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Sujet Méthodes numériques pour l’estimation des �uctuations dans les matériaux

multi-échelles et problèmes reliés

Résumé Le travail de cette thèse a porté sur la simulation numérique des matériaux

multi-échelles. On considère des matériaux hétérogènes dont les propriétés physiques

ou mécaniques (conductivité thermique, tenseur d’élasticité, . . .) varient à une échelle

petite par rapport à la taille du matériau. La thèse s’articule en deux parties qui corres-

pondent à deux aspects di�érents des problèmes multi-échelles.

Dans la première partie, on se place dans le cadre de l’homogénéisation aléatoire et on

s’intéresse à une question plus �ne que la caractérisation d’un comportement moyen :

on cherche à étudier les �uctuations de la réponse. Plus généralement, nous visons

à comprendre : (i) quels paramètres de la distribution des coe�cients du matériau à

l’échelle �ne a�ectent la distribution de la réponse à l’échelle macroscopique, et (ii) s’il

est possible d’estimer cette distribution sans utiliser une méthode type Monte-Carlo,

très couteuse. Sur le plan théorique, nous avons considéré un matériau faiblement

aléatoire (micro-structure périodique avec ajout d’une perturbation aléatoire petite).

Nous avons montré qu’en utilisant le correcteur standard issu de la théorie de l’homo-

généisation aléatoire, nous sommes capables de calculer un tenseur Q qui gouverne

complètement les �uctuations de la réponse. Ce tenseur, dé�ni par une formule expli-

cite, permet d’estimer la �uctuation de la réponse sans résoudre le problème �n pour

de nombreuses réalisations. Une stratégie d’approximation numérique de ce tenseur a

ensuite été développée et testée numériquement dans des cas plus généraux.

Dans la deuxième partie de la thèse, on considère un matériau hétérogène détermi-

niste �xé où les hypothèses classiques d’homogénéisation (périodicité, . . .) ne sont

pas véri�ées. Les méthodes de résolution standard type Éléments Finis donnent de

mauvaises approximations. Pour pallier cette di�culté, la Méthode des Éléments Fi-

nis Multi-échelles (MsFEM) a été introduite il y une vingtaine d’année. La méthode

MsFEM se décompose en deux étapes : (i) créer un espace d’approximation grossier

engendré par les solutions de problèmes locaux bien choisis ; (ii) approximer la so-

lution avec une approche de Galerkine peu couteuse sur l’espace construit dans (i).

Dans cette deuxième partie, plusieurs taches ont été réalisées. Tout d’abord, une im-

plémentation de plusieurs variantes MsFEM a été e�ectuée sous forme de template

dans le logiciel de calcul Éléments Finis FreeFem++. Par ailleurs, plusieurs variantes

des MsFEM pâtissent d’une erreur dite de résonance : lorsque la taille des hétérogénéi-

tés est proche de la taille du maillage grossier, la méthode devient très imprécise. Pour

pallier ce problème, une méthode MsFEM enrichie a été développée : à la base MsFEM

classique on rajoute des solutions de problèmes locaux ayant pour conditions aux li-

mites des polynômes de haut degré. L’utilisation de polynômes nous permet d’obtenir

une convergence de l’approche à des coûts de calcul raisonnables.

Mots-clefs Multi-échelles, Homogénéisation aléatoire, Éléments �nis multi-échelles,

Équations elliptiques



Title Numerical methods for the study of �uctuations in multi-scale materials and

related problems

Summary This thesis is about the numerical approximation of multi-scale materials.

We consider heterogeneous materials whose physical or mechanical (thermal conduc-

tivity, elasticity tensor, . . . ) vary on a small scale compared to the material length. This

thesis is composed of two parts describing two di�erent aspects of multi-scale prob-

lems.

In the �rst part, we consider the stochastic homogenization framework. The aim here

is to go beyond the identi�cation of an e�ective behavior, by attempting to character-

ize the �uctuations of the response. Generally speaking we strive to understand: (i)

what parameters of the distribution of the material coe�cient a�ect the distribution of

the response and (ii) if it is possible to approximate this distribution without resorting

to a costly Monte-Carlo method. On the theoretical standpoint, we consider a weakly

random material (the micro-structure is periodic and presents some small random de-

fects). We show that we are able to compute a tensor Q that governs completely the

�uctuations of the response, thanks to the use of standard corrector functions from the

stochastic homogenization theory. This tensor is de�ned by an explicit formula and

allows us to estimate the �uctuation of the response without solving the �ne problem

for many realizations. A numerical approximation of this tensor has been proposed

and numerical experiments have been performed in broader random frameworks to

assess the e�ectiveness of the approach.

In the second part, we consider a heterogeneous deterministic material where classi-

cal homogenization (periodicity, . . . ) assumptions are not satis�ed. Standard methods

such as Finite Elements give bad approximations. In order to solve this issue the Multi-

scale Finite Element Method (MsFEM) can be used. This approach proceeds in two

steps: (i) design a coarse approximation space spanned by solutions to well-chosen

local problems; (ii) approximate the solution by an inexpensive Galerkin approach

on the space designed in (i). On this topic, we �rst implemented the main variants

of the MsFEM methods in the Finite Element software FreeFem++ on template form.

Second, many MsFEM approaches su�er from resonance error: when the size of the

heterogeneities is close to the coarse mesh size the accuracy decreases. In order to

circumvent this issue, we designed an enriched MsFEM method: to the classical Ms-

FEM basis, we add solutions to local problems with high degree polynomial boundary

conditions. The use of polynomials allows us to obtain a converging approach for a

limited computational cost.

Keywords Multi-scale, Random homogenization, Multi-scale Finite Elements, Ellip-

tic equations.
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RÉSUMÉ DE LA THÈSE

De nombreux problèmes dans l’industrie concernent des matériaux multi-échelles. Par

exemple dans le cadre de l’ingénierie de l’aviation ou du bâtiment des matériaux de

plus en plus complexes sont utilisés. En général, il y a une séparation d’échelles : on

possède de l’information sur la composition du matériau à une échelle �ne et on veut

en déduire son comportement e�ectif en termes de propriétés physiques (conductivité

électrique ou thermique, comportement mécanique) à une échelle plus large. Les tech-

niques classiques d’approximation numérique comme les Eléments �nis donnent de

mauvais résultats au sens que le problème doit être résolu à l’échelle �ne pour avoir

une précision acceptable. Ceci conduit à des calculs trop lourds. Il y a donc un besoin

de créer des approches multi-échelles : des techniques qui utilisent la connaissance de

la micro-structure pour construire une approximation qui donne des résultats précis

avec un coût de calcul raisonnable.

Ce travail de thèse a consisté à concevoir des méthodes numériques pour calcu-

ler des approximations de solutions de problèmes multi-échelles à des coûts de calcul

raisonnables. En particulier, on s’est intéressé à des problèmes elliptiques avec des co-

e�cients hautement oscillants.

Une première façon d’approximer la solution de problèmes hétérogènes est de consi-

dérer un régime asymptotique, c’est-à-dire étudier ce qui se passe quand la séparation

d’échelle tend vers l’in�ni. Sous certaines hypothèses sur les coe�cients, le matériau

se comporte comme un matériau homogène dit e�ectif ne comportant plus de petites

échelles, et donc plus facile à discrétiser numériquement. Cette façon de procéder est

au coeur des techniques dites d’homogénéisation : à partir de la micro-structure, on

en déduit un comportement e�ectif. Dans le cas déterministe, en particulier quand

les coe�cients sont supposés périodiques, on peut construire des approximations très

e�caces qui convergent en fonction de la séparation d’échelle. Dans le cadre de l’ho-

mogénéisation stochastique, quand les coe�cients sont caractérisés par une loi sup-

posée invariante par translation on trouve des résultats similaires au cas déterministe.

Asymptotiquement, le matériau se comporte comme un matériau e�ectif déterministe.

En revanche, quand la séparation d’échelle n’est pas in�nie, la solution est une fonction

aléatoire et une autre question d’intérêt est de savoir comment cette solution �uctue

autour de son comportement moyen. Dans la première partie de cette thèse, en s’inspi-

rant de M. Duerinckx, A. Gloria et F. Otto [31], on étudie les �uctuations de la solution

dans un cas dit faiblement aléatoire introduit dans [26]. Le but est de caractériser la loi

de quantités d’intérêt dépendant de la solution.



Le point de vue de l’homogénéisation repose sur des hypothèses assez restrictives

telles que la stationarité ou la périodicité des coe�cients. En dehors de ces hypothèses,

la théorie donne encore des résultats de compacité, mais ceux-ci sont di�ciles à exploi-

ter numériquement. C’est pourquoi, il est intéressant d’élaborer de nouvelles méthodes

numériques qui ne sont pas aussi e�caces mais qui peuvent être utilisées dans une

gamme de problèmes plus large. Pour répondre à cet objectif, de multiples approches

ont été développées. Celles-ci sont fondées sur un principe dit ascendant : des pro-

blèmes sont résolus localement à une échelle �ne et sont utilisés pour améliorer une

approximation construite sur une échelle plus grossière. La méthode des Éléments Fi-

nis Multi-échelle (MsFEM) développée par T. Y. Hou et X.-H. Wu dans [55] est dans

cette ligne de pensée. En résumé, L’idée est de créer des fonctions de bases adaptées au

problème pour construire un espace d’approximation grossier (similaire aux fonctions

a�nes par morceaux dans le cas élément �nis P1). Ces fonctions sont solutions de pro-

blèmes locaux. A partir de cet espace engendré par les fonctions de base précalculées,

et de petite dimension, on résout le problème de Galerkin associé dont la solution sera

notre approximation. Les problèmes locaux à résoudre peuvent être choisis di�érem-

ment (notamment conditions aux limites) et chaque choix de problème local à résoudre

conduit à une unique variante MsFEM. Ainsi, l’approche MsFEM ne correspond pas

à une méthode en particulier mais à une classe de méthodes. Pour la plupart de ces

variantes l’approximation pâtit d’une erreur dite de résonance, tout particulièrement

quand la taille des problèmes locaux est proche de la taille de l’échelle �ne. Pour pa-

lier ce problème, U. Hetmaniuk et R. Lehoucq dans [53] ont proposé d’enrichir la base

MsFEM classique (MsFEM linéaire) par des solutions de problèmes aux valeurs propres

généralisés. U. Hetmaniuk et A. Klawonn dans [52] ont prouvé par la suite que l’erreur

de résonance peut être fortement réduite avec un nombre su�sant d’enrichissements.

Cette méthode dite des Éléments �nis spéciaux est e�cace bien que la résolution de

problèmes aux valeurs propres puisse conduire à des coûts de calcul importants. La

deuxième partie de cette thèse a consisté à élaborer une méthode d’enrichissement

inspirée de la méthode des Éléments �nis spéciaux, et fondée sur des polynômes de

haut degré. Ce travail a été réalisé en collaboration avec en particulier U. Hetmaniuk

de l’université de Washington dans le cadre d’une mobilité �nancée par l’Université

Paris Est, l’Inria et University of Washington. Sur un thème proche, un travail sur l’im-

plémentation d’approches MsFEM dans le logiciel Freefem++ (voir [50]) sous forme de

template a aussi été réalisé en collaboration avec F. Hecht.

Les contributions originales de cette thèse sont

• La caractérisation des �uctuations de la solution de problèmes hétérogènes et

aléatoires, et particulièrement dans le cas faiblement aléatoire (voir le Chapitre

2)

• Le développement et l’analyse d’une méthode d’éléments �nis multi-échelles en-

richie par des polynômes de haut degré (voir Chapitre 3)

• L’implémentation de MsFEM dans le logiciel FreeFem++ (voir Chapitre 4)



CHAPTER 1

INTRODUCTION

1.1 General introduction

Many problems in the industry involve multi-scale materials. For instance the aircraft

industry makes use of composites materials, whereas concrete (obviously very much

used in civil engineering) is actually a very complex and multi-scale material. Usually

there is a separation of scales: we have information on the composition of the material

at the micro-scale and want to infer its e�ective physical properties on a larger scale.

Classical numerical techniques such as Finite Elements perform poorly in the sense

that the problem has to be solved at the micro-scale in order to get accurate results,

leading to a large computational load. In order to address this issue, multi-scale ap-

proaches have been introduced �fteen years ago. Such techniques use the knowledge

at the micro-scale to build an approximation space yielding accurate results at an af-

fordable cost.

This thesis is about the design of numerical methods to compute a�ordable ap-

proximation of solutions to multi-scale problems. In particular, we will be interested

in solving elliptic problems with highly oscillating coe�cients.

One way to approximate the solution of multi-scale problems is to study the asymp-

totic regime, that is the limit when the separation of scales is going to in�nity. Under

some assumptions on the coe�cients, the material behaves like a simple e�ective one.

Such property is at the heart of homogenization techniques: from the micro-structure,

we infer the e�ective behavior. In the deterministic case, in particular when the coe�-

cients are assumed periodic, we can build very e�ective approximations that converge

when the separation of scales increases. In the stochastic homogenization framework,

when the coe�cients are characterized by a probability law which is assumed to be

ergodic and stationary (and hence invariant by translation), then we can derive results

similar to those of the deterministic case: the material behaves asymptotically as an

e�ective material homogeneous and deterministic. However, when the separation of

scales is not in�nite, the solution is random and another question of interest is how

it �uctuates around its mean behavior. In the �rst part of this thesis, inspired by the

work of M. Duerinckx, A. Gloria and F. Otto [31], we study the �uctuations of the solu-

tion in a weakly stochastic case introduced in [26]. The aim is then to characterize the

probability law of some quantities of interest which depend linearly upon the solution.
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The homogenization point of view relies on some geometric assumptions (such as

periodicity or stationarity) on the coe�cients. Beyond this case, the theory till provides

compactness results, but they are not easily amenable to practical implementation. It

is therefore interesting to design numerical techniques that can be applied to a broader

range of problems up to possibly a slight loss of e�ciency. To address this issue, multi-

ple approaches have been developed. Those usually are bottom-up approaches: prob-

lems are solved locally at a �ner scale and are used to improve the computations at a

coarser scale. The Multi-scale Finite Element method (MsFEM for short) developed by

T.Y. Hou and X.-H. Wu in [55] falls within this line of thinking. The idea is to de�ne

adapted basis functions solution to local problems in order to build a coarse approx-

imation space (similar to piecewise a�ne functions in the Finite Element case) and

�nally compute an approximation by solving the associated Galerkin problem. Each

precise formulation of the local problems to solve leads to a di�erent MsFEM approach.

In most of these methods, the approximation su�ers from a resonance error when the

size of the local problems is close to the micro-scale. To circumvent this issue U. Het-

maniuk and R. Lehoucq in [53] proposed to enrich the standard basis with solutions

to eigenvalue problems. U. Hetmaniuk and A. Klawonn in [52] proved that the reso-

nance error can be canceled provided su�ciently many enrichments are considered.

This method is e�ective, though solving eigenvalue problems can be computationally

challenging. Inspired by this approach, the second part of the thesis considers the de-

sign of an enrichment method based on high order polynomials.

This work has been accomplished in collaboration with in particular U. Hetmaniuk

from the University of Washington where I was invited for two months thanks to the

partial funding of of Université Paris Est, Inria and University of Washington. Also, in

collaboration with F. Hecht we studied how to introduce the MsFEM methods in the

software Freefem++ (see [50]) in a template format.

The main contributions of this thesis are:

• The characterization of the �uctuations in the weakly stochastic case (see Chap-

ter 2)

• The design and analysis of an enriched Multi-scale Finite Element Method with

high order polynomials (see Chapter 3)

• Implementation of MsFEM into Freefem++ (see Chapter 4)

1.2 Context and motivation

Many materials operate on a multi-scale basis. One can think of composite material

that possess an underlying structure leading to interesting properties. Also, there are

a lot of physical processes whose behavior are well understood on a microscopic basis

but for which it is di�cult to infer what happens in a macroscopic framework. The

interest of studying multi-scale materials is two-fold: �rst a scienti�c interest, that is

to understand better processes that occur on multiples scales; second an engineering

interest to design new materials that have a broader range of physical properties, and

that are hence more likely to meet some engineering requirements at an a�ordable

cost.

