. L'étude-décrite-dans-le-chapitre, 3 a démontré que le facteur temps avait une influence sur l'adsorption du MBT sur les surfaces d'aluminium. Ainsi, dans le cas de cette étude des temps d'immersion plus longs ont été étudiés. Des échantillons d'aluminium polis ont été immergés entre 1h et 14j dans une solution de NaCl 0,05 mol/L contenant 1,0 mmol/L de MBT, Ces échantillons ont été comparés à des échantillons de référence immergés dans NaCl sans MBT. -Aluminium, p.2

, 27 montre que ces derniers sont généralement constitués de deux pics : le pic à plus faible énergie de liaison (comprise entre 73,0 et 73,1 eV) correspond à l'aluminium métallique Al (0) [132] [133] et le second pic à plus haute énergie de liaison, La décomposition détaillée des spectres Al2p présentée en figure 4

A. ,

, cela signifie que l'épaisseur de l'oxyde formé en surface est trop importante pour que le métal soit détecté. Pour rappel, on estime que 95% du signal XPS provient des photoélectrons situés à une profondeur inférieure à trois fois leur libre parcours moyen soit environ 10 nm. En supposant que la couche d'oxyde formée est uniforme et continue, il est alors possible d'appliquer l'équation 2.15 décrite au chapitre 2 pour déterminer son épaisseur. Les résultats présentés dans le tableau 4.9 montrent que pour des temps d'immersion supérieurs à 1h, l'ajout de MBT entraine une diminution de l'épaisseur de la couche d'oxyde

I. V. Chapitre, Effet inhibiteur du 2-mercaptobenzothiazole et du 2-mercaptobenzimidazole sur la corrosion du cuivre et de l'aluminium

, Décomposition des spectres du niveau de coeur S2p des échantillons d'aluminium immergés dans NaCl 0,05 mol/L a) 1h, a') 1h avec MBT, b) 24h, b') 24h avec MBT, c) 72h, c') 72h avec MBT, d) 14j, d') 14j avec MBT, vol.30

I. V. Chapitre, Effet inhibiteur du 2-mercaptobenzothiazole et du 2-mercaptobenzimidazole sur la corrosion du cuivre et de l'aluminium Références bibliographiques

C. Vargel, M. Jacques, and M. Schmidt, Corrosion of Aluminium, 2004.

P. Héroult, Procédé Electrolytique pour la préparation de l'aluminium, p.1886

B. R. Strohmeier, An ESCA Method for Determining the Oxide Thickness on Aluminum Alloys, Surf. Interface Anal, vol.15, pp.51-56, 1990.

P. Marcus, C. Hinnen, and I. Olefjord, Determination of Attenuation Lengths of Photoelectrons in Aluminium and Aluminium Oxide by Angle-Dependent x-Ray Photoelectron Spectroscopy, Surf. Interface Anal, vol.20, pp.923-929, 1993.

E. Mccafferty and J. P. Wightman, Determination of the Concentration of Surface Hydroxyl Groups on Metal Oxide Films by a Quantitative XPS Method, Surf. Interface Anal, vol.26, pp.549-564, 1998.

R. K. Hart, The formation of film on aluminium immersed in water, Trans. Faraday Soc, vol.53, pp.1020-1027, 1956.

M. Pourbaix, Atals of Electrochemical Equilibra in Aqueous solutions, Pergammon, 1996.

J. Zhang, M. Klasky, and B. C. Letellier, The aluminum chemistry and corrosion in alkaline solutions, J. Nucl. Mater, vol.384, pp.175-189, 2009.

J. P. Labbé and J. Pagetti, Study of an Inhibiting Aluminosilicate Interface by Infrared Reflection Spectroscopy, Thin Solid Films, vol.82, pp.113-119, 1981.

Z. Szklarska-smialowska, Pitting Corrosion of Aluminium, Corros. Sci, vol.41, pp.1743-1767, 1999.

G. S. Frankel, Pitting corrosion, Metals Handbook, Cramer SD, pp.1-6, 2003.

T. G. Harvey, The effect of inhibitor structure on the corrosion of AA2024 and AA7075, Corros. Sci, vol.53, issue.6, pp.2184-2190, 2011.

