, European Chemicals Agency, « Substances restricted under REACH », ECHA, 2006.

A. European-chemicals, Nickel and its compounds, ECHA, 2011.

S. Schuerz, M. Fleischanderl, G. H. Luckeneder, K. Preis, T. Haunschmied et al., Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloridecontaining environment, Corros. Sci, vol.51, pp.2355-2363, 2009.

M. Dutta, A. K. Halder, and S. B. Singh, Morphology and properties of hot dip Zn-Mg and Zn-Mg-Al alloy coatings on steel sheet, Surf. Coat. Technol, vol.205, pp.2578-2584, 2010.

R. P. Edavan and R. Kopinski, Corrosion resistance of painted zinc alloy coated steels, Corros. Sci, vol.51, pp.2429-2442, 2009.

H. Sohn, J. Lee, Y. Yoo, J. Min, and K. Y. Kim, Corrosion behaviour of Zn-MgZn2 eutectic structure in Zn-Al-Mg coatings, Galvatech '11

, Nisshin steel quality products ZAM'

, Available: www.thyssenkrupp-steel-europe.com, Brochure of ThyssenKrupp Steel Europe AG, ZM EcoProtect® -The Innovative Coating, 2010.

N. Shimoda, Y. Kubo, and K. Ueda, Corrosion resistance of several Zn-Al-Mg alloys coated steels, Nippon Steel & Sumitomo metal 108, 2015.

D. Thierry, T. Prosek, N. L. Bozec, and E. Diller, Corrosion protection and corrosion mechanisms of continuous galvanized steel sheet with focus on new coating alloys, Galvatech '11

T. Steel, MagiZinc® -The innovative metallic coating for pre-finished steel, 2012.

, User manual, Organic coated steel, ArcelorMittal Flat Carbon Europe 19, avenue de la Liberté L-2930 Luxembourg

, Metallic coated steel, ArcelorMittal Flat Carbon Europe 19, avenue de la Liberté L-2930 Luxembourg

C. Commenda and J. Pühringer, Microstructural characterization and quantification of Zn-Al-Mg surface coatings, Mater. Charact, pp.943-951, 2010.

M. and S. Azevedo, Mécanismes de corrosion de l'acier revêtu d'alliage à base de ZnAlMg en tests accélérés et en environnement naturel, 2014.

P. Volovitch, C. Allely, and K. Ogle, Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn-Mg coating on steel, Corros. Sci, vol.51, pp.1251-1262, 2009.

G. Luckeneder, M. Fleischanderl, T. Steck, K. Stellnberger, and J. Faderl, Corrosion mechanisms and cosmetic corrosion aspects of zinc-aluminium-magnesium and zinc chromium alloy coated steel strip

M. Azevedo, C. Allély, K. Ogle, and P. Volovitch, Corrosion mechanisms of Zn(Mg,Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes, Corros. Sci, vol.90, pp.482-490, 2015.

T. Tsujimura, A. Komatsu, and A. Andoh, Influence of Mg content in coating layer and coating structure on corrosion resistance of hot-dip Zn-Al-Mg-Si alloy coated steel sheet, Proceedings of the Galvatech '01

J. Kawafuku, J. Katoh, M. Toyama, K. Ilkeda, H. Nishimoto et al., Properties of zinc alloy coated steel sheets obtained by continuous vapour deposition pilotline, Proceedings of the 5th Automotive Corr. & Prevention Conference, 1991.

H. Dafydd, D. A. Worsley, and H. N. Mcmurray, The kinetics and mechanism of cathodic oxygen reduction on zinc and zinc-aluminium alloy galvanized coatings, Corros. Sci, vol.47, pp.3006-3018, 2005.

N. C. Hosking, M. A. Strom, P. H. Shipway, and C. D. Rudd, Corrosion resistance of zincmagnesium coated steel, Corros. Sci, vol.49, pp.3669-3695, 2007.

K. Ueda, A. Takahashi, and Y. Kubo, Investigation of corrosion resistance of pre-painted Zn-11%Al-3%Mg-0,2%Si alloy coated steel sheet through outdoor exposure test in Okinawa

P. Volovitch, T. N. Vu, C. Allély, A. Aal, and K. Ogle, Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel, Corros. Sci, vol.53, pp.2437-2445, 2011.

P. L. Hagans and C. M. Haas, Chromate Conversion Coatings, vol.5, pp.405-411, 1994.

I. Milosev and G. S. Frankel, Review-Conversion Coatings Based on Zirconium and/or Titanium, J. Electrochem. Soc, vol.165, pp.127-144, 2018.

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler et al., Evolution of the Automotive Body Coating Process-A Review, vol.24, pp.1-22, 2016.

T. S. Sankara-narayanan, Surface pretreatment by phosphate conversion coatings_ a review, Rev.Adv. Mater. Sci, vol.9, pp.130-177, 2005.

. Pourbaix, Atlas d'équilibres électrochimiques à 25°C, Gauthier-Villar, 1963.

S. Mathieu and R. Hellouin, Techniques de l'ingénieur, tôles prélaquées, pp.1-13, 2008.

A. A. Magalhães, B. Tribollet, O. R. Mattos, I. C. Margarit, and O. E. Barcia, Chromate Conversion Coatings Formation on Zinc Studied by Electrochemical and Electrohydrodynamical Impedances, J. Electrochem. Soc, vol.150, pp.16-25, 2003.

X. Zhang, C. Van-den-bos, W. G. Sloof, A. Hovestad, H. Terryn et al., Comparison of the morphology and corrosion performance of Cr(VI)-and Cr(III)-based conversion coatings on zinc, Surf. Coat. Technol, vol.199, pp.92-104, 2005.

P. Campestrini, E. P. Van-westing, and J. H. De-wit, Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part I: Nucleation and growth, Electrochim. Acta, vol.46, pp.2553-2571, 2001.

S. A. Kulinich, A. S. Akhtar, D. Susac, P. C. Wong, K. C. Wong et al., On the growth of conversion chromate coatings on 2024-Al alloy, Appl. Surf. Sci, vol.253, pp.3144-3153, 2007.

G. M. Brown, K. Shimizu, K. Kobayashi, G. E. Thompson, and G. C. Wood, The morphology, structure and mechanism of growth of chemical conversion coatings on aluminium, Corros. Sci, vol.33, pp.1371-1385, 1992.

