C. Market-watch, The CORSIA : ICAO ' s market based measure and implications for Europe, 2016.

G. Santos, Road transport and CO 2 emissions : What are the challenges ?

, Policy, vol.59, pp.71-74, 2017.

S. A. Shaheen, D. Ph, T. E. Lipman, and D. Ph, REDUCING GREENHOUSE EMISSIONS

, AND FUEL CONSUMPTION -Sustainable Approaches for Surface Transportation

. Assoc, Traffic Saf. Sci, vol.31, issue.1, pp.6-20, 2007.

, Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions, 2013.

A. Anger, Including aviation in the European emissions trading scheme: Impacts on the industry, CO 2 emissions and macroeconomic activity in the EU, J. Air Transp. Manag, vol.16, pp.100-105, 2010.

, IATA Technology Roadmap, 2013.

M. J. Benzakein, What does the future bring? A look at technologies for commercial aircraft in the years 2035-2050, Propuls. Power Res, vol.3, pp.165-174, 2015.

P. Schimming, Counter Rotating Fans An Aircraft Propulsion for the Future?, J. of Thermal Science, vol.12, issue.2, 2003.

A. Abbas, J. D. Vicente, and E. Valero, Aerodynamic technologies to improve aircraft performance, Aerosp. Sci. Technol, vol.28, pp.100-132, 2013.

R. H. Liebeck, Design of the Blended Wing Body Subsonic Transport, J. Aircr, vol.41, issue.1, pp.10-25, 2004.

J. Cinquin, Airbus Composite -workshop, 2017.

G. D. Franco, L. Fratini, and A. Pasta, Influence of the distance between rivets in self-piercing riveting bonded joints made of carbon fiber panels and AA2024 blanks, J. Mater, vol.35, pp.342-349, 2012.

H. S. Wolko and J. D. Anderson, The Wright Flyer : an engineering perspective, National Air and Space Museum, 1987.

F. Anderson, Northrop: An Aeronautical History. Northrop Corporation, 1976.

P. Cognard, Handbook of Adhesives and Sealants, vol.1, 2005.

C. J. Moss, Redux' Bonding a French Fighter Aircraft, Aircr. Eng. Aerosp. Technol, vol.21, issue.7, pp.218-219, 1949.

, Aerospace structural adhesive, NMAB ad hoc Committee on Structural Adheslves For Aerospace Use, 1974.

A. J. Kinloch, Adhesion and Adhesives, Science and Technology, 1987.

S. Ebnesajjad, Introduction and adhesion theories, Handb. Adhes. Surf. Prep, pp.3-13, 2011.

J. Villenave, Assenblage Par Collage, 2005.

K. B. Katnam, L. F. Da-silva, and T. M. Young, Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities, Prog. Aerosp. Sci, vol.61, pp.26-42, 2013.

D. E. Packham, The Mechanical Theory of Adhesion-Changing Perceptions 1925-1991, J. Adhes, vol.39, issue.2-3, pp.137-144, 1992.

A. Pizzi and K. Mitta, Handbook of Adhesive Technology, 2018.

J. W. Mcbain and D. G. Hopkins, On Adhesives and Adhesive Action, J. Phys. Chem, vol.29, issue.2, pp.188-204, 1924.

A. K. Vijh, The influence of metal-metal bond energies on the adhesion, hardness, friction and wear of metals, J. Mater. Sci, vol.10, issue.6, pp.998-1004, 1975.

M. Rabe, D. Verdes, and S. Seeger, Understanding protein adsorption phenomena at solid surfaces, Adv. Colloid Interface Sci, vol.162, issue.1-2, pp.87-106, 2011.

J. J. Bikerman, Causes of Poor Adhesion: Weak Boundary Layers, Ind. Eng. Chem, vol.59, issue.9, pp.40-44, 1967.

R. J. Good, Theory of 'Cohesive' vs 'Adhesive' Separation in an Adhering System

, J. Adhes, vol.4, issue.2, pp.133-154, 1972.

R. D. Adams, Reinforced Plastics, vol.44, 2000.
URL : https://hal.archives-ouvertes.fr/jpa-00223427

K. M. Bak, K. P. Venkatesn, and K. Kalai-chelvan, Parametric Study of Bonded, Riveted and Hybrid Composite Joints Using FEA, J. Appl. Sci, vol.10, issue.12, pp.1058-1062, 2012.