S. T. Pride, J. R. Scully, and J. L. Hudson, Metastable Pitting of Aluminum and Criteria for the Transition to Stable Pit Growth, J. Electrochem. Soc, vol.141, issue.11, p.268, 1994.

H. H. Strehblow and P. Marcus, Fundamentals of Corrosion, Corrosion Mechanisms in Theory and Practice, pp.1-105, 2012.

R. L. Twite and G. P. Bierwagen, Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys, vol.33, pp.91-100, 1998.

M. W. Kendig and R. G. Buchheit, Corrosion Inhibition of Aluminum and Aluminum Alloys by Soluble Chromates , Chromate Coatings , and Chromate-Free Coatings, Corrosion, vol.59, issue.5, pp.379-400, 2003.

P. O'brien and A. Kortenkamp, The chemistry underlying chromate toxicity, Transit. Met. Chem, vol.20, pp.636-642, 1995.

G. Bianchi and P. Longhi, COPPER IN SEA-WATER , POTENTIAL-pH DIAGRAMS *, Corros. Sci, vol.13, pp.853-864, 1973.

H. H. Strehblow and B. Titze, The Investigation of the Passive Behaviour of Copper in Weakly Acid and Alkaline Solutions and the Examination of the Passive Film by ESCA and ISS, Electrochim. Acta, vol.25, pp.839-850, 1980.

U. Collisi and H. H. Strehblow, A photoelectrochemical study of passive copper in alkaline solutions, J. Electroanal. Chem, vol.210, pp.213-227, 1986.

C. Fiaud, Inhibiteurs de corrosion, Tech. l'ingénieur, vol.160, 1990.

M. L. Zheludkevich, K. A. Yasakau, S. K. Poznyak, and M. G. Ferreira, Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy, Corros. Sci, vol.47, issue.12, pp.3368-3383, 2005.

L. Garrigues, N. Pébère, and F. Dabosi, An investigation of the corrosion inhibition of pure aluminium in neutral and acidic chloride solutions, Electrochim. Acta, vol.41, issue.7/8, pp.1209-1215, 1996.

S. V. Lamaka, M. L. Zheludkevich, K. A. Yasakau, M. F. Montemor, and M. G. Ferreira, High effective organic corrosion inhibitors for 2024 aluminium alloy, Electrochim. Acta, vol.52, issue.25, pp.7231-7247, 2007.

A. C. Balaskas, M. Curioni, and G. E. Thompson, Effectiveness of 2-mercaptobenzothiazole, 8-hydroxyquinoline and benzotriazole as corrosion inhibitors on AA 2024-T3 assessed by electrochemical methods, Surf. Interface Anal, vol.47, pp.1029-1039, 2015.

G. T. Hefter, N. A. North, and S. H. Tan, Organic Corrosion Inhibitors in Neutral Solutions ; Part 1 -Inhibition of Steel , Copper , and Aluminum by Straight Chain Carboxylates, Corrosion, vol.53, issue.8, pp.657-667, 1997.

T. Iijima and K. Tadokoro, Environmental-friendly anticorrosive coating compositions for protecting metal surface, pp.4213857-4213859, 2009.

K. Xhanari and M. Fin?gar, Organic corrosion inhibitors for aluminium and its alloys in acid solutions: a review, RSC Adv, vol.6, issue.67, pp.62833-62857, 2016.

K. Xhanari and M. Finsgar, Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review, Arab. J. Chem, 2016.

M. Kendig, S. Jeanjaquet, R. Addison, and J. Waldrop, Role of hexavalent chromium in the inhibition of corrosion of aluminium alloys, Surf. coatings Technol, vol.140, pp.58-66, 2001.

K. C. Emregül and A. A. Aksüt, The effect of sodium molybdate on the pitting corrosion of aluminum, Corros. Sci, vol.45, pp.2415-2433, 2003.

C. Breslin, G. Treacy, and W. M. Carroll, Studies on the Passivation of aluminium, Corros. Sci, vol.36, issue.7, pp.1143-1154, 1994.

