, STRATOBUS Contents 6.1 Introduction

, Slosh of an air ballonet in an helium volume

.. .. Conclusion,

J. Anderson, Fundamentals of Aerodynamics. McGraw-Hill Education, 2010.

L. Billon, Y. Mesri, and E. Hachem, Anisotropic boundary layer mesh generation for immersed complex geometries, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01521734

T. A. Johnson and V. C. Patel, Flow past a sphere up to a reynolds number of 300, Journal of Fluid Mechanics, vol.378, pp.19-70, 1999.

L. Liao and I. Pasternak, A review of airship structural research and development, Progress in Aerospace Sciences, vol.45, issue.4, pp.83-96, 2009.

V. Doyeux, Modeling and simulation of multi-fluid systems. Applications to blood flows. Theses, 2014.
URL : https://hal.archives-ouvertes.fr/tel-00939930

G. Khoury and J. Gillett, Airship Technology. Cambridge Aerospace Series, 2004.

A. Jameson, A perspective on computational algorithms for aerodynamic analysis and design, Progress in Aerospace Sciences, vol.37, issue.2, pp.197-243, 2001.

M. and M. Sur, Équilibre Des Machines Aérostatiques, Sur Les Différens Moyens de Les Faire. Savoirs et Traditions Series, Hachette Livre -BNF, 2016.

J. Zhou, J. Miao, F. Wang, and L. Jiang, Motion modeling of stratospheric airship in wind field, Control Conference (CCC), vol.9, pp.1803-1808, 2013.

E. Wu, S. Hu, and A. Zhang, Calculation and simulation analysis of aerodynamic force for stratosphere airship during floating flight, Computer Simulation, vol.5, p.14, 2012.

X. Wu, Y. Wang, C. Huang, T. Du, X. Yu et al., Aerodynamic simulation of airship ambient flows with high attack angles and analysis on turbulence models and parameters, vol.31, pp.24-31, 2014.

M. I. Alam, Multidisciplinary design optimization of stratospheric airship, vol.10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01495462

H. Zhang, X. Guo, and R. Dai, Effect of transition on optimization of stratospheric airship hulls, Hangkong Dongli Xuebao/Journal of Aerospace Power, vol.28, p.11, 2013.

H. Zhang, X. Guo, F. Yang, and R. Dai, Influences of geometry of hull tail on aerodynamic drag of stratospheric airships, Hangkong Dongli Xuebao/Journal of Aerospace Power, vol.30, p.11, 2015.

T. J. Hughes, Multiscale phenomena: Green's functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer methods in applied mechanics and engineering, vol.127, issue.1-4, pp.387-401, 1995.

E. Hachem, Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00443532

P. Spalart and S. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA journal, 1992.

T. Coupez and E. Hachem, Solution of high-reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing, Computer methods in applied mechanics and engineering, vol.267, p.11, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00866734

T. Coupez, G. Jannoun, N. Nassif, H. C. Nguyen, H. Digonnet et al., Adaptive timestep with anisotropic meshing for incompressible flows, Journal of Computational Physics, p.11, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00800819

Y. Mesri, M. Khalloufi, and E. Hachem, On optimal simplicial 3d meshes for minimizing the hessian-based errors, Applied Numerical Mathematics, vol.109, p.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354332

S. E. Feghali, Novel monolithic stabilized finite element method for fluid-structure interaction. Theses, Ecole Nationale Supérieure des Mines de Paris, vol.76, 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00743488

H. Digonnet and T. Coupez, -object-oriented programming for?fast and easy? development of parallel applications in forming processes simulation, Computational Fluid and Solid Mechanics, pp.1922-1924, 2003.

H. Digonnet, L. Silva, and T. Coupez, Cimlib: a fully parallel application for numerical simulations based on components assembly, AIP Conference Proceedings, vol.908, p.11, 2007.

L. , erhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg, vol.15, 1904.

H. Schlichting, Boundary-layer theory. McGraw-Hill series in mechanical engineering, vol.18, 1979.

R. D. Cedar, D. A. Dietrich, and M. J. Ostrander, Engine/airframe installation cfd for commercial transports: An engine manufacturer's perspective," tech. rep., SAE Technical Paper, vol.20, 1993.

R. Meakin, Moving body overset grid methods for complete aircraft tiltrotor simulations, 11th Computational Fluid Dynamics Conference, vol.20, p.3350, 1993.

K. Nordanger, R. Holdahl, T. Kvamsdal, A. M. Kvarving, and A. Rasheed, Simulation of airflow past a 2d naca0015 airfoil using an isogeometric incompressible navier?stokes solver with the spalart?allmaras turbulence model, Computer Methods in Applied Mechanics and Engineering, vol.290, pp.183-208, 2015.

N. Qin and X. Liu, Flow feature aligned grid adaptation, International journal for numerical methods in engineering, vol.67, issue.6, pp.787-814, 2006.

P. L. George, Tet meshing: construction, optimization and adaptation, 8th International Meshing Roundtable, vol.20, pp.133-141, 1999.

S. Lo, A new mesh generation scheme for arbitrary planar domains, International Journal for Numerical Methods in Engineering, vol.21, issue.8, pp.1403-1426, 1985.

R. Löhner and P. Parikh, Generation of three-dimensional unstructured grids by the advancing-front method, International Journal for Numerical Methods in Fluids, vol.8, issue.10, pp.1135-1149, 1988.

S. Pirzadeh, Unstructured viscous grid generation by the advancing-layers method, AIAA journal, vol.32, issue.8, pp.1735-1737, 1994.

O. Hassan, K. Morgan, E. Probert, and J. Peraire, Unstructured tetrahedral mesh generation for three-dimensional viscous flows, International Journal for Numerical Methods in Engineering, vol.39, issue.4, pp.549-567, 1996.

R. V. Garimella and M. S. Shephard, Boundary layer mesh generation for viscous flow simulations, International Journal for Numerical Methods in Engineering, vol.49, issue.1-2, pp.193-218, 2000.

C. L. Bottasso and D. Detomi, A procedure for tetrahedral boundary layer mesh generation, Engineering with Computers, vol.18, issue.1, pp.66-79, 2002.

A. Loseille and R. Löhner, Boundary layer mesh generation and adaptivity, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, vol.20, p.894, 2011.

P. Möller and P. Hansbo, On advancing front mesh generation in three dimensions, International Journal for Numerical Methods in Engineering, vol.38, issue.21, pp.3551-3569, 1995.

B. Delaunay, Bulletin de l'Académie des Sciences de l'URSS. Classe des sciences mathet'matiques et na, vol.20, pp.793-800, 1934.

H. Borouchaki, P. L. George, F. Hecht, P. Laug, and E. Saltel, Delaunay mesh generation governed by metric specifications. part i. algorithms, Finite elements in analysis and design, vol.25, pp.61-83, 1997.

N. P. Weatherill and O. Hassan, Efficient three-dimensional delaunay triangulation with automatic point creation and imposed boundary constraints, International Journal for Numerical Methods in Engineering, vol.37, issue.12, 1994.

J. R. Shewchuk, Tetrahedral mesh generation by delaunay refinement, Proceedings of the fourteenth annual symposium on Computational geometry, vol.20, pp.86-95, 1998.

T. J. Baker, Automatic mesh generation for complex three-dimensional regions using a constrained delaunay triangulation, Engineering with Computers, vol.5, issue.3-4, pp.161-175, 1989.

P. George and H. Borouchaki, Delaunay triangulation and meshing, vol.20, 1998.

M. A. Yerry and M. S. Shephard, A modified quadtree approach to finite element mesh generation, IEEE Computer Graphics and Applications, vol.3, issue.1, pp.39-46, 1983.

J. Dompierre, M. Vallet, P. Labbé, and F. Guibault, On simplex shape measures with extension for anisotropic meshes, Proceedings of workshop on mesh quality and dynamic meshing, p.21, 2003.