Usually, physical phenomena are modeled by Partial Di�erential equations. The mate-

rials properties can be encoded in such equations as coe�cients functions, boundary
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conditions or external forces.

We will consider here a simple steady heterogeneous di�usion problem with Dirich-

let boundary conditions, a bounded domain D of Rd
, with d the dimension of the am-

bient space.

This problem reads as {
−div(A∇u) = f in D,

u = 0 on ∂D.

(1.1)

In (1.1), the di�usion coe�cient A is a matrix of size d × d. Solutions to such prob-

lems can for instance represent the equilibrium temperature in a material, whose ther-

mal properties are encoded in the coe�cient A, and subject to the heat source f .

For instance for d = 2, if the material is composed of two materials m1 and m2 in

the domain D of thermal conductance a1 and a2 respectively (see Figure 1.1), then

A = a11m1I2 + a21m2I2, with 1m1 the indicator function of the material m1 location.

The solution to (1.1) can also represent the electrical potential in electrical conductance

problems or the displacement of the material in a linear elasticity context.

Figure 1.1: Example of a two phase heterogeneous material

We aim at solving (1.1) in a multi-scale context when the material is heterogeneous.

We assume that the physical properties of the material undergo changes at a scale ε
that is small compared to the characteristic length of the domain D. We denote by

ε the characteristic length of the micro-scale, the smallest scale of our problem, and

we denote by |D| the volume of the domain that will be the characteristic length of

the macro-scale, the largest scale of our problem. Mathematically this means that the

coe�cient A in (1.1) varies at the scale ε. Making this dependency explicit, we aim at

solving the following problem:{
−div(Aε∇uε) = f in D,

uε = 0 on ∂D.

(1.2)

We can also write the corresponding variational formulation:

Find uε ∈ H1
0 (D) such that

∀v ∈ H1
0 (D), aε(u, v) =

∫
D

(Aε∇u) · ∇v = b(v) =

∫
D

fv (1.3)
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In order for the problem (1.2) to be well posed, the coe�cient Aε should satisfy

some assumptions. In order to apply the Lax-Milgram theorem, we usually assume

that Aε is elliptic and bounded almost everywhere and uniformly in ε:

∃ C, c ∈ R+ ∀ξ ∈ Rd, c‖ξ‖2 ≤ (Aε(x)ξ) · ξ ≤ C‖ξ‖2 a.e. (1.4)

When ε � D, standard approximation techniques are not e�cient. For instance,

the Finite Element method usually performs poorly. Let us recall the principle of con-

formal Finite Element methods: it is a Galerkin approach on a �nite dimensional space

VH that is the span of piecewise polynomial basis functions of degree N (piecewise

a�ne functions in a P1 formulation) built on a mesh of size H . For instance for P1 Fi-

nite Elements, denoting by φi the piecewise a�ne function associated with the interior

vertex i. Denoting VH = Span(φi), the P1 FE approximation uH ∈ VH satis�es

∀v ∈ VH , aε(uH , v) =

∫
D

(Aε∇uH) · ∇v = b(v) =

∫
D

fv (1.5)

This is equivalent to solve the following linear system:
KU = B

Ki,j = (Aε∇φi) · ∇φj, Bi = b(φi)

uH =

Nbpt∑
i=1

Uiφi

(1.6)

For a thorough monograph of Finite Element theory one can refer to the book [36].

Theorem 1.1 (see e.g. [36] Theorem 3.16). To approximate the solution u to (1.1), we

consider a uniform mesh of size H of the polygonal domain D ⊂ Rd
, and introduce the

set VH of piecewise a�ne functions. Denoting by uH the solution to (1.5), we have

‖u− uH‖H1(D) ≤ CH|u|H2(D)

In the multi-scale context such an estimate is usually not satisfactory since |uε|H2(D)

may not be bounded independently of the size of the heterogeneities ε. For instance if

we consider d = 1 and take a coe�cient of the form aε = aper(
x
ε
) with aper aZ-periodic

function, usually |uε|H2(D) scales as 1/ε.
Numerical results illustrate this behaviour, showing that the estimate is indeed

sharp. Let us consider a 1D example on (0, 1):
((

sin(
x

ε
) + 1.1

)
u′ε

)′
= 1

uε(0) = uε(1) = 0
(1.7)

We set ε = 1/128 (corresponds to an oscillation period T ' 1/20) and compare

the P1 FE approximation for multiple H to a reference solution.

We can see on Figure 1.2 that the error decreases linearly for the Poisson problem.

However, for the heterogeneous case, we see that the error stagnates until H ' T/10
and then decreases linearly. Hence, a FE method gives accurate results only if the mesh

size discretizes well the heterogeneities. But in most multi-scale problems the compu-

tational load associated with solving the whole problem at the smallest scale ε is much

too large.
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Figure 1.2: Plot of solution for di�erent H (left), H1
error for the 1D heterogeneous

problem and Poisson problem as a function of 1/H (right)

The need to get accurate solutions at a reasonable computational cost has driven

and led to the development of multi-scale techniques. Usually, Multi-scale approaches

use the information at the micro-scale (for instance the knowledge of the coe�cient

Aε) to improve accuracy on the coarser scale. Such methods are also called bottom-

up approaches. Roughly stated, we can separate such techniques into two categories:

methods that rely on the particular geometric assumption of the coe�cient Aε (peri-

odicity, stationarity, . . . ), and more generic methods that integrate �ne features into a

coarse approximation space through various means.

The approaches relying on particular assumptions on the coe�cientAε are mainly

based on the mathematical homogenization process. The homogenization process

stands for the asymptotic study of (1.2) when the separation of scales becomes in�-

nite (that is when ε goes to 0). Then, usually the solution to (1.2) converges to an

asymptotic behavior in some sense, and quantitative estimates may sometimes be es-

tablished. The homogenization methods encompass both the theoretical framework

and the numerical approaches derived from this framework. Such approaches will be

discussed in Section 1.3. The periodic and stochastic homogenization frameworks

will be presented as well as the main contributions of this thesis regarding the �uctu-

ations in the stochastic case that will be more detailed in Chapter 2.

However, sometimes Aε does not satisfy any structure assumptions though het-

erogeneities are present at a small scale ε. In this case other approaches should be

considered. Such approaches usually enrich a coarse formulation by inserting local

�ne features. These methods will be further explored in Section 1.4. Several popular

approaches will be presented though the focus will be put on the Multi-scale Finite

Element methods (MsFEM) and on the enrichment method we designed during this

thesis.

1.3 Homogenization

In multi-scale problems where there is some structure, the goal is to infer the macro-

scopic behavior of a material knowing its micro-structure. One way to achieve that

is to consider a part of the material at a meso-scale δ called a representative volume

element (RVE) where ε � δ � |D|, and compute the behavior of the material on
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δ. Assuming that δ is representative of the whole material behavior, one uses this in-

formation to perform the macroscopic computation. One can refer to the works [49],

[24], [54],[74], for examples of such an homogenization approach in the physics and

mechanics communities.

It gives intuition that there exists, in some cases, an e�ective behavior of the ma-

terial that can be obtained through an averaging process.

As an illustration, we can consider the problem (1.2) with Aε = 1.1 + sin(2πx
ε

)
for D = (0, 1). Here the micro-scale length, that is the frequency of the oscillations,

is characterized by the parameter ε. Figure 1.3 shows solutions to (1.2) for di�erent

values of ε. We can see that the solution oscillates more and more when ε decreases.

However, the amplitude of the oscillation is also decreasing. Indeed, for ε = 1/512 it

seems that the solution does not oscillate and is the solution to a PDE with a constant

coe�cient. There seems to be an asymptotic regime when the separation of scale goes

to in�nity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.05

0.10

0.15

0.20

0.25

y

1/eps= 512
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Figure 1.3: Solutions to problem (1.2) in 1D when Aε = 1.1 + sin(2πx
ε

) and

ε = 1/16, 1/32, 1/512

This empirical observation gives some intuition of the meaning of the homogeniza-

tion process. However it is not satisfactory since it does not allow us to understand

fully from a mathematical standpoint what is this averaging process and what are the

conditions for it to happen. Especially, is computing the behavior on an RVE enough

to infer the macroscopic properties? How to choose the RVE? How the result is de-

pendent of other parameters such as the external input (right-hand side f in the prob-

lem (1.2))? Thus, we will take a step back in order to �nd a mathematical framework
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that will allow us to fully understand this phenomenon.

Usually, multi-scale problems with separation of scales involve a standard partial

di�erential equation where some parameter oscillates at a micro-scale ε that is small

compared to the domain D. Homogenization is the mathematical study of the behav-

ior of the solutions to the multi-scale problem when the separation of scales become

in�nite (that is ε goes to 0). Hence, homogenization can be seen as the mathematical

asymptotic study of the behavior of a sequence of problems parameterized by the sep-

aration of scale that tends to in�nity. For simple general linear elliptic PDEs, the most

general result comes from the work of Spagnolo and then Murat and Tartar (see e.g.

[73]), it is called H-convergence and G-convergence. They managed to prove that for

a bounded elliptic coe�cient the solutions to this sequence of problems converge to

an asymptotic problem up to a subsequence extraction. Such a result is not construc-

tive but is the foundation of the periodic homogenization theory where one can obtain

quantitative results. Also, another framework, the so called Γ-convergence, was devel-

oped by De Giorgi in [28]. Roughly put, if the solution to the PDE is the minimizer of

some energy then the minimizers converge also to the minimizer of some asymptotic

energy, ensuring that an e�ective regime exists (one can see the monograph [27] for

more details). Such theory can be applied in a broad range of physical problem. There

is also the case where the coe�cients are taken as random variables, that is the case

of stochastic homogenization. This framework has been developed by Jikov, Papani-

colaou and Varadhan (one can refer to [58] for a thorough review).

Although homogenization theory can be applied to a broad range of PDEs, we will

restrict ourselves to the homogenization of multi-scale problems similar to problem

(1.2), that is elliptic equations in divergence form with highly oscillating coe�cients.

Such problems are of interest because they cover a lot of physical phenomena (me-

chanics, thermal conductivity, . . . ). Moreover, for such problems the e�ective problem

in the regime ε goes to 0 takes a similar form. Finally, studying elliptic problems is of-

ten a good start regarding the study of dynamical problems such as parabolic problems.

Under some geometric assumptions on Aε, Homogenization theory applied to el-

liptic equations of the form (1.2) gives quantitative convergence results and an homog-

enized behaviour. Such estimates are the cornerstone of many e�cient approximation

techniques in the multi-scale context. We will mainly review here two such cases, the

periodic and stochastic cases.

1.3.1 Periodic homogenization

Denoting Q = (0, 1)d the unit square, the main assumption in periodic homogeniza-

tion is that Aε(x) = A(x
ε
), with A a matrix valued function that is Q-periodic.

Under this assumption, it holds that uε the solution to (1.2) converges weakly in

H1(D) and strongly in L2(D) toward u? solution to{
−div(A?∇u?) = f in D,

u? = 0 on ∂D.

(1.8)

We put the emphasis, that in the periodic case, the whole sequence uε (and not only

a subsequence) converges to u?.
We still need to characterize the e�ective coe�cient A?. In the periodic homoge-

nization case, though there are usually no analytical formulas for A?, it can be com-
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puted by some auxiliary functions called correctors. We denote by wi the corrector

function in the direction ei solution to{
−div(A(∇wi + ei)) = 0 in Q,

wi is Q-periodic.

(1.9)

The function wi is unique up to the addition of a constant.

Then the homogenized coe�cient is given by:

A?ei =

∫
Q

A (∇wi + ei) (1.10)

When ε is small one can approximate uε by u?. However, we read that, in H1(D),

uε only converges weakly (and not strongly) to u?. Indeed,∇uε oscillates with period

1/εwith an amplitude independent of ε, hence the approximation of∇uε by∇u? can-

not be accurate in general,∇u? does not oscillate at all.

Formally we can expand uε in powers of ε, in order to better understand the asymp-

totic regime and motivated by the result in the 1D case, we write

uε(x) = u0(x) + εu1
ε(x, x/ε) + ε2u2

ε(x, x/ε) + . . . (1.11)

where ui (1 ≤ i) is periodic with respect to the second variable. This two-scale ex-

pansion is only a formal way to guess the homogenization result. Rigorous proofs use

either the two-scale convergence framework introduced by G. Allaire (see the mono-

graph [1]), the compensated compactness or the oscillating test function approach in-

troduced by Murat and Tartar.

Denoting u1
ε(x) =

d∑
i=1

wi(
x

ε
)
∂u?

∂xi
(x), then it holds that:

‖uε − u? − εu1
ε‖H1(D) ≤ C

√
ε (1.12)

Then we have a good approximation of uε and its gradient (recall that uε converges

to u? inH1
only weakly). We note that the correctors functions are used to get back the

H1
convergence, justifying the corrector appellation. Some results can also be proven

in stronger norms (e.g. W 1,∞(D)) following the work of Avellaneda and Lin in [4].

The behavior of the solution in the periodic homogenization framework is well

understood and o�ers an interesting set of test-cases for checking the e�ectiveness

of numerical multi-scale methods or to study more general cases in homogenization

theory. Indeed, the framework of periodic homogenization can be extended by consid-

ering perturbative cases such as a periodic coe�cient with some defects. This setting

has been studied by X. Blanc, C. Le Bris, P.-L. Lions and M. Josien in the following

works [17], [15] and [16].

1.3.2 Stochastic homogenization

We consider here a similar problem to (1.2), though in this case the matrix A is a

random function. Hence, we want to approximate the random function uε solution to{
−div

(
A(x

ε
, ω
)
∇uε(x, ω) = f(x) in D,

uε(x) = 0 almost surely on ∂D.

(1.13)
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where x embodies the space variable and ω the random realization.

Without further assumption, we do not have a separation between the micro-scale

and macro-scale when ε goes to 0. Analogously with periodic case, in order to have

constructive convergence results, some order in the randomness of A should be as-

sumed.

To this end the stationarity framework can be introduced. Roughly put, this as-

sumption ensures that the law of the coe�cient A stays the same up to translations in

Zd (discrete stationarity) or to any translation (continuous stationarity).

More precisely, we de�ne a probability space (Ω,F ,P). We assume that the action

(τk)k∈Zd from the group (Zd,+) acts on Ω. This action is assumed measure preserving

and ergodic that is for all k ∈ Zd (for all x ∈ Rd
for continuous stationarity) and

B ∈ F , then P(τkB) = P(B) and ifB ∈ F is preserved by any τk thenP(B) = 0 or 1.

De�nition 1.2. A function F ∈ L1
loc(Rd, L1(Ω)) is said to be discrete stationary if

∀k ∈ Zd, F (x+ k, ω) = F (x, τkω) almost everywhere and almost surely. (1.14)

Remark 1.3. Discrete stationary function are easy to design. For instance, if one considers

Xk a sequence of i.i.d. random variables then the function

F (x, ω) =
∑
k∈Zd

1Q+k(x)Xk(ω)

where Q = (0, 1)d is a discrete stationary random function.

Remark 1.4. A function which is discrete stationary and independent of ω is actually

Q-periodic. The discrete stationary setting, thus naturally includes the periodic setting.

The discrete stationarity framework allows us to use similar results as in the peri-

odic homogenization. Indeed we can get average on large volumes.

Theorem 1.5. Let F ∈ L∞(Rd, L1(Ω)) be a stationary function. For k ∈ Zd, de�ne
|k|∞ = sup

1≤i≤d
|ki|, then

1

(2N + 1)d

∑
|k|∞≤N

F (x, τkω) −→
N→∞

E[F (x, ·)] in L∞(Rd), almost surely

Hence, denoting Q = (0, 1)d it holds that

F (
x

ε
, ω)

?
⇀
ε→0

E[

∫
Q

F (x, ·) dx] a.s. (1.15)

Remark 1.6. This result is analog to the Riemann Lebesgue lemmawhenF is Q-periodic:

∀φ ∈ L1(Rd),

∫
Rd
φ(x)F (

x

ε
) dx −→

ε→0

∫
Q

F (y) dy

∫
Rd
φ(x) dx

We have the same behavior in the asymptotic regime compared to the periodic

case. When ε goes to 0, uε the random function solution to (1.13) converges in some

sense to u? solution to {
−div(A?∇u?) = f in D,

u? = 0 in ∂D,

(1.16)

where A? is again a constant deterministic homogenized matrix.
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Figure 1.4: Example of a random stationary material: random checkerboard for di�er-

ent values of ε (ε = 1/10, ε = 1/50, ε� 1, from left to right).

