. Oms-|-cancer,

, About the SEER Program

I. E. Tothill, Biosensors for cancer markers diagnosis, Semin. Cell Dev. Biol, vol.20, p.55, 2009.

A. K. Füzéry, J. Levin, M. M. Chan, and D. W. Chan, Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges, Clin. Proteomics, vol.10, p.13, 2013.

A. Mordente, E. Meucci, G. E. Martorana, and A. Silvestrini, Cancer Biomarkers Discovery and Validation: State of the Art, Problems and Future Perspectives, Advances in Cancer Biomarkers, vol.867, pp.9-26, 2015.

P. Das, A. Sedighi, and U. J. Krull, Cancer biomarker determination by resonance energy transfer using functional fluorescent nanoprobes, Anal. Chim. Acta, 2018.

J. C. Contreras-naranjo, H. Wu, and V. M. Ugaz, Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine, Lab. Chip, vol.17, pp.3558-3577, 2017.

T. Mairal, Aptamers: molecular tools for analytical applications, Anal. Bioanal. Chem, vol.390, p.989, 2008.

S. Tombelli, M. Minunni, and M. Mascini, Analytical applications of aptamers, Biosens. Bioelectron, vol.20, p.2424, 2005.

V. Crivianu-gaita, M. Thompson, . Aptamers, and . Fab, fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements, Biosens. Bioelectron, vol.85, p.32, 2016.

C. K. O'sullivan, Aptasensors -the future of biosensing?, Anal. Bioanal. Chem, vol.372, p.44, 2002.

, Action des substances chimiques sur les organes : la cancérogénèse

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, p.646, 2011.

, Dernières données mondiales sur le cancer : le fardeau du cancer atteint 18,1 millions de nouveaux cas et 9,6 millions de décès par cancer en 2018. Press released n°263. Centre international de Recherche sur le Cancer, 2018.

L. Wu and X. Qu, Cancer biomarker detection: recent achievements and challenges

, Chem. Soc. Rev, vol.44, p.2963, 2015.

K. Mahato, A. Kumar, P. K. Maurya, and P. Chandra, Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices, Biosens. Bioelectron, vol.100, p.411, 2018.

. Biopsie--diagnostic,

D. M. Good, Body Fluid Proteomics for Biomarker Discovery: Lessons from the Past Hold the Key to Success in the Future, J. Proteome Res, vol.6, p.4549, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409636

S. Biomarkers and . Endpoints, Preferred definitions and conceptual framework, Clin. Pharmacol. Ther, vol.69, p.89, 2001.

C. N. Oldenhuis, S. F. Oosting, J. A. Gietema, and E. G. De-vries, Prognostic versus predictive value of biomarkers in oncology, Eur. J. Cancer, vol.44, p.946, 2008.

S. Mehta, Predictive and prognostic molecular markers for cancer medicine, Ther. Adv. Med. Oncol, vol.2, p.125, 2010.

S. Mittal, H. Kaur, N. Gautam, and A. K. Mantha, Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies, Biosens. Bioelectron, vol.88, p.217, 2017.

M. Falco, Tumour biomarkers: homeostasis as a novel prognostic indicator, Open Biol, vol.6, p.160254, 2016.

T. F. Didar and M. Tabrizian, Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices, Lab. Chip, vol.10, p.3043, 2010.

J. Chen, J. Li, and Y. Sun, Microfluidic approaches for cancer cell detection, characterization, and separation, Lab. Chip, vol.12, p.1753, 2012.

D. Pappas, Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems, The Analyst, vol.141, p.525, 2016.

D. Mark, S. Haeberle, G. Roth, F. Von-stetten, and R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chem. Soc. Rev, vol.39, p.1153, 2010.

Y. Liu, Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum, Anal. Chim. Acta, vol.650, p.77, 2009.

H. Zhang, L. Liu, X. Fu, and Z. Zhu, Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dotslabels, Biosens. Bioelectron, vol.42, p.23, 2013.

Y. Lin, C. Wang, and K. F. Lei, Bubble-driven mixer integrated with a microfluidic bead-based ELISA for rapid bladder cancer biomarker detection, Biomed. Microdevices, vol.16, p.199, 2014.

X. Yu, On-chip dual detection of cancer biomarkers directly in serum based on selfassembled magnetic bead patterns and quantum dots, Biosens. Bioelectron, vol.41, p.129, 2013.

M. Hu, Multiplexed Detection of Cancer Biomarkers Directly in Serum by Using a Quantum Dot-Based Microfluidic Protein Chip, ACS Nano, vol.4, p.488, 2010.

W. Liu, H. Wei, Z. Lin, S. Mao, and J. Lin, Rare cell chemiluminescence detection based on aptamer-specific capture in microfluidic channels, Biosens. Bioelectron, vol.28, p.438, 2011.

L. Liang, Microchips for detection of exfoliated tumor cells in urine for identification of bladder cancer, Anal. Chim. Acta, 2018.

Y. Xu, Aptamer-Based Microfluidic Device for Enrichment, Sorting, and Detection of Multiple Cancer Cells, Anal. Chem, vol.81, p.7436, 2009.

J. A. Phillips, Y. Xu, Z. Xia, Z. H. Fan, and W. Tan, Enrichment of Cancer Cells Using Aptamers Immobilized on a Microfluidic Channel, Anal. Chem, vol.81, p.1033, 2009.

W. Sheng, Aptamer-Enabled Efficient Isolation of Cancer Cells from Whole Blood Using a Microfluidic Device, Anal. Chem, vol.84, p.4199, 2012.

Q. Shen, Specific Capture and Release of Circulating Tumor Cells Using Aptamer-Modified Nanosubstrates, Adv. Mater, vol.25, p.2368, 2013.

S. K. Arya, Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum, Biosens. Bioelectron, vol.102, p.106, 2018.

A. Tabrizi, M. Shamsipur, M. Saber, R. Sarkar, and S. , Isolation of HL-60 cancer cells from the human serum sample using MnO 2 -PEI/Ni/Au/aptamer as a novel nanomotor and electrochemical determination of thereof by aptamer/gold nanoparticlespoly(3,4-ethylene dioxythiophene) modified GC electrode, Biosens. Bioelectron, vol.110, p.141, 2018.

K. Wei, A novel multiplex signal amplification strategy based on microchip electrophoresis platform for the improved separation and detection of microRNAs, Talanta, vol.189, p.437, 2018.

C. Potrich, Simple PDMS microdevice for biomedical applications, Talanta, vol.193, p.44, 2019.

A. Ahmed, H. Azzazy, and H. M. , Power-free chip enzyme immunoassay for detection of prostate specific antigen (PSA) in serum, Biosens. Bioelectron, vol.49, p.478, 2013.

