J. Davidovits, GEOPOLYMERS -Inorganic polymeric new materials, Journal of Thermal Analysis, vol.37, issue.8, pp.1633-1656, 1991.

J. Davidovits, Geopolymer Chemistry and Applications, 2008.

V. D. Glukhovsky and . Silicates, , 1959.

D. Lambertin, F. Frizon, and F. Bart, Mg-Zr alloy behavior in basic solutions and immobilization in Portland cement and Na-geopolymer with sodium fluoride inhibitor. Surface & Coatings Technology, vol.206, pp.4567-4573, 2012.

D. Lambertin, Corrosion behaviour of Mg alloys in various basic media: application of waste encapsulation of fuel decanning from ungg nuclear reactor, in Magnesium Technology, pp.435-439, 2011.

A. Rooses, Galvanic corrosion of Mg-Zr fuel cladding and steel immobilized in Portland cement and geopolymer at early ages, Journal of Nuclear Materials, vol.435, issue.1-3, pp.137-140, 2013.

A. Rooses, Encapsulation of Mg-Zr alloy in metakaolin-based geopolymer, Applied Clay Science, vol.73, pp.86-92, 2013.

V. Cantarel, Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer, Journal of Nuclear Materials, vol.464, pp.16-19, 2015.

S. Petlitckaia, A. Marchal, A. Poulesquen, and ;. Vandamme, Synthesis of Geopolymer Foam for the Decontamination of Liquid Nuclear Waste, Poromechanics Vi: Proceedings of the Sixth Biot Conference on Poromechanics, pp.929-936, 2017.

S. Petlitckaia and A. Poulesquen, Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide, Ceramics International, vol.45, issue.1, pp.1322-1330, 2019.

P. Duxson, Geopolymer technology: the current state of the art, Journal of Materials Science, vol.42, issue.9, pp.2917-2933, 2007.

L. Yun-ming, Structure and properties of clay-based geopolymer cements: A review, Progress in Materials Science, vol.83, pp.595-629, 2016.

J. Rouyer and A. Poulesquen, Evidence of a Fractal Percolating Network During Geopolymerization, Journal of the American Ceramic Society, vol.98, issue.5, pp.1580-1587, 2015.

A. Fernandez-jimenez, A. Palomo, and M. Criado, Microstructure development of alkaliactivated fly ash cement: a descriptive model, vol.35, pp.1204-1209, 2005.

A. Favier, Mechanical properties and compositional heterogeneities of fresh geopolymer pastes. Cement and Concrete Research, vol.48, pp.9-16, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537703

A. Favier, A multinuclear static NMR study of geopolymerisation. Cement and Concrete Research, vol.75, pp.104-109, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01515608

H. Xu and J. S. Van-deventer, The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, vol.59, issue.3, pp.247-266, 2000.

F. J. Huertas, L. Chou, and R. Wollast, Mechanism of kaolinite dissolution at room temperature and pressure Part II: Kinetic study, Geochimica Et Cosmochimica Acta, vol.63, pp.3261-3275, 1999.

J. V. Walther, Relation between rates of aluminosilicate mineral dissolution, pH, temperature, and surface charge, American Journal of Science, vol.296, issue.7, pp.693-728, 1996.

E. H. Oelkers, General kinetic description of multioxide silicate mineral and glass dissolution, Geochimica Et Cosmochimica Acta, vol.65, issue.21, pp.3703-3719, 2001.

A. Bourlon, Physical Chemistry and Rheology of Fresh Geopolymer for Oil Well Cementing, 2010.
URL : https://hal.archives-ouvertes.fr/pastel-00555812

J. W. Phair and J. S. Van-deventer, Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers, Minerals Engineering, vol.14, issue.3, pp.289-304, 2001.

J. W. Phair and J. S. Van-deventer, Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers, International Journal of Mineral Processing, vol.66, issue.1-4, pp.121-143, 2002.

J. L. Provis and J. S. Van-deventer, Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry, Journal of Materials Science, vol.42, issue.9, pp.2974-2981, 2007.

D. Khale and R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review, Journal of Materials Science, vol.42, issue.3, pp.729-746, 2007.

D. Boschel, M. Janich, and H. Roggendorf, Size distribution of colloidal silica in sodium silicate solutions investigated by dynamic light scattering and viscosity measurements, Journal of Colloid and Interface Science, vol.267, issue.2, pp.360-368, 2003.

