J. D. Evans, G. Fraux, R. Gaillac, D. Kohen, F. Trousselet et al., Computational Chemistry Methods for Nanoporous Materials, Chemistry of Materials, vol.29, pp.199-212, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02310153

G. Fraux and F. Coudert, Recent advances in the computational chemistry of soft porous crystals, Chemical Communications, vol.53, pp.7211-7221, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02310158

G. Fraux, F. Coudert, A. Boutin, and A. H. Fuchs, Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices, Chemical Society Reviews, vol.46, pp.7421-7437, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02265111

G. Chaplais, G. Fraux, J. Paillaud, C. Marichal, H. Nouali et al., Impacts of the Imidazolate Linker Substitution (CH3, Cl, or Br) on the Structural and Adsorptive Properties of ZIF-8, The Journal of Physical Chemistry C, vol.122, pp.26945-26955, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104808

G. Fraux, A. Boutin, A. H. Fuchs, and F. Coudert, On the use of the IAST method for gas separation studies in porous materials with gate-opening behavior, In: Adsorption, vol.24, issue.3, pp.233-241, 1007.
URL : https://hal.archives-ouvertes.fr/hal-02104799

L. Scal, G. Fraux, A. Boutin, and F. Coudert, Structure and Dynamics of Water Con ned in Imogolite Nanotubes, Langmuir, vol.34, issue.23, pp.6748-6756, 2018.

J. P. Dürholt, G. Fraux, F. Coudert, and R. Schmid, Ab Initio Derived Force Fields for Zeolitic Imidazolate Frameworks: MOF-FF for ZIFs, Journal of Chemical Theory and Computation, vol.15, pp.2420-2432, 2019.

G. Fraux, A. Boutin, A. H. Fuchs, and F. Coudert, Structure, Dynamics, and Thermodynamics of Intruded Electrolytes in ZIF-8", 2019.
URL : https://hal.archives-ouvertes.fr/hal-02168637

. B-i-b-l-i-o-g-r-a-p-h-y,

O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer et al., Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?, In: Journal of the American Chemical Society, vol.134, pp.15016-15021, 2012.

J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes et al., Recommendations for the characterization of porous solids, Pure and Applied Chemistry, vol.66, pp.1739-1758, 1994.

P. Levitz, Slow dynamics in colloidal glasses and porous media as probed by NMR relaxometry: assessment of solvent levy statistics in the strong adsorption regime, Magnetic Resonance Imaging, vol.21, pp.177-184, 2003.

D. Das, D. P. Samal, and M. Bc, Preparation of Activated Carbon from Green Coconut Shell and its Characterization, Journal of Chemical Engineering & Process Technology, vol.06, p.5, 2015.

G. Férey, Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks, Chemistry of Materials, vol.13, pp.3084-3098, 2001.

I. Z. , Association. Database of Zeolite Structures, 2019.

M. D. Foster and M. M. Treacy, Atlas of Prospective Zeolite Structures, 2019.

B. F. Abrahams, B. F. Hoskins, and R. Robson, A new type of in nite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks, Journal of the American Chemical Society, vol.113, issue.9, pp.3606-3607, 1991.

R. Robson, Design and its limitations in the construction of bi-and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view, Dalton Transactions, vol.38, p.5113, 2008.

H. Li, M. Eddaoudi, M. O'kee-e, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, vol.402, pp.276-279, 1999.

H. Furukawa, K. E. Cordova, M. O'kee-e, and O. M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science, vol.341, pp.1230444-1230444, 2013.

S. Horike, S. Shimomura, and S. Kitagawa, Soft porous crystals, Nature Chemistry, vol.1, issue.9, pp.695-704, 2009.

S. Kitagawa and K. Uemura, Dynamic porous properties of coordination polymers inspired by hydrogen bonds, Chemical Society Reviews, vol.34, p.109, 2005.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials, ChemInform, vol.36, 2005.

F. Coudert, Responsive Metal-Organic Frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends, Chemistry of Materials, vol.27, pp.1905-1916, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02269625

T. Tian, Z. Zeng, D. Vulpe, M. E. Casco, G. Divitini et al., A sol-gel monolithic metal-organic framework with enhanced methane uptake, Nature Materials, vol.17, issue.2, pp.174-179, 2017.

H. Oh, S. Maurer, R. Balderas-xicohtencatl, L. Arnold, O. V. Magdysyuk et al., E cient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M = Mg 2+ , Ni 2+ ), International Journal of Hydrogen Energy, vol.42, issue.2, pp.1027-1035, 2017.

J. L. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, Hydrogen Sorption in Functionalized Metal-Organic Frameworks, Journal of the American Chemical Society, vol.126, pp.5666-5667, 2004.

K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences 103, pp.10186-10191, 2006.

F. Coudert, A. Boutin, M. Roy, C. Mellot-draznieks, and A. H. Fuchs, Thermodynamic Methods and Models to Study Flexible Metal-Organic Frameworks, ChemPhysChem, vol.12, issue.2, pp.247-258, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02116872

D. Dubbeldam, K. S. Walton, D. E. Ellis, and R. Q. Snurr, Exceptional Negative Thermal Expansion in Isoreticular Metal-Organic Frameworks, Angewandte Chemie International Edition, vol.46, pp.4496-4499, 2007.

C. Serre, C. Mellot-draznieks, S. Surble, N. Audebrand, Y. Filinchuk et al., Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks, Science, vol.315, pp.1828-1831, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02439544

C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier et al., Very Large Breathing E ect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH), In: Journal of the American Chemical Society, vol.124, pp.13519-13526, 2002.

S. U. Rege and R. T. Yang, Limits for Air Separation by Adsorption with LiX Zeolite, Industrial & Engineering Chemistry Research, vol.36, pp.5358-5365, 1997.

A. Primo and H. Garcia, Zeolites as catalysts in oil re ning, Chem. Soc. Rev, vol.43, pp.7548-7561, 2014.

L. ?urkovi?, S. Cerjan-stefanovi?, and T. Filipan, Metal ion exchange by natural and modi ed zeolites, Water Research, vol.31, issue.6, pp.1379-1382, 1997.

E. Borai, R. Harjula, L. , and A. Paajanen, E cient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals, Journal of Hazardous Materials, vol.172, issue.1, pp.416-422, 2009.

E. M. Flanigen, J. M. Bennett, R. W. Grose, J. P. Cohen, R. L. Patton et al., Silicalite, a new hydrophobic crystalline silica molecular sieve, Nature, vol.271, pp.512-516, 1978.

, Zeolites as Catalysts, Sorbents and Detergent Builders -Applications and Innovations, Proceedings of an International Symposium, pp.6020-6023, 1989.