D. Castro, F. Hecht, and B. Mohammadi, New progress in anisotropic grid adaptation for inviscid and viscous flows simulations, 4th Annual Intl. Meshing Roundtable, Citeseer, 1995.
URL : https://hal.archives-ouvertes.fr/inria-00074019

R. V. Garimella and M. S. Shephard, Boundary layer meshing for viscous flows in complex domains, IMR, p.22, 1998.

J. Dompierre, M. Vallet, Y. Bourgault, M. Fortin, and W. G. Habashi, Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent cfd. part iii. unstructured meshes, International journal for numerical methods in fluids, vol.39, issue.8, p.22, 2002.

W. Huang, Metric tensors for anisotropic mesh generation, Journal of Computational Physics, vol.204, issue.2, p.22, 2005.

T. Coupez, Génération de maillage et adaptation de maillage par optimisation locale, Revue Européenne des Éléments Finis, vol.9, p.22, 2000.

D. Marcum and F. Alauzet, Aligned metric-based anisotropic solution adaptive mesh generation, Procedia Engineering, vol.82, p.22, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115081

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, Analyse numérique, vol.8, issue.R2, p.33, 1974.

D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the stokes equations, Calcolo, vol.21, issue.4, pp.337-344, 1984.

L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.123, issue.1-4, p.33, 1995.

T. Tezduyar, S. Mittal, S. Ray, and R. Shih, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Computer Methods in Applied Mechanics and Engineering, vol.95, issue.2, p.33, 1992.

T. J. Hughes, G. R. Feijóo, L. Mazzei, and J. Quincy, The variational multiscale method?a paradigm for computational mechanics, Computer methods in applied mechanics and engineering, vol.166, issue.1-2, p.33, 1998.

E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element method for incompressible flows with high reynolds number, Journal of Computational Physics, vol.229, issue.23, p.34, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521881

L. P. Franca and S. P. Oliveira, Pressure bubbles stabilization features in the stokes problem, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.16-18, p.35, 2003.

A. Masud and T. J. Hughes, A stabilized mixed finite element method for darcy flow, Computer methods in applied mechanics and engineering, vol.191, issue.39-40, p.35, 2002.

S. Badia and R. Codina, Stabilized continuous and discontinuous galerkin techniques for darcy flow, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.25-28, p.35, 2010.

R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.190, pp.1579-1599, 2000.

R. Codina, J. Principe, O. Guasch, and S. Badia, Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Computer Methods in Applied Mechanics and Engineering, vol.196, p.35, 2007.

R. Codina and J. Principe, Dynamic subscales in the finite element approximation of thermally coupled incompressible flows, International journal for numerical methods in fluids, vol.54, issue.6-8, p.35, 2007.

R. C. Swanson and S. Langer, Comparison of naca 0012 laminar flow solutions: structured and unstructured grid methods, p.37, 2016.

B. Fornberg, Steady viscous flow past a sphere at high reynolds numbers, Journal of Fluid Mechanics, vol.190, p.41, 1988.

G. S. Constantinescu and K. D. Squires, LES and DES investigations of turbulent flow over a sphere, p.41, 2000.

A. G. Tomboulides and S. A. Orszag, Numerical investigation of transitional and weak turbulent flow past a sphere, Journal of Fluid Mechanics, vol.416, p.41, 2000.

D. Kim, Laminar flow past a sphere rotating in the transverse direction, Journal of Mechanical Science and Technology, vol.23, p.41, 2009.

S. Jindal, L. N. Long, P. E. Plassmann, and N. Sezer-uzol, Large eddy simulations around a sphere using unstructured grids, AIAA Paper, vol.2228, p.41, 2004.

E. Constant, J. Favier, M. Meldi, P. Meliga, and E. Serre, An immersed boundary method in openfoam : Verification and validation, Computers & Fluids, vol.157, p.41, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01591562

A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers

J. Kim, P. Moin, and R. Moser, Turbulence statistics in fully developed channel flow at low reynolds number, Journal of fluid mechanics, vol.177, p.44, 1987.