J. M. Hoffman, P. S. Stayton, A. S. Hoffman, and J. J. Lai, Stimuli-Responsive Reagent System for Enabling Microfluidic Immunoassays with Biomarker Purification and Enrichment, Bioconjug. Chem, vol.26, p.29, 2015.

B. V. Chikkaveeraiah, V. Mani, V. Patel, J. S. Gutkind, and J. F. Rusling, Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum, Biosens. Bioelectron, vol.26, p.4477, 2011.

K. K. Tetala and M. A. Vijayalakshmi, A review on recent developments for biomolecule separation at analytical scale using microfluidic devices, Anal. Chim. Acta, vol.906, p.7, 2016.

D. Kim and A. E. Herr, Protein immobilization techniques for microfluidic assays, Biomicrofluidics, vol.7, p.41501, 2013.

S. C. Terry, J. H. Jerman, and J. B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Trans. Electron Devices, vol.26, p.1880, 1979.

A. Waldbaur, H. Rapp, K. Länge, and B. E. Rapp, Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes, Anal. Methods, vol.3, p.2681, 2011.

A. Manz, Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze?, TrAC Trends Anal. Chem, vol.10, p.144, 1991.

P. N. Nge, C. I. Rogers, and A. T. Woolley, Advances in Microfluidic Materials, Functions, Integration, and Applications, Chem. Rev, vol.113, p.2550, 2013.

K. Ren, J. Zhou, and H. Wu, Materials for Microfluidic Chip Fabrication, Acc. Chem. Res, vol.46, p.2396, 2013.

R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve, PLoS ONE, vol.7, p.51499, 2012.

J. C. Mcdonald and G. M. Whitesides, Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices, Acc. Chem. Res, vol.35, p.491, 2002.

R. P. De-campos, C. D. Campos, G. B. Almeida, and J. A. Da-silva, Characterization of Off-Stoichiometry Microfluidic Devices for Bioanalytical Applications, IEEE Trans. Biomed. Circuits Syst

C. F. Carlborg, T. Haraldsson, K. Öberg, M. Malkoch, and W. Van-der-wijngaart, Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices, Lab. Chip, vol.11, p.3136, 2011.

D. Bartolo, G. Degré, P. Nghe, and V. Studer, Microfluidic stickers, Lab. Chip, vol.8, p.274, 2008.

N. B. Cramer, S. K. Reddy, M. Cole, C. Hoyle, and C. N. Bowman, Initiation and kinetics of thiol-ene photopolymerizations without photoinitiators, J. Polym. Sci. Part Polym. Chem, vol.42, p.5817, 2004.

N. B. Cramer, J. P. Scott, and C. N. Bowman, Photopolymerizations of Thiol?Ene Polymers without Photoinitiators, Macromolecules, vol.35, p.5361, 2002.

J. P. Lafleur, Rapid and simple preparation of thiol-ene emulsion-templated monoliths and their application as enzymatic microreactors, Lab. Chip, vol.15, p.2162, 2015.

E. Çakmakçi, B. Yuce-dursun, and S. Demir, Maleic anhydride functionalization of OSTE based coatings via thiol-ene "Click" reaction for the covalent immobilization of xylanase, React. Funct. Polym, vol.111, p.38, 2017.

S. M. Tähkä, Thiol-ene microfluidic devices for microchip electrophoresis: Effects of curing conditions and monomer composition on surface properties, J. Chromatogr. A, vol.1426, p.233, 2015.

S. J. Bou and A. V. Ellis, Microfluidic devices using thiol-ene polymers, p.89232, 2013.

M. S. Kharasch, E. M. May, and F. R. Mayo, The peroxide effect in the addition of reagents to unsaturated compounds. Xviii. The addition and substitution of bisulfite, J. Org. Chem, vol.03, p.175, 1938.

, Radiation curing in polymer science and technology, vol.4, 1993.

N. B. Cramer and C. N. Bowman, Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time fourier transform infrared, J. Polym. Sci. Part Polym. Chem, vol.39, p.3311, 2001.

P. Wägli, A. Homsy, and N. F. De-rooij, Norland optical adhesive (NOA81) microchannels with adjustable wetting behavior and high chemical resistance against a range of midinfrared-transparent organic solvents, Sens. Actuators B Chem, vol.156, p.994, 2011.

C. Tsao and D. L. Devoe, Bonding of thermoplastic polymer microfluidics, Microfluid. Nanofluidics, vol.6, p.1, 2009.

P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, Cyclic olefin polymers: emerging materials for lab-on-a-chip applications, Microfluid. Nanofluidics, vol.9, p.145, 2010.

S. Begolo, G. Colas, J. Viovy, and L. Malaquin, New family of fluorinated polymer chips for droplet and organic solvent microfluidics, Lab. Chip, vol.11, p.508, 2011.

O. Rötting, W. Röpke, H. Becker, and C. Gärtner, Polymer microfabrication technologies. Microsyst. Technol, vol.8, p.32, 2002.

J. Giboz, T. Copponnex, and P. Mélé, Microinjection molding of thermoplastic polymers: a review, J. Micromechanics Microengineering, vol.17, p.96, 2007.

U. A. Russek, Laser beam welding of thermoplastics, p.458, 2003.

H. Becker and C. Gärtner, Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis, vol.21, p.12, 2000.

M. Serra, A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications, Lab. Chip, vol.17, p.629, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01852028

. Thermalseal®, ThermalSeal Ministrips TM , and ThermalSeal RT TM Sealing Films for PCR

, Fluigent's broad range of solutions for use in microfluidic applications

D. Ross, T. J. Johnson, and L. E. Locascio, Imaging of Electroosmotic Flow in Plastic Microchannels, Anal. Chem, vol.73, p.2509, 2001.

M. Blas, N. Delaunay, and J. Rocca, Electrokinetic-based injection modes for separative microsystems, Electrophoresis, vol.29, p.20, 2008.

J. M. Karlinsey, Sample introduction techniques for microchip electrophoresis: A review, Anal. Chim. Acta, vol.725, p.1, 2012.

W. Ibrahim, W. A. Ali, L. I. Sulaiman, A. Sanagi, .. M. Mohd et al., Application of Solid-Phase Extraction for Trace Elements in Environmental and Biological Samples: A Review, Crit. Rev. Anal. Chem, vol.44, p.233, 2014.

B. Buszewski and M. Szultka, Past, Present, and Future of Solid Phase Extraction: A Review, Crit. Rev. Anal. Chem, vol.42, p.198, 2012.

M. Sonker, V. Sahore, and A. T. Woolley, Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: A critical review, Anal. Chim. Acta, vol.986, p.1, 2017.

