G. M. Budd, J. A. Peterson, and . Ce, The obesity epidemic, part 1: understanding the origins, Am J Nurs, vol.114, pp.40-46, 2014.

S. O'neill and L. O'driscoll, Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies, Obes Rev, vol.16, pp.1-12, 2015.

R. Loomba and A. J. Sanyal, The global NAFLD epidemic, Nat Rev Gastroenterol Hepatol, vol.10, pp.686-690, 2013.

J. Després, Body Fat Distribution and Risk of Cardiovascular Disease, Circulation, vol.126, p.1301, 2012.

A. P. Simopoulos, The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases, Experimental Biology and Medicine, vol.233, pp.674-688, 2008.

S. Lorente-cebrián, Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence, Journal of Physiology and Biochemistry, vol.69, pp.633-651, 2013.

T. Xu, Effect of omega-3 fatty acid supplementation on serum lipids and vascular inflammation in patients with end-stage renal disease: a meta-analysis, Scientific Reports, vol.6, p.39346, 2016.

P. C. Calder, Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance, Biochimica et Biophysica Acta (BBA) -Molecular and Cell Biology of Lipids, vol.1851, pp.469-484, 2015.

S. Samane, Fish oil and argan oil intake differently modulate insulin resistance and glucose intolerance in a rat model of dietary-induced obesity, Metabolism, vol.58, pp.909-919, 2009.

I. Rudkowska, Effects of a supplementation of n-3 polyunsaturated fatty acids with or without fish gelatin on gene expression in peripheral blood mononuclear cells in obese, insulin-resistant subjects, J Nutrigenet Nutrigenomics, vol.4, pp.192-202, 2011.

J. Ruzickova, Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue, Lipids, vol.39, pp.1177-1185, 2004.

L. F. Defina, L. G. Marcoux, S. M. Devers, J. P. Cleaver, and B. L. Willis, Effects of omega-3 supplementation in combination with diet and exercise on weight loss and body composition, Am J Clin Nutr, vol.93, pp.455-462, 2011.

J. X. Kang, J. Wang, L. Wu, and Z. B. Kang, Transgenic mice: Fat-1 mice convert n-6 to n-3 fatty acids, Nature, vol.427, pp.504-504, 2004.

P. J. White, M. Arita, R. Taguchi, J. X. Kang, and A. Marette, Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice, Diabetes, vol.59, pp.3066-3073, 2010.

P. J. White, Transgenic omega-3 PUFA enrichment alters morphology and gene expression profile in adipose tissue of obese mice: Potential role for protectins, Metabolism, vol.64, pp.666-676, 2015.

G. S. De-castro and P. C. Calder, Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids, Clin Nutr, 2017.

C. Leung, L. Rivera, J. B. Furness, and P. W. Angus, The role of the gut microbiota in NAFLD, Nat Rev Gastroenterol Hepatol, vol.13, pp.412-425, 2016.

M. V. Machado, H. Cortez-pinto, . Diet, O. Microbiota, and N. , A Dangerous Quartet, Int J Mol Sci, vol.17, 2016.

L. Miele, Gut-liver axis and microbiota in NAFLD: insight pathophysiology

S. O'neill and L. O'driscoll, Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies, Obes. Rev, vol.16, pp.1-12, 2015.

J. Despres and I. Lemieux, Abdominal obesity and metabolic syndrome, Nature, vol.444, pp.881-887, 2006.

U. Smith, B. B. Kahn, M. M. Van-greevenbroek, C. G. Schalkwijk, and C. D. Stehouwer, Dysfunctional adipose tissue and low-grade inflammation in the management of the metabolic syndrome: current practices and future advances, J. Intern. Med, 2016.

I. Wernstedt-asterholm, Adipocyte Inflammation Is Essential for Healthy Adipose Tissue Expansion and Remodeling, Cell Metab, vol.20, pp.103-118, 2014.

K. Makki, P. Froguel, and I. Wolowczuk, Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm, p.139239, 2013.

S. E. Shoelson, J. Lee, and A. B. Goldfine, Inflammation and insulin resistance, J. Clin. Invest, vol.116, pp.1793-1801, 2006.

A. R. Saltiel and J. Olefsky, Inflammatory mechanisms linking obesity and metabolic disease, J. Clin. Invest, vol.127, pp.1-4, 2017.

F. Backhed, The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.15718-15723, 2004.

M. T. Khan, M. Nieuwdorp, and F. Bäckhed, Microbial Modulation of Insulin Sensitivity, Cell Metab, vol.20, pp.753-760, 2014.

J. Qin, A human gut microbial gene catalog established by metagenomic sequencing, Nature, vol.464, pp.59-65, 2010.

M. Tidjani-alou, J. Lagier, and D. Raoult, Diet influence on the gut microbiota and dysbiosis related to nutritional disorders, Hum. Microbiome J, vol.1, pp.3-11, 2016.

F. Sommer and F. Backhed, The gut microbiota [mdash] masters of host development and physiology, Nat Rev Micro, vol.11, pp.227-238, 2013.

D. Ríos-covián, Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health, Front. Microbiol, vol.7, p.185, 2016.

P. Aro, Body mass index and chronic unexplained gastrointestinal symptoms: an adult endoscopic population based study, Gut, vol.54, p.1377, 2005.

S. Delgado-aros, Obesity is Associated with Increased Risk of Gastrointestinal Symptoms: A Population-Based Study, Am J Gastroenterol, vol.99, pp.1801-1806, 2004.

P. D. Cani, M. Osto, L. Geurts, and A. Everard, Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity, Gut Microbes, vol.3, pp.279-288, 2012.

P. D. Cani, Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut, vol.58, pp.1091-1103, 2009.

D. Haller, Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Probiotics in Chronic Inflammatory Bowel Disease and the Functional Disorder Irritable Bowel Syndrome, J. Nutr, vol.140, pp.690-697, 2010.

L. Barz and M. , Probiotics as Complementary Treatment for Metabolic Disorders, Diabetes Metab. J, vol.39, pp.291-303, 2015.

J. Y. Yoo and S. S. Kim, Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders, Nutrients, vol.8, p.173, 2016.

A. De-moreno-de-leblanc and J. G. Leblanc, Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications, World J. Gastroenterol, vol.20, pp.16518-16528, 2014.

J. Alard, Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota, Environ. Microbiol, vol.18, pp.1484-1497, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01532556

J. Wang, Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice, ISME J, vol.9, pp.1-15, 2015.

C. Degirolamo, S. Rainaldi, F. Bovenga, S. Murzilli, and A. Moschetta, Microbiota Modification with Probiotics Induces Hepatic Bile Acid Synthesis via Downregulation of the Fxr-Fgf15 Axis in Mice, Cell Rep, vol.7, pp.12-18, 2014.

A. Everard, Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci, vol.110, pp.9066-9071, 2013.

M. Sanchez, Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women, Br. J. Nutr, vol.111, pp.1507-1519, 2014.

J. Minami, Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial, J. Nutr. Sci, vol.4, p.17, 2015.

C. J. Hulston, A. A. Churnside, and M. C. Venables, Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects, Br. J. Nutr, vol.113, pp.596-602, 2015.

R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, and R. Knight, UCHIME improves sensitivity and speed of chimera detection, Bioinforma. Oxf. Engl, vol.27, pp.2194-2200, 2011.

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, 2010.

T. Z. Desantis, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB, Appl. Environ. Microbiol, vol.72, pp.5069-5072, 2006.

Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl Env. Microbiol, vol.73, 2007.

N. A. Bokulich, Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing, Nat. Methods, vol.10, pp.57-59, 2013.

J. R. Cole, Ribosomal Database Project: data and tools for high throughput rRNA analysis, Nucleic Acids Res, vol.42, pp.633-642, 2014.

V. Demers-mathieu, J. Audy, É. Laurin, I. Fliss, and D. St-gelais, Impact of commercial mesophilic and thermophilic starters on the growth of new probiotic isolates, Int. Dairy J, vol.45, pp.31-40, 2015.

H. Xu, Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, J. Clin. Invest, vol.112, pp.1821-1830, 2003.

J. Bastard, Recent advances in the relationship between obesity, inflammation, and insulin resistance, Eur. Cytokine Netw, vol.17, pp.4-12, 2006.

H. Daniel, High-fat diet alters gut microbiota physiology in mice, ISME J, vol.8, pp.295-308, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204436

M. J. Claesson, Gut microbiota composition correlates with diet and health in the elderly, Nature, vol.488, pp.178-184, 2012.

L. A. David, Diet rapidly and reproducibly alters the human gut microbiome

, J. Clin. Nutr, vol.64, pp.636-643, 2010.

A. S. Andreasen, Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects, Br. J. Nutr, vol.104, pp.1831-1838, 2010.

C. M. Galdeano and G. Perdigón, Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation, J. Appl. Microbiol, vol.97, pp.673-681, 2004.

H. Plovier, A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice, Nat Med, vol.23, pp.107-113, 2017.

E. F. O'shea, P. D. Cotter, C. Stanton, R. P. Ross, and C. Hill, Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid, Int. J. Food Microbiol, vol.152, pp.189-205, 2012.

G. Perdigon, M. Medina, E. Vintini, and J. C. Valdez, Intestinal pathway of internalisation of lactic acid bacteria and gut mucosal immunostimulation, Int. J. Immunopathol. Pharmacol, vol.13, pp.141-150, 2000.

G. Perdigon, R. Fuller, and R. Raya, Lactic acid bacteria and their effect on the immune system, Curr. Issues Intest. Microbiol, vol.2, pp.27-42, 2001.

C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight, Diversity, stability and resilience of the human gut microbiota, Nature, vol.489, pp.220-230, 2012.

, in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants, The Lancet, vol.486, pp.1377-1396, 2012.

D. A. Gutierrez, M. J. Puglisi, and A. H. Hasty, Impact of Increased Adipose Tissue Mass on Inflammation, Insulin Resistance, and Dyslipidemia, Curr. Diab. Rep, vol.9, pp.26-32, 2009.

E. Ravussin and S. R. Smith, Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus, Ann. N. Y. Acad. Sci, vol.967, pp.363-378, 2002.

A. Tchernof and J. Despres, Pathophysiology of human visceral obesity: an update, Physiol. Rev, vol.93, pp.359-404, 2013.

J. Despres and I. Lemieux, Abdominal obesity and metabolic syndrome, Nature, vol.444, pp.881-887, 2006.

K. Makki, P. Froguel, and I. Wolowczuk, Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm, p.139239, 2013.

S. Cinti, The adipose organ at a glance, Dis. Model. Mech, vol.5, pp.588-594, 2012.

H. Kanda, MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity, J. Clin. Invest, vol.116, pp.1494-1505, 2006.

H. Wu, T-Cell Accumulation and Regulated on Activation, Normal T Cell Expressed and Secreted Upregulation in Adipose Tissue in Obesity, Circulation, vol.115, p.1029, 2007.

K. I. Stanford, Brown adipose tissue regulates glucose homeostasis and insulin sensitivity, J. Clin. Invest, vol.123, pp.215-223, 2013.

