T. V. Ojumu, G. S. Hansford, and J. Petersen, The kinetics of ferrous-iron oxidation by, 2009.

N. N. Adhapure, S. S. Waghmare, V. S. Hamde, and A. M. Deshmukh, Metal solubilization from powdered printed circuit boards by microbial consortium from bauxite and pyrite ores, Applied Biochemistry and Microbiology, vol.49, issue.3, pp.256-262, 2013.

, Détermination de certaines substances dans les produits électrotechniques -Partie 5 : Du cadmium, du plomb et du chrome dans les polymères et les produits électroniques, du cadmium et du plomb dans les métaux par AAS, AFS, ICP-OES et ICP-MS, norme française NF EN 62321-5, vol.40, 2014.

E. Ahumada, H. Lizama, F. Orellana, C. Suárez, A. Huidobro et al., Catalytic oxidation of Fe(II) by activated carbon in the presence of oxygen. Effect of the surface oxidation degree on the catalytic activity, Carbon, vol.40, pp.2827-2834, 2002.

W. A. Bizzo, R. A. Figueiredo, and V. F. De-andrade, Characterization of Printed Circuit Boards for Metal and Energy Recovery after Milling and Mechanical Separation, Materials, vol.7, pp.4555-4566, 2014.

E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, p.22, 1992.

M. N. Collinet-latil, « Lixiviation bactérienne par Thiobacillus ferrooxidans et Thiobacillus thiooxidans d'un concentré de flottation arsénopyriteux aurifère (réfractaire à la cyanuration directe) », Thèse de doctorat en biologie cellulaire et microbiologie à l, 1989.

N. J. Coram and D. E. Rawlings, Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40°C, Applied and environmental microbiology, pp.838-845, 2002.

S. Gaboreau and P. Vieillard, Prediction of Gibbs free energies of formation of minerals of the alunite supergroup, Geochimica et Cosmochimica Acta, vol.68, issue.16, pp.3307-3316, 2004.

P. Goodman, Current and Future Uses of Gold in Electronics, Gold Bulletin, vol.35, issue.1, pp.21-26, 2002.

A. G. Guezennec, C. Joulian, J. Jacob, A. Archane, D. Ibarra et al., Influence of dissolved oxygen on the bioleaching efficiency under oxygen enriched atmosphere, Minerals Engineering, vol.106, pp.64-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01427774

S. Holgersson, B. M. Steenari, M. Björkman, and K. Cullbrand, Analysis of the metal content of small-size Waste Electric and Electronic Equipment (WEEE) printed circuit boards -part 1: Internet routers, mobile phones and smartphones, Resources, Conservation and Recycling, vol.133, pp.300-308, 2018.

S. Ilyas, C. Ruan, H. N. Bhatti, M. A. Ghauri, and M. A. Anwar, Column bioleaching of metals from electronic scrap, Hydrometallurgy, vol.101, pp.135-140, 2010.

A. B. Jensen and C. Webb, Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review, Process Biochemistry, vol.30, pp.225-236, 1995.

D. B. Johnson, C. Joulian, P. Hugues, and K. B. Hallberg, Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations, Extremophiles, vol.12, pp.789-798, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00643276

A. H. Kaksonen, C. Morris, S. Rea, J. Li, K. M. Usher et al., Biohydrometallurgical iron oxidation and precipitation: Part II -Jarosite precipitate characterization and acid recovery by conversion to hematite, Hydrometallurgy, pp.264-272, 2014.

W. C. Kelly and P. A. Burgio, Cryogenic scanning electron microscopy of fluid inclusions in ore and gangue minerals, Economic Geology, vol.78, pp.1262-1267, 1983.

V. Kumar, J. C. Lee, J. Jeong, M. K. Jha, B. Kim et al., Recycling of printed circuit boards (PCBs) to generate enriched rare metal concentrate, Journal of Industrial and Engineering Chemistry, vol.21, pp.805-813, 2015.

N. I. Kuznetsova, V. A. Likholobov, M. Gurrath, and H. P. Boehm, Promotion effect of carbon on the oxidation of ferrous ions by oxygen in the presence of sodium nitrite, Applied Catalysis A/General, vol.128, pp.41-52, 1995.

S. Mi, J. Song, J. Lin, Y. Che, H. Zheng et al., Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation, The Journal of Microbiology, vol.49, pp.890-901, 2011.

P. R. Norris, Acidophile Diversity in Mineral Sulfide Oxidation, 2007.

I. O. Ogunniyi, M. K. Vermaak, and D. R. Groot, Chemical composition and liberation characterization of printed circuit board communition fines for beneficiation investigations, Waste Management, vol.29, pp.2140-2146, 2009.

P. M. Petter, H. M. Veit, and A. M. Bernardes, Evaluation of gold and silver leaching from printed circuit board of cellphones, Waste Management, vol.34, issue.2, pp.475-482, 2014.

R. A. Silva, J. Park, E. Lee, J. Park, S. Q. Choi et al., Influence of bacterial adhesion on copper extraction from printed circuit boards, Separation and Purification Technology, vol.143, pp.169-176, 2015.

M. P. Silverman and D. G. Lundgren, Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans I. An improved medium and a harvesting procedure for securing high cell yields, J.Bacteriol, vol.77, pp.642-649, 1959.

T. A. Theron, M. Nete, J. A. Venter, W. Purcell, and J. T. Nel, Dissolution and Quantification of Tantalum-Containing Compounds: Comparison with Niobium, S. Afr. J. Chem, vol.64, pp.173-178, 2011.

M. A. Hudson, C. Van-schaik, A. Heiskanen, K. Meskers, C. Hagelüken et al., Metal Recycling: Opportunities, Limits, Infrastructure, A Report of the Working Group on the Global Metal Flows to the International Resource Panel. Reuter, 2013.

, Final Report on the Review of Directive 2002/96 on Waste Electrical and Electronic Equipment (WEEE) -Study No, 2008.

H. R. Watling, F. A. Perrot, and D. W. Shiers, Comparison of selected characteristics of Sulfobacillus species and review of their occurrence in acidic and bioleaching environments, Hydrometallurgy, vol.93, pp.57-65, 2008.

J. Wienold, S. Recknagel, H. Scharf, M. Hoppe, and M. Michaelis, Elemental analysis of PCB considering the ROHS regulation, Waste Management, vol.31, pp.530-535, 2011.

L. H. Yamane, V. T. De-moraes, D. C. Espinosa, and J. A. Tenório, Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers, Waste Management, vol.31, pp.2553-2558, 2011.