N. Reyes-garcés, Advances in Solid Phase Microextraction and Perspective on Future Directions, Anal. Chem, vol.90, p.302, 2018.

, Choix d'une méthode de séparation

J. P. Kutter, S. C. Jacobson, and J. M. Ramsey, Solid phase extraction on microfluidic devices, J. Microcolumn Sep, vol.12, p.93, 2000.

, Principe général et grandeurs fondamentales. Techniques de l'Ingénieur

A. Wuethrich and J. P. Quirino, A decade of microchip electrophoresis for clinical diagnostics -A review of, Anal. Chim. Acta, vol.1045, p.42, 2008.

A. Kecskemeti and A. Gaspar, Particle-based liquid chromatographic separations in microfluidic devices -A review, Anal. Chim. Acta, vol.1021, p.1, 2018.

S. T. Sanjay, Biomarker detection for disease diagnosis using cost-effective microfluidic platforms, The Analyst, vol.140, p.7062, 2015.

T. Vilkner, D. Janasek, and A. Manz, Micro Total Analysis Systems. Recent Developments, Anal. Chem, vol.76, p.3373, 2004.

B. S. Munge, T. Stracensky, K. Gamez, D. Dibiase, and J. F. Rusling, Multiplex Immunosensor Arrays for Electrochemical Detection of Cancer Biomarker Proteins, Electroanalysis, vol.28, p.2644, 2016.

X. Wang, Microfluidics-to-mass spectrometry: A review of coupling methods and applications, J. Chromatogr. A, vol.1382, p.98, 2015.

H. A. Pohl, Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, 1978.

J. Derouard, Manipulation sans contact, 2009.

G. B. Almeida, R. J. Poppi, and J. A. Da-silva, Trapping of Au nanoparticles in a microfluidic device using dielectrophoresis for surface enhanced Raman spectroscopy, The Analyst, vol.142, p.375, 2017.

S. K. Srivastava, A. Gencoglu, and A. R. Minerick, DC insulator dielectrophoretic applications in microdevice technology: a review, Anal. Bioanal. Chem, vol.399, p.301, 2011.

V. H. Perez-gonzalez, R. C. Gallo-villanueva, B. Cardenas-benitez, S. O. Martinez-chapa, and B. H. Lapizco-encinas, Simple Approach to Reducing Particle Trapping Voltage in Insulator-Based Dielectrophoretic Systems, Anal. Chem, vol.90, p.4310, 2018.

C. Chou, Electrodeless dielectrophoresis of single-and double-stranded DNA, Biophys. J, vol.83, p.2170, 2002.

P. Anrès, Développement de nouvelles méthodologies de préconcentration électrocinétique in-situ en électrophorèse capillaire pour l'analyse de traces, 2012.

S. Song and A. K. Singh, On-chip sample preconcentration for integrated microfluidic analysis, Anal. Bioanal. Chem, vol.384, p.41, 2006.

C. Huhn and U. Pyell, Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions, J. Chromatogr. A, vol.1217, p.4476, 2010.

B. Jung, R. Bharadwaj, and J. G. Santiago, Thousandfold signal increase using fieldamplified sample stacking for on-chip electrophoresis, Electrophoresis, vol.24, p.3476, 2003.

J. Lichtenberg, E. Verpoorte, and N. F. De-rooij, Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis, Electrophoresis, vol.22, p.258, 2001.

B. Giri and D. Dutta, Improvement in the sensitivity of microfluidic ELISA through field amplified stacking of the enzyme reaction product, Anal. Chim. Acta, vol.810, p.32, 2014.

B. C. Giordano, D. S. Burgi, S. J. Hart, and A. Terray, On-line sample pre-concentration in microfluidic devices: A review, Anal. Chim. Acta, vol.718, p.11, 2012.

P. Chandra, S. A. Zaidi, H. Noh, and Y. Shim, Separation and simultaneous detection of anticancer drugs in a microfluidic device with an amperometric biosensor, Biosens. Bioelectron, vol.28, p.326, 2011.

F. Kitagawa and K. Otsuka, Sample Preconcentration Protocols in Microfluidic Electrophoresis, Microfluidic Electrophoresis, vol.1906, pp.65-78, 2019.

R. Chien, . Ling, and D. S. Burgi, Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis, Anal. Chem, vol.64, p.1046, 1992.

S. Tang, H. Zhang, and H. K. Lee, Advances in Sample Extraction, Anal. Chem, vol.88, p.228, 2016.

P. Biparva and A. Abbas, Microextraction Techniques as a Sample Preparation Step for Metal Analysis, Atomic Absorption Spectroscopy, 2012.

Y. Yamini, M. Rezazadeh, and S. Seidi, Liquid-phase microextraction -The different principles and configurations, TrAC Trends Anal. Chem, vol.112, p.264, 2019.

H. Miyaguchi, Microchip-based liquid/liquid extraction for gas-chromatography analysis of amphetamine-type stimulants in urine, J. Chromatogr. A, vol.1129, p.105, 2006.

V. Pichon, Extraction sur phase solide pour l'analyse de composés organiques, 2006.

B. He and F. Regnier, Microfabricated liquid chromatography columns based on collocated monolith support structures, J. Pharm. Biomed. Anal, vol.17, p.925, 1998.

S. Dziomba, Solid supports for extraction and preconcentration of proteins and peptides in microfluidic devices: A review, Anal. Chim. Acta, vol.955, p.1, 2017.

D. S. Peterson, Solid supports for micro analytical systems, Lab. Chip, vol.5, p.132, 2005.

S. Thurmann, L. Mauritz, C. Heck, and D. Belder, High-performance liquid chromatography on glass chips using precisely defined porous polymer monoliths as particle retaining elements, J. Chromatogr. A, vol.1370, p.33, 2014.

T. Nguyen, R. Pei, D. W. Landry, M. N. Stojanovic, and Q. Lin, Microfluidic aptameric affinity sensing of vasopressin for clinical diagnostic and therapeutic applications, Sens. Actuators B Chem, vol.154, p.59, 2011.

N. Pamme, Magnetism and microfluidics, Lab. Chip, vol.6, p.24, 2006.

M. A. Gijs, Magnetic bead handling on-chip: new opportunities for analytical applications, Microfluid. Nanofluidics, 2004.

J. De-jong, R. G. Lammertink, and M. Wessling, Membranes and microfluidics: a review, Lab. Chip, vol.6, p.1125, 2006.

J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, Integrated Microfluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification, Anal. Chem, vol.73, p.2648, 2001.

