S. T. Hyde, Curvature and the global structure of interfaces in surfactant-water systems, J. Phys, issue.23, pp.7209-7228, 1990.
URL : https://hal.archives-ouvertes.fr/jpa-00231120

M. Antonietti and S. Forster, Vesicles and liposomes: A self-assembly principle beyond lipids, Adv. Mater, vol.15, issue.16, pp.1323-1333, 2003.

A. Blanazs, S. P. Armes, and A. J. Ryan, Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their, Biological Applications. Macromol. Rapid Commun, vol.30, issue.4-5, pp.267-277, 2009.

A. G. Denkova, E. Mendes, and M. Coppens, Non-equilibrium dynamics of block copolymer micelles in solution: recent insights and open questions, Soft matter, vol.6, issue.11, pp.2351-2357, 2010.

S. Jain and F. S. Bates, Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions, Macromolecules, vol.37, issue.4, pp.1511-1523, 2004.

H. W. Shen and A. Eisenberg, Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O, Macromolecules, vol.33, issue.7, pp.2561-2572, 2000.

L. Jia, D. Levy, D. Durand, M. Imperor-clerc, A. Cao et al., Smectic polymer micellar aggregates with temperature-controlled morphologies, Soft matter, vol.7, issue.16, pp.7395-7403, 2011.

B. E. Mckenzie, J. F. Visser, H. Friedrich, M. J. Wirix, P. H. Bomans et al., Bicontinuous Nanospheres from Simple Amorphous Amphiphilic Diblock Copolymers, vol.2013, pp.9845-9848

G. Rizis, T. G. Van-de-ven, and A. Eisenberg, Raft" Formation by Two-Dimensional Self-Assembly of Block Copolymer Rod Micelles in Aqueous Solution, Angew. Chem. Int. Ed. Engl, vol.126, issue.34, pp.9146-9149, 2014.

K. H. Ku, J. M. Shin, D. Klinger, S. G. Jang, R. C. Hayward et al., Particles with Tunable Porosity and Morphology by Controlling Interfacial Instability in Block Copolymer Emulsions, vol.10, pp.5243-5251, 2016.

X. Y. Wang, X. Y. Feng, G. P. Ma, D. Zhang, Y. H. Chai et al., Dual-Phase Separation in a Semiconfined System: Monodispersed Heterogeneous Block-Copolymer Membranes for Cell Encoding and Patterning, Adv. Mater, vol.2017, issue.19, p.1605932

G. Battaglia and A. J. Ryan, Pathways of polymeric vesicle formation, J. Phys. Chem. B, issue.21, pp.10272-10279, 2006.

R. Deng, H. Li, J. Zhu, B. Li, F. Liang et al., Janus Nanoparticles of Block Copolymers by Emulsion Solvent Evaporation Induced Assembly, Macromolecules, vol.2016, issue.4, pp.1362-1368

, Synchronized Bilayer Cross-Linking and Permeabilizing Inside Live Cells, J. Am. Chem. Soc, vol.138, issue.33, pp.10452-10466, 2016.

T. J. Deming, Synthesis of Side-Chain Modified Polypeptides, Chem. Rev, vol.116, issue.3, pp.786-808, 2016.

J. R. Kramer and T. J. Deming, Glycopolypeptides with a Redox-Triggered Helix-to-Coil Transition, J. Am. Chem. Soc, vol.2012, issue.9, pp.4112-4115

X. Fu, Y. Ma, Y. Shen, W. Fu, and Z. Li, Oxidation-responsive OEGylated poly-L-cysteine and solution properties studies, Biomacromolecules, vol.15, issue.3, pp.1055-1061, 2014.

J. R. Kramer and T. J. Deming, Multimodal switching of conformation and solubility in homocysteine derived polypeptides, J. Am. Chem. Soc, vol.136, issue.15, pp.5547-5550, 2014.

J. R. Kramer, A. R. Rodriguez, U. Choe, D. T. Kamei, and T. J. Deming, Glycopolypeptide conformations in bioactive block copolymer assemblies influence their nanoscale morphology, Soft matter, vol.2013, issue.9, pp.3389-3395

J. Yu, C. Qian, Y. Zhang, Z. Cui, Y. Zhu et al., Hypoxia and H2O2 Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery, Nano Lett, vol.2017, issue.2, pp.733-739

X. Hu, J. Yu, C. Qian, Y. Lu, A. R. Kahkoska et al., H2O2-Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery, ACS Nano, vol.11, issue.1, pp.613-620, 2017.

J. R. Kramer and T. J. Deming, Preparation of Multifunctional and Multireactive Polypeptides via Methionine Alkylation, Biomacromolecules, vol.2012, issue.6, pp.1719-1723

S. Yamada, K. Ikkyu, K. Iso, M. Goto, and T. Endo, Facile synthesis of polymethionine oxides through polycondensation of activated urethane derivative of alpha-amino acid and their application to antifouling polymer against proteins and cells, Polym. Chem, vol.6, issue.10, pp.1838-1845, 2015.

A. R. Rodriguez, J. R. Kramer, and T. J. Deming, Enzyme-Triggered Cargo Release from Methionine Sulfoxide Containing Copolypeptide Vesicles, Biomacromolecules, vol.14, issue.10, pp.3610-3614, 2013.

A. R. Rodriguez, U. Choe, D. T. Kamei, and T. J. Deming, Blending of Diblock and Triblock Copolypeptide Amphiphiles Yields Cell Penetrating Vesicles with Low Toxicity, Macromol. Biosci, vol.15, issue.1, pp.90-97, 2015.

E. G. Gharakhanian and T. J. Deming, Versatile Synthesis of Stable, Functional Polypeptides via Reaction with Epoxides, Biomacromolecules, vol.16, issue.6, pp.1802-1806, 2015.