J. Sinko, Challenges of chromate inhibitor pigments replacement in organic coatings, Prog. Org. Coatings, vol.42, pp.267-278, 2001.

H. Konno, S. K. Obayashi, H. Takahash, and M. Nagayama, The hydration of barrier oxide films on aluminium and its inhibition by chromate and phosphate ions, Corros. Sci, vol.22, issue.10, pp.913-923, 1982.

A. Kolics, A. S. Besing, P. Baradlai, and A. Wieckowski, Cerium Deposition on Aluminum Alloy 2024-T3 in Acidic NaCl Solutions, J. Electrochem. Soc, vol.150, issue.11, pp.512-516, 2003.

K. A. Yasakau, M. L. Zheludkevich, S. Lamaka, and M. G. Ferreira, Mechanism of Corrosion Inhibition of AA2024 by Rare-Earth Compounds, J. Phys. Chem. B, vol.110, pp.5515-5528, 2006.

R. Woods, G. A. Hope, and K. Watling, A SERS spectroelectrochemical investigation Références bibliographiques

, of the interaction of 2-mercaptobenzothiazole with copper , silver and gold surfaces

, Appl. Electrochem, vol.30, issue.11, pp.1209-1222, 2000.

A. L. Silva and M. D. Ribeiro, Energetic , structural and tautomeric analysis of 2-mercaptobenzimidazole: an experimental and computational approach, J. Therm. Anal. Calorim, vol.129, issue.3, pp.1679-1688, 2017.

M. H. Whittaker, A. Marie, T. Clipson, and F. Hammer, Human health risk assessment of 2-mercaptobenzothiazole in drinking water, Toxicol. Ind. Health, vol.20, pp.149-163, 2004.

J. C. Marconato and L. O. Bulho, A spectroelectrochemical study of the inhibition of the electrode process on copper by 2-mercaptobenzothiazole in ethanolic solutions, Electrochim. Acta, vol.43, issue.7, pp.771-780, 1998.

T. Shahrabi, H. Tavakholi, and M. G. Hosseini, Corrosion inhibition of copper in sulphuric acid by some nitrogen heterocyclic compounds, Anti-Corrosion Methods Mater, vol.54, issue.5, pp.308-313, 2007.

L. P. Kazansky, I. A. Selyaninov, and Y. I. Kuznetsov, Adsorption of 2-mercaptobenzothiazole on copper surface from phosphate solutions, Appl. Surf. Sci, vol.258, issue.18, pp.6807-6813, 2012.

R. Subramanian and V. Lakshminarayanan, Effect of adsorption of some azoles on copper passivation in alkaline, Corros. Sci, vol.44, issue.3, pp.535-554, 2002.

M. Fin?gar, D. , and K. Merl, An electrochemical, long-term immersion, and XPS study of 2-mercaptobenzothiazole as a copper corrosion inhibitor in chloride solution, Corros. Sci, vol.83, pp.164-175, 2014.

J. Li, C. W. Du, Z. Y. Liu, X. G. Li, and M. Liu, Inhibition Film Formed by 2-mercaptobenzothiazole on Copper Surface and Its Degradation Mechanism in Sodium Chloride Solution, Int. J. Electrochem. Sci, vol.11, pp.10690-10705, 2016.

D. Chadwick and T. Hashemi, Electron spectroscopy of corrosion inhibitors: Surface films formed by 2-mercaptobenzothiazole and 2-mercaptobenzimidazole on copper, Corros. Sci, vol.89, issue.1-3, pp.3160-3167, 1979.

M. M. Antonijevic and M. B. Petrovic, Copper Corrosion Inhibitors . A review, Int. J. Electrochem. Sci, vol.3, pp.1-28, 2008.

C. L. Gaworski, C. Aranyi, S. Vana, K. Abdo, B. S. Levine et al., Prechronic Inhalation Toxicity Studies of 2-Mercaptobenzimidazole in F344 / N Rats

, Appl. Toxicol, vol.16, pp.161-171, 1991.

L. Zheng, J. Landon, N. Koebcke, C. Payal, and L. Kunlei, Suitability and stability of 2-mercaptobenzimidazole as a corrosion inhibitor in a post-combustion CO2 capture system, Corrosion, vol.71, issue.6, pp.692-702, 2015.