J. Nedergaard, T. Bengtsson, and B. Cannon, Unexpected evidence for active brown adipose tissue in adult humans, Am. J. Physiol. Endocrinol. Metab, vol.293, pp.444-452, 2007.

M. Saito and . Brown, Adipose Tissue as a Regulator of Energy Expenditure and Body Fat in Humans, Diabetes Metab. J, vol.37, pp.22-29, 2013.

V. Ouellet, Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans, J. Clin. Invest, vol.122, pp.545-552, 2012.

M. Chondronikola, Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans, Diabetes, vol.63, pp.4089-4099, 2014.

F. Backhed, The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.15718-15723, 2004.

V. Tremaroli and F. Backhed, Functional interactions between the gut microbiota and host metabolism, Nature, vol.489, pp.242-249, 2012.

J. L. Sonnenburg and F. Backhed, Diet-microbiota interactions as moderators of human metabolism, Nature, vol.535, pp.56-64, 2016.

A. Tursi, Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study, Am. J. Gastroenterol, vol.105, pp.2218-2227, 2010.

S. Oliva, Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis, Aliment. Pharmacol. Ther, vol.35, pp.327-334, 2012.

E. Furrie, Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial, Gut, vol.54, pp.242-249, 2005.

J. Shen, Z. Zuo, and A. Mao, Effect of Probiotics on Inducing Remission and Maintaining Therapy in Ulcerative Colitis, Crohn's Disease, and Pouchitis: Metaanalysis of Randomized Controlled Trials, Inflamm. Bowel Dis, vol.20, 2014.

D. Haller, Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Probiotics in Chronic Inflammatory Bowel Disease and the Functional Disorder Irritable Bowel Syndrome, J. Nutr, vol.140, pp.690-697, 2010.

L. Barz and M. , Probiotics as Complementary Treatment for Metabolic Disorders, Diabetes Metab. J, vol.39, pp.291-303, 2015.

J. Y. Yoo and S. S. Kim, Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders, Nutrients, vol.8, p.173, 2016.

J. Alard, Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota, Environ. Microbiol, vol.18, pp.1484-1497, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01532556

J. Wang, Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice, ISME J, vol.9, pp.1-15, 2015.

C. Degirolamo, S. Rainaldi, F. Bovenga, S. Murzilli, and A. Moschetta, Microbiota Modification with Probiotics Induces Hepatic Bile Acid Synthesis via Downregulation of the Fxr-Fgf15 Axis in Mice, Cell Rep, vol.7, pp.12-18, 2014.

A. Everard, Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci, vol.110, pp.9066-9071, 2013.

M. Sanchez, Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women, Br. J. Nutr, vol.111, pp.1507-1519, 2014.

J. Minami, Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial, J. Nutr. Sci, vol.4, p.17, 2015.

C. J. Hulston, A. A. Churnside, and M. C. Venables, Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects, Br. J. Nutr, vol.113, pp.596-602, 2015.

F. J. Cousin, D. D. Mater, B. Foligné, and G. Jan, Dairy propionibacteria as human probiotics: a review of recent evidence, Dairy Sci. Technol, vol.91, pp.1-26, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00868601

H. Falentin, The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1T, a Hardy Actinobacterium with Food and Probiotic Applications, PLOS ONE, vol.5, p.11748, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204238

A. Oksaharju, Effects of probiotic Lactobacillus rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS supplementation on intestinal and systemic markers of inflammation in ApoE*3Leiden mice consuming a high-fat diet, Br. J. Nutr, vol.110, pp.77-85, 2013.

B. Foligne, Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo, Appl. Environ. Microbiol, vol.76, pp.8259-8264, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00684731

G. Jan, Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria, Cell Death Differ, vol.9, pp.179-188, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02676764

A. Lan, Increased induction of apoptosis by Propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbiota-associated rats treated with 1,2-dimethylhydrazine, Br. J. Nutr, vol.100, pp.1251-1259, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01454096

B. Chassaing, Fecal Lipocalin 2, a Sensitive and Broadly Dynamic Non-Invasive Biomarker for Intestinal Inflammation, PLOS ONE, vol.7, p.44328, 2012.

R. Garcia-villalba, Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples, J. Sep. Sci, vol.35, pp.1906-1913, 2012.

R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, and R. Knight, UCHIME improves sensitivity and speed of chimera detection, Bioinforma. Oxf. Engl, vol.27, pp.2194-2200, 2011.

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, 2010.

T. Z. Desantis, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB, Appl. Environ. Microbiol, vol.72, pp.5069-5072, 2006.

Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl Env. Microbiol, vol.73, 2007.

N. A. Bokulich, Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing, Nat. Methods, vol.10, pp.57-59, 2013.

J. R. Cole, Ribosomal Database Project: data and tools for high throughput rRNA analysis, Nucleic Acids Res, vol.42, pp.633-642, 2014.

R. A. Kekkonen, Probiotic intervention has strain-specific anti-inflammatory effects in healthy adults, World J. Gastroenterol. WJG, vol.14, p.2029, 2008.

W. T. Festuccia, P. Blanchard, and Y. Deshaies, Control of Brown Adipose Tissue Glucose and Lipid Metabolism by PPAR?, Front. Endocrinol, vol.2, p.84, 2011.

I. Romieu, Energy balance and obesity: what are the main drivers?, Cancer Causes Control CCC, vol.28, pp.247-258, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606175

A. Yadav, M. A. Kataria, V. Saini, and A. Yadav, Role of leptin and adiponectin in insulin resistance, Clin. Chim. Acta, vol.417, pp.80-84, 2013.

K. Hatakka, M. Mutanen, R. Holma, M. Saxelin, and R. Korpela, Lactobacillus rhamnosus LC705 Together with Propionibacterium freudenreichii ssp shermanii JS Administered in Capsules Is Ineffective in Lowering Serum Lipids, J. Am. Coll. Nutr, vol.27, pp.441-447, 2008.

G. Den-besten, Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARgamma-Dependent Switch From Lipogenesis to Fat Oxidation, Diabetes, vol.64, pp.2398-2408, 2015.

E. E. Canfora, J. W. Jocken, and E. E. Blaak, Short-chain fatty acids in control of body weight and insulin sensitivity, Nat Rev Endocrinol, vol.11, pp.577-591, 2015.

D. Ríos-covián, Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health, Front. Microbiol, vol.7, p.185, 2016.

H. Endo, M. Niioka, N. Kobayashi, M. Tanaka, and T. Watanabe, Butyrateproducing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis, PloS One, vol.8, p.63388, 2013.

M. P. Mollica, Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamic, in Insulin Resistant Obese Mice, 2017.

A. Marette and C. Jobin, SCFAs Take a Toll En Route to Metabolic Syndrome, Cell Metab, vol.22, pp.954-956, 2015.

V. Singh, Microbiota-Dependent Hepatic Lipogenesis Mediated by Stearoyl CoA Desaturase 1 (SCD1) Promotes Metabolic Syndrome in TLR5-Deficient Mice, Cell Metab, vol.22, pp.983-996, 2015.

P. J. Turnbaugh, An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.444, pp.1027-131, 2006.

G. Falony, A. Vlachou, K. Verbrugghe, and L. De-vuyst, Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose, Appl. Environ. Microbiol, vol.72, pp.7835-7841, 2006.

A. Belenguer, Two Routes of Metabolic Cross-Feeding between Bifidobacterium adolescentis and Butyrate-Producing Anaerobes from the Human Gut, Appl. Environ. Microbiol, vol.72, pp.3593-3599, 2006.

M. Saitou, Complex Phenotype of Mice Lacking Occludin, a Component of Tight Junction Strands, Mol. Biol. Cell, vol.11, pp.4131-4142, 2000.

P. D. Cani, Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice, Diabetes, vol.57, p.1470, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00410066

M. A. Karwad, The role of CB1 in intestinal permeability and inflammation

G. G. Muccioli, The endocannabinoid system links gut microbiota to adipogenesis, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.6, 2010.

J. Lalles, Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet, Nutr. Rev, vol.68, pp.323-332, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02666268

P. D. Cani, Endocannabinoids -at the crossroads between the gut microbiota and host metabolism, Nat Rev Endocrinol, vol.12, pp.133-143, 2016.

P. D. Cani, Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes, vol.56, pp.1761-1772, 2007.

S. Guo, R. Al-sadi, H. M. Said, and T. Y. Ma, Lipopolysaccharide Causes an Increase in Intestinal Tight Junction Permeability in Vitro and in Vivo by Inducing Enterocyte Membrane Expression and Localization of TLR-4 and CD14, Am. J. Pathol, vol.182, pp.375-387, 2013.

P. D. Cani, Interactions between gut microbes and host cells control gut barrier and metabolism, Int J Obes Supp, vol.6, pp.28-31, 2016.

A. C. Ouwehand, S. Tolkko, J. Kulmala, S. Salminen, and E. Salminen, Adhesion of inactivated probiotic strains to intestinal mucus, Lett. Appl. Microbiol, vol.31, pp.82-86, 2000.

M. Moussavi and M. C. Adams, An In Vitro Study on Bacterial Growth Interactions and Intestinal Epithelial Cell Adhesion Characteristics of Probiotic Combinations, Curr. Microbiol, vol.60, pp.327-335, 2010.

D. Bougle, N. Roland, F. Lebeurrier, and P. Arhan, Effect of propionibacteria supplementation on fecal bifidobacteria and segmental colonic transit time in healthy human subjects, Scand. J. Gastroenterol, vol.34, pp.144-148, 1999.

T. Kouya, Production of extracellular bifidogenic growth stimulator by anaerobic and aerobic cultivations of several propionibacterial strains, J. Biosci. Bioeng, vol.103, pp.464-471, 2007.

K. Isawa, Isolation and identification of a new bifidogenic growth stimulator produced by Propionibacterium freudenreichii ET-3, Biosci. Biotechnol. Biochem, vol.66, pp.679-681, 2002.

H. Lin, Y. An, F. Hao, Y. Wang, and H. Tang, Correlations of fecal metabonomic and microbiomic changes induced by high-fat diet in the pre-obesity state, Sci. Rep, vol.6, p.21618, 2016.

X. Liang, Bidirectional interactions between indomethacin and the murine intestinal microbiota, vol.4, p.8973, 2015.

S. F. Clarke, Targeting the microbiota to address diet-induced obesity: a time dependent challenge, PloS One, vol.8, p.65790, 2013.

E. F. Murphy, in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants, The Lancet, vol.62, pp.1377-1396, 2013.

I. Romieu, Energy balance and obesity: what are the main drivers?, Cancer Causes Control, vol.28, pp.247-258, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606175

S. Vandevijvere, C. C. Chow, K. D. Hall, E. Umali, and B. Swinburn, Increased food energy supply as a major driver of the obesity epidemic: a global analysis, Bulletin of the World Health Organization, vol.93, pp.446-456, 2015.

G. M. Budd, J. A. Peterson, and . Ce, The obesity epidemic, part 1: understanding the origins, Am J Nurs, vol.114, pp.40-46, 2014.