D. S. Sholl and R. P. Lively, Seven chemical separations to change the world, Nature, vol.532, pp.435-437, 2016.

K. Sumida, D. L. Rogow, J. A. Mason, T. M. Mcdonald, E. D. Bloch et al.,

J. R. Bae and . Long, Carbon Dioxide Capture in Metal-Organic Frameworks, Chemical Reviews, vol.112, issue.2, pp.724-781, 2011.

U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-arndt et al., Metal-organic frameworks: prospective industrial applications, J. Mater. Chem, vol.16, issue.7, pp.626-636, 2006.

M. T. Kapelewski, T. Runcevski, J. D. Tarver, H. Z. Jiang, K. E. Hurst et al., Record High Hydrogen Storage Capacity in the Metal-Organic Framework Ni2(m-dobdc) at Near-Ambient Temperatures, Chemistry of Materials, vol.30, pp.8179-8189, 2018.

O. Karagiaridi, M. B. Lalonde, W. Bury, A. A. Sarjeant, O. K. Farha et al., Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers, Journal of the American Chemical Society, vol.134, pp.18790-18796, 2012.

N. Tshabang, G. P. Makgatle, S. A. Bourne, N. Kann, J. D. Evans et al., Conformational chiral polymorphism in cis-bis-triphenylphosphine complexes of transition metals, CrystEngComm 20, vol.35, pp.5137-5142, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02105070

P. Horcajada, S. Surblé, C. Serre, D. Hong, Y. Seo et al., Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores, Chem. Commun, vol.27, pp.2820-2822, 2007.

K. Schlichte, T. Kratzke, and S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2, Microporous and Mesoporous Materials, vol.73, pp.81-88, 2004.

J. Gascon, U. Aktay, M. D. Hernandez-alonso, G. P. Van-klink, and F. Kapteijn, Amino-based metal-organic frameworks as stable, highly active basic catalysts, Journal of Catalysis, vol.261, pp.75-87, 2009.

A. Lan, K. Li, H. Wu, D. H. Olson, T. J. Emge et al., A Luminescent Microporous Metal-Organic Framework for the Fast and Reversible Detection of High Explosives, Angewandte Chemie International Edition, vol.48, pp.2334-2338, 2009.

S. Pramanik, C. Zheng, X. Zhang, T. J. Emge, and J. Li, New Microporous Metal-Organic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds, Journal of the American Chemical Society, vol.133, pp.4153-4155, 2011.

D. M. Ruthven, Principles of Adsorption and Adsorption Processes, 1984.

R. T. Yang, Gas Separation by Adsorption Processes, 1987.

K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, vol.57, issue.10, pp.603-619, 1351.

J. Rouquerol, G. Baron, R. Denoyel, H. Giesche, J. Groen et al., Liquid intrusion and alternative methods for the characterization of macroporous materials, Technical Report)". In: Pure and Applied Chemistry, vol.84, issue.1, pp.107-136, 2011.

G. Fraux, F. Coudert, A. Boutin, and A. H. Fuchs, Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices, Chemical Society Reviews, vol.46, pp.7421-7437, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02265111

A. Y. Fadeev and V. A. Eroshenko, Study of Penetration of Water into Hydrophobized Porous Silicas, Journal of Colloid and Interface Science, vol.187, issue.2, pp.275-282, 1997.

V. Eroshenko, R. Regis, M. Soulard, and J. Patarin, Energetics: A New Field of Applications for Hydrophobic Zeolites, vol.123, pp.8129-8130, 2001.

V. Eroshenko, R. Regis, M. Soulard, and J. Patarin, Les systèmes hétérogènes « eau-zéolithe hydrophobe » : de nouveaux ressorts moléculaires, Comptes Rendus Physique, vol.3, issue.1, pp.111-119, 2002.

B. Lefevre, A. Saugey, J. L. Barrat, L. Bocquet, E. Charlaix et al., Intrusion and extrusion of water in hydrophobic mesopores, The Journal of Chemical Physics, vol.120, pp.4927-4938, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00474928

L. Liu, X. Chen, W. Lu, A. Han, and Y. Qiao, ltration of Electrolytes in Molecular-Sized Nanopores, vol.102, 2009.

M. Michelin-jamois, C. Picard, G. Vigier, and E. Charlaix, Giant Osmotic Pressure in the Forced Wetting of Hydrophobic Nanopores, Physical Review Letters, vol.115, issue.3, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01170620

A. Ryzhikov, I. Khay, H. Nouali, T. J. Daou, and J. Patarin, Drastic change of the intrusion-extrusion behavior of electrolyte solutions in pure silica * BEA-type zeolite, Physical Chemistry Chemical Physics, vol.16, pp.17893-17899, 2014.

L. Tzanis, H. Nouali, T. J. Daou, M. Soulard, and J. Patarin, In uence of the aqueous medium on the energetic performances of Silicalite-1, Materials Letters, vol.115, pp.229-232, 2014.

I. Khay, T. J. Daou, H. Nouali, A. Ryzhikov, S. Rigolet et al., High Pressure Intrusion-Extrusion of LiCl Aqueous Solutions in Silicalite-1 Zeolite: In uence on Energetic Performances, The Journal of Physical Chemistry C, vol.118, pp.3935-3941, 2014.

G. Ortiz, H. Nouali, C. Marichal, G. Chaplais, and J. Patarin, Versatile Energetic Behavior of ZIF-8 upon High Pressure Intrusion-Extrusion of Aqueous Electrolyte Solutions, The Journal of Physical Chemistry C, vol.118, pp.7321-7328, 2014.

Z. Hu, Y. Chen, and J. Jiang, Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: Insight from molecular simulation, The Journal of Chemical Physics, vol.134, p.134705, 2011.

R. Arletti, L. Ronchi, S. Quartieri, G. Vezzalini, A. Ryzhikov et al., Intrusion-extrusion experiments of MgCl2 aqueous solution in pure silica ferrierite: Evidence of the nature of intruded liquid by in situ high pressure synchrotron X-ray powder di raction, Microporous and Mesoporous Materials, vol.235, pp.253-260, 2016.

E. Braun, J. J. Chen, S. K. Schnell, L. Lin, J. A. Reimer et al., Nanoporous Materials Can Tune the Critical Point of a Pure Substance, Angewandte Chemie International Edition, vol.54, pp.14349-14352, 2015.

S. Krause, V. Bon, I. Senkovska, U. Stoeck, D. Wallacher et al., A pressure-amplifying framework material with negative gas adsorption transitions, Nature, vol.532, pp.348-352, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02118754

M. Mehta and D. A. Kofke, Coexistence diagrams of mixtures by molecular simulation, Chemical Engineering Science, vol.49, pp.78-83, 1994.

