S. H. Hardarson and E. Stefánsson, Retinal oxygen saturation is altered in diabetic retinopathy, Br. J. Ophthalmol, vol.96, pp.560-563, 2012.

B. Pemp and L. Schmetterer, Ocular blood flow in diabetes and age-related macular degeneration, Can. J. Ophthalmol. Can. d'Ophtalmologie, vol.43, pp.295-301, 2008.

A. P. Cherecheanu, G. Garhofer, D. Schmidl, R. Werkmeister, and L. Schmetterer, Ocular perfusion pressure and ocular blood flow in glaucoma, Curr. Opin. Pharmacol, vol.13, pp.36-42, 2013.

J. A. Briers and S. Webster, Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields, Opt. Comm, vol.116, pp.36-42, 1995.

A. H. Kashani, C. Chen, J. K. Gahm, F. Zheng, G. M. Richter et al., Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications, Prog. Retin. Eye Res, 2017.

R. K. Wang, L. An, P. Francis, and D. J. Wilson, Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography, Opt. Lett, vol.35, pp.1467-1469, 2010.

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi et al., Quantitative OCT angiography of optic nerve head blood flow, Biomed. Opt. Express, vol.3, pp.3127-3137, 2012.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu et al., Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography, PloS One, vol.8, p.81499, 2013.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. Mcclintic, S. S. Gao et al., Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye, Proc. Natl. Acad. Sci, vol.112, pp.2395-2402, 2015.

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali et al., Non-invasive imaging of in vivo blood flow velocity using optical Doppler tomography, Opt. Lett, vol.22, pp.1119-1121, 1997.

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography, Opt. Lett, vol.22, pp.1439-1441, 1997.

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. De-boer et al., Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity, Opt. Lett, vol.25, pp.114-116, 2000.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, Doppler Optical Coherence Tomography, Prog. Retin. Eye Res, vol.41, pp.26-43, 2014.

H. Fujii, Visualisation of retinal blood flow by laser speckle flowgraphy, Med. Biol. Eng. Comput, vol.32, pp.302-304, 1994.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, Use of laser speckle flowgraphy in ocular blood flow research, Acta Ophthalmol, vol.88, pp.723-729, 2010.

C. Riva, S. Harino, B. Petrig, and R. Shonat, Laser Doppler flowmetry in the optic nerve, Exp. Eye Res, vol.55, pp.499-506, 1992.

M. Leahy, F. De-mul, G. Nilsson, and R. Maniewski, Principles and practice of the laser-Doppler perfusion technique, Technol. Heal. Care, vol.7, pp.143-162, 1999.

C. E. Riva, M. Geiser, and B. L. Petrig, Ocular blood flow assessment using continuous laser Doppler flowmetry, Acta Ophthalmol, vol.88, pp.622-629, 2009.

V. Rajan, B. Varghese, T. G. Van-leeuwen, and W. Steenbergen, Review of methodological developments in laser Doppler flowmetry, Lasers Med. Sci, vol.24, pp.269-283, 2009.

G. Michelson, B. Schmauss, M. Langhans, J. Harazny, and M. Groh, Principle, validity, and reliability of scanning laser Doppler flowmetry, J. Glaucoma, vol.5, pp.99-105, 1996.

L. Schmetterer and G. Garhofer, How can blood flow be measured?, Surv. Ophthalmol, vol.52, pp.134-138, 2007.

A. Serov, W. Steenbergen, and F. De-mul, Laser Doppler perfusion imaging with complementary metal oxide semiconductor image sensor, Opt. Lett, vol.27, pp.300-302, 2002.

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp et al., Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography, Opt. letters, vol.40, pp.4771-4774, 2015.

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke et al., In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography, Opt. Lett, vol.41, pp.4987-4990, 2016.

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister et al., Line-field parallel swept source MHz OCT for structural and functional retinal imaging, Biomed. Opt. Express, vol.6, pp.716-735, 2015.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke et al., Aberration-free volumetric high-speed imaging of in vivo retina, Sci. Reports, vol.6, p.35209, 2016.

L. Ginner, T. Schmoll, A. Kumar, M. Salas, N. Pricoupenko et al., Holographic line field en-face OCT with digital adaptive optics in the retina in vivo, Biomed. Opt. Express, vol.9, pp.472-485, 2018.

M. Pellizzari, M. Simonutti, J. Degardin, J. Sahel, M. Fink et al., High speed optical holography of retinal blood flow, Opt. letters, vol.41, pp.3503-3506, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386360

H. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques, 2003.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. Petrig, Blood velocity and volumetric flow rate in human retinal vessels, Investig. Ophthalmol. & Vis. Sci, vol.26, pp.1124-1132, 1985.

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou et al., Holographic laser Doppler imaging of microvascular blood flow, JOSA A, vol.31, pp.2723-2735, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086781

J. W. Goodman, Introduction to Fourier Optics, 2005.

M. Guizar-sicairos, S. T. Thurman, and J. R. Fienup, Efficient subpixel image registration algorithms, Opt. Lett, vol.33, pp.156-158, 2008.

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park et al., In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography, Opt. Express, vol.11, pp.3490-3497, 2003.

H. N. Sabbah and P. D. Stein, Valve origin of the aortic incisura, Am. J. Cardiol, vol.41, pp.32-38, 1978.

M. Stern, D. Lappe, P. Bowen, J. Chimosky, G. Holloway et al., Continuous measurement of tissue blood flow by laser-Doppler spectroscopy, Am. J. Physiol, vol.232, pp.441-448, 1977.

J. F. Polak, J. M. Alessi-chinetti, A. R. Patel, and J. M. Estes, Association of common carotid artery Dopplerdetermined dicrotic notch velocity with the left ventricular ejection fraction, J. Ultrasound Medicine, vol.34, pp.461-467, 2015.

V. Doblhoff-dier, L. Schmetterer, W. Vilser, G. Garhöfer, M. Gröschl et al., Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes, Biomed. Opt. Express, vol.5, pp.630-642, 2014.

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy, Opt. Express, vol.16, pp.12746-12756, 2008.