Remark 1.7. Compared to periodic homogenization, here we start from a random prob-

lem and get a deterministic homogenized problem in the asymptotic regime ε ' 0. This
is a law of large number result.

As in the periodic case,A? can also be expressed in function of correctors functions.

However, the corrector problem in the stochastic case cannot be reduced to a periodic

cell, it has to be expressed on Rd
as A is not periodic anymore.

−div(A(·, ω) (∇wi(·, ω) + ei) = 0 in Rd
,

∇wi is stationary,

E[

∫
Q

∇wi] = 0.

(1.17)

Then it holds that

A?ei = E
[∫

Q

A(wi + ei) dx

]
(1.18)

Usually A? does not have analytical formula, hence the usual way to approximate

it is to computewi and use the formula (1.18). Contrary to the periodic case, estimating

A? is di�cult in the random case: on one hand wi is de�ned on Rd
so it is not com-

putable in practice; on the other hand, one must compute an average to get A?, that is

use a costly Monte-Carlo approach.

In practice, wi is approximated by wNi solution to{
−div

(
A(·, ω)

(
∇wNi (·, ω) + ei

))
= 0 in QN = (−N,N)d,

∇wi is QN -periodic.
(1.19)

Then A? is approximated by the random matrix A?N de�ned by

A?Nei(ω) =
1

|QN |

∫
QN

A(·, ω)
(
∇wNi (ω) + ei

)
. (1.20)

Hence, we can decompose the error in two parts: the systematic error and the

statistical error:

A? − A?N(ω) = A? − E[A?N ]︸ ︷︷ ︸
Systematic error

+E[A?N ]− A?N(ω)︸ ︷︷ ︸
Statistical error

(1.21)

The systematic error was studied in the works from A. Gloria, F. Otto and collab-

orators to establish convergence rates and improve the systematic error, one can see

for instance [46].



1.3. Homogenization 11

Usually E[A?N ] is estimated by a Monte-Carlo approach, that is a mean over M

realizations:

1

M

M∑
m=1

A?,mN (ω). Such approaches are usually costly as the error usually

decreases with a rate given by a Central limit theorem: |A?,MN − E[A?N ]| ≤ C√
M

.

An e�cient way to reduce this error is to apply variance reduction techniques, see

for instance the works [65] by C. Le Bris, F. Legoll and W. Minvielle and [39] by J.

Fischer. In practice, the statistical error is usually higher than the systematic error.

Thus, variance reduction technique are critical to reduce the number of realizations

required.

1.3.3 Contribution: Estimation of the �uctuations in a weakly

stochastic regime

Homogenization theory describes what happens in the asymptotic regime ε goes to

0. The e�ective behavior is deterministic and the solution can be approximated by u?.
However, if we take a step back and consider the regime where ε is small but not small

enough to be in the asymptotic regime, then uε is still random. Hence, one can wonder

if it is possible to characterize the law of uε from the knowledge of the distribution of

Aε or at least how to determine the mean behavior and how does uε �uctuates around

its mean behavior.

As for the estimation of A?, we can separate the error between uε and u? into two

parts:

u? − uε(·, ω) = u? − E[uε(x, ·)]︸ ︷︷ ︸
Systematic error

+E[uε(x, ·)]− uε(x, ω)︸ ︷︷ ︸
Statistical error

(1.22)

As uε converges to u? almost surely, both errors converge to 0 when ε → 0. We

consider later a scaling of these errors in ε−d/2. Such scaling correspond to a simi-

lar one present in the Central limit theorem allowing to study �uctuations that are

not vanishing in the asymptotic regime ε ≈ 0. For instance, if we have a random

checkerboard, Aε depends on N = ε−d random variables associated with the scaling√
N = ε−d/2. At this scale the quantity uε − u? diverges (explodes to∞) when d ≥ 2

and the systematic error problem that is how to approximate E(uε) thanks to u? is still

an open problem. In this thesis, we will only consider the statistical error.

For the problem of interest, in a one dimensional setting, there is a complete under-

standing of the �uctuations of uε. we refer to the works of Bal, Bourgeat and Piatninski

in [19] and [8].

For the following problem{
−∆uε + Vε(x, ω)uε = f in D,

uε(·, ω) = 0 on ∂D,
(1.23)

there is also complete understanding in any dimension, one can refer to works [7] and

[59].

Physicists and mechanicians are interested in the behavior of quantities of interest

depending on the solution to problem (1.13). For instance, the randomness in the coef-

�cient can embody a material with defects stemming from some industrial process. In
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this case, there is a need to quantify the �uctuations of the quantity of interest consid-

ered in order to ensure security or constraints requirements (take the civil engineering

where a material is supposed to resist some external force).

To that end we consider the following quantity of interest:

Iε(ω, g) = ε−
d
2

∫
D

(uε(x, ω)− E[uε(x, ·)]) g dx (1.24)

Remark 1.8. g can be taken as a localization function (for instance 1B with B ⊂ D) in

order to get the local variations of the solution uε. If g ∈ L2(D) is the divergence of some

vector �eld G then Iε can be rewritten as

Iε(ω, g) = ε−
d
2

∫
D

(∇uε − E[∇uε]) ·G (1.25)

This formulation can be useful as it can express the �uctuations of a �ux or stress.

In the work [31], F. Otto, M. Duerinckx and A. Gloria, managed to characterize

of the �uctuations of (1.24) for a variant of the problem (1.16) posed on Rd
with f ∈

C∞c (Rd) and with discrete operators (�nite di�erences on the cartesian grid εZd rather

than true derivatives). They showed that

Iε
L−→
ε→0
N (0, σ2),

where the variance σ2
is given by

σ2 =

∫
Rd

(∇u? ⊗∇v?) : Q : (∇u? ⊗∇v?) .

Q is a constant fourth-order tensor depending only onA,A? and the corrector function

wp, while u? and v? are given by

−div (A?∇u?) = f, −div (A?∇u?) = g.

One aim of this thesis is to explore and extend this result for the case of continuous

PDEs with derivatives (instead of �nite di�erences). Another objective is to design

a numerical approach to approximate the fourth-order tensor Q. These results are

detailed in Chapter 2.

To perform this study, we will consider a restricted framework: the weakly stochas-

tic case. Such framework allows us to get quantitative estimates.

Weakly stochastic case

We recall the weakly stochastic case introduced in [26], [66] and [14]. We assume that

the coe�cient Aε is de�ned by

Aη,ε(x, ω) = Aper(
x

ε
) + η χ(

x

ε
, ω), (1.26)

withAper a deterministic matrix-valued function that isQ-periodic, χ an almost surely

elliptic bounded matrix-valued function that is stationary, and η a small parameter. We

also assume that Aper is symmetric.

We de�ne χ by
χ(x, ω) =

∑
k∈Zd

1Q+k(x)Xk(ω) Id,

Xk are i.i.d., almost surely bounded variables,

E[X0] = 0,

(1.27)
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where Id is the identity matrix in dimension d.

Remark 1.9. In material science, in materials (for instance when, manufacturing) de-

fects can appear, so the resulting material will be the perturbation of some ideal material

by some defects. Usually this translates as a matrix-valued coe�cient that will have a

deterministic part and a small random perturbation. There are however several ways to

formalize the notion of small random perturbation.

First, one can consider that the defect often occurs but is very small. Alternatively, one

can consider a signi�cant defect but with little chance of happening.

The weakly stochastic case (1.26) that we consider here corresponds to the �rst case.

For instance, for industry material design, there can be intrinsic uncertainties in the pro-

cess related (material components properties are known up to a measurement). In this case

there will be many defects, though they each introduce little changes. The other case has

to do with rare events, faulty design due to for instance some machine failure.

These two approaches seem similar at �rst glance. However, mathematically and with

regard to the homogenization process they do not give the same results.

When η � 1, we can expand the problem in a series in powers of η. We then have:
uε = u0

ε + η u1
ε +O(η2)

∇wi = ∇w0
i + η∇ w1

i +O(η2)

A? = A?per +O(η2)

u? = u0
? +O(η2)

(1.28)

where uε is solution to (1.2), u0
ε is also solution to (1.2) for the coe�cient Aper

and u1
ε satis�es −div(Aper(

·
ε
)∇u1

ε) = div(A1( ·
ε
, ω)∇u0

ε) with homogeneous Dirichlet

boundary conditions. The function w0
i is the corrector in the direction ei solution to

1.17 with the deterministic coe�cient Aper and w1
i is solution to

−div(A∇w1
i ) = div(χ(∇w0

i + ei)) in Rd,

∇w1
i is stationary,

E[
∫
Q
∇w1

i ] = 0.

(1.29)

Finally,A?per and u0
? are de�ned as the e�ective coe�cient (1.18) and the corresponding

homogenized limit (1.16) for the deterministic coe�cient periodic Aper respectively.

Remark 1.10. Here one can notice thatA?1 denoting the �rst order term in the expansion

of A? in power of η does not appear. Indeed, we have A = 0 since E = 0. By simple

computations A?1 =
∫
Q

(∇w0
i + ei) · E(A1)(∇w0

i + ei) = 0

Determine the asymptotic law

The main result is the characterization of the law of Iε at the �rst order in η.

We formally expand our quantity of interest in a power series of η:

Iε = I0
ε + ηI1

ε + h.o.t

where I0
ε and I1

ε = ε−
d
2

∫
D

(u1
ε − E[u1

ε]) g. From here we investigate the behavior of

the random variable I1
ε when ε→ 0 and η � 1.
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Theorem 1.11. Assume that (1.26) and (1.27) hold and that and Aper is an Hölder con-

tinuous function.

De�ning

I1
ε = ε−

d
2

∫
D

(
u1
ε − E[u1

ε]
)
g. (1.30)

Then it holds that

I1
ε
L−→
ε→0
N (0, σ2), (1.31)

where N (0, σ2) is a centered Gaussian random variable of variance

σ2 =

∫
D

(∇u?0 ⊗∇v?0) : Q1 : (∇u?0 ⊗∇v?0) (1.32)

where u?0 and v
?
0 the solutions to

− div(A?per∇u?0) = f in D , u?0 = 0 on ∂D, (1.33)

and

− div(A?per∇v?0) = g in D , v?0 = 0 on ∂D, (1.34)

and Q1
a fourth order tensor given by

Q1
i,j,k,l = Var(X0)

(∫
Q

(ei +∇w0
i ) · (ej +∇w0

j )

)(∫
Q

(ek +∇w0
k) · (el +∇w0

l )

)
.

(1.35)

This is a similar result as in the work [31] at the �rst order in η for continuous

PDE on bounded domains. This result shows that the law of our quantity of interest

becomes Gaussian (and we have a formula for the variance) as ε goes to 0 and η � 1.

So we have a characterization of the law of our quantity of interest in the regime ε� 1.

In this case all laws and values are explicit, hence one can use it as a test-case to design

numerical approximations for broader frameworks.

Estimating the variance: Computation of Q

The tensor Q1
obtained in Theorem 1.11 is directly derived from the study of Iε1 . In

order to build a numerical approach estimatingQ that is valid in the general context of

discrete stationarity (and not only in the weakly stochastic case), we need to introduce

a general formula for Q and show that its leading order term (when η � 1) is given

by Q1
de�ned by (1.35).

In the work [31],Q is de�ned as the limit of an objectQL when L goes to in�nity:

QL =
1

|QL|
Cov

(∫
QL

ρi,j,

∫
QL

ρk,l

)
(1.36)

with ρi,j a random function de�ned as

ρi,j = (∇wi + ei) · A(∇wj + ej)−∇wiA?ej −∇wjA?ei (1.37)

We can expand ρi,j in power of η and likewise we expand QL in power of η:

ρi,j = ηρ1
i,j +O(η2) (1.38)

QL = QL,1 +O(η3) (1.39)
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Theorem1.12. Assume that, we are in the weakly stochastic framework (1.27) and (1.26).

Introduce

QL,1 =
1

|QL|
Cov

(∫
QL

ρ1
i,j,

∫
QL

ρ1
k,l

)
(1.40)

where ρ1
i,j , is the �rst order term in η of the function ρi,j . Then QL,1 is the leading order

term (in the expansion in η) of Q and we have

Q1 = lim
L→∞

QL,1 (1.41)

where Q∞ is de�ned by 1.35.

So we have shown that in the weakly stochastic case the asymptotic variance is

governed by a fourth order tensor QL,1 whose de�nition is consistent with that given

in [31].

Usually, the correctors in stochastic homogenization cannot be computed exactly

as the associated equation is posed on Rd
. Hence, wi is often approximated by wNi

solution to (1.19). We de�ne QL,N,1 the approximation of QL,N,1 where wNi is used

instead of wi and shows the following result.

Theorem 1.13. Assume we are in the weakly stochastic framework, that Aper is an

Hölder continuous function that N and L are chosen such that N > L. Then

lim
L→∞

QL,N,1 = Q1
(1.42)

Moreover, whenever N > L, it holds that

|QL,N,1 −Q1| ≤ C
ln(L)2

L
(1.43)

This shows that in the weakly random case, the approximation strategy for esti-

mating Q1
is converging. We can explore this new strategy for broader frameworks.

In the de�nition ofQL,N,1 the covariance is used. In practice, we do not have access

to this value and have to use the empirical covariance computed from M realizations.

Hence for the general case we approach Q by QL,N,M , with N the length of the def-

inition domain in the corrector problem (1.19), L the integration domain used in the

de�nition of QL and M the number of realizations to compute the empirical covari-

ance.

Approximate the variance of Iε: Random Checkerboard

During this thesis, we performed extensive numerical tests to show that the approach

designed for the weakly stochastic case can be applied in a general discrete stationary

framework and give accurate results.

We considered the checkerboard case

A(x, ω) =
∑
k∈Zd

1Q+k(x)Xk(ω), (1.44)

with Xk i.i.d, such that P(Xk = αmin) = P(Xk = αmax) = 0.5.

For such choice, we considered for multiple f and g the quantity of interest Iε
de�ned by (1.24). We computed the empirical distribution of Iε by using a brute force

Monte-Carlo approach for multiple values of ε.
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Remark 1.14. One can notice that Iε depends on the right-hand side f in the problem

(1.13) and on the test function g in (1.24). Hence, if f or g changes the Monte-Carlo

approximation must be computed again.

We computed QL,N,M for large values of L,N,M in order to reach an asymptotic

regime. First, we check that the distribution of Iε seems to be a Gaussian when ε is

small by looking at histograms, QQ-plots, and by performing the Shapiro-Wink test.

Second, we check that the empirical variance is close to the variance computed from

Q that is

σ2 =

∫
D

(∇?
u ⊗∇v?) : Q : (∇?

u ⊗∇v?) (1.45)

It turns out that for di�erent f and g the asymptotic regime seems to be reached

quite quickly for reasonably small values of ε (ε < 1/50) and that (1.45) is an accurate

approximation of the variance of Iε. Indeed, the variance estimated with Q and the

empirical variance shows overlapping con�dence intervals and relative errors under

10%. Although the in�uence ofN and L is consistent with the weakly stochastic case,

we observe that the number of realizationsM must be very large in order to give small

enough con�dence intervals.

So in this work we designed a numerical approach that allows to quantify the �uc-

tuations of the quantity of interest Iε without resorting to costly Monte-Carlo ap-

proaches, just by computing an approximation of Q that governs the �uctuations.

1.4 Numerical approaches

The homogenization approach presented in the last section gives very e�ective approx-

imations and quantitative results. However, this mathematical theory requires some

structure assumptions on Aε mostly a separation of scales between the micro-scale

and the macro-scale. In practice such assumptions are not always met. For instance,

one can have a high de�nition (with resolution h) image of a composite material and

notices heterogeneities at the scale ε and want to solve the problem (1.2). In such case,

the homogenization theory will not apply and generic multi-scale techniques have to

be developed.

One can distinguish two cases regarding what the practitioner wants to achieve.