F. A. Escobedo, Novel pseudoensembles for simulation of multicomponent phase equilibria, The Journal of Chemical Physics, vol.108, pp.8761-8772, 1998.

A. L. Myers and J. M. Prausnitz, Thermodynamics of mixed-gas adsorption, AIChE Journal, vol.11, issue.1, pp.121-127, 1965.

M. B. Sweatman and N. Quirke, Predicting the Adsorption of Gas Mixtures: Adsorbed Solution Theory versus Classical Density Functional Theory, Langmuir 18, vol.26, pp.10443-10454, 2002.

S. Suwanayuen and R. P. Danner, A gas adsorption isotherm equation based on vacancy solution theory, AIChE Journal, vol.26, issue.1, pp.68-76, 1980.

O. Talu and I. Zwiebel, Multicomponent adsorption equilibria of nonideal mixtures, AIChE Journal, vol.32, pp.1263-1276, 1986.

R. Kitaura, K. Seki, G. Akiyama, and S. Kitagawa, Porous Coordination Polymer Crystals with Gated Channels Speci c for Supercritical Gases, Angewandte Chemie International Edition, vol.42, pp.428-431, 2003.

D. Tanaka, K. Nakagawa, M. Higuchi, S. Horike, Y. Kubota et al., Kinetic Gate-Opening Process in a Flexible Porous Coordination Polymer, Angewandte Chemie International Edition, vol.47, pp.3914-3918, 2008.

L. Li, Y. Wang, J. Yang, X. Wang, and J. Li, Targeted capture and pressure / temperature-responsive separation in exible metal-organic frameworks, Journal of Materials Chemistry A, vol.3, pp.22574-22583, 2015.

D. Banerjee, J. Liu, and P. K. Thallapally, Separation of C2 Hydrocarbons by Porous Materials: Metal Organic Frameworks as Platform, Comments on Inorganic Chemistry, vol.35, issue.1, pp.18-38, 2014.

S. Mukherjee, B. Joarder, A. V. Desai, B. Manna, R. Krishna et al., Exploiting Framework Flexibility of a Metal-Organic Framework for Selective Adsorption of Styrene over Ethylbenzene, Inorganic Chemistry, vol.54, pp.4403-4408, 2015.

M. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato et al., An Adsorbate Discriminatory Gate E ect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO2 over C2H2, Journal of the American Chemical Society, vol.138, issue.9, pp.3022-3030, 2016.

L. Li, R. Krishna, Y. Wang, J. Yang, X. Wang et al., Exploiting the gate opening e ect in a exible MOF for selective adsorption of propyne from C1/C2/C3 hydrocarbons, Journal of Materials Chemistry A, vol.4, issue.3, pp.751-755, 2016.

C. Gücüyener, J. Van-den, J. Bergh, F. Gascon, and . Kapteijn, Ethane / Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal-Organic Framework ZIF-7 through a Gate-Opening Mechanism, vol.132, pp.17704-17706, 2010.

Y. Inubushi, S. Horike, T. Fukushima, G. Akiyama, R. Matsuda et al., Modi cation of exible part in Cu2 + interdigitated framework for CH4/CO2 separation, Chemical Communications, vol.46, p.9229, 2010.

N. Nijem, H. Wu, P. Canepa, A. Marti, K. J. Balkus et al., Tuning the Gate Opening Pressure of Metal-Organic Frameworks (MOFs) for the Selective Separation of Hydrocarbons, Journal of the American Chemical Society, vol.134, pp.15201-15204, 2012.

S. Sanda, S. Parshamoni, and S. Konar, Third-Generation Breathing Metal-Organic Framework with Selective, Stepwise, Reversible, and Hysteretic Adsorption Properties, Inorganic Chemistry, vol.52, pp.12866-12868, 2013.

B. Joarder, S. Mukherjee, A. K. Chaudhari, A. V. Desai, B. Manna et al., Guest-Responsive Function of a Dynamic Metal-Organic Framework with a ? Lewis Acidic Pore Surface, Chemistry -A European Journal, vol.20, pp.15303-15308, 2014.

S. Mukherjee, B. Joarder, B. Manna, A. V. Desai, A. K. Chaudhari et al., Framework-Flexibility Driven Selective Sorption of p-Xylene over Other Isomers by a Dynamic Metal-Organic Framework, In: Scienti c Reports, vol.4, issue.1, 2014.

F. Coudert, C. Mellot-draznieks, A. H. Fuchs, and A. Boutin, Prediction of Breathing and Gate-Opening Transitions Upon Binary Mixture Adsorption in Metal-Organic Frameworks, Journal of the American Chemical Society, vol.131, pp.11329-11331, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00548071

F. Coudert, The osmotic framework adsorbed solution theory: predicting mixture coadsorption in exible nanoporous materials, Physical Chemistry Chemical Physics, vol.12, p.10904, 2010.

A. U. Ortiz, M. Springuel-huet, F. Coudert, A. H. Fuchs, and A. Boutin, Predicting Mixture Coadsorption in Soft Porous Crystals: Experimental and Theoretical Study of CO2/CH4 in MIL-53(Al), In: Langmuir, vol.28, issue.1, pp.494-498, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01468499

G. Fraux, A. Boutin, A. H. Fuchs, and F. Coudert, On the use of the IAST method for gas separation studies in porous materials with gate-opening behavior, Adsorption, vol.24, issue.3, pp.233-241, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104799

A. L. Myers and P. A. Monson, Physical adsorption of gases: the case for absolute adsorption as the basis for thermodynamic analysis, Adsorption, vol.20, pp.591-622, 2014.

S. Brandani, E. Mangano, and L. Sarkisov, Net, excess and absolute adsorption and adsorption of helium, Adsorption, vol.22, issue.2, pp.261-276, 2016.

F. Coudert, M. Roy, A. H. Fuchs, A. Boutin, and C. Mellot-draznieks, Thermodynamics of Guest-Induced Structural Transitions in Hybrid Organic-Inorganic Frameworks, Journal of the American Chemical Society, vol.130, pp.14294-14302, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02310169

H. C. Ho-mann, B. Assfour, F. Epperlein, N. Klein, S. Paasch et al., High-Pressure in Situ129Xe NMR Spectroscopy and Computer Simulations of Breathing Transitions in the Metal-Organic Framework Ni2(2, 6-ndc)2(dabco) (DUT-8(Ni))". In, Journal of the American Chemical Society, vol.133, pp.8681-8690, 2011.

