A. Peters, D. W. Dockery, J. E. Muller, and M. A. Mittleman, Increased particulate air pollution and the triggering of myocardial infarction, Circulation, vol.103, pp.2810-2815, 2001.

J. D. Shakun, P. U. Clark, F. He, S. A. Marcott, A. C. Mix et al., Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, vol.484, p.49, 2012.

E. S. Rubin, C. Chen, and A. B. Rao, Cost and performance of fossil fuel power plants with CO2 capture and storage, Energy policy, vol.35, pp.4444-54, 2007.

. Irena-releases-world's-most, . Comprehensive, . Energy, and . Figures,

, Standard Solar Spectra

S. Wenham and M. Green, Silicon solar cells, Progress in Photovoltaics: Research and Applications, vol.4, pp.3-33, 1996.

A. Goetzberger, J. Knobloch, and B. Voss, Crystalline silicon solar cells, vol.1, 1998.

M. Grä-tzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.4, pp.145-53, 2003.

K. Hara and H. Arakawa, Dye-sensitized solar cells. Handbook of photovoltaic science and engineering, pp.663-700, 2003.

D. Wöhrle and D. Meissner, Organic solar cells, Advanced Materials, vol.3, pp.129-167, 1991.

S. Günes, H. Neugebauer, and N. S. Sariciftci, Conjugated polymer-based organic solar cells, Chemical reviews, vol.107, pp.1324-1362, 2007.

, Grä tzel M. The light and shade of perovskite solar cells, Nature materials, vol.13, p.838, 2014.

M. A. Green, Commercial progress and challenges for photovoltaics, Nat Energy, vol.1, p.15015, 2016.

Y. M. Tairov and V. Tsvetkov, Investigation of growth processes of ingots of silicon carbide single crystals, Journal of crystal growth, vol.43, pp.209-221, 1978.

M. A. Green, Third generation photovoltaics: advanced solar energy conversion, Physics Today, vol.57, pp.71-73, 2004.

. O'regan-b, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol.353, p.737, 1991.

S. Mathew, A. Yella, P. Gao, R. Humphry-baker, B. F. Curchod et al., Grä tzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature chemistry, vol.6, p.242, 2014.

G. G. Eshetu, A. M. Ohno, H. Scrosati, B. Passerini, and S. , Ionic liquids as tailored media for the synthesis and processing of energy conversion materials, Energy & Environmental Science, vol.9, pp.49-61, 2016.

J. Gong, J. Liang, and K. Sumathy, Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials, Renewable and Sustainable Energy, vol.25

, Reviews, vol.16, pp.5848-60, 2012.

T. W. Hamann, The end of iodide? Cobalt complex redox shuttles in DSSCs

, Dalton Transactions, vol.41, pp.3111-3116, 2012.

, Tanaka exclusively supply ruthenium dye for dye-sensitized solar cell

S. Yun, J. N. Freitas, A. F. Nogueira, Y. Wang, S. Ahmad et al., Dye-sensitized solar cells employing polymers, Progress in Polymer Science, vol.59, pp.1-40, 2016.

Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719

, dye-sensitized solar cell. Coordination chemistry reviews, vol.248, pp.1381-1390, 2004.

K. E. Lee, M. A. Gomez, S. Elouatik, and G. P. Demopoulos, Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging, Langmuir, vol.26, pp.9575-83, 2010.

, NREL chart, 2018.

D. B. Mitzi, Templating and structural engineering in organic-inorganic perovskites, Journal of the Chemical Society, pp.1-12, 2001.

, der Verbindungen TIS. CH3NH3PbX3, ein Pb (II)-System mit kubischer Perowskitstruktur

D. Weber, CH3NH3SnBrxI3-x (x= 0-3), ein Sn (II)-System mit kubischer

, Perowskitstruktur/CH3NH3SnBrxI3-x (x= 0-3), a Sn (II)-system with cubic perovskite structure, Zeitschrift für Naturforschung B, vol.33, pp.862-867, 1978.

D. Mitzi, S. Wang, C. Feild, C. Chess, and A. Guloy, Conducting layered organic-inorganic halides containing< 110>-oriented perovskite sheets, Science, vol.267, pp.1473-1479, 1995.

C. Kagan, D. Mitzi, and C. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors, Science

J. M. Frost, K. T. Butler, and A. Walsh, Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells, Apl Materials, vol.2, p.81506, 2014.

H. L. Feng, M. Arai, Y. Matsushita, Y. Tsujimoto, Y. Guo et al., High-temperature ferrimagnetism driven by lattice distortion in double perovskite Ca2FeOsO6, Journal of the American Chemical Society, vol.136, pp.3326-3335, 2014.