S. Zhang and E. Forssberg, Intelligent Liberation and classification of electronic scrap, Powder Technology, vol.105, pp.295-301, 1999.

, La bio-oxydation en batch a mené à des cinétiques peu reproductibles car la croissance de la biomasse était limitée, ce qui a induit une dilution des cellules au fur et à mesure des repiquages successifs. L'étude des cinétiques en fed-batch a permis d'obtenir des vitesses de bio-oxydation élevées et une croissance importante de la biomasse, mais les cinétiques étaient de nouveau peu reproductibles. La bio-oxydation réalisée en mode continu a permis d'obtenir des résultats constants sur des périodes de travail de quelques semaines. La cinétique de cette réaction a été optimisée, en testant différents paramètres. Grâce à l'utilisation du nylon tissé comme support solide, une vitesse de 3 g.L -1 .h -1 a été obtenue pour un temps de séjour de 3, Une fois que les échantillons de cartes électroniques ont été produits et caractérisés, la biooxydation du Fe(II) en Fe(III) a été étudiée

. Lepidi, tels que les débits gazeux et l'enrichissement de l'air en CO2, la température ou encore le milieu nutritif (par exemple, l'utilisation d'urée à la place d'ammonium pourrait être étudiée pour limiter la précipitation de jarosite, Pour compléter cette étude, d'autres conditions opératoires pourraient être optimisées pour améliorer la cinétique de bio-oxydation, 1988.

H. Ainsi, Ainsi, elle pourrait servir à la mise en place de traitements par biolixiviation en deux étapes de LED, batteries, etc. ou à d'autres procédés chimiques nécessitant la présence de Fe(III) en milieu acide sulfurique, Cette étude de bio-oxydation du Fe(II) pourrait être utilisée dans d'autres domaines que la seule biolixiviation de cartes électroniques, vol.173, pp.141-149, 1991.

H. Brandl, R. Bosshard, and M. Wegmann, Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi, Hydrometallurgy, vol.59, pp.319-326, 2001.

C. G. Bryan, E. L. Watkin, T. J. Mccredden, Z. R. Wong, S. T. Harrison et al., The use of pyrite as a source of lixiviant in the bioleaching of electronic waste, Hydrometallurgy, vol.152, pp.33-43, 2015.

. Ceres,

A. G. Guezennec, K. Bru, J. Jacob, and P. Hugues, Co-processing of sulfidic mining wastes and metal-rich post-consumer wastes by biohydrometallurgy, Minerals Engineering, vol.75, pp.45-53, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01102658

H. Halfmeier, W. Schäfer-treffenfeldt, and M. Reuss, Potential of Thiobacillus ferrooxidans for waste gas purification. Part 1. Kinetics of continuous ferrous iron oxidation, Applied Microbiology and Biotechnology, vol.40, pp.416-420, 1993.

A. I?ildar, J. Van-de-vossenberg, E. R. Rene, E. D. Van-hullebusch, and P. N. Lens, Twostep bioleaching of copper and gold from discarded printed circuit boards (PCB), Waste Management, vol.57, pp.149-157, 2015.

S. Legros, E. Doelsch, P. Chaurand, J. Rose, A. Masion et al., Investigation of copper and zinc speciation in pig slurry by a multitechnique approach, 2011.

M. and G. Conference,

R. Lepidi, L. Toro, B. Paponetti, and S. Di-cesare, Urease of Thiobacillus ferrooxidans and urea influence on chalcopyrite bioleaching, Proceedings of the International Biohydrometallurgy Symposium, pp.319-325, 1988.

A. Mahmoud, P. Cézac, A. F. Hoadley, F. Contamine, and P. D'hugues, A review of sulfide minerals microbially assisted leaching in stirred tank reactors, International Biodeterioration & Biodegradation, vol.119, pp.118-146, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01816662

C. Ning, C. S. Lin, D. Hui, and G. Mckay, Waste Printed Circuit Board (PCB) Recycling Techniques, Top. Curr. Chem (Z), vol.375, p.43, 2017.

J. Willner, A. Fornalczyk, and M. Saternus, Selective recovery of copper from solutions after bioleaching electronic waste, Nova Biotechnologica et Chimica, pp.32-37, 2015.

C. Y. Yuan, H. C. Zhang, G. Mckenna, C. Korzeniewski, and J. Li, Experimental studies on cryogenic recycling of printed circuit board, Int. J. Adv. Manuf. Technol, vol.34, pp.657-666, 2007.

N. N. *-adhapure, S. S. Waghmare, V. S. Hamde, and A. M. Deshmukh, Metal Solubilization from Powdered Printed Circuit Boards by Microbial Consortium from Bauxite and Pyrite Ores, Applied Biochemistry and Microbiology, vol.49, pp.256-262, 2013.

N. N. *-adhapure, P. K. Dhakephalkar, A. P. Dhakephalkar, V. R. Tembhurkar, A. V. Rajgure et al., Use of large pieces of printed circuit boards for bioleaching to avoid 'precipitate contamination problem' and to simplify overall metal recovery, MethodsX, vol.1, pp.181-186, 2014.

, Aspects statistiques de l'échantillonnage des matériaux en vrac -Echantillonnage des matériaux particulaires, norme ISO, AFNOR, p.107, 2001.

, Poudres pour emploi en métallurgie des poudres -Échantillonnage, AFNOR, vol.3954, p.8, 2008.

, Préparation des échantillons de laboratoire à partir d'échantillons de grande taille, AFNOR, vol.23909, p.18, 2008.

, AFNOR, 2013. Plastiques -Plastiques recyclés -Procédures d'échantillonnage pour l'essai des déchets de plastiques et des recyclats, norme XP CEN/TS 16010, vol.24

, Qualité de l'eau -Détermination de paramètres sélectionnés par des systèmes d'analyse discrète -Partie 1 : ammonium, nitrate, nitrite, chlorure, orthophosphate, sulfate et silicate par détection photométrique, AFNOR, 2014.

, Détermination de certaines substances dans les produits électrotechniques -Partie 5 : Du cadmium, du plomb et du chrome dans les polymères et les produits électroniques, du cadmium et du plomb dans les métaux par AAS, AFS, ICP-OES et ICP-MS, norme française NF EN 62321-5, vol.40, 2014.

E. Ahumada, H. Lizama, F. Orellana, C. Suárez, A. Huidobro et al., Catalytic oxidation of Fe(II) by activated carbon in the presence of oxygen. Effect of the surface oxidation degree on the catalytic activity, Carbon, vol.40, pp.2827-2834, 2002.