H. Hisamoto, Chemicofunctional Membrane for Integrated Chemical Processes on a Microchip, Anal. Chem, vol.350, 2003.

Y. Liu, X. Zhang, Y. Xia, and H. Yang, Magnetic-Field-Assisted Electrospinning of Aligned Straight and Wavy Polymeric Nanofibers, Adv. Mater, vol.22, p.2454, 2010.

Y. Liu, D. Yang, T. Yu, and X. Jiang, Incorporation of electrospun nanofibrous PVDF membranes into a microfluidic chip assembled by PDMS and scotch tape for immunoassays, Electrophoresis, vol.30, p.3269, 2009.

B. Venzac, Development of an integrated, portable DNA amplification and detection system based on electrohydrodynamic aggregation, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01617817

C. Yu, M. H. Davey, F. Svec, and J. M. Fréchet, Monolithic Porous Polymer for On-Chip Solid-Phase Extraction and Preconcentration Prepared by Photoinitiated in Situ Polymerization within a Microfluidic Device, Anal. Chem, vol.73, p.5088, 2001.

A. G. Lee, D. J. Beebe, and S. P. Palecek, Quantification of kinase activity in cell lysates via photopatterned macroporous poly(ethylene glycol) hydrogel arrays in microfluidic channels, Biomed. Microdevices, vol.14, p.247, 2012.

A. Bhattacharyya and C. M. Klapperich, Differential gene expression using mRNA isolated on plastic microfluidic chips, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1067-1070, 2009.

C. Perreard, Surface functionalization strategies for the design of a lab-on-a-chip integrating an aptamer-based molecular capture for the analysis of emerging water contaminants, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01266081

C. Perréard, Aptamer entrapment in microfluidic channel using one-step sol-gel process, in view of the integration of a new selective extraction phase for lab, CE and CEC, 2017.

T. K. Sharma, J. G. Bruno, and A. Dhiman, ABCs of DNA aptamer and related assay development, Biotechnol. Adv, vol.35, p.275, 2017.

K. A. Wolfe, Toward a microchip-based solid-phase extraction method for isolation of nucleic acids, Electrophoresis, vol.23, p.727, 2002.

F. Du, Recent advances in aptamer-functionalized materials in sample preparation, TrAC Trends Anal. Chem, vol.67, p.134, 2015.

S. Lordel, Synthèse et caractérisation de polymères à empreintes moléculaires pour l'extraction sélective de résidus d'explosifs pour le développement de dispositifs de terrain, 2011.

Z. Li, Y. Yu, Z. Li, and T. Wu, A review of biosensing techniques for detection of trace carcinogen contamination in food products, Anal. Bioanal. Chem, vol.407, p.2711, 2015.

L. Uzun and A. P. Turner, Molecularly-imprinted polymer sensors: realising their potential, Biosens. Bioelectron, vol.76, p.131, 2016.

K. Haupt, Although MIPs are stable, easy to prepare, and inexpensive, there are still challenges to overcome in their fabrication and use, Chemical Reviews, vol.7, p.2495, 2000.

J. W. Goding, Monoclonal antibodies: Principles and practice: production and application of monoclonal antibodies in cell biology, biochemistry and immunology, 1996.

F. Costantini, Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors, Sens. Actuators B Chem, vol.230, p.31, 2016.

Z. Hu, Aptamer Combined with Fluorescent Silica Nanoparticles for Detection of Hepatoma Cells, Nanoscale Res. Lett, vol.12, 2017.

C. M. De-sousa-lacerda, 1?3)-?-D-glucan aptamers labeled with technetium-99m: Biodistribution and imaging in experimental models of bacterial and fungal infection, Nucl. Med. Biol, vol.46, p.19, 2017.

S. Gao, Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin, Biosens. Bioelectron, vol.89, p.952, 2017.

L. Wang, QCM-based aptamer selection and detection of Salmonella typhimurium, Food Chem, vol.221, p.776, 2017.

G. Perret and E. Boschetti, Aptamer affinity ligands in protein chromatography, Biochimie, vol.145, p.98, 2018.

A. J. Hughes, R. K. Lin, D. M. Peehl, and A. E. Herr, Microfluidic integration for automated targeted proteomic assays, Proc. Natl. Acad. Sci, vol.109, p.5972, 2012.

E. A. Bayer and M. Wilchek, Application of avidin-biotin technology to affinity-based separations, J. Chromatogr. A, vol.510, p.3, 1990.

M. Brut, Bringing aptamers into technologies: Impact of spacer terminations, Appl. Phys. Lett, vol.100, p.163702, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01801821

Y. Lao, K. Peck, and L. Chen, Enhancement of Aptamer Microarray Sensitivity through Spacer Optimization and Avidity Effect, Anal. Chem, vol.81, p.1747, 2009.

C. A. Stein and D. Castanotto, FDA-Approved Oligonucleotide Therapies in 2017, Mol. Ther, vol.25, p.1069, 2017.

, New Monoclonal Antibody Drug Approvals Hit Record Levels in 2017 -Creative Biolabs Blog

J. Toulmé, Les aptamères: Du concept à l'outil. Médecine Nucl, vol.31, p.478, 2007.

M. Girardot, Aptamères et électrophorèse capillaire : caractérisation physico-chimique d'aptamères libres en solution ou greffés sur des nanoparticules, et étude de leur affinité avec une cible protéique en vue de leur emploi pour des méthodes sensibles de diagnostic, 2010.

H. Sun and Y. Zu, A Highlight of Recent Advances in Aptamer Technology and Its Application, Molecules, vol.20, p.11959, 2015.

D. L. Robertson and G. F. Joyce, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, vol.344, p.467, 1990.

A. D. Ellington and J. W. Szostak, Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures, Nature, vol.355, p.850, 1992.

C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, vol.249, p.505, 1990.

R. Stoltenburg, C. Reinemann, and B. Strehlitz, SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands, Biomol. Eng, vol.24, p.381, 2007.

K. Kang, Y. Lee, and . Aptamers, A Review of Recent Trends and Applications, Future Trends in Biotechnology, vol.131, pp.153-169, 2012.

Y. Koh, Bead affinity chromatography in a temperature-controllable microsystem for biomarker detection, Anal. Bioanal. Chem, vol.404, p.2267, 2012.

D. Ruiz-ciancio, Aptamers as Diagnostic Tools in Cancer, Pharm. Basel Switz, vol.11, 2018.

P. Zhang, Using an RNA aptamer probe for flow cytometry detection of CD30-expressing lymphoma cells, Lab. Invest, vol.89, p.1423, 2009.

S. M. Douglas, I. Bachelet, and G. M. Church, A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads, Science, vol.335, p.831, 2012.