R. Bonner and R. , Model for laser Doppler measurements of blood flow in tissue, Appl. Opt, vol.20, pp.2097-2107, 1981.

R. F. Bonner and R. , Principles of laser-Doppler flowmetry, Laser-Doppler Blood Flowmetry, vol.9, 2018.

J. Schmitt, A. Gandjbakhche, and R. Bonner, Use of polarized light to discriminate short-path photons in a multiply scattering medium, Appl. Opt, vol.31, p.6535, 1992.

L. F. Rojas-ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, Depolarization of backscattered linearly polarized light, JOSA A, vol.21, pp.1799-1804, 2004.

A. Alm and A. Bill, Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues, Exp. Eye Res, vol.15, pp.15-29, 1973.

P. M. Bischoff and R. W. Flower, Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?, Documenta Ophthalmol, vol.60, pp.235-291, 1985.

H. Laviers and H. Zambarakji, Enhanced depth imaging-OCT of the choroid: a review of the current literature, Graefe's Arch. for Clin. Exp. Ophthalmol, vol.252, pp.1871-1883, 2014.

D. Ferrara, N. K. Waheed, and J. S. Duker, Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies, Prog. Retin. Eye Res, vol.52, pp.130-155, 2016.

S. Mrejen and R. F. Spaide, Optical coherence tomography: imaging of the choroid and beyond, Surv. Ophthalmol, vol.58, pp.387-429, 2013.

D. S. Mcleod, R. Grebe, I. Bhutto, C. Merges, T. Baba et al., Relationship between RPE and choriocapillaris in age-related macular degeneration, Investig. Ophthalmol. & Vis. Sci, vol.50, pp.4982-4991, 2009.

S. S. Hayreh, Blood Supply of the Optic Nerve, Ischemic Optic Neuropathies, pp.35-78, 2011.

L. A. Yannuzzi, Indocyanine green angiography: a perspective on use in the clinical setting, Am. J. Ophthalmol, vol.151, pp.745-751, 2011.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, Enhanced depth imaging spectral-domain optical coherence tomography, Am. J. Ophthalmol, vol.146, pp.496-500, 2008.

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, Optical coherence tomography angiography, Prog. Retin. Eye Res, vol.64, pp.1-55, 2018.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu et al., Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography, PloS One, vol.8, p.81499, 2013.

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-µm swept-source optical coherence tomography, J. Biomed. Opt, vol.19, p.126010, 2014.

, BIOMEDICAL OPTICS EXPRESS, vol.10, issue.2, p.1011, 2019.

I. Gorczynska, J. V. Migacz, R. J. Zawadzki, A. G. Capps, and J. S. Werner, Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid, Biomed. Opt. Express, vol.7, pp.911-942, 2016.

K. Kurokawa, Z. Liu, and D. T. Miller, Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris, Biomed. Opt. Express, vol.8, pp.1803-1822, 2017.

J. V. Migacz, I. Gorczynska, M. Azimipour, R. Jonnal, R. J. Zawadzki et al., Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging, Biomed. Opt. Express, vol.10, pp.50-65, 2019.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, Use of laser speckle flowgraphy in ocular blood flow research, Acta Ophthalmol, vol.88, pp.723-729, 2010.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak et al., Assessment of choroidal blood flow using laser speckle flowgraphy, Br. J. Ophthalmol, p.2017, 2018.

M. Mujat, Y. Lu, G. Maguluri, Y. Zhao, N. Iftimia et al., Visualizing the vasculature of the entire human eye posterior hemisphere without a contrast agent, Biomed. Opt. Express, vol.10, pp.167-180, 2019.

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou et al., Holographic laser Doppler imaging of microvascular blood flow, JOSA A, vol.31, pp.2723-2735, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086781

M. Pellizzari, M. Simonutti, J. Degardin, J. Sahel, M. Fink et al., High speed optical holography of retinal blood flow, Opt. Lett, vol.41, pp.3503-3506, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386360

D. Donnarumma, A. Brodoline, D. Alexandre, and M. Gross, 4D holographic microscopy of zebrafish larvae microcirculation, Opt. Express, vol.24, pp.26887-26900, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01363227

L. Puyo, M. Paques, M. Fink, J. Sahel, and M. Atlan, In vivo laser Doppler holography of the human retina, Biomed. Opt. Express, vol.9, pp.4113-4129, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875560

S. S. Hayreh, Posterior ciliary artery circulation in health and disease the Weisenfeld lecture, Investig. Ophthalmol. & Vis. Sci, vol.45, pp.749-757, 2004.

C. V. Network, Developmental anatomy of the retinal and choroidal vasculature, The Retin. Its Disord, vol.179, 2011.

S. S. Hayreh, Segmental nature of the choroidal vasculature, Br. J. Ophthalmol, vol.59, pp.631-648, 1975.

K. Hayashi and J. De-laey, Indocyanine green angiography of submacular choroidal vessels in the human eye, Ophthalmologica, vol.190, pp.20-29, 1985.

F. G. Bottoni, A. L. Aandekerk, and A. F. Deutman, Clinical application of digital indocyanine green videoangiography in senile macular degeneration, Graefe's Arch. for Clin. Exp. Ophthalmol, vol.232, pp.458-468, 1994.

P. Amalric, The choriocapillaris in the macular area, Int. Ophthalmol, vol.6, pp.149-153, 1983.

A. H. Kashani, C. Chen, J. K. Gahm, F. Zheng, G. M. Richter et al., Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications, Prog. Retin. Eye Res, 2017.

J. Chua, C. W. Chin, J. Hong, M. L. Chee, T. Le et al., Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography, J. Hypertens, vol.37, pp.572-580, 2019.

S. Mrejen and R. F. Spaide, Optical coherence tomography: imaging of the choroid and beyond, Surv. Ophthalmol, vol.58, pp.387-429, 2013.

P. J. Rosenfeld, M. K. Durbin, L. Roisman, F. Zheng, A. Miller et al., Zeiss angioplex spectral domain optical coherence tomography angiography: technical aspects, OCT Angiography in Retinal and Macular Diseases, vol.56, pp.18-29, 2016.

Y. Shiga, H. Kunikata, N. Aizawa, N. Kiyota, Y. Maiya et al., Optic nerve head blood flow, as measured by laser speckle flowgraphy, is significantly reduced in preperimetric glaucoma, Curr. Eye Res, vol.41, pp.1447-1453, 2016.