L. R. Bacon and J. H. Wills, pH-composition relations in the system Na2O SiO2 H2O at 20° C, vol.258, pp.347-369, 1954.

J. Nordstrom, Concentration-and pH-dependence of highly alkaline sodium silicate solutions, Journal of Colloid and Interface Science, vol.356, issue.1, pp.37-45, 2011.

P. Steins, Influence des paramètres de formulation sur la texturation et la structuration des géopolymères, 2014.

A. V. Mccormick, A. T. Bell, and C. J. Radke, Evidence from alkali-metal NMR-spectroscopy for ionpairing in alkaline silicate solutions, Journal of Physical Chemistry, vol.93, issue.5, pp.1733-1737, 1989.

S. D. Kinrade and D. L. Pole, Effect of alkali-metal cations on the chemistry of aqueous silicate solutions. Inorganic Chemistry, vol.31, pp.4558-4563, 1992.

S. D. Kinrade and T. W. Swaddle, Silicon-29 NMR Studies of Aqueous Silicate Solutions .1. Chemical Shifts and Equilibria. Inorganic Chemistry, vol.27, pp.4253-4259, 1988.

R. K. Harris, C. T. Knight, and W. E. Hull, Nature of species present in an aqueous-solution of potassium silicate, Journal of the American Chemical Society, vol.103, issue.6, pp.1577-1578, 1981.

R. K. Harris and R. H. Newman, Si-29 NMR-studies of aqueous silicate solutions, Journal of the Chemical Society-Faraday Transactions Ii, vol.73, pp.1204-1215, 1977.

G. Engelhardt, 29 Si NMR-Spectroscopy of Silicate Solutions .II. Dependence of Structure of Silicate Anions in Water Solutions from Na:Si Ratio. Zeitschrift Fur Anorganische Und Allgemeine Chemie, vol.418, pp.17-28, 1975.

T. W. Swaddle, J. Salerno, and P. A. Tregloan, Aqueous aluminates, silicates, and aluminosilicates, Chemical Society Reviews, vol.23, issue.5, pp.319-325, 1994.

R. K. Iler, The chemistry of silica : solubility, polymerization, colloid and surface properties, and biochemistry. A Wiley-Interscience publication, 1979.

J. L. Provis, Modeling speciation in highly concentrated alkaline silicate solutions. Industrial & Engineering Chemistry Research, vol.44, pp.8899-8908, 2005.

I. L. Svensson, S. Sjoberg, and L. O. Ohman, Polysilicate Equilibria in Concentrated Sodium Silicate Solutions, Journal of the Chemical Society-Faraday Transactions I, vol.82, pp.3635-3646, 1986.

Y. Marcus and G. Hefter, Ion pairing, Chemical Reviews, vol.106, issue.11, pp.4585-4621, 2006.

J. Sefcik and A. V. Mccormick, Thermochemistry of aqueous silicate solution precursors to ceramics, Aiche Journal, vol.43, issue.11, pp.2773-2784, 1997.

L. A. Flexser, L. P. Hammett, and A. Dingwall, The Determination of Ionization by Ultraviolet Spectrophotometry: Its Validity and its Application to the Measurement of the Strength of Very Weak Bases, Journal of the American Chemical Society, vol.57, issue.11, pp.2103-2115, 1935.

L. P. Hammett, The theory of acidity, Journal of the American Chemical Society, vol.50, issue.10, pp.2666-2673, 1928.

L. P. Hammett and A. J. Deyrup, A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with water, Journal of the American Chemical Society, vol.54, issue.7, pp.2721-2739, 1932.

G. Schwarzenbach and R. Sulzberger, Über die Alkalinität starker Lösungen der Alkalihydroxyde, Helvetica Chimica Acta, vol.27, issue.1, pp.348-362, 1944.

M. A. Paul and F. A. Long, H0 and related indicator acidity functions, Chemical Reviews, vol.57, issue.1, pp.1-45, 1957.

R. Stewart and J. P. Odonnell, Strongly basic systems .III. H-function for various solvent systems, Canadian Journal of Chemistry-Revue Canadienne De Chimie, vol.42, issue.7, pp.1681-1693, 1964.

C. H. Rochester, Correlation of Acidity Functions with Equilibria of p-Nitroaniline in Aqueous Sodium Hydroxide Solution, Transactions of the Faraday Society, vol.59, issue.492, pp.2820-2825, 1963.

J. T. Edward and I. C. Wang, Ionization of organic compounds .II. Thioacetamide in aqueous sodium hydroxide. The H-acidity function, Canadian Journal of Chemistry-Revue Canadienne De Chimie, vol.40, issue.3, pp.399-407, 1962.

