atomic layer epitaxy, Applied Surface Science, vol.82, pp.122-125, 1994.

J. Sterner, J. Malmström, and L. Stolt, « Study on ALD In 2 S 3 /Cu(In,Ga)Se 2 interface formation, Progress in Photovoltaics : Research and Applications, vol.13, pp.179-193, 2005.

Y. N. Liang, K. Yu, Q. Yan, and X. Hu, « Colloidal CuInSe 2 nanocrystals : from gradient stoichiometry toward homogeneous alloyed structure mediated by conducting polymer P3HT, ACS Applied Materials & Interfaces, vol.5, pp.4100-4106, 2013.

J. Nishino, T. Kawarada, S. Ohshio, H. Saitoh, K. Maruyama et al., « Conductive indium-doped zinc oxide films prepared by atmosphericpressure chemical vapour deposition », Journal of Materials Science Letters, vol.16, pp.629-631, 1997.

M. Gebhard, M. Hellwig, A. Kroll, D. Rogalla, M. Winter et al., « New amidinate complexes of indium : promising CVD precursors for transparent and conductive In 2 O 3 thin films, Dalton Transactions, vol.46, pp.10220-10231, 2017.

Q. Ma and F. Zaera, Chemistry of Cu(acac) 2 on Ni(110) and Cu(110) surfaces : implications for atomic layer deposition processes. », vol.31, pp.1-112, 2013.

A. F. Bykov, A. E. Turgambaeva, I. K. Igumenov, and P. P. Semyannikov, Mass spectrometric study of thermolysis mechanism of metal acetylacetonates vapour, Le Journal de Physique IV, vol.5, pp.5-191, 1995.
URL : https://hal.archives-ouvertes.fr/jpa-00253846

K. Kishi, S. Ikeda, and «. Spectroscopic, Applications of Surface Science, vol.5, pp.37-48, 1980.

E. Thimsen, Q. Peng, A. B. Martinson, M. J. Pellin, and J. W. Elam, « Ion exchange in ultrathin films of Cu 2 S and ZnS under atomic layer deposition conditions, Chemistry of Materials, vol.23, pp.4411-4413, 2011.

S. Haukka, E. Lakomaa, and T. Suntola, « Surface coverage of ALE precursors on oxides, Applied surface science, vol.82, pp.548-552, 1994.

R. Silvennoinen, O. Jylhä, M. Lindblad, J. Sainio, R. Puurunen et al., « Atomic layer deposition of iridium(III) acetylacetonate on alumina, silica-alumina, and silica supports, Applied Surface Science, vol.253, pp.4103-4111, 2007.

M. N. Rocklein and S. M. George, « Temperature-Induced Apparent Mass Changes Observed during Quartz Crystal Microbalance Measurements of Atomic Layer Deposition », en, Analytical Chemistry, vol.75, pp.4975-4982, 2003.

J. Rousset, F. Donsanti, P. Genevée, G. Renou, and D. Lincot, Se 2 thin film solar cells terminated by an electrodeposited front contact, High efficiency cadmium free Cu, vol.95, pp.1544-1549, 2011.

. Bibliographie,

D. Hariskos, S. Spiering, and M. Powalla, Se 2 solar cells and modules », Thin Solid Films 480-481, Buffer layers in Cu, pp.99-109, 2005.

B. Tell, J. Shay, and H. Kasper, « Electrical properties, optical properties, and band structure of CuGaS 2 and CuInS 2 », Physical Review B, vol.4, p.2463, 1971.

D. C. Reynolds, G. Leies, L. L. Antes, and R. E. Marburger, « Photovoltaic effect in cadmium sulfide, Physical Review, vol.96, pp.533-534, 1954.

K. W. Böer, The CdS/Cu 2 S solar cell i. minority carrier generation and transport in the Cu 2 S emitter », physica status solidi (a), vol.40, pp.355-384, 1977.