A. S. Mursch-edlmayr, N. Luft, D. Podkowinski, M. Ring, L. Schmetterer et al., Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a pilot study, Sci. Reports, vol.8, p.5343, 2018.

P. Bonnin, J. C. Pournaras, K. Makowiecka, V. Krivosic, A. W. Kedra et al., Ultrasound assessment of ocular vascular effects of repeated intravitreal injections of ranibizumab for wet age-related macular degeneration, Acta Ophthalmol, vol.92, pp.382-387, 2014.

G. E. Mcveigh, A. J. Bank, and J. N. Cohn, Arterial compliance, Cardiovascular Medicine, pp.1811-1831, 2007.

A. P. Avolio, M. Butlin, and A. Walsh, Arterial blood pressure measurement and pulse wave analysis: their role in enhancing cardiovascular assessment, Physiol. Meas, vol.31, p.1, 2009.

D. Rosenbaum, N. Kachenoura, E. Koch, M. Paques, P. Cluzel et al., Relationships between retinal arteriole anatomy and aortic geometry and function and peripheral resistance in hypertensives, Hypertens. Res, vol.39, p.536, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02635404

H. S. Brar and L. D. Platt, Reverse end-diastolic flow velocity on umbilical artery velocimetry in high-risk pregnancies: an ominous finding with adverse pregnancy outcome, Am. J. Obstet. Gynecol, vol.159, pp.559-561, 1988.

W. W. Nichols and D. G. Edwards, Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy, J. Cardiovasc. Pharmacol. Ther, vol.6, pp.5-21, 2001.

, BIOMEDICAL OPTICS EXPRESS, vol.10, issue.10, 2019.

D. Maulik, Spectral Doppler sonography: waveform analysis and hemodynamic interpretation, Doppler Ultrasound in Obstetrics and Gynecology, pp.35-56, 2005.

S. Tsuda, H. Kunikata, M. Shimura, N. Aizawa, K. Omodaka et al., Pulse-waveform analysis of normal population using laser speckle flowgraphy, Curr. Eye Res, vol.39, pp.1207-1215, 2014.

N. Luft, P. A. Wozniak, G. C. Aschinger, K. Fondi, A. M. Bata et al., Ocular blood flow measurements in healthy white subjects using laser speckle flowgraphy, PLoS One, vol.11, p.168190, 2016.

B. Gu, X. Wang, M. D. Twa, J. Tam, C. A. Girkin et al., Non-invasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging, Biomed. Opt. Express, vol.9, pp.3653-3677, 2018.

R. D. Plumb, P. K. Hamilton, D. J. Rea, S. A. Wright, S. M. Hughes et al., Wave reflection signatures: identifying early microvascular abnormalities in type 2 diabetes, The Br. J. Diabetes & Vasc. Dis, vol.11, pp.243-248, 2011.

G. E. Mcveigh, P. K. Hamilton, and D. R. Morgan, Evaluation of mechanical arterial properties: clinical, experimental and therapeutic aspects, Clin. Sci, vol.102, pp.51-67, 2002.

S. Laurent, J. Cockcroft, L. Van-bortel, P. Boutouyrie, C. Giannattasio et al., Expert consensus document on arterial stiffness: methodological issues and clinical applications, Eur. Hear. J, vol.27, pp.2588-2605, 2006.

M. E. Safar, Arterial stiffness as a risk factor for clinical hypertension, Nat. Rev. Cardiol, vol.15, p.97, 2018.

M. E. Safar and P. Lacolley, Disturbance of macro-and microcirculation: relations with pulse pressure and cardiac organ damage, Am. J. Physiol. Circ. Physiol, vol.293, pp.1-7, 2007.

R. F. Bonner and R. , Principles of laser-Doppler flowmetry, Laser-Doppler Blood Flowmetry, pp.17-45, 1990.

C. Riva, S. Cranstoun, J. Grunwald, and B. Petrig, Choroidal blood flow in the foveal region of the human ocular fundus, Invest. Ophthalmol. Vis. Sci, vol.35, pp.4273-4281, 1994.

C. E. Riva, M. Geiser, and B. L. Petrig, Ocular blood flow assessment using continuous laser Doppler flowmetry, Acta Ophthalmol, vol.88, pp.622-629, 2010.

A. Serov and T. Lasser, High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor, Opt. Express, vol.13, pp.6416-6428, 2005.

G. Michelson, B. Schmauss, M. Langhans, J. Harazny, and M. Groh, Principle, validity, and reliability of scanning laser Doppler flowmetry, J. Glaucoma, vol.5, pp.99-105, 1996.

M. Mujat, Y. Lu, G. Maguluri, Y. Zhao, N. Iftimia et al., Visualizing the vasculature of the entire human eye posterior hemisphere without a contrast agent, Biomed. Opt. Express, vol.10, pp.167-180, 2019.

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou et al., Holographic laser Doppler imaging of microvascular blood flow, JOSA A, vol.31, pp.2723-2735, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086781

M. Pellizzari, M. Simonutti, J. Degardin, J. Sahel, M. Fink et al., High speed optical holography of retinal blood flow, Opt. Lett, vol.41, pp.3503-3506, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386360

D. Donnarumma, A. Brodoline, D. Alexandre, and M. Gross, 4d holographic microscopy of zebrafish larvae microcirculation, Opt. Express, vol.24, pp.26887-26900, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01363227

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke et al., Aberration-free volumetric high-speed imaging of in vivo retina, Sci. reports, vol.6, p.35209, 2016.

L. Ginner, T. Schmoll, A. Kumar, M. Salas, N. Pricoupenko et al., Holographic line field en-face OCT with digital adaptive optics in the retina in vivo, Biomed. Opt. Express, vol.9, pp.472-485, 2018.

H. Spahr, C. Pfäffle, P. Koch, H. Sudkamp, G. Hüttmann et al., Interferometric detection of 3D motion using computational subapertures in optical coherence tomography, Opt. express, vol.26, pp.18803-18816, 2018.