T. J. Deming, Functional Modification of Thioether Groups in Peptides, Polypeptides, and Proteins, Bioconjugate Chem, vol.2017, issue.3, pp.691-700

B. A. Chan, S. Xuan, A. Li, J. M. Simpson, G. L. Sternhagen et al., Polypeptoid polymers: Synthesis, characterization, and properties, Biopolymers, vol.109, issue.1, p.23070, 2018.

C. Secker, S. M. Brosnan, R. Luxenhofer, and H. Schlaad, Poly(alpha-Peptoid)s Revisited: Synthesis, Properties, and Use as Biomaterial, Macromol. Biosci, vol.15, issue.7, pp.881-891, 2015.

C. Fetsch, A. Grossmann, L. Holz, J. F. Nawroth, and R. Luxenhofer, Polypeptoids from N-Substituted Glycine N-Carboxyanhydrides: Hydrophilic, Hydrophobic, and Amphiphilic Polymers with Poisson Distribution, Macromolecules, vol.44, issue.17, pp.6746-6758, 2011.

C. Lee, A. Li, K. Ghale, and D. Zhang, Crystallization and Melting Behaviors of Cyclic and Linear Polypeptoids with Alkyl Side Chains, Macromolecules, vol.46, issue.20, pp.8213-8223, 2013.

C. Fetsch and R. Luxenhofer, Thermal Properties of Aliphatic Polypeptoids, Polymers, vol.2013, issue.1, pp.112-127

S. M. Miller, R. J. Simon, S. Ng, R. N. Zuckermann, J. M. Kerr et al., Proteolytic studies of homologous peptide and N-substituted glycine peptoid oligomers, Bioorg. Med. Chem. Lett, issue.22, pp.2657-2662, 1994.

J. Ulbricht, R. Jordan, and R. Luxenhofer, On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s, Biomaterials, vol.35, issue.17, pp.4848-4861, 2014.

J. Sun and R. N. Zuckermann, Peptoid Polymers: A Highly Designable Bioinspired Material, ACS Nano, vol.7, issue.6, pp.4715-4732, 2013.

C. Lee, T. P. Smart, L. Guo, T. H. Epps, and D. Iii;-zhang, Synthesis and Characterization of Amphiphilic Cyclic Diblock Copolypeptoids from N-Heterocyclic Carbene-Mediated Zwitterionic Polymerization of N-Substituted N-Carboxyanhydride, Macromolecules, vol.44, issue.24, pp.9574-9585, 2011.

C. Fetsch, S. Flecks, D. Gieseler, C. Marschelke, J. Ulbricht et al., Self-Assembly of Amphiphilic Block Copolypeptoids with C-2-C-5 Side Chains in Aqueous Solution, Macromol. Chem. Phys, vol.2015, issue.5, pp.547-560

R. N. Zuckermann, J. M. Kerr, S. B. Kent, and W. H. Moos, Efficient method for the preparation of peptoids oligo(N-substituted glycines) by submonomer solid-phase synthesis, J. Am. Chem. Soc, vol.114, issue.26, pp.10646-10647, 1992.

R. J. Simon, R. S. Kania, R. N. Zuckermann, V. D. Huebner, D. A. Jewell et al., PEPTOIDS -A MODULAR APPROACH TO DRUG DISCOVERY. Proc. Natl. Acad. Sci, vol.89, pp.9367-9371, 1992.

R. N. Zuckermann, Peptoid Origins, Biopolymers, vol.96, issue.5, pp.545-555, 2011.

N. Gangloff, C. Fetsch, and R. Luxenhofer, Polypeptoids by Living Ring-Opening Polymerization of N-Substituted N-Carboxyanhydrides from Solid Supports, Macromol. Rapid Commun, vol.34, issue.12, pp.997-1001, 2013.

M. Schneider, C. Fetsch, I. Amin, R. Jordan, and R. Luxenhofer, Polypeptoid Brushes by Surface-Initiated Polymerization of N-Substituted Glycine N-Carboxyanhydrides, Langmuir, vol.29, issue.23, pp.6983-6988, 2013.

T. Kidchob, S. Kimura, and Y. Imanishi, Thermoresponsive release from poly(Glu(OMe))-block-poly(Sar) microcapsules with surface-grafting of poly(N-isopropylacrylamide), J. Control. Release, vol.50, issue.1-3, pp.205-214, 1998.

T. Kidchob, S. Kimura, and Y. Imanishi, Amphiphilic poly(Ala)-b-poly(Sar) microspheres loaded with hydrophobic drug, J. Control. Release, vol.51, issue.2-3, pp.241-248, 1998.

A. Makino, R. Yamahara, E. Ozeki, and S. Kimura, Preparation of novel polymer assemblies, "lactosome", composed of Poly(L-lactic acid) and poly(sarcosine), Chem. Lett, issue.10, pp.1220-1221, 2007.

A. Birke, D. Huesmann, A. Kelsch, M. Weilbacher, J. Xie et al., Polypeptoid-block-polypeptide Copolymers: Synthesis, Characterization, and Application of Amphiphilic Block Copolypept(o)ides in Drug Formulations and Miniemulsion Techniques, Biomacromolecules, vol.15, issue.2, pp.548-557, 2014.

P. Heller, A. Birke, D. Huesmann, B. Weber, K. Fischer et al., Introducing PeptoPlexes: Polylysine-block-Polysarcosine Based Polyplexes for Transfection of HEK 293T Cells, Macromol. Biosci, vol.14, issue.10, pp.1380-1395, 2014.

R. Holm, B. Weber, P. Heller, K. Klinker, D. Westmeier et al., Synthesis and Characterization of Stimuli-Responsive Star-Like Polypept(o) ides: Introducing Biodegradable PeptoStars, Macromol. Biosci, vol.2017, issue.6, p.1600514

B. Weber, C. Kappel, M. Scherer, M. Helm, M. Bros et al., PeptoSomes for Vaccination: Combining Antigen and Adjuvant in Polypept(o)ide-Based Polymersomes, Macromol. Biosci, vol.2017, issue.10, p.1700061

S. Cui, X. Wang, Z. Li, Q. Zhang, W. Wu et al., One-Pot Glovebox-Free Synthesis, Characterization, and Self-Assembly of Novel Amphiphilic Poly(Sarcosine-b-Caprolactone) Diblock Copolymers, Macromol. Rapid Commun, vol.35, issue.22, pp.1954-1959, 2014.