J. Tang, Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma, Int. J. Nanomedicine, vol.12, p.3899, 2017.

W. J. Kang, J. R. Chae, Y. L. Cho, J. D. Lee, and S. Kim, Multiplex Imaging of Single Tumor Cells Using Quantum-Dot-Conjugated Aptamers, Small, vol.5, p.2519, 2009.

S. Lian, A Universal Quantum Dots-Aptamer Probe for Efficient Cancer Detection and Targeted Imaging, J. Nanosci. Nanotechnol, vol.12, p.7703, 2012.

J. K. Kim, K. Choi, M. Lee, M. Jo, and S. Kim, Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer-and microRNA-221 molecular beaconconjugated nanoparticle, Biomaterials, vol.33, p.207, 2012.

L. Qiu, A Targeted, Self-Delivered, and Photocontrolled Molecular Beacon for mRNA Detection in Living Cells, J. Am. Chem. Soc, vol.135, p.12952, 2013.

J. Li, Gadolinium Oxide Nanoparticles and Aptamer-Functionalized Silver Nanoclusters-Based Multimodal Molecular Imaging Nanoprobe for Optical/Magnetic Resonance Cancer Cell Imaging, Anal. Chem, vol.86, p.11306, 2014.

J. Lee, Simultaneous Imaging of Two Different Cancer Biomarkers Using Aptamer-Conjugated Quantum Dots, Sensors, vol.15, p.8595, 2015.

H. Li, Synthesis of fluorescent dye-doped silica nanoparticles for target-cellspecific delivery and intracellular MicroRNA imaging, The Analyst, vol.140, p.567, 2015.

Y. Borghei, Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization, Anal. Chim. Acta, vol.904, p.92, 2016.

M. Keshtkar, D. Shahbazi-gahrouei, S. M. Khoshfetrat, M. A. Mehrgardi, and M. Aghaei, Aptamer-conjugated Magnetic Nanoparticles as Targeted Magnetic Resonance Imaging Contrast Agent for Breast Cancer, J. Med. Signals Sens, vol.6, p.243, 2016.

S. Bamrungsap, Pattern Recognition of Cancer Cells Using Aptamer-Conjugated Magnetic Nanoparticles, ACS Nano, vol.6, p.3974, 2012.

C. Wu, A recognition-before-labeling strategy for sensitive detection of lung cancer cells with a quantum dot-aptamer complex, The Analyst, vol.140, p.6100, 2015.

H. Shi, Whole Cell-SELEX Aptamers for Highly Specific Fluorescence Molecular Imaging of Carcinomas In Vivo, PLoS ONE, vol.8, p.70476, 2013.

H. Shi, Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration, Proc. Natl. Acad. Sci, vol.108, p.3900, 2011.

W. Zhao, Bioinspired multivalent DNA network for capture and release of cells, Proc. Natl. Acad. Sci, vol.109, p.19626, 2012.

J. Tan, Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells, Nanoscale Res. Lett, vol.11, p.298, 2016.

S. M. Khoshfetrat and M. A. Mehrgardi, Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode, Bioelectrochemistry, vol.114, p.24, 2017.

K. Chen, Tumor cell capture patterns around aptamer-immobilized microposts in microfluidic devices, Biomicrofluidics, vol.11, p.54110, 2017.

Z. Tang, Selection of Aptamers for Molecular Recognition and Characterization of Cancer Cells, Anal. Chem, vol.79, p.4900, 2007.

G. Liu, Aptamer?Nanoparticle Strip Biosensor for Sensitive Detection of Cancer Cells, Anal. Chem, vol.81, p.10013, 2009.

H. Shi, In vivo Fluorescence Imaging of Tumors using Molecular Aptamers Generated by Cell-SELEX, Chem. -Asian J, vol.5, p.2209, 2010.

Z. Lai, An 'activatable' aptamer-based fluorescence probe for the detection of HepG2 cells, Oncol. Rep, vol.37, p.2688, 2017.

Z. Wei, Multifunctional nanoprobe for cancer cell targeting and simultaneous fluorescence/magnetic resonance imaging, Anal. Chim. Acta, vol.938, p.156, 2016.

S. C. Gopinath, Methods developed for SELEX, Anal. Bioanal. Chem, vol.387, p.171, 2006.

T. Nguyen, R. Pei, M. Stojanovic, and Q. Lin, An aptamer-based microfluidic device for thermally controlled affinity extraction, Microfluid. Nanofluidics, vol.6, p.479, 2009.

C. Wilson and J. W. Szostak, Isolation of a fluorophore-specific DNA aptamer with weak redox activity, Chem. Biol, vol.5, p.609, 1998.

, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. Lond. Ser. Math. Phys. Sci, vol.219, p.186, 1953.

, On the dispersion of a solute in a fluid flowing through a tube, Proc. R. Soc. Lond. Ser. Math. Phys. Sci, vol.235, p.67, 1956.

J. Chamieh, Limits in Size of Taylor Dispersion Analysis: Representation of the Different Hydrodynamic Regimes and Application to the Size-Characterization of Cubosomes, Anal. Chem, vol.89, p.13487, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02322410

F. D'orlyé, Caractérisation physicochimique par électrophorèse capillaire de nanoparticules magnétiques, anioniques et cationiques : distribution de taille, densité de charge et coefficient de diffusion collectif, 2008.

J. A. Glasel, Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios, BioTechniques, vol.18, p.62, 1995.

C. Huang, Z. Cao, H. Chang, and W. Tan, Protein?Protein Interaction Studies Based on Molecular Aptamers by Affinity Capillary Electrophoresis, Anal. Chem, vol.76, p.6973, 2004.

M. Girardot, P. Gareil, and A. Varenne, Interaction study of a lysozyme-binding aptamer with mono-and divalent cations by ACE, Electrophoresis, vol.31, p.546, 2010.

T. Hianik, V. Ostatná, M. Sonlajtnerova, and I. Grman, Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin, Bioelectrochemistry, vol.70, p.127, 2007.

J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc, vol.11, p.55, 1951.

X. Liu, M. Atwater, J. Wang, and Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands, Colloids Surf. B Biointerfaces, vol.58, p.3, 2007.

P. K. Jain, K. S. Lee, I. H. El-sayed, and M. A. El-sayed, Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine, J. Phys. Chem. B, vol.110, p.7238, 2006.

K. Mesbah, A neutral polyacrylate copolymer coating for surface modification of thiol-ene microchannels for improved performance of protein separation by microchip electrophoresis, Microchim. Acta, vol.183, p.2111, 2016.

W. Wang, F. Zhou, L. Zhao, J. Zhang, and J. Zhu, Measurement of electroosmotic flow in capillary and microchip electrophoresis, J. Chromatogr. A, vol.1170, p.1, 2007.