J. Y. Mann, R. A. Pell, R. Jones, and M. Heller, REDUCING THE EFFECTS OF RIVET HOLES ON FATIGUE LIFE BY ADHESIVE BONDING, Theor. Appl. Fract. Mech, vol.3, pp.113-124, 1985.

A. Ghorbani, Stress analysis of composite adhesive bonded joints under incipient failure conditions, Procedia Struct. Integr, vol.8, pp.552-560, 2018.

J. Careless, The MRO composite challenge -Aerospace Manufacturing Magazine, p.15, 2016.

K. Richter and J. Walther, Supply Chain Integration Challenges in Commercial Aerospace, 2017.

C. Spafford, T. Hoyland, and A. Medland, TURNING THE TIDE A WAVE OF NEW AVIATION TECHNOLOGY WILL SOON HIT THE MRO INDUSTRY, 2015.

K. Senthil, A. Arockiarajan, R. Palaninathan, B. Santhosh, and K. M. Usha, Defects in composite structures: Its effects and prediction methods -A comprehensive review, Compos. Struct, vol.106, pp.139-149, 2013.

R. D. Adams and P. Cawley, A riveiw of defect types and non-destructive testing techniques for composites and bonded joints, Constr. Build. Mater, vol.3, issue.4, pp.170-183, 1989.

R. D. Adams and B. W. Drinkwater, Nondestructive testing of adhesively-bonded joints, NDT E Int, vol.30, issue.2, pp.93-98, 1997.

B. Ehrhart, Quality Assessment of Bonded Primary Cfrp Structures By Means of Laser Proof Testing, 2016.

, Quality assurance in adhesive bonding technology -New DIN2304 standard and its use in practice, Adhes. Adhes. SEALANTS, vol.4, 2015.

M. Hoffmann, ENCOMB Final Report, pp.1-61, 2014.

C. J. Allen, C. Kerr, and P. Walker, The Use of Optically Stimulated Electron Emission for the Detection of Surface Contamination, Ahdesion, vol.15, pp.131-147, 1990.

M. K. Chawla, Optically Stimulated Electron Emission, vol.7, 2015.

. Encomb, ENCOMB Project -Optically stimulated electron emission, 2016.

K. Brune, Pre-bond quality assurance of CFRP surfaces using optically stimulated electron emission, Eng. Against Fail. -Proc. 3rd Int. Conf. Eng. Against Fail. ICEAF 2013, pp.26-28, 2013.

K. Brune, Surface analytical approaches contributing to quality assurance during manufacture of functional interfaces, Appl. Adhes. Sci, vol.3, issue.1, 2015.

S. N. Thakur and J. P. Singh, Fundamentals of Laser Induced Breakdown Spectroscopy, issue.1, 2007.

R. Noll, Laser-induced breakdown spectrometry -Applications for production control and quality assurance in the steel industry, Spectrochim. Acta -Part B At. Spectrosc, vol.56, issue.6, pp.637-649, 2001.

S. Millar, C. Gottlieb, G. Wilsch, T. Eichler, C. Bohling et al., Laser Induced Breakdown Spectroscopy ( LIBS ) -On-site investigations on a bridge with a mobile LIBS-system, Overview of Laser Induced Breakdown Spectroscopy, pp.15-19, 2015.

, Laser classification table -Laser Safety Facts

S. Vito, Electronic noses for composites surface contamination detection in aerospace industry, Sensors (Switzerland), vol.17, issue.4, 2017.

S. Vito, Detection and quantification of composite surface contaminants with an e-nose for fast and reliable pre-bond quality assessment of aircraft components, Sensors Actuators B. Chem, vol.222, pp.1264-1273, 2016.

A. Helwig, K. Maier, G. Müller, T. Bley, J. Steffensky et al., An optoelectronic monitoring system for aviation hydraulic fluids, Procedia Eng, vol.120, pp.233-236, 2015.

J. Burlachenko, I. Kruglenko, B. Snopok, and K. Persaud, Sample handling for electronic nose technology: State of the art and future trends, TrAC -Trends Anal. Chem, vol.82, pp.222-236, 2016.

R. C. Young, W. J. Buttner, B. R. Linnell, and R. Ramesham, Electronic nose for space program applications, Sensors Actuators, B Chem, vol.93, issue.1-3, pp.7-16, 2003.

&. Enea and . Encomb, , 2016.

S. Heckner, M. Geistbeck, C. U. Grosse, S. Eibl, and A. Helwig, FTIR Spectroscopy as a Nondestructive Testing Method for CFRP Surfaces in Aerospace, 7th Int. Symp. NDT Aerosp, pp.1-9, 2015.

