O. and N. Jensen, Modification-specific proteomics: characterization of posttranslational modifications by mass spectrometry, Curr. Opin. Chem. Biol, vol.8, pp.33-41, 2004.

I. H. Consortium, Finishing the euchromatic sequence of the human genome, Nature, vol.431, pp.931-945, 2004.

Y. Jmeian, L. A. Hammad, and Y. Mechref, Fast and Efficient Online Release of N-Glycans from Glycoproteins Facilitating Liquid Chromatography-Tandem Mass Spectrometry Glycomic Profiling, Anal. Chem, vol.84, pp.8790-8796, 2012.

K. Meller, P. Pomastowski, M. Szumski, and B. Buszewski, Preparation of an improved hydrophilic monolith to make trypsin-immobilized microreactors, J. Chromatogr. B, vol.1043, pp.128-137, 2017.

F. Brothier and V. Pichon, Miniaturized DNA aptamer-based monolithic sorbent for selective extraction of a target analyte coupled on-line to nanoLC, Anal. Bioanal. Chem, vol.406, pp.7875-7886, 2014.

Y. Zhang, B. R. Fonslow, B. Shan, M. Baek, and J. R. Yates, Protein Analysis by Shotgun/Bottom-up Proteomics, Chem. Rev, vol.113, pp.2343-2394, 2013.

B. G. Ng and H. H. Freeze, Perspectives on Glycosylation and Its Congenital Disorders, 2018.

A. Tholey and A. Becker, Top-down proteomics for the analysis of proteolytic events -Methods, applications and perspectives, Biochim. Biophys. Acta BBA -Mol. Cell Res, vol.1864, pp.2191-2199, 2017.

T. E. Angel, U. K. Aryal, S. M. Hengel, E. S. Baker, R. T. Kelly et al., Mass spectrometry-based proteomics: existing capabilities and future directions, Chem. Soc. Rev, vol.41, p.3912, 2012.

C. Temporini, E. Perani, E. Calleri, L. Dolcini, D. Lubda et al., Pronase-Immobilized Enzyme Reactor: an Approach for Automation in Glycoprotein Analysis by LC/LC?ESI/MS n, Anal. Chem, vol.79, pp.355-363, 2007.

B. H. Clowers, E. D. Dodds, R. R. Seipert, and C. B. Lebrilla, Site Determination of Protein Glycosylation Based on Digestion with Immobilized Nonspecific Proteases and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, J. Proteome Res, vol.6, pp.4032-4040, 2007.

N. Leymarie and J. Zaia, Effective Use of Mass Spectrometry for Glycan and Glycopeptide Structural Analysis, Anal. Chem, vol.84, pp.3040-3048, 2012.

H. Zhu, C. Qiu, A. C. Ruth, D. A. Keire, and H. Ye, A LC-MS All-in-One Workflow for SiteSpecific Location, Identification and Quantification of N-/O-Glycosylation in Human Chorionic Gonadotropin Drug Products, AAPS J, vol.19, pp.846-855, 2017.

A. Kecskemeti and A. Gaspar, Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion, Talanta, vol.166, pp.275-283, 2017.

M. Bonichon, A. Combès, C. Desoubries, A. Bossée, and V. Pichon, Development of immunosorbents coupled on-line to immobilized pepsin reactor and micro liquid chromatography-tandem mass spectrometry for analysis of butyrylcholinesterase in human plasma, J. Chromatogr. A, vol.1526, pp.70-81, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01628506

M. Hedström, M. Andersson, I. Yu, B. Galaev, and . Mattiasson, Fast on-column protein digestion with subsequent peptide mapping using tandem mass spectrometry with information dependent acquisition, J. Chromatogr. A, vol.1080, pp.117-123, 2005.

M. Naldi, U. ?ernigoj, A. ?trancar, and M. Bartolini, Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis, Talanta, vol.167, pp.143-157, 2017.

S. Moore, S. Hess, and J. Jorgenson, Characterization of an immobilized enzyme reactor for on-line protein digestion, J. Chromatogr. A, vol.1476, pp.1-8, 2016.

J. Sproß and A. Sinz, A Capillary Monolithic Trypsin Reactor for Efficient Protein Digestion in Online and Offline Coupling to ESI and MALDI Mass Spectrometry, Anal. Chem, vol.82, pp.1434-1443, 2010.

T. ?lechtová, M. Gilar, K. Kalíková, S. M. Moore, J. W. Jorgenson et al., Performance comparison of three trypsin columns used in liquid chromatography, J. Chromatogr. A, vol.1490, pp.126-132, 2017.

L. Geiser, S. Eeltink, F. Svec, and J. M. Fréchet, In-line system containing porous polymer monoliths for protein digestion with immobilized pepsin, peptide preconcentration and nano-liquid chromatography separation coupled to electrospray ionization mass spectroscopy, J. Chromatogr. A, vol.1188, pp.88-96, 2008.

J. Visser, M. Van-der-schans, A. Fidder, A. G. Hulst, B. L. Van-baar et al., Development of an automated on-line pepsin digestion-liquid chromatography-tandem mass spectrometry configuration for the rapid analysis of protein adducts of chemical warfare agents, J. Chromatogr. B, vol.870, pp.91-97, 2008.

T. Fournier, J. Guibourdenche, and D. Evain-brion, Review: hCGs: Different sources of production, different glycoforms and functions, Placenta, vol.36, 2015.

L. Cole, H. , and H. Hcg, Pituitary hCG, Cancer hCG and Fetal hCG, J. Pregnancy Child Health, p.3, 2015.

H. Toll, P. Berger, A. Hofmann, A. Hildebrandt, H. Oberacher et al.,

. Huber, Glycosylation patterns of human chorionic gonadotropin revealed by liquid chromatography-mass spectrometry and bioinformatics, Electrophoresis, issue.27, pp.2734-2746, 2006.

P. Berger and A. J. Lapthorn, The molecular relationship between antigenic domains and epitopes on hCG, Mol. Immunol, vol.76, pp.134-145, 2016.

A. Cingöz, F. Hugon-chapuis, and V. Pichon, Evaluation of various immobilized enzymatic microreactors coupled on-line with liquid chromatography and mass spectrometry detection for quantitative analysis of cytochrome c, J. Chromatogr. A, vol.1209, pp.95-103, 2008.

P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner et al., Measurement of protein using bicinchoninic acid, Anal. Biochem, vol.150, issue.85, p.90442, 1985.

J. Rodriguez, N. Gupta, R. D. Smith, and P. A. Pevzner, Does Trypsin Cut Before Proline?, J. Proteome Res, vol.7, pp.300-305, 2008.

M. Wuhrer, C. A. Koeleman, C. H. Hokke, and A. M. Deelder, Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments, Rapid Commun. Mass Spectrom, vol.20, pp.1747-1754, 2006.

G. Palmisano, M. R. Larsen, N. H. Packer, and M. Thaysen-andersen, Structural analysis of glycoprotein sialylation -part II: LC-MS based detection, RSC Adv, vol.3, p.22706, 2013.