K. W. Böer, The CdS/Cu 2 S solar cell. II. the junction and junction-emitter relation », physica status solidi (a), vol.66, pp.11-43, 1981.

J. A. Bragagnolo, A. M. Barnett, J. E. Phillips, R. B. Hall, A. Rothwarf et al., Meakin, « The design and fabrication of thin-film CdS/Cu 2 S cells of 9.15-percent conversion efficiency, IEEE Transactions on Electron Devices, vol.27, pp.645-651, 1980.

A. Al-dhafiri, G. Russell, and J. Woods, « Degradation in CdS-Cu 2 S photovoltaic cells, Semiconductor Science and Technology, vol.7, p.1052, 1992.

L. D. Partain, P. S. Mcleod, J. A. Duisman, T. M. Peterson, D. E. Sawyer et al., « Degradation of a Cu x S/CdS solar cell in hot, moist air and recovery in hydrogen and air, Journal of Applied Physics, vol.54, pp.6708-6720, 1983.

R. B. Hall, R. W. Birkmire, J. E. Phillips, and J. D. Meakin, « Thin-film polycrystalline Cu 2 S/Cd 1-x Zn x S solar cells of 10% efficiency, Applied Physics Letters, vol.38, pp.925-926, 1981.

R. Hall and J. Meakin, « The design and fabrication of high efficiency thin film CdS/Cu 2 S solar cells, Thin Solid Films, vol.63, pp.203-211, 1979.

M. Burgelman and H. Pauwels, « Theoretical advantages of pn + -type Cu 2 S-ZnO solar cell, Electronics Letters, vol.17, pp.224-226, 1981.

S. C. Riha, S. Jin, S. V. Baryshev, E. Thimsen, G. P. Wiederrecht et al., « Stabilizing Cu 2 S for photovoltaics one atomic layer at a time, ACS Applied Materials & Interfaces, vol.5, pp.10302-10309, 2013.

Y. Lou, A. C. Samia, J. Cowen, K. Banger, X. Chen et al., « Evaluation of the photoinduced electron relaxation dynamics of Cu 1.8 S quantum dots, Physical Chemistry Chemical Physics, vol.5, pp.1091-1095, 2003.

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu et al., Cu 2-x S nanocrystals : optical and structural properties of copper-deficient copper(i) sulfides », Journal of the American Chemical Society, vol.131, pp.4253-4261, 2009.

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese et al.,

. Manna, Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu + ions », vol.135, pp.17630-17637, 2013.

Y. B. He, A. Polity, I. Österreicher, D. Pfisterer, R. Gregor et al., « Hall effect and surface characterization of Cu 2 S and CuS films deposited by RF reactive sputtering, Physica B : Condensed Matter, vol.308, pp.1069-1073, 2001.

A. Rastogi, S. Salkalachen, and V. Bhide, « Electrical conduction and phase transitions in vacuum-deposited Cu 2-x S films, Thin Solid Films, vol.52, pp.1-10, 1978.

G. Liu, T. Schulmeyer, J. Brötz, A. Klein, and W. Jaegermann, « Interface properties and band alignment of Cu 2 S/CdS thin film solar cells », Thin Solid Films 431-432, pp.477-482, 2003.

C. Na?cu, I. Pop, V. Ionescu, and E. , Indrea et I. Bratu, « Spray pyrolysis deposition of CuS thin films, Materials letters, vol.32, pp.73-77, 1997.

J. Madarász, M. Okuya, and S. Kaneko, « Preparation of covellite and digenite thin films by an intermittent spray pyrolysis deposition method, Journal of the European Ceramic Society, vol.21, pp.2113-2116, 2001.

M. Nair and P. Nair, « Chemical bath deposition of Cu x S thin films and their prospective large area applications, Semiconductor Science and Technology, vol.4, pp.191-199, 1989.