F. Amiri, S. M. Mousavi, and S. Yaghmaei, Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum, Sep. Purif. Technol, vol.80, pp.566-576, 2011.

M. Arshadi and S. M. Mousavi, Simultaneous recovery of Ni and Cu from computer printed circuit boards using bioleaching: Statistical evaluation and optimization, Bioresource Technology, vol.174, pp.233-242, 2014.

M. Arshadi and S. M. Mousavi, Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: Simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans, Separation and Purification Technology, vol.147, pp.210-219, 2015.

I. Asghari, S. M. Mousavi, F. Amiri, and S. Tavassoli, Bioleaching of spent refinery catalysts: A review, J. Ind. Eng. Chem, vol.19, pp.1069-1081, 2013.

A. G. Aurubis, Recycling brochure, 2013.

J. Bai, J. Wang, J. Xu, M. Zhou, J. Guan et al., Microbiological recovering of metals from printed circuit boards by Acidithiobacillus ferrooxidans, Proceedings for the IEEE International Symposium on Sustainable Systems and Technology, 2009.

J. Bai, W. Gu, J. Dai, C. Zhang, W. Yuan et al., The catalytic role of nitrogen-doped carbon nanotubes in bioleaching copper from waste printed circuit boards, Pol. J. Environ. Stud, vol.25, issue.3, pp.951-957, 2016.

A. D. Bas, H. Deveci, and E. Y. Yazici, Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria, Hydrometallurgy, vol.138, pp.65-70, 2013.

M. Bastías and J. C. Gentina, Variables affecting the growth and ferrous oxidation capacity of L. ferrooxidans in continuous culture, Hydrometallurgy, vol.104, pp.351-355, 2010.

M. E. Bayer and M. H. Bayer, Lanthanide accumulation in the periplasmic space of Escherichia coli B, Journal of Bacteriology, vol.173, issue.1, pp.141-149, 1991.

G. Bidini, F. Fantozzi, P. Bartocci, B. D'alessandro, M. D'amico et al., Recovery of precious metals from scrap printed circuit boards through pyrolysis, Journal of Analytical and Applied Pyrolysis, vol.111, pp.140-147, 2015.

I. Birloaga, I. De-michelis, F. Ferella, M. Buzatu, and F. Vegliò, Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery, Waste Management, vol.33, pp.935-941, 2013.

W. A. Bizzo, R. A. Figueiredo, and V. F. De-andrade, Characterization of Printed Circuit Boards for Metal and Energy Recovery after Milling and Mechanical Separation, Materials, vol.7, pp.4555-4566, 2014.

J. F. Blais, R. D. Tyagi, and J. C. Auclair, Bioleaching of metals from sewage sludge: Microorganisms and growth kinetics, Water Res, vol.27, pp.101-110, 1993.

E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, p.22, 1992.

H. Brandl, R. Bosshard, and M. Wegmann, Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi, Hydrometallurgy, vol.59, pp.319-326, 2001.

C. L. Brierley, Biohydrometallurgical prospects, Hydrometallurgy, vol.104, pp.324-328, 2010.

C. G. Bryan, C. S. Davis-belmar, N. Van-wyk, M. K. Fraser, D. Dew et al., The effect of CO2 availability on the growth, iron oxidation and CO2 fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans, Biotechnology and bioengineering, vol.109, pp.1693-1703, 2012.

C. G. Bryan, E. L. Watkin, T. J. Mccredden, Z. R. Wong, S. T. Harrison et al., The use of pyrite as a source of lixiviant in the bioleaching of electronic waste, Hydrometallurgy, vol.152, pp.33-43, 2015.

C. Marques, A. Cabrera, J. M. De-fraga-malfatti, and C. , Printed circuit boards: A review on the perspective of sustainability, Journal of Environmental Management, vol.131, pp.298-306, 2013.

. Ceres,

C. Cerruti, G. Curutchet, and E. Donati, Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans, J. Biotechnol, vol.62, pp.209-219, 1998.

A. Chagnes, G. Cote, C. Ekberg, M. Nilsson, and T. Retegan, WEEE Recycling, Research, Development and Policies, 2016.

M. S. Choi, K. S. Cho, D. S. Kim, and D. J. Kim, Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans, J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng, vol.39, pp.2973-2982, 2004.

S. Chen, Y. Yang, C. Liu, F. Dong, and B. Liu, Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans, Chemosphere, vol.141, pp.162-168, 2015.

P. K. Choubey, R. Panda, M. K. Jha, J. C. Lee, and D. D. Pathak, Recovery of copper and recycling of acid from the leach liquor of discarded Printed Circuit Boards (PCBs), Separation and purification technology, vol.156, pp.269-275, 2015.

M. N. Collinet-latil, « Lixiviation bactérienne par Thiobacillus ferrooxidans et Thiobacillus thiooxidans d'un concentré de flottation arsénopyriteux aurifère (réfractaire à la cyanuration directe) », Thèse de doctorat en biologie cellulaire et microbiologie à l, 1989.

, Study on the review of the list of Critical Raw Materials, Final Report, 2017.

N. J. Coram and D. E. Rawlings, Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40°C, Applied and environmental microbiology, pp.838-845, 2002.

J. Cui and L. Zhang, Metallurgical recovery of metals from electronic waste: A review, Journal of Hazardous Materials, vol.158, pp.228-256, 2008.

J. Daoud and D. Karamanev, Formation of jarosite during Fe 2+ oxidation by Acidithiobacillus ferrooxidans, Minerals Engineering, vol.19, pp.960-967, 2006.

D. Développement-durable-et-ademe, A. Deprouw, M. Jover, S. Chouvenc, and E. Fangeat, Synthèse annuelle du registre des déchets d'équipements électriques et électroniques, 11 pages, 2017.

C. Demirel, M. Menek?e, N. Balci, and M. Seref-sonmez, Bioleaching of metals from printed circuit boards by Acidithiobacillus thiooxidans, 2014.

F. Deverly, « Echantillonnage et Géostatistique », Thèse de doctorat en Sciences et Techniques Minières à l'École Nationale Supérieure des Mines de Paris, p.129, 1984.

P. D'hugues, F. Battaglia-brunet, M. Clarens, and D. Morin, Microbial diversity of various metal-sulphides bioleaching cultures grown under different operating conditions using 16SrDNA analysis, Conference Paper for IBS, pp.1313-1323, 2003.