W. Wu, S. Cui, Z. Li, J. Liu, H. Wang et al., Mild Bronsted acid initiated controlled polymerizations of 2-oxazoline towards one-pot synthesis of novel double-hydrophilic poly(2-ethyl-2-oxazoline)-block-poly(sarcosine), Polym. Chem, vol.6, issue.15, pp.2970-2976, 2015.

H. R. Kricheldorf, Polypeptides and 100 Years of Chemistry of ?-Amino Acid N-Carboxyanhydrides, Angew. Chem. Int. Ed, vol.45, issue.35, pp.5752-5784, 2006.

T. J. Deming, Polypeptide and polypeptide hybrid copolymer synthesis via NCA polymerization, Peptide Hybrid Polymers, 2006.

J. R. Kramer and T. J. Deming, General Method for Purification of alpha-Amino acid-Ncarboxyanhydrides Using Flash Chromatography, Biomacromolecules, vol.2010, issue.12, pp.3668-3672

H. Kato and . Higashim,

S. Okamura, Condensation polymerization of N-dithiocarbonyl alkoxycarbonyl amino acids .V. Studies on reaction mechanism, Makromol Chem, vol.109, pp.9-21, 1967.

R. S. Dewey, . Schoenew, and . Ef,

H. Joshua, W. J. Paleveda, H. Schwam, and . Barkemey,

B. H. Arison and D. F. Veber, Denkewal.Rg; Hirschma.R, Synthesis of peptides in aqueous medium .V. Preparation and use of 2,5-thiazolidinediones (NTAs), J Am Chem Soc, vol.90, issue.12, pp.3254-3255, 1968.

H. R. Kricheldorf, M. Sell, and G. Schwarz, Primary amine-initiated polymerizations of alpha-amino acid N-thiocarbonic acid anhydrosulfide, J. Macromol. Sci., Pure Appl. Chem, issue.6, pp.425-430, 2008.

J. Cao, D. Siefker, B. A. Chan, T. Yu, L. Lu et al., Interfacial Ring-Opening Polymerization of Amino-Acid-Derived N-Thiocarboxyanhydrides Toward Well-Defined Polypeptides, ACS Macro Lett, vol.2017, issue.8, pp.836-840

X. Tao, Y. Deng, Z. Shen, and J. Ling, Controlled Polymerization of N-Substituted Glycine N-Thiocarboxyanhydrides Initiated by Rare Earth Borohydrides toward Hydrophilic and Hydrophobic Polypeptoids, Macromolecules, vol.47, issue.18, pp.6173-6180, 2014.

X. Tao, B. Zheng, H. R. Kricheldorf, and J. Ling, Are N-Substituted Glycine N-Thiocarboxyanhydride Monomers Really Hard to Polymerize?, J. Polym. Sci., Part A: Polym. Chem, vol.2017, issue.3, pp.404-410

X. Tao, B. Zheng, T. Bai, B. Zhu, and J. Ling, Hydroxyl Group Tolerated Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride Mediated by Aminoalcohols: A Simple Way to alpha-Hydroxyl-omega-aminotelechelic Polypeptoids, Macromolecules, vol.2017, issue.8, pp.3066-3077

X. Tao, B. Zheng, T. Bai, M. Li, and J. Ling, Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride through Regioselective Initiation of Cysteamine: A Direct Way toward Thiol-Capped Polypeptoids, Macromolecules, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02394691

X. Tao, C. Deng, and J. Ling, PEG-amine-initiated polymerization of sarcosine Nthiocarboxyanhydrides toward novel double-hydrophilic PEG-b-polysarcosine diblock copolymers, Macromol. Rapid Commun, vol.35, issue.9, pp.875-881, 2014.

Y. Miao, F. Xie, J. Cen, F. Zhou, X. Tao et al., Fe3+@polyDOPA-b-polysarcosine, a T1-Weighted MRI Contrast Agent via Controlled NTA Polymerization, ACS Macro Lett, vol.7, issue.6, pp.693-698, 2018.

D. M. Jackson, R. L. Ashley, C. B. Brownfield, D. R. Morrison, and R. W. Morrison, Rapid Conventional and Microwave-Assisted Decarboxylation of L-Histidine and Other Amino Acids via Organocatalysis with R-Carvone Under Superheated Conditions, Synth. Commun, vol.45, issue.23, pp.2691-2700, 2015.

T. J. Gibbs, M. Boomhoff, and N. C. Tomkinson, A mild and efficient method for the one-pot monocarboxymethylation of primary amines, Synlett, issue.10, pp.1573-1576, 2007.

K. Makiguchi, T. Satoh, and T. Kakuchi, Diphenyl Phosphate as an Efficient Cationic Organocatalyst for Controlled/Living Ring-Opening Polymerization of delta-Valerolactone and epsilon-Caprolactone, Macromolecules, vol.44, issue.7, pp.1999-2005, 2011.

T. L. Schlick, Z. B. Ding, E. W. Kovacs, and M. B. Francis, Dual-surface modification of the tobacco mosaic virus, J. Am. Chem. Soc, vol.127, issue.11, pp.3718-3723, 2005.

Y. Y. Zhou, L. Li, W. Chen, D. A. Li, N. C. Zhou et al., A twin-tailed tadpole-shaped amphiphilic copolymer of poly(ethylene glycol) and cyclic poly(epsilon-caprolactone): synthesis, self-assembly and biomedical applications, Polym. Chem, vol.2018, issue.33, pp.4343-4353

M. Talelli, M. Barz, C. J. Rijcken, F. Kiessling, W. E. Hennink et al., Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation, Nano Today, vol.10, issue.1, pp.93-117, 2015.