R. S. Rogallo, Numerical experiments in homogeneous turbulence, p.44, 1981.

D. C. Wilcox, Turbulence modeling for CFD, vol.2, 1998.

W. J. Feiereisen, W. C. Reynolds, and J. H. Ferziger, Numerical simulation of a compressible homogeneous, turbulent shear flow, p.44, 1981.

S. B. Pope, Turbulent flows, p.44, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00338511

A. Leonard, Energy cascade in large-eddy simulations of turbulent fluid flows, Advances in geophysics, vol.18, p.44, 1975.

M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model, Physics of Fluids A: Fluid Dynamics, vol.3, issue.7, pp.1760-1765, 1991.

P. Sagaut, Large eddy simulation for incompressible flows: an introduction, 2006.

M. Lesieur and O. Metais, New trends in large-eddy simulations of turbulence, Annual review of fluid mechanics, vol.28, issue.1, pp.45-82, 1996.

J. Fröhlich and W. Rodi, Introduction to large eddy simulation of turbulent flows, Closure strategies for turbulent and transitional flows, vol.1, pp.197-224, 2002.

J. Boussinesq, Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section. No. ptie. 2 in Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section, Gauthier-Villars et fils, 1897

P. R. Spalart, Direct simulation of a turbulent boundary layer up to r q = 1410, Journal of fluid mechanics, vol.187, pp.61-98, 1988.

W. Rodi, N. N. Mansour, and V. Michelassi, One-equation near-wall turbulence modeling with the aid of direct simulation data, Journal of fluids engineering, vol.115, issue.2, p.45, 1993.

J. Kim, S. Kline, and J. Johnston, Investigation of a reattaching turbulent shear layer: flow over a backward-facing step, Journal of Fluids Engineering, vol.102, issue.3, p.45, 1980.

B. Baldwin and H. Lomax, Thin-layer approximation and algebraic model for separated turbulentflows, 16th aerospace sciences meeting, vol.46, p.257, 1978.

A. Smith and T. Cebeci, Numerical solution of the turbulent-boundary-layer equations, vol.46, 1967.

B. Baldwin and T. Barth, A one-equation turbulence transport model for high reynolds number wall-bounded flows, 29th Aerospace Sciences Meeting, vol.46, p.610, 1991.

B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, vol.46, pp.96-116, 1983.

D. C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models, AIAA journal, vol.26, issue.11, pp.1299-1310, 1988.

F. Menter, Zonal two equation kw turbulence models for aerodynamic flows, vol.46, p.2906, 1993.

T. J. Hughes, The finite element method: linear static and dynamic finite element analysis. Courier Corporation, p.47, 2012.

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary navierstokes problem. i. regularity of solutions and second-order error estimates for spatial discretization, SIAM Journal on Numerical Analysis, vol.19, issue.2, p.47, 1982.

I. Christie, D. F. Griffiths, A. R. Mitchell, and O. C. Zienkiewicz, Finite element methods for second order differential equations with significant first derivatives, International Journal for Numerical Methods in Engineering, vol.10, issue.6, p.49, 1976.

D. W. Kelly, S. Nakazawa, O. C. Zienkiewicz, and J. C. Heinrich, A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems, International Journal for Numerical Methods in Engineering, vol.15, issue.11, pp.1705-1711, 1980.

T. Hughes and A. Brooks, Theoretical framework for petrov-galerkin methods with discontinuous weighting functions: Application to the streamline-upwind procedure, Finite Elements in Fluids, vol.4, p.49, 1982.

A. N. Brooks and T. J. Hughes, Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1, p.49, 1982.

A. Brooks and T. Hughes, Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, p.49, 1982.

T. Hughes and A. Brooks, A multi-dimensioal upwind scheme with no crosswind diffusion, FINITE ELEMENT METHODS FOR CONVECTION DOMINATED FLOWS, ASME WIN-TER ANNUAL MEETING, vol.34, pp.19-35, 1979.