The �rst goal can be to compute an accurate approximation of uε at a meso-scale H
that is larger than h the size of the coe�cient data. In this case, one will mostly use

bottom-up approaches, some local computations will be used to enrich a coarse ap-

proximation. Another possibility can be to get a very accurate approximation at the

scale h. Usually, it involves iterative approaches from the domain decomposition �eld

using preconditioners linking local and coarse formulations of the problem.

We will consider mostly applications associated with the �rst case: we have a multi-

scale problem, and we want to get an approximation with accuracy at a meso-scale H .

1.4.1 General principle and main approaches

There exists numerous numerical approaches to tackle multi-scale problems. We will

only present here three types of methods. We will present shortly the Heterogeneous

multi-scale method (HMM) introduced by W. E and B. Engquist in [32]. Then we will

present the Local Orthogonal Decomposition (LOD) method developed by D. Peterseim
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and A. Målqvist in the work [70]. Finally, we will present the Multi-scale Finite Element

method (MsFEM) introduced by T. Y. Hou in [55]. The MsFEM review will be more

thorough as one goal to this thesis is to improve this method (see Chapter 3) and

implement several of its variants (see Chapter 4).

HMM

This method was introduced by W. E and B. Engquist in the work [32] and analyzed

in [33]. It shares similar features with the FE2
approach developed by F. Feyel and

J.-L.Chaboche in [37]. The principle of the approach is somehow inspired by homog-

enization results though it can be applied in broader frameworks. It is a bottom-up

approach: computations on a �ne grid of size h are used to increase the accuracy of a

coarser approximation based on a coarse grid of size H . In a classical P1 FE formula-

tion, the associated Galerkin problem gives the following sti�ness matrix

Ai,j =

∫
D

∇φi · (Aε∇φj)

'
∑
K∈TH

∫
K

∇φi · (Aε∇φj)

'
∑
K∈TH

∑
xk∈Quad(K)

wk (∇φi · (Aε∇φj)) (xk)

Indeed, the integral over the whole domain is computed by summing components ele-

ment by element. Each of these integrals cannot be computed analytically in practice,

and their value is approximated by a quadrature formula with weights wk and quadra-

ture points xk.

The main idea of HMM is to replace the evaluationAε(xk) by an e�ective coe�cient

A?HMM(xk) computed at a �ne scale h in a small patch ωk around the quadrature point

xk.

More precisely, A?HMM(xk) is de�ned as

A?HMM(xk) =
1

|ωk|

∫
ωk

Aε∇wi (1.46)

where wi is a solution to −div(Aε∇wi) = 0 in ωk,
1

|ωk|

∫
ωk

∇wi = ei.
(1.47)

We denote by uHMM the HMM approximation of u?.

If one applies such idea in the periodic homogenization case where Aε = A(x, x
ε
)

with A periodic with respect to its second variable. Then A? is still de�ned though it

is a function of x now. Hence, if we take ωk = εQ + xk where Q = (−1/2, 1/2)d,
then A?HMM(xk) corresponds exactly to the homogenized coe�cient. Then classical

periodic homogenization results allows to control the error between u? and uε. This

reasoning leads to the following result

Theorem 1.15 ( see [33] Theorem 1.2 ). Assume Aε = A(x/ε) where A is Zd-periodic.
Denoting u? the solution to the homogenized problem (1.8), assuming u? ∈ H2(D), we
have

‖u? − uHMM‖H1(D) ≤ C(ε+H) (1.48)
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with C independent of ε and H .

Remark 1.16. Similar results can be obtained if the coe�cient is locally periodic i.e.

Aε = A(x, x
ε
) where y 7→ A(x, y) is Zd−periodic.

This approach allows to get an accurate approximation at the scale H . We note

here that the computational load is manageable since �ne scale computations are per-

formed only on small patches around the quadratures points. Moreover, the �ne scale

computations associated with quadrature points are independent of each other and can

be performed in parallel.

This method can adapt to changes of scale withinAε by changing locally the size of

the patches. Hence, it applies to a broad range of functions Aε. The speci�city of their

approach is that this is not a Galerkin approximation of the problem (1.3): the vari-

ational formulation is changed to enable local homogenization on quadrature points.

This is in sharp contrast with thd LOD and MsFEM methods that aim at designing

relevant approximation spaces and solve the original heterogeneous problem.

LOD

This method has been developed by D. Peterseim and A. Målqvist, see [70]. It is inspired

by the Variational Multi-scale approach introduced by Hughes in [57]. The principle

of the approach is to exploit the symmetry of the coe�cient Aε in order to design a

�nite dimensional approximation space with good properties.

We consider a quasi-interpolant IH on a shape regular triangulation TH :

‖u− IH(u)‖H1(K) +H−1
K ‖u− IH(u)‖L2(K) ≤ CIH‖∇u‖L2(ωK), (1.49)

for all K ∈ TH , and ωK = T ∈ TH |K ∩ T 6= ∅ and for all u ∈ H1
0 (D), where CIH is

bounded with respect to H .

We can consider IH the nodal weighted Clement interpolant de�ned by

IH(u)(xk) =

∫
D

(uφk)∫
D
φk

, (1.50)

with φk the P1 FE basis function associated with the vertex k.

We consider V f = {f ∈ H1
0 (D) : IH(f) = 0}, the kernel of the interpolant, that

is the �ne scales that are not captured by the coarse interpolant.

Aε is symmetric, hence the associated bilinear form aε de�nes a scalar product on

H1
0 (D). Thus, we can de�ne V H

LOD the orthogonal of V f
with respect to aε in H1

0 (D):

H1
0 (D) = V H

LOD ⊕ V f
(1.51)

One can de�ne P the aε-projection from the P1 FE space VH to V f
. By de�nition,

V H
LOD = VH−PVH . Hence, V H

LOD is of the same dimension as VH and is good candidate

for a coarse space approximation.

One can design correction functions φLODi ∈ Vf de�ned by

aε(φ
LOD
i , v) = aε(φi, v) for all v ∈ V f . (1.52)

Then we have a basis of V H
LOD: V H

LOD = Span(φLODi − φi, i = 1..Nbvertex).

The correction functions φLODi do not have a compact support in contrast to P1 FE

functions φi.
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We consider new corrections φLOD,ki , which are localized versions of φLODi . We

denote by wi,k the patch around the vertex i which is enlarged by k layers of coarse

elements and de�ne φLOD,ki ∈ V f (wi,k) solution to

aε(φ
LOD
i , v) = aε(φi, v) for all v ∈ V f (ωi,k) (1.53)

with V f (ωi,k) = {v ∈ V f : v|D\ωi,k = 0}
In the case where the global corrections are available then it holds that

Theorem 1.17 (see Lemma 3.1 in [70]). Denote by uHLOD the approximation computed

by solving the Galerkin problem on the approximation space V H
LOD. Then

‖uε − uHLOD‖H1(D) ≤ CH‖f‖L2(D) (1.54)

The above result holds as soon as Aε ∈ L∞(D), no additional regularity is required.

In the practical case, for localization correction functions it holds that

Theorem 1.18 (Theorem 3.6 in [70]). Denote by uHLOD,k the approximation computed

by solving the Galerkin problem on the approximation space V H
LOD,k for k ' ln(1/H).

Then

‖u− uHLOD,k‖H1(D) ≤ CH (1.55)

with C again independent of the characteristic period of oscillations of Aε.

Such result is interesting as the LOD approximation error does not depend at all on

ε and on the regularity ofAε. The speci�city of this approach is that the approximation

space contains nodal basis functions that are solutions to problems with enlarged sup-

port O(ln(1/H)). Though ε does not appear in the analysis, the correction functions

must be solved at the �ne scale on the patches wi,k. The computational cost can be

reduced as the correction functions are solution to independent problems. The proof

relies critically on the symmetry of Aε.

1.4.2 MsFEM

Principle

The Multi-scale Finite Element method has been introduced by Hou [55] and analyzed

in [56]. We also refer to the monograph [34].

The Multi-scale Finite element method is a two-step approach: �rst, one designs an

adapted basis that encodes the material heterogeneities; second, one solve the Galerkin

problem on the approximation space spanned by the basis built in the �rst step.

We consider meshes of two sizes: a coarse mesh of size H , and a �ne mesh of size

h. Denoting ε by the smallest characteristic length of the heterogeneities, we assume

that h < ε < H . h is supposed small enough to completely capture the �uctuations

of the coe�cient Aε, so that the resulting approximation uh of the solution uε to (1.2)

would be accurate.

The goal here is not to approach uh, but to design an approximation at the coarse

scale H that would behave like the Finite Element in the laplacian case (see 1.2).

One way to do that is to design basis functions that satisfy similar properties as the

Finite Element basis functions on the coarse mesh but oscillate like the coe�cient Aε.
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Denoting i = 1..Nbvertex the index of the collection of interior vertices in the coarse

mesh, then in the P1 FE case basis functions are just piecewise a�ne functions such

that φi(xj) = δi,j . One way to design such basis functions would be to mimic the P1

FE on the edges of the coarse mesh and introduce oscillations similar to Aε inside of

each coarse element. In order to introduce oscillations, the new basis functions would

satisfy some PDE inside each element (which would be solved in practice on a �ne

mesh of size h� ε).

The choice of the boundary conditions on the edges and the choice of the equation

to be solved give birth to numerous variants of the MsFEM approach. We will only

consider the following variants: the linear-MsFEM, the oversampling MsFEM (see [55])

and the "MsFEM à la Crouzeix-Raviart" (see [63] and [64]).

The �rst approach is conformal, that is the span of the basis functions VMsFEM is

included in H1
0 (D), so that a classical Galerkin method can be used to study the error.

The two other approaches are not conformal as the basis functions are not continuous

across the edges.

We will give a quick review of these three methods in the subsequent sections. The

implementation of the three methods will be further detailed in Chapter 4.

Linear version

It is the simplest MsFEM variant. The design of the MsFEM basis functions consists in

mimicking the P1 FE boundary conditions on each element of the coarse mesh.

Indexing by i = 1..Nbvertex the set of interior vertices of the coarse mesh, we

de�ne φMsFEM
i the MsFEM basis function associated with vertex i. On each element

K containing the vertex i, φMsFEM
i satis�es:
− div(Aε∇φMsFEM

i ) = 0 in K

φMsFEM
i is a�ne on the edges

φMsFEM
i (xj) = δi,j

(1.56)

In practice, we do not have access to φMsFEM
i . We build φMsFEM,h

i , an approxima-

tion of φMsFEM
i on a �ner embedded grid of mesh size h, with P1 FE.

•
φMsFEM
1 (x1) = 1

•
φMsFEM
1 (x3) = 0

∂K

•
φMsFEM
1 (x2) = 0

K

H

Figure 1.5: Sketch of MsFEM basis function design in 2D (left), Example of MsFEM

basis function for an oscillating coe�cient (middle) and P1 piecewise function (right)

Remark 1.19. When Aε is proportional to the identity matrix and constant then the

basis functions are exactly the P1 functions of the standard FE approach. Hence in the
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regime H � ε, the linear MsFEM approximation will behave like the P1 Finite Element

approximation (yielding linear convergence in H).

Then we introduce VMsFEM = Span{φMsFEM
i , i = 1..Nbvertex} and solve the

associated Galerkin problem: Find uMsFEM ∈ VMsFEM such that

aε(uMsFEM , v) =

∫
D

(Aε∇uMsFEM) · ∇v = b(v) =

∫
D

fv for all v ∈ VMsFEM

(1.57)

Denoting KMsFEM , BMsFEM and UMsFEM by{
KMsFEM,i,j = aε(φ

MsFEM
i , φMsFEM

j ), BMsFEM,i = b(φMsFEM
i )

UMsFEM solution to KMsFEMUMsFEM = BMsFEM ,

We have uMsFEM(x) =
Nbvertex∑
i=1

UMsFEMφ
MsFEM
i (x).

Theorem 1.20 (see [56], Theorem 5.1). Assuming Aε = Aper(
x
ε
) with Aper a Zd peri-

odic function, it holds that

‖uε − uMsFEM‖H1(D) ≤ C

(√
ε+H +

√
ε

H

)
(1.58)
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Figure 1.6: Relative energy error of linear MsFEM approximation function of 1/H for

the 2D problem (1.2) where Aε is a ε-periodic function (ε = 1/32)

Figure 1.6 illustrates Theorem 1.20. Indeed, we consider here the problem (1.2)

posed on D = (0, 1)2
with Aε an ε-periodic matrix function. In this case we can see

that the numerical results are consistent with the bound of Theorem 1.20, we can

identify the three regimes: H � ε, H � ε and H ' ε.

When H � ε, the MsFEM approximation error decreases linearly and gives lower

errors than the P1 FE error which displays a plateau. However, when H ' ε, the er-

ror is increasing again showing that the term

√
ε
H

controls the behavior of the error.
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Finally, when H � ε the MsFEM approximation error is decreases linearly in H and

is similar to the P1 FE. Such behavior can be explained since on each element K , Aε is

close to a constant when H � ε and the MsFEM basis functions correspond to the P1

basis functions.

In the regime H � ε, the linear MsFEM approximation displays an interesting

behavior as it decreases linearly in H . However, when R = H
ε

is very large, the com-

putation of the basis functions solution to (1.56) can be very expensive because one has

to solve a linear system with a number of DOF that is higher than Rd
(and thus very

large). Usually this method is used when R is one order of magnitude (close to 10).

In that case the resonance e�ect can take place and dampen the MsFEM gain. That is

why, though the linear MsFEM is useful, there is a need for better variants.

The conformal MsFEM methods such as the linear MsFEM have a particular inter-

pretation in the symmetric case (that is when the matrix function Aε is symmetric).

Indeed, in this case the bilinear form associated with the variational formulation (1.3)

de�nes a scalar product inH1
0 (D) and the problem (1.2) is equivalent to a minimization

problem.

Interpretation in the symmetric case

When the matrix functionAε is symmetric, then solving (1.2) is equivalent to solve the

following energy minimizing problem

uε = argmin
v∈H1

0 (D)

(
1

2
aε(v, v)− b(v)

)
, (1.59)

where aε and b are the bilinear form and linear form associated with the variational

formulation (1.3).

The bilinear form aε is a scalar product with respect to the H1
0 (D). Considering

a 2D regular coarse mesh TH with mesh size H , we denote its interior edges by Γ =⋃
K∈TH

∂K \ ∂D. Then H1
0 (D) can be decomposed into two aε-orthogonal spaces.

H1
0 (D) = {⊕VK}K∈TH ⊕ VΓ = VB ⊕ VΓ, (1.60)

where

• VB is the space of functions that are inH1
0 (D) such that for each elementK ∈ TH

their restriction to K belong to H1
0 (K), and that we call bubble functions

• VΓ is the space of functions which are aε-harmonic in each H , and that we call

interface functions.

We de�ne the aε-lifting operator

ED :
H1/2(Γ)
τ 7→

H1
0 (D)

ED(τ)

such that for any τ ∈ H1/2(Γ)n the function ED(τ) satis�es
−div (Aε∇ED(τ)) = 0 in K for all K ∈ TH ,

ED(τ) = τ on Γ,

ED(τ) = 0 on ∂D.

(1.61)
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Remark 1.21. Denote Vγ = {γΓ(u) : u ∈ H1
0 (D)} with γΓ the trace operator from

H1
0 (D) to H1/2(Γ). Then VΓ can be seen as the aε-lifting of Vγ , that is VΓ = {ED(τ) :

τ ∈ Vγ}. Moreover, the aε-lifting can be seen as the solution to the followingminimization

problem

ED(τ) = argmin
v∈H1

0 (D)

aε(v, v) subject to v|Γ = τ (1.62)

Remark 1.22. The MsFEM approximation of uε (solution to problem (1.57)) belongs

to VΓ as the basis functions can be seen as the aε-liftings of a�ne and piecewise a�ne

continuous functions on Γ.

In addition to the orthogonal decomposition (1.60), the scalar product aε provides

us with a norm on H1
0 (D): one de�ne the Energy norm ‖ · ‖E as

‖u‖2
E = E(u) = aε(u, u) (1.63)

Using the boundedness and ellipticity assumptions onAε and thanks to the Poincaré

inequality, it holds that the energy norm is equivalent to the H1(D) norm.

Hence, we can use the energy norm to study the error in the particular context of

the linear MsFEM approach.