S. Ebrahimi, F. J. Fernandez-morales, R. Kleerebezem, J. J. Heijnen, and M. C. Van-loosdrecht, High-Rate Acidophilic Ferrous Iron Oxidation in a Biofilm Airlift Reactor and the Role of the Carrier Material, Biotechnology and Bioengineering, vol.90, issue.4, pp.462-472, 2005.

C. J. Edward, T. Pather, R. Govender, E. Ngoma, E. Govender-opitz et al., Determination of Ferrous Oxidation Kinetics in the Presence of Metals Associated with Printed Circuit Boards to Determine the Potential for, 2018.

T. Ernst, R. Popp, M. Wolf, and R. Van-eldik, Analysis of eco-relevant elements and noble metals in printed wiring boards using AAS, ICP-AES and EDXRF, Anal. Bioanal. Chem, vol.375, pp.805-814, 2003.

C. Eswaraiah, T. Kavitha, S. Vidyasagar, and S. S. Narayanan, Classification of metals and plastics from printed circuit boards (PCB) using air classifier, Chem Eng Process Process Intensif, vol.47, pp.565-576, 2008.

L. Flandinet, F. Tedjar, V. Ghetta, and J. Fouletier, Metals recovering from waste printed circuit boards (WPCBs) using molten salts, Journal of Hazardous Materials, pp.485-490, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00696822

A. Franz, W. Burgstaller, and F. Schinner, Leaching with Penicillium simplicissimum: Influence of Metals and Buffers on Proton Extrusion and Citric Acid Production, Appl. Environ. Microbiol, vol.57, pp.769-774, 1991.

K. Fu, B. Wang, H. Chen, M. Chen, and S. Chen, Bioleaching of Al from coarse-grained waste printed circuit boards in a stirred tank reactor, Procedia Environmental Sciences, vol.31, pp.897-902, 2016.

S. Gaboreau and P. Vieillard, Prediction of Gibbs free energies of formation of minerals of the alunite supergroup, Geochimica et Cosmochimica Acta, vol.68, issue.16, pp.3307-3316, 2004.

R. W. Gerlach, J. M. Nocerino, C. A. Ramsey, and B. C. Venner, Gy sampling theory in environmental studies 2. Subsampling error estimates, Analytica Chimica Acta, vol.490, pp.159-168, 2003.

B. Ghosh, M. K. Ghosh, P. Parhi, P. S. Mukherjee, and B. K. Mishra, Waste Printed Circuit Boards recycling: an extensive assessment of current status, Journal of Cleaner Production, vol.94, pp.5-19, 2015.

J. M. Gómez and D. Cantero, Kinetic study of biological ferrous sulphate oxidation by ironoxidising bacteria in continuous stirred tank and packed bed bioreactors, Process Biochemistry, vol.38, pp.867-87, 2003.

P. Goodman, Current and Future Uses of Gold in Electronics, Gold Bulletin, vol.35, issue.1, pp.21-26, 2002.

M. Goosey and R. Kellner, Recycling technologies for the treatment of end of life printed circuit boards (PCBs), Circuit World, vol.29, issue.3, pp.33-37, 2003.

E. Govender, S. T. Harrison, and C. G. Bryan, Modification of the ferric chloride assay for the spectrophotometric determination of ferric and total iron in acidic solutions containing high concentrations of copper, Minerals Engineering, vol.35, pp.46-48, 2012.

S. I. Grishin and O. H. Tuovinen, Fast kinetics of Fe 2+ oxidation in packed-bed reactors, Appl. Microbiol. Biotechnol, vol.54, pp.3092-100, 1988.

W. Gu, J. Bai, J. Dai, C. Zhang, W. Yuan et al., Characterization of extreme acidophile bacteria (Acidithiobacillus ferrooxidans) bioleaching copper from flexible PCB by ICP-AES, Journal of Spectroscopy, p.269351, 2014.

W. Gu, J. Bai, B. Dong, X. Zhuang, J. Zhao et al., Catalytic effect of graphene in bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans, Hydrometallurgy, vol.171, pp.172-178, 2017.

W. Gu, J. Bai, B. Dong, X. Zhuang, J. Zhao et al., Enhanced bioleaching efficiency of copper from waste printed circuit board driven by nitrogen-doped carbon nanotubes modified electrode, Chemical Engineering Journal, vol.324, pp.122-129, 2017.

R. Guay, M. Silver, and A. E. Torma, Ferrous iron oxidation and uranium extraction by Thiobacillus ferrooxidans, Biotech. Bioeng, vol.19, pp.727-740, 1977.

A. G. Guezennec, K. Bru, J. Jacob, and P. Hugues, Co-processing of sulfidic mining wastes and metal-rich post-consumer wastes by biohydrometallurgy, Minerals Engineering, vol.75, pp.45-53, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01102658

A. G. Guezennec, C. Joulian, J. Jacob, A. Archane, D. Ibarra et al., Influence of dissolved oxygen on the bioleaching efficiency under oxygenenriched atmosphere, Minerals Engineering, vol.106, pp.64-70, 2017.

C. Hagelüken, Recycling of electronic scrap at Umicore's integrated metals smelter and refinery, World of Metallurgy, vol.59, pp.152-161, 2006.

H. Halfmeier, W. Schafer-treffenfeldt, and M. Ressus, Potential of Thiobacillus ferrooxidans for waste gas purification: Part 1. Kinetics of continuous ferrous iron oxidation, Appl. Microbial. Biotechnol, vol.40, pp.416-420, 1993.

H. Halfmeier, W. Schafer-treffenfeldt, and M. Ressus, Potential of Thiobacillus ferrooxidans for waste gas purification: Part 2. Increase in continuous ferrous iron oxidation kinetics using immobilized cells, Appl. Microbial. Biotechnol, vol.40, pp.582-587, 1993.

W. J. Hall and P. T. Williams, Separation and recovery of materials from scrap printed circuit boards, Resources, Conservation and Recycling, vol.51, pp.691-709, 2007.

A. Hatzikioseyian and M. Tsezos, Modelling of microbial metabolism stoichiometry: Application in bioleaching processes, Hydrometallurgy, vol.83, pp.29-34, 2006.

S. Hedrich, A. Guezennec, M. Charron, A. Schippers, and C. Joulian, Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate, Frontiers in Microbiology, p.7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01427755

S. Holgersson, B. M. Steenari, M. Björkman, and K. Cullbrand, Analysis of the metal content of small-size Waste Electric and Electronic Equipment (WEEE) printed circuit boards-part 1: Internet routers, mobile phones and smartphones, Resources, Conservation and Recycling, 2017.

