P. G. Gennes and . De, Scaling concepts in polymer physics

J. C. Herna?ndez-ortiz, E. Vivaldo-lima, and . Crosslinking, Handbook of Polymer Synthesis, Characterization, and Processing

, , pp.187-204, 2013.

M. A. Dube?, E. Sald?var-guerra, I. Zapata-gonza?lez, and . Copolymerization, Handbook of Polymer Synthesis, Characterization, and Processing

, , pp.105-130, 2013.

J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, and D. R. Bloch, Polymer handbook, vol.7, 1989.

R. Guerrero-santos, E. Sald?var-guerra, and J. Bonilla-cruz, Free Radical Polymerization, Handbook of Polymer Synthesis, Characterization, and Processing
URL : https://hal.archives-ouvertes.fr/hal-00302506

, , pp.65-83, 2013.

C. Goodyear, Improvement In India-Rubber Fabrics

, US3633A, p.1844, 2018.

J. Kruz?la?k, R. Sy?ora, and I. Hudec, Sulphur and peroxide vulcanisation of rubber compoundsoverview, Chem Pap, vol.70, issue.12, pp.1533-1555, 2016.

K. J. Saunders, Acrylic Polymers, Organic Polymer Chemistry

D. Springer, , 1988.

, , pp.125-173

G. R. Hamed, Materials and compounds, Engineering with rubber: How to design rubber components, p.11, 1992.

J. Asahara, N. Hori, A. Takemura, and H. Ono, Crosslinked acrylic pressure-sensitive adhesives. I. Effect of the crosslinking reaction on the peel strength, J Appl Polym Sci, vol.87, issue.9, pp.1493-1502, 2003.

G. Tillet, B. Boutevin, and B. Ameduri, Chemical reactions of polymer crosslinking and postcrosslinking at room and medium temperature, Prog Polym Sci, vol.36, issue.2, pp.191-217, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00523089

C. E. Hoyle, T. Y. Lee, and T. Roper, Thiol-enes: Chemistry of the past with promise for the future, J Polym Sci Part Polym Chem, vol.42, issue.21, pp.5301-5339, 2004.

C. E. Hoyle and C. N. Bowman, Thiol-Ene Click Chemistry, Angew Chem Int Ed, vol.49, issue.9, pp.1540-73, 2010.

M. Mennicken, R. Nagelsdiek, H. Keul, and H. Ho?cker, ATRP of Allyl Methacrylate with Alkyl Methacrylates -Crosslinking of Poly(methacrylate)s with Allyl Ester Side Groups, Macromol Chem Phys, vol.205, issue.18, pp.2429-2466, 2004.

Q. Chen, L. Zhu, H. Chen, H. Yan, L. Huang et al., A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties, Adv Funct Mater, vol.25, issue.10, pp.1598-607, 2015.

M. A. Haque, T. Kurokawa, G. Kamita, and J. P. Gong, Lamellar Bilayers as Reversible Sacrificial Bonds To Toughen Hydrogel: Hysteresis, Self-Recovery, Fatigue Resistance, and Crack Blunting, Macromolecules, vol.44, issue.22, pp.8916-8940, 2011.

P. Gong and J. , Why are double network hydrogels so tough?, Soft Matter, vol.6, issue.12, pp.2583-90, 2010.

C. Creton, 50th Anniversary Perspective: Networks and Gels: Soft but Dynamic and Tough. Macromolecules, vol.50, pp.8297-316, 2017.

X. Zhao, Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks, Soft Matter, vol.10, issue.5, pp.672-87, 2014.

E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, J Adv Res, vol.6, issue.2, pp.105-126, 2015.

P. C. Nicolson and J. Vogt, Soft contact lens polymers: an evolution, Biomaterials, vol.22, issue.24, pp.3273-83, 2001.

T. R. Hoare and D. S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer, vol.49, pp.1993-2007, 2008.

N. Kashyap, N. Kumar, and M. Kumar, Hydrogels for pharmaceutical and biomedical applications, Crit Rev Ther Drug Carrier Syst, vol.22, issue.2, pp.107-156, 2005.

M. Shibayama, Structure-mechanical property relationship of tough hydrogels, Soft Matter, vol.8, issue.31, pp.8030-8038, 2012.