Thanks to the orthogonal decomposition (1.60), we have

uε = uBε + uΓ
ε (1.64)

with uΓ
ε = ED(uε|Γ) and uBε ∈ VB satisfying{

−div(Aε∇uBε ) = f in K , for all K ∈ TH ,

uBε = 0 on ∂K , for all K ∈ TH ,

(1.65)

See Figure 1.7 for a representation of this decomposition.

Figure 1.7: Decomposition of u solution to (1.2) posed in (0.1)2
, for a periodic Aε with

ε = 1/32 and H = 1/4. Solution u (on the left), uB the bubble part (in the middle) and

uΓ
the interface part (on the right)

The energy norm can also be decomposed into an interface and a bubble part. In-

deed, it holds that

‖uε‖2
E = aε(uε, uε) = aε(u

B
ε , u

B
ε ) + aε(u

Γ
ε , u

Γ
ε ) = ‖uBε ‖2

E + ‖uΓ
ε ‖2

E (1.66)

Recalling that uMsFEM the MsFEM linear approximation of uε is in VΓ the error in

energy norm can be written as

‖uε − uMsFEM‖2
E = ‖uBε ‖2

E + ‖uΓ
ε − uMsFEM‖2

E (1.67)

Knowing that uBε is solution to (1.65), thanks to the Poincaré inequality and the

Lax-Milgram theorem it holds that
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Theorem 1.23. Consider uBε solution to (1.65) then

‖uBε ‖H1(D) ≤ C H ‖f‖L2(D),

with C independent of H and Aε.

Thus, the bubble error decreases linearly in H . This result shows that approxi-

mating uBε is not useful needed to obtain a convergence similar to the laplacian case.

Hence, one way to get an e�cient approximation is to use a Galerkin method with a

space that represents VΓ well enough.

Remark 1.24. The linear MsFEM basis functions span a subspace of VΓ explaining the

better accuracy of linear MsFEM compared to standard FE. However, recalling Theo-

rem 1.20 in the regime H ' ε the approximation becomes inaccurate. In this case the

approximation subspace VMsFEM is not large enough to represent VΓ, otherwise we would

get a linear decrease of the error with respect to H .

The main �aw of the linear MsFEM method is that on the edges uε is approximated

by a�ne functions whereas uε usually oscillates at scale ε. Some alternatives have

been designed to circumvent this issue. For instance, one can use oscillatory boundary

conditions that are consistent with the oscillations of the coe�cient. Such approach

gives little improvement and still su�ers from the resonance e�ect. One can also turn

to non-conformal approaches in order for the arti�cial boundary conditions to have a

smaller impact.

Oversampling approach

The oversampling approach have been introduced in the work [55] and further ana-

lyzed [35] and [45]. One can also refer to the following review [51] for further analysis.

It is a two step approach like the linear MsFEM method: constructing of the basis

and resolution of a Galerkin problem. The basis is computed as follows, we agian

consider a coarse mesh of size H and denote by φOSi the unique MsFEM basis function

associated with the vertex i. We consider for each elementK ∈ TH , K̃ an enlargement

such that K ⊂ K̃ . We solve an equation on K̃ and φOSi is taken as the restriction of

this solution over K . This way the basis function φOSi oscillates on the edges forming

∂K .

More precisely, we de�ne ψi ∈ H1(K̃) solution to
−div(Aε∇ψi) = 0 in K̃ ⊃ K

ψi is a�ne on the edges of K̃ ⊃ K

ψi(x̃j) = δi,j

(1.68)

Remark 1.25. The basis functions φOSi are usually discontinuous across the edges. In-

deed, basis functions are taken as restriction of solution to problems on a smaller element.

There is no guarantee, that for a given edge, the enlarged solutions will match for the

elements sharing this edge. Hence, φOSi does not belong to H1
0 (D) and thus the approach

is not conformal.

Then we perform the online step that is solve the coarse Galerkine problem for any

source term f , using the approximation space

VMsFEM−OS = Span({φOSi }, i = 1..Nbvertex) (1.69)
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•
ψ1(x̃1) = 1

•
ψ1(x̃3) = 0

∂K̃

•
ψ1(x̃2) = 0

•

•

•

H

c

K

Figure 1.8: Sketching of oversampling MsFEM basis function design

and then �nd UMsFEM−OS ∈ VMsFEM−OS such that for any v ∈ VMsFEM−OS

Aε(UMsFEM−OS, v) = b(v)

In the work [45] a convergence result has been presented.

Theorem 1.26. Let f ∈ L2(D) and Aε ∈ L∞(D,Rd×d) be a sequence of elliptic and

bounded matrices. We hence assume that there exists C and c such that

∀x ∈ D, ∀ξ ∈ Rd, ∀ε, c|ξ|2 ≤ ξTAεξ(x) ≤ C|ξ|2

We assume that Aε is H-convergent (i.e. convergent in the sense of homogenization).

We denote by uMsFEM−OS the oversampling MsFEM approximation. Denoting by K̃ the

enlarged element and |K̃| its associated volume, we let

|K̃| − |K|
|K|

−→
H→0

0.

Then it holds that

lim
H→0

lim
ε→0
‖uε − uMsFEM−OS‖L2(D) = 0.

Remark 1.27. This result is interesting as it ensures the convergence of the approach in

the broadest sense of homogenization that isH-convergence. However, it does not provide

insight as how to choose the enlargement.

A more practical convergence result has been proven in [35] though in the more

restrictive framework of periodic homogenization.

Theorem 1.28. Let d = 2, f ∈ L2(D) and Aε = Aper(
x
ε
) where Aper is Zd-periodic,

bounded, elliptic, symmetric and C3(D̄). We denote by uMsFEM−OS the oversampling

MsFEM approximation and by H̃ the characteristic size of the elements enlargements that

is H̃ = min
K∈TH

d(∂K̃,K). Then it holds that

‖uε − uMsFEM−OS‖L2(D) ≤ C

(
ε

H̃
+H + ε(logH)

1
2

)
,(∑

K∈TH

‖∇uε −∇uMsFEM−OS‖2
L2(D)

) 1
2

≤ C

(
ε

H̃
+H +

√
ε

)
Remark 1.29. This result shows an explicit rate in function of the enlargement rate,

though in a more restrictive framework. However, in the resonance regime, H̃ must be

taken very large in order to have a good approximation. Numerically, one can observe

that taking H̃ = H + kε, with k < 10 is su�cient to signi�cantly dampen the resonance

error (see [55]).
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Although the convergence results seems to su�er from the resonance error like

linear MsFEM unless a prohibitive enlargement is used (H̃ ' 1/ε), the method is very

e�ective in practice even with small enlargement (only a few ε). The resonance error

does occur (in the sense that the approach is not converging if H and ε go to 0 and

H
ε

is �xed) but the overall error is signi�cantly reduced in comparison to the linear

MsFEM.

Crouzeix Raviart approach

Consider a material with small perforations and a coarse mesh as shown in Figure

1.9. In such case the perforations can intersect the coarse mesh. Hence, the linear or

oversampling MsFEM cannot be applied since linear boundary conditions are enforced

on subset of the edges where the solution is supposed to vanish.

Figure 1.9: Left - Material with perforations, Right - Mesh used

In order to tackle such problems, an edge-based MsFEM called "MsFEM à la Crouzeix-

Raviart" has been designed in the works [63] and [64]. We denote the set perforations

on the domain D by Bε. In the variational formulation of the problem (1.3), instead of

computing the integrals on the whole domainD, the integrals are computed onD\Bε.

During the o�ine stage two types of basis functions are computed: edge and bubble

basis functions. Similarly, to MsFEM oversampling, the method is not conformal, only

a weak continuity property is enforced along the edges.

In each elementK of the coarse mesh, the edge-based basis functionφCRi associated

with the edge ei is solution to the problem
−div(Aε∇φCRi ) = 0 in K,∫
ei
φCRi = 1,∫

ej
φCRi = 0, if i 6= j,

Aε∇φCRi · nj = λi,j on ej , for any j

(1.70)

where λi,j is a constant (which can take di�erent values on each side of the edge).

The bubble basis function ψK is supported by K and solves{
−div(Aε∇ψK) = 1 in K,

ψK = 0 on ∂K.
(1.71)

Edge-based basis functions are not continuous across the edges, as only the integral

over the edges is prescribed. However, denoting by [[·]] the jump of the function across
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Figure 1.10: Edge-based basis function (Left), Bubble basis function (Right)

the edge, such functions satisfy a weak continuity property, that is for each edge e of

the mesh, and for any basis function φCRi we have

∫
e
[[φCRi ]] = 0, likewise∫

e

[[uMsFEM ]] = 0 (1.72)

as a direct consequence. Then a coarse Galerkin problem is solved in the space

VMsFEM−CR = Span({φCRi }, {ψj}, i = 1..Nbedges, j = 1..Nbelements)

Regarding the convergence of the approach the following result has been estab-

lished in [63].

Theorem 1.30. Let uε solution to −div(Aε∇uε) = f with homogeneous Dirichlet

boundary conditions on the domain D \ Bε, for d = 2, with periodic perforations and

f ∈ H2(D). We assume that the equation of any internal edge e can be written as

x2 = pe
qe
x1 + ce for pe ∈ Z, qe ∈ N?

that are coprime numbers such that |qe| ≤ C with C
independent of e and the mesh size H . Then it holds that

‖uε − uMsFEM−CR‖H1
H(D\Bε) ≤ Cε

(√
ε+H +

√
ε

H

)
‖f‖H2(D)

where ‖u‖2
H1
H(D\Bε) =

∑
K∈TH

∫
K∩D\Bε

|∇u|2 and C is independent of H , ε and f .

Remark 1.31. The assumption on the rationality of the slopes in the mesh is necessary

see [63, Remark 2.5] to treat traces of periodic functions on the edges of the mesh. In full

generality, such traces are almost periodic. In the case of rational slopes these traces are

periodic simplifying the proof. This assumption is not very restrictive in practice, in par-

ticular because computers only manipulate rational numbers (and therefore, in practice,

the mesh slopes are always rational).

Remark 1.32. This result is interesting as usually the MsFEM convergence results depend

on the contrast that is the ratio between the maximum value of the coe�cient and its

minimum value. One can regard the problem posed in the perforated domain as the limit

of a problem with an increasing contrast.

Remark 1.33. One could consider enriching the basis in order to improve the accuracy

of the method. For instance, one can enrich the basis adding functions φCRi satisfying∫
e
φCRi x = 0 or 1 in addition to satisfying

∫
e
φCRi = 0 or 1. In such case, the weak conti-

nuity property would be ensured and the other constraints would make the solution closer

and closer to a true continuous property. The resulting approximation would improve with

respect to N the degree of the constraints and the regularity of the exact solution. In the

case of perforations, the solution is not so regular. Indeed, perforations induces a loss in

convexity and in regularity of the domain reducing the overall regularity of the solution.

Thus, such an enrichment approach would give little improvement.
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1.4.3 Contribution: MsFEM enriched with polynomials

The main MsFEM methods (such as Linear, Oversampling and Crouzeix-Raviart) su�er

from a resonance e�ect: the error does not decrease if H and ε go to 0 with ε ' H .

Such behavior dampen the e�ectiveness of MsFEM methods. We aim at designing an

MsFEM type method that would cancel this error and yield a linear convergence with

respect to the coarse mesh size H .

We place ourselves in the symmetric framework that is the coe�cient matrix Aε
is symmetric. Such framework allows us to use orthogonality and energy properties.

We recall that in this particular the orthogonal decomposition (1.60) ofH1
0 (D) into the

interface space VΓ and the bubble space VB . The MsFEM basis functions in the linear

case belong to the interface space. Hence, when considering uε the solution of (1.2)

and Theorem 1.23, it holds that the resonance error is due to a bad approximation of

the space VΓ by the MsFEM basis functions.

The idea of enrich the space VΓ has already been explored in the work [53] and

leads to a new numerical approach: the special �nite element method based on com-

ponent mode synthesis. This approach was thoroughly analyzed in the work [52].

Special �nite element method based on component mode synthesis

This approach developed in the work [53] is similar to a linear MsFEM method. It

is a two-step approach: design of a conformal basis and then resolution of a coarse

Galerkin problem. The di�erence with the linear MsFEM lies in the design of the basis:

the linear MsFEM basis functions will be used but will be complemented by spectral

enrichments on the edges. We emphasize on the fact that the method is conformal

though the enrichments are edge-based.

The complementing basis functions are solution to local eigenvalues problems de-

�ned on each edge. Recalling the de�nition of aε-liftings in (1.61) and that aε is a

scalar product on H1
0 (D), for each interior edge e, we can de�ne a generalized eigen-

value problem for traces that can be extended by 0. We de�ne H
1/2
00 (e) = {v ∈ L2(e) :

ṽ ∈ H
1
2 (Γ)} with ṽ the extension by 0 of v in Γ. In that case, for each edge e, the

following generalized eigenvalue problem is well-de�ned: �nd (τe,i, λe,i) ∈ VΓ × R
such that ∀η ∈ H1/2

00 (e)

aε(ED(τe,i), ED(η)) =

∫
D

∇ED(τe,i) · (Aε∇ED(η)) = λe,i

∫
e

τe,iη (1.73)

We next sort the eigenvalues (λe,i) in decreasing order. Then we de�ne the approxi-

mation space as

VACMS = Span
(
{φMsFEM

i }, {τe,j}, e in Γ, j = 1..Ie, i = 1..Nbvertex
)

Error estimates have been proved in the work [52]. Denoting the Special �nite

element approximation by uACMS , we have the following result:

Theorem 1.34. Denoting by σ, the shape regularity of the coarse mesh, and by Aε the
coe�cient in (1.2) it holds that if the solution to (1.2) is such that uε ∈ Hs0(D)∩H1

0 (D)
with s0 >

3
2
then

|uε − uACMS|2H1(D) ≤ CH2 + Cs0,σ,AεH
2s0−3

∑
K∈TH

‖uε‖2
Hs0 (D)

min
e⊂∂K∩Γ

λIe,e
, (1.74)
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where Γ is the set of interior edges, C depends only on f and the shape of the elements

and Cs0,σ,Aε depend on s0, σ, Aε.

For particular geometries (such as regular shaped elements of size H), the work

[20] suggests that there exists αmin independent of H and i such that λe,i ≥ Cαmin
i
H

.

In this particular context we can write the following corollary

Corollary 1.35. If we assume that u ∈ H2(D)∩H1
0 (D) and that there exists αmin > 0

such that

∀e ⊂ Γ, λe,i ≥ αmin
i

H
, (1.75)

with αmin independent of e ∈ Γ, i and H then it holds that

|uε − uACMS|2H1(D) ≤ CH2

(
1 +
‖uε‖2

H2(D)

I

)
, (1.76)

where I is the minimal number of enrichments taken in all edges belonging to Γ, and C
depends only on the shape of the elements σ and on the coe�cient Aε.

Remark 1.36. One can see that the result given by Theorem 1.34 does not rely on a par-

ticular structure assumption (periodicity, . . . ) for the coe�cient Aε. However, it requires
that solution uε is of regularity at least Hs0(D) with s0 >

3
2
. This implies some implicit

assumptions regarding the regularity of the coe�cient Aε, the geometry of D and the

right-hand side f .

Remark 1.37. Such result is an improvement compared to the linear MsFEM, indeed in

the periodic case usually ‖u‖H2(D) ' 1
ε
. Then, the estimate in Corollary 1.35 becomes

in the regime ε ' H :

|uε − uACMS|2H1(D) ≤ CH2 +
Cσ,Aε
I

.

Then the resonance error associated with the linear MsFEM of orderO(1) can be decreased
by adjusting I , the number of enrichments.

Remark 1.38. Numerical experiments show a signi�cant decrease of the error in the

resonance regime compared to the linear MsFEM even for a few enrichments. The behavior

of the error is consistent with the Assumption 1.75.

The special element method is e�ective and decreases the resonance error greatly

compared to conformal versions of MSFEM (for instance linear MsFEM). Moreover, the

enrichments have support in the elements across the edge simplifying the implemen-

tation of the method. We also put the emphasis on the fact that the convergence of the

method is proven for generic Aε without any structure assumptions. However, there

are some drawbacks. First, the decrease of the eigenvalues plays a signi�cant role in

the e�ectiveness of the approach and is not yet understood (Assumption 1.75 has yet

to be proven). Second, the eigenvectors have to be approximated by an FE approach

on �ner grid h. The stability of eigenvalues and eigenvectors regarding the value of h
has yet to be studied. Finally, solving eigenproblems can be a computational challenge

even as an o�ine step.