G. Xue, X. Y. Huang, J. Dong, and J. Zhang, The formation of an effective anticorrosion film on copper surfaces from 2-mercaptobenzimidazole solution

, Electroanal. Chem. Interfacial Electrochem, vol.310, issue.1-2, pp.139-148, 1991.

M. Fin?gar, 2-Mercaptobenzimidazole as a copper corrosion inhibitor: Part II, Corros. Sci, vol.72, pp.90-98, 2013.

D. Q. Zhang, L. X. Gao, and G. D. Zhou, Synergistic effect of 2-mercapto benzimidazole and KI on copper corrosion inhibition in aerated sulfuric acid solution, Journaf Appl. Electrochem, vol.33, issue.5, pp.361-366, 2003.

S. A. Refaey, F. Taha, and A. M. El-malak, Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-Mercaptobenzimidazole, Int. J. Electrochem. Sci, vol.1, pp.80-91, 2006.

D. Costa and P. Marcus, Adsorption of Organic Inhibitor Molecules on Metal and Oxidized Surfaces Studied by Atomistic Theoretical Methods, Molecular Modeling of Corrosion Processes, pp.125-156, 2015.

G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corros. Sci, vol.50, issue.11, pp.2981-2992, 2008.

I. B. Obot, D. D. Macdonald, and Z. M. Gasem, Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors: Part 1: An overview, Corros. Sci, vol.99, p.272, 2015.

P. W. Atkins and J. De-paula, Atkins' Physical Chemistry, 2002.

Z. Zhou and R. G. Parr, Activation Hardness : New Index for Describing the Orientation of Electrophilic Aromatic Substitution, Am. Chem. Soc, vol.112, issue.15, pp.5720-5724, 1990.

R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, Electronegativity : The density functional viewpoint, J. Chem. Phys, vol.68, issue.8, pp.3801-3807, 1978.

R. G. Parr and R. G. Pearson, Absolute Hardness : Companion Parameter to Absolute Electronegativity, Am. Chem. Soc, vol.105, pp.7512-7516, 1983.

W. Yang and R. G. Parr, Hardness , softness , and the fukui function in the electronic theory of metals and catalysis, Proc. Natl. Acad. Sci, vol.82, pp.6723-6726, 1985.

A. R. Jupp, C. Johnstone, T. , and D. W. Stephan, The Global Electrophilicity Index as a Metric for Lewis Acidity, R. Soc. Chem, 2013.

P. M. Niamien, F. K. Essy, A. Trokourey, A. Yapi, H. K. Aka et al., Correlation between the molecular structure and the inhibiting effect of some benzimidazole derivatives, Mater. Chem. Phys, vol.136, pp.59-65, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00824668

M. K. Awad, M. R. Mustafa, and M. M. Abouelnga, Quantum chemical studies and atomistic simulations of some inhibitors for the corrosion of Al surface, Prot. Met. Phys. Chem. Surfaces, vol.52, issue.1, pp.156-168, 2016.

M. Fin?gar, A. Lesar, A. Kokalj, and I. Milo?ev, A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution, Electrochim. Acta, vol.53, issue.28, pp.8287-8297, 2008.

A. Kokalj, S. Peljhan, and I. Milos, What Determines the Inhibition Effectiveness of ATA , BTAH , and BTAOH Corrosion Inhibitors on Copper ?, JACS, vol.132, pp.16657-16668, 2010.

A. Kokalj, Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance, Références bibliographiques, vol.56, pp.745-755, 2010.

F. Schreiber, Structure and growth of self-assembling monolayers, Prog. Surf. Sci, vol.65, pp.151-256, 2000.

F. P. Cometto, V. A. Macagno, and E. M. Patrito, Ag ( 111 ), and Au ( 111 ) in the Low and High Coverage Regimes, Adsorption of Alkanethiols on Cu, vol.109, issue.111, pp.21737-21748, 2005.

C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold : new challenges for a well-known system

, Soc. Chem, vol.39, pp.1805-1834, 2010.