Y. Hong and M. Valix, Bioleaching of electronic waste using acidophilic sulfur oxidizing bacteria, Journal of Cleaner Production, vol.65, pp.465-472, 2014.

M. A. Hudec, M. Sodhi, and D. Goglia-arora, Biorecovery of Metals from Electronic Waste, Proceedings for the 7 th Latin American and Caribbean Conference for Engineering and Technology, 2009.

R. E. Huffman and N. Davidson, Kinetics of the Ferrous Iron-Oxygen Reaction in Sulfuric Acid Solution, J. Am. Chem. Soc, vol.78, p.4836, 1956.

J. Huisman, P. Leroy, F. Tertre, M. Ljunggren-söderman, P. Chancerel et al., Prospecting Secondary Raw Materials in the Urban Mine and mining wastes, 2017.

S. Ilyas, M. A. Anwar, S. B. Niazi, and M. A. Ghauri, Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria, Hydrometallurgy, vol.88, pp.180-188, 2007.

S. Ilyas and J. C. Lee, Bioleaching of metals from electronic scrap in a stirred tank reactor, Hydrometallurgy, vol.149, pp.50-62, 2014.

S. Ilyas, J. C. Lee, and R. A. Chi, Bioleaching of metals from electronic scrap and its potential for commercial exploitation, Hydrometallurgy, pp.138-143, 2013.

S. Ilyas, C. Ruan, H. N. Bhatti, M. A. Ghauri, and M. A. Anwar, Column bioleaching of metals from electronic scrap, Hydrometallurgy, vol.101, pp.135-140, 2010.

A. I?ildar, E. R. Rene, E. D. Van-hullebutsch, and P. N. Lens, Electronic waste as a secondary source of critical metals: Management and recovery technologies, Resources, Conservation & Recycling, 2017.

A. I?ildar, J. Van-de-vossenberg, E. R. Rene, E. D. Van-hullebusch, and P. N. Lens, Twostep bioleaching of copper and gold from discarded printed circuit boards (PCB), Waste Management, vol.57, pp.149-157, 2015.

N. Jain and D. K. Sharma, Biohydrometallurgy for Nonsulfidic Minerals -A Review, Geomicrobiology Journal, vol.21, pp.135-144, 2004.

A. B. Jensen and C. Webb, Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review, Process Biochemistry, vol.30, pp.225-236, 1995.

D. B. Johnson, C. Joulian, P. Hugues, and K. B. Hallberg, Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations, Extremophiles, vol.12, pp.789-798, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00643276

A. H. Kaksonen, C. Morris, S. Rea, J. Li, J. Wylie et al., Biohydrometallurgical iron oxidation and precipitation: Part I -Effect of pH on process performance, Hydrometallurgy, pp.255-263, 2014.

A. H. Kaksonen, C. Morris, S. Rea, J. Li, K. M. Usher et al., Biohydrometallurgical iron oxidation and precipitation: Part II -Jarosite precipitate characterization and acid recovery by conversion to hematite, Hydrometallurgy, pp.264-272, 2014.

A. H. Kaksonen, C. Morris, F. Hilario, S. M. Rea, J. Li et al., Iron oxidation and jarosite precipitation in a two-stage airlift bioreactor, Hydrometallurgy, vol.150, pp.227-235, 2014.

D. G. Karamanev and L. N. Nikolov, Influence of Some Physicochemical Parameters on Bacterial Activity of Biofilm: Ferrous Iron Oxidation by Thiobacillus ferrooxidans, Biotechnology and Bioengineering, vol.31, pp.295-299, 1988.

E. Karwowska, D. Andrzejewska-morzuch, M. ?ebkowska, A. Tabernacka, M. Wojtkowska et al., Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria, Journal of Hazardous Materials, vol.264, pp.203-210, 2014.

W. C. Kelly and P. A. Burgio, Cryogenic scanning electron microscopy of fluid inclusions in ore and gangue minerals, Economic Geology, vol.78, pp.1262-1267, 1983.

P. H. Kinnunen and J. A. Puhakka, High-Rate Ferric Sulfate Generation by a Leptospirillum ferriphilum-Dominated Biofilm and the Role of Jarosite in Biomass Retainment in a Fluidized-Bed Reactor, Biotechnology and Bioengineering, vol.85, issue.7, pp.697-705, 2004.

P. H. Kinnunen and J. A. Puhakka, High-rate iron oxidation at below pH 1 and at elevated iron and copper concentrations by a Leptospirillum ferriphilum dominated biofilm, Process Biochemistry, vol.40, pp.3536-3541, 2005.

V. Kumar, J. C. Lee, J. Jeong, M. K. Jha, B. Kim et al., Recycling of printed circuit boards (PCBs) to generate enriched rare metal concentrate, Journal of Industrial and Engineering Chemistry, vol.21, pp.805-813, 2015.

A. Kumari, M. K. Jha, J. C. Lee, and R. P. Singh, Clean process for recovery of metals and recycling of acid from the leach liquor of PCBs, Journal of Cleaner Production, vol.112, pp.4826-4834, 2016.

N. I. Kuznetsova, V. A. Likholobov, M. Gurrath, and H. P. Boehm, Promotion effect of carbon on the oxidation of ferrous ions by oxygen in the presence of sodium nitrite, Applied Catalysis A/General, vol.128, pp.41-52, 1995.

D. T. Lacey and F. Lawson, Kinetics of the Liquid-Phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans, Biotechnology and Bioengineering, vol.12, pp.29-50, 1970.

A. B. Lamb and L. W. Elder, The electromotive activation of oxygen, J. Am. Chem. Soc, vol.53, pp.137-163, 1931.

S. Legros, E. Doelsch, P. Chaurand, J. Rose, A. Masion et al., Investigation of copper and zinc speciation in pig slurry by a multitechnique approach, 2011.

M. and G. Conference,

R. Lepidi, L. Toro, B. Paponetti, and S. Di-cesare, Urease of Thiobacillus ferrooxidans and urea influence on chalcopyrite bioleaching, Proceedings of the International Biohydrometallurgy Symposium, pp.319-325, 1988.

J. Li, P. Shrivastava, Z. Gao, and H. Zhang, Printed circuit board recycling: a state-ofthe-art survey, IEEE Trans. Electron. Packag. Manuf, vol.27, pp.33-42, 2004.