S. Pommiers-belin, J. Frayret, A. Uhart, J. Ledeuil, J. Dupin et al., Determination of the chemical mechanism of chromate conversion coating on magnesium alloys EV31A, Appl. Surf. Sci, vol.298, pp.199-207, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01561258

, Ocupational Safety and Health Administration, Occupational Safety and Health Standards -Toxic and Hazardous Substances

, Substances restricted under REACH, ECHA, European Chemicals Agency, 2006.

K. Ogle and R. Buchheit, Encyclopedia of Electrochemistry, 4, Corrosion and Oxide Films, pp.460-495, 2003.

K. Ogle and M. Wolpers, Phosphate conversion coatings, ASM Handbook, 13A, Corrosion: Fundamentals, Testing, and Protection, pp.712-719, 2003.

L. Jiang, P. Volovitch, M. Wolpers, and K. Ogle, Activation and inhibition of Zn-Al and Zn-Al-Mg coatings on steel by nitrate in phosphoric acid solution, Corros. Sci, vol.60, pp.256-264, 2012.

K. S. Fernandes, E. De-a.-alvarenga, P. R. Brandão, V. De, and F. C. Lins, Análise por espectroscopia no infravermelho das camadas de fosfato de zinco e de zinco modificado com níquel e manganês em aço eletrogalvanizado, Rem Rev. Esc. Minas, vol.64, pp.45-49, 2011.

W. Zhou, D. Shan, E. Han, and W. Ke, Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy, Corros. Sci, vol.50, pp.329-337, 2008.

A. Losch, E. Klusmann, and J. Schulze, Electrochemical investigations of phosphate layers by metal deposition and cataphoretic painting, Electrochim. Acta, vol.39, pp.1183-1187, 1994.

J. Donofrio, Zinc phosphating, Met. Finish, vol.108, pp.40-56, 2010.

A. S. Akhtar, K. C. Wong, and K. A. Mitchell, The effect of pH and role of Ni 2+ in zinc phosphating of 2024-Al alloy: Part I: Macroscopic studies with XPS and SEM, Appl. Surf. Sci, vol.253, pp.493-501, 2006.

A. S. Akhtar, D. Susac, P. C. Wong, and K. A. Mitchell, The effect of pH and role of Ni 2+ in zinc phosphating of 2024-Al alloy: Part II: Microscopic studies with SEM and SAM, vol.253, pp.502-509, 2006.

A. S. Akhtar, K. C. Wong, P. C. Wong, and K. A. Mitchell, Effect of Mn 2+ additive on the zinc phosphating of 2024-Al alloy, Thin Solid Films, vol.515, pp.7899-7905, 2007.

D. Zimmermann, A. G. Muñoz, and J. W. Schultze, Formation of Zn-Ni alloys in the phosphating of Zn layers, Surf. Coat. Technol, vol.197, pp.260-269, 2005.

M. Wolpers and J. Angeli, Activation of galvanized steel surfaces before zinc phosphating -XPS and GD-OES investigations, Appl. Surf. Sci, vol.179, pp.281-291, 2001.

L. Jiang, Application of atomic emission spectroelectrochemistry to the formation and degradation of conversion coatings on galvanized steel (Zn and Zn-Al-Mg)', PhD thesis, 2012.

S. and L. Manchet, Mécanismes de corrosion et de délamination d'un composite acier/polymère pour le marché automobile, 2010.

I. Van-roy, H. Terryn, and G. Goeminne, Study of the phosphating treatment of aluminium surfaces: role of the activating process, Colloids Surf. Physicochem. Eng. Asp, vol.136, pp.89-96, 1998.

A. Erbe, P. Schneider, C. Gadiyar, and F. U. Renner, Electrochemically triggered nucleation and growth of zinc phosphate on aluminium-silicon-coated steel, Electrochim. Acta, vol.182, pp.1132-1139, 2015.

, Nickel et ses oxydes -Fiche toxicologique N°68, INRS, 2009.

. Henkel, Composition and process for treating metals, Patent 5427632, 1995.

B. Wilson, N. Fink, and G. Grundmeier, Formation of ultra-thin amorphous conversion films on zinc alloy coatings: Part 2: Nucleation, growth and properties of inorganicorganic ultra-thin hybrid films, Electrochim. Acta, vol.51, pp.3066-3075, 2006.

L. Li, B. W. Whitman, and G. M. Swain, Characterization and performance of a Zr/Ti pretreatment conversion coating on AA2024-T3, J. Electrochem. Soc, vol.162, pp.279-284, 2015.

E. Petrie, Osmotic blisters in coatings and adhesives, Met. Finish, pp.28-30, 2011.

B. Liu, Y. Wei, W. Chen, L. Hou, and C. Guo, Blistering failure analysis of organic coatings on AZ91D Mg-alloy components, Eng. Fail. Anal, vol.42, pp.231-239, 2014.

M. Doherty and J. M. Sykes, A quantitative study of blister growth on lacquered food cans by scanning acoustic microscopy, Corros. Sci, vol.50, pp.2755-2772, 2008.

A. Amirudin and D. Thierry, Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings, Prog. Org. Coat, vol.28, pp.59-76, 1996.

P. Marcus, Corrosion Mechanisms in Theory and Practice, 2011.

T. Prosek, A. Nazarov, M. Olivier, C. Vandermiers, D. Koberg et al., The role of stress and topcoat properties in blistering of coil-coated materials, Prog. Org. Coat, vol.68, pp.328-333, 2010.

W. Funke, Toward a unified view of the mechanism responsible for paint defects by metallic corrosion, Ind. Eng. Chem. Prod. Res. Dev, vol.24, pp.343-347, 1985.

H. Leidheiser, Towards a Better Understanding of Corrosion beneath Organic Coatings, Corrosion, pp.189-201, 1983.

D. C. Harris, Quantitative chemical analysis, W.H. Freeman and Company, State of the Art, 2007.

D. Greenfield and D. Scantlebury, The protective action of organic coatings on steel: A review, J. Corros. Sci. Eng, p.3, 2000.

D. Perera, Physical ageing of organic coating, Prog. Org. Coat, vol.47, pp.61-76, 2003.

M. Piens and . De-deurwaerder, Effect of coating stress on adherence and corrosion prevention, Prog. Org. Coat, vol.43, pp.18-24, 2001.

T. Lostak, A. Maljusch, B. Klink, S. Krebs, M. Kimpel et al., Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism, Electrochim. Acta, vol.137, pp.65-74, 2014.