This approach allows us to understand better how to enrich VΓ e�ciently, and is

the cornerstone to our new method with enriched polynomials.
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The MsFEM enriched method with polynomials

This section presents the main results of Chapter 3 regarding the design of a new

MsFEM enriched method based on polynomials. It is a two-step approach and is simi-

lar to the special �nite element presented in the previous section. The main di�erence

lies in the design of the enrichments. Indeed, our enrichments will be aε-liftings of

polynomials instead of solutions to eigenproblems.

Let e be an interior edge of the coarse mesh (e ⊂ Γ) that is supposed regular in the

sense (3.2), we de�ne φΓ
e,k the edge enrichment of degree k with 1 < k ≤ N such that

on each element K containing the edge e
− div(Aε∇φΓ

e,k) = 0 in K

φΓ
e,k = Pk on e

φΓ
e,k = 0 on ∂K \ e

(1.77)

with Pk a polynomial of order k that vanishes at the vertices of the edge. The support

of φΓ
e,k is thusly the two triangles sharing the edge e.

•

•

φ
Γ e,
k
=

0

•

φ Γ
e,k (x) =

P
k (x)

•
φΓ
e,k = 0

K

Figure 1.11: Sketch of the design of an enrichment

We de�ne the approximation space

VMsFEM,N = Span
(
{φMsFEM

j }j=1..Nbvertex , {φΓ
e,k}e⊂Γ, k=2..N

)
(1.78)

with φMsFEM
j the nodal basis function associated with the vertex i in the linear MsFEM

approach.

Remark 1.39. By de�nition φΓ
e,k is an aε-lifting and thus belongs to VΓ. Hence, adding

φΓ
e,k brings our approximation space closer to VΓ provided the enrichments are di�erent

enough. Moreover, the enrichments can be computed independently for both elements

sharing the edge, hence a signi�cant speed up of the o�ine phase. Note that for the

special element method, the enrichments are solution to eigenvalues problems that cannot

be solved independently for both elements sharing the edges. In our case, the o�ine cost

is thus reduced for two reasons: we solve right-hand side problems rather than eigenvalue

problems, and the problems are posed on a single element rather than two of them.

We proved a similar convergence result as Theorem 1.34

Theorem 1.40. Assume that uε solution to (1.2) belongs to H1
0 (D) ∩ Hs(D) for some

s > 3
2
and that f ∈ L2(D). We consider TH a regular mesh of D in the sense (3.2) with

quadrangular (or triangular) elements and characteristic lengthH . Denoting by uH,N the

solution of the Galerkin problem associated with (1.2) on the space VMsFEM,N , it holds

that

‖uε − uH,N‖2
H1(D) ≤ C

(
H2 + ‖uε‖2

Hs(D)

H2(min(s,N+1)−1)

N2(s−1)

)
, (1.79)
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where C depends on the contrast of Aε and on s the regularity of u. It is to be noted that
C is independent of H , N and u.

Remark 1.41. The result is similar to Theorem 1.34. However, the convergence rate is

explicit with respect to N which is the minimum degree of enrichments and H the size

of the coarse mesh. Although there are no particular assumptions on the regularity of

the coe�cient Aε or any geometry assumption (such as periodicity, . . . )in order to get this

result, the solution has to be continuous on the edges that is Hs(D) with 1 < s. The

assumption 3/2 < s is made to encompass the case of triangles and quadrangles though

it can be relaxed to s > 1 in the case of quadrangles. Such regularity is usually achieved

when Aε ∈ L∞(D) and D is smooth enough, usually a convex domain or a polygonal

domain without inward cusps.

Corollary 1.42. Under the same assumptions as Theorem 1.40 and asssuming that Aε
is Zdε-periodic, s = 2, N > 2 and H ' ε then we have

‖uε − uH,N‖2
H1(D) ≤ C(H2 +

1

N2
), (1.80)

with C that depends on the contrast of Aε and of the shape of the elements.

Remark 1.43. As for the special element method, one can adjust the number of enrich-

ments in order to reduce the resonance error. Compared to the result of Corollary 1.35,

the rate with respect to the number of enrichments is better. Numerical experiments on

periodic cases show that our method performs better than the special element methods.

Numerical tests show that this method is e�cient and e�ectively cancels the res-

onance error provided that the degree N of enrichments is high enough (i.e. of the

order of 1/ε). An a posteriori estimator has been designed though it concerns only the

global degree and cannot be used to re�ne the degree (number of enrichments) locally

edge by edge.

The method performs well on classical periodic examples as well as cases whenAε
is not periodic.

This method is local and conformal. All enrichments and basis functions are com-

puted locally element by element in contrast to MsFEM oversampling method. How-

ever, the coarse system to solve is larger as we have added enrichments. For instance,

we consider a degree N and a coarse mesh of Q = (0, 1)2
with quadrangular ele-

ments of size H . The Table 1.1 describes the di�erences in term of degree of freedom

and sparsity of the coarse system where MsFEM-lin corresponds to the linear MsFEM

approach and MsFEM-N corresponds to our approach with enrichments of degree N .

MsFEM-lin MsFEM-N

Dof 1/H2 (1 + 2N)/H2

Matrix coe� 1/H4 4N2/H4

Non-zeros 9/H2 7N2/H2

Ratio 9H2 7/4H2

Table 1.1: Number of DOF, non-zeros coe�cients in the coarse system and its ratio

compared to the size of the system for MsFEM-lin and MsFEM-N methods

When we compare oversampling MsFEM or linear MsFEM to our method MsFEM-

N, the number of degrees of freedom is multiplied by roughly 1 + 2N . Such increase



32 Chapter 1. Introduction

slows down the online phase as a bigger linear system has to be solved. However, we

recall that H is supposed to be coarse so even with such a ratio the online phase re-

mains fast.

We consider now the sparsity of the coarse linear system associated with the on-

line phase. In term of memory cost the ratio of non-null coe�cient over the size of

the matrix is better for the online coarse linear system associated with our enriched

method than for the one with standard linear MsFEM approach. Also, during numeri-

cal experiment we did not notice big disparities between the time of resolution for our

coarse systems and its equivalent in terms of FE element coarse system.

Remark 1.44. All these results on sparsity and number of degrees of freedom is also true

for the Special �nite element method. Indeed, the size of the coarse linear system to solve

during the online phase is the same as our method when the same number of enrichment

is used (a degreeN corresponds toN − 1 eigenvector enrichment) since the support of the

enrichment functions associated with one edge are the same.

1.5 Perspectives

In this thesis, the work was divided into three parts: the study of the �uctuations in

the context of stochastic homogenization (see Chapter 2), the design of an enriched

multi-scale numerical approach (see Chapter 3) and the implementation of multi-scale

methods in a Finite Element software (see Chapter 4).

1.5.1 Stochastic homogenization

Following Chapter 2, a theoretical study of the �uctuations in the weakly stochastic

context allowed us to show that in this case the law of a family of quantities of interest

can be inferred by knowing the structure of the random coe�cientAε. Indeed, for such

quantities of interest the law can be characterized simply in function of a fourth-order

tensor Q. This abstract object has no analytical formula in general. That is why, we

designed and studied a numerical approach to approximateQ. Numerical experiments

showed that our approach yields an accurate approximation ofQ, even in non-weakly

stochastic cases.

One could consider studying the �uctuations in another weakly stochastic frame-

work. We considered a periodic coe�cient with random defects with high probability

of occurrence but very small e�ect. We could also study a periodic coe�cient with

defects which have a signi�cant impact but a small probability to occur:

Aε(x, ω) = Aper(
x

ε
) +

∑
k∈Zd

1Q+k(
x

ε
)Xk(ω), (1.81)

with Xk i.i.d. variables such that P (Xk = 0) = 1− η and P (Xk = M) = η with M of

order 1 and η � 1.

The defect would be considered as a rare event. Industry-wise, this case would be

interesting as it would allow us to improve risk assessment in the case of rare failures

in the material design.
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Another question of interest would be to determine how to compute the mean of

uε, Note indeed that, in (1.24), we substract E[uε], an object that is di�cult to compute.

It would be useful to design a quantity of interest depending on uε and u? rather than

uε and E[uε]. We refer to Remark 2.1 in Chapter 2 for a more detailed discussion in

that direction.

Also, the heart of our numerical approach is to approximate Q by solving PDE on

large domains with periodic conditions for a number of realizations in parallel and

then to compute an empirical covariance. We studied the behavior of our approxima-

tion with respect to the size of the domain with quantitative convergence estimates.

However, numerical experiments seem to indicate that a very large number of realiza-

tions is needed in order to get accurate results. Hence, there is a need to �nd better

ways to compute the covariance. To that end, one could think of variance reduction

methods such a control variate or importance sampling. The ideas developed in [14]

and [65] to reduce the variance when approximating A? could perhaps be used here.

1.5.2 MsFEM enriched method

In Chapter 3, we designed an enriched MsFEM method that cancels the resonance

error when enough enrichments are added. The implementation of the method is

straightforward, the enrichments can be computed independently element by element

in parallel. It is an improvement compared to spectral type methods as the enrichments

are neither solution to coupled problems on two elements nor solution to eigenprob-

lems but solutions to elliptic problems with Dirichlet boundary conditions reducing

signi�cantly the computation time. The method is also conformal and does not suf-

fer from reconstruction in order to get �uxes or stresses. The error estimates neither

depend on the regularity of Aε nor on its structure (no periodicity or stationarity re-

quired) provided the solution uε is continuous on the domain D.

The proofs of convergence rely heavily on the symmetry of the problem as energy

minimizing arguments are used to get error estimates. In addition, the orthogonal

decomposition (1.60) is pivotal in this approach. As linear MsFEM gets error estimates

even in the non-symmetric case and in the regime ε � H , though for Aε that are

periodic, one could try to adapt the proofs to our approach. The advantage would

be two-fold: show that the lack of symmetry does not impair the e�ectiveness of the

method; and provide error estimates when H � ε, the current behavior is not known

when ε→ 0 andH is �xed. It only describes the behavior best in the resonance regime.

It is obvious to transpose the proof from the linear MsFEM error estimate to our case.

The main idea is to compare the approximation to the homogenized solution. However,

at some point a crude triangle inequality is used and one term does not depend on our

approach but rather on a periodic homogenization result. Finally, in the regime ε→ 0
and whenH is �xed we get the same estimate as the linear MsFEM in the periodic case

(see Theorem 1.20).

Another limitation is that the method can only be used for 2D cases as we de�ne

our enrichments on edges. However, it could be possible to design a similar method in

3D if we consider multiple type of enrichments: edges and faces interface functions. If

the mesh is regular (for instance cube shaped), the trace and polynomials results would

still apply. However, computationally speaking the method would be less interesting

as the number of enrichments would increase (6 enrichments per degree per element

instead of 4 in the 2D case) and the coarse linear system could reach quickly a critical

size.
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Finally, an a posteriori estimator has been designed, it allows us to re�ne the de-

gree edge by edge with respect to the polynomial degree. This estimator, though use-

ful, lacks accuracy in some regimes (for instance when high polynomial degrees are

considered). This a posteriori estimator is based on a simple approach with residuals

and �nding a more relevant estimator would be possible using more sophisticated ap-

proaches. Getting an e�cient a posteriori estimator is crucial as one drawback of our

method is the associated increase of the size of the coarse linear system with respect to

the polynomial degree used. If one chooses uniform re�nement, the number of DOF of

the coarse problem is increased by the number of edges times the polynomial degree

considered. Hence, the online step can lead to solve large linear systems when high

degree are used, especially compared to other methods such as MsFEM oversampling

that gives similar errors with much smaller systems to solve. An e�ective a posteriori

estimator would limit the increase in size of the coarse system while ensuring good

accuracy.

1.5.3 MsFEM implementation

Following Chapter 4, multiple MsFEM variants have been implemented as templates

in the Finite Element software FreeFem++. The MsFEM linear, oversampling and

Crouzeix-Raviart methods are available. MsFEM approaches are intrusive, making

them di�cult to insert in a code. Also, with the numerous variants existing it would

not be wise to implement it as a hard part of a code. However, some interesting imple-

mentation and theoretical projects regarding MsFEM can be explored.

Firstly, it would be interesting to combine MsFEM to Domain Decomposition Meth-

ods. If one aim at solving a multi-scale problem at the �ne scale, usually direct meth-

ods to solve the system fail because the number of degrees of freedom is too large.

Hence, using an iterative method is necessary. A critical step to get a�ordable time is

to precondition the system in order to reduce the number of iterations. Domain de-

composition methods such as the Schwarz method could be used as preconditioners.

Sometimes such preconditioners are not su�cient and second-level preconditioners

have to be used. Usually, the main preconditioner results from local independent com-

putations to maximize parallelization and reducing execution time. However, it often

lacks global information to link together the local computations that impairs the pre-

conditioning e�ectiveness. Hence, introducing a coarse model (inexpensive to solve) as

a second-level preconditioner could signi�cantly improve the approach. In that sense

MsFEM approximation are really suited to that role as it falls in a multi-query context:

we can a�ord to have an o�ine phase as we need a quick online phase that will be

repeated a lot of times. Numerical experiments (see Chapter 4) show that a second

level preconditioning with Jacobi method as a �ne preconditioner and linear MsFEM

as coarse space gives good results: the number of steps needed by GMRES decreases

sharply (factor 1 to 3). Also, the implementation of such a preconditioner is adaptable

easily within the FreeFem++ framework (see Chapter 4). Some works have been ini-

tiated in that direction. One can see the works of Gander (see [40]) and Kornhuber (see

[62]).

Finally, it would be also interesting to explore coupled formulations where multiple

multi-scale approaches are used with respect to their speci�city and the local change of

the material that is in the function Aε. For instance, when ε is very small, we are close

to an homogenized regime so HMM method would be more appropriate. The MsFEM
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method is e�cient when ε is small but not too small. Last, in the subdomains where

Aε is not oscillating too much using P1 FE would be su�cient. An attempt to couple

P1 FE with MsFEM is presented in Chapter 4, though the numerical analysis has yet to

be performed. Hence, locally choosing the method according to the oscillations of the

coe�cient would seem a good idea. However, with regard to proofs of convergence,

since di�erent arguments are used from one approach to another, �nding a general

formulation that would encompass all these arguments could be a challenge.





CHAPTER 2

NUMERICAL APPROXIMATION OF FLUCTUATIONS IN

STOCHASTIC HOMOGENIZATION

This chapter corresponds to a manuscript in preparation, co-authored with F. Legoll.

We study a method to approximate the �uctuations of the solution to an elliptic par-

tial di�erential equation with highly oscillatory and random coe�cients. Considering

a weakly random setting (i.e. the case of periodic coe�cients perturbed by a small ran-

dom contribution), we show that the �uctuations of the solution are fully characterized

by a fourth-order tensor, which is deterministic and independent of the right-hand side

of the highly oscillatory problem. We also discuss how to practically approximate this

tensor. We provide an extensive set of numerical experiments that illustrate our theo-

retical results, and also explore numerically the case of fully random (i.e. non weakly

random) problems.

2.1 Introduction

We consider the problem{
− div

[
A
( ·
ε
, ω
)
∇uε(·, ω)

]
= f in D,

uε(·, ω) = 0 on ∂D,
(2.1)

where D ⊂ Rd
is a bounded domain and f ∈ L2(D). In this equation, the matrix-

valued coe�cient A is assumed to be bounded and bounded away from 0, random and

stationary. For the sake of simplicity, we furthermore assume thatA is symmetric. The

limit behaviour, as ε goes to zero, of the solution uε to (2.1) is of major practical interest.

It is described by homogenization theory (see e.g. the classical monographs [1, 58, 75]

for some general exposition), that we now brie�y recall.

