A. J. Cohen and N. Davidson, Investigation of Possible Interactions between Palladium(II) and -(IV) and between Palladium(II) and Platinum(IV) in Hydrochloric Acid Solutions and in the Crystalline State 1,2, J. Am. Chem. Soc, vol.73, issue.5, pp.1955-1958, 1951.

R. K. Broszkiewicz, Pulse Radiolysis Studies on Chloro-Complexes of Palladium, Int. J. Radiat. Phys. Chem, vol.6, issue.4, pp.249-258, 1974.

A. V. Pirogov and J. Havel, Determination of Platinum, Palladium, Osmium, Iridium, Rhodium and Gold as Chloro Complexes by Capillary Zone Electrophoresis, J. Chromatogr. A, vol.772, issue.1, pp.93-102, 1997.

P. Pan and S. A. Wood, Gold-Chloride Complexes in Very Acidic Aqueous Solutions and at Temperatures 25-300 °C: A Laser Raman Spectroscopic Study, Geochim. Cosmochim. Acta, vol.55, issue.8, pp.2365-2371, 1991.

R. G. Pearson, Hard and Soft Acids and Bases, HSAB, Part 1: Fundamental Principles, J. Chem. Educ, vol.45, issue.9, p.581, 1968.

C. H. Gammons, Y. Yu, and A. E. Williams-jones, The Disproportionation of Gold(I) Chloride Complexes at 25 to 200°C, Geochim. Cosmochim. Acta, issue.10, pp.1971-1983, 1997.

T. Groenewald, Potential Applications of Thiourea in the Processing of Gold, J. South. Afr. Inst. Min. Metall, vol.77, issue.11, pp.217-223, 1977.

M. Kaya, Recovery of Metals and Nonmetals from Electronic Waste by Physical and Chemical Recycling Processes, Waste Manag, vol.57, pp.64-90, 2016.

B. Ghosh, M. K. Ghosh, P. Parhi, P. S. Mukherjee, and B. K. Mishra, Waste Printed Circuit Boards Recycling: An Extensive Assessment of Current Status, J. Clean. Prod, vol.94, pp.5-19, 2015.

F. Habashi, Textbook of Hydrometallurgy, 2 edition.; Metallurgie Extractive Quebec, 1999.

T. H. Nguyen, L. Wang, and M. S. Lee, Separation and Recovery of Precious Metals from Leach Liquors of Spent Electronic Wastes by Solvent Extraction, Korean J. Met. Mater, vol.2017, issue.4, pp.247-255

D. Fontana, M. Pietrantonio, S. Pucciarmati, G. N. Torelli, C. Bonomi et al., Palladium Recovery from Monolithic Ceramic Capacitors by Leaching, Solvent Extraction and Reduction, J. Mater. Cycles Waste Manag, vol.20, issue.2, pp.1199-1206, 2018.

F. Kubota, R. Kono, W. Yoshida, M. Sharaf, S. D. Kolev et al., Recovery of Gold Ions from Discarded Mobile Phone Leachate by Solvent Extraction and Polymer Inclusion Membrane (PIM) Based Separation Using an Amic Acid Extractant, Sep. Purif. Technol, vol.214, pp.156-161, 2019.

M. Gurung, B. B. Adhikari, H. Kawakita, K. Ohto, K. Inoue et al., Selective Recovery of Precious Metals from Acidic Leach Liquor of Circuit Boards of Spent Mobile Phones Using Chemically Modified Persimmon Tannin Gel, Ind. Eng. Chem. Res, vol.2012, issue.37, pp.11901-11913

M. F?rlak, S. Çubuk, E. K. Yetimo?lu, M. V. Kahraman, . Recovery et al., ) Ions by Au(III)-Imprinted Hydrogel, vol.70, pp.757-768, 2016.

M. Gurung, B. B. Adhikari, S. Alam, H. Kawakita, K. Ohto et al., Persimmon Tannin-Based New Sorption Material for Resource Recycling and Recovery of Precious Metals, Chem. Eng. J, vol.228, pp.405-414, 2013.

M. K. Hyder and B. Ochiai, Pd(II), and Ag(I) from Printed Circuit Boards Using Cellulose Filter Paper Grafted with Polymer Chains Bearing Thiocarbamate Moieties, Selective Recovery of Au(III), vol.2017, pp.1-8

P. P. Sheng and T. H. Etsell, Recovery of Gold from Computer Circuit Board Scrap Using Aqua Regia, Waste Manag. Res, vol.25, issue.4, pp.380-383, 2007.

R. K. Jyothi, J. Y. Lee, J. Kim, and J. Sohn, Liquid-Liquid Extraction of Platinum from Acidic Solutions -A Review. Solvent Extr. Res. Dev, vol.16, pp.13-22, 2009.

M. Sethurajan, E. D. Hullebusch, and . Van,

D. Fontana, A. Akcil, H. Deveci, B. Batinic, J. P. Leal et al., Recent Advances on Hydrometallurgical Recovery of Critical and Precious Elements from End of Life Electronic Wastes -a Review, Crit. Rev. Environ. Sci. Technol, vol.49, issue.3, pp.212-275, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02549695

M. K. Jha, D. Gupta, J. Lee, V. Kumar, and J. Jeong, Solvent Extraction of Platinum Using Amine Based Extractants in Different Solutions: A Review, Hydrometallurgy, vol.142, pp.60-69, 2014.

J. Lee, J. Kumar, J. Kim, H. Park, and H. Yoon, Liquid-Liquid Extraction/Separation of Platinum(IV) and Rhodium(III) from Acidic Chloride Solutions Using Tri-Iso-Octylamine, J. Hazard. Mater, vol.168, issue.1, pp.424-429, 2009.

Y. Yan, Q. Wang, Z. Xiang, and Y. Yang, Ru(III), and Rh(III) from Chloride Medium Using Liquid-Liquid Extraction with Mixed Imidazolium-Based Ionic Liquids, Separation of Pt(IV), vol.53, pp.2064-2073, 2018.

M. Masilela and S. Ndlovu, Extraction of Ag and Au from Chloride Electronic Waste Leach Solutions Using Ionic Liquids, J. Environ. Chem. Eng, vol.7, issue.1, p.102810, 2019.

W. Wei, C. Cho, S. Kim, M. Song, J. K. Bediako et al., Selective Recovery of Au(III), Pt(IV), and Pd(II) from Aqueous Solutions by Liquid-Liquid Extraction Using Ionic Liquid Aliquat

, J. Mol. Liq, vol.216, pp.18-24, 2016.

A. Wo?owicz and Z. Hubicki, Palladium(II) Complexes Adsorption from the Chloride Solutions with Macrocomponent Addition Using Strongly Basic Anion Exchange Resins, Type 1, Hydrometallurgy, vol.98, issue.3, pp.206-212, 2009.

A. N. Nikoloski, K. Ang, and D. Li, Recovery of Platinum, Palladium and Rhodium from Acidic Chloride Leach Solution Using Ion Exchange Resins, Hydrometall. Amst, vol.152, pp.20-32, 2015.

F. L. Bernardis, R. A. Grant, and D. C. Sherrington, A Review of Methods of Separation of the Platinum-Group Metals through Their Chloro-Complexes, React. Funct. Polym, vol.65, issue.3, pp.205-217, 2005.

R. M. Izatt, S. R. Izatt, N. E. Izatt, K. E. Krakowiak, R. L. Bruening et al., Industrial Applications of Molecular Recognition Technology to Separations of Platinum Group Metals and Selective Removal of Metal Impurities from Process Streams, Green Chem, vol.17, issue.4, pp.2236-2245, 2015.

H. Hasegawa, S. Barua, T. Wakabayashi, A. Mashio, T. Maki et al., Selective Recovery of Gold, Palladium, or Platinum from Acidic Waste Solution, Microchem. J, vol.139, pp.174-180, 2018.

F. Yoshiaki, S. R. Izatt, and R. L. Bruening, Use of AnaLig® Molecular Recognition Technology (MRT) Products for Analysis of Gold and Platinum Group Metals, 2008.

A. N. Nikoloski and K. Ang, Review of the Application of Ion Exchange Resins for the Recovery of Platinum-Group Metals From Hydrochloric Acid Solutions, Miner. Process. Extr. Metall. Rev, vol.35, issue.6, pp.369-389, 2014.

H. Li, J. Eksteen, and E. Oraby, Hydrometallurgical Recovery of Metals from Waste Printed Circuit Boards (WPCBs): Current Status and Perspectives -A Review, Resour. Conserv. Recycl, vol.139, pp.122-139, 2018.

M. F?rlak, E. K. Yetimo?lu, and M. V. Kahraman, Adsorption of Au(III) Ions from Aqueous Solutions by Thiol-Ene Photoclick Hydrogels and Its Application to Electronic Waste and Geothermal Water

, J. Water Process Eng, vol.3, pp.105-116, 2014.