P. Kozlik, M. Sanda, and R. Goldman, Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides, J. Chromatogr. A, vol.1519, pp.152-155, 2017.

O. Ozohanics, L. Turiák, A. Puerta, K. Vékey, and L. Drahos, High-performance liquid chromatography coupled to mass spectrometry methodology for analyzing sitespecific N-glycosylation patterns, J. Chromatogr. A, vol.1259, pp.200-212, 2012.

G. C. Vreeker and M. Wuhrer, Reversed-phase separation methods for glycan analysis, Anal. Bioanal. Chem, vol.409, pp.359-378, 2017.

C. Pett, W. Nasir, C. Sihlbom, B. Olsson, V. Caixeta et al., Effective Assignment of ?2,3/?2,6-Sialic Acid Isomers by LC-MS/MS-Based Glycoproteomics, Angew. Chem. Int. Ed, vol.57, pp.9320-9324, 2018.

M. Pabst, J. S. Bondili, J. Stadlmann, L. Mach, and F. Altmann, Mass + Retention Time = Structure: A Strategy for the Analysis of N -Glycans by Carbon LC-ESI-MS and Its Application to Fibrin N -Glycans, vol.79, pp.5051-5057, 2007.

Z. An, Q. Shu, H. Lv, L. Shu, J. Wang et al., N-Linked Glycopeptide Identification Based on Open Mass Spectral Library Search, BioMed Res. Int, pp.1-11, 2018.

W. Zeng, M. Liu, Y. Zhang, J. Wu, P. Fang et al., pGlyco: a pipeline for the identification of intact N-glycopeptides by using HCD-and CID-MS/MS and MS3, Sci. Rep, vol.6, 2016.

L. Valmu, H. Alfthan, K. Hotakainen, S. Birken, and U. Stenman, Site-specific glycan analysis of human chorionic gonadotropin -subunit from malignancies and pregnancy by liquid chromatography--electrospray mass spectrometry, Glycobiology, vol.16, pp.1207-1218, 2006.

A. Gervais, Y. Hammel, S. Pelloux, P. Lepage, G. Baer et al.,

R. Strub, E. Koerner, A. Leize, and . Van-dorsselaer, Glycosylation of human recombinant gonadotrophins: characterization and batch-to-batch consistency, Glycobiology, vol.13, pp.179-189, 2003.

D. W. Piper and B. H. Fenton, pH stability and activity curves of pepsin with special reference to their clinical importance, Gut, vol.6, pp.506-508, 1965.

L. Diaz-cueto, J. Barrios-de-tomasi, C. Timossi, J. P. Mendez, and A. Ulloa-aguirre, More in-vitro bioactive, shorter-lived human chorionic gonadotrophin charge isoforms increase at the end of the first and during the third trimesters of gestation, Mol. Hum. Reprod, vol.2, pp.643-650, 1996.

K. A. Liddy, M. Y. White, and S. J. Cordwell, Functional decorations: Posttranslational modifications and heart disease delineated by targeted proteomics, Genome Medicine, vol.5, issue.2, p.20, 2013.

R. Apweiler, H. Hermjakob, and N. Sharon, On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database, Biochim Biophys Acta -Gen Subj, vol.1473, issue.1, pp.4-8, 1999.

A. Dell, A. Galadari, F. Sastre, and P. Hitchen, Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes, Int J Microbiol, 2010.

R. Aebersold, J. N. Agar, I. J. Amster, M. S. Baker, C. R. Bertozzi et al.,

, How many human proteoforms are there?, Nature Chemical Biology, vol.14, issue.3, pp.206-214, 2018.

A. Varki, R. D. Cummings, M. Aebi, N. H. Packer, P. H. Seeberger et al., Symbol nomenclature for graphical representations of glycans

, Glycobiology, vol.25, issue.12, pp.1323-1327, 2015.

B. Domon and C. E. Costello, A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates, Glycoconj J, vol.5, issue.4, pp.397-409, 1988.

P. Roepstorff and J. Fohlman, Letter to the editors -Proposal for a common nomenclature for sequence ions in mass spectra of peptides, Biol Mass Spectrom, vol.11, issue.11, p.601, 1984.

F. Higel, A. Seidl, F. Sörgel, and W. Friess, N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins, European Journal of Pharmaceutics and Biopharmaceutics, vol.100, pp.94-100, 2016.

K. Zheng, C. Bantog, and R. Bayer, The impact of glycosylation on monoclonal antibody conformation and stability, MAbs, vol.3, issue.6, pp.568-76, 2011.

M. Wuhrer, M. Selman, L. A. Mcdonnell, T. Kümpfel, and T. Derfuss,

M. Khademi, Pro-inflammatory pattern of IgG1 Fc glycosylation in multiple sclerosis cerebrospinal fluid, J Neuroinflammation, vol.12, p.235, 2015.

J. N. Arnold, M. R. Wormald, R. B. Sim, P. M. Rudd, and R. A. Dwek, The Impact of Glycosylation on the Biological Function and Structure of Human Immunoglobulins, Annu Rev Immunol, vol.25, pp.21-50, 2007.

H. W. Schroeder and L. Cavacini, Structure and function of immunoglobulins

, J Allergy Clin Immunol, vol.125, issue.2, pp.41-52, 2010.

S. H. Itzkowitz, M. Yuan, C. K. Montgomery, T. Kjeldsen, and H. K. Takahashi,

W. L. Bigbee, Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer, Cancer Res, vol.49, issue.1, pp.197-204, 1989.

G. F. Springer, Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy, J Mol Med (Berl), vol.75, issue.8, pp.594-602, 1997.

R. S. Bresalier, S. B. Ho, H. L. Schoeppner, Y. S. Kim, M. H. Sleisenger et al., Enhanced Sialylation of Mucin-Associated Carbohydrate Structures in Human Colon Cancer Metastasis, GASTROENTEROLOGY, 1996.

J. J. Park and M. Lee, Increasing the ? 2, 6 sialylation of glycoproteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer, Gut Liver, vol.7, issue.6, pp.629-670, 2013.

L. Oliveira-ferrer, K. Legler, K. Milde-langosch, N. Srinivasan, S. Budnar et al., Role of protein glycosylation in cancer metastasis, Semin Cancer Biol, vol.44, pp.141-152, 2017.

, N-glycans and metastasis in galectin-3 transgenic mice, Biochem Biophys Res Commun, vol.460, issue.2, pp.302-309, 2015.

L. A. Cole and S. A. Butler, Hyperglycosylated human chorionic gonadotropin and human chorionic gonadotropin free beta-subunit: tumor markers and tumor promoters, J Reprod Med, vol.53, issue.7, pp.499-512, 2008.

S. R. Stowell, T. Ju, and R. D. Cummings, Protein Glycosylation in Cancer, Annu Rev Pathol Mech Dis, vol.10, issue.1, pp.473-510, 2015.