G. Liang, Y. Mo, and Q. Zhou, Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles, Enzyme and Microbial Technology, vol.47, pp.322-326, 2010.

G. Liang, J. Tang, W. Liu, and Q. Zhou, Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs), Journal of Hazardous Materials, pp.238-245, 2013.

G. Liang, P. Ti, W. Liu, and B. Wang, Enhanced bioleaching efficiency of copper from waste printed circuit boards (PCBs) by dissolved oxygen-shifted strategy in Acidithiobacillus ferrooxidans, J Mater Cycles Waste Manag, vol.18, pp.742-751, 2016.

J. Looms, The study of a mixed culture biofilm reactor and the effect of high dissolved metal content and low pH on the rate of ferric iron regeneration for application in printed circuit board bioleaching, rapport de stage pour master de science en géologie minière, 2014.

D. G. Macdonald and R. H. Clark, The oxidation of aqueous ferrous sulphate by Thiobacillus ferrooxidans, Can. J. Chem. Eng, vol.48, pp.669-676, 1970.

A. Mahmoud, P. Cézac, A. F. Hoadley, F. Contamine, and P. D'hugues, A review of sulfide minerals microbially assisted leaching in stirred tank reactors, International Biodeterioration & Biodegradation, vol.119, pp.118-146, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01816662

J. *-mäkinen, J. Bachér, T. Kaartinen, M. Wahlström, and J. Salminen, The effect of flotation and parameters for bioleaching of printed circuit boards, Minerals Engineering, vol.75, pp.26-31, 2015.

J. E. Martin, L. L. Smith, G. Adjei-bekoe, and R. Thomas, Comparison of Different Sample Preparation Procedures for the Determination of RoHS/WEEE-Regulated Elements in Printed Circuit Boards and Electrical Components by EDXRF, Spectroscopy, vol.25, issue.4, pp.40-45, 2010.

S. Mi, J. Song, J. Lin, Y. Che, H. Zheng et al., Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation, The Journal of Microbiology, vol.49, pp.890-901, 2011.

C. Michel, C. Bény, F. Delorme, L. Poirier, P. Spolaore et al., New protocol for the rapid quantification of exopolysaccharides in continuous culture systems of acidophilic bioleaching bacteria, Appl. Microbiol. Biotechnol, vol.82, pp.371-378, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00512721

D. Mishra, D. J. Kim, D. E. Ralph, J. G. Ahn, and Y. H. Rhee, Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans, Waste Management, vol.28, pp.333-338, 2008.

D. Mishra and Y. H. Rhee, Microbial leaching of metals from solid industrial wastes, J. Microbiol, vol.52, pp.1-7, 2014.

L. S. Morf, J. Tremp, R. Gloor, F. Schuppisser, M. Stengele et al., Metals, nonmetals and PCB in electrical and electronic waste -Actual levels in Switzerland, Waste Management, vol.27, pp.1306-1316, 2007.

D. Morin, Biotechnologies dans la métallurgie extractive -Microbiologie et extraction des métaux, Techniques de l'Ingénieur, M2238 v3, 2013.

A. Mrá?iková, R. Marcin?áková, J. Kaduková, and O. Velgosová, Influence of bacterial culture to copper bioleaching from printed circuit boards, J. Polish Mineral Engineering Scoiety, pp.59-62, 2013.

A. Mrá?iková, R. Marcin?áková, J. Kaduková, O. Velgosová, and M. Balintova, Influence of used bacterial culture on zinc and aluminium bioleaching from printed circuit boards, Nova Biotechnologica et Chimica, pp.45-51, 2015.

A. Mrá?iková, J. Kaduková, R. Marcin?áková, O. Velgosová, J. Willner et al., The effect of specific conditions on Cu, Ni, Zn and Al recovery from PCBs waste using acidophilic bacterial strains, Arch. Metall. Mater, vol.61, issue.1, pp.261-264, 2016.

M. Nemati, S. T. Harrison, G. S. Hansford, and C. Webb, Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects, Biochem. Eng. J, vol.1, pp.171-190, 1998.

M. Nemati and S. T. Harrison, Comparative study on thermophilic and mesophilic biooxidation of ferrous iron, Minerals Engineering, vol.13, pp.19-24, 2000.

V. K. Nguyen, T. Tran, H. J. Han, S. H. Lee, and J. U. Lee, Possibility of bacterial leaching of antimony, chromium, copper, manganese, nickel, and zinc from contaminated sediment, J. Geochem. Explor, vol.156, pp.153-161, 2015.

H. Nie, C. Yang, N. Zhu, P. Wu, T. Zhang et al., Isolation of Acidithiobacillus ferrooxidans strain Z1 and its mechanism of bioleaching copper from waste printed circuit boards, J. Chem. Technol. Biotechnol, vol.90, pp.714-721, 2014.

H. Nie, N. Zhu, Y. Cao, Z. Xu, and P. Wu, Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching ofWaste Printed Circuit Boards, vol.177, pp.675-688, 2015.

C. Ning, C. S. Lin, D. Hui, and G. Mckay, Waste Printed Circuit Board (PCB) Recycling Techniques, Top. Curr. Chem (Z), vol.375, p.43, 2017.

P. R. Norris, Acidophile Diversity in Mineral Sulfide Oxidation, 2007.

P. Nurmi, B. Özkaya, A. H. Kaksonen, O. H. Tuovinen, and J. A. Puhakka, Inhibition kinetics of iron oxidation by Leptospirillum ferriphilum in the presence of ferric, nickel and zinc ions, Hydrometallurgy, vol.97, pp.137-145, 2009.

I. O. Ogunniyi, M. K. Vermaak, and D. R. Groot, Chemical composition and liberation characterization of printed circuit board communition fines for beneficiation investigations, Waste Management, vol.29, pp.2140-2146, 2009.

C. M. Ohajinwa, P. M. Van-bodegom, M. G. Vijver, and W. J. Peijnenburg, Impact of informal electronic waste recycling on metal concentrations in soils and dusts, Environ Res, vol.164, pp.385-394, 2018.

T. V. Ojumu, G. S. Hansford, and J. Petersen, The kinetics of ferrous-iron oxidation by Leptospirillum ferriphilum in continuous culture: The effect of temperature, Biochemical Engineering Journal, vol.46, pp.161-168, 2009.

T. V. Ojumu and J. Petersen, The kinetics of ferrous ion oxidation by Leptospirillum ferriphilum in continuous culture: The effect of pH, Hydrometallurgy, vol.106, pp.5-11, 2011.