V. V. Khutoryanskiy, Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials, Adv. Drug. Deliv. Rev, vol.124, pp.140-149, 2018.

E. Malikmammadov, T. E. Tanir, A. Kiziltay, V. Hasirci, and N. Hasirci, PCL and PCL-based materials in biomedical applications, J. Biomat. Sci.-Polym. E, issue.7, p.29, 2018.

V. R. Sinha, K. Bansal, R. Kaushik, R. Kumria, and A. Trehan, Poly-epsiloncaprolactone microspheres and nanospheres: an overview, Int. J. Pharm, vol.278, issue.1, pp.1-23, 2004.

P. P. Ghoroghchian, G. Z. Li, D. H. Levine, K. P. Davis, F. S. Bates et al., Bioresorbable vesicles formed through spontaneous selfassembly of amphiphilic poly(ethylene oxide)-block-polycaprolactone, Macromolecules, vol.39, issue.5, pp.1673-1675, 2006.

D. J. Adams, C. Kitchen, S. Adams, S. Furzeland, D. Atkins et al., On the mechanism of formation of vesicles from poly(ethylene oxide)-block-poly(caprolactone) copolymers, Soft matter, vol.5, issue.16, pp.3086-3096, 2009.

W. Qi, P. P. Ghoroghchian, G. Li, D. A. Hammer, and M. J. Therien, Aqueous selfassembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano-and mesoscale bilayered vesicles, Nanoscale, vol.2013, issue.22, pp.10908-10915

X. Sui, P. Kujala, G. Janssen, E. Jong, I. S. Zuhorn et al., Robust formation of biodegradable polymersomes by direct hydration, Polym. Chem, vol.6, issue.5, pp.691-696, 2015.

J. S. Lee and J. Feijen, Biodegradable polymersomes as efficient nanocarriers for controlled paclitaxel delivery, J. Control. Release, vol.148, issue.1, pp.15-16, 2010.

F. H. Meng, Z. Y. Zhong, and J. Feijen, Stimuli-Responsive Polymersomes for Programmed Drug Delivery, Biomacromolecules, vol.10, issue.2, pp.197-209, 2009.

I. Hamada, A. C. Hunter, J. Szebeni, and S. M. Moghimi, Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process, Molecular Immunology, vol.46, issue.2, pp.225-232, 2008.

H. J. Sung, A. Luk, N. S. Murthy, E. Liu, M. Jois et al., Poly(ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms, Soft matter, vol.6, issue.20, pp.5196-5205, 2010.

A. Birke, J. Ling, and M. Barz, Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications, Prog. Polym. Sci, vol.81, pp.163-208, 2018.

D. E. Discher and A. Eisenberg, Polymer vesicles, Science, vol.297, issue.5583, pp.967-973, 2002.

R. A. Perez, M. E. Cordova, J. V. Lopez, J. N. Hoskins, B. Zhang et al., Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(epsilon-caprolactone)s, React. Funct. Polym, vol.80, pp.71-82, 2014.

W. M. Groenewoud, Chapter 1 -Differential scanning calorimetry, Characterisation of Polymers by Thermal Analysis, Groenewoud, W. M, pp.10-60, 2001.

G. Battaglia and A. J. Ryan, Bilayers and interdigitation in block copolymer vesicles, J. Am. Chem. Soc, vol.127, issue.24, pp.8757-8764, 2005.

F. Itel, M. Chami, A. Najer, S. Lörcher, D. Wu et al., Molecular Organization and Dynamics in Polymersome Membranes: A Lateral Diffusion Study, Macromolecules, vol.47, issue.21, pp.7588-7596, 2014.

T. Uneyama, Density functional simulation of spontaneous formation of vesicle in block copolymer solutions, J. Chem. Phys, vol.126, issue.11, p.114902, 2007.

M. Antonietti and S. Forster, Vesicles and liposomes: A self-assembly principle beyond lipids, Adv. Mater, vol.15, issue.16, pp.1323-1333, 2003.

B. A. Chan, S. Xuan, A. Li, J. M. Simpson, G. L. Sternhagen et al., Polypeptoid polymers: Synthesis, characterization, and properties, Biopolymers, vol.109, issue.1, p.23070, 2018.

S. Yamada, K. Ikkyu, K. Iso, M. Goto, and T. Endo, Facile synthesis of polymethionine oxides through polycondensation of activated urethane derivative of alpha-amino acid and their application to antifouling polymer against proteins and cells, Polym. Chem, vol.6, issue.10, pp.1838-1845, 2015.

A. R. Rodriguez, J. R. Kramer, and T. J. Deming, Enzyme-Triggered Cargo Release from Methionine Sulfoxide Containing Copolypeptide Vesicles, Biomacromolecules, vol.14, issue.10, pp.3610-3614, 2013.

J. R. Kramer and T. J. Deming, Preparation of Multifunctional and Multireactive Polypeptides via Methionine Alkylation, Biomacromolecules, vol.2012, issue.6, pp.1719-1723

A. R. Rodriguez, U. Choe, D. T. Kamei, and T. J. Deming, Blending of Diblock and Triblock Copolypeptide Amphiphiles Yields Cell Penetrating Vesicles with Low Toxicity, Macromol. Biosci, vol.15, issue.1, pp.90-97, 2015.

A. R. Rodriguez, U. Choe, D. T. Kamei, and T. J. Deming, Use of Methionine Alkylation to Prepare Cationic and Zwitterionic Block Copolypeptide Vesicles, Isr. J. Chem, vol.56, issue.8, pp.607-613, 2016.

S. Yu, C. Wang, J. Yu, J. Wang, Y. Lu et al., Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade, Adv. Mater, p.1801527, 2018.

J. Gaitzsch, K. Karu, and G. Battaglia, Peptoidosomes as nanoparticles from amphiphilic block alpha-peptoids using solid-phase-synthesis, Eur. Polym. J, vol.73, pp.447-454, 2015.