A. Kraft, K. Brune, C. Tornow, G. Mühlhofer, B. Mayer et al., Nondestructive testing of contaminated CFRP surfaces with the -BonNDTinspect ® system, Appl. Adhes. Sci, pp.1-21, 2017.

;. Ifam--fraunhofer and . Awt-encomb, , 2016.

G. Wachinger and C. Thum, New Trends in CFRP Treatment and Surface Monitoring for Automated Structural Adhesive Bonding, Proc. Int. Conf. Compos. Mater, 2009.

M. Amkreutz, Method and device for testing a surface quality, bonNDTinspect® Bondability Test, 2006.

P. Kudela, T. Wandowski, P. Malinowski, and W. Ostachowicz, Application of scanning laser Doppler vibrometry for delamination detection in composite structures, Opt. Lasers Eng, vol.99, pp.46-57, 2017.

P. Malinowski and T. Wandowski, Characterization of CFRP Using Laser Vibrometry, Key Eng. Mater, pp.710-717, 2013.

P. Castellini, M. Martarelli, and E. P. Tomasini, Laser Doppler Vibrometry: Development of advanced solutions answering to technology's needs, Mech. Syst. Signal Process, vol.20, issue.6, pp.1265-1285, 2006.

P. H. Malinowski, M. Sawczak, T. Wandowski, W. M. Ostachowicz, and A. Cenian, Characterisation of CFRP surface contamination by laser induced fluorescence, vol.9064, p.90640, 2014.

R. Stoessel, Computed Tomography for weak bond detection -ComBoNDT deliverable, 2016.

S. Jev?nik, Seam properties of ultrasonic welded multilayered textile materials, J. Ind. Text, vol.46, issue.5, pp.1193-1211, 2017.

G. Scarselli, F. Ciampa, F. Nicassio, and M. Meo, Non-linear methods based on ultrasonic waves to analyse disbonds in single lap joints, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci, vol.231, issue.16, pp.3066-3076, 2017.

B. Ehrhart, B. Valeske, C. Muller, and C. Bockenheimer, Methods for the Quality Assessment of Adhesive Bonded CFRP Structures -A Resumé, Proc. Int, pp.1-9, 2010.

S. Hirsekorn, A. Koka, A. Wegner, and W. Arnold, Quality assessment of bond interfaces by nonlinear ultrasonic transmission, vol.1367, 2000.

P. Zabbal, G. Ribay, J. Jumel, and B. Chapuis, Nondestructive evaluation of adhesive joints by using nonlinear ultrasonic and guided waves, 2018.

F. T. Calkins, A. B. Flatau, and M. J. Dapino, Overview of magnetostrictive sensor technology, J. Intell. Mater. Syst. Struct, vol.18, issue.10, pp.1057-1066, 2007.

D. K. Kleinke and H. M. Uras, A noncontacting magnetostrictive strain sensor, Rev. Sci. Instrum, vol.64, issue.8, pp.2361-2367, 1993.

A. Christopoulos, E. Hristoforou, I. Koulalis, and G. Tsamasphyros, Inductive strain sensing using magnetostrictive wires embedded in carbon fibre laminates, Smart Mater. Struct, vol.23, issue.8, 2014.

G. Kanderakis, Strain monitoring and damage detection of bonded composite structures, using magnetostrictive sensors -Latest developments and applications, 2016.

T. Wandowski, Electromechanical impedance method for assessment of adhesive bonds of CFRP at the production and repair stage, th International Symposium on NDT in Aerospace, pp.1-5, 2016.

P. H. Malinowski, W. M. Ostachowicz, K. Brune, and M. Schlag, Study of electromechanical impedance changes caused by modifications of CFRP adhesive bonds

, Fatigue Fract. Eng. Mater. Struct, vol.40, issue.10, pp.1592-1600, 2017.

P. Malinowski, T. Wandowski, and W. Ostachowicz, The use of electromechanical impedance conductance signatures for detection of weak adhesive bonds of carbon fibrereinforced polymer, Struct. Heal. Monit, vol.14, issue.4, pp.332-344, 2015.

M. Rosiek, A. Martowicz, and T. Uhl, An Overview of Electromechanical Impedance Method for Damage Detection in Mechanical Structures, Work. Struct. Heal. Monit. -Fr.1.B, vol.4, pp.1-8, 2012.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, Physical study of laserproduced plasma in confined geometry, J. Appl. Phys, vol.68, issue.2, pp.775-784, 1990.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, Shock waves from a water-confined laser-generated plasma, J. Appl. Phys, vol.82, pp.2826-2832, 1997.