Y. Liu, G. Zhu, J. Yang, C. Bao, J. Wang et al., « Phase purification of Cu-S system towards Cu 1.8 S and its catalytic properties for a clock reaction, RSC Advances, vol.5, pp.103458-103464, 2015.

L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, « Chemical vapor deposition of Cu x S : surface contamination by reaction products, Chemistry of materials, vol.17, pp.4142-4148, 2005.

A. B. Martinson, J. W. Elam, and M. J. Pellin, « Atomic layer deposition of Cu 2 S for future application in photovoltaics, Applied Physics Letters, vol.94, p.123107, 2009.

L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, « Nanoporous TiO 2 /Cu 1.8 S heterojunctions for solar energy conversion, Materials Science and Engineering : C, vol.19, pp.311-314, 2002.

L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, « Atomic layer deposition of Cu x S for solar energy conversion, Chemical Vapor Deposition, vol.9, pp.15-20, 2003.

L. Reijnen, B. Meester, F. De-lange, J. Schoonman, and A. Goossens, « Comparison of Cu x S films grown by atomic layer deposition and chemical vapor deposition, Chem. Mater, vol.17, pp.2724-2728, 2005.

J. Johansson, J. Kostamo, M. Karppinen, and L. Niinistö, « Growth of conductive copper sulfide thin films by atomic layer deposition », Journal of Materials Chemistry, vol.12, pp.1022-1026, 2002.

A. B. Martinson, S. C. Riha, E. Thimsen, J. W. Elam, and M. J. Pellin, « Structural, optical, and electronic stability of copper sulfide thin films grown by atomic layer deposition, Energy Environment Science, vol.6, pp.1868-1878, 2013.

N. Schneider, D. Lincot, and F. Donsanti, Atomic layer deposition of copper sulfide thin films, Thin Solid Films, vol.600, pp.103-108, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02148657

D. J. Chakrabarti and D. E. Laughlin, The Cu-S (copper-sulfur) system », Bulletin of Alloy Phase Diagrams, vol.4, p.254, 1983.

. Bibliographie,

W. M. Haynes, CRC handbook of chemistry and physics, vol.2610, p.p, 2010.

K. Koto and N. Morimoto, « The crystal structure of anilite, Acta Crystallographica Section B, vol.26, pp.915-924, 1970.

G. B. Abdullaev, Z. A. Aliyarova, E. H. Zamanova, and G. A. Asadov, « Investigation of the electric properties of Cu 2 S single crystals », physica status solidi (b), vol.26, pp.65-68, 1968.

P. V. Quintana-ramirez, M. C. Arenas-arrocena, J. Santos-cruz, M. Vega-gonzález, O. Martínez-alvarez et al.,

J. Acosta-torres and . De-la-fuente-hernández, « Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide : morphological, optical and electrical properties, Beilstein Journal of Nanotechnology, vol.5, pp.1542-1552, 2014.

K. Okamoto and S. Kawai, « Electrical conduction and phase transition of copper sulfides, Japanese Journal of Applied Physics, vol.12, p.1130, 1973.

P. G. Gordon, A. Kurek, and S. T. Barry, Trends in copper precursor development for CVD and ALD applications, vol.4, pp.3188-3197, 2015.

R. E. Agbenyeke, B. K. Park, T. Chung, C. G. Kim, and J. H. Han, « Growth of Cu 2 S thin films by atomic layer deposition using Cu(dmamb) 2 and H 2 S », Applied Surface Science, vol.456, pp.501-506, 2018.

B. Mulder, « Optical properties and energy band scheme of cuprous sulphides with ordered and disordered copper ions », physica status solidi (a), vol.18, pp.633-638, 1973.

P. Lukashev, W. R. Lambrecht, T. Kotani, and M. Van-schilfgaarde, « Electronic and crystal structure of Cu 2-x S : full-potential electronic structure calculations, Physical Review B, vol.76, p.195202, 2007.