S. D. Gilman and P. J. Chapman, Measuring Electroosmotic Flow in Microchips and Capillaries, Microchip Capillary Electrophoresis, vol.339, p.187, 2006.

S. A. Soper, Peer Reviewed: Polymeric Microelectromechanical Systems, Anal. Chem, vol.72, 2000.

I. Rodriguez, P. Spicar-mihalic, C. L. Kuyper, G. S. Fiorini, and D. T. Chiu, Rapid prototyping of glass microchannels, Anal. Chim. Acta, vol.496, p.205, 2003.

Y. Chen and A. Pépin, Nanofabrication: Conventional and nonconventional methods, Electrophoresis, vol.22, p.187, 2001.

Y. Xia and G. M. Whitesides, Soft Lithography, Annual Review of Materials Sciences, vol.28, p.153, 1998.

J. Zhou, A. V. Ellis, and N. H. Voelcker, Recent developments in PDMS surface modification for microfluidic devices, Electrophoresis, vol.31, 2010.

I. Wong and C. Ho, Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices, Microfluid. Nanofluidics, vol.7, 2009.

E. A. Goreshnik, Z. Mazej, and M. G. Mys'kiv, Synthesis, crystal structure and Raman spectra of AgBF4·C3O3(NC3H5)3·H2O, a silver(I) ?-complex with 1,3,5-triallyl-1,3,5-triazine-2,4,6-trione, J. Organomet. Chem, vol.695, p.2201, 2010.

D. Lin-vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, Compounds Containing the Carbonyl Group. in The Handbook of Infrared and Raman Characteristic Frequencies of, Organic Molecules, vol.117, 1991.

D. Belder and M. Ludwig, Surface modification in microchip electrophoresis, Electrophoresis, vol.24, p.3595, 2003.

F. Saharil, C. F. Carlborg, T. Haraldsson, and W. Van-der-wijngaart, Biocompatible "click" wafer bonding for microfluidic devices, Lab. Chip, vol.12, p.3032, 2012.

C. Y. Lim, A. E. Lim, and Y. C. Lam, Ionic Origin of Electro-osmotic Flow Hysteresis. Sci. Rep, vol.6, p.22329, 2016.

F. Lopez-arbeloa, T. Lopez-arbeloa, M. J. Tapia-estevez, and I. Lopez-arbeloa, Photophysics of rhodamines: molecular structure and solvent effects, J. Phys. Chem, vol.95, p.2203, 1991.

W. J. Lambert and D. L. Middleton, pH hysteresis effect with silica capillaries in capillary zone electrophoresis, Anal. Chem, vol.62, p.1585, 1990.

E. Kenndler and N. M. Maier, Capillary Electrophoresis in Organic Solvents, Capillary Electromigration Separation Methods 69, 2018.

J. E. Dickens, J. Gorse, J. A. Everhart, and M. Ryan, Dependence of electroosmotic flow in capillary electrophoresis on Group I and II metal ions, J. Chromatogr. B. Biomed. Sci. App, vol.657, p.401, 1994.

M. S. Kharasch, E. M. May, and F. R. Mayo, The peroxide effect in the addition of reagents to unsaturated compounds, The Journal of Organic Chemistry, vol.03, p.175, 1938.

Y. Xu, X. Yang, and E. Wang, Review: Aptamers in microfluidic chips, Anal. Chim. Acta, vol.683, p.12, 2010.

S. Balamurugan, A. Obubuafo, S. A. Soper, and D. A. Spivak, Surface immobilization methods for aptamer diagnostic applications, Anal. Bioanal. Chem, vol.390, p.1009, 2008.

M. T. Castañeda, S. Alegret, and A. Merkoçi, Electrochemical Sensing of DNA Using Gold Nanoparticles, Electroanalysis, vol.19, p.743, 2007.

M. Girardot, F. Orlyé, S. Descroix, and A. Varenne, Aptamer-conjugated nanoparticles: Preservation of targeting functionality demonstrated by microchip electrophoresis in frontal mode, Anal. Biochem, vol.435, p.150, 2013.

J. C. Masini and F. Svec, Porous monoliths for on-line sample preparation: A review, Anal. Chim. Acta, vol.964, p.24, 2017.

Z. Wang, J. Zhao, H. Lian, and H. Chen, Aptamer-based organic-silica hybrid affinity monolith prepared via "thiol-ene" click reaction for extraction of thrombin, Talanta, vol.138, p.52, 2015.

A. Marechal, F. Jarrosson, J. Randon, V. Dugas, and C. Demesmay, In-line coupling of an aptamer based miniaturized monolithic affinity preconcentration unit with capillary electrophoresis and Laser Induced Fluorescence detection, J. Chromatogr. A, vol.1406, p.109, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186682

Y. Chen, Aptamer functionalized hydrophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human ?-thrombin, Talanta, vol.154, p.555, 2016.

V. Baldim, Amperometric Quantification of S-Nitrosoglutathione Using Gold Nanoparticles: A Step toward Determination of S-Nitrosothiols in Plasma, Anal. Chem, vol.88, pp.3115-3120, 2016.

L. Tang, Y. Wang, Y. Liu, and J. Li, DNA-Directed Self-Assembly of Graphene Oxide with Applications to Ultrasensitive Oligonucleotide Assay, ACS Nano, vol.5, p.3817, 2011.

P. Auroux, Y. Koc, A. Demello, A. Manz, and P. J. Day, Miniaturised nucleic acid analysis, Lab. Chip, vol.4, p.534, 2004.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, vol.507, p.181, 2014.

W. K. Tomazelli-coltro, C. Cheng, E. Carrilho, and D. P. De-jesus, Recent advances in low-cost microfluidic platforms for diagnostic applications: Microfluidics and Miniaturization, Electrophoresis, vol.35, p.2309, 2014.

C. D. Chin, V. Linder, and S. K. Sia, Commercialization of microfluidic point-of-care diagnostic devices, Lab. Chip, vol.12, p.2118, 2012.

T. M. Herne and M. J. Tarlov, Characterization of DNA Probes Immobilized on Gold Surfaces, J. Am. Chem. Soc, vol.119, p.8916, 1997.

S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. Mccarley, and D. A. Spivak, Designing Highly Specific Biosensing Surfaces Using Aptamer Monolayers on Gold, Langmuir, vol.22, p.6446, 2006.

A. Tello, R. Cao, M. J. Marchant, and H. Gomez, Conformational Changes of Enzymes and Aptamers Immobilized on Electrodes, Bioconjug. Chem, vol.27, p.2581, 2016.