N. Magon and P. Kumar, Hormones in pregnancy, Niger Med J

J. Neulen, S. Raczek, M. Pogorzelski, K. Grunwald, T. K. Yeo et al.,

S. Yagel, T. E. Geva, H. Solomon, S. Shimonovitz, R. Reich et al., High levels of human chorionic gonadotropin retard first trimester trophoblast invasion in vitro by decreasing urokinase plasminogen activator and collagenase activities, J Clin Endocrinol Metab, vol.77, issue.6, pp.1506-1517, 1993.

A. Schumacher, K. Heinze, J. Witte, E. Poloski, N. Linzke et al.,

, Human Chorionic Gonadotropin as a Central Regulator of Pregnancy Immune Tolerance, J Immunol, vol.190, issue.6, pp.2650-2658, 2013.

D. L. Blithe, N-linked oligosaccharides on free ? interfere with its ability to combine with human chorionic gonadotropin-? subunit, J Biol Chem, 1990.

C. Cahoreau, D. Klett, and Y. Combarnous, Structure-function relationships of glycoprotein hormones and their subunits' ancestors. Front Endocrinol (Lausanne), vol.6, p.26, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01351175

N. R. Thotakura and O. P. Bahl, Role of carbohydrate in human chorionic gonadotropin: Deglycosylation uncouples hormone-receptor complex and adenylate cyclase system, Biochem Biophys Res Commun, vol.108, issue.1, pp.399-405, 1982.

H. Koistinen, M. Koel, M. Peters, A. Rinken, K. Lundin et al.,

, Hyperglycosylated hCG activates LH/hCG-receptor with lower activity than hCG, Mol Cell Endocrinol, vol.479, pp.103-109, 2019.

T. Fournier, J. Guibourdenche, and D. Evain-brion, Review: hCGs: Different sources of production, different glycoforms and functions, Placenta, vol.36, issue.S1, pp.60-65, 2015.

L. Medicaments and . De-l'ovulation, AFSAPPS. Les médicaments inducteurs de l'ovulation-les gonadotrophines

, LES GONADOTROPHINES RECOMMANDATIONS Actualisation, 2007.

M. Eftekhar, M. A. Khalili, and E. Rahmani, The efficacy of recombinant versus urinary HCG in ART outcome, Iran J Reprod Med, vol.10, issue.6, pp.543-551, 2012.

A. Gautam, Recombinant or urinary human chorionic gonadotropin in ovulation induction?, J Obstet Gynaecol India, vol.61, issue.6, pp.621-623, 2011.

C. Nwabuobi, S. Arlier, F. Schatz, O. Guzeloglu-kayisli, and C. J. Lockwood,

U. A. Kayisli and . Hcg, Biological functions and clinical applications, Int J Mol Sci, vol.18, issue.10, pp.1-15, 2017.

M. M. Elliott, A. Kardana, J. W. Lustbader, and L. A. Cole, Carbohydrate and peptide structure of the ?-and ?-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma

F. Clerc, K. R. Reiding, B. C. Jansen, G. Kammeijer, A. Bondt et al.,

, Human plasma protein N-glycosylation, Glycoconj J, vol.33, issue.3, pp.309-352, 2016.

J. Liu, M. Dolikun, J. ?tambuk, I. Trbojevi?-akma?i?, J. Zhang et al.,

, The association between subclass-specific IgG Fc N-glycosylation profiles and hypertension in the Uygur, Kazak, Kirgiz, and Tajik populations, J Hum Hypertens, vol.32, issue.8-9, pp.555-63, 2018.

C. Menzer and D. Schams, Radioimmunoassay for PMSG and its application to in-vivo studies, Reproduction, vol.55, issue.2, pp.339-384, 1979.

G. B. Sherman, M. W. Wolfe, T. A. Farmerie, C. M. Clay, and D. S. Threadgill,

. Dc, A single gene encodes the beta-subunits of equine luteinizing hormone and chorionic gonadotropin, Mol Endocrinol, vol.6, issue.6, pp.951-960, 1992.

J. Dausset, J. Moullec, and J. Bernard, Acquired hemolytic anemia with polyagglutinability of red blood cells due to a new factor present in normal human serum (Anti-Tn), Blood, vol.14, pp.1079-93, 1959.

G. J. Strous and J. Dekker, Mucin-type glycoproteins, Crit Rev Biochem Mol Biol, vol.27, issue.1-2, pp.57-92, 1992.

P. H. Jensen, D. Kolarich, and N. H. Packer, Mucin-type O-glycosylation -Putting the pieces together, FEBS J, vol.277, issue.1, pp.81-94, 2010.

E. F. Hounsell, M. J. Davies, and D. Renouf, O-linked protein glycosylation structure and function, Glycoconjugate Journal, vol.13, issue.1, pp.19-26, 1996.

N. Taniguchi, K. Honke, and M. Fukuda,

R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, and M. Aebi, Handbook of glycosyltransferases and related genes, second edition. Handbook of Glycosyltransferases and Related Genes

G. Essentials-of, , 2017.

Y. Niwa, T. Suzuki, N. Dohmae, and S. Simizu, Identification of DPY19L3 as the C -mannosyltransferase of R-spondin1 in human cells, Mol Biol Cell, vol.27, issue.5, pp.744-56, 2016.

R. Tian, H. Zhang, H. Chen, G. Liu, and Z. Wang, Uncovering the Binding Specificities of Lectins with Cells for Precision Colorectal Cancer Diagnosis Based on Multimodal Imaging, Adv Sci, vol.5, issue.6, pp.1-9, 2018.

B. B. Haab, Using lectins in biomarker research: Addressing the limitations of sensitivity and availability, Proteomics Clin Appl, vol.6, issue.7-8, pp.346-50, 2012.

M. Schubert, M. J. Walczak, M. Aebi, and G. Wider, Posttranslational modifications of intact proteins detected by NMR spectroscopy: Application to glycosylation, Angew Chem Int Ed Engl, vol.54, issue.24, pp.7096-100, 2015.

A. Ardá and J. Jiménez-barbero, The recognition of glycans by protein receptors. Insights from NMR spectroscopy, Chem Commun (Camb), 2018.

, May, vol.8, issue.38, pp.4761-4769

J. Jiménez-barbero, A. Canales, I. Boos, L. Perkams, L. Karst et al.,

, Breaking the Limits in Analyzing Carbohydrate Recognition by NMR Spectroscopy: Resolving Branch-Selective Interaction of a Tetra-Antennary N-Glycan with Lectins. Angew Chemie -Int Ed, vol.56, pp.14987-91, 2017.

N. Takahashi, Demonstration of a new amidase acting on glycopeptides

, Biochem Biophys Res Commun, vol.76, issue.4, pp.1194-201, 1977.

T. H. Plummer, J. H. Elder, S. Alexander, A. W. Phelan, and A. L. Tarentino, Demonstration of peptide:N-glycosidase F activity in endo

, J Biol Chem, vol.259, issue.17, pp.10700-10704, 1984.

