, Science, vol.49, pp.628-661, 2010.

K. J. Laidler, The development of the Arrhenius equation, J Chem Educ, vol.61, p.494, 1984.

Y. C. Lin, M. Chen, and J. Zhong, Constitutive modeling for elevated temperature flow behavior of 42CrMo steel, Computational Materials Science, vol.42, pp.470-477, 2008.

F. J. Zerilli and R. W. Armstrong, Dislocation-mechanics-based constitutive relations for material dynamics calculations, Journal of Applied Physics, vol.61, pp.1816-1841, 1987.

S. R. Bodner and Y. Partom, Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials, J Appl Mech, vol.42, pp.385-394, 1975.

A. Rusinek and J. R. Klepaczko, Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress, International Journal of Plasticity, vol.17, pp.20-26, 2001.

H. Zhang, W. Wen, H. Cui, and Y. Xu, A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates, Materials Science and Engineering: A, vol.527, pp.328-361, 2009.

D. Samantaray, S. Mandal, and A. K. Bhaduri, A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel, Computational Materials Science, vol.47, pp.568-76, 2009.

C. Y. Gao and L. C. Zhang, A constitutive model for dynamic plasticity of FCC metals, Materials Science and Engineering: A, vol.527, pp.3138-3181, 2010.

F. H. Abed and G. Z. Voyiadjis, A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures, Acta Mechanica, vol.175, pp.1-18, 2005.

J. P. Noble and J. Harding, An evaluation of constitutive relations for high-rate material behaviour using the tensile Hopkinson-bar, J Phys IV France, vol.04, 1994.
URL : https://hal.archives-ouvertes.fr/jpa-00253435

U. F. Kocks, A. S. Argon, and M. F. Ashby, Thermodynamics and Kinetics of Slip

A. Rusinek and J. A. Rodríguez-martínez, Thermo-viscoplastic constitutive relation for aluminium alloys, modeling of negative strain rate sensitivity and viscous drag effects, Materials & Design, vol.30, pp.4377-90, 2009.

G. B. Olson and M. Cohen, Kinetics of strain-induced martensitic nucleation, MTA, vol.6, p.791, 1975.

R. G. Stringfellow, D. M. Parks, and G. B. Olson, A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels, Acta Metallurgica et Materialia, vol.40, pp.1703-1719, 1992.

Y. Tomita and T. Iwamoto, Constitutive modeling of trip steel and its application to the improvement of mechanical properties, International Journal of Mechanical Sciences, vol.37, pp.1295-305, 1995.

Z. Xu, X. Ding, W. Zhang, and F. Huang, A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique, International Journal of Impact Engineering, vol.101, pp.90-104, 2017.

Z. Xu, Y. Liu, Z. Sun, H. Hu, and F. Huang, On shear failure behaviors of an armor 49

, steel over a large range of strain rates, International Journal of Impact Engineering, vol.118, pp.24-38, 2018.

J. R. Klepaczko, H. V. Nguyen, and W. K. Nowacki, Quasi-static and dynamic shearing of sheet metals, European Journal of Mechanics -A/Solids, vol.18, pp.80016-80019, 1999.

J. R. Klepaczko, An experimental technique for shear testing at high and very high strain rates. The case of a mild steel, International Journal of Impact Engineering, vol.15, pp.80005-80008, 1994.

Y. Bai and T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity, vol.24, pp.1071-96, 2008.

M. Dunand and D. Mohr, Predicting the rate-dependent loading paths to fracture in advanced high strength steels using an extended mechanical threshold model, International Journal of Impact Engineering, vol.108, pp.272-85, 2017.

T. Fras, C. C. Roth, and D. Mohr, Fracture of high-strength armor steel under impact loading, International Journal of Impact Engineering, vol.111, pp.147-64, 2018.

A. Dorogoy, D. Rittel, and A. Godinger, Modification of the Shear-Compression Specimen for Large Strain Testing, Exp Mech, vol.55, pp.1627-1666, 2015.

A. Dorogoy, D. Rittel, and A. Godinger, A Shear-Tension Specimen for Large Strain Testing, Exp Mech, vol.56, pp.437-486, 2016.

C. Francart, Y. Demarty, N. Bahlouli, and S. Ahzi, Dynamic Characterization and Modeling of Ductile Failure of Sintered Aluminum Alloy through Shear-References

A. Rusinek and J. R. Klepaczko, Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress, International Journal of Plasticity, vol.17, pp.20-26, 2001.

J. A. Rodríguez-martínez, A. Rusinek, J. R. Klepaczko, and R. B. P?cherski, Extension of R-K constitutive relation to phase transformation phenomena, Materials & Design, vol.30, pp.2513-2533, 2009.