T. J. Hughes and M. Mallet, A new finite element formulation for computational fluid dynamics: Iii. the generalized streamline operator for multidimensional advective-diffusive systems, Computer Methods in Applied Mechanics and Engineering, vol.58, issue.3, p.49, 1986.

T. J. Hughes, M. Mallet, and M. Akira, A new finite element formulation for computational fluid dynamics: Ii. beyond supg, Computer Methods in Applied Mechanics and Engineering, vol.54, issue.3, p.49, 1986.

T. J. Hughes and M. Mallet, A new finite element formulation for computational fluid dynamics: Iv. a discontinuity-capturing operator for multidimensional advective-diffusive systems, Computer Methods in Applied Mechanics and Engineering, vol.58, issue.3, p.49, 1986.

E. D. Carmo and A. C. Galeão, Feed back petrov-galerkin methods for convection dominated problems, Laboratorio Nacional de Computacao Cientifica, p.49, 1988.

A. Galeao and E. G. Carmo, A consistent approximate upwind petrov-galerkin method for convection-dominated problems, Laboratorio Nacional de Computacao Cientifica, p.49, 1987.

E. G. Carmo and G. B. Alvarez, A new stabilized finite element formulation for scalar convection-diffusion problems: the streamline and approximate upwind/petrov-galerkin method, Computer Methods in Applied Mechanics and Engineering, vol.192, p.49, 2003.

V. John and P. Knobloch, On discontinuity?capturing methods for convection?diffusion equations, Numerical mathematics and advanced applications, p.49, 2006.

V. John and P. Knobloch, On spurious oscillations at layers diminishing (sold) methods for convection-diffusion equations: Part i-a review, Computer methods in applied mechanics and engineering, vol.196, issue.17-20, p.49, 2007.

T. J. Hughes, L. P. Franca, and G. M. Hulbert, A new finite element formulation for computational fluid dynamics: Viii. the galerkin/least-squares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, vol.73, issue.2, p.49, 1989.

I. Harari and T. J. Hughes, Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains, Computer Methods in Applied Mechanics and Engineering, vol.98, issue.3, p.49, 1992.

L. P. Franca and E. G. Carmo, The galerkin gradient least-squares method, Computer Methods in Applied Mechanics and Engineering, vol.74, issue.1, p.49, 1989.

F. Shakib and T. J. Hughes, A new finite element formulation for computational fluid dynamics: Ix. fourier analysis of space-time galerkin/least-squares algorithms, Computer Methods in Applied Mechanics and Engineering, vol.87, issue.1, p.49, 1991.

R. Codina, Comparison of some finite element methods for solving the diffusion-convectionreaction equation, Computer Methods in Applied Mechanics and Engineering, vol.156, issue.1-4, pp.185-210, 1998.

R. Codina, On stabilized finite element methods for linear systems of convection-diffusionreaction equations, Computer Methods in Applied Mechanics and Engineering, vol.188, issue.1-3, p.51, 2000.

F. Shakib, T. J. Hughes, and Z. Johan, A new finite element formulation for computational fluid dynamics: X. the compressible euler and navier-stokes equations, Second World Congress on Computational Mechanics, vol.89, p.51, 1991.

V. John and E. Schmeyer, Finite element methods for time-dependent convection?diffu-sion?reaction equations with small diffusion, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.3, p.51, 2008.

V. A. Narayanan and N. Zabaras, Variational multiscale stabilized fem formulations for transport equations: stochastic advection?diffusion and incompressible stochastic navier?stokes equations, Journal of Computational Physics, vol.202, issue.1, p.51, 2005.

C. Rumsey, Nasa turbulence modeling resource page, p.51

S. R. Allmaras and F. T. Johnson, Modifications and clarifications for the implementation of the spalart-allmaras turbulence model, 7th International Conference on Computational Fluid Dynamics, p.52, 2012.

R. A. Khurram, Y. Zhang, and W. G. Habashi, Multiscale finite element method applied to the spalart-allmaras turbulence model for 3d detached-eddy simulation, Computer Methods in Applied Mechanics and Engineering, vol.233, p.52, 2012.