Let

Q =

(
−1

2
,
1

2

)d
and letwp be the corrector function in the direction p ∈ Rd

, that is the solution (unique

up to the addition of a random constant) to− div[A(p+∇wp)] = 0 in Rd,

∇wp is stationary, E
[∫

Q

∇wp
]

= 0,
(2.2)
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where the notion of stationarity is de�ned by (2.5) below. The homogenization theory

states that, as ε vanishes, uε approaches u?, the solution to{
− div[A?∇u?] = f in D,

u? = 0 on ∂D,
(2.3)

where the homogenized matrix A? is deterministic, constant and given by

∀p ∈ Rd, A?p = E
[∫

Q

A(p+∇wp)
]
. (2.4)

Since A is symmetric, A? is also symmetric.

The notion of (discrete) stationarity employed in (2.2) is de�ned as follows. We

consider the probability space (Ω,F ,P). We assume that the group (Zd,+) acts on Ω,

denote this action by (τk)k∈Zd , and assume that this action preserves the measure P, in

the sense that

∀k ∈ Zd, ∀A ∈ F , P(τkA) = P(A),

and that it is ergodic: for any A ∈ F , we have[
∀k ∈ Zd, τkA = A

]
=⇒ P(A) = 0 or 1.

A function F ∈ L1
loc(Rd, L1(Ω)) is said to be (discrete) stationary if

∀k ∈ Zd, F (x+ k, ω) = F (x, τkω) a.e. in x, almost surely. (2.5)

In practice, when d ≥ 2, the solution wp to (2.2) (and hence A?) cannot be computed.

The homogenized matrix A? is often approximated by A?N(ω), de�ned by

∀p ∈ Rd, A?N(ω)p =
1

|QN |

∫
QN

A(·, ω)
(
p+∇wNp (·, ω)

)
, (2.6)

where wNp is the solution (unique up to the addition of a random constant) to the

following random equation, posed on a �nite domain:{
− div

[
A(·, ω)

(
p+∇wNp (·, ω)

)]
= 0 in QN ,

wNp (·, ω) is QN -periodic,
(2.7)

with, for instance,

QN = ∪
|k|∞≤N

Q+ k =

(
−N − 1

2
, N +

1

2

)d
(2.8)

where we have set |k|∞ := max
1≤i≤d

|ki| for any k ∈ Zd.

Besides the averaged behavior of uε on large space scales (which is given by u?
solution to (2.2)–(2.3)–(2.4)), a question of interest is to understand how much uε �uc-

tuates around its expectation E[uε]. This question has been comprehensively studied

(see [7, 59]) for the problem

−∆uε + qε(x, ω)uε = f in Ω, uε = 0 on ∂Ω.

For the equation of interest here, namely (2.1), the question has been studied in the

one-dimensional case (see [8, 19]). We also wish to cite the recent, theoretically ori-

ented contribution [31], addressing (2.1) in the case when the di�erential operators
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are discrete (the di�erential operators in (2.1) are replaced by �nite di�erences) and

the equation is posed on the whole space. It is shown in [31] that the following prop-

erties hold true (for notational simplicity, we again use here the symbol ∇ for �nite

di�erence). For any 1 ≤ i, j ≤ d, denote by

ρi,j(x, ω) = (ei +∇wi) · A(ej +∇wj)− ej · A?∇wi − ei · A?∇wj (2.9)

the corrected energy function (we follow here the terminology of [31]), where wi de-

notes the corrector, solution to (2.2) in the direction ei, and A? is the homogenized

matrix (2.4). De�ne the fourth order tensor

Q = lim
L→+∞

QL (2.10)

with, for any 1 ≤ i, j, k, ` ≤ d,

QLi,j,k,` = Cov

(
1

|QL|

∫
QL

ρi,j,

∫
QL

ρk,`

)
. (2.11)

Given a right-hand side function f in (2.1) and a test function g, and assuming that they

both are regular, compactly supported functions and that they both are the divergence

of some vector �eld, the authors of [31] consider the quantity of interest

Iε(f, g) = ε−d/2
∫
Rd

(uε(·, ω)− E[uε]) g, (2.12)

where the integral over Rd
means the sum over all lattice points (remember that,

in [31], uε(·, ω) is de�ned on a lattice). The quantity Iε allows to understand the local

�uctuations of uε. For instance, g can be the indicator function 1K of a domain of in-

terest K , and then Iε(f, g) measures the �uctuations of the average of uε in K around

its mean. Note that, when ε is small, the �uctuations of uε are small, since uε is close

to its deterministic limit u?. This motivates the rescaling factor ε−d/2 in (2.12), in order

for Iε(f, g) to converge to a non-trivial limit.

Remark 2.1. Note that, in the de�nition of Iε(f, g), the integrand is ε−d/2(uε − E[uε]),
which is di�erent from ε−d/2(uε − u?), a quantity which is easier to compute. For d > 1,
it turns out that ε−d/2(E[uε] − u?) does not converge to 0. Considering for instance the

periodic case (see e.g. [2]), it holds that uε − u? is of order ε for any dimension d. In the

random case, it is thus expected that ε−d/2(E[uε] − u?) converges to a non-trivial limit

for d = 2 and diverges for d > 2. It is thus not interesting to consider the quantity of

interest ε−d/2
∫
Rd

(uε(·, ω)− u?) g. However, it might be possible to consider the quantity

Jε(f, g) := ε−d/2
∫
Rd

(uε(·, ω)− E[uε,1]) g for a well-chosen random function uε,1, such

that E[uε,1] is easier to compute than E[uε] and such that the laws of Iε(f, g) and Jε(f, g)
converge to the same limit when ε→ 0. We refer e.g. to [9, 38] and do not pursue in that

direction.

It is shown in [31] that the random variable Iε converges in law to a Gaussian

random variable:

Iε(f, g)
L−→
ε→0
N (0, σ2), (2.13)

where N (0, σ2) is a Gaussian random variable with zero mean and variance given by

σ2 =

∫
Rd

(∇u? ⊗∇v?) : Q : (∇u? ⊗∇v?). (2.14)
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In the above formula, Q is the fourth order tensor de�ned by (2.10) and we have de-

noted by u? and v? the solutions to the homogenized equation with right-hand sides f
and g, respectively.

The practical interest of (2.13) is that the tensor Q is independent from f and g.

Once evaluated, the computation of σ de�ned by (2.14) is inexpensive, since it only

involves solving homogenized problems.

Somewhat schematically stated, the conclusion of the above mentioned contribu-

tions (namely [7, 59, 8, 19, 31]) is therefore that the �uctuations of the solution can

essentially be determined independently from the right-hand side f , in some appro-

priate regime at least. Our aim is to elaborate on all these theoretical contributions to

build an e�cient numerical strategy.

The purpose of this article is threefold.

First, we prove (this is the content of Sections 2.3 and 2.4) that essentially (and in

a sense to be made precise below) the theoretical results obtained in [31] for discrete

di�erential operators carry over to the case of continuous di�erential operators, at least

in the setting of weakly random problems.

The latter notion has been introduced in [14, 26, 66] and is recalled in Section 2.2.

In short, the weakly random case consists in assuming that the random matrixA is the

sum of a periodic coe�cient with a small random perturbation:

A(x, ω) = Aper(x) + ηA1(x, ω) (2.15)

where Aper is a Zd-periodic matrix, bounded from above and bounded away from 0,

and where A1 a stationary bounded matrix. The parameter η is assumed to be small:

η � 1. We also assume Aper and A1 to be symmetric.

In this particular setting made precise in Section 2.2, we prove our �rst main result,

stated in Theorem 2.7 below. It extends to our setting the results of [31], at least when

we truncate our quantities of interest to the �rst order in the formal expansion in η.

The proof of Theorem 2.7 is performed in Sections 2.3 and 2.4.

The second purpose of this article stems from the fact, already pointed out above,

that one cannot access in practice to the exact correctorswp solutions to (2.2). It is thus

not possible to compute the tensorQL de�ned by (2.9) and (2.11). Using the truncated

correctorswNp solutions to (2.7), it is natural to introduce an approximationQL,N ofQL
(see (2.42) below). In the weakly random case, we then show that this approximation

is consistent, in the following sense. At the leading order in η, QL,N ≈ η2QL,N,1 and

QL ≈ η2QL,1. We then show (see Theorem 2.10 below) that QL,N,1 converges to Q1

whenL→∞ andN satis�esN > L. The proof of Theorem 2.10 is given in Section 2.5.

The third purpose of this article (which is achieved in Section 2.6) is to provide

an extensive set of numerical experiments that suggest that, for fully random contin-

uous di�erential operators, the conclusions of Theorems 2.7 and 2.10 are again true.

Although, to the best of our knowledge, there is no theoretical proof of this, and al-

though we have been unable so far to extend our own proof of the weakly random

case to the fully random case, we believe that the numerical tests presented in Sec-

tion 2.6 are a strong indication toward the fact the formula holds with a large degree

of generality. We hope that our observations will motivate further research in this

direction.
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2.2 Weakly random case and main results

We consider problem (2.1) with a coe�cient A of the form (2.15). For simplicity, we

choose 
A1(x, ω) =

∑
k∈Zd

1Q+k(x)Xk(ω) Idd,

Xk are i.i.d., almost surely bounded random variables,

E[X0] = 0,

(2.16)

where Idd is the d-dimensional identity matrix and where we recall that

Q =

(
−1

2
,
1

2

)d
.

Remark 2.2. Note that the assumptionE[X0] = 0 is made without any loss of generality.

Indeed, should E[X0] be di�erent from 0, it is always possible to write (2.15)–(2.16) in the

form

A(x, ω) = Aper(x) + η E[X0] + η
∑
k∈Zd

1Q+k(x)
(
Xk(ω)− E[X0]

)
Idd,

where the random variables Xk(ω) − E[X0] have a vanishing expectation and where

Aper + η E[X0] is a Zd-periodic matrix, which is bounded from above and bounded away

from 0 when η is su�ciently small.

Remark 2.3. Other cases alternative to (2.16) could be considered, such as for example

A1(x, ω) =
∑
k∈Zd

ϕper(x)1Q+k(x)Xk(ω) Idd

for some Zd-periodic function ϕper. For the sake of simplicity, we do not pursue in that

direction.

As shown in [14, 66], an expansion of the oscillatory solution, the corrector, the

homogenized matrix and the homogenized solution in power of η can be obtained,

respectively. More precisely, we have

uε = u0
ε + η u1

ε +O(η2),

∇wp = ∇w0
p + η∇w1

p +O(η2),

A? = A?per +O(η2),

u? = u0
? +O(η2).

(2.17)

In the above expansion, u0
ε corresponds to the solution to (2.1) for the deterministic

periodic coe�cient Aper(·/ε), that is

− div
[
Aper

( ·
ε

)
∇u0

ε

]
= f in D, u0

ε = 0 on ∂D, (2.18)

while u1
ε is the term of �rst order in the expansion (in powers of η) of uε, namely the

solution to{
− div

[
Aper

( ·
ε

)
∇u1

ε(·, ω)
]

= div
[
A1

( ·
ε
, ω
)
∇u0

ε

]
in D,

u1
ε(·, ω) = 0 on ∂D.

(2.19)
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The functionw0
p is the corrector in the direction p solution to (2.2) for the deterministic

periodic coe�cient Aper, namely a solution to{
− div[Aper(p+∇w0

p)] = 0 in Rd,

w0
p is Zd-periodic,

(2.20)

while w1
p is the solution to− div[Aper∇w1

p] = div[A1(p+∇w0
p)] in Rd,

∇w1
p is stationary, E

[∫
Q

∇w1
p

]
= 0.

(2.21)

Lastly, A?per and u0
? are the e�ective coe�cient (2.4) and the corresponding homoge-

nized limit (2.3) for the deterministic periodic coe�cient Aper, respectively.

Remark 2.4. The topology in which the expansions (2.17) hold can be made more precise:

we have ∥∥∥uε(·, ω)−
[
u0
ε + η u1

ε(·, ω)
]∥∥∥

H1(D)
≤ Cη2

a.s.,√
E
∫
Q

∣∣∇wp −∇(w0
p + η w1

p)
∣∣2 ≤ Cη2,∥∥u? − u0

?

∥∥
H1(D)

≤ Cη2,

for some C independent of η, ε and ω.

Remark 2.5. Note that, in (2.17), the �rst-order term in the expansion of A? vanishes. In
full generality, we have, for any p ∈ Rd

,

A?p = A?perp+ ηE
[∫

Q

A1(p+∇w0
p)

]
+ ηE

[∫
Q

Aper∇w1
p

]
+O(η2).

In our setting, we now recall that the expectation of A1 vanishes, and hence that of w1
p

also, in view of (2.21). The last two terms in the above equation thus vanish.

2.2.1 First main result

In the spirit of the quantity (2.12) considered in [31], we consider here the quantity of

interest

Iε(f, g) = ε−d/2
∫
D

(uε(·, ω)− E[uε]) g (2.22)

where g ∈ L2(D) and uε is the solution to problem (2.1) with right-hand side f ∈
L2(D) (we recall that the di�erential operators in (2.1) are continuous di�erential op-

erators, in contrast to those in [31]; note also that the integral in (2.22) is a true integral

and not a discrete sum as in (2.12)).

Using (2.17), we can expand (2.22) in powers of η, and �nd that

Iε(f, g) = η I1
ε (f, g) + ε−d/2 η2Cη

ε (ω) (2.23)

with |Cη
ε (ω)| ≤ Cη2

almost surely (for some C independent of η, ε and ω), and where

I1
ε (f, g) = ε−d/2

∫
D

u1
ε g. (2.24)
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Indeed, we compute that

Iε(f, g) = ε−d/2
(
η

∫
D

(u1
ε − E[u1

ε]) g +O(η2)

)
and we observe that E[u1

ε] = 0 in view of (2.19) and (2.16).

As in [31], we introduce the corrected energy function ρi,j de�ned by (2.9) (where

now all the di�erential operators are continuous di�erential operators) and the fourth

order tensor QLi,j,k,` de�ned by (2.11):

QLi,j,k,` = Cov

(
1

|QL|

∫
QL

ρi,j,

∫
QL

ρk,`

)
. (2.25)

This quantity can be expanded in a series in powers of η, as shown below.

Lemma 2.6. Assume that (2.15) and (2.16) hold. Then the fourth order tensor (2.25)

satis�es ∣∣QL − η2QL,1
∣∣ ≤ C|QL|η3, (2.26)

for some fourth order tensor QL,1 (the expression of which is given by (2.29) below) and

where C is independent of η and L.

Proof of Lemma 2.6. Using the de�nition (2.9) of ρi,j and the expansions (2.15) and (2.17),

we expand the corrected energy function as

ρi,j = ρper
i,j + η ρ1

i,j +O(η2)

with

ρper
i,j = (ei +∇w0

i ) · Aper(ej +∇w0
j )− ej · A?per∇w0

i − ei · A?per∇w0
j

and

ρ1
i,j = ∇w1

i · Aper(ej +∇w0
j ) + (ei +∇w0

i ) · Aper∇w1
j

+ (ei +∇w0
i ) · A1(ej +∇w0

j )− ej · A?per∇w1
i − ei · A?per∇w1

j . (2.27)

More precisely, we have√
E
∫
Q

∣∣ρi,j − (ρper
i,j + η ρ1

i,j)
∣∣2 ≤ Cη2, (2.28)

for some C independent of η.

We note that ρper
i,j is deterministic and that the expectation of ρ1

i,j vanishes, because

E[A1] = 0. We de�ne

QL,1i,j,k,` = E
(

1

|QL|

∫
QL

ρ1
i,j

∫
QL

ρ1
k,`

)
. (2.29)

We introduce ri,j = ρi,j − (ρperi,j )− ηρ1
i,j and using (2.25) it holds that

|QLi,j,k,` − η2QL,1i,j,k,`| = Cov

(
1

|QL|

∫
QL

ηρ1
i,j ,

∫
QL

rk,l

)
+ Cov

(
1

|QL|

∫
QL

ri,j , η

∫
QL

ρ1
k,l

)
+ Cov

(
1

|QL|

∫
QL

ri,j ,

∫
QL

rk,l

)
(2.30)
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We have two crossed terms with r and ρ and one term where only r appears.

By using de�nition of the covariance, the Cauchy-Scwharz inequality and (2.28), it

holds that

Cov

(
1

|QL|

∫
QL

ri,j , η

∫
QL

ρ1
k,l

)
=

1

|QL|
E
[(∫

QL

ri,j − E[

∫
QL

ri,j]

)(∫
QL

ηρ1
k,l

)]
≤ CLη

|QL|
E
[∫

Q

r2
i,j

] [∫
Q

(ρ1
k,l)

2

]
≤ CLη

3, (2.31)

where CL depends on L but not on η. The same estimate holds for the other crossed

term.