J. Zang, S. Nair, and D. S. Sholl, Osmotic ensemble methods for predicting adsorption-induced structural transitions in nanoporous materials using molecular simulations, The Journal of Chemical Physics, vol.134, p.184103, 2011.

G. Fraux and F. Coudert, Citable data produced by the Coudert research group

C. M. Simon, B. Smit, and M. Haranczyk, pyIAST: Ideal adsorbed solution theory (IAST) Python package, Computer Physics Communications, pp.364-380, 2016.

A. Lan, K. Li, H. Wu, L. Kong, N. Nijem et al., RPM3: A Multifunctional Microporous MOF with Recyclable Framework and High H 2 Binding Energy, Inorganic Chemistry, vol.48, pp.7165-7173, 2009.

M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford Graduate Texts), 2010.

D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2002.

F. London, Zur Theorie und Systematik der Molekularkräfte, Zeitschrift für Physik, vol.63, pp.245-279, 1930.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.

D. A. Kofke and E. D. Glandt, Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble, Molecular Physics, vol.64, issue.6, pp.1105-1131, 1988.

I. R. Craig and D. E. Manolopoulos, Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics, The Journal of Chemical Physics, vol.121, pp.3368-3373, 2004.

M. Tuckerman, B. J. Berne, and G. J. Martyna, Reversible multiple time scale molecular dynamics, The Journal of Chemical Physics, vol.97, issue.3, pp.1990-2001, 1992.

L. Verlet, Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules". In: Physical Review, vol.159, issue.1, pp.98-103, 1967.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.81, pp.3684-3690, 1984.

E. Braun, S. M. Moosavi, and B. Smit, Anomalous E ects of Velocity Rescaling Algorithms: The Flying Ice Cube E ect Revisited, Journal of Chemical Theory and Computation, vol.14, pp.5262-5272, 2018.

S. Nosé, A uni ed formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, vol.81, issue.1, pp.511-519, 1984.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, pp.1695-1697, 1985.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics, vol.126, issue.1, p.14101, 2007.

B. Hess, Stochastic Concepts in Molecular Simulation, 2002.

T. Ça?in and B. M. Pettitt, Molecular dynamics with a variable number of molecules, Molecular Physics, vol.72, pp.169-175, 1991.

C. Lo and B. Palmer, Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble, The Journal of Chemical Physics, vol.102, issue.2, pp.925-931, 1995.

H. Eslami and F. Müller-plathe, Molecular dynamics simulation in the grand canonical ensemble, Journal of Computational Chemistry, vol.28, pp.1763-1773, 2007.

G. S. and F. Van-swol, Di usion in Lennard-Jones uids using dual control volume grand canonical molecular dynamics simulation (DCV-GCMD), The Journal of Chemical Physics, vol.100, issue.10, pp.7548-7552, 1994.

R. F. Cracknell, D. Nicholson, and N. Quirke, Direct Molecular Dynamics Simulation of Flow Down a Chemical Potential Gradient in a Slit-Shaped Micropore, Physical Review Letters, vol.74, pp.2463-2466, 1995.

S. Boinepalli and P. Attard, Grand canonical molecular dynamics, The Journal of Chemical Physics, vol.119, pp.12769-12775, 2003.

L. D. Site, Formulation of Liouville's theorem for grand ensemble molecular simulations, Physical Review E, vol.93, issue.2, 2016.

A. Laio and M. Parrinello, Escaping free-energy minima, Proceedings of the National Academy of Sciences 99.20, pp.12562-12566, 2002.

G. Ciccotti and M. Ferrario, Blue Moon Approach to Rare Events, Molecular Simulation, vol.30, pp.787-793, 2004.

E. Darve, D. Rodríguez-gómez, and A. Pohorille, Adaptive biasing force method for scalar and vector free energy calculations, The Journal of Chemical Physics, vol.128, p.144120, 2008.

F. Wang and D. P. Landau, E cient, Multiple-Range Random Walk Algorithm to Calculate the Density of States, Physical Review Letters, vol.86, pp.2050-2053, 2001.

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, Multidimensional free-energy calculations using the weighted histogram analysis method, Journal of Computational Chemistry, vol.16, issue.11, pp.1339-1350, 1995.

E. Schrödinger, An Undulatory Theory of the Mechanics of Atoms and Molecules, Physical Review, vol.28, pp.1049-1070, 1926.

M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Annalen der Physik, vol.389, pp.457-484, 1927.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, pp.864-871, 1964.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation E ects, Physical Review, vol.140, pp.1133-1138, 1965.

J. P. Perdew, Jacob's ladder of density functional approximations for the exchangecorrelation energy, AIP Conference Proceedings, 2001.

S. Grimme, Semiempirical GGA-type density functional constructed with a longrange dispersion correction, Journal of Computational Chemistry, vol.27, pp.1787-1799, 2006.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics, vol.132, p.154104, 2010.

G. Chaplais, G. Fraux, J. Paillaud, C. Marichal, H. Nouali et al.,

J. Coudert and . Patarin, Impacts of the Imidazolate Linker Substitution (CH3, Cl, or Br) on the Structural and Adsorptive Properties of ZIF-8, The Journal of Physical Chemistry C, vol.122, pp.26945-26955, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104808

K. Li, D. H. Olson, J. Seidel, T. J. Emge, H. Gong et al., Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene, Journal of the American Chemical Society, vol.131, pp.10368-10369, 2009.

H. Bux, A. Feldho, J. Cravillon, M. Wiebcke, Y. Li et al., Oriented Zeolitic Imidazolate Framework-8 Membrane with Sharp H2/C3H8Molecular Sieve Separation, Chemistry of Materials, vol.23, pp.2262-2269, 2011.

R. J. Verploegh, S. Nair, and D. S. Sholl, Temperature and Loading-Dependent Di usion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations, Journal of the American Chemical Society, vol.137, pp.15760-15771, 2015.

S. A. Moggach, T. D. Bennett, and A. K. Cheetham, The E ect of Pressure on ZIF-8: Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47 GPa, Angewandte Chemie International Edition, vol.48, pp.7087-7089, 2009.

D. Fairen-jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons et al., Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations, Journal of the American Chemical Society, vol.133, issue.23, pp.8900-8902, 2011.

F. Coudert, Molecular Mechanism of Swing E ect in Zeolitic Imidazolate Framework ZIF-8: Continuous Deformation upon Adsorption, ChemPhys-Chem, vol.18, pp.2732-2738, 2017.

D. Fairen-jimenez, R. Galvelis, A. Torrisi, A. D. Gellan, M. T. Wharmby et al., Flexibility and swing e ect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study, Dalton Transactions, vol.41, p.10752, 2012.