K. Bowden, Acidity functions for strongly basic solutions, Chemical Reviews, vol.66, issue.2, pp.119-131, 1966.

J. Aupoil, Interplay between silicate and hydroxide ions during geopolymerization, Cement and Concrete Research, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02339844

A. V. Bandura and S. N. Lvov, The ionization constant of water over wide ranges of temperature and density, Journal of Physical and Chemical Reference Data, vol.35, issue.1, pp.15-30, 2006.

A. Safavi and H. Abdollahi, Optical sensor for high pH values, Analytica Chimica Acta, vol.367, issue.1-3, pp.167-173, 1998.

L. R. Allain and Z. L. Xue, Optical sensors for the determination of concentrated hydroxide, Analytical Chemistry, vol.72, issue.5, pp.1078-1083, 2000.

C. H. Rochester, Correlation of Reaction Rates with Acidity Functions in Strongly Basic Media .Part 2. Reaction of 2,4-Dinitroaniline With Aqueous Sodium Hydroxide, Transactions of the Faraday Society, vol.59, issue.492, pp.2826-2837, 1963.

D. Massiot, Modelling one-and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, vol.40, pp.70-76, 2002.

L. Weng and K. Sagoe-crentsil, Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I -Low Si/Al ratio systems, Journal of Materials Science, vol.42, issue.9, pp.2997-3006, 2007.

K. Sagoe-crentsil and L. Weng, Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems, Journal of Materials Science, vol.42, issue.9, pp.3007-3014, 2007.

W. Lowenstein, The distribution of aluminum tetrahedra of silicates and aluminates American Mineralogist, vol.39, p.92, 1954.

P. Duxson, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol.269, issue.1-3, pp.47-58, 2005.

J. Faimon, Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering, Geochimica Et Cosmochimica Acta, vol.60, issue.15, pp.2901-2907, 1996.

J. L. Provis, The role of mathematical modelling and gel chemistry in advancing geopolymer technology. Chemical Engineering Research & Design, vol.83, pp.853-860, 2005.

C. A. Rees, Mechanisms and kinetics of gel formation in geopolymers, 2007.

M. L. Granizo and M. T. Blanco, Alkaline activation of metakaolin -An isothermal conduction calorimetry study, Journal of Thermal Analysis and Calorimetry, vol.52, issue.3, pp.957-965, 1998.

S. Alonso and A. Palomo, Calorimetric study of alkaline activation of calcium hydroxidemetakaolin solid mixtures. Cement and Concrete Research, vol.31, pp.25-30, 2001.

X. Yao, Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry, Thermochimica Acta, vol.493, issue.1-2, pp.49-54, 2009.

Z. H. Zhang, Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin, Thermochimica Acta, vol.565, pp.163-171, 2013.

Z. H. Zhang, Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide, Thermochimica Acta, vol.539, pp.23-33, 2012.

A. Fernandez-jimenez, The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous and Mesoporous Materials, vol.91, issue.1-3, pp.111-119, 2006.

P. Steins, Structural Evolution during Geopolymerization from an Early Age to Consolidated Material, Langmuir, vol.28, issue.22, pp.8502-8510, 2012.

A. Poulesquen, F. Frizon, and D. Lambertin, Rheological behavior of alkali-activated metakaolin during geopolymerization, Journal of Non-Crystalline Solids, vol.357, issue.21, pp.3565-3571, 2011.

V. Benavent, Caractérisation de la porosité des géopolymères : évolution temporelle et étude de l'eau confinée, 2016.

W. K. Lee and J. S. Van-deventer, Structural reorganisation of class F fly ash in alkaline silicate solutions, Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol.211, issue.1, pp.49-66, 2002.

N. Granizo, A. Palomo, and A. Fernandez-jimenez, Effect of temperature and alkaline concentration on metakaolin leaching kinetics, Ceramics International, vol.40, issue.7, pp.8975-8985, 2014.

P. P. Man, Analytical expression for the spin-5/2 line-intensities. Molecular Physics, vol.78, pp.307-318, 1993.

G. Porod, Die rontgenkleinwinkelstreuung von dichtgepakten kolloiden systemen .2. Kolloid-Zeitschrift and Zeitschrift Fur Polymere, vol.125, pp.51-57, 1952.

J. Ollivier and J. Zanotti, Diffusion inélastique de neutrons par temps de vol, 2010.

K. Kupwade-patil, Investigation of activation kinetics in geopolymer paste using quasielastic neutron scattering. Construction and Building Materials, vol.120, pp.181-188, 2016.