J. B. Meigs, Body Mass Index, Metabolic Syndrome, and Risk of Type 2 Diabetes or Cardiovascular Disease, The Journal of Clinical Endocrinology & Metabolism, vol.91, pp.2906-2912, 2006.

A. H. Mokdad, E. S. Ford, and B. A. Bowman, Prevalence of obesity, diabetes, and obesity-related health risk factors, JAMA, vol.289, pp.76-79, 2001.

J. Y. Huh, Y. J. Park, M. Ham, and J. B. Kim, Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity, Molecules and Cells, vol.37, pp.365-371, 2014.

P. A. Zuk, Human Adipose Tissue Is a Source of Multipotent Stem Cells, Molecular Biology of the Cell, vol.13, pp.4279-4295, 2002.

P. Trayhurn and J. H. Beattie, Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ, Proc Nutr Soc, vol.60, pp.329-339, 2001.

S. Cinti, The adipose organ at a glance, Dis Model Mech, vol.5, pp.588-594, 2012.

P. Morigny, M. Houssier, E. Mouisel, and D. Langin, Adipocyte lipolysis and insulin resistance, Biochimie, vol.125, pp.259-266, 2016.

E. E. Kershaw and J. S. Flier, Adipose Tissue as an Endocrine Organ, The Journal of Clinical Endocrinology & Metabolism, vol.89, pp.2548-2556, 2004.

Y. Zhang, Positional cloning of the mouse obese gene and its human homologue, Nature, vol.372, pp.425-432, 1994.

M. D. Klok, S. Jakobsdottir, and M. L. Drent, The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review, Obes Rev, vol.8, pp.21-34, 2007.

A. Yadav, M. A. Kataria, V. Saini, and A. Yadav, Role of leptin and adiponectin in insulin resistance, Clinica Chimica Acta, vol.417, pp.80-84, 2013.

R. C. Frederich, Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action, Nat Med, vol.1, pp.1311-1314, 1995.

R. V. Considine, Serum immunoreactive-leptin concentrations in normalweight and obese humans, N Engl J Med, vol.334, pp.292-295, 1996.

B. L. Wajchenberg, D. Giannella-neto, M. E. Da-silva, and R. F. Santos, Depotspecific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome, Horm Metab Res, vol.34, pp.616-621, 2002.

T. Yamauchi, The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity, Nat Med, vol.7, pp.941-946, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00174777

M. Lafontan and N. Viguerie, Role of adipokines in the control of energy metabolism: focus on adiponectin, Current Opinion in Pharmacology, vol.6, pp.580-585, 2006.

G. Fantuzzi, Adipose tissue, adipokines, and inflammation, Journal of Allergy and Clinical Immunology, vol.115, pp.911-919, 2005.

H. Tilg and A. R. Moschen, Adipocytokines: mediators linking adipose tissue, inflammation and immunity, Nat Rev Immunol, vol.6, pp.772-783, 2006.

D. Müllerová and J. Kopeký, White Adipose Tissue: Storage and Effector Site for Environmental Pollutants, Physiological Research, vol.56, 2007.

S. M. Grundy, H. B. Brewer, J. I. Cleeman, S. C. Smith, and C. Lenfant, Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition, Arterioscler Thromb Vasc Biol, vol.24, pp.13-18, 2004.

C. M. Lee, R. R. Huxley, R. P. Wildman, and M. Woodward, Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis, Journal of Clinical Epidemiology, vol.61, pp.646-653, 2008.

J. Després, Body Fat Distribution and Risk of Cardiovascular Disease, Circulation, vol.126, p.1301, 2012.

A. Tchernof and J. Despres, Pathophysiology of human visceral obesity: an update, Physiol Rev, vol.93, pp.359-404, 2013.

J. Vague, The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease, The American Journal of Clinical Nutrition, vol.4, pp.20-34, 1956.

K. L. Stanhope, Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans, J Clin Invest, vol.119, pp.1322-1334, 2009.

D. Mozaffarian, T. Hao, E. B. Rimm, W. C. Willett, and F. B. Hu, Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men, N Engl J Med, vol.364, pp.2392-2404, 2011.

N. K. Pollock, Greater fructose consumption is associated with cardiometabolic risk markers and visceral adiposity in adolescents, J Nutr, vol.142, pp.251-257, 2012.

V. S. Malik, A. Pan, W. C. Willett, and F. B. Hu, Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis, The American Journal of Clinical Nutrition, vol.98, pp.1084-1102, 2013.

J. P. Després, Role of hepatic-triglyceride lipase activity in the association between intra-abdominal fat and plasma HDL cholesterol in obese women, Arterioscler Thromb Vasc Bio, vol.9, p.485, 1989.

J. Despres and I. Lemieux, Abdominal obesity and metabolic syndrome, Nature, vol.444, pp.881-887, 2006.

B. Cannon and J. Nedergaard, Brown Adipose Tissue: Function and Physiological Significance, Physiol Rev, vol.84, p.277, 2004.

D. Richard, A. C. Carpentier, G. Dore, V. Ouellet, and F. Picard, Determinants of brown adipocyte development and thermogenesis, Int J Obes (Lond), vol.34, issue.2, pp.59-66, 2010.

M. Rosenwald and C. Wolfrum, The origin and definition of brite versus white and classical brown adipocytes, Adipocyte, vol.3, pp.4-9, 2014.

F. W. Kiefer, Browning and thermogenic programing of adipose tissue, Best Pract Res Clin Endocrinol Metab, vol.30, pp.479-485, 2016.

J. Nedergaard, T. Bengtsson, and B. Cannon, Unexpected evidence for active brown adipose tissue in adult humans, Am J Physiol Endocrinol Metab, vol.293, pp.444-452, 2007.

V. Ouellet, Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans, J Clin Invest, vol.122, pp.545-552, 2012.

M. Harms and P. Seale, Brown and beige fat: development, function and therapeutic potential, Nat Med, vol.19, pp.1252-1263, 2013.

J. Villarroya, R. Cereijo, and F. Villarroya, An endocrine role for brown adipose tissue?, Am J Physiol Endocrinol Metab, vol.305, p.567, 2013.

S. C. Gunawardana and D. W. Piston, Reversal of type 1 diabetes in mice by brown adipose tissue transplant, Diabetes, vol.61, pp.674-682, 2012.

K. I. Stanford, Brown adipose tissue regulates glucose homeostasis and insulin sensitivity, J Clin Invest, vol.123, pp.215-223, 2013.

J. Jo, Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth, PLOS Computational Biology, vol.5, p.1000324, 2009.

E. Arner, Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology, Diabetes, vol.59, p.105, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00542528

K. Sun, P. E. Scherer, Y. Christen, K. Clément, and B. Spiegelman, Adipose Tissue Dysfunction: A Multistep Process, Novel Insights into Adipose Cell Functions, vol.121, pp.2094-2101, 2010.

P. Trayhurn and I. S. Wood, Signalling role of adipose tissue: adipokines and inflammation in obesity, Biochem Soc Trans, vol.33, p.1078, 2005.

K. Makki, P. Froguel, and I. Wolowczuk, Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines, ISRN Inflamm, p.139239, 2013.

M. M. Van-greevenbroek, C. G. Schalkwijk, and C. D. Stehouwer, Dysfunctional adipose tissue and low-grade inflammation in the management of the metabolic syndrome: current practices and future advances, 2016.

B. Lee and J. Lee, Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance, Biochim Biophys Acta, vol.1842, pp.446-462, 2014.

J. M. Olefsky and C. K. Glass, Macrophages, inflammation, and insulin resistance, Annu Rev Physiol, vol.72, pp.219-246, 2010.

R. G. Baker, M. S. Hayden, and S. Ghosh, NF-kappaB, inflammation, and metabolic disease, Cell Metab, vol.13, pp.11-22, 2011.

I. Jialal, B. A. Huet, H. Kaur, A. Chien, and S. Devaraj, Increased toll-like receptor activity in patients with metabolic syndrome, Diabetes Care, vol.35, pp.900-904, 2012.

G. S. Hotamisligil, Inflammation and metabolic disorders, Nature, vol.444, pp.860-867, 2006.

M. F. Gregor and G. S. Hotamisligil, Inflammatory mechanisms in obesity, Annu Rev Immunol, vol.29, pp.415-445, 2011.

A. Avalos-soriano, R. De-la-cruz-cordero, J. L. Rosado, and . Garcia-gasca, Hydroxyisoleucine from Fenugreek (Trigonella foenum-graecum): Effects on Insulin Resistance Associated with Obesity, vol.21, 2016.

D. Panarotto, P. Remillard, L. Bouffard, and P. Maheux, Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissuespecific manner, Eur J Clin Invest, vol.32, pp.84-92, 2002.

J. K. Kim, Tissue-specific overexpression of lipoprotein lipase causes tissuespecific insulin resistance, Proceedings of the National Academy of Sciences, vol.98, pp.7522-7527, 2001.

U. Smith and B. B. Kahn, Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids, J Intern Med, 2016.

D. A. Gutierrez, M. J. Puglisi, and A. H. Hasty, Impact of Increased Adipose Tissue Mass on Inflammation, Insulin Resistance, and Dyslipidemia, Current diabetes reports, vol.9, pp.26-32, 2009.

R. H. Unger and L. Orci, Lipotoxic diseases of nonadipose tissues in obesity, Int J Obes Relat Metab Disord, vol.24, pp.28-32, 2000.

A. Lonardo, S. Ballestri, G. Marchesini, P. Angulo, and P. Loria, Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome, Dig Liver Dis, vol.47, pp.181-190, 2015.

P. Stål, Liver fibrosis in non-alcoholic fatty liver disease -diagnostic challenge with prognostic significance, World Journal of Gastroenterology : WJG, vol.21, pp.11077-11087, 2015.

A. J. Mccullough, The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease, Clin Liver Dis, vol.8, pp.521-533, 2004.

J. R. Turner, Intestinal mucosal barrier function in health and disease, Nat Rev Immunol, vol.9, pp.799-809, 2009.

P. D. Cani, Interactions between gut microbes and host cells control gut barrier and metabolism, Int J Obes Supp, vol.6, pp.28-31, 2016.

D. Delacour, J. Salomon, S. Robine, and D. Louvard, Plasticity of the brush border -the yin and yang of intestinal homeostasis, Nat Rev Gastroenterol Hepatol, vol.13, pp.161-174, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01305659

L. Moal, V. Servin, and A. L. , The Front Line of Enteric Host Defense against Unwelcome Intrusion of Harmful Microorganisms: Mucins, Antimicrobial Peptides, and Microbiota, Clinical Microbiology Reviews, vol.19, pp.315-337, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00180612

A. Hartsock and W. J. Nelson, Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1778, pp.660-669, 2008.

L. W. Peterson and D. Artis, Intestinal epithelial cells: regulators of barrier function and immune homeostasis, Nat Rev Immunol, vol.14, pp.141-153, 2014.

M. Parlato and G. Yeretssian, NOD-Like Receptors in Intestinal Homeostasis and Epithelial Tissue Repair, International Journal of Molecular Sciences, vol.15, pp.9594-9627, 2014.