L. Ginner, A. Wartak, M. Salas, M. Augustin, M. Niederleithner et al., Synthetic subaperture-based angle-independent Doppler flow measurements using single-beam line field optical coherence tomography in vivo, Opt. Lett, vol.44, pp.967-970, 2019.

A. Brodoline, N. Rawat, D. Alexandre, N. Cubedo, and M. Gross, 4d compressive sensing holographic microscopy imaging of small moving objects, Opt. Lett, vol.44, pp.2827-2830, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02189448

L. Puyo, M. Paques, M. Fink, J. Sahel, and M. Atlan, In vivo laser Doppler holography of the human retina, Biomed. Opt. Express, vol.9, pp.4113-4129, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875560

L. Puyo, M. Paques, M. Fink, J. Sahel, and M. Atlan, Choroidal vasculature imaging with laser Doppler holography, Biomed. Opt. Express, vol.10, pp.995-1012, 2019.

D. D. Postnov, X. Cheng, S. E. Erdener, and D. A. Boas, Choosing a laser for laser speckle contrast imaging, Sci. Reports, vol.9, p.2542, 2019.

J. W. Goodman, Introduction to Fourier Optics, 2005.

D. H. Evans, Doppler Ultrasound: Physics, Instrumentation, and Clinical Applications, 1989.

E. Macé, G. Montaldo, I. Cohen, M. Baulac, M. Fink et al., Functional ultrasound imaging of the brain, Nat. Methods, vol.8, p.662, 2011.

W. Nichols, C. Pepine, E. Geiser, and C. Conti, Vascular load defined by the aortic input impedance spectrum, Federation Proceedings, vol.39, pp.196-201, 1980.

, BIOMEDICAL OPTICS EXPRESS, vol.10, issue.10, 2019.

S. M. Toy, J. Melbin, and A. Noordergraaf, Reduced models of arterial systems, IEEE Transactions on Biomed. Eng. pp, pp.174-176, 1985.

F. Tranquart, O. Bergès, P. Koskas, S. Arsene, C. Rossazza et al., Color Doppler imaging of orbital vessels: personal experience and literature review, J. Clin. Ultrasound, vol.31, pp.258-273, 2003.

C. Demené, M. Pernot, V. Biran, M. Alison, M. Fink et al., Ultrafast Doppler reveals the mapping of cerebral vascular resistivity in neonates, J. Cereb. Blood Flow & Metab, vol.34, pp.1009-1017, 2014.

L. Pourcelot, Applications cliniques de l'examen Doppler transcutane, Velocim. Ultrason. Doppler, vol.34, pp.780-785, 1974.

R. O. Bude and J. M. Rubin, Relationship between the resistive index and vascular compliance and resistance, Radiology, vol.211, pp.411-417, 1999.

R. O. Bude and J. M. Rubin, Effect of downstream cross-sectional area of an arterial bed on the resistive index and the early systolic acceleration, Radiology, vol.212, pp.732-738, 1999.

E. J. Halpern, D. A. Merton, and F. Forsberg, Effect of distal resistance on Doppler US flow patterns, Radiology, vol.206, pp.761-766, 1998.

E. Polska, K. Kircher, P. Ehrlich, P. V. Vecsei, and L. Schmetterer, RI in central retinal artery as assessed by CDI does not correspond to retinal vascular resistance, Am. J. Physiol. Circ. Physiol, vol.280, pp.1442-1447, 2001.

C. V. Network, Developmental anatomy of the retinal and choroidal vasculature, The Retin. Its Disord, vol.179, 2011.

H. Isono, S. Kishi, Y. Kimura, N. Hagiwara, N. Konishi et al., Observation of choroidal circulation using index of erythrocytic velocity, Arch. Ophthalmol, vol.121, pp.225-231, 2003.

T. Iwase, K. Yamamoto, E. Ra, K. Murotani, S. Matsui et al., Diurnal variations in blood flow at optic nerve head and choroid in healthy eyes: diurnal variations in blood flow, Medicine, vol.94, 2015.

K. Fondi, A. M. Bata, N. Luft, K. J. Witkowska, R. M. Werkmeister et al., Evaluation of flicker induced hyperemia in the retina and optic nerve head measured by laser speckle flowgraphy, PloS One, vol.13, p.207525, 2018.

D. Squirrell, A. Watts, D. Evans, C. Mody, and J. Talbot, A prospective evaluation of the heidelberg retina flowmeter in diagnosing ischaemia following branch retinal vein occlusion: a masked, controlled comparison with fluorescein angiography, Eye, vol.15, p.261, 2001.

W. E. Lieb, S. M. Cohen, D. A. Merton, J. A. Shields, D. G. Mitchell et al., Color Doppler imaging of the eye and orbit: technique and normal vascular anatomy, Arch. Ophthalmol, vol.109, pp.527-531, 1991.

W. H. Morgan, M. L. Hazelton, and D. Yu, Retinal venous pulsation: Expanding our understanding and use of this enigmatic phenomenon, Prog. In Retin. And Eye Res, vol.55, pp.82-107, 2016.

A. Wartak, F. Beer, S. Desissaire, B. Baumann, M. Pircher et al., Investigating spontaneous retinal venous pulsation using Doppler optical coherence tomography, Sci. Reports, vol.9, p.4237, 2019.

S. Kain, W. H. Morgan, and D. Yu, New observations concerning the nature of central retinal vein pulsation, Br. J. Ophthalmol, vol.94, pp.854-857, 2010.

W. H. Morgan, C. R. Lind, S. Kain, N. Fatehee, A. Bala et al., Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure, Investig. Ophthalmol. & Vis. Sci, vol.53, pp.4676-4681, 2012.

W. H. Morgan, M. L. Hazelton, B. D. Betz-stablein, D. Yu, C. R. Lind et al., Photoplethysmographic measurement of various retinal vascular pulsation parameters and measurement of the venous phase delay, Investig. Ophthalmol. & Vis. Sci, vol.55, pp.5998-6006, 2014.

F. Moret, C. M. Reiff, W. A. Lagreze, and M. Bach, Quantitative analysis of fundus-image sequences reveals phase of spontaneous venous pulsations, Transl. Vis. Sci. & Technol, vol.4, pp.3-3, 2015.