G. E. Norris, T. J. Stillman, B. F. Anderson, and E. N. Baker, The three-dimensional structure of PNGase F, a glycosyl asparaginase from Flavobacterium meningosepticum, Structure, vol.2, issue.11, pp.1049-59, 1994.

F. Altmann, S. Schweiszer, and C. Weber, Kinetic comparison of peptide: N

, glycosidases F and A reveals several differences in substrate specificity

, Glycoconj J, 1995.

V. Tretter, F. Altmann, and L. März,

I. Wilson, R. Zeleny, D. Kolarich, E. Staudacher, C. Stroop et al.,

. Jp, Analysis of asn-linked glycans from vegetable foodstuffs: Widespread occurrence of Lewis a, core ?1,3-linked fucose and xylose substitutions

, Glycobiology, vol.11, issue.4, pp.261-74, 2001.

G. Sun, X. Yu, C. Bao, L. Wang, M. Li et al., Identification and characterization of a novel prokaryotic peptide: N-Glycosidase from Elizabethkingia meningoseptica, J Biol Chem, vol.290, issue.12, pp.7452-62, 2015.

T. Wang, Z. P. Cai, X. Q. Gu, H. Y. Ma, Y. M. Du et al., Discovery and characterization of a novel extremely acidic bacterial N -glycanase with combined advantages of PNGase F and A, Biosci Rep, vol.34, issue.6, pp.673-84, 2014.

L. Skoza and S. Mohos, Stable thiobarbituric acid chromophore with dimethyl sulphoxide. Application to sialic acid assay in analytical de-Oacetylation, Biochem J, vol.159, issue.3, pp.457-462, 1976.

T. H. Plummer, A. W. Phelan, and A. L. Tarentino, Detection and quantification of peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidases, Eur J Biochem, vol.163, issue.1, pp.167-73, 1987.

N. Ftouhi-paquin, C. R. Hauer, R. F. Stack, A. L. Tarentino, and T. H. Plummer,

, Molecular cloning, primary structure, and properties of a new glycoamidase from the fungus Aspergillus tubigensis, J Biol Chem, vol.272, issue.36, pp.22960-22965, 1997.

M. A. Hossain, R. Nakano, K. Nakamura, and Y. Kimura, Molecular identification and characterization of an acidic peptide:N-glycanase from tomato (Lycopersicum esculentum) fruits, J Biochem, vol.147, issue.2, pp.157-65, 2010.

B. Küster, S. F. Wheeler, A. P. Hunter, R. A. Dwek, and D. J. Harvey, Sequencing of N-linked oligosaccharides directly from protein gels: In-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography, Anal Biochem, 1997.

, Jul, vol.15, issue.1, pp.82-101

N. L. Wilson, B. L. Schulz, N. G. Karlsson, and N. H. Packer, Sequential analysis of N-and O-linked glycosylation of 2D-PAGE separated glycoproteins, J Proteome Res, 2002.

M. Naldi, A. Tramarin, and M. Bartolini, Immobilized enzyme-based analytical tools in the -omics era: Recent advances, J Pharm Biomed Anal, 2018.

H. Zhou, A. C. Briscoe, J. W. Froehlich, and R. S. Lee, PNGase F catalyzes de-Nglycosylation in a domestic microwave, Anal Biochem, vol.427, issue.1, pp.33-38, 2012.

H. Kalay, M. Ambrosini, F. Chiodo, Y. Van-kooyk, and J. J. García-vallejo,

, Enhanced glycan nanoprofiling by weak anion exchange preparative chromatography, mild acid desialylation, and nanoliquid chromatographymass spectrometry with nanofluorescence detection, Electrophoresis, 2013.

A. Varki, H. H. Freeze, and A. E. Manzi, Preparation and Analysis of

. Glycoconjugates, Current Protocols in Molecular Biology, 2009.

C. A. Cooper, N. H. Packer, and J. W. Redmond, The elimination of O-linked glycans from glycoproteins under non-reducing conditions, Glycoconj J, 1994.

, Apr, vol.11, issue.2, pp.163-170

P. Kang, Y. Mechref, and M. Novotny, High-throughput solid-phase permethylation of glycans prior to mass spectrometry, Rapid Commun Mass Spectrom, vol.22, issue.5, p.721, 2008.

A. Shajahan, N. Supekar, C. Heiss, and P. Azadi,

, Micro-permethylation for Glycan Structure Analysis, Anal Chem, vol.91, issue.2, pp.1237-1240, 2019.

D. J. Harvey, Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry, J Chromatogr B

, Analyt Technol Biomed Life Sci, vol.879, pp.1196-225, 2011.

T. Naven and D. J. Harvey, Cationic derivatization of oligosaccharides with

, Girard's T reagent for improved performance in matrix-assisted laser desorption/ionization and electrospray mass spectrometry, Rapid Commun Mass Spectrom, vol.10, issue.7, pp.829-863, 1996.

M. Rohmer, B. Meyer, M. Mank, B. Stahl, U. Bahr et al.,

, Aminoquinoline Acting As Matrix and Derivatizing Agent for Maldi Ms Analysis of Oligosaccharides, Anal Chem, vol.82, issue.9, pp.3719-3745, 2010.

S. F. Wheeler, P. Domann, and D. J. Harvey, Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of ?(2 ? 3)-and ?(2 ? 6)-isomers, Rapid Commun Mass Spectrom, vol.23, issue.2, pp.303-312, 2009.

M. J. Kailemia, L. R. Ruhaak, C. B. Lebrilla, and I. J. Amster, Oligosaccharide analysis by mass spectrometry: A review of recent developments, Anal Chem

S. R. Kronewitter, D. Leoz, M. Peacock, K. S. Mcbride, K. R. An et al.,

S. Miyamoto, Human serum processing and analysis methods for rapid and reproducible N-glycan mass profiling, J Proteome Res, vol.9, issue.10, 2010.

M. F. Verostek, C. Lubowski, and R. B. Trimble, Selective organic precipitation/extraction of released N-glycans following large-scale enzymatic deglycosylation of glycoproteins, Anal Biochem, vol.278, issue.2, pp.111-133, 2000.

S. M. Totten, M. Kullolli, and S. J. Pitteri, Multi-lectin affinity chromatography for separation, identification, and quantitation of intact protein glycoforms in complex biological mixtures, Methods Mol Biol, vol.1550, pp.99-113, 2017.

R. Qiu and F. E. Regnier, Use of multidimensional lectin affinity chromatography in differential glycoproteomics, Anal Chem, vol.77, issue.9, pp.2802-2811, 2005.

X. Mao, J. Qin, and B. Lin, Miniaturized Lectin Affinity Chromatography

, Lectins: Analytical Technologies, pp.213-238, 2007.

M. Madera, B. Mann, Y. Mechref, and M. V. Novotny, Efficacy of glycoprotein enrichment by microscale lectin affinity chromatography, J Sep Sci, 2008.