N. A. Mabbott, D. S. Donaldson, H. Ohno, I. R. Williams, and A. Mahajan, Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium, Mucosal Immunol, vol.6, pp.666-677, 2013.

S. K. Linden, P. Sutton, N. G. Karlsson, V. Korolik, and M. A. Mcguckin, Mucins in the mucosal barrier to infection, Mucosal Immunol, vol.1, pp.183-197, 2008.

M. E. Johansson, The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria, Proceedings of the National Academy of Sciences, vol.105, pp.15064-15069, 2008.

S. M. Karam, Lineage commitment and maturation of epithelial cells in the gut, Front Biosci, vol.4, pp.286-298, 1999.

Y. S. Kim and S. B. Ho, Intestinal goblet cells and mucins in health and disease: recent insights and progress, Curr Gastroenterol Rep, vol.12, pp.319-330, 2010.

P. K. Singh and M. A. Hollingsworth, Cell surface-associated mucins in signal transduction, Trends Cell Biol, vol.16, pp.467-476, 2006.

T. Sato, Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts, Nature, vol.469, pp.415-418, 2011.

E. F. Verdu, H. J. Galipeau, and B. Jabri, Novel players in coeliac disease pathogenesis: role of the gut microbiota, Nat Rev Gastroenterol Hepatol, vol.12, pp.497-506, 2015.

J. Banchereau, Immunobiology of dendritic cells, Annu Rev Immunol, vol.18, pp.767-811, 2000.

M. Tsuji, Preferential Generation of Follicular B Helper T Cells from Foxp3 + T Cells in Gut Peyer's Patches, Science, vol.323, p.1488, 2009.

C. W. Ha, Y. Y. Lam, and A. J. Holmes, Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health, World J Gastroenterol, vol.20, pp.16498-16517, 2014.

H. Tilg, P. D. Cani, and E. A. Mayer, Gut microbiome and liver diseases, Gut, 2016.

J. Aron-wisnewsky, B. Gaborit, A. Dutour, and K. Clement, Gut microbiota and non-alcoholic fatty liver disease: new insights, Clin Microbiol Infect, vol.19, pp.338-348, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02650253

J. Boursier, The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota, Hepatology, vol.63, pp.764-775, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02516681

D. Compare, Gut-liver axis: The impact of gut microbiota on non alcoholic fatty liver disease, Nutrition, Metabolism and Cardiovascular Diseases, vol.22, pp.471-476, 2012.

L. Miele, Gut-liver axis and microbiota in NAFLD: insight pathophysiology for novel therapeutic target, Curr Pharm Des, vol.19, pp.5314-5324, 2013.

G. Paolella, Gut-liver axis and probiotics: Their role in non-alcoholic fatty liver disease, World Journal of Gastroenterology : WJG, vol.20, pp.15518-15531, 2014.

A. R. Moschen, S. Kaser, and H. Tilg, Non-alcoholic steatohepatitis: a microbiotadriven disease, Trends Endocrinol Metab, vol.24, pp.537-545, 2013.

V. Kesar and J. A. Odin, Toll-like receptors and liver disease, Liver Int, vol.34, pp.184-196, 2014.

E. Seki, TLR4 enhances TGF-beta signaling and hepatic fibrosis, Nat Med, vol.13, pp.1324-1332, 2007.

M. Dumas, Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice, Proceedings of the National Academy of Sciences, vol.103, pp.12511-12516, 2006.

P. J. Turnbaugh, An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.444, pp.1027-131, 2006.

K. Cope, T. Risby, and A. Diehl, Increased gastrointestinal ethanol production in obese mice: Implications for fatty liver disease pathogenesis, Gastroenterology, vol.119, pp.1340-1347, 2000.

M. Sohrabi, L. Zhang, K. Zhang, A. Ahmetagic, and M. Q. Wei, Volatile organic compounds as novel markers for the detection of bacterial infections, Clinical Microbiology: Open Access, 2014.

E. E. Canfora, J. W. Jocken, and E. E. Blaak, Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARgamma-Dependent Switch From Lipogenesis to Fat Oxidation, 99. den Besten, vol.11, pp.2398-2408, 2015.

J. A. Foster and K. Mcvey-neufeld, Gut-brain axis: how the microbiome influences anxiety and depression, Trends in Neurosciences, vol.36, pp.305-312

S. M. O'mahony, G. Clarke, Y. E. Borre, T. G. Dinan, and J. F. Cryan, Serotonin, tryptophan metabolism and the brain-gut-microbiome axis, Behav Brain Res, vol.277, pp.32-48, 2015.

P. Ducrotté, Physiopathologie et traitement des troubles fonctionnels intestinaux, vol.2, pp.400-412, 2005.

W. Mazier, N. Saucisse, B. Gatta-cherifi, and D. Cota, The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease, Trends Endocrinol Metab, vol.26, pp.524-537, 2015.

L. Cristino, L. Palomba, and V. Di-marzo, New horizons on the role of cannabinoid CB1 receptors in palatable food intake, obesity and related dysmetabolism, Int J Obes Suppl, vol.4, pp.26-30, 2014.

D. Marzo, V. Matias, and I. , Endocannabinoid control of food intake and energy balance, Nat Neurosci, vol.8, pp.585-589, 2005.

P. D. Cani and C. Knauf, How gut microbes talk to organs: The role of endocrine and nervous routes, Molecular Metabolism, vol.5, pp.743-752, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02641356

P. D. Cani, Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes, vol.56, pp.1761-1772, 2007.

L. Jia, Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance, Nat Commun, vol.5, p.3878, 2014.

Y. Youm, Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging, Cell Metab, vol.18, pp.519-532, 2013.

P. D. Cani, L. Geurts, S. Matamoros, H. Plovier, and T. Duparc, Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond, Diabetes Metab, vol.40, pp.246-257, 2014.

P. D. Cani, Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice, Diabetes, vol.57, p.1470, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00410066

P. D. Cani, Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut, vol.58, pp.1091-1103, 2009.

P. D. Cani, M. Osto, L. Geurts, and A. Everard, Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity, Gut Microbes, vol.3, pp.279-288, 2012.

S. H. Lee, Intestinal Permeability Regulation by Tight Junction: Implication on Inflammatory Bowel Diseases, Intestinal Research, vol.13, pp.11-18, 2015.

M. I. Lassenius, Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation, Diabetes Care, vol.34, pp.1809-1815, 2011.

G. G. Muccioli, The endocannabinoid system links gut microbiota to adipogenesis, Mol Syst Biol, vol.6, 2010.

P. D. Cani, Endocannabinoids -at the crossroads between the gut microbiota and host metabolism, Nat Rev Endocrinol, vol.12, pp.133-143, 2016.

S. Ghoshal, J. Witta, J. Zhong, W. De-villiers, and E. Eckhardt, Chylomicrons promote intestinal absorption of lipopolysaccharides, J Lipid Res, vol.50, pp.90-97, 2009.

J. Amar, Energy intake is associated with endotoxemia in apparently healthy men, The American Journal of Clinical Nutrition, vol.87, pp.1219-1223, 2008.

F. Laugerette, Overfeeding increases postprandial endotoxemia in men: Inflammatory outcome may depend on LPS transporters LBP and sCD14, Mol Nutr Food Res, vol.58, pp.1513-1518, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859435

N. Breusing, Influence of Energy Balance and Glycemic Index on Metabolic Endotoxemia in Healthy Men, Journal of the American College of Nutrition, vol.36, pp.72-79, 2017.

F. Sommer and F. Backhed, The gut microbiota [mdash] masters of host development and physiology, Nat Rev Micro, vol.11, pp.227-238, 2013.

J. C. Clemente, L. K. Ursell, L. W. Parfrey, and R. Knight, The Impact of the Gut Microbiota on Human Health: An Integrative View, Cell, vol.148, pp.1258-1270, 2012.

R. Martin, Early life: gut microbiota and immune development in infancy, Benef Microbes, vol.1, pp.367-382, 2010.

M. G. Dominguez-bello, Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns, Proc Natl Acad Sci U S A, vol.107, pp.11971-11975, 2010.

S. J. Ott, M. Musfeldt, U. Ullmann, J. Hampe, and S. Schreiber, Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora, J Clin Microbiol, vol.42, pp.2566-2572, 2004.

Y. Yang, Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Mouse Feces, Applied and Environmental Microbiology, vol.81, pp.6749-6756, 2015.

H. M. Blottière, W. M. De-vos, S. D. Ehrlich, and J. Doré, Human intestinal metagenomics: state of the art and future, Current Opinion in Microbiology, vol.16, pp.232-239, 2013.

P. B. Eckburg, Diversity of the Human Intestinal Microbial Flora, Science, vol.308, pp.1635-1638, 2005.

P. J. Turnbaugh, The human microbiome project: exploring the microbial part of ourselves in a changing world, Nature, vol.449, pp.804-810, 2007.

J. Qin, A human gut microbial gene catalog established by metagenomic sequencing, Nature, vol.464, pp.59-65, 2010.

V. Tremaroli and F. Backhed, Functional interactions between the gut microbiota and host metabolism, Nature, vol.489, pp.242-249, 2012.

P. J. Turnbaugh, A core gut microbiome in obese and lean twins, Nature, vol.457, pp.480-484, 2009.

C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight, Diversity, stability and resilience of the human gut microbiota, Nature, vol.489, pp.220-230, 2012.

M. Arumugam, Enterotypes of the human gut microbiome, Nature, vol.473, pp.174-180, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

J. K. Nicholson, Host-Gut Microbiota Metabolic Interactions, Science, vol.336, p.1262, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726159

M. Tidjani-alou, J. Lagier, and D. Raoult, Diet influence on the gut microbiota and dysbiosis related to nutritional disorders, Human Microbiome Journal, vol.1, pp.3-11, 2016.

M. Grover and P. C. Kashyap, Germ free mice as a model to study effect of gut microbiota on host physiology. Neurogastroenterology and motility : the official journal of the, European Gastrointestinal Motility Society, vol.26, pp.745-748, 2014.

F. Backhed, The gut microbiota as an environmental factor that regulates fat storage, Proc Natl Acad Sci U S A, vol.101, pp.15718-15723, 2004.

N. H. Salzman, M. A. Underwood, and C. L. Bevins, Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa, Semin Immunol, vol.19, pp.70-83, 2007.

T. S. Stappenbeck, L. V. Hooper, and J. I. Gordon, Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells, Proc Natl Acad Sci U S A, vol.99, pp.15451-15455, 2002.

L. V. Hooper, Molecular analysis of commensal host-microbial relationships in the intestine, Science, vol.291, pp.881-884, 2001.

F. Hayashi, The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5, Nature, vol.410, pp.1099-1103, 2001.

J. Chow, S. M. Lee, Y. Shen, A. Khosravi, and S. K. Mazmanian, Host-bacterial symbiosis in health and disease, Adv Immunol, vol.107, pp.243-274, 2010.

J. L. Round and S. K. Mazmanian, The gut microbiome shapes intestinal immune responses during health and disease, Nature reviews. Immunology, vol.9, pp.313-323, 2009.