T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida et al., Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedronlike Macromonomers, Macromolecules, vol.41, issue.14, pp.5379-84, 2008.

T. Matsunaga, T. Sakai, Y. Akagi, U. Chung, and M. Shibayama, Structure Characterization of Tetra-PEG Gel by Small-Angle Neutron Scattering. Macromolecules, vol.42, pp.1344-51, 2009.

T. Matsunaga, T. Sakai, Y. Akagi, U. Chung, and M. Shibayama, SANS and SLS Studies on Tetra-Arm PEG Gels in As-Prepared and Swollen States, Macromolecules, vol.42, issue.16, pp.6245-52, 2009.

T. Sakai, Y. Akagi, T. Matsunaga, M. Kurakazu, U. Chung et al., Highly Elastic and Deformable Hydrogel Formed from Tetra-arm Polymers, Macromol Rapid Commun, vol.31, issue.22, pp.1954-1963, 2010.

J. Cui, M. A. Lackey, A. E. Madkour, E. M. Saffer, D. M. Griffin et al., Synthetically Simple, Highly Resilient Hydrogels, Biomacromolecules, vol.13, issue.3, pp.584-592, 2012.

Y. Okumura and K. Ito, The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-links, Adv Mater, vol.13, issue.7, pp.485-492, 2001.

K. Ito, Novel Cross-Linking Concept of Polymer Network: Synthesis, Structure, and Properties of Slide-Ring Gels with Freely Movable Junctions, Polym J, vol.39, issue.6, pp.489-99, 2007.

K. Ito, Slide-ring materials using topological supramolecular architecture. Curr Opin Solid State Mater Sci, vol.14, pp.28-34, 2010.

A. S. Aprem, K. Joseph, and S. Thomas, Studies on double networks in natural rubber vulcanizates, J Appl Polym Sci, vol.91, issue.2, pp.1068-76, 2004.

S. Kaang, D. Gong, and C. Nah, Some physical characteristics of double-networked natural rubber, J Appl Polym Sci, vol.65, issue.5, pp.917-941, 1997.

P. G. Santangelo and C. M. Roland, The Mechanical Behavior of Double Network Elastomers, Rubber Chem Technol, vol.67, issue.2, pp.359-65, 1994.

S. B. Petrova and L. S. Priss, Effect of deformation during crosslinking on elastic properties of rubbers, Polym Sci USSR, vol.25, issue.1, pp.204-212, 1983.

A. Greene, K. J. Smith, and A. Ciferri, Elastic properties of networks formed from oriented chain molecules. Part 2.-Composite networks, Trans Faraday Soc, vol.61, pp.2772-2783, 1965.

A. Greene and A. Ciferri, Elastic properties of networks formed from oriented chain molecules. Kolloid-Z Z Fu?r Polym, vol.186, pp.1-15, 1962.

P. G. Santangelo and C. M. Roland, Failure Properties of Natural Rubber Double Networks, Rubber Chem Technol, vol.68, issue.1, pp.124-155, 1995.

S. Kaang and C. Nah, Fatigue crack growth of double-networked natural rubber, Polymer, vol.39, issue.11, pp.2209-2214, 1998.

C. M. Roland and M. L. Warzel, Orientation Effects in Rubber Double Networks, Rubber Chem Technol, vol.63, issue.2, pp.285-97, 1990.

P. H. Mott and C. M. Roland, Mechanical and Optical Behavior of Double Network Rubbers, Macromolecules, vol.33, issue.11, pp.4132-4139, 2000.

D. R. Rottach, J. G. Curro, J. Budzien, G. S. Grest, C. Svaneborg et al., Permanent Set of Cross-Linking Networks: Comparison of Theory with Molecular Dynamics Simulations, Macromolecules, vol.39, issue.16, pp.5521-5551, 2006.

D. R. Rottach, J. G. Curro, J. Budzien, G. S. Grest, C. Svaneborg et al., Molecular Dynamics Simulations of Polymer Networks Undergoing Sequential Cross-Linking and Scission Reactions. Macromolecules, vol.40, pp.131-140, 2007.