C. O. Ania, E. García-pérez, M. Haro, J. J. Gutiérrez-sevillano, T. Valdés-solís et al., Understanding Gas-Induced Structural Deformation of ZIF-8, The Journal of Physical Chemistry Letters, vol.3, issue.9, pp.1159-1164, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02124970

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, PACKMOL: A package for building initial con gurations for molecular dynamics simulations, Journal of Computational Chemistry, vol.30, pp.2157-2164, 2009.

J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing et al., Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Computer Physics Communications, vol.167, issue.2, pp.103-128, 2005.

T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous and Mesoporous Materials, vol.149, pp.134-141, 2012.

J. P. Dürholt, G. Fraux, F. Coudert, and R. Schmid, Ab Initio Derived Force Fields for Zeolitic Imidazolate Frameworks: MOF-FF for ZIFs, Journal of Chemical Theory and Computation, vol.15, pp.2420-2432, 2019.

A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Ski, UFF, a full periodic table force eld for molecular mechanics and molecular dynamics simulations, Journal of the American Chemical Society, vol.114, pp.10024-10035, 1992.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force eld, Journal of Computational Chemistry, vol.25, pp.1157-1174, 2004.

M. A. Addicoat, N. Vankova, I. F. Akter, and T. Heine, Extension of the Universal Force Field to Metal-Organic Frameworks, Journal of Chemical Theory and Computation, vol.10, issue.2, pp.880-891, 2014.

D. E. Coupry, M. A. Addicoat, and T. Heine, Extension of the Universal Force Field for Metal-Organic Frameworks, Journal of Chemical Theory and Computation, vol.12, pp.5215-5225, 2016.

L. Vanduyfhuys, S. Vandenbrande, T. Verstraelen, R. Schmid, M. Waroquier et al., QuickFF: A program for a quick and easy derivation of force elds for metal-organic frameworks fromab initioinput, Journal of Computational Chemistry, vol.36, issue.13, pp.1015-1027, 2015.

S. Bureekaew, S. Amirjalayer, M. Ta-polsky, C. Spickermann, T. K. Roy et al., MOF-FF -A exible rst-principles derived force eld for metal-organic frameworks, physica status solidi (b), vol.250, pp.1128-1141, 2013.

N. L. Allinger, Y. H. Yuh, and J. H. Lii, Molecular mechanics. The MM3 force eld for hydrocarbons. 1, Journal of the American Chemical Society, vol.111, issue.23, pp.8551-8566, 1989.

N. L. Allinger, X. Zhou, and J. Bergsma, Molecular mechanics parameters, Journal of Molecular Structure: THEOCHEM, vol.312, pp.69-83, 1994.

J. Tan, B. Civalleri, C. Lin, L. Valenzano, R. Galvelis et al., Exceptionally Low Shear Modulus in a Prototypical Imidazole-Based Metal-Organic Framework, Physical Review Letters, vol.108, issue.9, 2012.

B. Zheng, Y. Zhu, F. Fu, L. L. Wang, J. Wang et al., Theoretical prediction of the mechanical properties of zeolitic imidazolate frameworks (ZIFs), RSC Advances, vol.7, pp.41499-41503, 2017.

M. Soulard, J. Patarin, V. Eroshenko, and R. Regis, Molecular spring or bumper: A new application for hydrophobic zeolitic materials, Recent Advances in the Science and Technology of Zeolites and Related Materials Part B, Proceedings of the 14th International Zeolite Conference, p.80716, 2004.

G. Fraux and F. Coudert, Recent advances in the computational chemistry of soft porous crystals, Chemical Communications, vol.53, pp.7211-7221, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02310158

M. A. Saada, M. Soulard, B. Marler, H. Gies, and J. Patarin, High-Pressure Water Intrusion Investigation of Pure Silica RUB-41 and S-SOD Zeolite Materials, The Journal of Physical Chemistry C, vol.115, issue.10, pp.425-430, 1021.

N. Desbiens, I. Demachy, A. H. Fuchs, H. Kirsch-rodeschini, M. Soulard et al., Water Condensation in Hydrophobic Nanopores, Angewandte Chemie, vol.117, pp.5444-5447, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00109916

T. Humplik, R. Raj, S. C. Maroo, T. Laoui, and E. N. Wang, E ect of Hydrophilic Defects on Water Transport in MFI Zeolites, Langmuir, vol.30, pp.6446-6453, 2014.

T. Humplik, R. Raj, S. C. Maroo, T. Laoui, and E. N. Wang, Framework water capacity and in ltration pressure of MFI zeolites, Microporous and Mesoporous Materials, vol.190, pp.84-91, 2014.

G. Ortiz, H. Nouali, C. Marichal, G. Chaplais, and J. Patarin, Energetic performances of the metal-organic framework ZIF-8 obtained using high pressure water intrusion-extrusion experiments, Physical Chemistry Chemical Physics, vol.15, p.4888, 2013.

Y. Grosu, S. Gomes, G. Renaudin, J. E. Grolier, V. Eroshenko et al., Stability of zeolitic imidazolate frameworks: e ect of forced water intrusion and framework exibility dynamics, RSC Advances, vol.5, pp.89498-89502, 2015.

A. U. Ortiz, A. P. Freitas, A. Boutin, A. H. Fuchs, and F. Coudert, What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? The impact of geometry and functionalization on water adsorption, Physical Chemistry Chemical Physics, vol.16, pp.9940-9949, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02310173

M. A. Camblor, A. Corma, and S. Valencia, Spontaneous nucleation and growth of pure silica zeolite-? free of connectivity defects, Chemical Communications, vol.20, p.2365, 1996.

Y. Lee, J. A. Hriljac, T. Vogt, J. B. Parise, and G. Artioli, First Structural Investigation of a Super-Hydrated Zeolite, Journal of the American Chemical Society, vol.123, pp.12732-12733, 2001.

D. Seoung, Y. Lee, C. Kao, T. Vogt, and Y. Lee, Super-Hydrated Zeolites: Pressure-Induced Hydration in Natrolites, Chemistry -A European Journal, vol.19, pp.10876-10883, 2013.

A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel et al., Flexible metal-organic frameworks, Chem. Soc. Rev, vol.43, pp.6062-6096, 2014.

V. Haigis, F. Coudert, R. Vuilleumier, and A. Boutin, Investigation of structure and dynamics of the hydrated metal-organic framework MIL-53(Cr) using rstprinciples molecular dynamics, Physical Chemistry Chemical Physics, vol.15, p.19049, 2013.