J. Sari, F. Cremonesi, M. Khalloufi, F. Cauneau, P. Meliga et al., Anisotropic adaptive stabilized finite element solver for rans models, International Journal for Numerical Methods in Fluids, vol.86, issue.11, p.52
URL : https://hal.archives-ouvertes.fr/hal-02115828

S. Badia and R. Codina, Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ale framework, Journal on Numerical Analysis, vol.44, p.52, 2006.

S. , On the performance of high aspect ratio elements for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.188, p.53, 2000.

S. Micheletti, S. Perotto, and M. Picasso, Stabilized finite elements on anisotropic meshes: A priori error estimates for the advection-diffusion and the stokes problems, SIAM Journal on Numerical Analysis, vol.41, p.53, 2004.

I. Harari and T. J. Hughes, What are c and h?: inequalities for the analysis and design of finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.97, p.53, 1992.

C. Förster, W. A. Wall, and E. Ramm, Stabilized finite element formulation for incompressible flow on distorted meshes, International Journal for Numerical Methods in Fluids, vol.60, issue.10, p.53, 2009.

A. Cangiani and E. Süli, The residual-free-bubble finite element method on anisotropic partitions, SIAM Journal on Numerical Analysis, vol.45, issue.4, p.53, 2007.

T. E. Tezduyar and Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.3-4, p.53, 2000.

G. Iaccarino, A. Ooi, P. Durbin, and M. Behnia, Reynolds averaged simulation of unsteady separated flow, International Journal of Heat and Fluid Flow, vol.24, issue.2, pp.147-156, 2003.

A. Sohankar, L. Davidson, and C. Norberg, Large eddy simulation of flow past a square cylinder: comparison of different subgrid scale models, Journal of Fluids Engineering, vol.122, issue.1, p.54, 2000.

D. A. Lyn, S. Einav, W. Rodi, and J. Park, A laser-doppler velocimetry study of ensembleaveraged characteristics of the turbulent near wake of a square cylinder, Journal of Fluid Mechanics, vol.304, p.57, 1995.

W. Rodi, J. Ferziger, M. Breuer, and M. Pourquie, Status of large eddy simulation: results of a workshop, Transactions-American Society of Mechanical Engineers Journal of Fluids Engineering, vol.119, p.57, 1997.

P. Meliga, O. Cadot, and E. Serre, Experimental and theoretical sensitivity analysis of turbulent flow past a square cylinder, Flow, Turbulence and Combustion, vol.97, issue.4, p.57, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01461791

M. Nakadate, Development and flight test of spf-2 low altitude stationary flight test vehicle, AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences, vol.63, p.7408, 2005.

J. Delaurier, Influence of ballonet motions on the longitudinal stability of tethered aerostats, Journal of Aircraft, vol.17, issue.5, pp.305-312, 1980.

J. B. Mueller, Y. J. Zhao, and W. L. Garrard, Optimal ascent trajectories for stratospheric airships using wind energy, Journal of guidance, control, and dynamics, vol.32, issue.4, pp.1232-1245, 2009.

C. Zi-li, Q. Wei-dong, and X. Yu-geng, Dynamic modeling for airship equipped with ballonets and ballast, Applied Mathematics and Mechanics, vol.26, issue.8, pp.1072-1082, 2005.

H. N. Abramson, The dynamic behavior of liquids in moving containers, with applications to space vehicle technology, vol.63, 1966.

A. Kareem and W. Sun, Stochastic response of structures with fluid-containing appendages, Journal of sound and vibration, vol.119, issue.3, pp.389-408, 1987.

R. A. Ibrahim, V. Pilipchuk, and T. Ikeda, Recent advances in liquid sloshing dynamics, Applied Mechanics Reviews, vol.54, issue.2, pp.133-199, 2001.

S. Maekawa and K. Saito, The effect of ballonet slosh on an airship?s longitudinal motion, Transactions of the Japan Society for Aeronautical and Space Sciences, vol.47, issue.155, pp.44-50, 2004.