O. Kramer, R. L. Carpenter, V. Ty, and J. D. Ferry, Entanglement Networks of 1,2-Polybutadiene Cross-Linked in States of Strain. I. Cross-Linking at 0 °, vol.7, p.6, 1974.

O. Kramer and J. D. Ferry, Entanglement Networks of 1,2-Polybutadiene Cross-Linked in States of Strain. II. Application of the Mooney-Rivlin Equation to Networks Cross-Linked at O°. Macromolecules, vol.8, pp.87-96, 1975.

W. Batsberg, S. Hvidt, and O. Kramer, Swelling and elastic anisotropies of an amorphous elastomer crosslinked in the strained state. 1,2-polybutadiene, J Polym Sci Polym Lett Ed, vol.20, issue.6, pp.341-347, 1982.

N. K. Singh and A. J. Lesser, Mechanical and thermo-mechanical studies of double networks based on thermoplastic elastomers, J Polym Sci Part B Polym Phys, vol.48, issue.7, pp.778-89, 2010.

N. K. Singh and A. J. Lesser, A physical and mechanical study of prestressed competitive double network thermoplastic elastomers, Macromolecules, vol.44, issue.6, pp.1480-90, 2011.

C. Park, S. Lee, J. Park, and H. Kim, Preparation and characterization of dual curable adhesives containing epoxy and acrylate functionalities, React Funct Polym, vol.73, issue.4, pp.641-647, 2013.

J. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, Double-Network Hydrogels with Extremely High Mechanical Strength, Adv Mater, vol.17, issue.14, pp.1155-1163, 2003.

E. Ducrot, Innovative tough elastomers: Designed sacrificial bonds in multiple networks, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01362511

G. H. Hamedani, M. Ebrahimi, and S. R. Ghaffarian, Synthesis and Kinetics Study of Vinyl Ester Resin in the Presence of Triethylamine, Iran Polym J, vol.15, issue.11, pp.871-879, 2006.

N. Pal, A. Srivastava, S. Agrawal, J. Rai, . Kinetics et al., , vol.20, pp.317-344, 2005.

A. Srivastava, N. Pal, S. Agarwal, and J. Rai, Kinetics and mechanism of esterification of epoxy resin with methacrylic acid in the presence of tertiary amines, Adv Polym Technol, vol.24, issue.1, pp.1-13, 2005.

S. Wu and M. D. Soucek, Kinetic modelling of crosslinking reactions for cycloaliphatic epoxides with hydroxyl-and carboxyl-functionalized acrylic copolymers: 1. pH and temperature effects, Polymer, vol.39, issue.23, pp.5747-59, 1998.

Y. Tanaka, Catalytic effects of substituted pyridines and quinolines on the reaction of phenyl glycidyl ether and benzoic acid, J Org Chem, vol.32, issue.8, pp.2405-2414, 1967.

H. Kakiuchi and Y. Tanaka, Study of Epoxy Compounds. VII. 1,2 Base-Catalyzed Reaction of Substituted Phenyl Glycidyl Ethers with Benzoic Acid, J Org Chem, vol.31, issue.5, pp.1559-64, 1966.

L. Mate?ka and K. Dus?k, Specific features of the kinetics of addition esterification of epoxide with the carboxyl group, Polym Bull, vol.15, issue.3, pp.215-221, 1986.

V. Fiala and M. Lidar??, Reaction of glycidyl benzoate with acid in the presence of tertiary amines as the catalyst, Angew Makromol Chem, vol.12, issue.1, pp.157-65, 1970.

A. Srivastava, S. Agrawal, and J. Rai, Kinetics of esterification of cycloaliphatic epoxies with methacrylic acid, J Appl Polym Sci, vol.86, issue.13, pp.3197-204, 2002.

J. E. Mark, Physical properties of polymers handbook

, , vol.1076, 2007.

E. Ducrot, Y. Chen, M. Bulters, R. P. Sijbesma, and C. Creton, Toughening elastomers with sacrificial bonds and watching them break, Science, vol.344, issue.6180, pp.186-195, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01516045

E. Ducrot and C. Creton, Characterizing Large Strain Elasticity of Brittle Elastomeric Networks by Embedding Them in a Soft Extensible Matrix, Adv Funct Mater, vol.26, issue.15, pp.2482-92, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443797

P. Millereau, E. Ducrot, J. M. Clough, M. E. Wiseman, H. R. Brown et al., Mechanics of elastomeric molecular composites, Proc Natl Acad Sci, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02074609

J. C. Herna?ndez-ortiz, E. Vivaldo-lima, and . Crosslinking, Handbook of Polymer Synthesis, Characterization, and Processing

, , pp.187-204, 2013.