L. Berthe, State-of-the-art laser adhesion test (LASAT), Nondestruct. Test
URL : https://hal.archives-ouvertes.fr/hal-00652904

, Eval, vol.26, issue.3-4, pp.303-317, 2011.

C. R. Phipps, Impulse coupling to targets in vacuum by KrF

, CO2single-pulse lasers, J. Appl. Phys, vol.64, issue.3, pp.1083-1096, 1988.

S. P. Marsh, LASL Shock Hugoniot Data, Los Alamos Ser. Dyn. Mater. Prop, p.150, 1980.

Z. Rosenberg, On the relation between the Hugoniot elastic limit and the yield strength of brittle materials, J. Appl. Phys, vol.74, issue.1, pp.752-753, 1993.

P. Ballard, Contraintes résiduelles induites par impact rapide . Application au choc-laser . To cite this version : HAL Id : pastel-00001897, 1991.

C. Bolis, Ecole Doctorale Sciences pour l ' Ingénieur SEPARATION PAR CHOCS BREFS D ' INTERFACE DE, Test, 2004.

J. Vossen, Measurements of Film-Substrate Bond Strength by Laser Spallation, Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings, pp.122-122, 1978.

J. Yuan and V. Gupta, Measurement of interface strength by the modified laser spallation technique. I. Experiment and simulation of the spallation process, J. Appl. Phys, vol.74, issue.4, p.2388, 1993.

V. Gupta and J. Yuan, Measurement of interface strength by the modified laser spallation technique. II. Applications to metal/ceramic interfaces, J. Appl. Phys, vol.74, issue.4, p.2397, 1993.

J. Yuan, V. Gupta, and A. Pronin, Measurement of interface strength by the modified laser spallation technique. III. Experimental optimization of the stress pulse

, Appl. Phys, vol.74, issue.4, pp.2405-2410, 1993.

M. Boustie, E. Auroux, J. Romain, A. Bertoli, and D. Manesse, Determination of the bond strength of some microns coatings using the laser shock technique, Eur. Phys. J. AP, vol.5, pp.149-153, 1999.

C. Bolis, L. Berthe, M. Boustie, M. Arrigoni, S. Barradas et al., Physical approach to adhesion testing using laser-driven shock waves, J. Phys. D. Appl. Phys, vol.40, issue.10, pp.3155-3163, 2007.

I. Gilath, S. Eliezer, T. Bar-noy, R. Englman, and Z. Jaeger, Material response at hypervelocity impact conditions using laser induced shock waves, Int. Z Impact Engng, vol.14, pp.279-289, 1993.

R. Bossi, K. Housen, and C. Walters,

, Has The Holy Grail Been Found ?, NTIAC (Nondestructive Test. Inf. Anal. Center), vol.30, 2005.

E. Gay, L. Berthe, M. Boustie, M. Arrigoni, and M. Trombini, Effects of the shock duration on the response of CFRP composite laminates, Compos. Part B Eng, vol.64, pp.108-115, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01092206

R. Ecault, Experimental and numerical investigations of shock and shear wave propagation induced by femtosecond laser irradiation in epoxy resins, J. Phys. D
URL : https://hal.archives-ouvertes.fr/hal-01192697

, Appl. Phys, vol.48, issue.9, p.95501, 2015.

R. Bossi, K. Housen, W. Sheperd, and M. Voss, Bond strength measurement system using shock loads, 2001.

R. Bossi and V. Brustad, Using laser shock loads to debond structures, vol.507, pp.312-314, 2005.

R. Bossi, NDE for Adhesive Bond Strength, Spring Conference, 2011.

R. Bossi, K. Housen, C. T. Walters, and D. Sokol, Laser Bond Inspection, Mater. Eval, vol.67, issue.7, 2009.

J. Little, Apparatus and method for nondestructive testing of dielectric materials, vol.359, 1998.

, Laser Bond Inspection (LBI) System Overview

R. Ecault, Experimental and numerical investigations on the dynamic behaviour of aeronautic composites under laser shock -Optimization of a shock wave adhesion test for bonded composites, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01242721

D. Courapied, L. Berthe, P. Peyre, F. Coste, J. Zou et al., Laserdelayed double shock-wave generation in water-confinement regime, J. Laser Appl, vol.27, issue.S2, p.29101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01300662

D. Courapied, Etude de l ' interaction laser matière en régime de confinement par eau avec deux impulsions laser . Application au test d ' adhérence par choc laser . To cite this version : HAL Id : tel-01495241 l ' École Nationale Supérieure d ' Arts et Métiers par eau, 2017.