C. Fetsch, J. Gaitzsch, L. Messager, G. Battaglia, and R. Luxenhofer, Self-Assembly of Amphiphilic Block Copolypeptoids -Micelles, Worms and Polymersomes. Sci. Rep, vol.6, p.33491, 2016.

M. L. Alessi, A. I. Norman, S. E. Knowlton, D. L. Ho, and S. C. Greer, Helical and coil conformations of poly(ethylene glycol) in isobutyric acid and water, Macromolecules, vol.38, issue.22, pp.9333-9340, 2005.

S. Mössmer, J. P. Spatz, M. Möller, T. Aberle, J. Schmidt et al., Solution Behavior of Poly(styrene)-block-poly(2-vinylpyridine) Micelles Containing Gold Nanoparticles, Macromolecules, vol.33, issue.13, pp.4791-4798, 2000.

I. Teraoka, Dynamics of Dilute Polymer Solutions, Polymer Solutions: An Introduction to Physical Properties, 2002.

K. L. Linegar, A. E. Adeniran, A. F. Kostko, and M. A. Anisimov, Hydrodynamic radius of polyethylene glycol in solution obtained by dynamic light scattering, Colloid J, vol.72, issue.2, pp.279-281, 2010.

A. Birke, J. Ling, and M. Barz, Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications, Prog. Polym. Sci, vol.81, pp.163-208, 2018.

X. Tao, Y. Deng, Z. Shen, and J. Ling, Controlled Polymerization of N-Substituted Glycine N-Thiocarboxyanhydrides Initiated by Rare Earth Borohydrides toward Hydrophilic and Hydrophobic Polypeptoids, Macromolecules, vol.47, issue.18, pp.6173-6180, 2014.

C. Fetsch and R. Luxenhofer, Thermal Properties of Aliphatic Polypeptoids, Polymers, vol.2013, issue.1, pp.112-127

C. Lee, A. Li, K. Ghale, and D. Zhang, Crystallization and Melting Behaviors of Cyclic and Linear Polypeptoids with Alkyl Side Chains, Macromolecules, vol.46, issue.20, pp.8213-8223, 2013.

J. Rieger, The glass transition temperature of polystyrene -Results of a round robin test, J. Therm. Anal, vol.46, issue.3-4, pp.965-972, 1996.

A. F. Halasa, J. M. Massie, and . Polybutadiene, Kirk-Othmer Encyclopedia of Chemical Technology, 2000.

P. P. Ghoroghchian, G. Z. Li, D. H. Levine, K. P. Davis, F. S. Bates et al., Bioresorbable vesicles formed through spontaneous self-assembly of amphiphilic poly(ethylene oxide)-block-polycaprolactone, Macromolecules, vol.39, issue.5, pp.1673-1675, 2006.

M. Dionzou, A. Morere, C. Roux, B. Lonetti, J. D. Marty et al., Comparison of methods for the fabrication and the characterization of polymer self-assemblies: what are the important parameters? Soft matter, vol.12, pp.2166-2176, 2016.

G. Battaglia and A. J. Ryan, Pathways of polymeric vesicle formation, J. Phys. Chem. B, issue.21, pp.10272-10279, 2006.

G. Battaglia and A. J. Ryan, Neuron-like tubular membranes made of diblock copolymer amphiphiles, Angew. Chem. Int. Ed. Engl, vol.45, issue.13, pp.2052-2056, 2006.

R. C. Hayward and D. J. Pochan, Tailored Assemblies of Block Copolymers in Solution: It Is All about the Process, Macromolecules, issue.8, pp.3577-3584, 2010.

X. Y. Wang, X. Y. Feng, G. P. Ma, D. Zhang, Y. H. Chai et al., Dual-Phase Separation in a Semiconfined System: Monodispersed Heterogeneous Block-Copolymer Membranes for Cell Encoding and Patterning, Adv. Mater, vol.2017, issue.19, p.1605932

W. Wang, H. Qi, T. Zhou, S. Mei, L. Han et al., Highly robust crystalsome via directed polymer crystallization at curved liquid/liquid interface, Nat. Comm, vol.7, p.10599, 2016.

D. S. Dimitrov and M. I. Angelova, Electric-field mediated lipid swelling and liposome formation, Studia Biophysica, vol.119, issue.1-3, pp.61-65, 1987.

D. S. Dimitrov and M. I. Angelova, Lipid swelling and liposome formation mediated by electric-fields, Bioelectrochem. Bioenerg, vol.19, issue.2, pp.323-336, 1988.

R. Dimova, U. Seifert, B. Pouligny, S. Förster, and H. Döbereiner, Hyperviscous diblock copolymer vesicles, vol.7, pp.241-250, 2002.

T. Ruysschaert, A. F. Sonnen, T. Haefele, W. Meier, M. Winterhaltert et al., Hybrid nanocapsules: Interactions of ABA block copolymers with liposomes, J. Am. Chem. Soc, vol.127, issue.17, pp.6242-6247, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078706

W. Wang, M. C. Staub, T. Zhou, D. M. Smith, H. Qi et al., Polyethylene nano crystalsomes formed at a curved liquid/liquid interface, Nanoscale, vol.2017, issue.1, pp.268-276

I. Schlegel, R. Muñoz-espí, P. Renz, I. Lieberwirth, G. Floudas et al., Crystallinity Tunes Permeability of Polymer Nanocapsules, Macromolecules, vol.2017, issue.12, pp.4725-4732

J. Bae, T. P. Russell, and R. C. Hayward, Osmotically driven formation of double emulsions stabilized by amphiphilic block copolymers, Angew. Chem. Int. Ed. Engl, vol.53, issue.31, pp.8240-8245, 2014.