S. W. Won, P. Kotte, W. Wei, A. Lim, and Y. Yun, Biosorbents for Recovery of Precious Metals, Bioresour. Technol, vol.160, pp.203-212, 2014.

R. Kuhn and S. Hoffstetter-kuhn, Capillary Electrophoresis: Principles and Practice

V. Dolnik, Recent Developments in Capillary Zone Electrophoresis of Proteins, Electrophoresis, vol.20, pp.3106-3115, 1999.

S. Fanali, M. Cristalli, A. Nardi, L. Ossicini, and S. Shukla, Capillary Zone Electrophoresis in Pharmaceutical Analysis, Farmaco, vol.45, issue.6, pp.693-702, 1990.

H. Whatley, Basic Principles and Modes of Capillary Electrophoresis, Clinical and Forensic Applications of Capillary Electrophoresis

J. R. Petersen and A. A. Mohammad, Pathology and Laboratory Medicine, pp.21-58, 2001.

C. A. Groom, S. Beaudet, A. Halasz, L. Paquet, and J. Hawari, Application of Sodium Dodecyl Sulfate Micellar Electrokinetic Chromatography (SDS MEKC) for the Rapid Measurement of Aqueous Phase 2,4,6-Trinitrotoluene Metabolites in Anaerobic Sludge: A Comparison with LC/MS, Environ. Sci. Technol, vol.34, issue.11, pp.2330-2336, 2000.

M. Taverna, I. L. Potier, P. Morin, and . Électrophorèse-capillaire, Feb, vol.13, 2019.

S. N. Gamat, L. Fotouhi, and Z. Talebpour, The Application of Electrochemical Detection in Capillary Electrophoresis, J. Iran. Chem. Soc, vol.2017, issue.3, pp.717-725

G. Jong and . De, Detection in Capillary Electrophoresis -An Introduction, Capillary Electrophoresis-Mass Spectrometry

, , 2016.

A. Stolz, K. Jooß, O. Höcker, J. Römer, J. Schlecht et al., Advances in Capillary Electrophoresis-Mass Spectrometry: Instrumentation, Methodology and Applications, vol.2019, pp.79-112

A. R. Timerbaev, A. Küng, and B. K. Keppler, Capillary Electrophoresis of Platinum-Group Elements, J. Chromatogr. A, vol.945, issue.1, pp.1489-1492, 2002.

L. Sommer and R. Vla?ánková, A Survey of the Potential of the High Performance Liquid Chromatography and Capillary Zone Electrophoresis for the Determination of Platinum and Platinum Group Metals, Chromatographia, vol.52, pp.692-702, 2000.

B. Baraj, A. Sastre, A. Merkoçi, and M. Martínez, Determination of Chloride Complex of Au(III) by Capillary Zone Electrophoresis with Direct UV Detection, J. Chromatogr. A, vol.718, issue.1, pp.655-664, 1995.

H. Zhang, L. Jia, and Z. Hu, Determination of Palladium(II) as Chloro Complex by Capillary Zone Electrophoresis, J. Chromatogr. A, vol.704, issue.1, pp.121-124, 1995.

M. J. Thornton and J. S. Fritz, Separation of Inorganic Anions in Acidic Solution by Capillary Electrophoresis, J. Chromatogr. A, vol.770, issue.1, pp.170-172, 1997.

B. Baraj, A. Sastre, M. Martínez, and K. Spahiu, Simultaneous Determination of Chloride Complexes of Pt(IV) and Pd(II) by Capillary Zone Electrophoresis with Direct UV Absorbance Detection, Anal. Chim. Acta, vol.319, issue.1, pp.472-478, 1996.

J. Boily, T. M. Seward, and . Palladium, II) Chloride Complexation: Spectrophotometric Investigation in Aqueous Solutions from 5 to 125°C and Theoretical Insight into Pd-Cl and Pd-OH2 Interactions

, Geochim. Cosmochim. Acta, vol.69, issue.15, pp.3773-3789, 2005.

W. Buchberger, O. P. Semenova, and A. R. Timerbaev, Metal Ion Capillary Zone Electrophoresis with Direct UV Detection: Separation of Metal Cyanide Complexes, J. High Resolut. Chromatogr, vol.16, issue.3, pp.153-156, 1993.

M. Aguilar, A. Farran, and M. Martínez, Determination of Gold(I) and Silver(I) Cyanide in Ores by Capillary Zone Electrophoresis, J. Chromatogr. A, vol.635, issue.1, pp.83122-83131, 1993.

W. Buchberger and P. R. Haddad, Separation of Metallo-Cyanide Complexes by Capillary Zone Electrophoresis, J. Chromatogr. A, vol.687, issue.2, pp.826-830, 1994.

H. Lee, S. Lee, K. Chung, and K. Lee, Determination of Pd(II) and Pt(II) Metal Cyano Complexes Using Capillary Electrophoresis, Bull. Korean Chem. Soc, vol.15, issue.11, pp.945-949, 1994.

P. Kuban, W. Buchberger, and P. R. Haddad, Determination of Metallo-Cyanides by Capillary Electrophoresis after Concentration on Supported Liquid Membranes, J. Chromatogr. A, vol.770, issue.1, pp.30-37, 1997.

M. Aguilar, A. Farran, and V. Marti´, Capillary Electrophoretic Determination of Cyanide Leaching Solutions from Automobile Catalytic Converters, J. Chromatogr. A, vol.778, issue.1, pp.397-402, 1997.

J. Hamá?ek and J. Havel, Determination of Platinum(II,IV) and Palladium(II) as Thiocyanate Complexes by Capillary Zone Electrophoresis, J. Chromatogr. A, vol.834, issue.1, pp.848-854, 1999.

M. Mojski, I. Gluch, and N. Obarski, Capillary Zone Electrophoresis Determination of Noble Metals as a Bromide Complexes, Chem Anal Wars, vol.42, pp.825-835, 1997.

A. N. Khramov and J. Havel, Separation of Platinum Metals as Thiourea Complexes by HPLC and CZE. Scr. Fac Sci Nat Univ Mas Brun, p.27, 1998.

M. Balcerzak, Methods for the Determination of Platinum Group Elements in Environmental and Biological Materials: A Review, Crit. Rev. Anal. Chem, issue.3, pp.214-235, 2011.

C. R. Rao and G. S. Reddi, Platinum Group Metals (PGM

. Occurrence, Use and Recent Trends in Their Determination, TrAC Trends Anal. Chem, vol.19, issue.9, pp.565-586, 2000.

L. Strnad, O. ?ebek, M. Fayadová, and J. Vrba, Determination of Gold in e-Waste Dust Samples and Geological Matrices by ICP-MS after Extraction by an HClO4-HBr-HI-Aqua Regia Mixture, Geostand. Geoanalytical Res, vol.2016, issue.2, pp.257-266

P. Petrova, S. Velichkov, N. Velitchkova, I. Havezov, N. Daskalova et al., Possibilities and Limitations of Inductively Coupled Plasma Atomic Emission Spectrometry in the Determination of Platinum, Palladium and Rhodium in Samples with Different Matrix Composition, Spectrochim. Acta Part B At. Spectrosc, vol.65, issue.2, pp.130-136, 2010.

P. S. Eleni, N. S. Thomaidis, and E. A. Piperaki, Investigation of the Mechanism of the Electrothermal Atomization of Platinum in a Graphite Furnace from Aqueous Solutions and Serum Samples, J. Anal. At. Spectrom, vol.20, issue.2, pp.111-117, 2005.

F. Sanchez-rojas, C. Bosch-ojeda, and J. Pavón, Determination of Rhodium and Platinum by Electrothermal Atomic Absorption Spectrometry after Preconcentration with a Chelating Resin, J. Braz. Chem. Soc. -JBCS, vol.18, 2007.

O. B. Mokhodoeva, A. V. Nikulin, G. V. Myasoedova, and I. V. Kubrakova, A New Combined ETAAS Method for the Determination of Platinum, Palladium, and Gold Traces in Natural Samples, J. Anal. Chem, vol.2012, issue.6, pp.531-536

J. Medved, M. Bujdos, P. Matús, and J. Kubová, Determination of Trace Amounts of Gold in Acid-Attacked Environmental Samples by Atomic Absorption Spectrometry with Electrothermal Atomization after Preconcentration, Anal. Bioanal. Chem, vol.379, issue.1, pp.60-65, 2004.

T. Ernst, R. Popp, M. Wolf, and R. Van-eldik, Analysis of Eco-Relevant Elements and Noble Metals in Printed Wiring Boards Using AAS, ICP-AES and EDXRF, Anal. Bioanal. Chem, vol.375, issue.6, pp.805-814, 2003.

C. Locatelli, Voltammetric Analysis of Trace Levels of Platinum Group Metals -Principles and Applications, Electroanalysis, vol.19, issue.21, pp.2167-2175, 2007.