X. Wang, Effect of ballonet sloshing on the stability characteristics of an airship, AIAA Journal, vol.54, issue.1, pp.360-364, 2015.

J. Gerbeau and M. Vidrascu, A quasi-newton algorithm based on a reduced model for fluidstructure interaction problems in blood flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, p.66, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00071895

M. Á. Fernández and M. Moubachir, A newton method using exact jacobians for solving fluid-structure coupling, Computers & Structures, vol.83, issue.2-3, p.66, 2005.

P. , L. Tallec, and J. Mouro, Fluid structure interaction with large structural displacements, Computer methods in applied mechanics and engineering, vol.190, issue.24-25, p.66, 2001.

J. Gerbeau, M. Vidrascu, and P. Frey, Fluid-structure interaction in blood flows on geometries based on medical imaging, Computers & Structures, vol.83, issue.2-3, p.66, 2005.

D. P. Mok and W. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, Trends in computational structural mechanics, vol.49, p.66, 2001.

W. A. Wall, D. P. Mok, and E. Ramm, Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures, Solids, structures and coupled problems in engineering, proceedings of the European conference on computational mechanics ECCM, vol.99, p.66, 1999.

P. Causin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Computer methods in applied mechanics and engineering, vol.194, p.66, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00695954

N. Sukumar, N. Moës, B. Moran, and T. Belytschko, Extended finite element method for three-dimensional crack modelling, International Journal for Numerical Methods in Engineering, vol.48, issue.11, p.66, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01006859

C. S. Peskin, The immersed boundary method, Acta numerica, vol.11, p.66, 2002.

R. Glowinski, T. Pan, T. I. Hesla, and D. D. Joseph, A distributed lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, p.66, 1999.

R. Glowinski, T. Pan, T. Hesla, D. Joseph, and J. Periaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, Journal of Computational Physics, vol.169, issue.2, p.66, 2001.

R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method), Journal of computational physics, vol.152, issue.2, p.66, 1999.

J. Bruchon, H. Digonnet, and T. Coupez, Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. from a lagrangian approach to an eulerian approach, International journal for numerical methods in engineering, vol.78, issue.8, p.66, 2009.
URL : https://hal.archives-ouvertes.fr/emse-00475556

R. Valette, T. Coupez, C. David, and B. Vergnes, A direct 3d numerical simulation code for extrusion and mixing processes, International Polymer Processing, vol.24, issue.2, p.66, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509483

J. A. Sethian, An analysis of flame propagation, p.66, 1982.

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations, Journal of computational physics, vol.79, issue.1, p.66, 1988.

M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational physics, vol.114, issue.1, pp.146-159, 1994.

E. Hachem, M. Khalloufi, J. Bruchon, R. Valette, and Y. Mesri, Unified adaptive variational multiscale method for two phase compressible-incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.308, p.66, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01353998

E. Hachem, R. Valette, and M. Khalloufi, High fidelity anisotropic adaptive fem towards physical couplings occurring in turbulent boiling, p.66, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01487257

G. Cottet and E. Maitre, A semi-implicit level set method for multiphase flows and fluidstructure interaction problems, Journal of Computational Physics, vol.314, p.66, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01188443

C. Li, C. Xu, C. Gui, and M. D. Fox, Distance regularized level set evolution and its application to image segmentation, IEEE transactions on image processing, vol.19, issue.12, p.66, 2010.

L. Marioni, Modélisation numerique et couplage électromagnétique-CFD dans les procédés decoulée, vol.68, 2017.

T. Coupez, Convection of local level set function for moving surfaces and interfaces in forming flow, AIP Conference Proceedings, vol.908, pp.61-66, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00510556

T. Coupez, Grandes transformations et remaillage automatique, p.69, 1991.

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of computational physics, vol.230, issue.7, pp.2391-2405, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00579536

J. Céa, Approximation variationnelle des problèmes aux limites, Ann. Inst. Fourier (Grenoble), vol.14, issue.2, p.71, 1964.