I. B. Obot, Z. M. Gasem, and S. A. Umoren, Cu (111) and Al (111) surfaces: DFT and molecular dynamics simulations approaches, Int. J. Electrochem. Sci, vol.9, issue.5, pp.2367-2378, 2014.

J. Radilla, G. E. Negron-silva, M. Palomar-pardavé, M. Romero-romo, and M. Galvan, DFT study of the adsorption of the corrosion inhibitor 2-mercaptoimidazole onto

, Fe(100) surface, Electrochim. Acta, vol.112, pp.577-586, 2013.

N. A. Wazzan, DFT calculations of thiosemicarbazide, arylisothiocynates, and 1-aryl-2,5-dithiohydrazodicarbonamides as corrosion inhibitors of copper in an aqueous chloride solution, J. Ind. Eng. Chem, vol.26, pp.291-308, 2015.

A. Kokalj, Ab initio modeling of the bonding of benzotriazole corrosion inhibitor to reduced and oxidized copper surfaces, Faraday Discuss, vol.180, pp.415-438, 2015.

A. Kokalj and S. Peljhan, Density Functional Theory Study of Adsorption of Benzotriazole on Cu2O Surfaces, J. Phys. Chem. C, vol.119, issue.21, pp.11625-11635, 2015.

K. F. Khaled, Experimental and atomistic simulation studies of corrosion inhibition of copper by a new benzotriazole derivative in acid medium, Electrochim. Acta, vol.54, pp.4345-4352, 2009.

L. T. Sein, Y. Wei, and S. A. Jansen, Corrosion inhibition by aniline oligomers through charge transfer: A DFT approach, Synth. Met, vol.143, issue.1, pp.1-12, 2004.

D. Costa, T. Ribeiro, P. Cornette, and P. Marcus, DFT Modeling of Corrosion Inhibition by Organic Molecules : Carboxylates as Inhibitors of Aluminum Corrosion, J. Phys. Chem. C, 2016.

S. Sun, Y. Geng, L. Tian, S. Chen, Y. Yan et al., Density functional theory study of imidazole , benzimidazole and 2-mercaptobenzimidazole adsorption onto clean Cu ( 1 1 1 ) surface, Corros. Sci, vol.63, pp.140-147, 2012.

I. Milo?ev, N. Kova?eví, J. Kova?, and A. Kokalj, The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: II. Inhibitor-copper bonding, Corros. Sci, vol.98, pp.107-118, 2015.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, vol.136, issue.3B, pp.864-871, 1964.

E. Schrödinger, An undulatory theory of the mechanics of atmos and molecules, Phys. Rev, vol.28, issue.6, pp.1049-1070, 1926.

M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys, vol.84, issue.20, pp.457-484, 1927.

D. R. Hartree, The wave mechanics of an atom with a non-coulomb central field, part I, theory and methods, Math. Proc. cambridge Philos. Soc, vol.24, issue.1, p.1928, 1928.

D. R. Hartree, The wave mechanics of an atome with a non-coulomb central field, part II, some results and discussion, Math. Proc. cambridge Philos. Soc, vol.24, issue.01, pp.111-132, 1928.

J. C. Slater, The theory of complex spectra, Phys. Rev, vol.34, issue.10, pp.1293-1322, 1929.

L. H. Thomas, The calculation of atomic fields, Math. Proc. cambridge Philos. Soc, vol.23, issue.5, pp.542-548, 1926.

E. Fermi, Un metodo statistico per la determinazione di alcune priorieta dell'atome, Rend. Accad. Naz. Lincei, vol.6, pp.602-607, 1927.

W. Kohn and L. J. Sham, Self-consistens equations including exchange and correlation effects, Phys. Rev, vol.140, issue.4A, p.275, 1965.

S. Grimme, T. O. Chemie, and O. I. Münster, Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction, J. Comput. Chem, vol.27, issue.15, pp.1787-1799, 2006.

V. G. Ruiz, W. Liu, E. Zojer, M. Scheffler, and A. Tkatchenko, Density-Functional Theory with Screened van der Waals Interactions for the Modeling of Hybrid Inorganic-Organic Systems, Phys. Rev. Lett, vol.108, issue.14, 2012.