N. A. Kolpakova, E. A. Smyshlyaeva, S. A. Tuzikov, and A. V. Doroshenko, Determination of Platinum in Biological Materials by Stripping Voltammetry, J. Anal. Chem, vol.58, issue.3, pp.268-271, 2003.

H. Becker and C. Gärtner, Polymer Microfabrication Technologies for Microfluidic Systems, Anal. Bioanal. Chem, vol.390, issue.1, pp.89-111, 2008.

R. Bongiovanni, A. Medici, A. Zompatori, S. Garavaglia, and C. Tonelli, Perfluoropolyether Polymers by UV Curing: Design, Synthesis and Characterization, Polym. Int, vol.2012, issue.1, pp.65-73

K. W. Bong, J. Lee, and P. S. Doyle, Stop Flow Lithography in Perfluoropolyether (PFPE) Microfluidic Channels, Lab. Chip, vol.14, issue.24, pp.4680-4687, 2014.

R. Jellali, P. Paullier, M. Fleury, and E. Leclerc, Liver and Kidney Cells Cultures in a, New Perfluoropolyether Biochip. Sens. Actuators B Chem, vol.229, pp.396-407, 2016.

C. Tsao and D. L. Devoe, Bonding of Thermoplastic Polymer Microfluidics, Microfluid. Nanofluidics, vol.6, issue.1, pp.1-16, 2009.

Y. Ladner, F. Orlyé, C. Perréard, B. Da-silva, C. Guyon et al., Surface Functionalization of COC Microfluidic Materials by Plasma and Click Chemistry Processes. Plasma Process. Polym, vol.10, pp.959-969, 2013.

F. Brisset, J. Vieillard, B. Berton, S. Morin-grognet, C. Duclairoir-poc et al., Surface Functionalization of Cyclic Olefin Copolymer with Aryldiazonium Salts: A Covalent Grafting Method, Appl. Surf. Sci, vol.329, pp.337-346, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140348

J. Steigert, S. Haeberle, T. Brenner, C. Müller, C. P. Steinert et al., Rapid Prototyping of Microfluidic Chips in COC, J. Micromechanics Microengineering, vol.17, issue.2, p.333, 2007.

J. Mizuno, S. Farrens, H. Ishida, V. Dragoi, H. Shinohara et al., Polymer Direct Bonding Using Low Temperature Plasma Activation Bonding, 2005 International Conference on MEMS, pp.346-349, 2005.

E. W. Young, E. Berthier, D. J. Guckenberger, E. Sackmann, C. Lamers et al., Rapid Prototyping of Arrayed Microfluidic Systems in Polystyrene for Cell-Based Assays, Anal. Chem, vol.83, issue.4, pp.1408-1417, 2011.

. Loi-n°, Visant à La Suspension de La Fabrication, de l'importation, de l'exportation et de La Mise Sur Le Marché de Tout Conditionnement à Vocation Alimentaire Contenant Du Bisphénol A, 1442.

Y. Wang, H. Chen, Q. He, and S. A. Soper, A High-Performance Polycarbonate Electrophoresis Microchip with Integrated Three-Electrode System for End-Channel Amperometric Detection, ELECTROPHORESIS, vol.29, issue.9, pp.1881-1888, 2008.

C. Kimball, J. Buch, C. Lee, and D. L. Devoe, Temperature Gradient Gel Electrophoresis in an Integrated Polycarbonate Microsystem, TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, vol.1, pp.24-27, 2003.

W. Zhang, S. Lin, C. Wang, J. Hu, C. Li et al., PMMA/PDMS Valves and Pumps for Disposable Microfluidics, Lab. Chip, vol.9, issue.21, pp.3088-3094, 2009.

K. F. Lei, W. J. Li, and Y. Yam, Effects of Contact-Stress on Hot-Embossed PMMA Microchannel Wall Profile. Microsyst. Technol, vol.11, issue.4-5, pp.353-357, 2005.

K. Liu, J. Xiang, Z. Ai, S. Zhang, Y. Fang et al., PMMA Microfluidic Chip Fabrication Using Laser Ablation and Low Temperature Bonding with OCA Film and LOCA. Microsyst. Technol, vol.23, pp.1937-1942, 2017.

X. Wang, L. Zhang, and G. Chen, Hot Embossing and Thermal Bonding of Poly(Methyl Methacrylate) Microfluidic Chips Using Positive Temperature Coefficient Ceramic Heater, Anal. Bioanal. Chem, issue.8, pp.2657-2665, 2011.

Y. Ladner, F. D'orlyé, C. Perréard, B. Da-silva, C. Guyon et al., Varenne, A. Surface Functionalization by Plasma Treatment and Click Chemistry of a New Family of

, Fluorinated Polymeric Materials for Microfluidic Chips. Plasma Process. Polym, vol.11, pp.518-523, 2014.

C. Perréard, Y. Ladner, F. Orlyé, S. Descroix, V. Taniga et al., Electrochemically Assisted Micro Localized Grafting of Aptamers in a Microchannel Engraved in Fluorinated Thermoplastic Polymer Dyneon THV, RSC Adv, vol.5, issue.15, pp.11128-11131, 2015.

N. Aboud, D. Ferraro, M. Taverna, S. Descroix, C. Smadja et al., Dyneon THV, a Fluorinated Thermoplastic as a Novel Material for Microchip Capillary Electrophoresis, Analyst, vol.2016, issue.20, pp.5776-5783

S. Begolo, G. Colas, J. Viovy, and L. Malaquin, New Family of Fluorinated Polymer Chips for Droplet and Organic Solvent Microfluidics, Lab. Chip, vol.11, issue.3, pp.508-512, 2011.

M. Jang, S. Park, and N. Y. Lee, Polycarbonate Bonding Assisted by Surface Chemical Modification without Plasma Treatment and Its Application for the Construction of Plastic-Based Cell Arrays, Sens. Actuators Phys, vol.206, pp.57-66, 2014.

L. Amato, S. S. Keller, A. Heiskanen, M. Dimaki, J. Emnéus et al., Fabrication of High-Aspect Ratio SU-8 Micropillar Arrays, Microelectron Eng, vol.2012, issue.C, pp.483-487

S. L. Tao, K. C. Popat, J. J. Norman, and T. A. Desai, Surface Modification of SU-8 for Enhanced Biofunctionality and Nonfouling Properties, Langmuir, vol.24, issue.6, pp.2631-2636, 2008.

G. Blagoi, S. Keller, A. Johansson, A. Boisen, and M. Dufva, Functionalization of SU-8 Photoresist Surfaces with IgG Proteins, Appl. Surf. Sci, vol.255, issue.5, pp.2896-2902, 2008.

R. Walczak, P. Sniadek, and J. A. Dziuban, SU-8 Photoresist as Material of Optical Passive Components Integrated with Analytical Microsystems for Real-Time Polymerase Chain Reaction, Opt. Appl, vol.151, issue.4, pp.873-884, 2011.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, Microfluidic Systems with On-Line UV Detection Fabricated in Photodefinable Epoxy, J. Micromechanics Microengineering, vol.11, issue.3, 2001.

P. Wägli, A. Homsy, and N. F. De-rooij, Norland Optical Adhesive (NOA81) Microchannels with Adjustable Wetting Behavior and High Chemical Resistance against a Range of Mid-Infrared-Transparent Organic Solvents, Sens. Actuators B Chem, vol.156, issue.2, pp.994-1001, 2011.

F. Heuck, P. Van-der-ploeg, and U. Staufer, Deposition and Structuring of Ag/AgCl Electrodes inside a Closed Polymeric Microfluidic System for Electroosmotic Pumping, Microelectron. Eng, vol.88, issue.8, pp.1887-1890, 2011.

S. H. Kim, Y. Yang, M. Kim, S. Nam, K. Lee et al., Simple Route to Hydrophilic Microfluidic Chip Fabrication Using an Ultraviolet (UV)-Cured Polymer, Adv. Funct. Mater, vol.17, issue.17, pp.3493-3498, 2007.

D. Bartolo, G. Degré, P. Nghe, V. M. Studer, and . Stickers, Lab. Chip, vol.8, issue.2, pp.274-279, 2008.

L. Hung, R. Lin, and A. Phillip-lee, Rapid Microfabrication of Solvent -Resistant Biocompatible Microfluidic Devices, Lab. Chip, vol.8, issue.6, pp.983-987, 2008.

H. ;. Gu, M. H. Duits, and F. Mugele, A Hybrid Microfluidic Chip with Electrowetting Functionality Using Ultraviolet (UV)-Curable Polymer, Lab. Chip, issue.12, pp.1550-1556, 2010.

E. P. Dupont, R. Luisier, and M. A. Gijs, NOA 63 as a UV-Curable Material for Fabrication of Microfluidic Channels with Native Hydrophilicity, Microelectron. Eng, vol.87, issue.5, pp.1253-1255, 2010.