J. Z. Malinowski and J. R. Klepaczko, A unified analytic and numerical approach to specimen behaviour in the Split-Hopkinson pressure bar, International Journal of Mechanical Sciences, vol.28, issue.86, pp.90057-90060, 1986.

W. Mo?ko, J. A. Rodríguez-martínez, Z. L. Kowalewski, and A. Rusinek, Compressive Viscoplastic Response of 6082-T6 and 7075-T6 Aluminium Alloys Under Wide Range of Strain Rate at Room Temperature: Experiments and Modelling, Strain, vol.48, pp.498-509, 2012.

J. Z. Malinowski, J. R. Klepaczko, and Z. L. Kowalewski, Miniaturized Compression Test 90 at Very High Strain Rates by Direct Impact, Exp Mech, vol.47, pp.451-63, 2007.

T. Jankowiak, A. Rusinek, and T. Lodygowski, Validation of the Klepaczko-Malinowski model for friction correction and recommendations on Split Hopkinson Pressure Bar, Finite Elements in Analysis & Design, vol.10, pp.1191-208, 2011.

B. Jia, A. Rusinek, S. Bahi, R. Bernier, R. Pesci et al., Perforation Behavior of 304 Stainless Steel Plates at Various Temperatures, Journal of Dynamic Behavior of Materials, vol.2019, pp.1-16
URL : https://hal.archives-ouvertes.fr/hal-02337472

C. Multiphysics, COMSOL Multiphysics Reference Manual

, Comsol, p.269, 2015.

S. S. Hecker, M. G. Stout, K. P. Staudhammer, and J. L. Smith, Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior, MTA, vol.13, pp.619-645, 1982.

L. E. Murr, K. P. Staudhammer, and S. S. Hecker, Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part II

M. Study, MTA, vol.13, pp.627-662, 1982.

J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Effect of strain rate on the straininduced ? ? ??-martensite transformation and mechanical properties of austenitic stainless steels, Metall and Mat Trans A, vol.36, pp.421-453, 2005.

J. A. Lichtenfeld, C. J. Van-tyne, and M. C. Mataya, Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel, Metall and Mat Trans A, vol.37, pp.147-61, 2006.

S. Nemat-nasser and W. Guo, Thermomechanical response of HSLA-65 steel plates: experiments and modeling, Mechanics of Materials, vol.37, pp.379-405, 2005.

U. F. Kocks, Thermodynamics and kinetics of slip, 1975.

J. R. Klepaczko, A. Rusinek, J. A. Rodríguez-martínez, R. B. P?cherski, and A. Arias, Modelling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems, Mechanics of Materials, vol.41, pp.599-621, 2009.

T. Masumura, N. Nakada, T. Tsuchiyama, S. Takaki, T. Koyano et al., The difference in thermal and mechanical stabilities of austenite between carbon-and nitrogen-added metastable austenitic stainless steels, Acta Materialia, vol.84, pp.330-338, 2015.

J. D. Campbell and W. G. Ferguson, The temperature and strain-rate dependence of the shear strength of mild steel. The Philosophical Magazine: A, Journal of Theoretical Experimental and Applied Physics, vol.21, pp.63-82, 1970.

J. Duffy and Y. C. Chi, On the measurement of local strain and temperature during the formation of adiabatic shear bands, Materials Science and Engineering: A, vol.157, pp.195-210, 1992.

M. A. Meyers, Y. B. Xu, Q. Xue, M. T. Pérez-prado, and T. R. Mcnelley, Microstructural evolution in adiabatic shear localization in stainless steel, Acta Materialia, vol.51, pp.1307-1332, 2003.

C. A. Bronkhorst, E. K. Cerreta, Q. Xue, P. J. Maudlin, T. A. Mason et al., An experimental and numerical study of the localization behavior of tantalum and stainless steel, International Journal of Plasticity, vol.22, pp.1304-1339, 2006.

J. Peirs, P. Verleysen, J. Degrieck, and F. Coghe, The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V, International Journal of Impact Engineering, vol.37, pp.703-717, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00674106

M. A. Meyers, K. P. Staudhammer, and L. E. Murr, Metallurgical applications of shockwave and high-strain-rate phenomena. Dekker, 1986.

, Spatial evolution of adiabatic shear localization in stainless steel, titanium, and titanium-aluminum-vanadium alloy, 2002.

A. S. Khan, H. Zhang, and L. Takacs, Mechanical response and modeling of fully compacted nanocrystalline iron and copper, International Journal of Plasticity, vol.16, pp.1459-76, 2000.

F. F. Shi, R. Merle, B. Hou, J. G. Liu, Y. L. Li et al., A critical analysis of plane shear tests under quasi-static and impact loading, International Journal of Impact Engineering, vol.74, pp.107-126, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01137374

J. Harding and J. Huddart, The use of the double-notch shear test in determining the mechanical properties of uranium at very high rates of strain. Mechanical Properties at High Rates of Strain, 19791980.