B. Meester, L. Reijnen, A. Goossens, and J. Schoonman, « Comparative study of atomic layer deposition and low-pressure MOCVD of copper sulfide thin films, 13th european conference on chemical vapor deposition (EuroCVD), t. 11, pp.3-1147, 2001.

M. Utriainen, M. Kröger-laukkanen, L. Johansson, and L. Niinistö, « Studies of metallic thin film growth in an atomic layer epitaxy reactor using M(acac) 2 (M=Ni, Cu, Pt) precursors », Applied Surface Science, vol.157, pp.151-158, 2000.

F. Outokumpu, Research Oy Pori, Logiciel H.S.C. chemistry, 2015.

X. Hu, J. Schuster, S. E. Schulz, and T. Gessner, « Simulation of ALD chemistry of (nBu3P) 2 Cu(acac) and Cu(acac) 2 precursors on Ta(110) surface », Microelectronic Engineering, vol.137, pp.23-31, 2015.

J. E. Jaffe and A. Zunger, « Anion displacements and the band-gap anomaly in ternary ABC 2 chalcopyrite semiconductors, Physical Review B, vol.27, p.5176, 1983.

H. Neumann, W. Hörig, V. Savelev, J. Lagzdonis, B. Schumann et al., « The optical properties of CuInS 2 thin films, Thin Solid Films, vol.79, pp.167-171, 1981.

. Bibliographie,

R. Klenk, J. Klaer, R. Scheer, M. Lux-steiner, I. Luck et al.,

«. Rühle, Solar cells based on CuInS 2 -an overview », Thin Solid Films 480-481, pp.509-514, 2005.

W. Song and H. Yang, « Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots, Chemistry of Materials, vol.24, pp.1961-1967, 2012.

I. Tsuji, H. Kato, and A. Kudo, « Photocatalytic hydrogen evolution on ZnS-CuInS 2 -AgInS 2 solid solution photocatalysts with wide visible light absorption bands, Chemistry of Materials, vol.18, pp.1969-1975, 2006.

L. L. Kazmerski and G. A. Sanborn, « CuInS 2 thin-film homojunction solar cells, Journal of Applied Physics, vol.48, pp.3178-3180, 1977.

K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk et al., « Efficient CuInS 2 solar cells from a rapid thermal process (RTP), Solar Energy Materials and Solar Cells, vol.67, pp.159-166, 2001.

D. Braunger, D. Hariskos, T. Walter, and H. W. Schock, « An 11.4% efficient polycrystalline thin film solar cell based on CuInS 2 with a Cd-free buffer layer, Solar Energy Materials and Solar Cells, vol.40, pp.97-102, 1996.

L. L. Kazmerski, M. S. Ayyagari, and G. A. Sanborn, « CuInS 2 thin films : preparation and properties », Journal of Applied Physics, vol.46, pp.4865-4869, 1975.

R. Scheer, T. Walter, H. W. Schock, M. L. Fearheiley, and H. J. Lewerenz, « CuInS 2 based thin film solar cell with 10.2% efficiency, Applied Physics Letters, vol.63, pp.3294-3296, 1993.

R. W. Miles, K. R. Reddy, and I. Forbes, « Formation of polycrystalline thin films of CuInS 2 by a two step process, Journal of crystal growth, vol.198, pp.316-320, 1999.

S. Nakamura and A. Yamamoto, « Electrodeposited CuInS 2 -based thin-film solar cells, Solar Energy Materials and Solar Cells, vol.75, pp.81-86, 2003.

I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere et al., « Crystal quality studies of CuInS 2 films prepared by spray pyrolysis », Thin Solid Films 480-481, pp.82-86, 2005.

C. Camus, N. Allsop, S. Gledhill, W. Bohne, J. Röhrich et al., « Properties of spray ILGAR CuInS 2 thin films, Thin Solid Films, vol.516, pp.7026-7030, 2008.