S. Bardy, Contrôle et optimisation du test d'adhérence par choc laser sur assemblages collés, 2018.

T. De-rességuier and M. Hallouin, Interaction of two laser shocks inside iron samples, J. Appl. Phys, vol.90, issue.9, pp.4377-4384, 2001.

M. Ghrib, Generation of controlled delaminations in composites using symmetrical laser shock configuration, Compos. Struct, vol.171, pp.286-297, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01662852

M. Boustie, Study of damage phenomena induced by edge effects into materials under laser driven shocks, J. Phys. D. Appl. Phys, vol.40, issue.22, pp.7103-7108, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00192717

J. P. Cuq-lelandais, Etude du comportement dynamique de matériaux sous choc laser subpicoseconde, 2010.

M. Perton, A. Blouin, and J. Monchalin, Adhesive bond testing of carbon-epoxy composites by laser shockwave, J. Phys. D. Appl. Phys, vol.44, issue.44, pp.1-12, 2010.

S. Gholizadeh, A review of non-destructive testing methods of composite materials, Procedia Struct. Integr, vol.1, pp.50-57, 2016.

C. Garnier, M. L. Pastor, F. Eyma, and B. Lorrain, The detection of aeronautical defects in situ on composite structures using non destructive testing, Compos. Struct, vol.93, issue.5, pp.1328-1336, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01005683

, LASER MARKING: How to choose the best laser for your marking application_Technology Information_News_Wuhan HGLaser Engineering Co,.Ltd, 2011.

L. Berthe, Processus de claquage de milieux transparents sous irradiation laser

, Application au choc laser en régime de confinement par eau, 1998.

A. Sollier, Etude des plasmas générés par interaction laser-matière en régime confiné. Application au traitement des matériaux par choc laser, 2002.

S. Bardy, Recherche du seuil d'endommagement d'un composite époxy en régime confiné par eau, 2016.

E. Moutsompegka, Experimental study of the effect of pre-bond contamination with de-icing fluid and ageing on the fracture toughness of composite bonded joints, Fatigue Fract. Eng. Mater. Struct, vol.40, issue.10, pp.1581-1591, 2017.

E. Moutsompegka, The effects of pre-bond contamination with de-icing fluid on the mode-I and mode-II fracture toughness of composite bonded joints, 2016.

E. Moutsompegka, K. Tserpes, K. Brune, M. Schlag, and S. Pantelakis, The effect of pre-bond contamination with fingerprint and ageing on the fracture toughness of composite bonded joints, 2016.

C. Schuecker and B. D. Davidson, Evaluation of the accuracy of the four-point bend end-notched flexure test for mode II delamination toughness determination, Compos. Sci. Technol, vol.60, issue.11, pp.2137-2146, 2000.

F. Pierron and A. Vautrin, Accurate comparative determination of the in-plane shear modulus of T300/914 by the iosipescu and 45° off-axis tests, Compos. Sci. Technol, vol.52, issue.1, pp.61-72, 1994.

J. Jumel, M. K. Budzik, N. B. Salem, and M. E. Shanahan, Instrumented end notched flexure -Crack propagation and process zone monitoring. Part I: Modelling and analysis, Int. J. Solids Struct, vol.50, issue.2, pp.297-309, 2013.

. Hexcel, Hexcel ready to fl y on the A350 XWB, REINFORCEDplastics, pp.25-26, 2013.

C. Paris, G. Bernhart, P. A. Olivier, and O. Almeida, Influence de cycles de cuisson rapides sur le préimprégné aéronautique M21/T700 : suivi de polymérisation et propriétés mécaniques, JNC 17, p.10, 2011.

D. Tilbrook, D. Blair, M. Boyle, and P. Mackenzie, Composite materials with blend of thermoplastic particles, vol.2, 2006.

, Aernnova

H. I. Kim, B. A. Morgan, J. P. Nokes, and R. J. Zaldivar, Quantitative Evaluation of Silicone Contamination Effect on Composite Bonding, J. Adhes, vol.91, issue.4, pp.320-329, 2015.

A. Mubashar, I. A. Ashcroft, G. W. Critchlow, and A. D. Crocombe, Moisture absorption-desorption effects in adhesive joints, J. Adhes. Adhes, vol.29, issue.8, pp.751-760, 2009.