A. Boutin, D. Bousquet, A. U. Ortiz, F. Coudert, A. H. Fuchs et al., Temperature-Induced Structural Transitions in the Gallium-Based MIL-53 Metal-Organic Framework, The Journal of Physical Chemistry C, vol.117, pp.8180-8188, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02113280

F. Coudert, A. Boutin, and A. H. Fuchs, A thermodynamic description of the adsorption-induced structural transitions in exible MIL-53 Metal-Organic framework, Molecular Physics, vol.112, issue.10, p.10, 2014.

,

B. Mortada, G. Chaplais, V. Veremeienko, H. Nouali, C. Marichal et al., Energetic Performances of ZIF-8 Derivatives: Impact of the Substitution (Me, Cl, or Br) on Imidazolate Linker, The Journal of Physical Chemistry C, vol.122, issue.7, pp.3846-3855, 2018.

G. Fraux, A. Boutin, A. H. Fuchs, and F. Coudert, Structure, Dynamics, and Thermodynamics of Intruded Electrolytes in ZIF-8, The Journal of Physical Chemistry C, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02168637

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, 1993.

G. Fiorin, M. L. Klein, and J. Hénin, Using collective variables to drive molecular dynamics simulations, Molecular Physics, vol.111, pp.3345-3362, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01498073

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in e ective pair potentials, The Journal of Physical Chemistry, vol.91, pp.6269-6271, 1987.

B. Zheng, M. Sant, P. Demontis, and G. B. Su-ritti, Force Field for Molecular Dynamics Computations in Flexible ZIF-8 Framework, The Journal of Physical Chemistry C, vol.116, issue.1, pp.933-938, 2012.

S. Chowdhuri and A. Chandra, Hydration structure and di usion of ions in supercooled water: Ion size e ects, The Journal of Chemical Physics, vol.118, pp.9719-9725, 2003.

Y. Marcus, Ionic radii in aqueous solutions, Chemical Reviews, vol.88, pp.1475-1498, 1988.

A. Luzar and D. Chandler, Hydrogen-bond kinetics in liquid water, Nature, vol.379, pp.55-57, 1996.

A. C. Fogarty, F. Coudert, A. Boutin, and D. Laage, Reorientational Dynamics of Water Con ned in Zeolites, ChemPhysChem, vol.15, issue.3, pp.521-529, 2014.

L. F. Scatena, Water at Hydrophobic Surfaces: Weak Hydrogen Bonding and Strong Orientation E ects, Science, vol.292, pp.908-912, 2001.

S. Je-ery, P. M. Ho-mann, J. B. Pethica, C. Ramanujan, H. Ö. Özer et al., Direct measurement of molecular sti ness and damping in con ned water layers, Physical Review B, vol.70, issue.5, 2004.

S. R. -v.-castrillón, N. Giovambattista, I. A. Aksay, and P. G. Debenedetti, Evolution from Surface-In uenced to Bulk-Like Dynamics in Nanoscopically Con ned Water, The Journal of Physical Chemistry B, vol.113, issue.23, pp.7973-7976, 2009.

L. Scal, G. Fraux, A. Boutin, and F. Coudert, Structure and Dynamics of Water Con ned in Imogolite Nanotubes, Langmuir, vol.34, issue.23, pp.6748-6756, 2018.

T. D. Bennett, P. Simoncic, S. A. Moggach, F. Gozzo, P. Macchi et al., Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4), Chemical Communications, vol.47, p.7983, 2011.

S. Cao, T. D. Bennett, D. A. Keen, A. L. Goodwin, and A. K. Cheetham, Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling, Chemical Communications, vol.48, p.7805, 2012.

A. U. Ortiz, A. Boutin, A. H. Fuchs, and F. Coudert, Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening, The Journal of Physical Chemistry Letters, vol.4, issue.11, pp.1861-1865, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02116930

E. H. Lanman and B. J. Mair, The Compressibility of Aqueous Solutions, Journal of the American Chemical Society, vol.56, issue.2, pp.390-393, 1934.

T. Karbowiak, C. Paulin, A. Ballandras, G. Weber, and J. Bellat, Thermal E ects of Water Intrusion in Hydrophobic Nanoporous Materials, Journal of the American Chemical Society, vol.131, pp.9898-9899, 2009.

T. Karbowiak, C. Paulin, and J. Bellat, Determination of water intrusion heat in hydrophobic microporous materials by high pressure calorimetry, Microporous and Mesoporous Materials, vol.134, pp.8-15, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02510875

A. Gross, WHAM: the weighted histogram analysis method, vol.2

N. Yoshinaga and S. Aomine, Imogolite in some ando soils, Soil Science and Plant Nutrition, vol.8, issue.3, pp.22-29, 1962.

M. Amara, E. Paineau, M. Bacia-verloop, M. M. Krapf, P. Davidson et al., Single-step formation of micron long (OH)3Al2O3Ge(OH) imogolite-like nanotubes, Chemical Communications, vol.49, p.11284, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01426270

P. D. Cradwick, V. C. Farmer, J. D. Russell, C. R. Masson, K. Wada et al., Imogolite, a Hydrated Aluminium Silicate of Tubular Structure, Nature Physical Science, vol.240, pp.187-189, 1972.

S. U. Lee, Y. C. Choi, S. G. Youm, and D. Sohn, Origin of the Strain Energy Minimum in Imogolite Nanotubes, The Journal of Physical Chemistry C, vol.115, pp.5226-5231, 2011.

R. I. González, R. Ramírez, J. Rogan, J. A. Valdivia, F. Munoz et al., Model for Self-Rolling of an Aluminosilicate Sheet into a Single-Walled Imogolite Nanotube, The Journal of Physical Chemistry C, vol.118, pp.28227-28233, 2014.

K. Tamura and K. Kawamura, Molecular Dynamics Modeling of Tubular Aluminum Silicate: Imogolite, The Journal of Physical Chemistry B, vol.106, issue.2, pp.271-278, 2002.

L. Guimarães, A. N. Enyashin, J. Frenzel, T. Heine, H. A. Duarte et al., Imogolite Nanotubes: Stability, Electronic, and Mechanical Properties, vol.1, pp.362-368, 2007.

M. Zhao, Y. Xia, and L. Mei, Energetic Minimum Structures of Imogolite Nanotubes: A First-Principles Prediction, The Journal of Physical Chemistry C, vol.113, pp.14834-14837, 2009.

R. Demichelis, Y. Noël, P. D'arco, L. Maschio, R. Orlando et al., Structure and energetics of imogolite: a quantum mechanical ab initio study with B3LYP hybrid functional, Journal of Materials Chemistry, vol.20, p.10417, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00687894

F. Alvarez-ramírez, Ab initiosimulation of the structural and electronic properties of aluminosilicate and aluminogermanate natotubes with imogolite-like structure, Physical Review B, vol.76, 2007.