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. part 1: The recovery technique, International Journal for Numerical Methods in Engineering, vol.33, issue.7, p.72, 1992.

Z. Zhang and A. Naga, A new finite element gradient recovery method: superconvergence property, SIAM Journal on Scientific Computing, vol.26, issue.4, p.72, 2005.

F. Alauzet and A. Loseille, High-order sonic boom modeling based on adaptive methods, Journal of Computational Physics, vol.229, issue.3, p.72, 2010.

M. Picasso, F. Alauzet, H. Borouchaki, and P. George, A numerical study of some hessian recovery techniques on isotropic and anisotropic meshes, SIAM Journal on Scientific Computing, vol.33, issue.3, p.72, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00455799

G. E. Jannoun, Adaptation anisotrope précise en espace et temps et méthodes d?éléments finis stabilisées pour la résolution de problèmes de mécanique des fluides instationnaires, ENMP, p.73, 2014.

F. Alauzet and P. Frey, Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage. Partie I: aspects théoriques, INRIA, p.73, 2003.

M. Khalloufi, Y. Mesri, R. Valette, E. Massoni, and E. Hachem, High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension, Computer Methods in Applied Mechanics and Engineering, vol.307, pp.44-67, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354154

M. Khalloufi, Multiphase flows with phase change and boiling in quenching processes. Theses, p.74, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01745841

S. Van-der-pijl, A. Segal, C. Vuik, and P. Wesseling, A mass-conserving level-set method for modelling of multi-phase flows, International journal for numerical methods in fluids, vol.47, issue.4, p.75, 2005.

G. C. Buscaglia and R. F. Ausas, Variational formulations for surface tension, capillarity and wetting, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.45, p.75, 2011.

S. Hysing, A new implicit surface tension implementation for interfacial flows, International Journal for Numerical Methods in Fluids, vol.51, issue.6, p.75

J. Xu and H. Zhao, An eulerian formulation for solving partial differential equations along a moving interface, Journal of Scientific Computing, vol.19, issue.1-3, p.76, 2003.

S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman et al., Quantitative benchmark computations of two-dimensional bubble dynamics, International Journal for Numerical Methods in Fluids, vol.60, issue.11, p.78, 2009.

D. Jacqmin, Calculation of two-phase navier-stokes flows using phase-field modeling, Journal of Computational Physics, vol.155, issue.1, p.78, 1999.

U. Rasthofer, F. Henke, W. Wall, and V. Gravemeier, An extended residual-based variational multiscale method for two-phase flow including surface tension, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.21-22, pp.1866-1876, 2011.

T. Fries, The intrinsic xfem for two-fluid flows, International Journal for Numerical Methods in Fluids, vol.60, issue.4, pp.437-471, 2009.

J. C. Martin, W. J. Moyce, W. G. Penney, A. Price, and C. Thornhill, Phil. Trans. R. Soc. Lond. A, vol.244, issue.882, pp.312-324, 1952.

L. Marioni, M. Khalloufi, F. Bay, and E. Hachem, Two-fluid flow under the constraint of external magnetic field: Revisiting the dam-break benchmark, International Journal of Numerical Methods for Heat & Fluid Flow, vol.27, issue.11, pp.2565-2581, 2017.

A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, vol.202, issue.2, pp.664-698, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00071808

K. Abdolmaleki, K. Thiagarajan, and M. Morris-thomas, Simulation of the dam break problem and impact flows using a navier-stokes solver, Simulation, vol.13, p.17, 2004.

R. N. Elias and A. L. Coutinho, Stabilized edge-based finite element simulation of free-surface flows, International Journal for Numerical Methods in Fluids, vol.54, issue.6-8, pp.965-993, 2007.

C. Geuzaine and J. Remacle, Gmsh: A 3-d finite element mesh generator with built-in preand post-processing facilities, International journal for numerical methods in engineering, vol.79, issue.11, p.93, 2009.