M. R. Kim and I. W. Cheong, Stimuli-triggered Formation of Polymersomes from W/O/W Multiple Double Emulsion Droplets Containing Poly(styrene)-block-poly(Nisopropylacrylamide-co-spironaphthoxazine methacryloyl), Langmuir, vol.2016, issue.36, pp.9223-9228

I. Wyman, G. Njikang, and G. Liu, When emulsification meets self-assembly: The role of emulsification in directing block copolymer assembly, Prog. Polym. Sci, vol.36, issue.9, pp.1152-1183, 2011.

M. Park, S. Jun, I. Kim, S. Jin, J. Kim et al., Stepwise Drug-Release Behavior of Onion-Like Vesicles Generated from Emulsification-Induced Assembly of Semicrystalline Polymer Amphiphiles, Adv. Funct. Mater, vol.25, issue.29, pp.4570-4579, 2015.

A. H. Groeschel and A. Walther, Block Copolymer Micelles with Inverted Morphologies

, Angew. Chem. Int. Ed. Engl, vol.2017, issue.37, pp.10992-10994

S. J. Holder and N. A. Sommerdijk, New micellar morphologies from amphiphilic block copolymers: disks, toroids and bicontinuous micelles, Polym. Chem, vol.2, issue.5, pp.1018-1028, 2011.

J. Barauskas, M. Johnsson, and F. Tiberg, Self-assembled lipid superstructures: Beyond vesicles and liposomes, Nano Lett, vol.5, issue.8, pp.1615-1619, 2005.

C. Park, Y. La, T. H. An, H. Y. Jeong, S. Kang et al., Mesoporous monoliths of inverse bicontinuous cubic phases of block copolymer bilayers, Nat. Comm, vol.6, p.6392, 2015.

D. P. Siegel, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal amphiphile phases .3. Isotropic and inverted cubic state formation via intermediates in transitions between L-alpha and H-II phases, Chem. Phys. Lipids, vol.42, issue.4, pp.279-301, 1986.

D. P. Siegel, Energetics of intermediates in membrane-fusion -comparison of stalk and inverted micellar intermediate mechanisms, Biophys. J, vol.65, issue.5, pp.2124-2140, 1993.

D. P. Siegel and R. M. Epand, The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: Implications for membrane fusion mechanisms, Biophys. J, vol.73, issue.6, pp.3089-3111, 1997.

X. Mulet, X. Gong, L. J. Waddington, and C. J. Drummond, Observing Self-Assembled Lipid Nanoparticles Building Order and Complexity through Low-Energy Transformation Processes, ACS Nano, vol.3, issue.9, pp.2789-2797, 2009.

D. Demurtas, P. Guichard, I. Martiel, R. Mezzenga, C. Hebert et al., Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography, Nat. Comm, vol.6, p.8915, 2015.

R. Salva, J. F. Le-meins, O. Sandre, A. Brulet, M. Schmutz et al., Polymersome Shape Transformation at the Nanoscale, ACS Nano, vol.7, issue.10, pp.9298-9311, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01904417

B. E. Mckenzie, J. F. Visser, G. Portale, D. Hermida-merino, H. Friedrich et al., The evolution of bicontinuous polymeric nanospheres in aqueous solution, Soft matter, vol.12, issue.18, pp.4113-4122, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01572710

B. E. Mckenzie, J. F. Visser, H. Friedrich, M. J. Wirix, P. H. Bomans et al., Bicontinuous Nanospheres from Simple Amorphous Amphiphilic Diblock Copolymers, vol.2013, pp.9845-9848

O. R. Monaghan, P. H. Bomans, N. A. Sommerdijk, and S. J. Holder, Controlling the melting transition of semi-crystalline self-assembled block copolymer aggregates: controlling release rates of ibuprofen, Polym. Chem, vol.2017, issue.35, pp.5303-5316

E. Malikmammadov, T. E. Tanir, A. Kiziltay, V. Hasirci, and N. Hasirci, PCL and PCLbased materials in biomedical applications, J. Biomat. Sci.-Polym. E, vol.29, issue.7-9, pp.863-893, 2018.

J. Z. Du and R. K. O'reilly, Advances and challenges in smart and functional polymer vesicles, Soft matter, vol.5, issue.19, pp.3544-3561, 2009.

F. H. Meng, Z. Y. Zhong, and J. Feijen, Stimuli-Responsive Polymersomes for Programmed Drug Delivery, Biomacromolecules, vol.10, issue.2, pp.197-209, 2009.

K. T. Kim, S. A. Meeuwissen, R. J. Nolte, and J. C. Van-hest, Smart nanocontainers and nanoreactors, Nanoscale, vol.2010, issue.6, pp.844-858

Y. Deng, J. Ling, and M. Li, Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane, Nanoscale, vol.10, pp.6781-6800, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02394700

C. D. Lux, S. Joshi-barr, N. Trung, E. Mahmoud, E. Schopf et al., Biocompatible Polymeric Nanoparticles Degrade and Release Cargo in Response to Biologically Relevant Levels of Hydrogen Peroxide, J. Am. Chem. Soc, vol.2012, issue.38, pp.15758-15764

M. S. Shim and Y. Xia, A Reactive Oxygen Species (ROS)-Responsive Polymer for Safe, Efficient, and Targeted Gene Delivery in Cancer Cells, Angew. Chem. Int. Ed. Engl, vol.52, issue.27, pp.6926-6929, 2013.

G. Liou and P. Storz, Reactive oxygen species in cancer, Free Radical Res, issue.5, pp.479-496, 2010.

B. Halliwell, M. V. Clement, and L. H. Long, Hydrogen peroxide in the human body, FEBS Lett, vol.486, issue.1, pp.10-13, 2000.

H. Ohshima, M. Tatemichi, and T. Sawa, Chemical basis of inflammation-induced carcinogenesis, Arch. Biochem. Biophys, vol.417, issue.1, pp.3-11, 2003.

C. M. Doskey, V. Buranasudja, B. A. Wagner, J. G. Wilkes, J. Du et al., Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy, Redox Bio, vol.10, pp.274-284, 2016.