L. Treloar, The physics of rubber elasticity, vol.310, 2005.

P. J. Flory and J. Rehner, Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling, J Chem Phys, vol.11, issue.11, p.521, 1943.

A. M. Barton, Handbook of Poylmer-Liquid Interaction Parameters and Solubility Parameters. Routledge, vol.794, 2018.

, Problems encountered during the thermal second curing

. .. Samples, 139 3.1. Presentation of the results

, 2.1. Modelling the behavior of dual-cured networks, Comparison to Flory's model

. .. , Additional mechanical characterization for the thermal system, vol.152

. .. Conclusions,

P. Millereau, E. Ducrot, J. M. Clough, M. E. Wiseman, H. R. Brown et al., Mechanics of elastomeric molecular composites, Proc Natl Acad Sci, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02074609

W. Su, M. L. Posey, M. P. Weeme, and . Ter, Color stabilization of amines

A. E. Krauklis and A. T. Echtermeyer, Mechanism of Yellowing: Carbonyl Formation during Hygrothermal Aging in a Common Amine Epoxy. Polymers, vol.10, p.1017, 2018.

J. P. Berry, J. Scanlan, and W. F. Watson, Cross-link formation in stretched rubber networks, Trans Faraday Soc, vol.52, pp.1137-1151, 1956.

P. J. Flory, Elasticity of polymer networks cross-linked in states of strain, Trans Faraday Soc, vol.56, issue.0, pp.722-765, 1960.

A. S. Lodge, The isotropy of Gaussian molecular networks and the stress-birefringence relations for rubberlike materials cross-linked in stressed states, Kolloid-Z, vol.171, issue.1, pp.46-51, 1960.

A. Charlesby, E. Arnim, and . Von, Crosslinking of oriented rubber, J Polym Sci, vol.25, issue.109, pp.151-159, 1957.

K. J. Smith, A. Ciferri, and J. J. Hermans, Anisotropic elasticity of composite molecular networks formed from non-gaussian chains, J Polym Sci A, vol.2, issue.3, pp.1025-1066, 1964.

A. Greene, K. J. Smith, and A. Ciferri, Elastic properties of networks formed from oriented chain molecules. Part 2.-Composite networks, Trans Faraday Soc, vol.61, pp.2772-2783, 1965.

H. S. Yanai, Two Network Model for Vulcanizates Crosslinked under Strain, Rubber Chem Technol, vol.40, issue.4, pp.1060-70, 1967.

K. Jr and R. J. Gaylord, Non-gaussian elasticity of composite and interpenetrating networks. J Polym Sci Part -2 Polym Phys, vol.10, pp.283-93, 1972.

K. J. Smith and R. J. Gaylord, On the Anisotropy of Composite Networks, Macromolecules, vol.8, issue.1, pp.89-89, 1975.

J. E. Mark, Physical properties of polymers handbook

, , vol.1076, 2007.

. .. Introduction, 171 2. Preparation process and additional characterization tools

, 4.1. Principle of the measurement of fracture energy

. .. Dn, 2.2. Observation of the small strain regimes

, 3.2. The reproducibility issue of the thermal system

, 196 4.2.1. Overall presentation and study of small strain regime

, 3.1. Identification of common trends within each formulation group

P. Millereau, E. Ducrot, J. M. Clough, M. E. Wiseman, H. R. Brown et al., Mechanics of elastomeric molecular composites, Proc Natl Acad Sci, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02074609

A. N. Gent, A New Constitutive Relation for Rubber, Rubber Chem Technol, vol.69, issue.1, pp.59-61, 1996.

H. W. Greensmith, Rupture of rubber. X. The change in stored energy on making a small cut in a test piece held in simple extension, J Appl Polym Sci, vol.7, issue.3, pp.993-1002, 1963.