R. Arayanarakool and S. Le-gac, Van den Berg, A. Low-Temperature, Simple and Fast Integration Technique of Microfluidic Chips by Using a UV-Curable Adhesive, Lab. Chip, vol.10, pp.2115-2121, 2010.

M. Natali, S. Begolo, T. Carofiglio, and G. Mistura, Rapid Prototyping of Multilayer Thiolene Microfluidic Chips by Photopolymerization and Transfer Lamination, Lab. Chip, vol.8, issue.3, pp.492-494, 2008.

J. T. Cabral, S. D. Hudson, C. Harrison, and J. F. Douglas, Frontal Photopolymerization for Microfluidic Applications, Langmuir, vol.20, issue.23, pp.10020-10029, 2004.

J. H. Sim, H. J. Moon, Y. H. Roh, H. W. Jung, and K. W. Bong, Fabrication of NOA Microfluidic Devices Based on Sequential Replica Molding, Korean J. Chem. Eng, vol.2017, issue.5, pp.1495-1499

P. Wägli, A. Homsy, and N. F. De-rooij, Norland Optical Adhesive (NOA81) Microchannels with Adjustable Surface Properties and High Chemical Resistance against IR-Transparent Organic Solvents, Procedia Eng, vol.5, pp.460-463, 2010.

D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, Recent Developments in Paper-Based Microfluidic Devices, Anal. Chem, vol.87, issue.1, pp.19-41, 2015.

J. P. Grinias and R. T. Kennedy, Advances in and Prospects of Microchip Liquid Chromatography, TrAC Trends Anal. Chem, vol.81, pp.110-117, 2016.

J. P. Kutter, Liquid Phase Chromatography on Microchips, J. Chromatogr. A, vol.1221, pp.72-82, 2012.

S. C. Jacobson, R. Hergenroeder, L. B. Koutny, J. Ramsey, and . Michael, Open Channel Electrochromatography on a Microchip, Anal. Chem, issue.14, pp.2369-2373, 1994.

S. Constantin, R. Freitag, D. Solignac, A. Sayah, and M. A. Gijs, Utilization of the Sol-Gel Technique for the Development of Novel Stationary Phases for Capillary Electrochromatography on a Chip, Sens. Actuators B Chem, vol.78, issue.1, pp.824-827, 2001.

D. Xiao, T. V. Le, and M. J. Wirth, Surface Modification of the Channels of Poly(Dimethylsiloxane) Microfluidic Chips with Polyacrylamide for Fast Electrophoretic Separations of Proteins, Anal. Chem, issue.7, pp.2055-2061, 2004.

A. Gaspar, A. Nagy, and I. Lazar, Integration of Ground Aerogel Particles as Chromatographic Stationary Phase into Microchip, J. Chromatogr. A, issue.7, pp.1011-1015, 2011.

S. Thurmann, L. Mauritz, C. Heck, and D. Belder, High-Performance Liquid Chromatography on Glass Chips Using Precisely Defined Porous Polymer Monoliths as Particle Retaining Elements, J. Chromatogr. A, vol.1370, pp.33-39, 2014.

S. Ehlert, L. Trojer, M. Vollmer, T. Van-de-goor, and U. Tallarek, Performance of HPLC/MS Microchips in Isocratic and Gradient Elution Modes, J. Mass Spectrom, vol.45, issue.3, pp.313-320, 2010.

D. J. Throckmorton, T. J. Shepodd, and A. K. Singh, Electrochromatography in Microchips: Reversed-Phase Separation of Peptides and Amino Acids Using Photopatterned Rigid Polymer Monoliths, Anal. Chem, vol.74, issue.4, pp.784-789, 2002.

A. S. Chan, M. K. Danquah, D. Agyei, P. G. Hartley, and Y. Zhu, A Parametric Study of a Monolithic Microfluidic System for On-Chip Biomolecular Separation, Sep. Sci. Technol, vol.49, issue.6, pp.854-860, 2014.

R. Yang, J. V. Pagaduan, M. Yu, and A. T. Woolley, On Chip Preconcentration and Fluorescence Labeling of Model Proteins by Use of Monolithic Columns: Device Fabrication, Optimization, and Automation, Anal. Bioanal. Chem, vol.407, issue.3, pp.737-747, 2015.

B. He and F. Regnier, Microfabricated Liquid Chromatography Columns Based on Collocated Monolith Support Structures, J. Pharm. Biomed. Anal, vol.17, issue.6, pp.60-60, 1998.

K. Faure, Liquid Chromatography on Chip, ELECTROPHORESIS, vol.2010, issue.15, pp.2499-2511
URL : https://hal.archives-ouvertes.fr/hal-00599462

B. E. Slentz, N. A. Penner, and F. E. Regnier, Capillary Electrochromatography of Peptides on Microfabricated Poly(Dimethylsiloxane) Chips Modified by Cerium(IV)-Catalyzed Polymerization, J. Chromatogr. A, vol.948, issue.1, pp.225-233, 2002.

J. M. Karlinsey, Sample Introduction Techniques for Microchip Electrophoresis: A Review, Anal. Chim. Acta, vol.725, pp.1-13, 2012.

L. Fu and C. Tsai, Electrokinetic Sample Injection, Encyclopedia of Microfluidics and Nanofluidics

D. Li and . Ed, , pp.1-10, 2014.

H. Cong, X. Xu, B. Yu, H. Yuan, Q. Peng et al., Recent Progress in Preparation and Application of Microfluidic Chip Electrophoresis, J. Micromechanics Microengineering, vol.25, issue.5, p.53001, 2015.

J. Wu and M. Gu, Microfluidic Sensing: State of the Art Fabrication and Detection Techniques, J. Biomed. Opt, vol.16, issue.8, p.80901, 2011.

, Microfluidic Detection Systems, vol.1, pp.967-975, 2009.

H. Gai, Y. Li, and E. S. Yeung, Optical Detection Systems on Microfluidic Chips, Microfluidics

. Springer, , pp.171-201, 2011.

M. E. Johnson and J. P. Landers, Fundamentals and Practice for Ultrasensitive Laser-Induced Fluorescence Detection in Microanalytical Systems, ELECTROPHORESIS, pp.3513-3527, 2004.

E. Ban and E. J. Song, Recent Developments and Applications of Capillary Electrophoresis with Laser-Induced Fluorescence Detection in Biological Samples, J. Chromatogr. B, vol.2013, pp.180-186

J. A. Ocaña-gonzález, M. Ramos-payán, R. Fernández-torres, M. Villar-navarro, and M. Á. Bello-lópez, Application of Chemiluminescence in the Analysis of Wastewaters -A Review, Talanta, vol.122, pp.214-222, 2014.

I. Ali, O. M. Alharbi, and M. M. Sanagi, Nano-Capillary Electrophoresis for Environmental Analysis, Environ. Chem. Lett, vol.14, issue.1, pp.79-98, 2016.

Y. Liu, X. Huang, and J. Ren, Recent Advances in Chemiluminescence Detection Coupled with Capillary Electrophoresis and Microchip Capillary Electrophoresis, ELECTROPHORESIS, vol.2016, issue.1, pp.2-18

W. Alahmad, K. Uraisin, D. Nacapricha, and T. Kaneta, A Miniaturized Chemiluminescence Detection System for a Microfluidic Paper-Based Analytical Device and Its Application to the Determination of Chromium(III), Anal. Methods, vol.8, issue.27, pp.5414-5420, 2016.

A. Gencoglu and A. R. Minerick, Electrochemical Detection Techniques in Micro-and Nanofluidic Devices, Microfluid. Nanofluidics, vol.17, issue.5, pp.781-807, 2014.

W. R. Vandaveer, S. A. Pasas-farmer, D. J. Fischer, C. N. Frankenfeld, and S. M. Lunte, Recent Developments in Electrochemical Detection for Microchip Capillary Electrophoresis, ELECTROPHORESIS, vol.25, pp.3528-3549, 2004.

R. S. Martin, K. L. Ratzlaff, B. H. Huynh, and S. M. Lunte, In-Channel Electrochemical Detection for Microchip Capillary Electrophoresis Using an Electrically Isolated Potentiostat, Anal. Chem, vol.74, issue.5, pp.1136-1143, 2002.

J. Tanyanyiwa, S. Leuthardt, and P. C. Hauser, Conductimetric and Potentiometric Detection in Conventional and Microchip Capillary Electrophoresis, ELECTROPHORESIS, vol.23, issue.21, pp.3659-3666, 2002.

P. Kubá? and P. C. Hauser, Fundamentals of Electrochemical Detection Techniques for CE and MCE, ELECTROPHORESIS, vol.30, issue.19, pp.3305-3314, 2009.

F. Matysik, Advances in Amperometric and Conductometric Detection in Capillary and Chip-Based Electrophoresis, Microchim. Acta, vol.160, issue.1-2, pp.1-14, 2008.