S. A. Fitzgerald, In situ quasi-elastic neutron scattering study of the hydration of tricalcium silicate, Chemistry of Materials, vol.10, issue.1, pp.397-402, 1998.

A. Hajimohammadi and J. S. Van-deventer, Dissolution behaviour of source materials for synthesis of geopolymer binders: A kinetic approach, International Journal of Mineral Processing, vol.153, pp.80-86, 2016.

D. Silva, P. , K. Sagoe-crenstil, and V. Sirivivatnanon, Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, vol.37, pp.512-518, 2007.

A. Hajimohammadi, J. L. Provis, and J. S. Van-deventer, The effect of silica availability on the mechanism of geopolymerisation, vol.41, pp.210-216, 2011.

A. Hajimohammadi, J. L. Provis, and J. S. Van-deventer, Effect of Alumina Release Rate on the Mechanism of Geopolymer Gel Formation, Chemistry of Materials, vol.22, issue.18, pp.5199-5208, 2010.

S. A. Carroll-webb and J. V. Walther, A surface complex-reaction model for the pH-dependence of corundum and kaolinite dissolution rates, Geochimica Et Cosmochimica Acta, vol.52, issue.11, pp.2609-2623, 1988.

A. Bauer and G. Berger, Kaolinite and smectite dissolution rate in high molar KOH solutions at 35 degrees and 80 degrees C. Applied Geochemistry, vol.13, pp.905-916, 1998.

S. A. Carroll and J. V. Walther, Kaolinite dissolution at 25-degrees-C, 60-degrees-C, and 80-degrees-C, American Journal of Science, vol.290, issue.7, pp.797-810, 1990.

C. Panagiotopoulou, Dissolution of aluminosilicate minerals and by-products in alkaline media, Journal of Materials Science, vol.42, issue.9, pp.2967-2973, 2007.

E. G. Pinna, Kinetic study of the dissolution of metakaolin with hydrofluoric acid, Indian Journal of Chemical Technology, vol.25, issue.3, pp.287-293, 2018.

P. Lima, R. Angélica, and R. Neves, Dissolution kinetics of Amazonian metakaolin in nitric acid, vol.64, pp.86-90, 2018.

P. A. Lima, R. Angélica, and R. Neves, Dissolution kinetics of Amazonian metakaolin in hydrochloric acid, vol.52, pp.75-82, 2017.

P. E. Lima, R. S. Angelica, and R. F. Neves, Dissolution kinetics of metakaolin in sulfuric acid: Comparison between heterogeneous and homogeneous reaction methods, Applied Clay Science, pp.159-162, 2014.

S. J. Kohler, F. Dufaud, and E. H. Oelkers, An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50 degrees C, Geochimica Et Cosmochimica Acta, vol.67, pp.3583-3594, 2003.

D. Strachan, Glass dissolution as a function of pH and its implications for understanding mechanisms and future experiments, Geochimica Et Cosmochimica Acta, vol.219, pp.111-123, 2017.

E. M. Pierce, An experimental study of the dissolution rates of simulated aluminoborosilicate waste glasses as a function of pH and temperature under dilute conditions, Applied Geochemistry, vol.23, issue.9, pp.2559-2573, 2008.

C. Chen, Kinetics of fly ash leaching in strongly alkaline solutions, Journal of Materials Science, vol.46, issue.3, pp.590-597, 2011.

B. C. Gibson, Mechanisms of Defense Waste Glass Dissolution AU -Barkatt, Aaron. Nuclear Technology, vol.73, issue.2, pp.140-164, 1986.

W. H. Sikorski, A. W. Sanders, and H. J. Reich, Tris(trimethylsilyl)methane as an internal C-13 NMR chemical shift thermometer. Magnetic Resonance in Chemistry, vol.36, pp.118-124, 1998.

J. L. Provis, Modelling the formation of geopolymers, 2006.

F. Vaughan, Energy changes when kaolin minerals are heated, Clay Minerals Bulletin, vol.2, issue.13, pp.265-274, 2018.

S. Institute-for-basic, Selected values of chemical thermodynamic properties: tables for the first thirty-four elements in the standard order of arrangement, U.S. Bureau of Standards NBS technical note, vol.270, issue.3, p.p, 1975.

Z. Q. Sun and A. Vollpracht, Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag, Cement and Concrete Research, vol.103, pp.110-122, 2018.

C. E. White, Molecular mechanisms responsible for the structural changes occurring during geopolymerization: Multiscale simulation, Aiche Journal, vol.58, issue.7, pp.2241-2253, 2012.

A. Favier, Mécanisme de prise et rhéologie de liants géopolymères modèles, 2013.