Y. Guo and Y. Li, A Novel Approach to Testing the Dynamic Shear Response of Ti-6Al-4V, Acta Mech Solida Sin, vol.25, pp.299-311, 2012.

J. A. Rodríguez-martínez, R. Pesci, and A. Rusinek, Experimental study on the martensitic transformation in AISI 304 steel sheets subjected to tension under wide ranges of strain rate at room temperature, Materials Science and Engineering: A, vol.528, pp.5974-82, 2011.

B. Farrokh and A. S. Khan, Grain size, strain rate, and temperature dependence of 93 flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling, International Journal of Plasticity, vol.25, pp.715-747, 2009.

A. Dorogoy, D. Rittel, and A. Godinger, A Shear-Tension Specimen for Large Strain Testing, Exp Mech, vol.56, pp.437-486, 2016.

J. Peirs, P. Verleysen, and J. Degrieck, Novel Technique for Static and Dynamic Shear Testing of Ti6Al4V Sheet, Exp Mech, vol.52, pp.729-770, 2012.

A. Dorogoy, D. Rittel, and A. Godinger, Modification of the Shear-Compression Specimen for Large Strain Testing, Exp Mech, vol.55, pp.1627-1666, 2015.

Z. Xu, Y. Liu, Z. Sun, H. Hu, and F. Huang, On shear failure behaviors of an armor steel over a large range of strain rates, International Journal of Impact Engineering, vol.118, pp.24-38, 2018.

, Experimental Study of Sheet Metals under Dynamic Double Shear at Large Strains n, 2018.

F. F. Shi, R. Merle, B. Hou, J. G. Liu, Y. L. Li et al., A critical analysis of plane shear tests under quasi-static and impact loading, International Journal of Impact Engineering, vol.74, pp.107-126, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01137374

A. Dorogoy and D. Rittel, Dynamic large strain characterization of tantalum using shear-compression and shear-tension testing, Mechanics of Materials, vol.112, pp.143-53, 2017.

G. Chen, Y. Hao, X. Chen, and H. Hao, Compressive behaviour of tungsten fibre reinforced Zr-based metallic glass at different strain rates and temperatures, International Journal of Impact Engineering, vol.106, pp.110-119, 2017.

?. ??, . ???????-???????????, and . ????, , vol.20, pp.265-274, 2005.

, Formation of adiabatic shear band within Ti-6Al-4V: Effects of stress state, Mechanics of Materials, vol.137, p.103102, 2019.

H. Fransplass, M. Langseth, and O. S. Hopperstad, Experimental and numerical study of threaded steel fasteners under combined tension and shear at elevated loading rates, International Journal of Impact Engineering, vol.76, pp.118-143, 2015.

Z. Xu, X. Ding, W. Zhang, and F. Huang, A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique, International Journal of Impact Engineering, vol.101, pp.90-104, 2017.

L. W. Meyer and L. Krüger, Drop-weight compression shear testing, ASM Handbook, vol.8, pp.452-454, 2000.

A. Rusinek and J. R. Klepaczko, Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the 130 flow stress, International Journal of Plasticity, vol.17, pp.20-26, 2001.

. Voce-e, The Relationship between Stress and Strain for Homogeneous Deformation, Journal of the Institute of Metals, vol.74, pp.537-62, 1948.

P. S. Follansbee and U. F. Kocks, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metallurgica, vol.36, pp.81-93, 1988.

F. J. Zerilli and R. W. Armstrong, The effect of dislocation drag on the stress-strain behavior of F.C.C. metals, Acta Metallurgica et Materialia, vol.40, pp.1803-1811, 1992.

U. F. Kocks, A. S. Argon, and M. F. Ashby, Thermodynamics and Kinetics of Slip

N. I. Vazquez-fernandez, G. C. Soares, J. L. Smith, J. D. Seidt, M. Isakov et al., Adiabatic Heating of Austenitic Stainless Steels at Different Strain Rates, J Dynamic Behavior Mater, vol.5, pp.221-230, 2019.

B. Behrens, A. Chugreev, F. Bohne, and R. Lorenz, Approach for modelling the

. Taylor, Quinney coefficient of high strength steels, Procedia Manufacturing, vol.29, pp.464-71, 2019.

C. A. Bronkhorst, E. K. Cerreta, Q. Xue, P. J. Maudlin, T. A. Mason et al., An experimental and numerical study of the localization behavior of tantalum and stainless steel, International Journal of Plasticity, vol.22, pp.1304-1339, 2006.

J. Kim, S. Choi, D. Park, and J. Lee, Charpy impact properties of stainless steel weldment in liquefied natural gas pipelines: Effect of low temperatures, Materials & Design, vol.65, pp.914-936, 1980.