A. J. Zemann, E. Schnell, D. Volgger, and G. K. Bonn, Contactless Conductivity Detection for Capillary Electrophoresis, Anal. Chem, vol.70, issue.3, pp.563-567, 1998.

J. A. Fracassi-da-silva and C. L. Do-lago, An Oscillometric Detector for Capillary Electrophoresis, Anal. Chem, issue.20, pp.4339-4343, 1998.

W. K. Coltro, J. A. Da-silva, and E. Carrilho, Fabrication and Integration of Planar Electrodes for Contactless Conductivity Detection on Polyester-Toner Electrophoresis Microchips, Electrophoresis, vol.29, issue.11, pp.2260-2265, 2008.

P. Kubá? and P. C. Hauser, Contactless Conductivity Detection for Analytical Techniques: Developments from, Electrophoresis, 2016.

X. Feng, B. Liu, J. Li, and X. Liu, Advances in Coupling Microfluidic Chips to Mass Spectrometry, Mass Spectrom. Rev, vol.34, issue.5, pp.535-557, 2015.

L. Licklider, X. Wang, A. Desai, Y. Tai, and T. D. Lee, A Micromachined Chip-Based Electrospray Source for Mass Spectrometry, Anal. Chem, vol.72, issue.2, pp.367-375, 2000.

X. He, Q. Chen, Y. Zhang, and J. Lin, Recent Advances in Microchip-Mass Spectrometry for Biological Analysis, pp.84-97, 2014.

X. Chen, C. Liu, Z. Xu, Y. Pan, J. Liu et al., An Effective PDMS Microfluidic Chip for Chemiluminescence Detection of Cobalt (II) in Water, vol.19, pp.99-103, 2013.

C. Kokkinos and A. Economou, Microfabricated Chip Integrating a Bismuth Microelectrode Array for the Determination of Trace Cobalt(II) by Adsorptive Cathodic Stripping Voltammetry, Sens. Actuators B Chem, vol.229, pp.362-369, 2016.

H. Han, Z. Zheng, D. Pan, C. Wang, X. Hu et al., Portable Microfluidic Chip Electrophoresis Device with Integrated Pt Electrodes for the Analysis of AgNPs, Micro Amp Nano Lett, vol.13, issue.3, pp.302-305, 2018.

J. Kudr, O. Zitka, M. Klimanek, R. Vrba, and V. Adam, Microfluidic Electrochemical Devices for Pollution Analysis-A Review, Sens. Actuators B Chem, vol.246, pp.578-590, 2017.

M. Yang, Z. Huang, Y. Xie, and H. You, Development of Microchip Electrophoresis and Its Applications in Ion Detection, Chin. J. Anal. Chem, vol.46, issue.5, pp.61085-61085, 2018.

X. Lu, Sensing Techniques for Food Safety and Quality Control: Sensing Techniques for Food Safety and Quality Control, 2017.

C. Yin, A. N. Nikoloski, and M. Wang, Microfluidic Solvent Extraction of Platinum and Palladium from a Chloride Leach Solution Using Alamine 336, vol.45, pp.18-21, 2013.

F. H. Kriel, G. Holzner, R. A. Grant, S. Woollam, J. Ralston et al., Microfluidic Solvent Extraction, Stripping, and Phase Disengagement for High-Value Platinum Chloride Solutions, Chem. Eng. Sci, vol.138, pp.827-833, 2015.

F. H. Kriel, S. Woollam, R. J. Gordon, R. A. Grant, and C. Priest, Numbering-up Y-Y Microfluidic Chips for Higher-Throughput Solvent Extraction of Platinum(IV) Chloride, Microfluid. Nanofluidics, vol.20, issue.10, p.138, 2016.

T. Nogami, M. Hashimoto, and K. Tsukagoshi, Metal Ion Analysis Using Microchip CE with Chemiluminescence Detection Based on 1,10-Phenanthroline-Hydrogen Peroxide Reaction, J. Sep. Sci, vol.32, issue.3, pp.408-412, 2009.

A. Apilux, W. Dungchai, W. Siangproh, N. Praphairaksit, C. S. Henry et al., Lab-on-Paper with Dual Electrochemical/Colorimetric Detection for Simultaneous Determination of Gold and Iron, Anal. Chem, issue.5, pp.1727-1732, 2010.

. Materials and . .. Methods,

. .. Results-&-discussion, 150 3.1. Speciation of palladium in aqueous HCl solution: influence of thiourea

. .. Conclusion,

. .. Acknowledgements,

. .. References,

. .. Iv--conclusion,

. .. Bibliography,

P. O. Union, Report on critical raw materials and the circular economy, 2018.

, Feb, vol.15, 2018.

G. M. Mudd, S. M. Jowitt, and T. T. Werner, Global Platinum Group Element Resources, Reserves and Mining -A Critical Assessment, Sci. Total Environ, pp.614-625, 2018.

D. Bourse-en, Cours actions et dérivés -Boursorama, 2018.

J. Cui and L. Zhang, Metallurgical Recovery of Metals from Electronic Waste: A Review, J. Hazard. Mater, vol.158, issue.2, pp.228-256, 2008.

S. R. King, J. Massicot, and A. M. Mcdonagh, A Straightforward Route to Tetrachloroauric Acid from Gold Metal and Molecular Chlorine for Nanoparticle Synthesis, Metals, vol.2015, issue.3, pp.1454-1461

P. M. Petter, H. M. Veit, and A. M. Bernardes, Evaluation of Gold and Silver Leaching from Printed Circuit Board of Cellphones, Waste Manag, vol.34, issue.2, pp.475-482, 2014.

M. Gurung, B. B. Adhikari, H. Kawakita, K. Ohto, K. Inoue et al., Recovery of Gold and Silver from Spent Mobile Phones by Means of Acidothiourea Leaching Followed by Adsorption Using Biosorbent Prepared from Persimmon Tannin, Hydrometallurgy, vol.133, pp.84-93, 2013.

L. Jing-ying, X. Xiu-li, and L. Wen-quan, Thiourea Leaching Gold and Silver from the Printed Circuit Boards of Waste Mobile Phones, Waste Manag, vol.2012, issue.6, pp.1209-1212

I. Birloaga, V. Coman, B. Kopacek, and F. Vegliò, An Advanced Study on the Hydrometallurgical Processing of Waste Computer Printed Circuit Boards to Extract Their Valuable Content of Metals, Waste Manag, vol.34, issue.12, pp.2581-2586, 2014.

C. Lee, L. Tang, and S. R. Popuri, A Study on the Recycling of Scrap Integrated Circuits by Leaching, Waste Manag. Res, vol.29, issue.7, pp.677-685, 2011.

I. Birloaga and F. Vegliò, Study of Multi-Step Hydrometallurgical Methods to Extract the Valuable Content of Gold, Silver and Copper from Waste Printed Circuit Boards, J. Environ. Chem. Eng, vol.2016, issue.1, pp.20-29

V. H. Ha, J. Lee, J. Jeong, H. T. Hai, and M. K. Jha, Thiosulfate Leaching of Gold from Waste Mobile Phones, J. Hazard. Mater, vol.178, issue.1-3, pp.1115-1119, 2010.

C. J. Oh, S. O. Lee, H. S. Yang, T. J. Ha, and M. J. Kim, Selective Leaching of Valuable Metals from Waste Printed Circuit Boards, J. Air Waste Manag. Assoc, vol.53, issue.7, pp.897-902, 2003.

E. Kim, M. Kim, J. Lee, and B. D. Pandey, Selective Recovery of Gold from Waste Mobile Phone PCBs by Hydrometallurgical Process, J. Hazard. Mater, vol.198, pp.206-215, 2011.

U. Jadhav and H. Hocheng, Hydrometallurgical Recovery of Metals from Large Printed Circuit Board Pieces. Sci. Rep, 2015.

J. Ficeriová, P. Balá?, E. Gock, . Leaching, and . Gold, Silver and Accompanying Metals from Circuit Boards (PCBs) Waste. Acta Montan. Slovaca, p.16, 2011.

Z. Zhang and F. Zhang, Selective Recovery of Palladium from Waste Printed Circuit Boards by a Novel Non-Acid Process, J. Hazard. Mater, vol.279, pp.46-51, 2014.

Z. Hubicki and A. Wo?owicz, A Comparative Study of Chelating and Cationic Ion Exchange Resins for the Removal of Palladium(II) Complexes from Acidic Chloride Media, J. Hazard. Mater, vol.164, issue.2, pp.1414-1419, 2009.

A. Behnamfard, M. M. Salarirad, and F. Veglio, Process Development for Recovery of Copper and Precious Metals from Waste Printed Circuit Boards with Emphasize on Palladium and Gold Leaching and Precipitation, Waste Manag, vol.33, issue.11, pp.2354-2363, 2013.

P. Quinet, J. Proost, and A. V. Lierde, Recovery of Precious Metals from Electronic Scrap by Hydrometallurgical Processing Routes, Miner. Metall. Process, vol.22, p.17, 2005.