S. R. Gill, Metagenomic analysis of the human distal gut microbiome, Science, vol.312, pp.1355-1359, 2006.

L. B. Bindels, N. M. Delzenne, P. D. Cani, and J. Walter, Towards a more comprehensive concept for prebiotics, Nat Rev Gastroenterol Hepatol, vol.12, pp.303-310, 2015.

J. Xu, A genomic view of the human-Bacteroides thetaiotaomicron symbiosis, Science, vol.299, pp.2074-2076, 2003.

E. C. Martens, Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts, PLOS Biology, vol.9, p.1001221, 2011.

J. R. Davie, Inhibition of histone deacetylase activity by butyrate, J Nutr, vol.133, pp.2485-2493, 2003.

C. Sina, G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation, J Immunol, vol.183, pp.7514-7522, 2009.

G. Tolhurst, Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the, Diabetes, vol.61, pp.364-371, 2012.

M. J. Claesson, Gut microbiota composition correlates with diet and health in the elderly, Nature, vol.488, pp.178-184, 2012.

L. A. David, Diet rapidly and reproducibly alters the human gut microbiome, Nature, vol.505, pp.559-563, 2014.

H. Daniel, High-fat diet alters gut microbiota physiology in mice, ISME J, vol.8, pp.295-308, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204436

R. E. Ley, Obesity alters gut microbial ecology, Proc Natl Acad Sci U S A, vol.102, pp.11070-11075, 2005.

C. B. De-la-serre, Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation, American Journal of Physiology -Gastrointestinal and Liver Physiology, vol.299, pp.440-448, 2010.

N. Fei and L. Zhao, An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice, ISME J, vol.7, pp.880-884, 2013.

J. Breton, Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth, Cell Metab, vol.23, pp.324-334, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01397996

J. Furet, Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers, Diabetes, vol.59, pp.3049-3057, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02668840

C. Ramirez-farias, Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii, Br J Nutr, vol.101, pp.541-550, 2009.

A. Everard, Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proceedings of the National Academy of Sciences, vol.110, pp.9066-9071, 2013.

M. Schneeberger, Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice, Scientific Reports, vol.5, p.16643, 2015.

S. Devkota, Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/-mice, Nature, vol.487, pp.104-108, 2012.

M. V. Machado, H. Cortez-pinto, . Diet, O. Microbiota, and N. , A Dangerous Quartet, Int J Mol Sci, vol.17, 2016.

J. Henao-mejia, Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity, Nature, vol.482, 2012.

A. J. Wigg, The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of nonalcoholic steatohepatitis, Gut, vol.48, pp.206-211, 2001.

S. M. Ferolla, G. N. Armiliato, C. A. Couto, and T. C. Ferrari, The role of intestinal bacteria overgrowth in obesity-related nonalcoholic fatty liver disease, Nutrients, vol.6, pp.5583-5599, 2014.

C. Leung, L. Rivera, J. B. Furness, and P. W. Angus, The role of the gut microbiota in NAFLD, Nat Rev Gastroenterol Hepatol, vol.13, pp.412-425, 2016.

J. Qin, A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature, vol.490, pp.55-60, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01204262

P. A. Vaishampayan, Comparative Metagenomics and Population Dynamics of the Gut Microbiota in Mother and Infant, Genome Biology and Evolution, vol.2, pp.53-66, 2010.

A. Spor, O. Koren, and R. Ley, Unravelling the effects of the environment and host genotype on the gut microbiome, Nat Rev Micro, vol.9, 2011.

A. K. Benson, Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors, Proceedings of the National Academy of Sciences, vol.107, pp.18933-18938, 2010.

L. J. Leamy, Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice, Genome Biology, vol.15, p.552, 2014.

A. M. Mcknite, Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits, PLoS One, vol.7, 2012.

A. D. Kostic, M. R. Howitt, and W. S. Garrett, Exploring host-microbiota interactions in animal models and humans, Genes & Development, vol.27, pp.701-718, 2013.

M. Vijay-kumar, Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5, Science, vol.328, 2010.

J. M. Natividad, Commensal and probiotic bacteria influence intestinal barrier function and susceptibility to colitis in Nod1?/?; Nod2?/? mice, Inflammatory bowel diseases, vol.18, pp.1434-1446, 2012.

P. K. Anand, NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens, Nature, vol.488, pp.389-393, 2012.

E. Larsson, Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88, Gut, vol.61, pp.1124-1131, 2012.

C. Zhang, Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice, ISME J, vol.4, 2010.

T. Yatsunenko, Human gut microbiome viewed across age and geography, Nature, vol.486, pp.222-227, 2012.

J. K. Goodrich, Human genetics shape the gut microbiome, Cell, vol.159, 2014.

P. J. Turnbaugh, Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins, Proc Natl Acad Sci U S A, vol.107, pp.7503-7508, 2010.

J. K. Goodrich, Genetic Determinants of the Gut Microbiome in UK Twins, Cell Host Microbe, vol.19, pp.731-743, 2016.

C. M. Cook, Prebiotic Dietary Fiber Consumption Improves Glucose Tolerance and Modulates Gastrointestinal Microbiota Composition in Overweight/Obese Adults with Impaired Fasting Glucose, The FASEB Journal, vol.30, 2016.

J. Slavin, Fiber and Prebiotics: Mechanisms and Health Benefits, Nutrients, vol.5, pp.1417-1435, 2013.

F. Cardona, C. Andrés-lacueva, S. Tulipani, F. J. Tinahones, and M. I. Queipo-ortuño, Benefits of polyphenols on gut microbiota and implications in human health, The Journal of Nutritional Biochemistry, vol.24, pp.1415-1422, 2013.

M. A. Conlon and A. R. Bird, The Impact of Diet and Lifestyle on Gut Microbiota and Human Health, Nutrients, vol.7, pp.17-44, 2015.

N. M. Delzenne, A. M. Neyrinck, F. Backhed, and P. D. Cani, Targeting gut microbiota in obesity: effects of prebiotics and probiotics, Nat Rev Endocrinol, vol.7, pp.639-646, 2011.

G. R. Gibson, H. M. Probert, J. V. Loo, R. A. Rastall, and M. B. Roberfroid, Dietary modulation of the human colonic microbiota: updating the concept of prebiotics, Nutrition Research Reviews, vol.17, pp.259-275, 2004.

G. R. Gibson and M. B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics, J Nutr, vol.125, pp.1401-1412, 1995.

A. Rivière, M. Selak, D. Lantin, F. Leroy, and L. De-vuyst, Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut, Frontiers in Microbiology, vol.7, p.979, 2016.

J. A. Parnell and R. A. Reimer, Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults, Am J Clin Nutr, vol.89, pp.1751-1759, 2009.

D. Vadder and F. , Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits, Cell, vol.156, pp.84-96, 2014.

C. Grootaert, Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine, Trends in Food Science & Technology, vol.18, pp.64-71, 2007.

A. M. Neyrinck, Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice, Nutr Diabetes, vol.2, p.28, 2012.

N. M. Delzenne, A. M. Neyrinck, and P. D. Cani, Gut microbiota and metabolic disorders: How prebiotic can work?, Br J Nutr, vol.109, issue.2, pp.81-85, 2013.

P. Van-den-abbeele, Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats, Environ Microbiol, vol.13, pp.2667-2680, 2011.

E. S. Eshak, Soft drink, 100% fruit juice, and vegetable juice intakes and risk of diabetes mellitus, Clin Nutr, vol.32, pp.300-308, 2013.

P. Carter, L. J. Gray, J. Troughton, K. Khunti, and M. J. Davies, Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and metaanalysis, The BMJ, vol.341, p.4229, 2010.

H. Boeing, Critical review: vegetables and fruit in the prevention of chronic diseases, European Journal of Nutrition, vol.51, pp.637-663, 2012.

J. Perez-jimenez, V. Neveu, F. Vos, and A. Scalbert, Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database, Eur J Clin Nutr, vol.64, pp.112-120, 2010.

J. Pérez-jiménez and F. Saura-calixto, Macromolecular antioxidants or nonextractable polyphenols in fruit and vegetables: Intake in four European countries, Food Research International, vol.74, pp.315-323, 2015.

C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, Polyphenols: food sources and bioavailability, The American Journal of Clinical Nutrition, vol.79, pp.727-747, 2004.

C. Manach, G. Williamson, C. Morand, A. Scalbert, and C. Rémésy, Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies, The American Journal of Clinical Nutrition, vol.81, pp.230-242, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683565

A. Scalbert, I. T. Johnson, and M. Saltmarsh, Polyphenols: antioxidants and beyond, Am J Clin Nutr, vol.81, pp.215-217, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683595

S. Deprez, Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids, J Nutr, vol.130, pp.2733-2738, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02697571

F. F. Anhê, A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice, Gut, vol.64, p.872, 2015.

D. E. Roopchand, Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome, Diabetes, vol.64, pp.2847-2858, 2015.

A. Lacombe, S. Tadepalli, C. Hwang, and V. C. Wu, Phytochemicals in lowbush wild blueberry inactivate Escherichia coli O157:H7 by damaging its cell membrane, Foodborne Pathog Dis, vol.10, pp.944-950, 2013.

Y. Y. Choy, Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins, Food Funct, vol.5, pp.2298-2308, 2014.

S. Guglielmetti, Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink, J Agric Food Chem, vol.61, pp.8134-8140, 2013.

F. F. Anhe, Triggering Akkermansia with dietary polyphenols: A new weapon to combat the metabolic syndrome?, Gut Microbes, vol.7, pp.146-153, 2016.

F. F. Anhe, Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts, Curr Obes Rep, vol.4, pp.389-400, 2015.

A. Simopoulos, The importance of the ratio of omega-6/omega-3 essential fatty acids, Biomedicine & Pharmacotherapy, vol.56, pp.365-379, 2002.

S. B. Eaton, S. B. Eaton, A. J. Sinclair, L. Cordain, and N. J. Mann, Dietary intake of long-chain polyunsaturated fatty acids during the paleolithic, World Rev Nutr Diet, vol.83, pp.12-23, 1998.

A. P. Simopoulos, Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases, Biomedicine & Pharmacotherapy, vol.60, pp.502-507, 2006.

A. P. Simopoulos, The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases, Experimental Biology and Medicine, vol.233, pp.674-688, 2008.

A. P. Simopoulos, Evolutionary aspects of omega-3 fatty acids in the food supply, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.60, pp.421-429, 1999.

E. Patterson, R. Wall, G. F. Fitzgerald, R. P. Ross, and C. Stanton, Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids, Journal of Nutrition and Metabolism, p.539426, 2012.

H. J. Murff and T. L. Edwards, Endogenous Production of Long-Chain Polyunsaturated Fatty Acids and Metabolic Disease Risk, Current Cardiovascular Risk Reports, vol.8, p.418, 2014.

S. Lorente-cebrián, Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence, Journal of Physiology and Biochemistry, vol.69, pp.633-651, 2013.