F. O. Gbormittah, L. Y. Lee, K. Taylor, W. S. Hancock, and O. Iliopoulos,

, Comparative studies of the proteome, glycoproteome, and N-glycome of clear cell renal cell carcinoma plasma before and after curative nephrectomy, J Proteome Res, vol.13, issue.11, pp.4889-900, 2014.

D. Keogh, R. Thompson, R. Larragy, K. Mcmahon, M. O'connell et al., Generating novel recombinant prokaryotic lectins with altered carbohydrate binding properties through mutagenesis of the PA-IL protein from Pseudomonas aeruginosa, Biochim Biophys Acta, 2014.

J. Hirabayashi, M. Yamada, A. Kuno, and H. Tateno, Lectin microarrays

. Concept, Chem Soc Rev, vol.42, issue.10, pp.4443-58, 2013.

L. R. Ruhaak, G. Xu, Q. Li, E. Goonatilleke, and C. B. Lebrilla, Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses, Chem Rev, vol.118, issue.17, pp.7886-7930, 2018.

G. Vreeker and M. Wuhrer, Reversed-phase separation methods for glycan analysis, Anal Bioanal Chem, vol.409, issue.2, pp.359-378, 2017.

A. J. Alpert, Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds, J Chromatogr, vol.499, pp.177-96, 1990.

P. Hemström and K. Irgum, Hydrophilic interaction chromatography

. Sci, , vol.29, pp.1784-1821, 2006.

M. Selman, M. Hemayatkar, A. M. Deelder, and M. Wuhrer, Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides, Anal Chem, vol.83, issue.7, pp.2492-2501, 2011.

L. R. Ruhaak, C. Huhn, W. J. Waterreus, D. Boer, A. R. Neusüss et al., Hydrophilic interaction chromatography-based high-throughput sample preparation method for N-glycan analysis from total human plasma glycoproteins, Anal Chem, vol.80, issue.15, pp.6119-6145, 2008.

M. A. Lauber, Y. Q. Yu, D. W. Brousmiche, Z. Hua, S. M. Koza et al.,

, Rapid preparation of released N -glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection, Anal. Chem, vol.87, issue.10, pp.5401-5409, 2015.

Q. Y. Ying, M. Gilar, J. Kaska, and J. C. Gebler, A rapid sample preparation method for mass spectrometric characterization of N-linked glycans, Rapid Commun Mass Spectrom, vol.19, issue.16, pp.2331-2337, 2005.

U. Aich, A. Liu, J. Lakbub, J. Mozdzanowski, M. Byrne et al., An Integrated Solution-Based Rapid Sample Preparation Procedure for the Analysis of N-Glycans from Therapeutic Monoclonal Antibodies, J Pharm Sci, vol.105, issue.3, pp.1221-1253, 2016.

M. Mancera-arteu, E. Giménez, J. Barbosa, and V. Sanz-nebot, Identification and characterization of isomeric N-glycans of human alfa-acid-glycoprotein by stable isotope labelling and ZIC-HILIC-MS in combination with exoglycosidase digestion, Anal Chim Acta, vol.940, pp.92-103, 2016.

E. Giménez, M. Balmaña, J. Figueras, E. Fort, C. Bolós et al., , vol.866, pp.59-68, 2015.

L. Veillon, Y. Huang, W. Peng, X. Dong, B. G. Cho et al.,

, Characterization of isomeric glycan structures by LC-MS/MS, Electrophoresis, vol.38, issue.17, pp.2100-2114, 2017.

A. Badhan, Y. Wang, and T. A. Mcallister, Analysis of Complex Carbohydrate Composition in Plant Cell Wall Using Fourier Transformed Mid-Infrared Spectroscopy (FT-IR), Methods Mol Biol, vol.1588, pp.209-214, 2017.

J. R. Wang, W. N. Gao, R. Grimm, S. Jiang, Y. Liang et al., A method to identify trace sulfated IgG N-glycans as biomarkers for rheumatoid arthritis

, Nat Commun, vol.8, issue.1, p.631, 2017.

K. Stavenhagen, H. Hinneburg, D. Kolarich, and M. Wuhrer, Site-specific Nand O-glycopeptide analysis using an integrated

. Ms/ms and . Approach, Methods Mol Biol, vol.1503, pp.109-119, 2017.

H. Wang, X. Chen, X. Zhang, W. Zhang, Y. Li et al., Comparative Assessment of Glycosylation of a Recombinant Human FSH and a Highly Purified FSH Extracted from Human Urine, J Proteome Res, vol.15, issue.3, pp.923-955, 2016.

C. West, C. Elfakir, and M. Lafosse, Porous graphitic carbon: A versatile stationary phase for liquid chromatography, J Chromatogr A, pp.3201-3217, 1217.

Y. L. Polyakova and K. H. Row, Retention of Some Five-Membered Heterocyclic Compounds on a Porous Graphitized Carbon, HypercarbTM. Chromatographia, vol.65, pp.59-63, 2007.

T. Hanai, Separation of polar compounds using carbon columns, J Chromatogr A, 2003.

S. H. Walker, B. C. Carlisle, and D. C. Muddiman, Systematic comparison of reverse phase and hydrophilic interaction liquid chromatography platforms for the analysis of N-linked glycans, Anal Chem, vol.84, pp.8198-206, 2012.

L. Mauko, N. A. Lacher, M. Pelzing, A. Nordborg, P. R. Haddad et al., Comparison of ZIC-HILIC and graphitized carbon-based analytical approaches combined with exoglycosidase digestions for analysis of glycans from monoclonal antibodies, J Chromatogr B Analyt Technol Biomed Life Sci, vol.911, pp.93-104, 2012.

L. Mauko, A. Nordborg, J. P. Hutchinson, N. A. Lacher, E. F. Hilder et al., Glycan profiling of monoclonal antibodies using zwitterionic-type hydrophilic interaction chromatography coupled with electrospray ionization mass spectrometry detection, Anal Biochem, vol.408, issue.2, pp.235-276, 2011.

D. Reusch, M. Haberger, B. Maier, M. Maier, R. Kloseck et al., Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles -Part 1: Separation-based methods, MAbs, vol.7, issue.1, pp.167-79, 2015.

M. Melmer, T. Stangler, A. Premstaller, and W. Lindner, Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis, J Chromatogr A, vol.1218, issue.1, pp.118-141, 2011.

E. Stephens, S. L. Maslen, L. G. Green, and D. H. Williams, Fragmentation Characteristics of Neutral N-Linked Glycans Using a MALDI-TOF/TOF Tandem Mass Spectrometer, Anal Chem, vol.76, issue.8, pp.2343-54, 2004.

Y. Fukuyama, Liquid Matrices in MALDI-MS. Applications of Ionic Liquids in Science and Technology, vol.6, pp.361-374, 2011.

A. Tholey and E. Heinzle, Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives, Anal Bioanal Chem, 2006.

Y. Fukuyama, S. Nakaya, Y. Yamazaki, and K. Tanaka, Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides, Anal Chem, vol.80, issue.6, pp.2171-2180, 2008.