T. Lin and H. Lien, Effective and Selective Recovery of Precious Metals by Thiourea Modified Magnetic Nanoparticles, Int. J. Mol. Sci, vol.2013, issue.5, pp.9834-9847

L. Zhou, J. Liu, and Z. Liu, Adsorption of Platinum(IV) and Palladium(II) from Aqueous Solution by Thiourea-Modified Chitosan Microspheres, J. Hazard. Mater, vol.172, issue.1, pp.439-446, 2009.

R. M. Izatt, Metal Sustainability: Global Challenges, Consequences, and Prospects

T. Groenewald, Potential Applications of Thiourea in the Processing of Gold, J. South. Afr. Inst. Min. Metall, vol.77, issue.11, pp.217-223, 1977.

U. Ruzmetov and A. Gevorgyan, Formation of Thiourea Complexes by Platinum and Palladium and Amperometrical Method, Adv. Sci. J, issue.7, pp.82-85, 2014.

P. P. Sun and M. S. Lee, Separation of Pt(IV) and Pd(II) from the Loaded Alamine 336 by Stripping, Hydrometallurgy, vol.109, issue.1, pp.181-184, 2011.

J. Ková?ová and J. Ga?o, Reactions of Chloroplatinum(IV) Complex with Thiourea and Its Alkyl Derivatives, Collect. Czechoslov. Chem. Commun, vol.45, issue.5, pp.1331-1335, 1980.

, Critical Stability Constants: First

A. E. Martell and R. M. Smith, Critical Stability Constants, 1982.

F. M. Doyle, R. Woods, and G. H. Kelsall, Electrochemistry in Mineral and Metal Processing, vol.8, issue.8, 2010.

F. L. Bernardis, R. A. Grant, and D. C. Sherrington, A Review of Methods of Separation of the Platinum-Group Metals through Their Chloro-Complexes, React. Funct. Polym, vol.65, issue.3, pp.205-217, 2005.

O. T. Høgdahl, The Radiochemistry of Palladium; Nuclear science series, 1961.

M. Wojnicki, R. P. Socha, Z. P?dzich, K. Mech, T. Tokarski et al., Palladium(II) Chloride Complex Ion Recovery from Aqueous Solutions Using Adsorption on Activated Carbon, J. Chem. Eng. Data, vol.63, issue.3, pp.702-711, 2018.

;. Hosoyaharuo, . Tanakajiro, and . Nagakurasaburo, Ultraviolet Absorption Spectra of Aqueous Solutions and Single Crystals of Thioacetamide and Thiourea, Bull. Chem. Soc. Jpn, 2006.

I. V. Znakovskaya and E. M. Glebov, Photochemistry of the PtCl62-Complex in Acidic Aqueous Solutions, Mendeleev Commun, vol.26, issue.1, pp.35-37, 2016.

,. Van-wyk, W. J. Gerber, and K. R. Koch, A Robust Method for Speciation, Separation and Photometric Characterization of All

, Complex Anions by Means of Ion-Pairing RP-HPLC Coupled to ICP-MS/OES, Validated by High Resolution 195Pt NMR Spectroscopy, Anal. Chim. Acta, vol.704, issue.1, pp.154-161, 2011.

J. A. Peck, C. D. Tait, B. I. Swanson, and G. E. Brown, Speciation of Aqueous Gold(III) Chlorides from Ultraviolet/Visible Absorption and Raman/Resonance Raman Spectroscopies, Geochim. Cosmochim. Acta, vol.55, issue.3, pp.671-676, 1991.

G. Peyronel, G. Marcotrigiano, R. Battistuzzi, and . Radiochromatographic, Conductometric and High-Frequency Titration Studies on the Thiourea Complexes of Palladium(II) and Platinum(II), J. Chromatogr. A, vol.70, issue.1, pp.91064-91071, 1972.

G. Marcotrigiano, R. Battistuzzi, and G. Peyronel, Binuclear Halogen-Bridged Complexes of Palladium(II) with Thiourea: Pd2Tu2X4 and Their Bridge-Splitting Reactions, J. Inorg. Nucl. Chem, issue.7, pp.2265-2270, 1973.

E. S. Kahn, A. L. Rheingold, and S. I. Shupack, Synthesis and Properties of Palladium(II) Complexes with Sulfur Ligands, J. Crystallogr. Spectrosc. Res, vol.23, issue.9, pp.697-710, 1993.

H. Zhang, L. Jia, and Z. Hu, Determination of Palladium(II) as Chloro Complex by Capillary Zone Electrophoresis, J. Chromatogr. A, vol.704, issue.1, pp.121-124, 1995.

L. I. Elding and . Palladium, II) Halide Complexes. I. Stabilities and Spectra of Palladium(II) Chloro and Bromo Aqua Complexes, Inorganica Chim. Acta, vol.6, issue.00, pp.91874-91881, 1972.

N. A. Polotnyanko and I. L. Khodakovskii, Thermodynamic Properties of Pd Chloride Complexes and the Pd2+(Aq) Ion in Aqueous Solutions, Geochem. Int, vol.52, issue.1, pp.46-56, 2014.

F. A. Adekola, M. Diaw, C. Colin, and D. Bauer, Electrochemical Study of Some Palladium Compounds at a Carbon Paste Electrode-Application to the Determination of Palladium in Oxidation Automotive Catalysts, Electrochimica Acta, vol.37, issue.13, p.87089, 1992.

K. Lubert, M. Guttmann, and L. Beyer, Voltammetric Study of the Immobilization of Palladium at the Surface of Carbon Paste Electrodes, Electroanalysis, vol.8, issue.4, pp.320-325, 1996.

S. Gu, X. Wang, Y. Wei, and B. Fang, Mechanism for Nucleation and Growth of Electrochemical Deposition of Palladium(II) on a Platinum Electrode in Hydrochloric Acid Solution, Sci. China Chem, vol.57, issue.5, pp.755-762, 2014.

. 1. Ii and . .. Carbon-based-microelectrodes,

C. Iii and . .. Device,

. .. Abstract,

. .. Results-&-discussion, 3. Coupling of the amperometric detector with electrophoresis in a microdevice: Application to the quantitation of Ru(NH3)6 3+

. .. Conclusion,

. .. Acknowledgements,

. .. References,

X. Xu, S. Zhang, H. Chen, and J. Kong, Integration of Electrochemistry in Micro-Total Analysis Systems for Biochemical Assays: Recent Developments, Talanta, vol.80, issue.1, pp.8-18, 2009.

M. H. Ghanim and M. Z. Abdullah, Integrating Amperometric Detection with Electrophoresis Microchip Devices for Biochemical Assays: Recent Developments, Talanta, vol.85, issue.1, pp.28-34, 2011.

D. Omanovi?, C. Garnier, K. Gibbon-walsh, and I. Pi?eta, Electroanalysis in Environmental Monitoring: Tracking Trace Metals-A Mini Review. Electrochem. Commun, vol.61, pp.78-83, 2015.

A. Gencoglu and A. R. Minerick, Electrochemical Detection Techniques in Micro-and Nanofluidic Devices, Microfluid. Nanofluidics, vol.17, issue.5, pp.781-807, 2014.

M. Castaño-Álvarez, M. T. Fernández-abedul, A. Costa-garcía, M. Agirregabiria, L. J. Fernández et al., Fabrication of SU-8 Based Microchip Electrophoresis with Integrated Electrochemical Detection for Neurotransmitters, Talanta, vol.80, issue.1, pp.24-30, 2009.

Z. Hao, H. Chen, and D. Ma, Preparation of Micro Gold Devices on Poly(Dimethylsiloxane) Chips with Region-Selective Electroless Plating, Anal. Chem, issue.20, pp.8649-8653, 2009.

K. Ha, G. Joo, S. K. Jha, and Y. Kim, Monitoring of Endocrine Disruptors by Capillary Electrophoresis Amperometric Detector, Microelectron. Eng, vol.86, issue.4, pp.1407-1410, 2009.

H. Moreira, N. Almeida, A. L. De-j.-de;-piazzeta, M. H. De, O. Jesus et al., Fabrication of a Multichannel PDMS/Glass Analytical Microsystem with Integrated Electrodes for Amperometric Detection, Lab. Chip, vol.9, issue.1, pp.115-121, 2009.

L. Sasso, P. Vazquez, I. Vedarethinam, J. Castillo-león, J. Emnéus et al., Conducting Polymer 3D Microelectrodes, Sensors, vol.2010, issue.12, pp.10986-11000

W. Zhang, S. Zhu, R. Luque, S. Han, L. Hu et al., Recent Development of Carbon Electrode Materials and Their Bioanalytical and Environmental Applications, Chem. Soc. Rev, vol.45, issue.3, pp.715-752, 2016.