S. M. Innis, Omega-3 fatty acid biochemistry: perspectives from human nutrition, Mil Med, vol.179, pp.82-87, 2014.

H. M. Parker, Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis, Journal of Hepatology, vol.56, pp.944-951, 2012.

P. C. Calder, Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance, Biochimica et Biophysica Acta (BBA) -Molecular and Cell Biology of Lipids, vol.1851, pp.469-484, 2015.

T. Xu, Effect of omega-3 fatty acid supplementation on serum lipids and vascular inflammation in patients with end-stage renal disease: a meta-analysis, Scientific Reports, vol.6, p.39346, 2016.

I. Hainault, M. Carolotti, E. Hajduch, C. Guichard, and M. Lavau, Fish oil in a high lard diet prevents obesity, hyperlipemia, and adipocyte insulin resistance in rats, Ann N Y Acad Sci, vol.683, pp.98-101, 1993.

F. Belzung, T. Raclot, and R. Groscolas, Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets, Am J Physiol, vol.264, pp.1111-1118, 1993.

J. Ruzickova, Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue, Lipids, vol.39, pp.1177-1185, 2004.

G. Yang, Krill Oil Supplementation Improves Dyslipidemia and Lowers Body Weight in Mice Fed a High-Fat Diet Through Activation of AMP-Activated Protein Kinase, J Med Food, vol.19, pp.1120-1129, 2016.

A. P. Simopoulos, An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity, Nutrients, vol.8, p.128, 2016.

J. Todoric, Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids, Diabetologia, vol.49, pp.2109-2119, 2006.

L. F. Defina, L. G. Marcoux, S. M. Devers, J. P. Cleaver, and B. L. Willis, Effects of omega-3 supplementation in combination with diet and exercise on weight loss and body composition, Am J Clin Nutr, vol.93, pp.455-462, 2011.

I. Thorsdottir, Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content, Int J Obes (Lond), vol.31, pp.1560-1566, 2007.

M. Kabir, Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study, Am J Clin Nutr, vol.86, pp.1670-1679, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01982042

J. D. Krebs, Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women, Int J Obes (Lond), vol.30, pp.1535-1544, 2006.

C. Huang, Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans, Int J Mol Sci, vol.17, 2016.

H. Cormier, Effects of FADS and ELOVL polymorphisms on indexes of desaturase and elongase activities: results from a pre-post fish oil supplementation, Genes Nutr, vol.9, p.437, 2014.

K. E. Slim, The effect of dietary fish oil on weight gain and insulin sensitivity is dependent on APOE genotype in humanized targeted replacement mice, FASEB J, vol.31, pp.989-997, 2017.

P. Perez-matute, N. Perez-echarri, J. A. Martinez, A. Marti, and M. J. Moreno-aliaga, Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: role of apoptosis, adiponectin and tumour necrosis factor-alpha, Br J Nutr, vol.97, pp.389-398, 2007.

L. Martínez-fernández, L. M. Laiglesia, A. E. Huerta, and J. A. Martínez,

M. J. Moreno-aliaga, Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome, Prostaglandins & Other Lipid Mediators, vol.121, pp.24-41, 2015.

R. D. De-sa and C. Da, Fish oil prevents changes induced by a high-fat diet on metabolism and adipokine secretion in mice subcutaneous and visceral adipocytes, J Physiol, vol.594, pp.6301-6317, 2016.

F. Wang, Treatment for 6 months with fish oil-derived n-3 polyunsaturated fatty acids has neutral effects on glycemic control but improves dyslipidemia in type 2 diabetic patients with abdominal obesity: a randomized, double-blind, placebo-controlled trial, Eur J Nutr, 2016.

G. S. De-castro and P. C. Calder, Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids, Clin Nutr, 2017.

L. Chen, Y. Wang, Q. Xu, and S. Chen, Omega-3 fatty acids as a treatment for non-alcoholic fatty liver disease in children: A systematic review and metaanalysis of randomized controlled trials, Clin Nutr, 2016.

N. Garay-lugo, n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets, Immunopharmacol Immunotoxicol, vol.38, pp.353-363, 2016.

H. Yu, Effects of Fish Oil with a High Content of n-3 Polyunsaturated Fatty Acids on Mouse Gut Microbiota, Archives of Medical Research, vol.45, pp.195-202, 2014.

S. Ghosh, Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis, PLoS One, vol.8, p.55468, 2013.

R. C. Robertson, Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood, Brain, Behavior, and Immunity, vol.59, pp.21-37, 2017.

B. S. Noriega, M. A. Sanchez-gonzalez, D. Salyakina, and J. Coffman, Understanding the Impact of Omega-3 Rich Diet on the Gut Microbiota, Case Reports in Medicine, p.3089303, 2016.

M. P. Mollica, Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamic, in Insulin Resistant Obese Mice, 2017.

R. Caesar, Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice, Gut, vol.61, pp.1701-1707, 2012.

J. X. Kang, J. Wang, L. Wu, and Z. B. Kang, Transgenic mice: Fat-1 mice convert n-6 to n-3 fatty acids, Nature, vol.427, pp.504-504, 2004.

J. P. Spychalla, A. J. Kinney, and J. Browse, Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis, Proc Natl Acad Sci U S A, vol.94, pp.1142-1147, 1997.

K. Kaliannan, B. Wang, X. Li, K. Kim, and J. X. Kang, A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia, Scientific Reports, vol.5, p.11276, 2015.

P. J. White, M. Arita, R. Taguchi, J. X. Kang, and A. Marette, Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice, Diabetes, vol.59, pp.3066-3073, 2010.

P. J. White, Transgenic omega-3 PUFA enrichment alters morphology and gene expression profile in adipose tissue of obese mice: Potential role for protectins, Metabolism, vol.64, pp.666-676, 2015.

U. Sharma, Implication of BBM lipid composition and fluidity in mitigated alkaline phosphatase activity in renal cell carcinoma, Mol Cell Biochem, vol.369, pp.287-293, 2012.

W. F. Stenson, Effects of dietary fish oil supplementation on membrane fluidity and enzyme activity in rat small intestine, Biochem J, vol.263, pp.41-45, 1989.

E. L. Campbell, Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution, FASEB J, vol.21, pp.3162-3170, 2007.

C. A. Hudert, Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis, Proc Natl Acad Sci U S A, vol.103, pp.11276-11281, 2006.

F. Leroy and L. De-vuyst, Lactic acid bacteria as functional starter cultures for the food fermentation industry, Trends in Food Science & Technology, vol.15, pp.67-78, 2004.

M. Chen, A. Pan, V. S. Malik, and F. B. Hu, Effects of dairy intake on body weight and fat: a meta-analysis of randomized controlled trials, Am J Clin Nutr, vol.96, pp.735-747, 2012.

A. Astrup, Yogurt and dairy product consumption to prevent cardiometabolic diseases: epidemiologic and experimental studies, Am J Clin Nutr, vol.99, pp.1235-1277, 2014.

R. D. Keast, M. K. Gallant, M. A. Albertson, K. C. Gugger, and M. N. Holschuh, Associations between Yogurt, Dairy, Calcium, and Vitamin D Intake and Obesity among U.S. Children Aged 8-18 Years: NHANES, Nutrients, vol.7, 2005.

L. Schwingshackl, Consumption of Dairy Products in Relation to Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Cohort Studies, PLoS ONE, vol.11, p.157461, 2016.

M. B. Zemel, Dairy augmentation of total and central fat loss in obese subjects, Int J Obes (Lond), vol.29, pp.391-397, 2005.

L. Ebringer, M. Ferencik, and J. Krajcovic, Beneficial health effects of milk and fermented dairy products--review, Folia Microbiol (Praha), vol.53, pp.378-394, 2008.

S. M. Donovan and R. Shamir, Introduction to the Yogurt in Nutrition Initiative and the First Global Summit on the Health Effects of Yogurt, The American Journal of Clinical Nutrition, vol.99, pp.1209-1211, 2014.

R. Shamir and S. M. Donovan, Introduction to the Second Global Summit on the Health Effects of Yogurt, Nutrition Reviews, vol.73, pp.1-3, 2015.

, Yogurt Composition, Yogurt: Roles in Nutrition and Impacts on Health 3-22, 2017.

S. M. Donovan, Role of human milk components in gastrointestinal development: Current knowledge and future NEEDS, The Journal of Pediatrics, vol.149, pp.49-61, 2006.

M. A. Fernandez, É. Picard-deland, M. Le-barz, N. Daniel, A. Marette et al., , pp.305-338, 2017.

R. Garcia-albiach, Molecular analysis of yogurt containing Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in human intestinal microbiota, Am J Clin Nutr, vol.87, pp.91-96, 2008.

E. Alvaro, Composition and metabolism of the intestinal microbiota in consumers and non-consumers of yogurt, British Journal of Nutrition, vol.97, pp.126-133, 2007.

S. Ballesta, C. Velasco, M. V. Borobio, F. Arguelles, and E. J. Perea, Fresh versus pasteurized yogurt: comparative study of the effects on microbiological and immunological parameters, and gastrointestinal comfort, Enferm Infecc Microbiol Clin, vol.26, pp.552-557, 2008.

G. Reid, The growth potential for dairy probiotics, International Dairy Journal, vol.49, pp.16-22, 2015.

R. Pei, D. A. Martin, D. M. Dimarco, and B. W. Bolling, Evidence for the effects of yogurt on gut health and obesity, Critical Reviews in Food Science and Nutrition, vol.57, pp.1569-1583, 2017.

S. Gordon and . Elie, Metchnikoff: father of natural immunity, Eur J Immunol, vol.38, pp.3257-3264, 2008.

I. I. Metchnikoff, The prolongation of life: optimistic studies, 2004.

M. Saarela, G. Mogensen, R. Fonden, J. Matto, and T. Mattila-sandholm, Probiotic bacteria: safety, functional and technological properties, J Biotechnol, vol.84, pp.197-215, 2000.

H. Kumura, Y. Tanoue, M. Tsukahara, T. Tanaka, and K. Shimazaki, Screening of Dairy Yeast Strains for Probiotic Applications, Journal of Dairy Science, vol.87, pp.4050-4056, 2004.

M. G. Gareau, P. M. Sherman, and W. A. Walker, Probiotics and the gut microbiota in intestinal health and disease, Nat Rev Gastroenterol Hepatol, vol.7, pp.503-514, 2010.

S. Moslehi-jenabian, L. L. Pedersen, and L. Jespersen, Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health, Nutrients, vol.2, pp.449-473, 2010.

A. De-moreno-de-leblanc and J. G. Leblanc, Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications, World J Gastroenterol, vol.20, pp.16518-16528, 2014.

M. I. Masood, M. I. Qadir, J. H. Shirazi, and I. U. Khan, Beneficial effects of lactic acid bacteria on human beings, Crit Rev Microbiol, vol.37, pp.91-98, 2011.

J. Kabeerdoss, Effect of yoghurt containing Bifidobacterium lactis Bb12(® )on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers, Nutrition Journal, vol.10, pp.138-138, 2011.