O. Tan, G. Liu, L. Liang, S. S. Gao, A. D. Pechauer et al., En face Doppler total retinal blood flow measurement with 70 kHz spectral optical coherence tomography, J. Of Biomed. Opt, vol.20, p.66004, 2015.

V. Doblhoff-dier, L. Schmetterer, W. Vilser, G. Garhöfer, M. Gröschl et al., Measurement of the total retinal blood flow using dual beam fourier-domain Doppler optical coherence tomography with orthogonal detection planes, Biomed. Opt. Express, vol.5, pp.630-642, 2014.

G. Michelson and J. Harazny, Relationship between ocular pulse pressures and retinal vessel velocities, Ophthalmology, vol.104, pp.664-671, 1997.

M. Paques, O. Baillart, O. Genevois, A. Gaudric, B. Lévy et al., Systolodiastolic variations of blood flow during central retinal vein occlusion: exploration by dynamic angiography, Br. J. Ophthalmol, vol.89, pp.1036-1040, 2005.

J. Puyo, M. Huignard, M. Atlan-;-l.-puyo, M. Paques, J. Fink et al., Waveform analysis of human retinal and choroidal blood flow with laser Doppler holography, Biomedical Optics Express, vol.57, issue.12, pp.4942-4963, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02320313

L. Presentations, M. Puyo, M. Paques, J. Fink, M. Sahel et al., Non-invasive and high temporal resolution choroidal and retinal blood flow imaging using laser doppler holography (conference presentation), Waveform analysis and vessel type identification in the retina with laser Doppler holography. ARVO Imaging in the Eye. Vancouver. L. Puyo, M. Paques, M. Fink, J.-A. Sahel, and M. Atlan. Laser Doppler holography to analyze the flow in the deep choroidal vasculature. ARVO. Vancouver. L. Puyo, M. Paques, M. Fink, J.-A. Sahel, and M. Atlan. Ultrafast digital holography for in vivo retinal blood flow imaging and assessment of flow resistance. OSA Digital Holography and 3-D Imaging. Bordeaux. L. Puyo, M. Paques, M. Fink, J. A. Sahel, and M. Atlan. Analysis of retinal and choroidal images measured by laser Doppler holography. SPIE Optical Metrology. Munich. L. Puyo, M. Paques, M. Fink, J. A. Sahel, and M. Atlan. Non-invasive imaging of the choroidal vasculature with laser Doppler holography. European Conferences on Biomedical Optics. Munich. L. Puyo, M. Paques, M. Fink, J. A. Sahel, and M. Atlan. Imaging and analyzing choroidal blood flow non-invasively with laser Doppler holography. Euretina, vol.17, p.1085811, 2017.

C. Sagan, Pale blue dot: A vision of the human future in space, 1997.

I. Rock and J. Victor, Vision and touch: An experimentally created conflict between the two senses, Science, vol.143, issue.3606, pp.594-596, 1964.

C. Nollett, B. Ryan, N. Bray, C. Bunce, R. Casten et al., Depressive symptoms in people with vision impairment: a cross-sectional study to identify who is most at risk, BMJ open, vol.9, issue.1, p.26163, 2019.

A. Matthew, . Windsor, J. J. Sissi, K. D. Sun, E. A. Frick et al., Estimating public and patient savings from basic research, a study of optical coherence tomography in managing antiangiogenic therapy, American journal of ophthalmology, vol.185, pp.115-122, 2018.

C. Iadecola, Neurovascular regulation in the normal brain and in alzheimer's disease, Nat Rev Neurosci, vol.5, issue.5, pp.347-360, 2004.

. Gilbert-t-feke, T. Bradley, R. A. Hyman, L. Stern, and . Pasquale, Retinal blood flow in mild cognitive impairment and alzheimer's disease, Assessment & Disease Monitoring, vol.1, issue.2, pp.144-151, 2015.

J. Hernández, O. Bracko, J. Calvin, V. Kersbergen, M. Muse et al., Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in alzheimer's disease mouse models, Nature neuroscience, vol.22, issue.3, p.413, 2019.

M. Simonutti, M. Paques, J. A. Sahel, M. Gross, B. Samson et al., Holographic laser doppler ophthalmoscopy, Opt. Lett, vol.35, issue.12, pp.1941-1943, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00489200

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou et al., Holographic laser doppler imaging of microvascular blood flow, Tania Vitalis, José-Alain Sahel, Michel Paques, and Michael Atlan, vol.31, pp.2723-2735, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086781

B. Samson and M. Atlan, Short-time fourier transform laser doppler holography, Journal of the European Optical Society -Rapid publications, vol.8, issue.0, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00756281

M. Pellizzari, M. Simonutti, J. Degardin, J. Sahel, M. Fink et al., High speed optical holography of retinal blood flow, Optics Letters, vol.41, issue.15, pp.3503-3506, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386360

C. Network, Developmental anatomy of the retinal and choroidal vasculature. The Retina and Its Disorders, vol.179, 2011.

. Jp-campbell, . Zhang, . Hwang, . St-bailey, Y. Wilson et al., Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography, Scientific reports, vol.7, p.42201, 2017.

M. Mujat, Y. Lu, G. Maguluri, Y. Zhao, N. Iftimia et al., Visualizing the vasculature of the entire human eye posterior hemisphere without a contrast agent, Biomedical Optics Express, vol.10, issue.1, pp.167-180, 2019.

S. Singh-hayreh, Posterior ciliary artery circulation in health and disease the weisenfeld lecture, Investigative Ophthalmology & Visual Science, vol.45, issue.3, pp.749-757, 2004.

A. Alm and A. Bill, Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues, Experimental Eye Research, vol.15, issue.1, pp.15-29, 1973.

A. Alm and A. Bill, The oxygen supply to the retina, ii. effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats: A study with radioactively labelled microspheres including flow determinations in brain and some other tissues, Acta physiologica Scandinavica, vol.84, issue.3, pp.306-319, 1972.

M. Leonard and . Parver, Temperature modulating action of choroidal blood flow, Eye, vol.5, issue.2, p.181, 1991.

M. Leonard, C. Parver, D. Auker, and . Carpenter, Choroidal blood flow as a heat dissipating mechanism in the macula, American journal of ophthalmology, vol.89, issue.5, pp.641-646, 1980.