W. R. Vandaveer, S. A. Pasas-farmer, D. J. Fischer, C. N. Frankenfeld, and S. M. Lunte, Recent Developments in Electrochemical Detection for Microchip Capillary Electrophoresis, ELECTROPHORESIS, vol.25, pp.3528-3549, 2004.

E. N. Silva, J. M. Da;-petroni, B. G. Lucca, and V. S. Ferreira, Pencil Graphite Leads as Simple Amperometric Sensors for Microchip Electrophoresis, ELECTROPHORESIS, vol.2017, issue.21, pp.2733-2740

A. J. Gawron, R. S. Martin, and S. M. Lunte, Fabrication and Evaluation of a Carbon-Based Dual-Electrode Detector for Poly(Dimethylsiloxane) Electrophoresis Chips, Electrophoresis, vol.22, issue.2, pp.242-248, 2001.

R. S. Martin, K. L. Ratzlaff, B. H. Huynh, and S. M. Lunte, In-Channel Electrochemical Detection for Microchip Capillary Electrophoresis Using an Electrically Isolated Potentiostat, Anal. Chem, vol.74, issue.5, pp.1136-1143, 2002.

R. A. Saylor, E. A. Reid, and S. M. Lunte, Microchip Electrophoresis with Electrochemical Detection for the Determination of Analytes in the Dopamine Metabolic Pathway, ELECTROPHORESIS, vol.2015, issue.16, pp.1912-1919

D. J. Fischer, W. R. Vandaveer, R. J. Grigsby, and S. M. Lunte, Pyrolyzed Photoresist Carbon Electrodes for Microchip Electrophoresis with Dual-Electrode Amperometric Detection, Electroanalysis, vol.17, issue.13, pp.1153-1159, 2005.

J. Xu, Y. Peng, N. Bao, X. Xia, and H. Chen, -Channel Indirect Amperometric Detection of Nonelectroactive Anions for Electrophoresis on a Poly(Dimethylsiloxane) Microchip. Electrophoresis, vol.26, pp.3615-3621, 2005.

H. Cheng, W. Huang, R. Chen, Z. Wang, and J. Cheng, Carbon Fiber Nanoelectrodes Applied to Microchip Electrophoresis Amperometric Detection of Neurotransmitter Dopamine in Rat Pheochromocytoma (PC12) Cells, Electrophoresis, vol.28, issue.10, pp.1579-1586, 2007.

M. L. Kovarik, N. J. Torrence, D. M. Spence, and R. S. Martin, Fabrication of Carbon Microelectrodes with a Micromolding Technique and Their Use in Microchip-Based Flow Analyses, The Analyst, vol.129, issue.5, pp.400-405, 2004.

J. M. Petroni, B. G. Lucca, and V. S. Ferreira, Simple Approach for the Fabrication of Screen-Printed Carbon-Based Electrode for Amperometric Detection on Microchip Electrophoresis, Anal. Chim. Acta, vol.954, pp.88-96, 2017.

M. L. Kovarik, M. W. Li, and R. S. Martin, Integration of a Carbon Microelectrode with a Microfabricated Palladium Decoupler for Use in Microchip Capillary Electrophoresis/Electrochemistry, Electrophoresis, vol.26, issue.1, pp.202-210, 2005.

L. C. Mecker and R. S. Martin, Use of Micromolded Carbon Dual Electrodes with a Palladium Decoupler for Amperometric Detection in Microchip Electrophoresis, Electrophoresis, vol.27, issue.24, pp.5032-5042, 2006.

R. ;. Scott-martin, A. Gawron, B. B. Fogarty, F. Regan, E. ;. Dempsey et al., Carbon Paste-Based Electrochemical Detectors for Microchip Capillary Electrophoresis/Electrochemistry, Analyst, vol.126, issue.3, pp.277-280, 2001.

A. Suea-ngam, P. Rattanarat, O. Chailapakul, and M. Srisa-art, Electrochemical Droplet-Based Microfluidics Using Chip-Based Carbon Paste Electrodes for High-Throughput Analysis in Pharmaceutical Applications, Anal. Chim. Acta, vol.883, pp.45-54, 2015.

P. Rattanarat, A. Suea-ngam, N. Ruecha, W. Siangproh, C. S. Henry et al., Graphene-Polyaniline Modified Electrochemical Droplet-Based Microfluidic Sensor for High-Throughput Determination of 4-Aminophenol, Anal. Chim. Acta, vol.925, pp.51-60, 2016.

S. V. Puttaswamy, P. Xue, Y. Kang, and Y. Ai, Simple and Low Cost Integration of Highly Conductive Three-Dimensional Electrodes in Microfluidic Devices, Biomed. Microdevices, vol.17, issue.1, 2015.

A. Regel and S. Lunte, Integration of a Graphite/Poly(Methyl-Methacrylate) Composite Electrode into a Poly(Methylmethacrylate) Substrate for Electrochemical Detection in Microchips, Electrophoresis, vol.2013, issue.14, pp.2101-2106

M. Pumera, A. Merkoçi, and S. Alegret, Microchip Capillary Electrophoresis-Electrochemistry with Rigid Graphite-Epoxy Composite Detector, Electroanalysis, vol.18, issue.2, pp.207-210, 2006.

G. Chen, L. Zhang, and J. Wang, Miniaturized Capillary Electrophoresis System with a Carbon Nanotube Microelectrode for Rapid Separation and Detection of Thiols, Talanta, vol.64, issue.4, pp.1018-1023, 2004.

Y. Sameenoi, M. M. Mensack, K. Boonsong, R. Ewing, W. Dungchai et al., Dimethylsiloxane) Cross-Linked Carbon Paste Electrodes for Microfluidic Electrochemical Sensing, Analyst, vol.136, issue.15, pp.3177-3184, 2011.

A. Deman, M. Brun, M. Quatresous, J. Chateaux, M. Frenea-robin et al., Characterization of C-PDMS Electrodes for Electrokinetic Applications in Microfluidic Systems, J. Micromechanics Microengineering, vol.21, issue.9, p.95013, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00734048

M. Brun, Électrodes nanocomposites pour applications en microfluidique. phdthesis, 2011.

M. Brun, J. Chateaux, A. Deman, P. Pittet, and R. Ferrigno, Nanocomposite Carbon-PDMS Material for Chip-Based Electrochemical Detection, Electroanalysis, vol.23, issue.2, pp.321-324, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01886736

H. Gai, Y. Li, and E. S. Yeung, Optical Detection Systems on Microfluidic Chips, Microfluidics

. Springer, , pp.171-201, 2011.

X. Feng, B. Liu, J. Li, and X. Liu, Advances in Coupling Microfluidic Chips to Mass Spectrometry, Mass Spectrom. Rev, vol.34, issue.5, pp.535-557, 2015.

L. Nyholm, Electrochemical Techniques for Lab-on-a-Chip Applications, Analyst, vol.130, issue.5, pp.599-605, 2005.

F. Matysik, Advances in Amperometric and Conductometric Detection in Capillary and Chip-Based Electrophoresis, Microchim. Acta, vol.160, issue.1-2, pp.1-14, 2008.

C. Microfluidic, . Holder, and . Micrux, Apr, vol.16, 2019.

A. Nag, N. Afasrimanesh, S. Feng, and S. C. Mukhopadhyay, Strain Induced Graphite/PDMS Sensors for Biomedical Applications, Sens. Actuators Phys, vol.271, pp.257-269, 2018.

A. Nag, M. E. Alahi, S. Feng, and S. C. Mukhopadhyay, IoT-Based Sensing System for Phosphate Detection Using Graphite/PDMS Sensors. Sens. Actuators Phys. 2019, vol.286, pp.43-50

L. O. Prasad, S. S. Pillai, and S. Sambandan, Micro-Strain and Temperature Sensors for Space Applications with Graphite-PDMS Composite, 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 2019.

W. Shih, L. Tsao, C. Lee, M. Cheng, C. Chang et al., Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite, Sensors, vol.10, issue.4, pp.3597-3610, 2010.

J. E. Quinsaat, I. Burda, R. Krämer, D. Häfliger, F. A. Nüesch et al., Conductive Silicone Elastomers Electrodes Processable by Screen Printing, Sci. Rep, vol.2019, issue.1, pp.1-11

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.113-116, 2000.

X. Z. Niu, S. L. Peng, L. Y. Liu, W. J. Wen, and P. Sheng, Characterizing and Patterning of PDMS-Based Conducting Composites, Adv. Mater, vol.19, issue.18, pp.2682-2686, 2007.

W. Miao, Z. Ding, and A. Bard, Solution Viscosity Effects on the Heterogeneous Electron Transfer Kinetics of Ferrocenemethanol in Dimethyl Sulfoxide?Water Mixtures, J. Phys. Chem. B -J PHYS CHEM B, p.106, 2002.

J. E. Baur and R. M. Wightman, Diffusion Coefficients Determined with Microelectrodes, J. Electroanal. Chem. Interfacial Electrochem, vol.305, issue.1, pp.73-81, 1991.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications

. Wiley, , 2000.