H. Rydberg, Van der Waals Density Functional for Layered Structures, Phys. Rev. Lett, vol.91, issue.12, 2003.

P. E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, vol.50, issue.24, pp.17953-17979, 1994.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B, vol.59, issue.3, pp.11-19, 1999.

G. Kresse and J. Furthmiiller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci, vol.6, pp.15-50, 1996.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab-initio total energy calculations using a plane-wave basis set, Phys. Rev, vol.54, issue.16, pp.11169-11186, 1996.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev, vol.77, issue.18, pp.3865-3868, 1996.

J. P. Perdew, Atoms , Molecules , Solids , and Surfaces : Applications of the Generalized Gradient Approximation for Exchange and Correlation, Phys. Rev, vol.46, issue.11, pp.6671-6687, 1992.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev, vol.13, issue.12, pp.5188-5192, 1976.

M. Methfessel and A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev, vol.40, issue.6, pp.3616-3621, 1989.

G. Henkelman and H. Jonsson, Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points Improved tangent saddle points, J. Chem. Phys, vol.113, issue.22, pp.9978-9985, 2000.

S. Tanuma, C. J. Powell, and D. R. Penn, Calculations of electron inelastic mean free paths . IX . Data for 41 elemental solids over the 50 eV to 30 keV range, Surf. Interface Anal, vol.43, pp.689-713, 2010.

U. Agarwala and P. Khullar, Complexes of 2-Mercaptobenzothiazole with Cu(II), Cd(II), Zn(II), Pb(II), vol.53, pp.1165-1174, 1975.

W. Qin, J. Wang, S. Xu, Q. Xie, and Z. Xu, Selectivity of 2-mercaptobenzimidazole derivatives on metal ions studied by UV -vis spectromentry and DFT calculations, Colloids Surfaces A Physicochem. Eng. Asp, vol.490, pp.318-325, 2016.

F. Caprioli, F. Decker, A. G. Marrani, M. Beccari, and V. D. Castro, Copper protection by self-assembled monolayers of aromatic thiols in alkaline solutions, Phys. Chem. Chem. Phys, vol.12, pp.9230-9238, 2010.

Y. I. Kuznetsov and L. P. Kazansky, Physicochemical aspects of metal protection by azoles as corrosion inhibitors, Russ. Chem. Rev, vol.77, issue.3, pp.219-232, 2008.

G. Zerjav and I. Milosev, Protection of copper against corrosion in simulated urban rain by the combined action of benzotriazole , 2-mercaptobenzimidazole and stearic acid, Corros. Sci, vol.98, pp.180-191, 2015.

R. Catubig, A. E. Hughes, I. S. Cole, B. R. Hinton, and M. Forsyth, The use of cerium and praseodymium mercaptoacetate as thiol-containing inhibitors for AA2024-T3, Corros. Sci, vol.81, pp.45-53, 2014.

T. A. Mohamed, A. M. Mustafa, W. M. Zoghaib, M. S. Afifi, and R. S. Farag, Reinvestigation of benzothiazoline-2-thione and 2-mercaptobenzothiazole tautomers : Conformational stability , barriers to internal rotation and DFT calculations, J. Mol

, Struct. THEOCHEM, vol.868, pp.27-36, 2008.

S. Stoyanov, I. Petkov, L. Antonov, and T. Stoyanova, Thione-thiol tautomerism and stability of 2-and 4-mercaptopyridines and 2-mercaptopyrimidines, Can. J. Chem, vol.68, pp.1482-1489, 1989.

N. Sandhyarani, G. Skanth, S. Berchmans, V. Yegnaraman, and T. Pradeep, A Combined Surface-Enhanced Raman -X-Ray Photoelectron Spectroscopic Study of 2-mercaptobenzothiazole Monolayers on Polycrystalline Au and Ag Films, J. Colloid Interface Sci, vol.209, pp.154-161, 1999.

A. A. Boraei and I. T. Ahmed, Acid Dissociation Constants of Some Mercaptobenzazoles in Aqueous-Organic Solvent Mixtures, J. Chem. Eng. Data, vol.41, pp.787-790, 1996.