T. V. Ojumu, J. Petersen, and G. S. Hansford, The effect of dissolved cations on microbial ferrous-iron oxidation by Leptospirillum ferriphilum in continuous culture, Hydrometallurgy, vol.94, pp.69-76, 2008.

Y. J. Park and D. J. Fray, Recovery of high purity precious metals from printed circuit boards, Journal of Hazardous Materials, vol.164, pp.1152-1158, 2009.

A. Pathak, M. G. Dastidar, and T. R. Sreekrishnan, Bioleaching of heavy metals from sewage sludge: A review, J. Environ. Manage, vol.90, pp.2343-2353, 2009.

K. Penev and D. Karamanev, Batch kinetics of ferrous iron oxidation by Leptospirillum ferriphilum at moderate to high total iron concentration, Biochemical Engineering Journal, vol.50, pp.54-62, 2010.

P. M. Petter, H. M. Veit, and A. M. Bernardes, Evaluation of gold and silver leaching from printed circuit board of cellphones, Waste Management, vol.34, issue.2, pp.475-482, 2014.

P. S. Pina, V. A. Oliveira, F. L. Cruz, and V. A. Leão, Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans, Biochemical Engineering Journal, vol.51, pp.194-197, 2010.

A. Priya and S. Hait, Extraction of metals from high grade waste printed circuit board by conventional and hybrid bioleaching using Acidithiobacillus ferrooxidans, Hydrometallurgy, vol.177, pp.132-139, 2018.

Y. Qu and B. Lian, Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10, Bioresource Technology, vol.136, pp.16-23, 2013.

M. L. Rodrigues, V. A. Leão, O. Gomes, F. Lambert, D. Bastin et al., Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor, Waste Management, vol.41, pp.148-158, 2015.

W. Rudolfs, Oxidation of iron pyrites by sulfur-oxidizing organisms and their use for making mineral phosphates available, Soil Sci, vol.14, pp.135-148, 1922.

W. Sand and T. Gehrke, Extracellular polymeric substances mediate bioleaching/ biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria, Res. Microbiol, vol.157, pp.49-56, 2006.

M. Sarvar, M. M. Salarirad, and M. A. Shabani, Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods, Waste Management, vol.45, pp.246-257, 2015.

K. Sasaki and H. Konno, Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions, Can. Mineral, vol.38, pp.45-56, 2000.

M. B. Shah, D. R. Tipre, and S. R. Dave, Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones, Waste Management & Research, vol.32, issue.11, pp.1134-1141, 2014.

M. B. Shah, D. R. Tipre, M. S. Purohit, and S. R. Dave, Development of two-step process for enhanced biorecovery of Cu-Zn-Ni from computer printed circuit boards, Journal of Bioscience and Bioengineering, vol.120, issue.2, pp.167-173, 2015.

R. A. Silva, J. Park, E. Lee, J. Park, S. Q. Choi et al., Influence of bacterial adhesion on copper extraction from printed circuit boards, Separation and Purification Technology, vol.143, pp.169-176, 2015.

M. P. Silverman and D. G. Lundgren, Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans I. An improved medium and a harvesting procedure for securing high cell yields, J.Bacteriol, vol.77, pp.642-649, 1959.

R. Sinha, G. Chauhan, A. Singh, A. Kumar, and S. Acharya, A novel eco-friendly hybrid approach for recovery and reuse of copper from electronic waste, Journal of Environmental Chemical Engineering, vol.6, issue.1, pp.1053-1061, 2018.

A. B. Sodha, S. A. Qureshi, B. R. Khatri, D. R. Tipre, and S. R. Dave, Enhancement in Iron Oxidation and Multi-metal Extraction from Waste Television Printed Circuit Boards by Iron Oxidizing Leptospirillum ferriphilum Isolated from Coal Sample, Waste Biomass Valor, pp.1-10, 2017.

E. Sum, The recovery of metals from electronic scrap, Review of Extractive Metallurgy, pp.53-61, 1991.

Z. H. Sun, Y. Xiao, J. Sietsma, H. Agterhuis, G. Visser et al., Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology, Waste Management, vol.35, pp.227-235, 2015.

T. A. Theron, M. Nete, J. A. Venter, W. Purcell, and J. T. Nel, Dissolution and Quantification of Tantalum-Containing Compounds: Comparison with Niobium, S. Afr. J. Chem, vol.64, pp.173-178, 2011.

A. Tuncuk, V. Stazi, A. Akcil, E. Y. Yazici, and H. Deveci, Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling, Minerals Engineering, vol.25, pp.28-37, 2012.

R. Turgis, A. Leydier, G. Arrachart, F. Burdet, S. Dourdain et al., Uranium extraction from phosphoric acid using bifunctional amido-phosphonic acid ligands, Solvent Extraction and Ion Exchange, vol.32, pp.478-491, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01999434

T. E. Graedel, J. Alwood, J. Birat, B. K. Reck, S. F. Sibley et al., Recycling Rates of Metals -A status report, A report of the Working Group on the Global Metal Flows to the International Resource Panel, UNEP, 2011.

M. A. Reuter, C. Hudson, A. Van-schaik, K. Heiskanen, C. Meskers et al., Metal Recycling: Opportunities, Limits, Infrastructure, A Report of the Working Group on the Global Metal Flows to the International Resource Panel, 2013.

, /19/UE du parlement européen et du conseil du 4 juillet 2012 relative aux déchets d'équipements électriques et électroniques (DEEE), 2012.

, Final Report on the Review of Directive 2002/96 on Waste Electrical and Electronic Equipment (WEEE) -Study No, 2008.

A. H. Veeken and H. V. Hamelers, Removal of heavy metals from sewage sludge by extraction with organic acids, Water Sci. Technol, vol.40, pp.129-136, 1999.

H. M. Veit, T. R. Diehl, A. P. Salami, J. S. Rodrigues, A. M. Bernardes et al., Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap, Waste Management, vol.25, pp.67-74, 2005.

E. A. Vestola, M. K. Kuusenaho, H. M. Närhi, O. H. Tuovinen, J. A. Puhakka et al., Acid bioleaching of solid waste materials from copper, steel and recycling industries, Hydrometallurgy, vol.103, pp.74-79, 2010.

H. Wang, J. M. Bigham, and O. H. Tuovinen, Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms, Materials Science and Engineering, vol.26, pp.588-592, 2006.