J. D. Harris, K. K. Banger, D. A. Scheiman, M. A. Smith, M. H. .-c.-jin et al., « Characterization of CuInS 2 films prepared by atmospheric pressure spray chemical vapor deposition, Materials Science and Engineering : B, vol.98, pp.150-155, 2003.

J. J. Binsma, L. J. Giling, and J. Bloem, Journal of Crystal Growth, vol.50, pp.429-436, 1980.

A. Moreau, C. Insignares-cuello, L. Escoubas, J. Simon, V. Bermúdez et al., Solar Energy Materials and Solar Cells, vol.139, pp.101-107, 2015.

M. Nanu, L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, « CuInS 2 -TiO 2 heterojunctions solar cells obtained by atomic layer deposition, Thin Solid Films, vol.431, pp.492-496, 2003.

S. Fiechter, Y. Tomm, M. Kanis, R. Scheer, and W. Kautek, « On the homogeneity region, growth modes and optoelectronic properties of chalcopyrite-type CuInS 2 », physica status solidi (b) 245, pp.1761-1771, 2008.

B. Tell, J. L. Shay, and H. M. Kasper, « Room-temperature electrical properties of ten I-III-VI 2 semiconductors », Journal of Applied Physics, vol.43, pp.2469-2470, 1972.

H. Y. Ueng and H. L. Hwang, « The defect structure of CuInS 2 . part II : thermal annealing defects, Journal of Physics and Chemistry of Solids, vol.51, pp.1-10, 1990.

H. Y. Ueng and H. L. Hwang, The defect structure of CuInS 2 . part III : extrinsic impurities, vol.51, pp.11-18, 1990.

N. P. Dasgupta, X. Meng, J. W. Elam, and A. B. Martinson, Atomic layer deposition of metal sulfide materials, Accounts of chemical research, vol.48, pp.341-348, 2015.

E. Thimsen, S. Baryshev, A. B. Martinson, J. W. Elam, I. V. Veryovskin et al., « Interfaces and composition profiles in metal-sulfide nanolayers synthetized by atomic layer deposition, Chemistry of Materials, pp.313-319, 2013.

H. Migge, Thermochemistry in the system Cu-In-S at 298 K », vol.6, pp.2381-2386, 1991.

H. Migge and J. Grzanna, Thermochemistry in the system Cu-In-S at 723 K », vol.9, pp.125-131, 1994.

A. Usujima, S. Takeuchi, S. Endo, and T. Irie, « Optical and electrical properties of CuIn 5 S 8 and AgIn 5 S 8 single crystals, Japanese Journal of Applied Physics, vol.20, p.505, 1981.

R. Nomura, Y. Seki, and H. Matsuda, « Preparation of CuIn 5 S 8 thin films by single-source organometallic chemical vapour deposition, Thin Solid Films, vol.209, pp.145-147, 1992.

I. V. Bodnar, B. V. Korzun, and A. I. Lukomskii, « Composition dependence of the band gap of CuInS 2x Se 2(1-x) », physica status solidi (b) 105, pp.143-145, 1981.

J. Tuttle, D. Albin, J. Goral, C. Kennedy, and R. Noufi, « Effects of composition and substrate temperature on the electro-optical properties of thin-film CuInSe 2 and CuGaSe 2 », Solar Cells, vol.24, pp.67-79, 1988.

N. Khemiri and M. Kanzari, « Investigation on dispersive optical constants and electrical properties of CuIn 5 S 8 thin films, Solid State Communications, vol.160, pp.32-36, 2013.

T. Hatanpää, M. Ritala, and M. Leskelä, Precursors as enablers of ALD technology : contributions from University of Helsinki, vol.257, pp.3297-3322, 2013.

H. Chen, A. Cattoni, R. De-lépinau, A. Walker, O. Hoehn et al., 9%-efficient ultrathin GaAs solar cells with nanostructured back mirror for multi-resonant absorption and enhanced luminescence extraction, vol.19, 2018.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître et al., Guillemoles et S. Collin, « Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers, Acs Photonics, vol.1, pp.878-884, 2014.