K. Aoki and K. Tokuda, Linear Sweep Voltammetry at Microband Electrodes, J. Electroanal. Chem. Interfacial Electrochem, vol.237, issue.2, pp.163-170, 1987.

S. Daniele and C. Bragato, From Macroelectrodes to Microelectrodes: Theory and Electrode Properties, In Environmental Analysis by Electrochemical Sensors and Biosensors: Fundamentals, pp.373-401, 2014.

G. M. Zarkadas, A. Stergiou, and G. Papanastasiou, Influence of Citric Acid on the Silver Electrodeposition from Aqueous AgNO3 Solutions, Electrochimica Acta, vol.50, issue.25, pp.5022-5031, 2005.

M. J. Gira, K. P. Tkacz, and J. R. Hampton, Physical and Electrochemical Area Determination of Electrodeposited Ni, Co, and NiCo Thin Films, Nano Converg, vol.2016, issue.1

. .. Chapter-iv,

. Symbols and . .. Abbrevations,

. .. Abbreviations,

. List and . .. Figures,

. List and . .. Tables,

I. I. ,

. E. Ii, . Behavior, . Chloro-complexes, and . On-c/pdms-electrodes, , p.231

, 2.3. Influence of flow rate on electrochemical behavior of precious metals

, 1.2. Electrophoresis on Glass-NOA ® -PDMS hybrid system and Micrux ®

, 2.2. Preliminary analysis with real leach liquor samples

V. .. Information,

V. 3. Determination, . Electroosmotic, . In, . Cross-shaped, and . .. Sec²tion,

, Reagent and solution The artificial leach liquors were made by dilution in Ultrapure water of appropriate amounts of standard solutions of Gold Standard for ICP TraceCERT® 1000 mg/L (Au, 5% hydrochloric acid HCl, Sigma-Aldrich co, II.1. Materials and methods II.1.1

P. Au,

, Blank CV at the lowest potential values gave signal in the reduction potential area

, IV.2.2.2. Optimization of the reduction potential and flow rate

D. T. Sawyer, G. Chiericato, C. T. Angelis, E. J. Nanni, and T. Tsuchiya, Effects of Media and Electrode Materials on the Electrochemical Reduction of Dioxygen, Anal. Chem, vol.54, issue.11, pp.1720-1724, 1982.

I. Najdovski and A. P. O'mullane, The Effect of Electrode Material on the Electrochemical Formation of Porous Copper Surfaces Using Hydrogen Bubble Templating, J. Electroanal. Chem, pp.95-101, 2014.

D. J. Lomax and R. A. Dryfe, Electrodeposition of Au on Basal Plane Graphite and Graphene, J. Electroanal. Chem, vol.819, pp.374-383, 2018.

S. Gu, X. Wang, Y. Wei, and B. Fang, Mechanism for Nucleation and Growth of Electrochemical Deposition of Palladium(II) on a Platinum Electrode in Hydrochloric Acid Solution, Sci. China Chem, vol.57, issue.5, pp.755-762, 2014.

G. Chang, Y. Luo, W. Lu, X. Qin, A. M. Asiri et al., Electrodeposition Fabrication of Pd Nanoparticles on Glassy Carbon Electrode Towards Methanol Oxidation Application, Curr. Res. Nanotechnol, vol.2013, issue.1, pp.1-7

G. Martínez-paredes, M. B. González-garcía, and A. Costa-garcía, Situ Electrochemical Generation of Gold Nanostructured Screen-Printed Carbon Electrodes. Application to the Detection of Lead Underpotential Deposition, Electrochimica Acta, vol.54, issue.21, pp.4801-4808, 2009.

A. S. Fuentes, A. F. Filippin, M. Aguirre, and C. , Pd Nucleation and Growth Mechanism Deposited on Different Substrates. Procedia Mater. Sci, vol.8, pp.541-550, 2015.

P. Quinet, J. Proost, and A. V. Lierde, Recovery of Precious Metals from Electronic Scrap by Hydrometallurgical Processing Routes, Miner. Metall. Process, vol.22, p.17, 2005.

U. Jadhav and H. Hocheng, Hydrometallurgical Recovery of Metals from Large Printed Circuit Board Pieces. Sci. Rep, 2015.

H. Zhang, L. Jia, and Z. Hu, Determination of Palladium(II) as Chloro Complex by Capillary Zone Electrophoresis, J. Chromatogr. A, vol.704, issue.1, pp.121-124, 1995.

G. Ducom, B. Laubie, A. Ohannessian, C. Chottier, P. Germain et al., Hydrolysis of Polydimethylsiloxane Fluids in Controlled Aqueous Solutions, Water Sci. Technol. J. Int. Assoc. Water Pollut. Res, vol.68, issue.4, pp.813-820, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01962412

A. Hubau, A. Chagnes, M. Minier, S. Touzé, S. Chapron et al., Recycling-Oriented Methodology to Sample and Characterize the Metal Composition of Waste Printed Circuit Boards, Waste Manag, vol.91, pp.62-71, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02161758

J. S. Kutter, R. ;. Ramsey, S. Jacobson, and J. Michael-ramsey, Determination of Metal Cations in Microchip Electrophoresis Using On-Chip Complexation and Sample Stacking, J. Microcolumn Sep, vol.10, pp.313-319, 1998.

K. Sueyoshi, F. Kitagawa, and K. Otsuka, Recent Progress of Online Sample Preconcentration Techniques in Microchip Electrophoresis, J. Sep. Sci, vol.31, pp.2650-2666, 2008.

S. Mishra and N. Devi, Extraction of Copper(II) from Hydrochloric Acid Solution by Cyanex 921, Hydrometallurgy, vol.107, issue.1, pp.29-33, 2011.

M. J. Thornton and J. S. Fritz, Separation of Metal Cations in Acidic Solution by Capillary Electrophoresis with Direct and Indirect UV Detection, J. High Resolut. Chromatogr, vol.20, issue.12, pp.653-656, 1997.

S. E. Livingstone, The Chemistry of Ruthenium, Rhodium, Palladium, Osmium, Iridium and Platinum: Pergamon Texts in Inorganic Chemistry, 2017.

H. Hasegawa, S. Barua, T. Wakabayashi, A. Mashio, T. Maki et al.,

M. , Selective Recovery of Gold, Palladium, or Platinum from Acidic Waste Solution

, Microchem. J, vol.139, pp.174-180, 2018.

T. Watanabe, S. Shibano, H. Maeda, A. Sugitani, M. Katayama et al., Fabrication of a Microfluidic Device with Boron-Doped Diamond Electrodes for Electrochemical Analysis, Electrochimica Acta, vol.197, pp.159-166, 2016.

C. Amatore, N. Da-mota, C. Sella, and L. Thouin, Theory and Experiments of Transport at Channel Microband Electrodes under Laminar Flows. 1. Steady-State Regimes at a Single Electrode, Anal. Chem, issue.22, pp.8502-8510, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00192623

R. Oliveira, C. Sella, C. Souprayen, E. Ait-yahiatene, C. Slim et al., Development of a Flow Microsensor for Selective Detection of Nitric Oxide in the Presence of Hydrogen Peroxide, Electrochimica Acta, vol.286, pp.365-373, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02159767

A. P. O'mullane, J. Zhang, A. Brajter-toth, and A. M. Bond, Higher Harmonic Large-Amplitude Fourier Transformed Alternating Current Voltammetry: Analytical Attributes Derived from Studies of the Oxidation of Ferrocenemethanol and Uric Acid at a Glassy Carbon Electrode, Anal. Chem, vol.80, issue.12, pp.4614-4626, 2008.

L. Komsiyska and G. Staikov, Electrocrystallization of Au Nanoparticles on Glassy Carbon from HClO 4 Solution Containing, Electrochimica Acta, vol.54, pp.168-172, 2008.

G. Chang, Y. Luo, W. Lu, X. Qin, A. M. Asiri et al., Electrodeposition Fabrication of Pd Nanoparticles on Glassy Carbon Electrode Towards Methanol Oxidation Application, Curr. Res. Nanotechnol, vol.2013, issue.1, pp.1-7

A. Alvarez and D. R. Salinas, Formation of Cu/Pd Bimetallic Crystals by Electrochemical Deposition, Electrochimica Acta -ELECTROCHIM ACTA, vol.55, pp.3714-3720, 2010.

A. Sahin, Q. Huang, J. M. Cotte, and B. C. Baker-o'neal, Electrochemical Palladium Deposition for Reducing Critical Dimensions in Nanostructures, J. Electrochem. Soc, issue.12, pp.697-703, 2014.

. Morphosis, , 2019.

G. T. Vladisavljevi?, N. Khalid, M. A. Neves, T. Kuroiwa, M. Nakajima et al., Design, Applications and Scale-up for Drug Discovery and Delivery, vol.65, pp.1626-1663, 2013.