F. Andreatta, A. Turco, I. De-graeve, H. Terryn, J. H. De-wit et al., SKPFM and SEM study of the deposition mechanism of Zr/Ti based pre-treatment on AA6016 aluminium alloy, Surf. Coat. Technol, vol.201, pp.7668-7685, 2007.

J. H. Nordlien, J. C. Walmsley, H. Østerberg, and K. Nisancioglu, Formation of a zirconium-titanium based conversion layer on AA 6060 aluminium, Surf. Coat. Technol, vol.153, pp.72-78, 2002.

O. Lunder, C. Simensen, Y. Yu, and K. Nisancioglu, Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminium, Surf. Coat. Technol, vol.184, pp.278-290, 2004.

T. Lostak, S. Krebs, A. Maljusch, T. Gothe, M. Giza et al., Formation and characterization of Fe 3+ -/Cu 2+ -modified zirconium oxide conversion layers on zinc alloy coated steel sheets, Electrochim. Acta, vol.112, pp.14-23, 2013.

W. Zhou, D. Shan, E. Han, and W. Ke, Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy, Corros. Sci, vol.50, pp.329-337, 2008.

T. Machado-amorim, J. Richard, E. Jacqueson, A. Lhermeroult, P. Feltin et al., Method for Producing a Pre-Lacquered Metal Sheet Having Zn-Al-Mg Coatings, and Corresponding Metal Sheet, 2013.

A. E. Vladár, M. T. Postek, and M. T. Postek, The Scanning Electron Microscope, Handbook of Charged Particle Optics, vol.24, p.17, 2008.

J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. Scott et al.,

. Joy, Scanning Electron Microscopy and X-Ray Microanalysis, 2017.

K. Kanaya and S. Okayama, Penetration and energy-loss theory of electrons in solid targets, J. Phys. Appl. Phys, vol.5, p.43, 1972.

H. Bethe, Handbook of Physics, 1933.

M. Barthés-labrousse, The Auger Effect, Microsc. Microanal. Microstruct, vol.6, pp.253-262, 1995.

, Thermo Scientific XPS: What is XPS

T. Prosek, A. Nazarov, J. Stoulil, and D. Thierry, Evaluation of the tendency of coil-coated materials to blistering: Field exposure, accelerated tests and electrochemical measurements, Corros. Sci, pp.92-100, 2012.

T. Prosek, A. Nazarov, M. Olivier, C. Vandermiers, D. Koberg et al., The role of stress and topcoat properties in blistering of coil-coated materials, Prog. Org. Coat, vol.68, pp.328-333, 2010.

R. M. Souto and D. J. Scantlebury, Cathodic delamination of coil coatings produced with different Zn-based intermediate metallic layers, Prog. Org. Coat, vol.53, pp.63-70, 2005.

R. M. Souto, Y. González-garcía, and S. González, Evaluation of the corrosion performance of coil-coated steel sheet as studied by scanning electrochemical microscopy, Corros. Sci, vol.50, pp.1637-1643, 2008.

J. N. Murray, L. D. Stephenson, and A. Kumar, Electrochemical and physical evaluations of coil coatings on metal-coated steels for roofing applications, Prog. Org. Coat, vol.47, pp.136-146, 2003.

A. Amirudin and D. Thierry, Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings, Prog. Org. Coat, vol.28, pp.59-76, 1996.

P. Marcus, Corrosion Mechanisms in Theory and Practice, 2011.

M. Doherty and J. M. Sykes, A quantitative study of blister growth on lacquered food cans by scanning acoustic microscopy, Corros. Sci, vol.50, pp.2755-2772, 2008.

W. Funke, Toward a unified view of the mechanism responsible for paint defects by metallic corrosion, Ind. Eng. Chem. Prod. Res. Dev, vol.24, pp.343-347, 1985.

M. Morcillo, Soluble salts: their effect on premature degradation of anticorrosive paints, Prog. Org. Coat, vol.36, pp.137-147, 1999.

, Brochure of Tata Steel, Magizinc ® Auto, the new high-performance coating, 2012.

J. Han and K. Ogle, Dealloying of MgZn2 Intermetallic in Slightly Alkaline Chloride Electrolyte and Its Significance in Corrosion Resistance, J. Electrochem. Soc, vol.164, pp.952-961, 2017.

T. Nguyen and J. W. Martin, Modes and mechanisms for the degradation of fusion-bonded epoxy-coated steel in a marine concrete environment, JCT Res, vol.1, pp.81-92, 2004.

D. Greenfield and D. Scantlebury, The protective action of organic coatings on steel: A review, J. Corros. Sci. Eng, p.3, 2000.

, Comprehension of the degradation mechanisms of TiCC-treated and painted ZnAlMg coated steels, Chapter

T. Lostak, A. Maljusch, B. Klink, S. Krebs, M. Kimpel et al., Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism, Electrochim. Acta, vol.137, pp.65-74, 2014.

F. Andreatta, A. Turco, I. De-graeve, H. Terryn, J. H. De-wit et al., SKPFM and SEM study of the deposition mechanism of Zr/Ti based pre-treatment on AA6016 aluminium alloy, Surf. Coat. Technol, vol.201, pp.7668-7685, 2007.

J. H. Nordlien, J. C. Walmsley, H. Østerberg, and K. Nisancioglu, Formation of a zirconium-titanium based conversion layer on AA 6060 aluminium, Surf. Coat. Technol, vol.153, pp.72-78, 2002.

O. Lunder, C. Simensen, Y. Yu, and K. Nisancioglu, Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminium, Surf. Coat. Technol, vol.184, pp.278-290, 2004.

L. Fedrizzi, F. Deflorian, and P. L. Bonora, Corrosion behaviour of fluotitanate pretreated and painted aluminium sheets, Electrochim. Acta, vol.42, pp.969-978, 1997.

J. Cerezo, I. Vandendael, R. Posner, K. Lill, J. H. De-wit et al., Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces, Surf. Coat. Technol, vol.236, pp.284-289, 2013.

I. Milosev and G. S. Frankel, Review-Conversion Coatings Based on Zirconium and/or Titanium, J. Electrochem. Soc, vol.165, pp.127-144, 2018.

I. Schoukens, I. Vandendael, J. De, A. A. Strycker, H. Saleh et al., Effect of surface composition and microstructure of aluminised steel on the formation of a titanium-based conversion layer, Surf. Coat. Technol, vol.235, pp.628-636, 2013.