A. Bill, K. Sperber, and . Ujiie, Physiology of the choroidal vascular bed. International ophthalmology, vol.6, issue.2, pp.101-107, 1983.

E. Michel and . Safar, Arterial stiffness as a risk factor for clinical hypertension, Nature Reviews Cardiology, vol.15, issue.2, p.97, 2018.

E. Michel, P. Safar, and . Lacolley, Disturbance of macro-and microcirculation: relations with pulse pressure and cardiac organ damage, American Journal of Physiology-Heart and Circulatory Physiology, vol.293, issue.1, pp.1-7, 2007.

L. Pourcelot, Diagnostic ultrasound for cerebral vascular diseases. Present and future of diagnostic ultrasound, pp.141-147, 1976.

S. Martinez-conde, L. Stephen, . Macknik, G. Xoana, T. A. Troncoso et al., Microsaccades counteract visual fading during fixation, Neuron, vol.49, issue.2, pp.297-305, 2006.

S. Martinez-conde, L. Stephen, D. H. Macknik, and . Hubel, The role of fixational eye movements in visual perception, Nature reviews neuroscience, vol.5, issue.3, p.229, 2004.

S. Martinez-conde, Fixational eye movements in normal and pathological vision, Progress in brain research, vol.154, pp.151-176, 2006.

. Douglas-r-anderson, What happens to the optic disc and retina in glaucoma?, Ophthalmology, vol.90, issue.7, pp.766-770, 1983.

A. Harry and . Quigley, Neuronal death in glaucoma, Progress in retinal and eye research, vol.18, issue.1, pp.39-57, 1999.

H. William, M. L. Morgan, D. Hazelton, and . Yu, Retinal venous pulsation: Expanding our understanding and use of this enigmatic phenomenon, Progress In Retinal And Eye Research, vol.55, pp.82-107, 2016.

J. Flammer, M. Pache, and T. Resink, Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye, Progress in retinal and eye research, vol.20, issue.3, pp.319-349, 2001.

S. Ali, R. Hafez, D. Bizzarro, . Descovich, and . Mark-r-lesk, Correlation between finger blood flow and changes in optic nerve head blood flow following therapeutic intraocular pressure reduction, Journal of glaucoma, vol.14, issue.6, pp.448-454, 2005.

Y. Shiga, H. Kunikata, N. Aizawa, N. Kiyota, Y. Maiya et al., Optic nerve head blood flow, as measured by laser speckle flowgraphy, is significantly reduced in preperimetric glaucoma, Current Eye Research, vol.41, issue.11, pp.1447-1453, 2016.

A. Sophie-mursch-edlmayr, N. Luft, D. Podkowinski, M. Ring, L. Schmetterer et al., Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a pilot study, Scientific Reports, vol.8, issue.1, p.5343, 2018.

L. P. Aiello, R. L. Avery, G. Paul, . Arrigg, A. Bruce et al., Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders, New England Journal of Medicine, vol.331, issue.22, pp.1480-1487, 1994.

M. Tim, T. Curtis, and . Gardiner, Ocular blood flow in diabetes: Contribution to the microvascular lesions of diabetic retinopathy, Ocular Blood Flow, pp.365-387, 2012.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, Retinal blood flow in diabetic retinopathy, Bmj, vol.305, issue.6855, pp.678-683, 1992.

A. Thomas-a-ciulla, P. Harris, . Latkany, C. Heidi, O. Piper et al., Ocular perfusion abnormalities in diabetes, Acta Ophthalmologica Scandinavica, vol.80, issue.5, pp.468-477, 2002.

C. Allen, S. Clermont, and . Bursell, Retinal blood flow in diabetes. Microcirculation, vol.14, issue.1, pp.49-61, 2007.

J. Constantin, E. Pournaras, J. Mendrinos, and . Pournaras, Agerelated macular degeneration: Hemodynamic changes, Ocular Blood Flow, pp.389-409, 2012.

. Juan-e-grunwald, M. Seenu, J. Hariprasad, and . Dupont, Effect of aging on foveolar choroidal circulation, Archives of Ophthalmology, vol.116, issue.2, pp.150-154, 1998.

. Juan-e-grunwald, M. Seenu, J. Hariprasad, M. G. Dupont, . Maguire et al., Foveolar choroidal blood flow in age-related macular degeneration, Investigative ophthalmology & visual science, vol.39, issue.2, pp.385-390, 1998.

E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman et al., Ocular blood flow velocity in age-related macular degeneration, Ophthalmology, vol.102, issue.4, pp.640-646, 1995.

P. Gaede, P. Vedel, N. Larsen, V. H. Gunnar, H. Jensen et al., Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes, New England Journal of Medicine, vol.348, issue.5, pp.383-393, 2003.

Y. P. Toco, . Chui, A. Dean, S. Vannasdale, and . Burns, The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope, Biomedical optics express, vol.3, issue.10, pp.2537-2549, 2012.

R. D. Ferguson, D. X. Hammer, A. E. Elsner, R. H. Webb, S. A. Burns et al., Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope, Optics Express, vol.12, p.5198, 2004.

Z. Zhong, L. Benno, X. Petrig, S. Qi, and . Burns, In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy, Optics express, vol.16, issue.17, pp.12746-12756, 2008.

B. Gu, X. Wang, D. Michael, J. Twa, . Tam et al., Non-invasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging, Biomedical Optics Express, vol.9, issue.8, pp.3653-3677, 2018.

A. Wartak, F. Beer, S. Desissaire, B. Baumann, M. Pircher et al., Investigating spontaneous retinal venous pulsation using doppler optical coherence tomography, Scientific Reports, vol.9, issue.1, p.4237, 2019.

G. Sun, X. Liu, L. Gao, P. Zhang, S. Wang et al., Automatic measurement of global retinal circulation in fluorescein angiography, Journal of biomedical optics, vol.23, issue.6, p.65006, 2018.

I. Justin-v-migacz, M. Gorczynska, R. Azimipour, . Jonnal, J. Robert et al., Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging, Biomedical Optics Express, vol.10, issue.1, pp.50-65, 2019.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, G. William et al., Optical coherence tomography. science, vol.254, issue.5035, pp.1178-1181, 1991.