M. Ikeda, T. Tanida, T. Yoshii, K. Kurotani, S. Onogi et al., Installing logic-gate responses to a variety of biological substances in supramolecular hydrogelenzyme hybrids, Nat. Chem, vol.6, issue.6, pp.511-518, 2014.

A. E. Vasdekis, E. A. Scott, C. P. Neil, D. Psaltis, and J. A. Hubbell, Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture, ACS Nano, vol.6, issue.9, pp.7850-7857, 2012.

A. Napoli, M. J. Boerakker, N. Tirelli, R. J. Nolte, N. Sommerdijk et al., Glucose-oxidase based self-destructing polymeric vesicles, Langmuir, vol.20, issue.9, pp.3487-3491, 2004.

R. A. Perez, M. E. Cordova, J. V. Lopez, J. N. Hoskins, B. Zhang et al., Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(epsilon-caprolactone)s, React. Funct. Polym, vol.80, pp.71-82, 2014.

P. D. Ray, B. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal, vol.2012, issue.5, pp.981-990

Z. Su, M. Chen, Y. Xiao, M. Sun, L. Zong et al., ROS-triggered and regenerating anticancer nanosystem: an effective strategy to subdue tumor's multidrug resistance, J. Control. Release, vol.196, pp.370-383, 2014.

K. Podual, F. J. Doyle, and N. A. Peppas, Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts, J. Control. Release, p.67, 2000.

C. C. Song, F. S. Du, and Z. C. Li, Oxidation-responsive polymers for biomedical applications, J. Mater. Chem. B, vol.2014, issue.22, pp.3413-3426

A. Napoli, M. Valentini, N. Tirelli, M. Muller, and J. A. Hubbell, Oxidation-responsive polymeric vesicles, Nat. Mater, vol.3, issue.3, pp.183-189, 2004.

A. R. Rodriguez, J. R. Kramer, and T. J. Deming, Enzyme-Triggered Cargo Release from Methionine Sulfoxide Containing Copolypeptide Vesicles, Biomacromolecules, vol.14, issue.10, pp.3610-3614, 2013.

J. R. Kramer and T. J. Deming, Reversible chemoselective tagging and functionalization of methionine containing peptides, Chem. Commun, issue.45, pp.5144-5146, 2013.

S. Yu, C. Wang, J. Yu, J. Wang, Y. Lu et al., Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade, Adv. Mater, p.1801527, 2018.

H. Liu, R. Wang, J. Wei, C. Cheng, Y. Zheng et al., Conformation-Directed Micelle-to-Vesicle Transition of Cholesterol-Decorated Polypeptide Triggered by Oxidation, J. Am. Chem. Soc, vol.140, issue.21, pp.6604-6610, 2018.

X. Fu, Y. Ma, Y. Shen, W. Fu, and Z. Li, Oxidation-responsive OEGylated poly-L-cysteine and solution properties studies, Biomacromolecules, vol.15, issue.3, pp.1055-1061, 2014.

S. Mitragotri, P. A. Burke, and R. Langer, Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies, Nat. Rev. Drug. Discov, vol.13, issue.9, pp.655-672, 2014.

B. Yan, Y. Zhang, C. Wei, and Y. Xu, Facile synthesis of ROS-responsive biodegradable main chain poly(carbonate-thioether) copolymers, Polym. Chem, vol.9, issue.7, pp.904-911, 2018.

D. Dolmans, D. Fukumura, and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, vol.3, issue.5, pp.380-387, 2003.

Z. Zhou, J. Song, L. Nie, and X. Chen, Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy, Chem. Soc. Rev, vol.45, issue.23, pp.6597-6626, 2016.

S. Yamada, K. Ikkyu, K. Iso, M. Goto, and T. Endo, Facile synthesis of polymethionine oxides through polycondensation of activated urethane derivative of alpha-amino acid and their application to antifouling polymer against proteins and cells, Polym. Chem, vol.6, issue.10, pp.1838-1845, 2015.

K. A. Riske, T. P. Sudbrack, N. L. Archilha, A. F. Uchoa, A. P. Schroder et al., Giant Vesicles under Oxidative Stress Induced by a Membrane-Anchored Photosensitizer, Biophys. J, vol.97, issue.5, pp.1362-1370, 2009.

E. Mabrouk, S. Bonneau, L. Jia, D. Cuvelier, M. Li et al., Photosensitization of polymer vesicles: a multistep chemical process deciphered by micropipette manipulation, Soft matter, vol.6, issue.19, pp.4863-4875, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01002400

G. P. Robbins, M. Jimbo, J. Swift, M. J. Therien, D. A. Hammer et al., Photoinitiated Destruction of Composite Porphyrin-Protein Polymersomes, J. Am. Chem. Soc, vol.131, issue.11, pp.3872-3874, 2009.

S. Xu, G. Ng, J. Xu, R. P. Kuchel, J. Yeow et al., 2-(Methylthio)ethyl Methacrylate: A Versatile Monomer for Stimuli Responsiveness and Polymerization-Induced Self-Assembly in the Presence of Air, ACS Macro Lett, vol.2017, issue.11, pp.1237-1244

Y. Deng, . Ling, ;. Jun, and M. Li, Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane, Nanoscale, vol.10, pp.6781-6800, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02394700

Y. ;. Deng, . Zou, ;. Tao, . Tao, ;. Xinfeng et al.,

S. ;. Marco, . Ling, ;. Jun, and M. Li, Poly(epsilon-caprolactone)-blockpolysarcosine by ring-opening polymerization of sarcosine Nthiocarboxyanhydride: Synthesis and thermoresponsive self-assembly, Biomacromolecules, vol.16, issue.10, pp.3265-3274, 2015.