R. Aso, D. Kan, Y. Shimakawa, and H. Kurata, Atomic level observation of octahedral distortions at the perovskite oxide heterointerface, Scientific reports, vol.3, p.2214, 2013.

M. A. Green, A. Ho-baillie, and H. J. Snaith, The emergence of perovskite solar cells, Nature Photonics, vol.8, 2014.

H. Kim, C. Lee, J. Im, K. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Scientific reports, vol.2, p.591, 2012.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu et al., Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nature Photonics, vol.6, p.591, 2012.

W. Nie, H. Tsai, R. Asadpour, J. Blancon, A. J. Neukirch et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, vol.347, pp.522-527, 2015.

Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang et al., High performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layer, Journal of Materials Chemistry A, vol.3, pp.9098-102, 2015.

D. Liu and T. L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nature Photonics, vol.8, p.133, 2014.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. Duan et al.,

, Planar heterojunction perovskite solar cells via vapor-assisted solution process, Journal of the American Chemical Society, vol.136, pp.622-627, 2013.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A solar cells, Science, p.8060, 2016.

E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. The journal of physical chemistry letters, vol.4, pp.897-902, 2013.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nature Photonics, vol.7, p.486, 2013.

B. Cai, Y. Xing, Z. Yang, W. Zhang, and J. Qiu, High performance hybrid solar cells sensitized by organolead halide perovskites, Energy & Environmental Science, vol.6, pp.1480-1485, 2013.

J. A. Christians, R. C. Fung, and P. V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide, Journal of the American Chemical Society, vol.136, pp.758-64, 2013.

S. Chavhan, O. Miguel, H. Grande, V. Gonzalez-pedro, R. S. Sá-nchez et al., Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact, Journal of Materials Chemistry A, vol.2, pp.12754-60, 2014.

T. Leijtens, J. Lim, J. Teuscher, T. Park, and H. J. Snaith, Charge Density Dependent Mobility of Organic Hole-Transporters and Mesoporous TiO2 Determined by Transient Mobility Spectroscopy: Implications to Dye-Sensitized and Organic Solar Cells, Advanced Materials, vol.25, pp.3227-3260, 2013.

H. J. Snaith and M. Grä, Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells, Applied physics letters, vol.89, p.262114, 2006.

J. R. Jennings and Q. Wang, Influence of lithium ion concentration on electron injection, transport, and recombination in dye-sensitized solar cells, The Journal of Physical Chemistry C, vol.114, pp.1715-1739, 2009.

Y. Shi, X. Wang, H. Zhang, B. Li, H. Lu et al., Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed References

H. S. Kim, C. R. Lee, J. H. Im, K. H. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep, vol.2, p.591, 2012.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Efficient hybrid solar cells based on meso-superstructured organo-metal halide perovskite, Science, vol.338, pp.643-647, 2012.

M. Liu, M. B. Johnston, and H. J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition, Nature, vol.501, pp.395-398, 2013.

J. Burschka, N. Pellet, S. J. Moon, R. Humphy-baker, P. Gao et al., Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells, Nature, vol.499, pp.316-319, 2013.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu et al., Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells, Nature Mater, vol.13, pp.897-903, 2014.

J. ;. Zhang, P. ;. Barboux, and T. Pauporté, Electrochemical Design of Nanostructured ZnO Charge Carrier Layers for Efficient Solid-State Perovskite-Sensitized Solar Cells, Adv. Energy Mater, 2014.

W. Y. Nie, H. H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, vol.347, pp.522-525, 2015.

J. Zhang, E. J. Juá-rez-pé-rez, I. Mora-seró, B. Viana, and T. Pauporté, Fast and Low Temperature Growth of Electron Transport Layers for Efficient Perovskite Solar Cells, J. Mater. Chem. A, pp.3-4909, 2015.

J. Zhang and T. Pauporté, Effect of Oxide Contact Layer on the Preparation and Properties of CH 3 NH 3 PbI 3 for Perovskite Solar Cell Application, J. Phys. Chem. C, vol.56, pp.14919-14928

J. Zhang, . Th, and T. Pauporté, One-Dimensional Free-Standing TiO2 Nanotube Arrays Designed for Perovskite Solar Cells Application, ChemPhysChem, vol.16, pp.2836-2841, 2015.

M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Env. Sci, vol.9, pp.1989-1997, 2016.

J. B. You, L. Meng, T. B. Song, T. F. Guo, Y. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nanotechnol, vol.11, p.75, 2016.