K. J. Wong, Moisture absorption characteristics and effects on mechanical behaviour of carbon/epoxy composite : application to bonded patch repairs of composite structures, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00949293

. Struers and . Com,

A. Johnson, Simulation Methodology for High Velocity Impact in Composite Aircraft Structures, Air Sp. Eur, 2001.

M. Wicklein, S. Ryan, D. M. White, and R. A. Clegg, Hypervelocity impact on CFRP: Testing, material modelling, and numerical simulation, Int. J. Impact Eng, vol.35, issue.12, pp.1861-1869, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00542562

S. Ryan, M. Wicklein, A. Mouritz, W. Riedel, F. Schäfer et al., Theoretical prediction of dynamic composite material properties for hypervelocity impact simulations, Int. J. Impact Eng, vol.36, issue.7, pp.899-912, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00574818

O. I. Okoli, The effects of strain rate and failure modes on the failure energy of fibre reinforced composites, Compos. Struct, vol.54, pp.1-5, 2001.

H. M. Hsiao, I. M. Daniel, and R. D. Cordes, Strain rate effect on the transverse compressive and shear behavior of unidirectional composites, J. Compos. Mater, vol.33, issue.17, 1998.

J. Tsai and C. T. Sun, Strain rate effect on in-plane shear strength of unidirectional polymeric composites, Compos. Sci. Technol, vol.65, pp.1941-1947, 2005.

G. C. Jacob, J. M. Starbuck, J. F. Fellers, S. Simunovic, and R. G. Boeman, Strain rate effects on the mechanical properties of polymer composite materials, J. Appl. Polym. Sci, vol.94, issue.1, pp.296-301, 2004.

A. De-luca, F. D. Caprio, F. Caputo, G. Lamanna, and M. Ignarra, On the Tensile Behaviour of CF and CFRP Materials under High Strain Rates, Key Eng. Mater, pp.111-114, 2017.

P. M. Rozycki, Contribution au développement de lois de comportement pour matériaux composites soumis à l'impact, 2000.

P. Feraboli, Simulating Laminated Composite Materials Using LS-DYNA Material Model MAT54 : Single-Element Investigation -Report from U.S. Department of Transportation Federal Aviation Administration, 2017.

F. Chang and K. Chang, Post-Failure Analysis of Bolted Composite Joints in Tension or Shear-Out Mode Failure, J. Compos. Mater, 1987.

F. Chang and K. Chang, A Progressive Damage Model for Laminated Composites Containing Stress Concentrations, J. Compos. Mater, 1987.

P. Wriggers, Computational Contact Mechanics, 2002.

R. Ecault, F. Touchard, M. Boustie, L. Berthe, and N. Dominguez, Numerical modeling of laser-induced shock experiments for the development of the adhesion test for bonded composite materials, Compos. Struct, vol.152, pp.382-394, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02290960

D. Laporte, Analyse de la reponse d'assemblages colles sous des sollicitations en dynamique rapide. Essais et modelisations, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00639342

S. S. Karna and R. Sahai, An Overview on Taguchi Method, Int. J. Eng. Math. Sci, vol.1, issue.1, pp.2319-4537, 2012.

G. E. Box, On the Experimental Attainment of Optimum Conditions, J. R. Stat. Soc, issue.13, pp.1-45, 1951.

Z. Zhang and B. , Comparison about the three central composite designs with simulation, Proc. -Int. Conf. Adv. Comput, pp.163-167, 2009.

B. A. Oyejola and J. C. Nwanya, Selecting the Right Central Composite Design

, J. Stat. Appl, vol.5, issue.1, pp.21-30, 2015.

, Interpret the key results for Normality Test

A. Fenech, T. Fearn, and M. Strlic, Use of Design-of-Experiment principles to develop a dose-response function for colour photographs, Polym. Degrad. Stab, vol.97, issue.4, pp.621-625, 2012.

R. M. Pabari and Z. Ramtoola, Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets, Int. J. Pharm, vol.430, issue.1-2, pp.18-25, 2012.

. Support--minitab,

, How to Predict with Minitab: Using BMI to Predict the Body Fat Percentage, vol.2

C. Schoberleitner, V. Archodoulaki, T. Koch, S. Lüftl, M. Werderitsch et al.,

. Kuschnig, Developing a Sealing Material: Effect of Epoxy Modification on Specific Physical and Mechanical Properties, Materials (Basel), vol.6, issue.12, pp.5490-5501, 2013.

F. Chinesta and E. Cueto, PGD-Based Modeling of Materials , Structures and Processes, 2014.