W. O. Foye and J. Lo, Metal-binding abilities of antibacterial heterocyclic thiones, J. Pharm. Sci, vol.61, issue.8, pp.1209-1212, 1972.

A. Samide, P. Rotaru, B. Tutunaru, and A. Moant, Thermal behaviour and adsorption properties of some benzothiazole derivatives, J. Therm. Anal. Calorim, vol.118, issue.2, pp.651-659, 2014.

P. Cornette, Approche expérimentale et théorique de l'inhibition de la corrosion de surfaces métalliques, 2018.

M. Fuchs, M. Bockstedte, E. Pehlke, and M. Scheffler, Pseudopotential study of binding properties of solids within generalized gradient approximations: The role of core-valence exchange correlation, Phys. Rev. B, vol.57, issue.4, pp.2134-2145, 1998.

J. L. Silva, C. Stampfl, and M. Scheffler, Converged properties of clean metal surfaces by all-electron first-principles calculations, Surf. Sci, vol.600, pp.703-715, 2006.

S. Peljhan, J. Koller, and A. Kokalj, The effect of surface geometry of copper on adsorption of benzotriazole and Cl. Part i, J. Phys. Chem. C, vol.118, issue.2, pp.933-943, 2014.

T. Ribeiro, A. Motta, P. Marcus, M. Gaigeot, X. Lopez et al., Formation of the OOH ? radical at steps of the boehmite surface and its inhibition by gallic acid : A theoretical study including DFT-based dynamics, J. Inorg. Biochem, vol.128, pp.164-173, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02112576

T. Ribeiro, Green coating' à l'échelle atomique, 2013.

D. Costa, T. Ribeiro, F. Mercuri, G. Pacchioni, and P. Marcus, Atomistic Modeling of Corrosion Resistance : A First Principles Study of O 2 Reduction on the Al

, Surface Covered with a Thin Hydroxylated Alumina Film, Adv. Mater. interfaces, vol.1, issue.3, pp.1-12, 2014.

A. Abdureyim, K. K. Okudaira, Y. Harada, S. Masuda, M. Aoki et al., Characterization of 4-mercaptohydrocynnamic acid self-assembled film on Au ( 111 ) by means of X-ray photoelectron spectroscopy, J. Electron Spectros. Relat. Phenomena, pp.371-374, 2001.

Y. S. Tan, M. P. Srinivasan, S. O. Pehkonen, and S. Y. Chooi, Self-assembled organic thin films on electroplated copper for prevention of corrosion, J. vaccum Sci

, Technol. a vaccum surfaces Film, vol.22, issue.4, pp.1917-1925, 2004.

D. Zerulla and T. Chasse, X-ray Induced Damage of Self-Assembled Alkanethiols on Gold and Indium Phosphide, Langmuir, vol.15, pp.5285-5294, 1999.

N. S. Mclntyre and M. G. Cook, X-Ray Photoelectron Studies on Some Oxides and Hydroxides of Cobalt, Nickel, and Copper, Anal. Chem, vol.47, issue.13, pp.2208-2213, 1975.

J. C. Klein, C. P. Li, D. M. Hercules, and F. James, Decomposition of Copper Compounds in X-Ray Photoelectron Spectrometers, Appl. Spectrosc, vol.38, issue.5, pp.729-734, 1984.

G. Deroubaix and P. Marcus, X-ray Photoelectron Spectroscopy Analysis of Copper and Zinc Oxides and Sulphides, Surf. Interface Anal, vol.18, pp.39-46, 1992.

B. E. Bautista, Influence of extracellular polymeric substances ( EPS ) from Pseudomonas NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in seawater, J. Electroanal. Chem, vol.737, pp.184-197, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01111550

C. J. Lee, S. Y. Lee, M. R. Karim, and M. S. Lee, Comparison of the adsorption orientation for 2-mercaptobenzothiazole and 2-mercaptobenzoxazole by SERS spectroscopy, Spectrochim. Acta Part A, vol.68, pp.1313-1319, 2007.