T. N. Laremore, F. Zhang, and R. J. Linhardt, Ionic liquid matrix for direct UV-MALDI-TOF-MS analysis of dermatan sulfate and chondroitin sulfate oligosaccharides, Anal Chem, vol.79, issue.4, pp.1604-1614, 2007.

Y. Fukuyama, N. Funakoshi, K. Takeyama, Y. Hioki, and T. Nishikaze,

K. Kaneshiro, 3-aminoquinoline/p-coumaric acid as a MALDI matrix for glycopeptides, carbohydrates, and phosphopeptides, Anal Chem, vol.86, issue.4, pp.1937-1979, 2014.

S. Iwamoto, M. On, L. P. Ying, S. M. Noor, K. Takaki et al., Mass spectrometric profiling of N-linked glycan of recombinant Newcastle disease virus F and HN proteins produced by insect cell expression system, J Insect Biotechnol Sericology, vol.87, issue.1, pp.1-001, 2018.

N. Kawaguchi-sakita, K. Kaneshiro-nakagawa, M. Kawashima, M. Sugimoto, M. Tokiwa et al., Serum immunoglobulin G Fc region N

, Biochem Biophys Res Commun, vol.469, issue.4, pp.1140-1145, 2016.

T. Nishikaze, H. Tsumoto, S. Sekiya, S. Iwamoto, Y. Miura et al., Differentiation of Sialyl Linkage Isomers by One-Pot Sialic Acid Derivatization for Mass Spectrometry-Based Glycan Profiling, Anal Chem, vol.89, issue.4, pp.2353-2360, 2017.

R. Thennati, S. K. Singh, N. Nage, Y. Patel, S. K. Bose et al.,

, Analytical characterization of recombinant hCG and comparative studies with reference product, Biologics, vol.12, pp.23-35, 2018.

D. Grunow and V. Blanchard, Enzymatic Release of Glycoprotein N-Glycans and Fluorescent Labeling, Methods Mol Biol, vol.1934, pp.43-49, 2019.

, Glyco-engineering: Methods and protocols. Castilho A (Ed.), Methods in Molecular Biology, p.1321, 2015.

C. Ashwood, C. H. Lin, M. Thaysen-andersen, and N. H. Packer, Discrimination of Isomers of Released N-and O-Glycans Using Diagnostic Product Ions in Negative Ion PGC-LC-ESI-MS/MS, J Am Soc Mass Spectrom, 2018.

G. E. Hofmeister, Z. Zhou, and J. A. Leary, Linkage Position Determination in Lithium-Cationized Disaccharides: Tandem Mass Spectrometry and Semiempirical Calculations, J Am Chem Soc, vol.113, issue.16, pp.5964-5970, 1991.

J. Zaia, Mass Spectrometry and the Emerging Field of Glycomics, Chem Biol, vol.15, issue.9, pp.881-92, 2008.

W. Zhou and K. Håkansson, Electron capture dissociation of divalent metaladducted sulfated N-glycans released from bovine thyroid stimulating hormone, J Am Soc Mass Spectrom, vol.24, issue.11, pp.1798-806, 2013.

X. Yu, Y. Jiang, Y. Chen, Y. Huang, C. E. Costello et al., Detailed glycan structural characterization by electronic excitation dissociation, Anal Chem, vol.85, issue.21, pp.10017-10038, 2013.

D. J. Harvey, C. A. Scarff, M. Edgeworth, K. Pagel, K. Thalassinos et al.,

. Wb, Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans, J Mass Spectrom, 2016.

Y. Pu, M. E. Ridgeway, R. S. Glaskin, M. A. Park, C. E. Costello et al.,

, Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry, Anal Chem, vol.88, issue.7, pp.3440-3443, 2016.

H. Hinneburg, J. Hofmann, W. B. Struwe, A. Thader, F. Altmann et al.,

D. Silva, Distinguishing N-acetylneuraminic acid linkage isomers on ~ 261 ~ glycopeptides by ion mobility-mass spectrometry, Chem Commun (Camb)

E. Moh, M. Thaysen-andersen, and N. H. Packer, Relative versus absolute quantitation in disease glycomics, Proteomics -Clinical Applications, vol.9, issue.3-4, pp.368-382, 2015.

Z. Chen, X. Zhong, C. Tie, B. Chen, X. Zhang et al., Development of a hydrophilic interaction liquid chromatography coupled with matrix-assisted laser desorption/ionization-mass spectrometric imaging platform for N-glycan relative quantitation using stable-isotope labeled hydrazide reagents, Anal Bioanal Chem, vol.409, issue.18, pp.4437-4447, 2017.

H. C. Liang, E. Lahert, I. Pike, and M. Ward, Quantitation of protein posttranslational modifications using isobaric tandem mass tags, Bioanalysis, vol.7, issue.3, pp.383-400, 2015.

O. P. Bahl, Human chorionic gonadotropin. I. Purification and physicochemical properties, J Biol Chem, vol.244, issue.4, pp.567-74, 1969.

J. J. Bell, R. E. Canfield, and J. J. Sciarra, Purification and Characterization of Human Chorionic Gonadotropin, Endocrinology, vol.84, issue.2, pp.298-307, 1969.

F. Khademi, K. Hamzehee, A. Mostafaie, and R. Hajihossaini, Purification of three major forms of ?-hCG from urine and production of polyclonal antibodies against them, Clin Biochem, vol.42, pp.1476-82, 2009.

A. M. Rodríguez, O. Z. Rodríguez, I. B. Conde, D. Pino, Y. R. Pérez et al., Purification of Human Chorionic Gonadotropin from Pregnancy Urine by Immunoaffinity Chromatography Using a Monoclonal Antibody Anti-? Chain hCG, Hybridoma (Larchmt), vol.24, issue.5, pp.258-62, 2005.

Y. Zhang, B. R. Fonslow, B. Shan, M. C. Baek, and J. R. Yates, Protein analysis by shotgun/bottom-up proteomics, Chem Rev, vol.113, issue.4, pp.2343-94, 2013.

A. Shevchenko, H. Tomas, J. Havli?, J. V. Olsen, and M. Mann, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat Protoc, vol.1, issue.6, pp.2856-60, 2006.

M. L. Fournier, J. M. Gilmore, S. A. Martin-brown, and M. P. Washburn, Multidimensional separations-based shotgun proteomics, Chem Rev, 2007.

S. Ongay, A. Boichenko, N. Govorukhina, and R. Bischoff, Glycopeptide enrichment and separation for protein glycosylation analysis, J Sep Sci, 2012.

S. Mysling, G. Palmisano, P. Hojrup, and M. Thaysen-andersen, Utilizing ionpairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics, Anal Chem, vol.82, issue.13, pp.5598-609, 2010.

P. H. Jensen, S. Mysling, P. Højrup, and O. N. Jensen, Glycopeptide enrichment for MALDI-TOF mass spectrometry analysis by hydrophilic interaction liquid chromatography solid phase extraction (HILIC SPE), Methods Mol Biol, vol.951, pp.131-175, 2013.