H. Leidheiser, Towards a Better Understanding of Corrosion beneath Organic Coatings, Corrosion, pp.189-201, 1983.

K. Ogle and R. Buchheit, Encyclopedia of Electrochemistry, vol.4, p.460, 2003.

K. Ogle and M. Wolpers, Phosphate conversion coatings, Corrosion : Fundamentals, Testing, and Protection, vol.13, p.712, 2003.

L. Jiang, M. Wolpers, P. Volovitch, and K. Ogle, The degradation of phosphate conversion coatings by electrochemically generated hydroxide, Corros. Sci, vol.55, pp.76-89, 2012.

K. S. Fernandes, E. De-a.-alvarenga, P. R. Brandão, V. De, and F. C. Lins, Análise por espectroscopia no infravermelho das camadas de fosfato de zinco e de zinco modificado com níquel e manganês em aço eletrogalvanizado, Rem Rev. Esc. Minas, vol.64, pp.45-49, 2011.

W. Zhou, D. Shan, E. Han, and W. Ke, Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy, Corros. Sci, vol.50, pp.329-337, 2008.

A. Losch, E. Klusmann, and J. Schulze, Electrochemical investigations of phosphate layers by metal deposition and cataphoretic painting, Electrochim. Acta, vol.39, pp.1183-1187, 1994.

J. Donofrio, Zinc phosphating, Met. Finish, vol.108, pp.40-56, 2010.

A. S. Akhtar, K. C. Wong, and K. A. Mitchell, The effect of pH and role of Ni 2+ in zinc phosphating of 2024-Al alloy: Part I: Macroscopic studies with XPS and SEM, Appl. Surf. Sci, vol.253, pp.493-501, 2006.

A. S. Akhtar, D. Susac, P. C. Wong, and K. A. Mitchell, The effect of pH and role of Ni 2+ in zinc phosphating of 2024-Al alloy: Part II: Microscopic studies with SEM and SAM, vol.253, pp.502-509, 2006.

A. S. Akhtar, K. C. Wong, P. C. Wong, and K. A. Mitchell, Effect of Mn 2+ additive on the zinc phosphating of 2024-Al alloy, Thin Solid Films, vol.515, pp.7899-7905, 2007.

D. Zimmermann, A. G. Muñoz, and J. W. Schultze, Formation of Zn-Ni alloys in the phosphating of Zn layers, Surf. Coat. Technol, vol.197, pp.260-269, 2005.

M. Wolpers and J. Angeli, Activation of galvanized steel surfaces before zinc phosphating -XPS and GD-OES investigations, Appl. Surf. Sci, vol.179, pp.281-291, 2001.

, On the effect of multiphase microstructure of ZnAlMg substrate on the Ti-based activation and phosphate conversion coating distribution 78, Chapter

L. Jiang, P. Volovitch, M. Wolpers, and K. Ogle, Activation and inhibition of Zn-Al and Zn-Al-Mg coatings on steel by nitrate in phosphoric acid solution, Corros. Sci, vol.60, pp.256-264, 2012.

M. Pourbaix, Atlas d'équilibres électrochimiques à 25 °C, Gauthier-Villars & Cie, pp.494-495, 1963.

L. Jiang, Application of atomic emission spectroelectrochemistry to the formation and degradation of conversion coatings on galvanized steel (Zn and Zn-Al-Mg)', PhD thesis, 2012.

P. Tegehall, Colloidal titanium phosphate, the chemical activator in surface conditioning before zinc phosphating, Colloids Surf, vol.42, pp.155-164, 1989.

P. Tegehall, The mechanism of chemical activation with titanium phosphate colloids in the formation of zinc phosphate conversion coatings, Colloids Surf, vol.49, pp.373-383, 1990.

T. Prosek, A. Nazarov, A. L. Gac, and D. Thierry, Coil-coated Zn-Mg and Zn-Al-Mg: Effect of climatic parameters on the corrosion at cut edges, Prog. Org. Coat, vol.83, pp.26-35, 2015.

N. L. Bozec, D. Thierry, M. Rohwerder, A. Koavcs, A. Peltola et al., EUR 26323 to European comission -Directorate general for research and innovation, 2013.

P. Volovitch, T. N. Vu, C. Allély, A. Aal, and K. Ogle, Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel, Corros. Sci, vol.53, pp.2437-2445, 2011.

T. Prosek, N. Larché, M. Vlot, F. Goodwin, and D. Thierry, Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applications, Mater. Corros, vol.61, pp.412-420, 2010.

M. Azevedo, C. Allély, K. Ogle, and P. Volovitch, Corrosion mechanisms of Zn(Mg,Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes, Corros. Sci, vol.90, pp.482-490, 2015.

T. Prosek, N. Larché, M. Vlot, F. Goodwin, and D. Thierry, Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applications, Mater. Corros, vol.61, pp.412-420, 2009.

, On the effect of multiphase microstructure of ZnAlMg substrate on the Ti-based activation and phosphate conversion coating distribution 79, Chapter

J. Han and K. Ogle, Dealloying of MgZn2 Intermetallic in Slightly Alkaline Chloride Electrolyte and Its Significance in Corrosion Resistance, J. Electrochem. Soc, vol.164, pp.952-961, 2017.

J. Han and K. Ogle, Cathodic Dealloying of ?-Phase Al-Zn in Slightly Alkaline Chloride Electrolyte and Its Consequence for Corrosion Resistance, J. Electrochem. Soc, vol.165, pp.334-342, 2018.

P. Qiu, C. Leygraf, and I. Wallinder, Evolution of corrosion products and metal release from Galvalume coatings on steel during short and long-term atmospheric exposures, Mater. Chem. Phys, vol.133, pp.419-428, 2012.

I. Wallinder, W. He, P. Augustsson, and C. Leygraf, Characterization of black rust staining of unpassivated 55% Al-Zn alloy coatings. Effect of temperature, pH and wet storage, Corros. Sci, vol.41, pp.2229-2249, 1999.

X. Zhang, C. Leygraf, and I. Wallinder, Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments, Corros. Sci, vol.73, pp.62-71, 2013.

X. Zhang, T. Vu, P. Volovitch, C. Leygraf, K. Ogle et al., The initial release of zinc and aluminium from non-treated Galvalume and the formation of corrosion products in chloride-containing media, Appl. Surf. Sci, vol.258, pp.4351-4359, 2012.

T. Vu, M. Mokaddem, P. Volovitch, and K. Ogle, The anodic dissolution of zinc and zinc alloys in alkaline solution. II. Al and Zn partial dissolution from 5% Al-Zn coatings, Electrochim. Acta, vol.74, pp.130-138, 2012.