S. Konduri, H. M. Tong, S. Chempath, and S. Nair, Water in Single-Walled Aluminosilicate Nanotubes: Di usion and Adsorption Properties, The Journal of Physical Chemistry C, vol.112, pp.15367-15374, 2008.

R. I. González, J. Rogan, E. M. Bringa, and J. A. Valdivia, Mechanical Response of Aluminosilicate Nanotubes under Compression, The Journal of Physical Chemistry C, vol.120, pp.14428-14434, 2016.

J. P. Gustafsson, The Surface Chemistry of Imogolite, Clays and Clay Minerals, vol.49, pp.73-80, 2001.

M. S. Amara, S. Rouzière, E. Paineau, M. Bacia-verloop, A. Thill et al., Hexagonalization of Aluminogermanate Imogolite Nanotubes Organized into Closed-Packed Bundles, The Journal of Physical Chemistry C, vol.118, pp.9299-9306, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157204

B. Creton, D. Bougeard, K. S. Smirnov, J. Guilment, and O. Poncelet, Molecular dynamics study of hydrated imogolite : 2. Structure and dynamics of con ned water, Physical Chemistry Chemical Physics, vol.10, p.4879, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00316024

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Physical Review Letters, vol.100, 2008.

R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-wilson, B. Civalleri et al., CRYSTAL14: A program for the ab-initio investigation of crystalline solids, International Journal of Quantum Chemistry, vol.114, pp.1287-1317, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01404047

W. C. Ackerman, D. M. Smith, J. C. Huling, Y. W. Kim, J. K. Bailey et al., Gas/vapor adsorption in imogolite: a microporous tubular aluminosilicate, Langmuir 9, vol.4, pp.1051-1057, 1993.

S. Mukherjee, V. M. Bartlow, and S. Nair, Phenomenology of the Growth of Single-Walled Aluminosilicate and Aluminogermanate Nanotubes of Precise Dimensions, Chemistry of Materials, vol.17, pp.4900-4909, 2005.

J. Zang, S. Chempath, S. Konduri, S. Nair, and D. S. Sholl, Flexibility of Ordered Surface Hydroxyls In uences the Adsorption of Molecules in Single-Walled Aluminosilicate Nanotubes, The Journal of Physical Chemistry Letters, vol.1, issue.8, pp.1235-1240, 2010.

R. T. Cygan, J. Liang, and A. G. Kalinichev, Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, The Journal of Physical Chemistry B, vol.108, pp.1255-1266, 2004.

O. Teleman, B. Jönsson, and S. Engström, A molecular dynamics simulation of a water model with intramolecular degrees of freedom, Molecular Physics, vol.60, pp.193-203, 1987.

G. Y. Gor and N. Bernstein, Adsorption-Induced Surface Stresses of the Water/Quartz Interface: Ab Initio Molecular Dynamics Study, Langmuir, vol.32, pp.5259-5266, 2016.

A. V. Neimark, F. Coudert, A. Boutin, and A. H. Fuchs, Stress-Based Model for the Breathing of Metal-Organic Frameworks, The Journal of Physical Chemistry Letters, vol.1, issue.1, pp.445-449, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00548069

F. Mouhat, D. Bousquet, A. Boutin, L. B. Bourg, F. Coudert et al., Softening upon Adsorption in Microporous Materials: A Counterintuitive Mechanical Response, The Journal of Physical Chemistry Letters, vol.6, pp.4265-4269, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02115286

J. D. Bernal and R. H. Fowler, A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, The Journal of Chemical Physics, vol.1, issue.8, pp.515-548, 1933.

J. Zang, S. Konduri, S. Nair, and D. S. Sholl, Self-Di usion of Water and Simple Alcohols in Single-Walled Aluminosilicate Nanotubes, ACS Nano, vol.3, issue.6, pp.1548-1556, 2009.

A. C. Fogarty, E. Duboué-dijon, D. Laage, and W. H. Thompson, Origins of the non-exponential reorientation dynamics of nanocon ned water, The Journal of Chemical Physics, vol.141, pp.18-523, 2014.

A. Ozkanlar and A. E. Clark, ChemNetworks: A complex network analysis tool for chemical systems, Journal of Computational Chemistry, vol.35, issue.6, pp.495-505, 2013.

V. A. Makarov, B. K. Andrews, P. E. Smith, and B. M. Pettitt, Residence Times of Water Molecules in the Hydration Sites of Myoglobin, Biophysical Journal, vol.79, issue.6, pp.76533-76540, 2000.

S. B. Lippman, J. Lajoie, and B. E. Moo, , 2012.

S. Meyers, C. Ective-modern, and . O'reilly, , pp.978-979, 2014.

D. Dubbeldam, S. Calero, D. E. Ellis, and R. Q. Snurr, RASPA: molecular simulation software for adsorption and di usion in exible nanoporous materials, Molecular Simulation, vol.42, pp.81-101, 2015.

A. Mulholland, F. Manby, S. Mcintosh-smith, J. Michel, and C. Woods, Sire: An advanced, multiscale, molecular simulation framework

V. Shen, Standard Reference Simulation Website, NIST Standard Reference Database 173, 2006.

, Approximate cost to access various caches and main memory, 2019.

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, Journal of Computational Physics, vol.23, issue.3, pp.327-341, 1977.

H. C. Andersen, Rattle: A velocity version of the shake algorithm for molecular dynamics calculations, Journal of Computational Physics, vol.52, issue.1, pp.90014-90015, 1983.

W. Smith, Calculating the Pressure". In: Information quarterly for computer simulation of condensed phases CCP5 39, pp.14-20, 1993.

S. M. Rogge, R. Goeminne, R. Demuynck, J. J. Gutiérrez-sevillano, S. Vandenbrande et al., Modeling Gas Adsorption in Flexible Metal-Organic Frameworks via Hybrid Monte Carlo/Molecular Dynamics Schemes, Advanced Theory and Simulations, vol.2, p.1800177, 2019.

J. A. Izaguirre and S. S. Hampton, Shadow hybrid Monte Carlo: an e cient propagator in phase space of macromolecules, Journal of Computational Physics, vol.200, issue.2, pp.581-604, 2004.

G. A. Ross, A. S. Rustenburg, P. B. Grinaway, J. Fass, and J. D. Chodera, Biomolecular Simulations under Realistic Macroscopic Salt Conditions, The Journal of Physical Chemistry B, vol.122, pp.5466-5486, 2018.

S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo, Physics Letters B, vol.195, issue.2, pp.216-222, 1987.

B. Mehlig, D. W. Heermann, and B. M. Forrest, Hybrid Monte Carlo method for condensed-matter systems, Physical Review B, vol.45, issue.2, pp.679-685, 1992.