S. Mrejen and . Richard-f-spaide, Optical coherence tomography: imaging of the choroid and beyond, Survey of Ophthalmology, vol.58, issue.5, pp.387-429, 2013.

W. Choi, K. J. Mohler, B. Potsaid, D. Chen, J. J. Lu et al., Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed oct angiography, PloS one, vol.8, issue.12, p.81499, 2013.

K. Zhou, S. Song, Q. Zhang, Z. Chu, Z. Huang et al., Visualizing choriocapillaris using swept-source optical coherence tomography angiography with various probe beam sizes, Biomedical Optics Express, vol.10, issue.6, pp.2847-2860, 2019.

A. F. Fercher and J. D. Briers, Flow visualisation by means of single-exposure speckle photography, Opt. Commun, vol.37, pp.326-330, 1981.

. Af-fercher, E. Peukert, and . Roth, Visualization and measurement of retinal blood flow by means of laser speckle photography, Optical Engineering, vol.25, issue.6, p.256731, 1986.

J. D. Briers and S. Webster, Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow, Journal of Biomedical Optics, vol.1, issue.2, pp.174-179, 1996.

L. M. Richards, S. M. Shams-kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, Low-cost laser speckle contrast imaging of blood flow using a webcam, Biomed. Opt. Express, vol.4, issue.10, pp.2269-2283, 2013.

B. Ashwin, E. L. Parthasarathy, L. M. Weber, D. J. Richards, A. Fox et al., Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study, Journal of biomedical optics, vol.15, issue.6, pp.66030-066030, 2010.

L. M. Sm-shams-kazmi, . Richards, J. Christian, . Schrandt, A. Mitchell et al., Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow, Journal of Cerebral Blood Flow & Metabolism, 2015.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, Use of laser speckle flowgraphy in ocular blood flow research, Acta Ophthalmologica, vol.88, issue.7, pp.723-729, 2010.

K. Fondi, A. M. Bata, N. Luft, J. Katarzyna, R. M. Witkowska et al., Evaluation of flicker induced hyperemia in the retina and optic nerve head measured by laser speckle flowgraphy, PloS One, vol.13, issue.11, p.207525, 2018.

N. Luft, P. A. Wozniak, G. C. Aschinger, K. Fondi, A. M. Bata et al., Ocular blood flow measurements in healthy white subjects using laser speckle flowgraphy, PLoS One, vol.11, issue.12, p.168190, 2016.

S. Tsuda, H. Kunikata, M. Shimura, N. Aizawa, K. Omodaka et al., Pulse-waveform analysis of normal population using laser speckle flowgraphy, Current Eye Research, vol.39, issue.12, pp.1207-1215, 2014.

Y. Shiga, K. Omodaka, H. Kunikata, M. Ryu, Y. Yokoyama et al., Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma, Investigative ophthalmology & visual science, vol.54, issue.12, pp.7699-7706, 2013.

T. Iwase, K. Yamamoto, E. Ra, K. Murotani, S. Matsui et al., Diurnal variations in blood flow at optic nerve head and choroid in healthy eyes: diurnal variations in blood flow, Medicine, vol.94, issue.6, 2015.

D. Briers, D. Donald, E. R. Duncan, S. J. Hirst, M. Kirkpatrick et al., Laser speckle contrast imaging: theoretical and practical limitations, Journal of biomedical optics, vol.18, issue.6, p.66018, 2013.

F. Tranquart, O. Bergès, P. Koskas, S. Arsene, C. Rossazza et al., Color doppler imaging of orbital vessels: personal experience and literature review, Journal of Clinical Ultrasound, vol.31, issue.5, pp.258-273, 2003.

L. Schmetterer and J. Kiel, Ocular blood flow, 2012.

I. Stalmans, E. Vandewalle, . Douglas-r-anderson, P. Vital, . Costa et al., Use of colour doppler imaging in ocular blood flow research, Acta ophthalmologica, vol.89, issue.8, pp.609-630, 2011.

R. Urs, A. Jeffrey, C. H. Ketterling, H. O. Alfred, . Lloyd et al., Ultrasound imaging and measurement of choroidal blood flow, Translational vision science & technology, vol.7, pp.5-5, 2018.

. Ce-riva, . Harino, R. D. Bl-petrig, and . Shonat, Laser doppler flowmetry in the optic nerve, Experimental eye research, vol.55, issue.3, pp.499-506, 1992.

. Ce-riva, . Sd-cranstoun, B. L. Grunwald, and . Petrig, Choroidal blood flow in the foveal region of the human ocular fundus, Invest. Ophthalmol. Vis. Sci, vol.35, issue.13, pp.4273-4281, 1994.

H. Martial, U. Geiser, C. E. Diermann, and . Riva, Compact laser doppler choroidal flowmeter, Journal of Biomedical optics, vol.4, issue.4, pp.459-465, 1999.

M. Charles-e-riva, . Geiser, L. Benno, and . Petrig, Ocular blood flow assessment using continuous laser doppler flowmetry, Acta ophthalmologica, vol.88, issue.6, pp.622-629, 2009.

M. Charles-e-riva, . Geiser, L. Benno, and . Petrig, Ocular blood flow assessment using continuous laser doppler flowmetry, Acta Ophthalmologica, vol.88, issue.6, pp.622-629, 2010.

R. Bonner and R. , Model for laser doppler measurements of blood flow in tissue, Applied Optics, vol.20, pp.2097-2107, 1981.

F. Robert, R. Bonner, and . Nossal, Principles of laser-doppler flowmetry, Laser-Doppler blood flowmetry, pp.17-45, 1990.

G. Michelson, . Schmauss, . Mj-langhans, M. J. Harazny, and . Groh, Principle, validity, and reliability of scanning laser doppler flowmetry, J. Glaucoma, vol.5, issue.2, pp.99-105, 1996.

G. Michelson, J. Welzenbach, I. Pal, and J. Harazny, Functional imaging of the retinal microvasculature by scanning laser doppler flowmetry, International Ophthalmology, vol.23, issue.4, pp.327-335, 2001.