A. Henkel, . Co, and . Bonderite-c, AK 75 known as Ridoline 75, MSDS, No. 234097 V002, vol.2, 2015.

A. Henkel, . Co, and . Bonderite-m, AC 50 CF known as Fixodine 50 CF, MSDS, No. 47026 V002, vol.4, 2015.

A. Henkel, . Co, and . Bonderite-m, AD 40110 known as primaire M, MSDS, vol.001, 2015.

A. Henkel, . Co, and . Bonderite-m, , 2016.

D. P. Dutta, A. Singh, and A. K. Tyagi, Ag doped and Ag dispersed nano ZnTiO3: Improved photocatalytic organic pollutant degradation under solar irradiation and antibacterial activity, J. Environ. Chem. Eng, vol.2, pp.2177-2187, 2014.

, On the effect of multiphase microstructure of ZnAlMg substrate on the Ti-based activation and phosphate conversion coating distribution 80, Chapter

Y. Wang, P. Yuan, C. Fan, Y. Wang, G. Ding et al., Preparation of zinc titanate nanoparticles and their photocatalytic behaviors in the photodegradation of humic acid in water, Ceram. Int, vol.38, pp.4173-4180, 2012.

S. Wu, X. Liu, Y. L. Chan, C. Y. Chung, P. K. Chu et al., In vitro bioactivity and osteoblast response on chemically modified biomedical porous NiTi synthesized by capsule-free hot isostatic pressing, Surf. Coat. Technol, vol.202, pp.2458-2462, 2008.

M. T. Pham, W. Matz, H. Reuther, E. Richter, and G. Steiner, Hydroxyapatite nucleation on Na ion implanted Ti surfaces, J. Mater. Sci. Lett, vol.19, pp.1029-1031, 2000.

D. Zimmermann, A. G. Muñoz, and J. W. Schultze, Microscopic local elements in the phosphating process, Electrochim. Acta, vol.48, pp.3267-3277, 2003.

A. W. Taylor, A. W. Frazier, E. L. Gurney, and J. P. Smith, Solubility products of di-and trimagnesium phosphates and the dissociation of magnesium phosphate solutions, Trans. Faraday Soc, vol.59, pp.1585-1589, 1963.

D. L. Felker and P. M. Sherwood, Zinc phosphate (Zn3(PO4)2) by XPS, Surf. Sci. Spectra, vol.9, pp.106-113, 2012.

I. Van-roy, H. Terryn, and G. Goeminne, Study of the phosphating treatment of aluminium surfaces: role of the activating process, Colloids Surf. Physicochem. Eng. Asp, vol.136, pp.89-96, 1998.

P. A. Connor and A. J. Mcquillan, Phosphate Adsorption onto TiO 2 from Aqueous Solutions: An in Situ Internal Reflection Infrared Spectroscopic Study, Langmuir, vol.15, pp.2916-2921, 1999.

H. Onoda and A. Matsukura, Influence of pH-control in phosphoric acid treatment of titanium oxide and their powder properties, Mater. Res. Bull, vol.66, pp.151-155, 2015.

D. Zhao, C. Chen, Y. Wang, H. Ji, W. Ma et al., Surface Modification of TiO2 by Phosphate: Effect on Photocatalytic Activity and Mechanism Implication, J. Phys. Chem. C, vol.112, pp.5993-6001, 2008.

H. Onoda, S. Fujikado, and T. Toyama, Preparation of titanium phosphate white pigments with titanium sulfate and their powder properties, J. Adv. Ceram, vol.3, pp.132-136, 2014.

T. S. Sankara-narayanan, Surface pretreatment by phosphate conversion coatings_ a review, Rev. Adv. Mater. Sci, vol.9, pp.130-177, 2005.

, On the effect of multiphase microstructure of ZnAlMg substrate on the Ti-based activation and phosphate conversion coating distribution 81, Chapter

W. Zhou, D. Shan, E. Han, and W. Ke, Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy, Corros. Sci, vol.50, pp.329-337, 2008.

H. Khan, Sol-gel synthesis of TiO2 from TiOSO4: characterization and UV photocatalytic activity for the degradation of 4-chlorophenol, React. Kinet. Mech. Catal, vol.121, pp.811-832, 2017.

V. Saarimaa, E. Kauppinen, A. Markkula, J. Juhanoja, B. Skrifvars et al., Microscale distribution of Ti-based conversion layer on hot dip galvanized steel, Surf. Coat. Technol, vol.206, pp.4173-4179, 2012.

J. Cerezo, I. Vandendael, R. Posner, K. Lill, J. H. De-wit et al., Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces, Surf. Coat. Technol, vol.236, pp.284-289, 2013.

L. Fedrizzi, F. Deflorian, and P. L. Bonora, Corrosion behaviour of fluotitanate pretreated and painted aluminium sheets, Electrochim. Acta, vol.42, pp.969-978, 1997.

J. H. Nordlien, J. C. Walmsley, H. Østerberg, and K. Nisancioglu, Formation of a zirconiumtitanium based conversion layer on AA 6060 aluminium, Surf. Coat. Technol, vol.153, pp.72-78, 2002.

O. Lunder, C. Simensen, Y. Yu, and K. Nisancioglu, Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminium, Surf. Coat. Technol, vol.184, pp.278-290, 2004.

F. Andreatta, A. Turco, I. De-graeve, H. Terryn, J. H. De-wit et al., SKPFM and SEM study of the deposition mechanism of Zr/Ti based pre-treatment on AA6016 aluminium alloy, Surf. Coat. Technol, vol.201, pp.7668-7685, 2007.

T. Lostak, A. Maljusch, B. Klink, S. Krebs, M. Kimpel et al., Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism, Electrochim. Acta, vol.137, pp.65-74, 2014.

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler et al., Evolution of the Automotive Body Coating Process -A Review, vol.24, pp.1-22, 2016.

, User manual, Organic coated steel, ArcelorMittal Flat Carbon Europe 19, avenue de la Liberté L-2930 Luxembourg

L. Li, B. W. Whitman, and G. M. Swain, Characterization and performance of a Zr/Ti pretreatment conversion coating on AA2024-T3, J. Electrochem. Soc, vol.162, pp.279-284, 2015.

B. Wilson, N. Fink, and G. Grundmeier, Formation of ultra-thin amorphous conversion films on zinc alloy coatings: Part 2: Nucleation, growth and properties of inorganic-organic ultra-thin hybrid films, Electrochim. Acta, vol.51, pp.3066-3075, 2006.