K. Alagesan, S. K. Khilji, and D. Kolarich, It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment, Anal Bioanal Chem, vol.409, issue.2, pp.529-538, 2017.

L. Cao, Y. Qu, Z. Zhang, Z. Wang, I. Prytkova et al., Intact glycopeptide characterization using mass spectrometry, Expert Rev Proteomics, 2016.

J. Wohlgemuth, M. Karas, T. Eichhorn, R. Hendriks, and S. Andrecht,

, Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies, Anal Biochem, vol.395, issue.2, pp.178-88, 2009.

W. Yang, P. Shah, Y. Hu, T. Eshghi, S. Sun et al., Comparison of Enrichment Methods for Intact N-and O-Linked Glycopeptides Using Strong Anion Exchange and Hydrophilic Interaction Liquid Chromatography, Anal Chem, vol.89, issue.21, pp.11193-11197, 2017.

S. Perchepied, N. Eskenazi, C. Giangrande, J. Camperi, T. Fournier et al., Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein, Talanta, vol.206, p.120171, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02798211

X. Liu, K. Chan, I. K. Chu, and J. Li, Microwave-assisted nonspecific proteolytic digestion and controlled methylation for glycomics applications, Carbohydr Res, vol.343, issue.17, pp.2870-2877, 2008.

B. H. Clowers, E. D. Dodds, R. R. Seipert, and C. B. Lebrilla, Site determination of protein glycosylation based on digestion with immobilized nonspecific proteases and fourier transform ion cyclotron resonance mass spectrometry, J Proteome Res, vol.6, issue.10, pp.4032-4072, 2007.

J. W. Froehlich, M. Barboza, C. Chu, L. A. Lerno, B. H. Clowers et al., Nano-LC-MS/MS of glycopeptides produced by nonspecific proteolysis enables rapid and extensive site-specific glycosylation determination, Anal Chem, vol.83, issue.14, pp.5541-5548, 2011.

E. D. Dodds, R. R. Seipert, B. H. Clowers, J. B. German, and C. B. Lebrilla, Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics, J Proteome Res, 2009.

, Feb, vol.8, issue.2, pp.502-514

G. Zauner, C. Koeleman, A. M. Deelder, and M. Wuhrer, Protein glycosylation analysis by HILIC-LCMS of Proteinase K-generated N-and Oglycopeptides, J Sep Sci, vol.33, issue.6-7, pp.903-913, 2010.

M. Hoffmann, M. Pioch, A. Pralow, R. Hennig, R. Kottler et al.,

, The Fine Art of Destruction: A Guide to In-Depth Glycoproteomic Analyses-Exploiting the Diagnostic Potential of Fragment Ions, Proteomics, 2018.

P. Kozlik, R. Goldman, and M. Sanda, Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC

, Electrophoresis, vol.38, issue.17, pp.2193-2199, 2017.

E. S. Ji, H. K. Lee, G. W. Park, K. H. Kim, J. Y. Kim et al., Isomer separation of sialylated O-and N-linked glycopeptides using reversed-phase LC-MS/MS at high temperature, J Chromatogr B Analyt Technol Biomed Life Sci, pp.101-107, 2019.

S. Hua, C. C. Nwosu, J. S. Strum, R. R. Seipert, H. J. An et al., Sitespecific protein glycosylation analysis with glycan isomer differentiation, Anal Bioanal Chem, vol.403, issue.5, pp.1291-302, 2012.

P. Kozlik, R. Goldman, and M. Sanda, Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers, Anal Bioanal Chem, vol.410, issue.20, pp.5001-5008, 2018.

J. Lu, D. Fu, L. Yu, C. Cao, L. Zou et al., Determination of N-Glycopeptides by Hydrophilic Interaction Liquid Chromatography and Porous Graphitized Carbon Chromatography with Mass Spectrometry Detection, Anal Lett, vol.50, issue.2, pp.315-324, 2017.

K. Stavenhagen, R. Plomp, and M. Wuhrer, Site-Specific Protein N-and O-Glycosylation Analysis by a C18-Porous Graphitized Carbon-Liquid Chromatography-Electrospray Ionization Mass Spectrometry Approach Using Pronase Treated Glycopeptides, Anal Chem, vol.87, issue.23, pp.11691-11700, 2015.

G. Kammeijer and B. C. Jansen,

. Oa and P. J. Hensbergen, Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis -Electrospray ionization -Mass spectrometry. Sci Rep, vol.7, p.3733, 2017.

K. Khatri, J. A. Klein, J. R. Haserick, D. R. Leon, C. E. Costello et al., Microfluidic Capillary Electrophoresis-Mass Spectrometry for Analysis of Monosaccharides, Oligosaccharides, and Glycopeptides, Anal Chem, vol.89, issue.12, pp.6645-6655, 2017.

J. Hofmann and K. Pagel, Glycan Analysis by Ion Mobility-Mass Spectrometry. Angew Chemie -Int Ed, vol.56, pp.8342-8351, 2017.

A. Barroso, E. Giménez, A. Konijnenberg, and J. Sancho,

F. , Evaluation of ion mobility for the separation of glycoconjugate isomers due to different types of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level, J Proteomics, vol.173, pp.22-31, 2018.

K. R. Reiding, A. Bondt, V. Franc, and A. Heck, The benefits of hybrid fragmentation methods for glycoproteomics, TrAC -Trends in Analytical Chemistry, vol.108, pp.260-268, 2018.

K. L. Ford, W. Zeng, J. L. Heazlewood, and A. Bacic, Characterization of protein N-glycosylation by tandem mass spectrometry using complementary fragmentation techniques. Front Plant Sci, vol.6, p.674, 2015.

K. Khatri, Y. Pu, J. A. Klein, J. Wei, C. E. Costello et al., Comparison of Collisional and Electron-Based Dissociation Modes for Middle-Down Analysis of Multiply Glycosylated Peptides, J Am Soc Mass Spectrom, vol.29, issue.6, pp.1075-85, 2018.

V. Dotz, R. Haselberg, A. Shubhakar, R. P. Kozak, D. Falck et al., Mass spectrometry for glycosylation analysis of biopharmaceuticals, TrAC -Trends in Analytical Chemistry, vol.73, pp.1-9, 2015.

T. Wright, H. Urry, and D. W. , Nonenzymatic deamidation of asparaginyl and glutaminyl residues in protein, Crit Rev Biochem Mol Biol, vol.26, issue.1, pp.1-52, 1991.

G. Palmisano, M. N. Melo-braga, K. Engholm-keller, B. L. Parker, and M. R. Larsen, Chemical deamidation: a common pitfall in large-scale N-linked ~ 266 ~ glycoproteomic mass spectrometry-based analyses, J Proteome Res, vol.11, issue.3, pp.1949-57, 2012.