R. K. Shervedani, A. Hatefi-mehrjardi, and M. K. Babadi, Comparative electrochemical study of self-assembled monolayers of 2-mercaptobenzimidazole formed on polycrystalline gold electrode, Electrochim. Acta, vol.52, p.279, 2007.

J. L. Domang and J. Oudar, Structure et conditions de formation de la couche d'adsorption du soufre sur le cuivre, Surf. Sci, vol.11, pp.124-142, 1968.

N. P. Prince, D. L. Seymour, M. J. Ashwin, C. F. Mcconville, D. P. Woodruff et al., A SEXAFS and X-RAY standing wave study of the Cu, p.19

, surface: adsorbate-substrate and adsorbate-adsorbate registry, Surf. Sci, vol.230, pp.13-26, 1990.

L. Ruan, I. Stensgaard, F. Besenbacher, and E. Laegesgaard, A scanning tunneling microscopy study of the interaction of S with the Cu ( 111 ) surface, Ultramicroscopy, pp.498-504, 1992.

M. Foss, Sulfur induced Cu4 tetramers on Cu, vol.388, pp.5-14, 1997.

D. Wang, Q. Xu, L. Wan, C. Wang, and C. Bai, Atomic structures of adsorbed sulfur on Cu ( 1 1 1 ) in perchloric acid solution by in situ ECSTM, Surf. Sci, vol.499, pp.159-163, 2002.

M. R. Alexander, G. E. Thompson, and G. Beamson, Characterization of the oxide / hydroxide surface of aluminium using x-ray photoelectron spectroscopy : a procedure for curve fitting the O 1s core level, Surf. Interface Anal, vol.29, pp.468-477, 2000.

T. L. Barr, An ESCA Study of the Termination of the Passivation of Elemental Metals, J. Phys. Chem, vol.82, issue.16, pp.1801-1810, 1978.

O. Böse, E. Kemnitz, A. Lippitz, and W. E. Unger, C 1s and Au 4f 7 / 2 referenced XPS binding energy data obtained with different aluminium oxides , -hydroxides andfluorides, J. Anal. Chem, vol.358, pp.175-179, 1997.

J. Van-den, W. G. Brand, H. Sloof, J. H. Terryn, and . De-wit, Correlation between hydroxyl fraction and O / Al atomic ratio as determined from XPS spectra of aluminium oxide layers, Surfac, vol.36, pp.81-88, 2004.

M. Wahlqvist and A. Shchukarev, XPS spectra and electronic structure of Group IA sulfates, J. Electroanal. Chem. Relat. Phenom, pp.310-314, 2007.

F. Debontridder, Influence de l'acidité de surface sur les mécanismes précurseurs de formation d'une interphase dans les assemblages époxy-aluminium

. Scientifique-d'orsay, , 2001.

I. Recloux, Stability of benzotriazole-based films against AA2024 aluminium alloy corrosion process in neutral chloride electrolyte, J. Alloys Compd, vol.735, pp.2512-2522, 2018.

F. Chiter, DFT studies of the bonding mechanism of 8-hydroxyquinoline and derivatives on the ( 111 ) aluminum surface, Phys. Chem. Chem. Phys, issue.111, pp.22243-22258, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01264340

K. P. Sherif and R. Narayan, Electrochemical behaviour of Aluminium in 1m NaCl Solution, Br. Corros. J, vol.24, issue.3, pp.199-203, 1989.

C. ,

B. Deslouis, G. Tribollet, M. Mengoli, and . Musiani, Electrochemical behaviour of copper in neutral aerated chloride solution . I . Steady-state investigation, J. Appl. Electrochem, vol.18, pp.374-383, 1988.

K. Balakrisknan and V. K. Venkatesan, Cathodic reduction of oxygen on copper and brass, Electrochim. Acta, vol.24, pp.131-138, 1979.

J. Bergmann-maronsson, Theoretical Calculations of Electrochemical Systems, 2008.

L. D. Chen, M. Urushihara, K. Chan, and J. K. Norskov, Electric Field Effects in Electrochemical CO 2 Reduction, ACS Catal, vol.6, issue.10, pp.7133-7139, 2016.