, Impact of phases in ZnAlMg coatings on the distribution of Ti-based conversion coatings

V. Saarimaa, A. Markkula, J. Juhanoja, and B. Skrifvars, Determination of Surface Topography and Composition of Cr-Free Pretreatment Layers on Hot Dip Galvanized Steel, J Coat Sci Technol, vol.1, pp.88-95, 2014.

N. L. Bozec, D. Thierry, M. Rohwerder, A. Kovacs, A. Peltola et al., Advanced Zinc-based hot dip coatings for automotive applications (AUTOCOAT), European comission -Directorate general for research and innovation, 2013.

M. Azevedo, C. Allély, K. Ogle, and P. Volovitch, Corrosion mechanisms of Zn(Mg, Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes, Corros. Sci, vol.90, pp.482-490, 2015.

T. Prosek, A. Nazarov, M. Olivier, C. Vandermiers, D. Koberg et al., The role of stress and topcoat properties in blistering of coil-coated materials, Prog. Org. Coat, vol.68, pp.328-333, 2010.

P. Campestrini, E. P. Van-westing, and J. H. De-wit, Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part I: Nucleation and growth, Electrochim. Acta, vol.46, pp.2553-2571, 2001.

I. Puigdomenech, Hydra/Medusa Chemical Equilibrium Database and Plotting Software KTH Royal Institute of Technology, 2004.

S. and L. Manchet, Mécanismes de corrosion et de délamination d'un composite acier/polymère pour le marché automobile, 2010.

C. E. Marino, P. A. Nascente, S. R. Biaggio, R. C. Rocha-filho, and N. Bocchi, XPS characterization of anodic titanium oxide films grown in phosphate buffer solutions, Thin Solid Films, vol.468, pp.109-112, 2004.

J. Halim, An X-Ray Photoelectron Spectroscopy Study of Multiplayered Transition Metal Carbides (MXenes), 2016.

R. Franke, T. Chassé, P. Streubel, and A. Meisel, Auger parameters and relaxation energies of phosphorus in solid compounds, J. Electron Spectrosc. Relat. Phenom, vol.56, pp.381-388, 1991.

D. L. Felker and P. M. Sherwood, Zinc phosphate (Zn3(PO4)2) by XPS, Surf. Sci. Spectra, vol.9, pp.106-113, 2002.

, Impact of phases in ZnAlMg coatings on the distribution of Ti-based conversion coatings

. Thermofisher, Manganese -Interpretation of XPS data

A. Aoki, X-Ray Photoelectron Spectroscopic Studies on ZnS: MnF2 Phosphors, Jpn. J. Appl. Phys, vol.15, p.305, 1976.

G. Wang, N. Cao, and Y. Wang, Characteristics and corrosion studies of Zn-Mn PCC on Mg-Li alloy, RSC Adv, vol.4, pp.59772-59778, 2014.

M. D. Pereda, C. Alonso, L. Burgos-asperilla, J. A. Valle, O. A. Ruano et al., Corrosion inhibition of powder metallurgy Mg by fluoride treatments, Acta Biomater, vol.6, pp.1772-1782, 2010.

J. Dong, L. Wu, L. Zhao, W. Ke, and X. Li, Influence of the KF concentration on the coating process and properties of potentiostatic deposited fluoride conversion film on AZ31 Mg alloy, Res. Rev. J. Mater. Sci, vol.3, pp.1-22, 2015.

L. Wu, J. Dong, and W. Ke, Potentiostatic deposition process of fluoride conversion film on AZ31 magnesium alloy in 0.1M KF solution, Electrochim. Acta, pp.554-559, 2013.

S. Da-ming, S. Zhao-qi, L. Ai-xia, and X. Zhi-yuan, XPS analysis of the oxidation of Ag-MgF2 cermet film, vol.52, pp.383-386, 1999.

N. R. Short, S. Zhou, and J. K. Dennis, Electrochemical studies on the corrosion of a range of zinc alloy coated steel in alkaline solutions, Surf. Coat. Technol, vol.79, pp.218-224, 1996.

, Aluminium-Zinc Binary Phase Diagram, ASM Alloy Phase Diagram Database, American Society for Metals (ASM)

S. L. Manchet, D. Verchère, and J. Landoulsi, Effects of organic and inorganic treatment agents on the formation of conversion layer on hot-dip galvanized steel: An X-ray photoelectron spectroscopy study, Thin Solid Films, vol.520, pp.2009-2016, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00748848

, Solubility Product Constants Ksp at 25 °C, aqion, Aqion

, Ocupational Safety and Health Administration, Occupational Safety and Health Standards -Toxic and Hazardous Substances

, Substances restricted under REACH, ECHA, European Chemicals Agency, 2006.

L. Fedrizzi, F. Deflorian, and P. L. Bonora, Corrosion behaviour of fluotitanate pretreated and painted aluminium sheets, Electrochim. Acta, vol.42, pp.969-978, 1997.

J. H. Nordlien, J. C. Walmsley, H. Østerberg, and K. Nisancioglu, Formation of a zirconiumtitanium based conversion layer on AA 6060 aluminium, Surf. Coat. Technol, vol.153, pp.72-78, 2002.

O. Lunder, C. Simensen, Y. Yu, and K. Nisancioglu, Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminium, Surf. Coat. Technol, vol.184, pp.278-290, 2004.

F. Andreatta, A. Turco, I. De-graeve, H. Terryn, J. H. De-wit et al., SKPFM and SEM study of the deposition mechanism of Zr/Ti based pre-treatment on AA6016 aluminium alloy, Surf. Coat. Technol, vol.201, pp.7668-7685, 2007.

V. Saarimaa, E. Kauppinen, A. Markkula, J. Juhanoja, B. Skrifvars et al., Microscale distribution of Ti-based conversion layer on hot dip galvanized steel, Surf. Coat. Technol, vol.206, pp.4173-4179, 2012.

J. Cerezo, I. Vandendael, R. Posner, K. Lill, J. H. De-wit et al., Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces, Surf. Coat. Technol, vol.236, pp.284-289, 2013.

V. Saarimaa, A. Markkula, J. Juhanoja, and B. Skrifvars, Determination of Surface Topography and Composition of Cr-Free Pretreatment Layers on Hot Dip Galvanized Steel, J Coat Sci Technol, vol.1, pp.88-95, 2014.