M. Birkholz, P. F. Fewster, and C. Genzel, Thin film analysis by x-ray scattering, vol.356, p.p, 2006.

P. Scherrer, « Bestimmung der inneren struktur und der größe von kolloidteilchen mittels röntgenstrahlen, Kolloidchemie ein lehrbuch, pp.387-409, 1912.

C. B. Carter and D. B. Williams, Transmission electron microscopy, 1996.

J. Sarthou, P. Aballéa, G. Patriarche, H. Serier-brault, A. Suganuma et al., « Wet-route synthesis and characterization of Yb :CaF 2 optical ceramics, Journal of the American Ceramic Society, vol.99, 1992.

K. Pantzas, G. Patriarche, D. Troadec, M. Kociak, N. Cherkashin et al., « Role of compositional fluctuations and their suppression on the strain and luminescence of InGaN alloys, Journal of Applied Physics, vol.117, p.55705, 2015.

F. M. Smits, « Measurement of sheet resistivities with the four-point probe, Bell System Technical Journal, vol.37, pp.711-718, 1958.

O. Philips'gloeilampenfabrieken, « A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Philips Res. Rep, vol.13, pp.1-9, 1958.

Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, and Y. Kishi, Kuwano, « Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films, The Japan Society of Applied Physics, vol.30, p.1008, 1991.

J. Tauc, « Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin, vol.3, pp.37-46, 1968.

K. Elers, T. Blomberg, M. Peussa, B. Aitchison, and S. Haukka, Marcus, « Film uniformity in atomic layer deposition, Chemical Vapor Deposition, vol.12, pp.13-24, 2006.

D. K. Lancaster, H. Sun, and S. M. George, « Atomic layer deposition of Zn(O,S) alloys using diethylzinc with H 2 O and H 2 S : effect of exchange reactions, The Journal of Physical Chemistry C, vol.121, pp.18643-18652, 2017.

J. Bakke, J. King, H. Jung, R. Sinclair, and S. Bent, « Atomic layer deposition of ZnS via in situ production of H 2 S », Thin Solid Films, vol.518, pp.5400-5408, 2010.

G. Stuyven, P. De-visschere, A. Hikavyy, and K. Neyts, Atomic layer deposition of ZnS thin films based on diethyl zinc and hydrogen sulfide », Journal of crystal growth, vol.234, pp.690-698, 2002.

J. T. Tanskanen, J. R. Bakke, S. F. Bent, and T. A. Pakkanen, « ALD growth characteristics of ZnS films deposited from organozinc and hydrogen sulfide precursors, Langmuir, vol.26, pp.11899-11906, 2010.

H. Golchoubian, 4-pentanedionato) copper (II). », Redetermination of crystal structure of bis, vol.20, p.5834, 2008.

A. G. Nasibulin, P. P. Ahonen, O. Richard, and E. I. , Kauppinen et I. S. Altman, « Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper (II) acetylacetonate », Journal of Nanoparticle Research, vol.3, pp.383-398, 2001.

M. A. Siddiqi, R. A. Siddiqui, and B. Atakan, « Thermal stability, sublimation pressures, and diffusion coefficients of anthracene, pyrene, and some metal bêtadiketonates », Journal of Chemical & Engineering Data, vol.54, pp.2795-2802, 2009.

Y. Pauleau and A. Y. Fasasi, « Kinetics of sublimation of copper (II) acetylacetonate complex used for chemical vapor deposition of copper films, Chemistry of Materials, vol.3, pp.45-50, 1991.

R. A. Shelton, « Vapour pressures of the solid copper (i) halides », Transactions of the, Faraday Society, vol.57, pp.2113-2118, 1961.

B. D. Fahlman and A. R. Barron, « Substituent effects on the volatility of metal bêta-diketonates, vol.10, pp.223-232, 2000.