P. Savard, Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults, Int J Food Microbiol, vol.149, pp.50-57, 2011.

C. N. Larsen, Dose-response study of probiotic bacteria Bifidobacterium animalis subsp lactis BB-12 and Lactobacillus paracasei subsp paracasei CRL-341 in healthy young adults, Eur J Clin Nutr, vol.60, pp.1284-1293, 2006.

M. Macouzet, B. H. Lee, and N. Robert, Production of conjugated linoleic acid by probiotic Lactobacillus acidophilus La-5, Journal of Applied Microbiology, vol.106, pp.1886-1891, 2009.

H. L. Tytgat, Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili: Evidence for a Novel and Heterospecific Probiotic Mechanism, Applied and Environmental Microbiology, vol.82, pp.5756-5762, 2016.

A. Thierry, New insights into physiology and metabolism of Propionibacterium freudenreichii, International Journal of Food Microbiology, vol.149, pp.19-27, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01454487

F. J. Cousin, D. D. Mater, B. Foligné, and G. Jan, Dairy propionibacteria as human probiotics: a review of recent evidence, Dairy Science & Technology, vol.91, pp.1-26, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00868601

S. Deutsch, Identification of proteins involved in the anti-inflammatory properties of Propionibacterium freudenreichii by means of a multi-strain study, Sci Rep, vol.7, p.46409, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510019

G. Mogensen, Inventory of microorganisms with a documented history of use in food, 2002.

G. Casula and S. M. Cutting, Bacillus Probiotics: Spore Germination in the Gastrointestinal Tract, Applied and Environmental Microbiology, vol.68, pp.2344-2352, 2002.

T. T. Hoa, Fate and Dissemination of Bacillus subtilis Spores in a Murine Model, Applied and Environmental Microbiology, vol.67, pp.3819-3823, 2001.

H. Plovier, A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice, Nat Med, vol.23, pp.107-113, 2017.

N. Shin, An increase in the <em>Akkermansia</em> spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice, Gut, vol.63, p.727, 2014.

E. Org, Genetic and environmental control of host-gut microbiota interactions, Genome Research, 2015.

J. Li, S. Lin, P. M. Vanhoutte, C. W. Woo, and A. Xu, Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/-Mice, Circulation, vol.133, pp.2434-2446, 2016.

G. Falony, A. Vlachou, K. Verbrugghe, and L. De-vuyst, Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose, Appl Environ Microbiol, vol.72, pp.7835-7841, 2006.

E. Quevrain, Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease, Gut, vol.65, pp.415-425, 2016.

S. Huidrom, R. K. Singh, and V. Chaudhary, Bacteriotherapy: a novel therapeutic approach, Int J Curr Pharm Res, vol.8, pp.12-16, 2016.

T. H. Vesa, P. Marteau, R. Korpela, and . Lactose-intolerance, J Am Coll Nutr, vol.19, pp.165-175, 2000.

M. De-vrese, Probiotics-compensation for lactase insufficiency, The American Journal of Clinical Nutrition, vol.73, pp.421-429, 2001.

L. V. Mcfarland, Meta-analysis of probiotics for the prevention of traveler's diarrhea, Travel Med Infect Dis, vol.5, pp.97-105, 2007.

X. W. Gao, M. Mubasher, C. Y. Fang, C. Reifer, and L. E. Miller, Dose-response efficacy of a proprietary probiotic formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for antibiotic-associated diarrhea and Clostridium difficileassociated diarrhea prophylaxis in adult patients, Am J Gastroenterol, vol.105, pp.1636-1641, 2010.

P. Hlivak, One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels, Bratisl Lek Listy, vol.106, pp.67-72, 2005.

M. Shimizu, M. Hashiguchi, T. Shiga, H. Tamura, M. Mochizuki et al., Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals, vol.10, p.139795, 2015.

X. Zhou, C. Zhang, J. Wu, and G. Zhang, Association between Helicobacter pylori infection and diabetes mellitus: A meta-analysis of observational studies, Diabetes Research and Clinical Practice, vol.99, pp.200-208, 2013.

L. V. Thomas, T. Ockhuizen, and K. Suzuki, Exploring the influence of the gut microbiota and probiotics on health: a symposium report, Br J Nutr, vol.112, pp.1-18, 2014.

L. Barz and M. , Probiotics as Complementary Treatment for Metabolic Disorders, Diabetes Metab J, vol.39, pp.291-303, 2015.

L. K. Stenman, Probiotic With or Without Fiber Controls Body Fat Mass, Associated With Serum Zonulin, in Overweight and Obese Adults-Randomized Controlled Trial, EBioMedicine, vol.13, pp.190-200, 2016.

C. Wu, Effect of Lactobacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice. Evidence-based Complementary and Alternative Medicine : eCAM 2015, p.391767, 2015.

J. Minami, Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial, J Nutr Sci, vol.4, p.17, 2015.

M. Hariri, The effect of probiotic soy milk and soy milk on anthropometric measures and blood pressure in patients with type II diabetes mellitus: A randomized double-blind clinical trial, ARYA Atheroscler, vol.11, pp.74-80, 2015.

S. Nabavi, M. Rafraf, M. H. Somi, A. Homayouni-rad, and M. Asghari-jafarabadi, Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease, J Dairy Sci, vol.97, pp.7386-7393, 2014.

H. Y. Ahn, The triglyceride-lowering effect of supplementation with dual probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032: Reduction of fasting plasma lysophosphatidylcholines in nondiabetic and hypertriglyceridemic subjects, Nutr Metab Cardiovasc Dis, vol.25, pp.724-733, 2015.

N. P. Mcnulty, The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins, Sci Transl Med, vol.3, pp.106-106, 2011.

P. Veiga, Changes of the human gut microbiome induced by a fermented milk product, Scientific Reports, vol.4, p.6328, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639896

H. Endo, M. Niioka, N. Kobayashi, M. Tanaka, and T. Watanabe, Butyrateproducing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis, PLoS One, vol.8, p.63388, 2013.

Y. Ritze, Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice, PLoS One, vol.9, p.80169, 2014.

H. Yadav, J. Lee, J. Lloyd, P. Walter, and S. G. Rane, Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion, J Biol Chem, vol.288, pp.25088-25097, 2013.

A. Everard, S. Matamoros, L. Geurts, N. M. Delzenne, and P. D. Cani, Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice, MBio, vol.5, pp.1011-1014, 2014.

J. Wang, Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice, The ISME Journal, vol.9, pp.1-15, 2015.

D. Park, Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in Diet-Induced Obese Mice Is Associated with Gut Microbial Changes and Reduction in Obesity, PLoS ONE, vol.8, p.59470, 2013.

S. Park, Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model, Appl Microbiol Biotechnol, vol.101, pp.1605-1614, 2017.

Y. Kadooka, Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial, Eur J Clin Nutr, vol.64, pp.636-643, 2010.

A. S. Andreasen, Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects, Br J Nutr, vol.104, pp.1831-1838, 2010.

A. Moya-perez, M. Romo-vaquero, F. Tomas-barberan, Y. Sanz, and M. Garcia-conesa, Hepatic molecular responses to Bifidobacterium pseudocatenulatum CECT 7765 in a mouse model of diet-induced obesity, Nutr Metab Cardiovasc Dis, vol.24, pp.57-64, 2014.

M. J. Ostaff, E. F. Stange, and J. Wehkamp, Antimicrobial peptides and gut microbiota in homeostasis and pathology, EMBO Molecular Medicine, vol.5, pp.1465-1483, 2013.

E. F. O&apos;shea, P. D. Cotter, C. Stanton, R. P. Ross, and C. Hill, Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid, Int J Food Microbiol, vol.152, pp.189-205, 2012.

B. Sanchez, M. C. Urdaci, and A. Margolles, Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions, Microbiology, vol.156, pp.3232-3242, 2010.

M. E. Hibbing, C. Fuqua, M. R. Parsek, and S. B. Peterson, Bacterial competition: surviving and thriving in the microbial jungle, Nature reviews. Microbiology, vol.8, pp.15-25, 2010.

B. E. Morris, R. Henneberger, H. Huber, and C. Moissl-eichinger, Microbial syntrophy: interaction for the common good, FEMS Microbiol Rev, vol.37, pp.384-406, 2013.

S. Freilich, Competitive and cooperative metabolic interactions in bacterial communities, Nat Commun, vol.2, p.589, 2011.

E. C. Seth and M. E. Taga, Nutrient cross-feeding in the microbial world, Frontiers in Microbiology, vol.5, p.350, 2014.

A. J. Stams and C. M. Plugge, Electron transfer in syntrophic communities of anaerobic bacteria and archaea, Nat Rev Microbiol, vol.7, pp.568-577, 2009.

K. Furuichi, K. Hojo, Y. Katakura, K. Ninomiya, and S. Shioya, Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone, J Biosci Bioeng, vol.101, pp.464-470, 2006.

E. Isolauri, P. V. Kirjavainen, and S. Salminen, Probiotics: a role in the treatment of intestinal infection and inflammation?, Gut, vol.50, p.54, 2002.

K. Kailasapathy and J. Chin, Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp, Immunol Cell Biol, vol.78, pp.80-88, 2000.

T. R. Klaenhammer, Genetics of bacteriocins produced by lactic acid bacteria*, FEMS Microbiology Reviews, vol.12, pp.39-85, 1993.

M. Millette, Capacity of Human Nisin-and Pediocin-Producing Lactic Acid Bacteria To Reduce Intestinal Colonization by Vancomycin-Resistant Enterococci, Applied and Environmental Microbiology, vol.74, 1997.

H. Abriouel, C. M. Franz, N. B. Omar, and A. Gálvez, Diversity and applications of Bacillus bacteriocins, FEMS Microbiology Reviews, vol.35, pp.201-232, 2011.

S. M. Cutting, Bacillus probiotics, Food Microbiol, vol.28, pp.214-220, 2011.

L. H. Duc, H. A. Hong, N. Fairweather, E. Ricca, and S. M. Cutting, Bacterial Spores as Vaccine Vehicles, Infection and Immunity, vol.71, pp.2810-2818, 2003.

P. Carasi, Enterococcus durans EP1 a Promising Anti-inflammatory Probiotic Able to Stimulate sIgA and to Increase Faecalibacterium prausnitzii Abundance, Frontiers in Immunology, vol.8, p.88, 2017.

H. Jijon, DNA from probiotic bacteria modulates murine and human epithelial and immune function, Gastroenterology, vol.126, pp.1358-1373, 2004.

C. Pagnini, Probiotics promote gut health through stimulation of epithelial innate immunity, Proceedings of the National Academy of Sciences, vol.107, pp.454-459, 2010.

T. Kanai, Y. Mikami, and A. Hayashi, A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease, J Gastroenterol, vol.50, pp.928-939, 2015.

E. Zagato, Lactobacillus paracasei CBA L74 Metabolic Products and Fermented Milk for Infant Formula Have Anti-Inflammatory Activity on Dendritic Cells In Vitro and Protective Effects against Colitis and an Enteric Pathogen In Vivo, PLoS ONE, vol.9, p.87615, 2014.