P. Millereau, Large Strain and Fracture of Multiple Network Elastomers, 2017.
URL : https://hal.archives-ouvertes.fr/tel-02138641

E. Ducrot, Y. Chen, M. Bulters, R. P. Sijbesma, and C. Creton, Toughening elastomers with sacrificial bonds and watching them break, Science, vol.344, issue.6180, pp.186-195, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01516045

E. Ducrot, Innovative tough elastomers: Designed sacrificial bonds in multiple networks, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01362511

E. Ducrot and C. Creton, Characterizing Large Strain Elasticity of Brittle Elastomeric Networks by Embedding Them in a Soft Extensible Matrix, Adv Funct Mater, vol.26, issue.15, pp.2482-92, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443797

G. J. Lake and A. G. Thomas, The Strength of Highly Elastic Materials, Proc R Soc Lond Math Phys Eng Sci, vol.300, pp.108-127, 1460.

S. Wang, S. Panyukov, M. Rubinstein, and S. L. Craig, Quantitative Adjustment to the Molecular Energy Parameter in the Lake-Thomas Theory of Polymer Fracture Energy, Macromolecules, 2019.

, Apr, vol.9, issue.7, pp.2772-2779

J. Slootman, Quantitative detection of damage in soft materials using mechano-fluorescence, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02864025

Y. Merckel, M. Brieu, J. Diani, and J. Caillard, A Mullins softening criterion for general loading conditions, J Mech Phys Solids, vol.60, issue.7, pp.1257-64, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02410145

J. Diani, B. Fayolle, and P. Gilormini, A review on the Mullins effect, Eur Polym J, vol.45, issue.3, pp.601-613, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00773015

Y. Merckel, J. Diani, M. Brieu, P. Gilormini, J. Caillard et al., Rubber Chem Technol, vol.84, issue.3, pp.402-416, 2011.

J. P. Gong, Why are double network hydrogels so tough?, Soft Matter, vol.6, issue.12, pp.2583-90, 2010.

M. A. Haque, T. Kurokawa, G. Kamita, and J. P. Gong, Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: Hysteresis, self-recovery, fatigue resistance, and crack blunting, Macromolecules, vol.44, issue.22, pp.8916-8940, 2011.

Q. Chen, X. Yan, L. Zhu, H. Chen, B. Jiang et al., Improvement of Mechanical Strength and Fatigue Resistance of Double Network Hydrogels by Ionic Coordination Interactions, Chem Mater, vol.28, issue.16, pp.5710-5730, 2016.

W. Zhang, X. Liu, J. Wang, J. Tang, J. Hu et al., Fatigue of double-network hydrogels, Eng Fract Mech, vol.187, pp.74-93, 2018.

C. .. Introduction, 247 2. Materials preparation and characterization

, 3.2. Specificities of PMMA samples and slippage phenomenon

. .. , Results regarding the materials preparation

, Effect of the nature of the crosslinker

, Effect of crosslinker content / UV synthesis / BDMA crosslinker

. .. Conclusions,

P. Millereau, E. Ducrot, J. M. Clough, M. E. Wiseman, H. R. Brown et al., Mechanics of elastomeric molecular composites, Proc Natl Acad Sci, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02074609

E. Ducrot, Innovative tough elastomers: Designed sacrificial bonds in multiple networks, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01362511

P. Millereau, Large Strain and Fracture of Multiple Network Elastomers, 2017.
URL : https://hal.archives-ouvertes.fr/tel-02138641

J. Slootman, Quantitative detection of damage in soft materials using mechano-fluorescence, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02864025

L. H. Sperling, Interpenetrating Polymer Networks and Related Materials

M. A. Boston and U. S. Springer, , 1981.

L. Lalande, C. Plummer, J. Ma?nson, and P. Ge?ard, Microdeformation mechanisms in rubber toughened PMMA and PMMA-based copolymers, Eng Fract Mech, vol.73, issue.16, pp.2413-2439, 2006.

T. G. Fox, Influence of Diluent and of Copolymer Composition on the Glass Temperature of a Polymer System, Bull Am Phys Soc, vol.1, p.123, 1956.

J. E. Mark, Physical properties of polymers handbook

, , vol.1076, 2007.