Z. Zhu, E. P. Go, and H. Desaire, Absolute quantitation of glycosylation site occupancy using isotopically labeled standards and LC-MS, J Am Soc Mass Spectrom, vol.25, issue.6, pp.1012-1019, 2014.

L. Cao, J. K. Diedrich, D. W. Kulp, M. Pauthner, L. He et al., Global site-specific N-glycosylation analysis of HIV envelope glycoprotein, Nat Commun, vol.8, p.14954, 2017.

T. Sajic, Y. Liu, and R. Aebersold, Using data-independent, high-resolution mass spectrometry in protein biomarker research: Perspectives and clinical applications, Proteomics Clin Appl, vol.9, issue.3-4, pp.307-328, 2015.

M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, and B. Kuster, Quantitative mass spectrometry in proteomics: A critical review, Anal Bioanal Chem, 2007.

T. K. Toby, L. Fornelli, and N. L. Kelleher, Progress in Top-Down Proteomics and the Analysis of Proteoforms, Annu Rev Anal Chem, vol.9, issue.1, pp.499-519, 2016.

C. K. Frese, A. Altelaar, H. Van-den-toorn, D. Nolting, and J. Griep-raming,

A. Heck, Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry, Anal Chem, vol.84, issue.22, pp.9668-73, 2012.

A. M. Brunner, P. Lössl, F. Liu, R. Huguet, C. Mullen et al.,

, Benchmarking multiple fragmentation methods on an orbitrap fusion for topdown phospho-proteoform characterization, Anal Chem, vol.87, issue.8, pp.4152-4160, 2015.

S. Li, Y. Zhou, X. K. Li, J. Tian, and Z. , Selective fragmentation of the N-glycan moiety and protein backbone of ribonuclease B on an Orbitrap Fusion Lumos ~ 267 ~ Tribrid mass spectrometer, Rapid Commun Mass Spectrom, vol.32, issue.23, pp.2031-2040, 2018.

L. A. Cole, Hyperglycosylated hCG and pregnancy failures, J Reprod Immunol, vol.93, issue.2, pp.119-141, 2012.

L. Bernardini, J. Balmaceda, L. Gianaroli, A. Ferraretti, F. Rojas et al.,

I. Rojas, Signal Transduction of hCG Induces Decidualization and Uterine Receptivity, J Fertil Biomarkers, vol.1, issue.1, pp.1-19, 2017.

Y. Combarnous, Structure et relations structure-activite des hormones folliculo-stimulantes recombinantes humaines
URL : https://hal.archives-ouvertes.fr/hal-02689725

, Medecine/Sciences

N. Kane, R. Kelly, P. Saunders, and H. Critchley, Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor, Endocrinology, vol.150, issue.6, pp.2882-2890, 2009.

K. Kaneshiro, Y. Fukuyama, S. Iwamoto, S. Sekiya, and K. Tanaka, Highly sensitive MALDI analyses of glycans by a new aminoquinoline-labeling method using 3-aminoquinoline/?-cyano-4-hydroxycinnamic acid liquid matrix, Anal Chem, vol.83, issue.10, pp.3663-3670, 2011.

H. Zhu, C. Qiu, A. C. Ruth, D. A. Keire, and H. Ye, A LC-MS All-in-One Workflow for Site-Specific Location, Identification and Quantification of N-/O-Glycosylation in Human Chorionic Gonadotropin Drug Products, AAPS J, vol.19, issue.3, pp.846-55, 2017.

X. Bai, D. Li, J. Zhu, Y. Guan, Q. Zhang et al., From individual proteins to proteomic samples: Characterization of O-glycosylation sites in human chorionic gonadotropin and human-plasma proteins, Anal Bioanal Chem, vol.407, issue.7, pp.1857-69, 2015.

U. Omasits, C. H. Ahrens, S. Müller, and B. Wollscheid, Protter: interactive protein feature visualization and integration with experimental proteomic data, Bioinformatics, vol.30, issue.6, pp.884-890, 2014.

A. Irie, S. Koyamat, Y. Kozutsumi, T. Kawasaki, and A. Suzuki, The molecular basis for the absence of N-glycolylneuraminic acid in humans, J Biol Chem, vol.273, issue.25, pp.15866-71, 1998.

P. Tangvoranuntakul, P. Gagneux, S. Diaz, M. Bardor, N. Varki et al., Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid, Proc Natl Acad Sci, vol.100, issue.21, pp.12045-50, 2003.

J. Yu, M. Schorlemer, G. Toledo, A. Pett, C. Sihlbom et al.,

, Distinctive MS/MS Fragmentation Pathways of Glycopeptide-Generated Oxonium Ions Provide Evidence of the Glycan Structure, Chem -A Eur J, 2016.

T. Eshghi, S. , Y. W. Hu, Y. Shah, P. Sun et al., Classification of Tandem Mass Spectra for Identification of N-and O-linked Glycopeptides, Sci Rep, vol.6, pp.1-8, 2016.

A. Halim, U. Westerlind, C. Pett, M. Schorlemer, U. Ru? et al., Assignment of Saccharide Identities through Analysis of Oxonium Ion Fragmentation Profiles in LC?MS/MS of Glycopeptides, J Proteome Res, 2014.

E. Böhm, B. K. Seyfried, M. Dockal, M. Graninger, and M. Hasslacher,

M. , Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells, BMC Biotechnol, 2015.

M. Ribela, R. Damiani, F. D. Silva, E. R. Lima, J. E. Oliveira et al., N-glycoprofiling analysis for carbohydrate composition and site-occupancy determination in a poly-glycosylated protein: Human thyrotropin of different origins, Int J Mol Sci, vol.18, issue.2, p.131, 2017.

Q. Yu, B. Wang, Z. Chen, G. Urabe, M. S. Glover et al., Electron-Transfer/Higher-Energy Collision Dissociation (EThcD)-Enabled Intact ~ 269 ~

. Glycopeptide/glycoproteome-characterization, J Am Soc Mass Spectrom, 2017.

Q. Yu, A. Canales, M. S. Glover, R. Das, X. Shi et al., Targeted Mass Spectrometry Approach Enabled Discovery of O-Glycosylated Insulin and Related Signaling Peptides in Mouse and Human Pancreatic Islets, Anal Chem

, Sep, vol.5, issue.17, pp.9184-91

C. Giangrande, N. Auberger, C. Rentier, A. M. Papini, J. M. Mallet et al.,

S. , Multi-Stage Mass Spectrometry Analysis of Sugar-Conjugated ?-Turn Structures to be Used as Probes in Autoimmune Diseases, J Am Soc Mass Spectrom, vol.27, issue.4, pp.735-782, 2016.

Y. Hu, Y. Mechref, M. Comparing, R. , and R. , glycomic profiles of permethylated N-glycans derived from model glycoproteins and human blood serum, Electrophoresis, vol.33, issue.12, pp.1768-77, 2012.

N. L. Anderson and N. G. Anderson, The human plasma proteome: history, character, and diagnostic prospects, Mol Cell Proteomics, vol.1, issue.11, pp.845-67, 2002.