Y. Terayama, T. Matsuura, M. Uchida, I. Narama, and K. Ozaki, Probiotic (yogurt) containing Lactobacillus gasseri OLL2716 is effective for preventing Candida albicans-induced mucosal inflammation and proliferation in the forestomach of diabetic rats, Histol Histopathol, vol.31, pp.689-697, 2016.

J. Karczewski, Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier, Am J Physiol Gastrointest Liver Physiol, vol.298, pp.851-859, 2010.

C. Felice, A. Lewis, A. Armuzzi, J. O. Lindsay, and A. Silver, Review article: selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases, Aliment Pharmacol Ther, vol.41, pp.26-38, 2015.

M. H. Kim, S. G. Kang, J. H. Park, M. Yanagisawa, and C. H. Kim, Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice, Gastroenterology, vol.145, pp.396-406, 2013.

P. M. Smith, The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis, Science, vol.341, pp.569-573, 2013.

V. Eeckhaut, Butyricicoccus pullicaecorum in inflammatory bowel disease, Gut, vol.62, pp.1745-1752, 2013.

P. A. Bron, Can probiotics modulate human disease by impacting intestinal barrier function?, British Journal of Nutrition, vol.117, pp.93-107, 2017.

M. Gotteland, S. Cruchet, and S. Verbeke, Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indometacin in humans, Aliment Pharmacol Ther, vol.15, pp.11-17, 2001.

A. De-moreno-de-leblanc, Current Review of Genetically Modified Lactic Acid Bacteria for the Prevention and Treatment of Colitis Using Murine Models, Gastroenterology Research and Practice, vol.8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02637902

H. Luck, Regulation of obesity-related insulin resistance with gut antiinflammatory agents, Cell Metab, vol.21, pp.527-542, 2015.

F. F. Duan, J. H. Liu, and J. C. March, Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes, Diabetes, vol.64, pp.1794-1803, 2015.

Z. Chen, Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity, J Clin Invest, vol.124, pp.3391-3406, 2014.

T. H. Frazier, J. K. Dibaise, and C. J. Mcclain, Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury, JPEN J Parenter Enteral Nutr, vol.35, pp.14-20, 2011.

P. J. Turnbaugh, F. Backhed, L. Fulton, and J. I. Gordon, Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome, Cell Host Microbe, vol.3, pp.213-223, 2008.

M. J. Dekker, Q. Su, C. Baker, A. C. Rutledge, and K. Adeli, Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome, Am J Physiol Endocrinol Metab, vol.299, pp.685-694, 2010.

S. Softic, D. E. Cohen, and C. R. Kahn, Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease, Digestive Diseases and Sciences, vol.61, pp.1282-1293, 2016.

R. P. Ferraris, Dietary and developmental regulation of intestinal sugar transport, Biochem J, vol.360, pp.265-276, 2001.

L. Tappy and K. Le, Does fructose consumption contribute to non-alcoholic fatty liver disease?, Clin Res Hepatol Gastroenterol, vol.36, pp.554-560, 2012.

G. Crouzoulon and A. Korieh, Fructose transport by rat intestinal brush border membrane vesicles, Comp Biochem Physiol A Comp Physiol, vol.100, pp.175-182, 1991.

C. A. Lyssiotis and L. C. Cantley, Metabolic syndrome: F stands for fructose and fat, Nature, vol.502, pp.181-182, 2013.

E. G. Zoetendal, The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates, ISME J, vol.6, pp.1415-1426, 2012.

S. Leclercq, Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity, Proceedings of the National Academy of Sciences, vol.111, pp.4485-4493, 2014.

G. Malaguarnera, M. Giordano, G. Nunnari, G. Bertino, and M. Malaguarnera, Gut microbiota in alcoholic liver disease: Pathogenetic role and therapeutic perspectives, World Journal of Gastroenterology : WJG, vol.20, pp.16639-16648, 2014.

T. Chikritzhs, Has the leaning tower of presumed health benefits from 'moderate' alcohol use finally collapsed?, Addiction, vol.110, pp.726-727, 2015.

J. Rehm, Alcohol as a risk factor for liver cirrhosis: A systematic review and meta-analysis, Drug and Alcohol Review, vol.29, pp.437-445, 2010.

G. Szabo, Gut-Liver Axis in Alcoholic Liver Disease, Gastroenterology, vol.148, pp.30-36, 2015.

B. Chang, The protective effect of VSL#3 on intestinal permeability in a rat model of alcoholic intestinal injury, BMC Gastroenterology, vol.13, p.151, 2013.

L. Bull-otterson, Metagenomic Analyses of Alcohol Induced Pathogenic Alterations in the Intestinal Microbiome and the Effect of Lactobacillus rhamnosus GG Treatment, PLOS ONE, vol.8, p.53028, 2013.

D. Zhou, Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier, World Journal of Gastroenterology, vol.23, pp.60-75, 2017.

C. Lin, Y. Chen, T. Tsai, and T. Pan, Effects of deep sea water and Lactobacillus paracasei subsp. paracasei NTU 101 on hypercholesterolemia hamsters gut microbiota, Applied Microbiology and Biotechnology, vol.101, pp.321-329, 2017.

I. Martinez, Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota, Appl Environ Microbiol, vol.75, 2009.

G. S. Raza, Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice, Scientific Reports, vol.7, p.5294, 2017.

S. I. Sayin, Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist, Cell Metabolism, vol.17, pp.225-235, 2013.

E. Chambers, Effects of Elevating Colonic Propionate on Liver Fat Content in Adults with Non-Alcoholic Fatty Liver Disease, The FASEB Journal, vol.29, 2015.

D. Y. Oh, GPR120 is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-Inflammatory and Insulin Sensitizing Effects, Cell, vol.142, pp.687-698, 2010.

J. Alard, Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota, Environ Microbiol, vol.18, pp.1484-1497, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01532556

R. Sultana, A. J. Mcbain, and C. A. O&apos;neill, Strain-Dependent Augmentation of Tight-Junction Barrier Function in Human Primary Epidermal Keratinocytes by Lactobacillus and Bifidobacterium Lysates, Applied and Environmental Microbiology, vol.79, pp.4887-4894, 2013.

Y. Yin, Q. Yu, N. Fu, X. Liu, and F. Lu, Effects of four Bifidobacteria on obesity in high-fat diet induced rats, World J Gastroenterol, vol.16, pp.3394-3401, 2010.

H. K. Pedersen, Human gut microbes impact host serum metabolome and insulin sensitivity, Nature, vol.535, pp.376-381, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594855

P. Kovatcheva-datchary, Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella, Cell Metab, vol.22, pp.971-982, 2015.

B. Chassaing, Fecal Lipocalin 2, a Sensitive and Broadly Dynamic Non-Invasive Biomarker for Intestinal Inflammation, PLOS ONE, vol.7, p.44328, 2012.

L. Marechal and C. , Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties, J Proteomics, vol.113, pp.447-461, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01209735

N. Guan, Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects, Applied Microbiology and Biotechnology, vol.99, pp.585-600, 2015.

D. Baltaci, Association of vitamin B12 with obesity, overweight, insulin resistance and metabolic syndrome, and body fat composition; primary care-based study, Med Glas (Zenica), vol.10, pp.203-210, 2013.

G. Den-besten, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, Journal of Lipid Research, vol.54, pp.2325-2340, 2013.

A. L. Servin and M. Coconnier, Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens, Best Practice & Research Clinical Gastroenterology, vol.17, pp.741-754, 2003.

C. Filippo, Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proc Natl Acad Sci, vol.107, 2010.

A. Cotillard, Dietary intervention impact on gut microbial gene richness, Nature, vol.500, pp.585-588, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001543

M. Pellizzon, Choice of laboratory animal diet influences intestinal health, Lab animal, vol.45, pp.238-239, 2016.

B. Chassaing, Lack of soluble fiber drives diet-induced adiposity in mice, Am J Physiol Gastrointest Liver Physiol, vol.309, p.528, 2015.

C. Hoffmann, Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents, PLOS ONE, vol.8, p.66019, 2013.

S. S. Sohrab, M. A. Kamal, R. L. Atkinson, M. M. Alawi, and E. I. Azhar, Viral Infection and Obesity: current status and future prospective, Curr Drug Metab, 2017.

M. Mar-rodríguez, Obesity changes the human gut mycobiome, vol.5, p.14600, 2015.

A. C. Ouwehand, S. Tolkko, J. Kulmala, S. Salminen, and E. Salminen, Adhesion of inactivated probiotic strains to intestinal mucus, Lett Appl Microbiol, vol.31, pp.82-86, 2000.

U. Das, Antibiotic-like action of essential fatty acids, Canadian Medical Association Journal, vol.132, pp.1350-1350, 1985.

U. N. Das, Essential fatty acids as possible enhancers of the beneficial actions of probiotics, Nutrition, vol.18, p.786, 2002.

P. E. Kankaanpaa, S. J. Salminen, E. Isolauri, and Y. K. Lee, The influence of polyunsaturated fatty acids on probiotic growth and adhesion, FEMS Microbiol Lett, vol.194, pp.149-153, 2001.

D. Eratte, Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate-gum Arabic complex coacervates, Journal of Functional Foods, vol.19, pp.882-892, 2015.

H. Rajkumar, Effect of Probiotic (VSL#3) and Omega-3 on Lipid Profile, Insulin Sensitivity, Inflammatory Markers, and Gut Colonization in Overweight Adults: A Randomized, Controlled Trial, Mediators of Inflammation, vol.8, 2014.

L. Demetrius, Of mice and men, EMBO Reports, vol.6, pp.39-44, 2005.

M. Million, Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals, Microb Pathog, vol.53, pp.100-108, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01773004

F. Leulier, Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health, Cell Metab, vol.25, pp.522-534, 2017.

R. Chen, Personal omics profiling reveals dynamic molecular and medical phenotypes, Cell, vol.148, pp.1293-1307, 2012.

R. E. Ley, D. A. Peterson, and J. I. Gordon, Ecological and evolutionary forces shaping microbial diversity in the human intestine, Cell, vol.124, pp.837-848, 2006.

J. K. Nicholson, E. Holmes, and I. D. Wilson, Gut microorganisms, mammalian metabolism and personalized health care, Nat Rev Micro, vol.3, pp.431-438, 2005.

D. Zeevi, Personalized Nutrition by Prediction of Glycemic Responses, Cell, vol.163, pp.1079-1094

, Annexe 2

, Le graphique en (M) représente la concentration plasmatique de la lcn2, un marqueur du statut inflammatoire au niveau intestinal, déterminée par ELISA. Les résultats sont exprimés en moyenne ± SEM (n=8). Les groupes de traitements ont été statistiquement comparés suite à l'application d'un test t de Student entre le groupe contrôle HFHS et le groupe de souris nourries sous cette même diète et traitées avec la souche bactérienne Pr, Figure A2 -1. Effets de la souche Propionibacterium jensenii (Pr) sur la santé métabolique de souris soumises à un régime riche en gras et en sucre pendant 8 semaines -données préliminaires (A) : Courbes de gain de poids corporel des souris au cours du protocole