W. S. Park, M. S. Chun, M. S. Han, M. H. Kim, and J. M. Lee, Comparative study on mechanical behavior of low temperature application materials for ships and offshore structures: Part I-Experimental investigations, Materials Science and Engineering: A, vol.528, pp.5790-803, 2011.

L. Jayahari, J. Gangadhar, S. K. Singh, and B. Balunaik, Investigation of high temperature forming of ASS 304 using BARLAT 3-Parameter Model, Materials Today: Proceedings, vol.4, pp.799-804, 2017.

G. Sun, L. Du, J. Hu, B. Zhang, and R. Misra, On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless 173 steel, Materials Science and Engineering: A, vol.746, pp.341-55, 2019.

A. Rusinek, R. Bernier, R. M. Boumbimba, M. Klosak, T. Jankowiak et al., New devices to capture the temperature effect under dynamic compression and impact perforation of polymers, application to PMMA, Polymer Testing, vol.65, pp.1-9, 2018.

T. Fras, N. Faderl, C. C. Roth, and D. Mohr, Strikers with different nose shape impacting an armour steel-numerical modelling, 2019.

K. M. Kpenyigba, T. Jankowiak, A. Rusinek, and R. Pesci, Influence of projectile shape on dynamic behavior of steel sheet subjected to impact and perforation, Thin-Walled Structures, vol.65, pp.93-104, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00952580

M. Rodriguez-millan, D. Garcia-gonzalez, A. Rusinek, F. Abed, and A. Arias, Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles, Thin-Walled Structures, vol.123, pp.1-10, 2018.

P. Duthil, Material Properties at Low Temperature. ArXiv:150107100 [Cond-Mat, 2015.

T. Jankowiak, A. Rusinek, and P. Wood, A numerical analysis of the dynamic behaviour of sheet steel perforated by a conical projectile under ballistic conditions, Finite Elements in Analysis and Design, vol.65, pp.39-49, 2013.

R. F. Recht and T. W. Ipson, Ballistic Perforation Dynamics, J Appl Mech, vol.30, pp.384-90, 1963.

T. Børvik, M. Langseth, O. S. Hopperstad, and K. A. Malo, Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, p.174

, International Journal of Impact Engineering, vol.27, pp.19-35, 2002.

M. M. Nazeer, M. A. Khan, A. Naeem, and A. Haq, Analysis of conical tool perforation of ductile metal sheets, International Journal of Mechanical Sciences, vol.42, pp.1391-403, 2000.

J. A. Rodríguez-martínez, R. Pesci, A. Rusinek, A. Arias, R. Zaera et al.,

, Thermo-mechanical behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles at different temperatures, International Journal of Solids and Structures, vol.47, pp.1268-84, 2010.

P. Rusinek and A. , Temperature increase associated with plastic deformation under dynamic compression: Application to aluminium alloy Al 6082, Journal of Theoretical and Applied Mechanics, vol.50, pp.377-398, 2012.

W. S. Park, S. W. Yoo, M. H. Kim, and J. M. Lee, Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments, Materials & Design, vol.31, pp.3630-3670, 2010.

A. Standard, E975-03: standard practice for x-ray determination of retained austenite in steel with near random crystallographic orientation, 2008.

J. A. Rodríguez-martínez, A. Rusinek, R. Pesci, and R. Zaera, Experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles, International Journal of Solids and Structures, vol.50, pp.339-51, 2013.

R. Zaera, J. A. Rodríguez-martínez, A. Casado, J. Fernández-sáez, A. Rusinek et al., A constitutive model for analyzing martensite formation in austenitic steels 175

, deforming at high strain rates, International Journal of Plasticity, vol.29, pp.77-101, 2012.

J. A. Rodríguez-martínez, A. Rusinek, and R. Pesci, Experimental survey on the behaviour of AISI 304 steel sheets subjected to perforation, Thin-Walled Structures, vol.48, pp.966-78, 2010.

A. M. Beese and D. Mohr, Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation, Acta Materialia, vol.59, pp.2589-600, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00620571

T. S. Byun, N. Hashimoto, and K. Farrell, Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels, Acta Materialia, vol.52, pp.3889-99, 2004.

J. Talonen and H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Materialia, vol.55, pp.6108-6126, 2007.

A. S. Hamada, L. P. Karjalainen, R. Misra, and J. Talonen, Contribution of deformation mechanisms to strength and ductility in two Cr-Mn grade austenitic stainless steels, Materials Science and Engineering: A, vol.559, pp.336-380, 2013.

H. Pham and T. Iwamoto, An evaluation of fracture properties of type-304

, austenitic stainless steel at high deformation rate using the small punch test

, International Journal of Mechanical Sciences, vol.144, pp.249-261, 2018.