. Dm-squirrell, . Watts, C. Evans, J. F. Mody, and . Talbot, A prospective evaluation of the heidelberg retina flowmeter in diagnosing ischaemia following branch retinal vein occlusion: a masked, controlled comparison with fluorescein angiography, Eye, vol.15, issue.3, p.261, 2001.

V. Bacot, M. Labousse, A. Eddi, M. Fink, and E. Fort, Time reversal and holography with spacetime transformations, Nature Physics, vol.12, issue.10, p.972, 2016.

. Joseph-w-goodman, Introduction to Fourier optics. Roberts and Company Publishers, 2005.

U. Schnars and W. P. Juptner, Digital recording and numerical reconstruction of holograms, Meas. Sci. Technol, vol.13, pp.85-101, 2002.

T. Kreis, Handbook of holographic interferometry, 2005.

E. Charles and . Riva, Laser doppler techniques for ocular blood velocity and flow, Ocular Blood Flow, pp.123-146, 2012.

L. Puyo, . Ferezou, M. Rancillac, M. Simonutti, J. Paques et al., Pulsatile microvascular blood flow imaging by short-time fourier transform analysis of ultrafast laser holographic interferometry, Biomedical Engineering International Conference (BMEiCON), pp.1-5, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01386362

M. Leclercq and P. Picart, Digital fresnel holography beyond the shannon limits, Opt. Express, vol.20, issue.16, pp.18303-18312, 2012.

E. Cuche, P. Marquet, and C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel offaxis holograms, Applied Optics, vol.38, p.6994, 1999.

E. Cuche, P. Marquet, and C. Depeursinge, Spatial filtering for zero-order and twin-image elimination in digital off-axis holography, Applied Optics, vol.39, issue.23, p.4070, 2000.

A. E. Siegman, The antenna properties of optical heterodyne receivers, Applied Optics, vol.5, issue.10, p.1588, 1966.

J. Vincent and . Corcoran, Directional characteristics in optical heterodyne detection processes, Journal of Applied Physics, vol.36, issue.6, pp.1819-1825, 1965.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke et al., Aberration-free volumetric highspeed imaging of in vivo retina, Scientific reports, vol.6, p.35209, 2016.

H. Sudkamp, D. Hillmann, P. Koch, H. Malte-vom-endt, M. Spahr et al., Simple approach for aberration-corrected oct imaging of the human retina, Optics letters, vol.43, issue.17, pp.4224-4227, 2018.

L. Ginner, T. Schmoll, A. Kumar, M. Salas, N. Pricoupenko et al., Holographic line field en-face oct with digital adaptive optics in the retina in vivo, Biomed. Opt. Express, vol.9, issue.2, pp.472-485, 2018.

P. Xiao, K. Viacheslav-mazlin, J. Grieve, M. Sahel, C. Fink et al., In vivo high-resolution human retinal imaging with wavefrontcorrectionless full-field oct, Optica, vol.5, issue.4, pp.409-412, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01788875

W. Robert, X. Knighton, and . Huang, Linear birefringence of the central human cornea, Investigative ophthalmology & visual science, vol.43, issue.1, pp.82-86, 2002.

K. Irsch, B. Gramatikov, Y. Wu, and D. Guyton, Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection, Biomedical optics express, vol.2, issue.7, pp.1955-1968, 2011.

N. Hani, P. Sabbah, and . Stein, Valve origin of the aortic incisura, American Journal of Cardiology, vol.41, issue.1, pp.32-38, 1978.

J. Kur, E. A. Newman, and T. Chan-ling, Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease, Progress in retinal and eye research, vol.31, issue.5, pp.377-406, 2012.

J. Constantin, E. Pournaras, C. E. Rungger-brändle, . Riva, H. Sveinn et al., Regulation of retinal blood flow in health and disease, Progress in retinal and eye research, vol.27, issue.3, pp.284-330, 2008.

K. Singh, . Dion, M. Costantino, . Wajszilber, T. Mr-lesk et al., Development of a novel instrument to measure the pulsatile movement of ocular tissues, Experimental eye research, vol.91, issue.1, pp.63-68, 2010.

K. Singh, C. Dion, M. Wajszilber, T. Ozaki, S. Mark-r-lesk et al., Measurement of ocular fundus pulsation in healthy subjects using a novel fourier-domain optical coherence tomography, Investigative ophthalmology & visual science, vol.52, issue.12, pp.8927-8932, 2011.

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp et al., Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography, Optics letters, vol.40, issue.20, pp.4771-4774, 2015.

A. Kumar, W. Drexler, and R. A. Leitgeb, Subaperture correlation based digital adaptive optics for full field optical coherence tomography, Optics express, vol.21, issue.9, pp.10850-10866, 2013.

L. Ginner, A. Kumar, D. Fechtig, M. Lara, M. Wurster et al., Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo, Optica, vol.4, issue.8, pp.924-931, 2017.

H. Spahr, C. Pfäffle, P. Koch, H. Sudkamp, G. Hüttmann et al., Interferometric detection of 3d motion using computational subapertures in optical coherence tomography, Optics express, vol.26, issue.15, pp.18803-18816, 2018.

L. Ginner, A. Wartak, M. Salas, M. Augustin, M. Niederleithner et al., Synthetic subaperture-based angle-independent doppler flow measurements using single-beam line field optical coherence tomography in vivo, Optics letters, vol.44, issue.4, pp.967-970, 2019.

D. Donnarumma, A. Brodoline, D. Alexandre, and M. Gross, 4d holographic microscopy of zebrafish larvae microcirculation, Optics Express, vol.24, issue.23, pp.26887-26900, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01363227

A. Brodoline, N. Rawat, and D. Alexandre, Nicolas Cubedo, and Michel Gross. 4d compressive sensing holographic microscopy imaging of small moving objects, Optics Letters, vol.44, issue.11, pp.2827-2830, 2019.

J. A. Briers and S. Webster, Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields, Optics Comm, vol.116, pp.36-42, 1995.

K. Ruikang, L. Wang, P. An, D. Francis, and . Wilson, Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography, Optics letters, vol.35, issue.9, pp.1467-1469, 2010.

H. Amir, C. Kashani, J. K. Chen, F. Gahm, . Zheng et al., Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications, Progress in Retinal and Eye Research, 2017.