P. Volovitch, T. N. Vu, C. Allély, A. Aal, and K. Ogle, Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the Chapter 6: Insight into the formation and degradation mechanisms of TiCC on multiphase ZnAlMg substrates using Cu 2+ modified alkaline degreasing baths corrosion resistance of Zn-Al-Mg coatings on steel, Corros. Sci, vol.53, pp.2437-2445, 2011.

T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions, Corros. Sci, vol.50, pp.2216-2231, 2008.

T. Prosek, A. Nazarov, A. L. Gac, and D. Thierry, Coil-coated Zn-Mg and Zn-Al-Mg: Effect of climatic parameters on the corrosion at cut edges, Prog. Org. Coat, vol.83, pp.26-35, 2015.

W. Zhu, W. Li, S. Mu, N. Fu, and Z. Liao, Comparative study on Ti/Zr/V and chromate conversion treated aluminium alloys: Anti-corrosion performance and epoxy coating adhesion properties, Appl. Surf. Sci, pp.157-168, 2017.

R. P. Edavan and R. Kopinski, Corrosion resistance of painted zinc alloy coated steels, Corros. Sci, vol.51, pp.2429-2442, 2009.

T. Lostak, A. Maljusch, B. Klink, S. Krebs, M. Kimpel et al., Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism, Electrochim. Acta, vol.137, pp.65-74, 2014.

T. Lostak, S. Krebs, A. Maljusch, T. Gothe, M. Giza et al., Formation and characterization of Fe 3+ -/Cu 2+ -modified zirconium oxide conversion layers on zinc alloy coated steel sheets, Electrochim. Acta, vol.112, pp.14-23, 2013.

S. Adhikari, K. A. Unocic, Y. Zhai, G. S. Frankel, J. Zimmerman et al., Hexafluorozirconic acid based surface pretreatments: Characterization and performance assessment, Electrochim. Acta, vol.56, pp.1912-1924, 2011.

A. Sarfraz, R. Posner, M. M. Lange, K. Lill, and A. Erbe, Role of Intermetallics and Copper in the Deposition of ZrO2 Conversion Coatings on AA6014, J. Electrochem. Soc, vol.161, pp.509-516, 2014.

J. Cerezo, I. Vandendael, R. Posner, J. H. De-wit, J. M. Mol et al., Terryn, the effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys, Appl. Surf. Sci, vol.366, pp.339-347, 2016.

N. W. Khun and G. S. Frankel, Composition and corrosion protection of hexafluorozirconic acid treatment on steel: Composition and corrosion protection of hexafluorozirconic acid, Mater. Corros, vol.66, pp.1215-1222, 2015.

J. Cerezo, P. Taheri, I. Vandendael, R. Posner, K. Lill et al., Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminium alloy, Coat. Technol, vol.254, pp.277-283, 2014.

, Insight into the formation and degradation mechanisms of TiCC on multiphase ZnAlMg substrates using Cu 2+ modified alkaline degreasing baths, p.136

I. Milosev and G. S. Frankel, Review-Conversion Coatings Based on Zirconium and/or Titanium, J. Electrochem. Soc, vol.165, pp.127-144, 2018.

I. Schoukens, I. Vandendael, J. De, A. A. Strycker, H. Saleh et al., Effect of surface composition and microstructure of aluminised steel on the formation of a titanium-based conversion layer, Surf. Coat. Technol, vol.235, pp.628-636, 2013.

R. Posner, N. Fink, M. Wolpers, and G. Grundmeier, Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel, Surf. Coat. Technol, vol.228, pp.286-295, 2013.

X. Xia, Y. Gu, and S. Xu, Titanium conversion coatings on the aluminium foil AA 8021 used for lithium-ion battery package, Appl. Surf. Sci, vol.419, pp.447-453, 2017.

L. Li, B. W. Whitman, and G. M. Swain, Characterization and performance of a Zr/Ti pretreatment conversion coating on AA2024-T3, J. Electrochem. Soc, vol.162, pp.279-284, 2015.

A. Ringbom, Les complexes en chimie analytique (Paris), 1967.

R. L. Pecsok and R. S. Juvet, The Gluconate Complexes. I. Copper Gluconate Complexes in Strongly Basic Media1, J. Am. Chem. Soc, vol.77, pp.202-206, 1955.

W. A. Norvell and W. L. Lindsay, Reactions of EDTA Complexes of Fe, Zn, Mn, and Cu with Soils 1, vol.33, pp.86-91, 1969.

V. Shkirskiy, P. Volovitch, and V. Vivier, Development of quantitative Local Electrochemical Impedance Mapping: an efficient tool for the evaluation of delamination kinetics, Electrochimica Acta, pp.442-452, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01498668

. Thermofisher, Copper -Interpretation of XPS data

, Insight into the formation and degradation mechanisms of TiCC on multiphase ZnAlMg substrates using Cu 2+ modified alkaline degreasing baths

R. Franke, T. Chassé, P. Streubel, and A. Meisel, Auger parameters and relaxation energies of phosphorus in solid compounds, J. Electron Spectrosc. Relat. Phenom, vol.56, pp.381-388, 1991.

D. L. Felker and P. M. Sherwood, Zinc phosphate (Zn3(PO4)2) by XPS, Surf. Sci. Spectra, vol.9, pp.106-113, 2002.

. Thermofisher, Manganese -Interpretation of XPS data

G. Wang, N. Cao, and Y. Wang, Characteristics and corrosion studies of Zn-Mn PCC on Mg-Li alloy, RSC Adv, vol.4, pp.59772-59778, 2014.

C. D. Wagner, Handbook of X-Ray and ultraviolet Photoelectron Spectroscopy

S. Da-ming, S. Zhao-qi, L. Ai-xia, and X. Zhi-yuan, XPS analysis of the oxidation of Ag-MgF2 cermet film, vol.52, pp.383-386, 1999.

M. Pourbaix, Conclusion and perspectives, Atlas d'équilibres électrochimiques à 25 °C, Gauthier-Villars & Cie, 1963.

D. P. Dutta, A. Singh, and A. K. Tyagi, Ag doped and Ag dispersed nano ZnTiO3: Improved photocatalytic organic pollutant degradation under solar irradiation and antibacterial activity, J. Environ. Chem. Eng, vol.2, pp.2177-2187, 2014.

M. T. Pham, W. Matz, H. Reuther, E. Richter, and G. Steiner, Hydroxyapatite nucleation on Na ion implanted Ti surfaces, J. Mater. Sci. Lett, vol.19, pp.1029-1031, 2000.