U. Rant, Structural Properties of Oligonucleotide Monolayers on Gold Surfaces Probed by Fluorescence Investigations, Langmuir, vol.20, p.10086, 2004.

P. Tiwari, K. Vig, V. Dennis, and S. Singh, Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials, vol.1, p.31, 2011.

J. Zhang, R. R. Loo, and J. A. Loo, Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry, J. Am. Soc. Mass Spectrom, vol.28, p.1815, 2017.

C. Xue, Y. Xue, L. Dai, A. Urbas, and Q. Li, Size-and Shape-Dependent Fluorescence Quenching of Gold Nanoparticles on Perylene Dye, Adv. Opt. Mater, vol.1, p.581, 2013.

L. L. Hench and J. K. West, The sol-gel process, Chem. Rev, vol.90, p.33, 1990.

C. Zubiolo, Encapsulation in a sol-gel matrix of lipase from Aspergillus niger obtained by bioconversion of a novel agricultural residue, Bioprocess Biosyst. Eng, 2014.

C. B. Park and D. S. Clark, Sol-gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity, Biotechnol. Bioeng, vol.78, p.229, 2002.

Y. Kim, C. B. Park, and D. S. Clark, Stable sol-gel microstructured and microfluidic networks for protein patterning, Biotechnol. Bioeng, vol.73, p.331, 2001.

N. Rupcich, R. Nutiu, Y. Li, and J. D. Brennan, Entrapment of Fluorescent Signaling DNA Aptamers in Sol?Gel-Derived Silica, Anal. Chem, vol.77, p.4300, 2005.

C. Y. Hui, Y. Li, and J. Brennan, Fluorescence Analysis of the Properties of Structure-Switching DNA Aptamers Entrapped in Sol-Gel-Derived Silica Materials, Chem. Mater, vol.26, p.1896, 2014.

M. Kato, K. Sakai-kato, N. Matsumoto, and T. Toyo'oka, A Protein-Encapsulation Technique by the Sol?Gel Method for the Preparation of Monolithic Columns for Capillary Electrochromatography, Anal. Chem, vol.74, p.1915, 2002.

M. Shalev and A. Miriam, Sol-Gel Entrapped Levonorgestrel Antibodies: Activity and Structural Changes as a Function of Different Polymer Formats, Materials, vol.4, p.469, 2011.

R. Wang, U. Narang, P. N. Prasad, and F. V. Bright, Affinity of antifluorescein antibodies encapsulated within a transparent sol-gel glass, Anal. Chem, vol.65, p.2671, 1993.

A. Bronshtein, N. Aharonson, D. Avnir, A. Turniansky, and M. Altstein, Sol-gel matrixes doped with atrazine antibodies: Atrazine binding properties, Chem. Mater, vol.9, p.2632, 1997.

B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, Sol-gel encapsulation methods for biosensors, Anal. Chem, vol.66, p.1120, 1994.

W. Jin and J. D. Brennan, Properties and applications of proteins encapsulated within sol-gel derived materials, Anal. Chim. Acta, vol.461, p.1, 2002.

M. T. Kim, Deposition kinetics of silicon dioxide from tetraethylorthosilicate by PECVD, Thin Solid Films, vol.360, p.60, 2000.

D. Merche, N. Vandencasteele, and F. Reniers, Atmospheric plasmas for thin film deposition: A critical review, Thin Solid Films, vol.520, p.4219, 2012.

M. Theelen, D. Habets, L. Staemmler, H. Winands, and P. Bolt, Localised plasma deposition of organosilicon layers on polymer substrates, Surf. Coat. Technol, vol.211, p.9, 2012.

D. Silva and B. , Study of the Stability and Hydrophilicity of Plasma-Modified Microfluidic Materials: Study of the Stability and Hydrophilicity of Plasma-Modified?, vol.14, p.1600034, 2017.

B. Rånby, W. T. Yang, and O. Tretinnikov, Surface photografting of polymer fibers, films and sheets, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At, vol.151, p.301, 1999.

M. J. Shenton and G. C. Stevens, Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments, J. Phys. Appl. Phys, vol.34, p.2761, 2001.

T. B. Stachowiak, F. Svec, J. M. Fréchet, and . Chip, J. Chromatogr. A, vol.1044, p.97, 2004.

K. Faure, Liquid chromatography on chip, Electrophoresis, vol.31, p.2499, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00599462

M. Pumera, Microchip-based electrochromatography: designs and applications, Talanta, vol.66, p.1048, 2005.

D. Wu, J. Qin, and B. Lin, Electrophoretic separations on microfluidic chips, J. Chromatogr. A, vol.1184, p.542, 2008.

K. Ren, J. Zhou, and H. Wu, Materials for Microfluidic Chip Fabrication, Acc. Chem. Res, vol.46, p.2396, 2013.

R. Novak, N. Ranu, and R. A. Mathies, Rapid fabrication of nickel molds for prototyping embossed plastic microfluidic devices, Lab. Chip, vol.13, p.1468, 2013.

U. M. Attia, S. Marson, and J. R. Alcock, Micro-injection moulding of polymer microfluidic devices, Microfluid. Nanofluidics, vol.7, p.1, 2009.

C. Li, Y. Yang, H. G. Craighead, and K. H. Lee, Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method, Electrophoresis, vol.26, p.1800, 2005.

A. Muck and A. Svatos, Chemical modification of polymeric microchip devices?

, Talanta, 2007.

Q. Pu, O. Oyesanya, B. Thompson, S. Liu, and J. C. Alvarez, On-Chip Micropatterning of Plastic (Cylic Olefin Copolymer, COC) Microfluidic Channels for the Fabrication of Biomolecule Microarrays Using Photografting Methods, Langmuir, vol.23, p.1577, 2007.

J. Zhang, C. Das, and Z. H. Fan, Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices, Microfluid. Nanofluidics, vol.5, p.327, 2008.

S. Roy, T. Das, and C. Y. Yue, High Performance of Cyclic Olefin Copolymer-Based Capillary Electrophoretic Chips, ACS Appl. Mater. Interfaces, vol.5, p.5683, 2013.

C. Jönsson, Silane-dextran chemistry on lateral flow polymer chips for immunoassays, Lab. Chip, vol.8, p.1191, 2008.

J. Raj, Surface immobilisation of antibody on cyclic olefin copolymer for sandwich immunoassay, Biosens. Bioelectron, vol.24, p.2654, 2009.

D. Sung, D. H. Shin, and S. Jon, Toward immunoassay chips: Facile immobilization of antibodies on cyclic olefin copolymer substrates through pre-activated polymer adlayers, Biosens. Bioelectron, vol.26, p.3967, 2011.