Y. Deng, . Chen, ;. Hui, . Tao, ;. Xinfeng et al., Oxidation-responsive polymersomes based on polypeptoids with thioether side-chain

Y. Deng, . Ling, ;. Jun, and M. Li, Film hydration techniques for the formation of polypeptoid vesicles

Y. ;. Deng, . Zou, ;. Tao, . Tao, ;. Xinfeng et al.,

S. ;. Marco, . Ling, ;. Jun, and M. Li, Polymersomes of biodegradable polysarcosine-block-poly(epsilon-caprolactone), J. Control. Release, vol.213, pp.130-130, 2015.

Y. ;. Deng, . Trepout, ;. Sylvain, . Ling, ;. Jun et al., Synthesis and selfassembly of amphiphilic block copolymers containing poly(N-methylthiopropyl glycine, The 15th Pacific Polymer Conference, 2017.

, Various techniques like nanoprecipitation, film hydration and double emulsion are used to perform the self-assemblies with the objective to obtain polypeptoid vesicles. The self-assemblies are investigated in detail by DLS, cryo-EM, confocal laser scanning microscope (CLSM) and 1 H-NMR. In the first family of copolymers, ROP of sarcosine NTA (Sar-NTA) is initiated by oxyamino-ended poly(?-caprolactone) (PCL), to obtain diblock copolymer PCL-b-PSar and triblock copolymer PSar-b-PCL-b-PSar. Unilamellar sheets and nanofibers are obtained by nanoprecipitation of PSarb-PCL-b-PSar copolymers at room temperature. These lamellae and fibrous structures are tra nsformed into worm-like cylinders and spheres after heating to 65 °C. Heating at 90 °C leads eventually to multilamellar polymersomes. The second family of copolymers is based on a thioetherbearing polypeptoid, poly(N-3-(methylthio)propyl glycine) (PMeSPG). The new monomer, MeSPG-NTA is obtained from a "decarboxylation?Ncarboxymethylation" procedure from methionine, followed by cyclization. The amphiphilic block copolymers PEG -b-PMeSPG and PMeSPG-b-PSar are synthesized with different molecular weights and hydrophilic/hydrophobic ratios. Vesicles have been achieved with different methods, and the mechanism of vesicle formation through diverse nonergodic morphologies are discussed in detail. The thioether-bearing polypeptoid is designed because of its oxidation-responsive features. Effectively, oxidation-responsive disruption is achieved for the PMeSPG-b-PSar polypeptoid vesicles, ABSTRACT As a robust nanocontainer with polymeric bilayer structure, polymer vesicle, also called polymersome, has been considered as potential drug carrier in biomedical field, because of its cell-mimicking structure, high stability and capability to be functionalized. For practical use of polymersomes in biomedical applications, the biocompatibility of the copolymers that compose the vesicles become an important issue

, En évitant la formation de liaisons hydrogène inter -et intramoléculaires, les polypeptoids ont des solubilités bien meilleures que les polypeptides dans des solvants organiques usuels, tandis que la biocompatibilité est bien maintenue. Des travaux sur l'auto-assemblage de copolymères à blocs contenant polypeptoids émergent dans la littérature. Cependant, les travaux sur les vésicul es polypeptoids sont encore rares. Dans cette thèse, deux familles de copolymères à blocs amphiphiles contenant les polypeptoids ont été synthétisées par la polymérisation par ouverture de cycle (ROP) de N-thiocarboxyanhydrides d'acides aminés N-substitués (NNTA). Différentes techniques telles que la nanoprécipitation, l'hydratation de film mince et la double émulsion ont été utilisées pour réaliser les auto -assemblages dans le but d'obtenir des vésicules polypeptoids, MOTS CLÉS Auto-assemblage, polypeptoids, polymersome, oxydation-stimulable, photo-stimulable RÉSUMÉ Comme un nanoconteneur robuste formé d'une bicouche de polymères amphiphiles, vésicule polymère, aussi appelée polymersome, a été considérée comme un vecteur de médicament potentiel dans le domaine biomédical, grâce à sa structure imitant les cellules, sa grande stabilité et sa capacité à être fonctionnalisée

. Dans-la-première-famille-de-copolymères, Sar-NTA) a été initiée par le poly(?-caprolactone) (PCL) à terminaison -oxyamine, pour obtenir le copolymère dibloc PCL-b-PSar, et le copolymère tribloc PSar-b-PCL-b-PSar. Des feuilles et nanofibres unilamellaires ont été obtenues par nanoprécipitation des copolymères PSar-b-PCL-b-PSar à température ambiante. Ces lamelles et structures fibreuses peuvent être transformées en particules cylindriques et sphèriques après chauffage à 65 °C. Le chauffage à 90 °C conduit finalement à des polymeromes multilamellaires. La seconde famille de copolymères est basée sur un polypeptoid portant thioéthers

M. Le-nouveau, MeSPG-NTA, a été préparé par une procédure de « décarboxylation? N-carboxyméthylation » à partir de la méthionine, suivie d'une cyclisation. Les copolymères à blocs amphiphiles PEG -b-PMeSPG et PMeSPG-b-PSar ont été synthétisés avec de différentes masses moléculaires et de différents rapports de blocs hydrophile/hydrophobe. Les études d'auto -assemblage ont été menées sur ces copolymères pour la formation de vésicules polypeptoids, Des vésicules ont été obtenues avec de différentes méthodes, et le m écanisme de la formation des vésicules à travers diverses morphologies non-ergodiques a été discuté en détail

, En effet, le des assemblage des vésicules polypeptoids de PMeSPG-b-PSar sensible à l'oxydation a été obtenu en raison de la transition « thioéther?sulfoxyde » stimulée respectivement par le peroxyde d'hydrogène (H2O2) et par l'oxygène singulet ( 1 O2) produit en presence de la lumière, Les vésicules polypeptoids oxydation-stimulable et photo-stimulable ainsi réalisés peuvent être des systèmes prometteurs dans des applications de relargages contrôlés des médicaments. KEYWORDS Self-assembly, polypeptoids, polymersome, oxidation-responsive