P. Vivo, A. Ojanper, J. H. Smatt, S. Sanden, S. G. Hashmi et al., Influence of TiO 2 compact layer precursor on the performance of perovskite solar cells, Org. Electron, vol.41, pp.287-293, 2017.

F. Liu, .. ;. Dong, M. Wong, A. B. Djuri?ic, A. Ng et al., Is excess PbI 2 beneficial for perovskite solar cell Performance?, Adv. Energy Mater, vol.6, p.1502206, 2016.

H. M. Yates, M. Afzaal, A. Walter, L. John, J. L. Hodgkinson et al., Progression towards high efficiency perovskite solar cells via optimisation of the front electrode and blocking layer, J. Mater. Chem. C, vol.4, pp.11269-11277, 2016.

C. Zhang, Y. Luo, X. Chen, W. Ou-yang, Y. Chen et al., Huang, S Influence of different TiO 2 blocking films on the photovoltaic performance of perovskite solar cells, Appl. Surf. Sci, vol.388, pp.82-88, 2016.

S. Zhang, L. Lei, S. Yang, X. Li, Y. Liu et al., , p.57

, Influence of TiO 2 blocking layer morphology on planar heterojunction perovskite solar cells, Chem. Lett, vol.45, pp.592-594, 2016.

Q. Gao, S. W. Yang, L. Lei, S. D. Zhang, Q. P. Cao et al., An Effective TiO 2 Blocking Layer for Perovskite Solar Cells with Enhanced Performance, Chem. lett, vol.44, pp.624-626, 2015.

A. K. Chadiran, A. Yella, M. T. Mayer, P. Gao, M. K. Nazeeruddin et al., Grä tzel, Sub-nanometer conformal TiO 2 blocking layer for high efficiency solid-state perovskite absorber solar cells, Adv. Mater, vol.26, pp.4309-4312, 2014.

T. Su, T. S. , ;. Hsieh, T. Y. , ;. Hong et al.,

, Electrodeposited ultrathin TiO 2 blocking layers for efficient perovskite solar cells, Sci. Rep, 2015.

T. Ohsaka, . Izumi, and Y. Fujiki, Raman spectrum of anatase TiO 2, J. Raman Spec, vol.7, pp.321-324, 1978.

U. Balachandran and N. G. Eror, Raman-spectra of titanium dioxide, J. Solid State Chem, vol.42, pp.276-282, 1982.

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, Raman scattering study on anatase TiO 2 nanocrystals, J. Phys. D: Appl. Phys, vol.33, pp.912-916, 2000.

C. Magne, F. Dufour, F. Labat, G. Lancel, O. Durupthy et al., Effects of TiO 2 nanoparticle polymorphism on dye-sensitized solar cell photovoltaic Properties, J. Photochem. Photobiol. A, vol.232, pp.22-31, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01494501

F. Fabregat-santiago, G. Garcia-belmonte, I. Mora-sero, and J. Bisquert, Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy, Phys. Chem. Chem. Phys, vol.13, pp.9083-9118, 2011.

V. M. Guerin, J. Rathousky, and T. Pauporte, Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, vol.102, pp.8-14, 2012.

C. Magne, T. Moehl, M. Urien, M. Grä-tzel, and T. Pauporté, Effects of ZnO Film Growth Route and Nanostructure on Electron Transport and Recombination in Dye-Sensitized Solar Cells, J. Mater. Chem. A, issue.1, pp.2079-2088, 2013.

F. Fabregat-santiago, J. Bisquert, E. Palomares, L. Otero, and D. B. Kuang, , p.58

S. M. Zakeeruddin and M. Gratzel, Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids, J. Phys. Chem. C, vol.111, pp.6550-6560, 2007.

Y. Kusumawati, M. Hosni, M. A. Martoprawiro, S. Cassaignon, and T. Pauporté,

, Charge Transport and Recombination in TiO 2 Brookite Photoelectrode, J. Phys. Chem. C, vol.11, pp.23459-23467, 2014.

M. Hosni, Y. Kusumawati, S. Farhat, N. Jouini, A. L. Ivansyah et al., Ruthenium Polypyridyl TG6 Dye for the Sensitization of Nanoparticle and Nanocrystallite Spherical Aggregate Photoelectrodes, ACS Applied Mater. Interfaces, vol.7, pp.1568-1577, 2015.

A. Pascoe,

N. W. Duffy, A. D. Scully, F. Huang, and Y. B. Cheng, Insights into
URL : https://hal.archives-ouvertes.fr/hal-01199341

, Planar CH 3 NH 3 PbI 3 Perovskite Solar Cells Using Impedance Spectroscopy, J. Phys. Chem. C, vol.119, p.4453, 2015.