J. Halim, An X-Ray Photoelectron Spectroscopy Study of Multilayered Transition Metal Carbides (MXenes), 2016.

P. Swift, Adventitious carbon-the panacea for energy referencing?, Surf. Interface Anal, vol.4, pp.47-51, 1982.

D. L. Felker and P. M. Sherwood, Zinc phosphate (Zn3(PO4)2) by XPS, Surf. Sci. Spectra, vol.9, pp.106-113, 2012.

R. Franke, T. Chassé, P. Streubel, and A. Meisel, Auger parameters and relaxation energies of phosphorus in solid compounds, J. Electron Spectrosc., Relat. Phenom, vol.56, pp.381-388, 1991.

T. Lindblad, B. Rebenstorf, Z. Yan, and S. L. Andersson, Characterization of vanadia supported on amorphous AlPO4 and its properties for oxidative dehydrogenation of propane, Appl. Catal. Gen, vol.112, pp.187-208, 1994.

, Thermo Scientific XPS: What is XPS', 2018.

A. Aoki, X-Ray Photoelectron Spectroscopic Studies on ZnS: MnF2 Phosphors, Jpn. J. Appl. Phys, vol.15, p.305, 1976.

G. Wang, N. Cao, and Y. Wang, Characteristics and corrosion studies of zinc-manganese phosphate coatings on magnesium-lithium alloy, RSC Adv, vol.4, pp.59772-59778, 2014.

S. Ilican, M. Caglar, S. Aksoy, and Y. Caglar, XPS Studies of Electrodeposited Grown F-Doped ZnO Rods and Electrical Properties of p-Si/n-FZN Heterojunctions, J. Nanomater, 2016.

S. Da-ming, S. Zhao-qi, L. Ai-xia, and X. Zhi-yuan, XPS analysis of the oxidation of Ag-MgF2 cermet film, vol.52, pp.383-386, 1999.

D. P. Dutta, A. Singh, and A. K. Tyagi, Ag doped and Ag dispersed nano ZnTiO3: Improved photocatalytic organic pollutant degradation under solar irradiation and antibacterial activity, J. Environ. Chem. Eng, vol.2, pp.2177-2187, 2014.

M. T. Pham, W. Matz, H. Reuther, E. Richter, and G. Steiner, Hydroxyapatite nucleation on Na ion implanted Ti surfaces, J. Mater. Sci. Lett, vol.19, pp.1029-1031, 2000.

J. Halim, An X-Ray Photoelectron Spectroscopy Study of Multilayered Transition Metal Carbides (MXenes), 2016.

P. Swift, Adventitious carbon-the panacea for energy referencing?, Surf. Interface Anal, vol.4, pp.47-51, 1982.

D. L. Felker and P. M. Sherwood, Zinc phosphate (Zn3(PO4)2) by XPS, Surf. Sci. Spectra, vol.9, pp.106-113, 2012.

R. Franke, T. Chassé, P. Streubel, and A. Meisel, Auger parameters and relaxation energies of phosphorus in solid compounds, J. Electron Spectrosc., Relat. Phenom, vol.56, pp.381-388, 1991.

T. Lindblad, B. Rebenstorf, Z. Yan, and S. L. Andersson, Characterization of vanadia supported on amorphous AlPO4 and its properties for oxidative dehydrogenation of propane, Appl. Catal. Gen, vol.112, pp.187-208, 1994.

, Thermo Scientific XPS: What is XPS', 2018.

A. Aoki, X-Ray Photoelectron Spectroscopic Studies on ZnS: MnF2 Phosphors, Jpn. J. Appl. Phys, vol.15, p.305, 1976.

G. Wang, N. Cao, and Y. Wang, Characteristics and corrosion studies of zinc-manganese phosphate coatings on magnesium-lithium alloy, RSC Adv, vol.4, pp.59772-59778, 2014.

S. Ilican, M. Caglar, S. Aksoy, and Y. Caglar, XPS Studies of Electrodeposited Grown F-Doped ZnO Rods and Electrical Properties of p-Si/n-FZN Heterojunctions, J. Nanomater, 2016.

S. Da-ming, S. Zhao-qi, L. Ai-xia, and X. Zhi-yuan, XPS analysis of the oxidation of Ag-MgF2 cermet film, vol.52, pp.383-386, 1999.

. Résumé,

, Ils sont obtenus en utilisant le procédé de galvanisation (Hot Dip en anglais). La bande d'acier est immergée dans un bain de zinc, aluminium et magnésium liquide à des teneurs comprises entre 1 et 11 wt, Historiquement, les revêtements sacrificiels de l'acier utilisés dans le marché du bâtiment sont à base de zinc

, Après refroidissement du revêtement, quatre phases solides peuvent se trouver dans la microstructure, à savoir une phase riche en Zn, une phase riche en Al, l'intermétallique Zn2Mg

. Et-zn11mg2, Tandis que Zn11Mg2 est rarement présent dans la microstructure, les autres phases peuvent former des dendrites de Zn, des phases binaires eutectiques Zn-Al et Zn-Zn2Mg et/ou un ternaire eutectique Zn-Al-Zn2Mg selon la composition, le cas des alliages à faible teneur en Mg

, Schéma de la coupe d'un revêtement ZnAlMg. Le binaire Zn-Zn2Mg est composé de lamelles de Zn (claires) et de lamelles de Zn2Mg (foncées) tandis que le ternaire comprend Zn, Zn2Mg et une fine phase d'Al. Le binaire ZnAl est composé de zones riches en Zn (claires) et zones riches en al (foncées), vol.1

, De nombreux tests de corrosion accélérés ou expositions naturelles (Test VDA

. Znalmg, épaisseur standard est de 10 µm tandis qu'elle est de 20 µm pour l'acier galvanisé

, Compréhension des mécanismes de dégradation des revêtements ZnAlMg peints traités avec le TiCC La formation de cloques sur des revêtements ZnAlMg peints et traités avec le TiCC n'est visible que pour les échantillons présentant une rayure à l'acier simulant un défaut profond accidentel

, Dans le même temps, l'acier galvanisé peint et traité avec le TiCC ne présente pas de cloque en présence d'un défaut à l'acier

, Figure 5: Cartographie SKP d'un revêtement ZnAlMg peint présentant un défaut à l'acier et après exposition en milieu naturel pendant 24 mois

, Dans certains cas, un chemin de corrosion partant de la rayure à l'acier jusqu'aux cloques distantes est visible