H. Wang, G. Gu, and Y. Qi, Crushing performance and resource characteristic of printed circuit board scrap, J Cent South Univ Technol, vol.12, pp.552-555, 2005.

H. Wang, S. Zhang, B. Li, D. Pan, Y. Wu et al., Recovery of waste printed circuit boards through pyrometallurgical processing: A review, Resources, Conservation & Recycling, vol.126, pp.209-218, 2017.

J. Wang, J. Bai, and B. Liang, Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture, Journal of Hazardous Materials, vol.172, pp.1100-1105, 2009.

L. Wang, Q. Li, Y. Li, X. Sun, J. Li et al., A novel approach for recovery of metals from waste printed circuit boards and simultaneous removal of iron from steel pickling waste liquor by two-step hydrometallurgical method, Waste Management, vol.71, pp.411-419, 2018.

S. Wang, Y. Zheng, W. Yan, L. Chen, G. D. Mahadevan et al., Enhanced bioleaching efficiency of metals from E-wastes driven by biochar, Journal of Hazardous Materials, vol.320, pp.393-400, 2016.

H. R. Watling, F. A. Perrot, and D. W. Shiers, Comparison of selected characteristics of Sulfobacillus species and review of their occurrence in acidic and bioleaching environments, Hydrometallurgy, vol.93, pp.57-65, 2008.

J. Wienold, S. Recknagel, H. Scharf, M. Hoppe, and M. Michaelis, Elemental analysis of PCB considering the ROHS regulation, Waste Management, vol.31, pp.530-535, 2011.

J. Willner, Influence of physical and chemical factors on biological leaching process of copper from printed circuit boards, Metabk, vol.52, issue.2, pp.189-192, 2013.

J. Willner and A. Fornalczyk, Extraction of copper from solution after bioleaching of Printed Circuit Boards (PCBs), Metalurgija, vol.53, pp.228-230, 2014.

S. Willscher, M. Katzschner, K. Jentzsch, S. Matys, and H. Pöllmann, Microbial leaching of metals from printed circuit boards, Advanced Materials Research, pp.99-102, 2007.

W. Wu, X. Liu, X. Zhang, M. Zhu, and W. Tan, Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron-sulfur-oxidizing bacteria, Bioresources and Bioprocessing, vol.5, p.10, 2018.

M. C. Xia, Y. P. Wang, T. J. Peng, L. Shen, R. L. Yu et al., Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture, Journal of Bioscience and Bioengineering, vol.123, issue.6, pp.714-721, 2017.

Y. Xiang, P. Wu, N. Zhu, T. Zhang, W. Liu et al., Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage, Journal of Hazardous Materials, vol.184, pp.812-818, 2010.

Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu et al., Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery, J. Clean. Prod, vol.116, pp.249-258, 2016.

F. R. Xiu, Y. Qi, and F. S. Zhang, Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process, Waste Management, vol.33, issue.5, pp.1251-1257, 2013.

L. H. Yamane, V. T. De-moraes, D. C. Espinosa, and J. A. Tenório, Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers, Waste Management, vol.31, pp.2553-2558, 2011.

L. H. *-yamane, V. T. Moraes, J. A. Tenório, and D. C. Espinosa, Influence of Bacterial Adaptation on Copper Bioleaching from Printed Circuit Boards, Adv Biotech & Micro, vol.9, issue.3, 2018.

T. Yang, Z. Xu, J. Wen, and L. Yang, Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans, Hydrometallurgy, vol.97, pp.29-32, 2009.

Y. Yang, S. Chen, S. Li, M. Chen, H. Chen et al., Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect, Journal of Biotechnology, vol.173, pp.24-30, 2014.

E. Y. Yazici and H. Deveci, Ferric sulphate leaching of metals from waste printed circuit boards, Int. J. Miner. Process, vol.133, pp.39-45, 2014.

S. Yokoyama and M. Iji, Recycling of Printed Wiring Boards with Mounted Electronic Parts, Proceedings of the 1997 IEEE International Symposium on Electronics and the Environment, vol.ISEE, pp.109-114, 1997.

J. M. Yoo, J. Jeong, K. Yoo, J. C. Lee, and W. Kim, Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill, Waste Management, vol.29, pp.1132-1137, 2009.

C. Y. Yuan, H. C. Zhang, G. Mckenna, C. Korzeniewski, and J. Li, Experimental studies on cryogenic recycling of printed circuit board, Int. J. Adv. Manuf. Technol, vol.34, pp.657-666, 2007.

G. Yue, A. G. Guezennec, and E. Asselin, Extended validation of an expression to predict ORP and iron chemistry: Application to complex solutions generated during the acidic leaching or bioleaching of printed circuit boards, Hydrometallurgy, vol.164, pp.334-342, 2016.

G. Yue, L. Zhao, O. G. Olvera, and E. Asselin, Speciation of the H2SO4-Fe2(SO4)3-FeSO4-H2O system and development of an expression to predict the redox potential of the Fe 3+ /Fe 2+ couple up to 150 °C, Hydrometallurgy, pp.196-209, 2014.

L. Zhang and Z. Xu, A review of current progress of recycling technologies for metals from waste electrical and electronic equipment, Journal of Cleaner Production, vol.127, pp.19-36, 2016.

S. Zhang and E. Forssberg, Intelligent Liberation and classification of electronic scrap, Powder Technology, vol.105, pp.295-301, 1999.

S. Zhang, E. Forssberg, B. Arvidson, and W. Moss, Aluminum recovery from electronic scrap by high-force eddy-current separators, Resour Conserv Recycl, vol.23, pp.225-241, 1998.

Y. H. Zhou, W. B. Wu, and K. Q. Qiu, Recycling of organic materials and solder from waste printed circuit boards by vacuum pyrolysis-centrifugation coupling technology, Waste Manag, vol.31, pp.2569-2576, 2011.

N. Zhu, Y. Xiang, T. Zhang, P. Wu, Z. Dang et al., Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria, Journal of Hazardous Materials, vol.192, pp.614-619, 2011.

P. Zhu, Y. Chen, L. Y. Wang, G. Y. Qian, M. Zhou et al., A new technology for separation and recovery of materials from waste printed circuit boards by dissolving bromine epoxy resins using ionic liquid, Journal of Hazardous Materials, pp.270-278, 2012.

P. Zhu, Y. Chen, L. Y. Wang, M. Zhou, and J. Zhou, The separation of waste printed circuit board by dissolving bromine epoxy resin using organic solvent, Waste Management, vol.33, pp.484-488, 2013.