E. J. Juarez-perez, M. Wu?ler, F. Fabregat-santiago, K. Lakus-wollny, E. Mankel et al., Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells, J. Phys. Chem. Lett, vol.5, pp.680-685, 2014.

A. Guerrero, G. Garcia-belmonte, I. Mora-sero, J. Bisquert, Y. S. Kang et al., Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements, J. Phys. Chem. C, vol.120, pp.8023-8032, 2016.

E. J. Juarez-perez, R. S. Sanchez, L. Badia, G. Garcia-belmonte, Y. S. Kang et al., Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells, J. Phys. Chem. Lett, vol.5, pp.2390-2394, 2014.

A. Dualeh, T. Moehl, N. Té-treault, J. Teuscher, P. Gao et al., Impedance Spectroscopic Analysis of Lead Iodide Perovskite-Sensitized Solid-State Solar Cells, Sci. Rep, vol.8, pp.362-373, 2014.

V. Gonzalez-pedro, J. Emilio, E. J. Juarez-perez, W. S. Waode-sukmawati-arsyad, M. Eva et al., General Working Principles of CH 3 NH 3 PbX 3 Perovskite Solar Cells, p.59

, Nano Lett, vol.14, pp.888-893, 2014.

O. Almora, I. Zarazua, E. Mas-marza, I. Mora-sero, J. Bisquert et al., Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells, J. Phys. Chem. Lett, vol.6, pp.1645-1652, 2015.

A. Guerrero, E. J. Juarez-perez, J. Bisquert, I. Mora-sero, and G. Garcia-belmonte, Electrical field profile and doping in planar lead halide perovskite solar cells, Appl. Phys. Lett, p.133902, 2014.

O. Almora, A. Guerrero, and G. Garcia-belmonte, Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites, Appl. Phys. Lett, p.43903, 2016.

H. Kim, I. Mora-sero, V. Gonzalez-pedro, F. Fabregat-santiago, E. J. Juarez-perez et al., Mechanism of carrier accumulation in perovskite thin-absorber solar cells, Nat. Commun, 2013.

I. Zarazua, G. F. Han, P. P. Boix, S. Mhaisalkar, F. Fabregat-santiago et al., Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis, J. Phys. Chem. Lett, vol.7, pp.5105-5113, 2016.

E. J. Juarez-perez, R. S. Sanchez, L. Badia, G. Garcia-belmonte, Y. S. Kang et al., Photoinduced giant dielectric constant in lead halide perovskite solar cells, J. Phys. Chem. Lett, vol.5, pp.2390-2394, 2014.

T. Yang, N. Pellet, M. Maier, and J. , The significance of ion conduction in a hybrid organic-inorganic lead iodide-based perovskite photosensitizer

, Angew. Chem., Int. Ed, vol.54, pp.7905-7910, 2015.

H. Kim, I. Jang, N. Ahn, M. Choi, A. Guerrero et al.,

, Control of I-V Hysteresis in CH 3 NH 3 PbI 3 Perovskite Solar Cell, J. Phys. Chem. Lett, vol.6, pp.4633-4639, 2015.

L. Li, F. Wang, X. Wu, H. Yu, S. Zhou et al., Carrier-Activated Polarization in Organometal Halide Perovskites, J. Phys. Chem. C, pp.120-2536, 2016.

G. J. Brug, A. L. Van-der-eeden, M. Sluyters-rehbach, and J. H. Sluyters, The 60, Electroanal. Chem, vol.176, pp.275-295, 1984.

Q. Zhuang, J. Xu, X. Fan, G. Wei, Q. Dong et al., LiCoO 2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy, Sci. China, Ser. B: Chem, vol.50, pp.776-783, 2007.

E. Radvanyi, K. Van-havenbergh, W. Porcher, S. Jouanneau, J. Bridel et al., Study and modeling of the Solid Electrolyte Interphase behavior on nano-silicon anodes by Electrochemical Impedance Spectroscopy, Electrochim. Acta, vol.137, pp.751-757, 2014.

Z. Li, M. Yang, J. Park, S. Wei, J. J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys, Chemistry of Materials, vol.28, pp.284-92, 2015.

E. T. Hoke, D. J. Slotcavage, and E. R. Dohner,

. Md, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chemical Science, vol.6, pp.613-620, 2015.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature materials, vol.13, p.897, 2014.