H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, The Journal of Chemical Physics, vol.72, pp.2384-2393, 1980.

R. Faller and J. J. De-pablo, Constant pressure hybrid Molecular Dynamics-Monte Carlo simulations, The Journal of Chemical Physics, vol.116, p.55, 2002.

M. Fernández-pendás, B. Escribano, T. Radivojevi?, and E. Akhmatskaya, Constant pressure hybrid Monte Carlo simulations in GROMACS, Journal of Molecular Modeling, vol.20, 2014.

A. M. Horowitz, A generalized guided Monte Carlo algorithm, Physics Letters B, vol.268, issue.2, pp.247-252, 1991.

E. Akhmatskaya, N. Bou-rabee, and S. Reich, A comparison of generalized hybrid Monte Carlo methods with and without momentum ip, Journal of Computational Physics, vol.228, issue.6, pp.2256-2265, 2009.

E. Akhmatskaya and S. Reich, New Hybrid Monte Carlo Methods for E cient Sampling:from Physics to Biology and Statistics, Progress in Nuclear Science and Technology, vol.2, pp.447-462, 2011.

S. Lan, V. Stathopoulos, B. Shahbaba, and M. Girolami, Markov Chain Monte Carlo from Lagrangian Dynamics, Journal of Computational and Graphical Statistics, vol.24, issue.2, pp.357-378, 2015.

Y. Fang, J. M. Sanz-serna, and R. D. Skeel, Compressible generalized hybrid Monte Carlo, The Journal of Chemical Physics, vol.140, p.174108, 2014.

C. Balzer, G. Reichenauer, and M. Wiener, Sorption-Induced Deformation of Microporous Solids Studied by In-Situ Dilatometry, Poromechanics V, 2013.

P. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Annalen der Physik, vol.369, pp.253-287, 1921.

D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r-1 summation, The Journal of Chemical Physics, vol.110, pp.8254-8282, 1999.

C. J. Fennell and J. D. Gezelter, Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics, The Journal of Chemical Physics, vol.124, issue.23, p.234104, 2006.

A. H. Mao and R. V. Pappu, Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions, The Journal of Chemical Physics, vol.137, issue.6, p.64104, 2012.

N. M. O'boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch et al., Open Babel: An open chemical toolbox, Journal of Cheminformatics, vol.3, issue.1, p.33, 2011.

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.33-38, 1996.

N. Michaud-agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, MDAnalysis: A toolkit for the analysis of molecular dynamics simulations, Journal of Computational Chemistry, vol.32, pp.2319-2327, 2011.

N. M. O'boyle, A. L. Tenderholt, and K. M. Langner, cclib: A library for packageindependent computational chemistry algorithms, Journal of Computational Chemistry, vol.29, pp.839-845, 2008.

A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen et al., The atomic simulation environment -a Python library for working with atoms, Journal of Physics: Condensed Matter, vol.29, p.273002, 2017.

E. L. Willighagen, J. W. May-eld, J. Alvarsson, A. Berg, L. Carlsson et al., The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching, Journal of Cheminformatics, vol.9, issue.1, 2017.

. Amber-netcdf-trajectory,

P. E. Bourne, H. M. Berman, B. Mcmahon, K. D. Watenpaugh, J. D. Westbrook et al., Methods in Enzymology, pp.10-1016, 1997.

A. R. Bradley, A. S. Rose, A. Pavelka, Y. Valasatava, J. M. Duarte et al., MMTF-An e cient le format for the transmission, visualization, and analysis of macromolecular structures, PLOS Computational Biology, vol.13, issue.6, 2017.

H. Berman, K. Henrick, and H. Nakamura, Announcing the worldwide Protein Data Bank, Nature Structural & Molecular Biology, vol.10, pp.980-980, 2003.

M. Lundborg, R. Apostolov, D. Spangberg, A. Gärdenäs, D. Van-der-spoel et al., An e cient and extensible format, library, and API for binary trajectory data from molecular simulations, Journal of Computational Chemistry, vol.35, issue.3, pp.260-269, 2013.

P. De-buyl, P. H. Colberg, F. Hö, and . Ing, H5MD: A structured, e cient, and portable le format for molecular data, Computer Physics Communications, vol.185, issue.6, pp.1546-1553, 2014.

G. Clavier, N. Desbiens, E. Bourasseau, V. Lachet, N. Brusselle-dupend et al., Computation of elastic constants of solids using molecular simulation: comparison of constant volume and constant pressure ensemble methods, Molecular Simulation, vol.43, pp.1413-1422, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01702896

G. R. Kneller, V. Keiner, M. Kneller, and M. Schiller, nMOLDYN: A program package for a neutron scattering oriented analysis of Molecular Dynamics simulations, Computer Physics Communications, vol.91, issue.1-3, pp.191-214, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02155711

, ce qui conduit à l'émergence d'un état fortement désordonné. Cette situation est très semblable aux règles de Bernal-Fowler qui décrivent l'orientation des molécules d'eau dans la glace, vol.209

, En n, nous avons également caractérisé la dynamique des molécules d'eau con nées

. Durant-ma-thèse, Aujourd'hui, les matériaux à charpente organo-métallique appelés metal-organic frameworks (MOF) sont les principaux représentants de cette famille de matériaux. Je me suis en particulier intéressé à la ZIF-8, un MOF constitué de zinc et de ligands imidazolates organisés dans une topologie de type sodalite, j'ai utilisé la simulation moléculaire pour étudier l'adsorption et l'intrusion de fluides dans les matériaux nanoporeux flexibles

D. and M. , Ces matériaux ont des applications potentielles dans le domaine du stockage et de la dissipation de l'énergie mécanique. La pression à laquelle se produit l'intrusion, ainsi que la présence et la forme d'une boucle d'hystérèse sont modifiable par l'ajout d'ions dans le liquide d'intrusion. J'ai montré que liquide confiné dans la ZIF-8 ou dans des nanotubes d'alumino-silicates appelés imogolites est fortement structuré, et que la dynamique des molécules d'eau est ralentie par le confinement. La présence d'ions modifie très peu la structuration, mais ralenti encore la dynamique, Carlo pour étudier l'adsorption et l'intrusion d'eau dans des matériaux poreux hydrophobes

. Enfin, ai montré que la prise en compte de la flexibilité était nécessaire pour prédire correctement la co-adsorption de gaz dans un matériau qui se déforme (respiration, ouverture des fenêtres, etc.) lors de l'adsorption. Cette prise en compte est possible dans le cadre de la méthode Osmotic Framework Adsorbed Solution Theory (OFAST)