Y. Ladner, Surface Functionalization of COC Microfluidic Materials by Plasma and Click Chemistry Processes: Surface Functionalization of COC Microfluidic Materials, Plasma Process. Polym, vol.10, p.959, 2013.

T. B. Stachowiak, Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices, Electrophoresis, vol.24, p.3689, 2003.

K. Faure, Development of an acrylate monolith in a cyclo-olefin copolymer microfluidic device for chip electrochromatography separation, Electrophoresis, vol.29, p.4948, 2008.

J. Liu, Polymer Microchips Integrating Solid-Phase Extraction and High-Performance Liquid Chromatography Using Reversed-Phase Polymethacrylate Monoliths, Anal. Chem, vol.81, p.2545, 2009.

T. B. Stachowiak, Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting, J. Sep. Sci, vol.30, p.1088, 2007.

C. W. Tsao, L. Hromada, J. Liu, P. Kumar, and D. L. Devoe, Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment, Lab. Chip, vol.7, p.499, 2007.

A. Bhattacharyya and C. M. Klapperich, Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices, Lab. Chip, vol.7, p.876, 2007.

S. Roy, C. Y. Yue, S. S. Venkatraman, and L. L. Ma, Low-temperature (below Tg) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: high strength, stable hydrophilic, biocompatible surfaces, J. Mater. Chem, vol.21, p.15031, 2011.

R. K. Jena, C. Y. Yue, and L. Anand, Improvement of thermal bond strength and surface properties of Cyclic Olefin Copolymer (COC) based microfluidic device using the photografting technique, Sens. Actuators B Chem, vol.157, p.518, 2011.

Y. Ladner, New "one-step" method for the simultaneous synthesis and anchoring of organic monolith inside COC microchip channels, Lab. Chip, vol.12, p.1680, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00799836

Y. Ladner, G. Crétier, and K. Faure, Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: A cost-effective and easy-to-use technology: Microfluidics and Miniaturization, Electrophoresis, vol.33, p.3087, 2012.

S. Hwang, M. Tseng, J. Shu, and H. Yu, Surface modification of cyclic olefin copolymer substrate by oxygen plasma treatment, Surf. Coat. Technol, vol.202, p.3669, 2008.

S. Roy and C. Y. Yue, Surface Modification of COC Microfluidic Devices: A Comparative Study of Nitrogen Plasma Treatment and its Advantages Over Argon and Oxygen Plasma Treatments, Plasma Process. Polym, vol.8, p.432, 2011.

B. Xu, X. Yan, J. Xu, and H. Chen, One step high quality poly(dimethylsiloxane)-hydrocarbon plastics bonding, Biomicrofluidics, vol.6, p.16507, 2012.

B. Cortese, M. C. Mowlem, and H. Morgan, Characterisation of an irreversible bonding process for COC-COC and COC-PDMS-COC sandwich structures and application to microvalves, Sens. Actuators B Chem, vol.160, p.1473, 2011.

D. Nikolova, E. Dayss, G. Leps, and A. Wutzler, Surface modification of cycloolefinic copolymers for optimization of the adhesion to metals, Surf. Interface Anal, vol.36, p.689, 2004.

S. Roy and C. Y. Yue, Surface Modification of COC Microfluidic Devices: A Comparative Study of Nitrogen Plasma Treatment and its Advantages Over Argon and Oxygen Plasma Treatments, Plasma Process. Polym, vol.8, p.432, 2011.

S. Roy, C. Y. Yue, Y. C. Lam, Z. Y. Wang, and H. Hu, Surface analysis, hydrophilic enhancement, ageing behavior and flow in plasma modified cyclic olefin copolymer (COC)-based microfluidic devices, Sens. Actuators B Chem, vol.150, p.537, 2010.

I. M. El-nahhal and N. M. El-ashgar, A review on polysiloxane-immobilized ligand systems: Synthesis, characterization and applications, J. Organomet. Chem, vol.692, p.2861, 2007.

J. K?enková and F. Foret, Immobilized microfluidic enzymatic reactors, Electrophoresis, vol.25, p.3550, 2004.

E. Passaglia, R. R. Stromberg, and J. Kruger, Ellipsometry in the measurement of surfaces and thin films : symposium proceedings

R. A. Lawton, C. R. Price, A. F. Runge, W. J. Doherty, and S. S. Saavedra, Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions, Colloids Surf. Physicochem. Eng. Asp, vol.253, p.213, 2005.

K. Ma, F. Reza, I. Saaem, and J. Tian, Versatile surface functionalization of cyclic olefin copolymer (COC) with sputtered SiO2 thin film for potential BioMEMS applications, J. Mater. Chem, vol.19, p.7914, 2009.

B. Twomey, D. Dowling, G. Byrne, L. O'neill, and L. O'hare, Properties of Siloxane Coatings Deposited in a Reel-to-Reel Atmospheric Pressure Plasma System. Plasma Process. Polym, vol.4, p.450, 2007.

F. Hussain, D. J. Birch, and J. C. Pickup, Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase, Anal. Biochem, vol.339, p.137, 2005.

T. Keeling-tucker and J. D. Brennan, Fluorescent Probes as Reporters on the Local Structure and Dynamics in Sol?Gel-Derived Nanocomposite Materials, Chem. Mater, vol.13, p.3331, 2001.

C. P. Higginbotham, R. F. Browner, J. D. Jenkins, and J. K. Rice, Dependence of drying technique on surface area and pore size for polyethylene glycol/tetramethoxysilicate hybrid gels, Mater. Lett, vol.57, p.3970, 2003.

U. Schubert and N. Hüsing, Synthesis of inorganic materials, 2012.

T. Tran-thi, Matériaux hybrides nanoporeux pour la détection de polluants de l'air intérieur, 2015.

Y. W. Sun, Y. J. Wang, W. Guo, T. Wang, and G. S. Luo, Triblock copolymer and poly(ethylene glycol) as templates for monolithic silica material with bimodal pore structure, Microporous Mesoporous Mater, vol.88, p.31, 2006.

C. J. Brinker and G. W. Scherer, Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, 2014.

D. M. Smith, G. W. Scherer, and J. M. Anderson, Shrinkage during drying of silica gel, J. Non-Cryst. Solids, vol.188, p.191, 1995.

S. Crunaire, Discriminating Bacteria with Optical Sensors Based on Functionalized Nanoporous Xerogels, vol.2, p.171, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077003

J. Park, K. H. Jo, H. Y. Park, and J. H. Hahn, Spatially controlled silica coating in poly(dimethylsiloxane) microchannels with the sol-gel process, Sens. Actuators B Chem, vol.232, p.428, 2016.