S. Paek, P. Schouwink, E. N. Athanasopoulou, K. Cho, G. Grancini et al., From Nano-to Micrometer Scale: The Role of

, Antisolvent Treatment on High Performance Perovskite Solar Cells, Chemistry of Materials, vol.29, pp.3490-3498, 2017.

C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-astani et al., Entropic stabilization of mixed A-cation ABX 3 metal halide perovskites for high performance perovskite solar cells, Energy & Environmental Science, vol.9, pp.656-62, 2016.

M. Saliba, T. Matsui, K. Domanski, J. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, vol.354, pp.206-215, 2016.

M. Saliba, T. Matsui, J. Seo, K. Domanski, J. Correa-baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy & Environmental Science, vol.9, pp.1989-97, 2016.

D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells, Science, vol.360, pp.1442-1448, 2018.

M. Yang, Z. Li, R. Mo, O. G. Reid, D. H. Kim et al., Perovskite ink with wide processing window for scalable high-efficiency solar cells, Nature Energy, vol.2, p.17038, 2017.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, vol.347, pp.519-541, 2015.

N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber et al., Grä tzel M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, p.5655, 2017.

C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-astani et al., Entropic stabilization of mixed A-cation ABX 3 metal halide perovskites for high performance perovskite solar cells, Energy & Environmental Science, vol.9, pp.656-62, 2016.

Z. Li, M. Yang, J. Park, S. Wei, J. J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys, Chemistry of Materials, vol.28, pp.284-92, 2015.

H. Choi, J. Jeong, H. Kim, S. Kim, B. Walker et al., Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy, vol.7, pp.80-85, 2014.

J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho et al., Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell, Advanced Energy Materials, vol.5, 2015.

M. Saliba, T. Matsui, J. Seo, K. Domanski, J. Correa-baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy & Environmental Science, vol.9, pp.1989-97, 2016.

S. R. Raga, L. K. Ono, and Y. Qi, Rapid perovskite formation by CH 3 NH 2 gas-induced intercalation and reaction of PbI 2, Journal of Materials Chemistry A, vol.4, pp.2494-500, 2016.

T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang et al., A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells, Energy & Environmental Science, vol.10, pp.2509-2524, 2017.

D. P. Mcmeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, vol.351, pp.151-156, 2016.

M. Saliba, T. Matsui, K. Domanski, J. Seo, A. Ummadisingu et al., , p.121

J. Correa-baena, W. R. Tress, A. Abate, and A. Hagfeldt, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, vol.354, pp.206-215, 2016.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells, Nature, vol.517, p.476, 2015.

S. Paek, P. Schouwink, E. N. Athanasopoulou, K. Cho, G. Grancini et al., From Nano-to Micrometer Scale: The Role of

, Antisolvent Treatment on High Performance Perovskite Solar Cells, Chemistry of Materials, vol.29, pp.3490-3498, 2017.

N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber et al., Grä tzel M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, p.5655, 2017.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites, Science advances, vol.2, p.1501170, 2016.

D. Bi, J. Luo, F. Zhang, A. Magrez, E. N. Athanasopoulou et al., Morphology Engineering: A Route to Highly Reproducible and High Efficiency Perovskite Solar Cells, ChemSusChem, vol.10, pp.1624-1654, 2017.

M. Yang, Z. Li, R. Mo, O. G. Reid, D. H. Kim et al., Perovskite ink with wide processing window for scalable high-efficiency solar cells, Nature Energy, vol.2, p.17038, 2017.

L. Kong, G. Liu, J. Gong, Q. Hu, R. D. Schaller et al., Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites, Proceedings of the National Academy of Sciences, vol.113, pp.8910-8915, 2016.

Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang et al.,

, Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for

, Perovskite Solar Cells, Angewandte Chemie International Edition, vol.54, pp.9705-9714, 2015.

E. T. Hoke, D. J. Slotcavage, and E. R. Dohner, , vol.122

. Md, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chemical Science, vol.6, pp.613-620, 2015.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, vol.347, pp.519-541, 2015.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature materials, vol.13, p.897, 2014.

R. Street, S. Ready, K. Van-schuylenbergh, J. Ho, J. Boyce et al., Comparison of PbI 2 and HgI 2 for direct detection active matrix x-ray image sensors, Journal of Applied Physics, vol.91, pp.3345-55, 2002.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens et al., Anomalous hysteresis in perovskite solar cells. The journal of physical chemistry letters, vol.5, pp.1511-1516, 2014.

J. M. Frost, K. T. Butler, and A. Walsh, Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells, Apl Materials, vol.2, p.81506, 2014.