We also have by similar arguments

Cov

(
1

|QL|

∫
QL

ri,j ,

∫
QL

rk,l

)
=

1

|QL|
E
[(∫

QL

ri,j − E[

∫
QL

ri,j]

)(∫
QL

rk,l − E[

∫
QL

rk,l]

)]
≤ CLE

[∫
Q

r2
i,j

]
E
[∫

Q

r2
k,l

]
≤ CLη

4, (2.32)

where CL depends on L but not on η. Then collecting (2.31) and (2.32) inserting it in

(2.30) we get (2.26). This concludes the proof of Lemma 2.6.

Inpired by [31], we expect that a result similar to (2.13) holds in our case. More

precisely, we expect that, when ε tends to 0, the quantity Iε(f, g) de�ned by (2.22)

converges to a Gaussian random variable,

Iε(f, g)
L−→
ε→0
N (0, σ2), (2.33)

of mean zero and of variance

σ2 = lim
L→∞

(σL)2
(2.34)

with

(σL)2 :=

∫
D

(∇u? ⊗∇v?) : QL : (∇u? ⊗∇v?), (2.35)

where QL is given by (2.25) and where u? and v? are the solutions to (2.3) with the

right-hand sides f and g, respectively.

We have not been able to show (2.33) in a general random setting. However, we

have shown this result in the case ofweakly random problems, as stated in the following

theorem.

Theorem 2.7. Assume that (2.15) and (2.16) hold, that Aper is an Hölder continuous

function, and that f and g are Hölder continuous. Let I1
ε (f, g), de�ned by (2.23), be the

truncation at the �rst order (in the expansion in powers of η) of the quantity of interest

Iε(f, g) de�ned by (2.22). When ε goes to 0, we have

I1
ε (f, g)

L−→
ε→0
N (0, σ2

1)

i.e. I1
ε (f, g) converges in law to a centered Gaussian random variable of variance

σ2
1 =

∫
D

(∇u0
? ⊗∇v0

?) : Q1 : (∇u0
? ⊗∇v0

?), (2.36)
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where u0
? (resp. v

0
?) is the homogenized solution (see (2.3)) associated to the homogenized

matrix A?per of the periodic coe�cient Aper, with the right-hand side f (resp. g):

− div[A?∇u0
?] = f in D, u0

? = 0 on ∂D, (2.37)

and

− div[A?∇v0
?] = g in D, v0

? = 0 on ∂D. (2.38)

In (2.36), the fourth order tensor Q1
is given by

Q1
i,j,k,` = Var(X0)

(∫
Q

(ei +∇w0
i ) · (ej +∇w0

j )

)(∫
Q

(ek +∇w0
k) · (e` +∇w0

` )

)
.

(2.39)

In addition, denotingQL,1 de�ned by (2.29) the truncation at second order (in the expan-

sion in powers of η) of QL (see (2.26)), we have that

Q1 = lim
L→∞

QL,1. (2.40)

This result shows that, at least when one truncates the formal expansions in η at

the �rst order, the �uctuations of Iε(f, g) are governed by the fourth order tensor Q.

This thus generalizes the results of [31] for continuous di�erential operators, at the

leading order in η.

The proof of Theorem 2.7 falls in two parts:

• in the �rst part (see Section 2.3), we consider the random variable Iε(f, g) (and

more precisely its leading order term I1
ε (f, g)) and establish that it converges in

law to some centered Gaussian random variable (see Proposition 2.12). We also

give an explicit expression for the variance of that Gaussian variable.

• in the second part (see Section 2.4), we consider the fourth order tensor Q (and

more precisely its leading order Q1
), and show that the variance identi�ed in

the �rst step can actually be expressed in terms of Q, u0
? and v0

? , thereby prov-

ing (2.36). This is the purpose of Proposition 2.20.

The proof of Theorem 2.7 is a direct consequence of Propositions 2.12 and 2.20.

Remark 2.8. The Hölder regularity assumption on Aper is useful for two purposes. First,

it implies some regularity on the corrector solution to (2.20), namely that w0
p ∈ C1,α(Q)

(see Lemma 2.13 below). Second, with Aper periodic and Hölder continuous, it is shown

in [18] that the Green function of the operator L := − div[Aper∇·] de�ned on the whole

space Rd
satis�es bounds similar to the Green function of the Laplace equation. These

estimates are next useful in the proof of Proposition 2.20.

2.2.2 Second main result

As pointed out in the introduction, we do not have access to the corrector function,

solution to (2.2) on Rd
. In practice, we only consider the truncated corrector prob-

lem (2.7), posed on the bounded domain QN . We thus do not have access to ρi,j and

QL, respectively de�ned by (2.9) and (2.11).

As for the approximationA?N(ω) ofA? (see (2.6)), it is natural to introduce (similarly

to (2.9)) the random function

ρNi,j(x, ω) = (ei +∇wNi ) ·A(ej +∇wNj )− ej ·A?N(ω)∇wNi − ei ·A?N(ω)∇wNj (2.41)
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and the fourth order tensor QL,N de�ned by

QL,Ni,j,k,` = Cov

(
1

|QL|

∫
QL

ρNi,j,

∫
QL

ρNk,`

)
. (2.42)

We hope that QL,N converges to QL when N → ∞. We are going to show such a

result in a weakly stochastic setting, namely under assumptions (2.15) and (2.16).

We �rst expand in η the tensor QL,N . We have the following result, similar to

Lemma 2.6.

Lemma 2.9. Assume that (2.15) and (2.16) hold. Then the fourth order tensor (2.42)

satis�es ∣∣QL,N − η2QL,N,1
∣∣ ≤ C|QL|η3, (2.43)

where C is independent of η, L and N and where the fourth order tensor QL,N,1 is given
by

QL,N,1i,j,k,` = E
(

1

|QL|

∫
QL

ρN,1i,j

∫
QL

ρN,1k,`

)
(2.44)

with

ρN,1i,j = ∇wN,1i · Aper(ej +∇w0
j ) + (ei +∇w0

i ) · Aper∇wN,1j

+ (ei +∇w0
i ) · A1(ej +∇w0

j )− ej · A?per∇w
N,1
i − ei · A?per∇w

N,1
j (2.45)

and {
− div[Aper∇wN,1p ] = div[A1(p+∇w0

p)] in QN ,

wN,1p is QN -periodic.
(2.46)

In Section 2.5, we prove the following theorem.

Theorem 2.10. Assume that (2.15) and (2.16) hold, and thatAper is an Hölder continuous

function. Then, whenever N > L, we have

lim
L→∞

QL,N,1 = Q1
(2.47)

where Q1
is de�ned by (2.39). More precisely, we show that

∣∣∣QL,N,1 − Q1
∣∣∣ ≤ C

(lnL)2

L
for some C independent of N and L.

This theorem hence means that, at the leading order in η, the computable tensor

QL,N indeed converges to Q when N and L tend to∞ with N > L.

Remark 2.11. In Theorem 2.10, we only consider the case N > L. Indeed, since wN,1p is

QN -periodic, we observe that∫
QN

ρN,1i,j =

∫
QN

(ei +∇w0
i ) · A1(ej +∇w0

j ) = Λij

∑
|k|∞≤N

Xk(ω)

with

Λij =

∫
Q

(ei +∇w0
i ) · (ej +∇w0

j ).

Recalling thatXk are i.i.d. and centered random variables, we observe that, whenN = L,

QN,N,1i,j,k,` =
1

|QN |
ΛijΛk`E

 ∑
|k|∞≤N

Xk(ω)
∑
|p|∞≤N

Xp(ω)

 = ΛijΛk` E(X2
0 ).
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The tensor QN,N,1 hence happens to be independent of N , and equal (see Eq. (2.114),

Lemmas 2.25 and 2.26 below) to the limit ofQL,N,1 when N and L go to∞ with N > L.
This equality of course strongly relies on the fact that we consider a weakly random case,

and thatwN,1p isQN -periodic. This equality can hence not be expected in the full (namely,

not weakly) random case: in general, the tensor QN,N depends on N .

2.3 Limit of (the leading order term of) Iε(f, g)

In this section, we compute the asymptotic law of I1
ε (f, g) when ε → 0, where we

recall that I1
ε (f, g) is the leading order term in the expansion (2.23) in η of the quantity

of interest Iε(f, g).

Proposition 2.12. Assume that (2.15) and (2.16) hold, that Aper is an Hölder continuous

function, and that f and g are Hölder continuous. Let I1
ε (f, g) be de�ned by (2.23)–(2.24).

Then

I1
ε (f, g)

L−→
ε→0
N (0, σ2

1) (2.48)

where σ1 is de�ned by (2.36), where u0
?, v

0
? and Q1

are respectively given by (2.37), (2.38)

and (2.39).

The remainder of this section is devoted to proving Proposition 2.12.

2.3.1 Technical lemmas

We �rst collect here some useful technical results. The two following lemmas can e.g.

be found in [43].

Lemma 2.13. Assume that Aper is an Hölder continuous function. Then the periodic

corrector w0
p solution to (2.20) belongs to C1,α(Q) for some α > 0.

Lemma 2.14. Consider u0
? de�ned by (2.37), where we assume that the right-hand side

f belongs to C0,α(D). Then u0
? belongs to C

2,β(D) for some β > 0.

Lemma 2.15 (Theorem 4 of [4]). Assume that Aper is an Hölder continuous function

and that there exists q > d such that g ∈ Lq(D). Let v0
ε be the solution to (2.1) with the

periodic coe�cient Aper(·/ε) and the right-hand side g, namely the solution to

− div
[
Aper

( ·
ε

)
∇v0

ε

]
= g in D, v0

ε = 0 on ∂D. (2.49)

Then, there exists C <∞ such that, for any ε, we have ‖∇v0
ε‖L∞(D) ≤ C .

This result is also shown in [66, Eq. (32)].

Lemma 2.16. Consider the solution u0
ε to (2.18). Let u

0
? be its homogenized limit, solution

to (2.37). Introduce the two-scale expansion

ũ0
ε = u0

? + ε

d∑
i=1

w0
i

( ·
ε

) ∂u0
?

∂xi

of u0
ε , and consider also the remainder

ruε = ∇u0
ε −∇u0

? −
d∑
i=1

∇w0
i

( ·
ε

) ∂u0
?

∂xi
. (2.50)
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Assume that Aper and f are Hölder continuous functions.

Then, we have that ‖u0
ε − ũ0

ε‖H1(D) ≤ C
√
ε and

‖ruε ‖L2(D) ≤ C
√
ε (2.51)

for some C independent of ε.

Proof of Lemma 2.16. By a classical result of periodic homogenization (see for instance [11,

Theorem 5.13 pp. 41-42] or [58, p. 28]), we have ‖u0
ε− ũ0

ε‖H1(D) ≤ C
√
ε. We next note

that ruε = ∇(u0
ε − ũ0

ε) + ε

d∑
i=1

wi

( ·
ε

)
∇∂u

0
?

∂xi
. We hence obtain

‖ruε ‖L2(D) ≤ ‖u0
ε − ũ0

ε‖H1(D) + ε‖∇2u0
?‖L2(D)

d∑
i=1

‖wi‖L∞(Q).

Using Lemmas 2.13 and 2.14, we deduce (2.51).

Lemma 2.17. Consider u0
? and v

0
? de�ned by (2.37) and (2.38), where we assume that

the right-hand sides f and g belong to C0,α(D). We consider Λ : y 7→ Λ(y) ∈ Rd×d
a

Zd-periodic matrix, with Λ ∈ L∞(Q)d×d. Denote by

Sε = εd
∑

k s.t. Q+k⊂D/ε

(∫
Q

∇u0
?(ε(y + k)) · Λ(y + k)∇v0

?(ε(y + k)) dy

)2

. (2.52)

We have

lim
ε→0

Sε =

∫
D

(
∇u0

?(x) · Λ∇v0
?(x)

)2

dx (2.53)

with Λ =

∫
Q

Λ(y) dy.

Proof. We have pointed out in Lemma 2.14 that u0
? belongs to C2,β(D) for some β > 0,

and likewise for v0
? . We can then write the following Taylor expansion, for any y ∈ Q

and any k such that Q+ k ⊂ D/ε:

∇u0
?(ε(y + k)) = ∇u0

?(εk) + εauε (y, k)

where

auε (y, k) =

∫ 1

0

∇2(u0
?)(ε(ty + k))) · y dt

and where∇2(u0
?) is the Hessian matrix of u0

?. Using the regularity of u0
?, we have

|auε (y, k)| ≤ ‖∇2(u0
?)‖C0(D) |y| ≤ Cd‖u0

?‖C2(D) (2.54)

where Cd only depends on d. Let

J(k, ε) =

∫
Q

∇u0
?(ε(y + k)) · Λ(y + k)∇v0

?(ε(y + k)) dy

and

J0(k, ε) =

∫
Q

∇u0
?(εk) · Λ(y + k)∇v0

?(εk) dy = ∇u0
?(εk) · Λ∇v0

?(εk).
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We �rst see that

|J(k, ε)| ≤ ‖∇u0
?‖C0(D)‖Λ‖L∞(Q)‖∇v0

?‖C0(D) (2.55)

and likewise for J0(k, ε). By de�nition, we have Sε = εd
∑

k s.t. Q+k⊂D/ε

(
J(k, ε)

)2
. Let

Tε = εd
∑

k s.t. Q+k⊂D/ε

(
J0(k, ε)

)2
.

We see that

Sε − Tε = εd
∑

k s.t. Q+k⊂D/ε

(
J(k, ε)− J0(k, ε)

)(
J(k, ε) + J0(k, ε)

)
,

hence, using the bounds (2.55) on J(k, ε) and J0(k, ε),

|Sε − Tε|

≤ 2 εd ‖∇u0
?‖C0(D) ‖Λ‖L∞(Q) ‖∇v0

?‖C0(D)

∑
k s.t. Q+k⊂D/ε

∣∣∣J(k, ε)− J0(k, ε)
∣∣∣

≤ Cεd+1
∑

k s.t. Q+k⊂D/ε

∫
Q

∣∣auε (y, k) · Λ(y + k)∇v0
?(εk)

∣∣ dy
+ Cεd+1

∑
k s.t. Q+k⊂D/ε

∫
Q

∣∣∇u0
?(εk) · Λ(y + k) avε(y, k)

∣∣ dy
+ Cεd+2

∑
k s.t. Q+k⊂D/ε

∫
Q

|auε (y, k) · Λ(y + k) avε(y, k)| dy.

Using the bound (2.54), we deduce that

|Sε − Tε| ≤ Cεd+1
∑

k s.t. Q+k⊂D/ε

‖u0
?‖C2(D)‖Λ‖L∞(Q)‖v0

?‖C2(D) ≤ Cε. (2.56)

We next observe that

Tε = εd
∑

k s.t. Q+k⊂D/ε

(
J0(k, ε)

)2

= εd
∑

k s.t. Q+k⊂D/ε

(
∇u0

?(εk) · Λ∇v0
?(εk)

)2

.

We therefore note that Tε is a Riemann sum. When ε goes to 0, it thus converges to∫
D

(
∇u0

? · Λ∇v0
?

)2
. Collecting this limit with (2.56), we obtain (2.53). This concludes

the proof of Lemma 2.17.

2.3.2 Proof of Proposition 2.12

We are now in position to prove Proposition 2.12. For conciseness, the dependence of

I1
ε (f, g) upon f and g is not be made explicit here.

The leading order term I1
ε , de�ned by (2.24), of the quantity of interest (2.22), sat-

is�es (in view of the variational form associated to (2.49))

I1
ε = ε−d/2

∫
D

u1
ε g = ε−d/2

∫
D

(∇u1
ε)
TAper

( ·
ε

)
∇v0

ε .
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Using the symmetry of Aper, we obtain

I1
ε = ε−d/2

∫
D

(∇v0
ε)
TAper

( ·
ε

)
∇u1

ε.

Using the equation (2.19) satis�ed by u1
ε and next (2.16), we obtain

I1
ε = −ε−d/2

∑
k∈Zd

Xk(ω)

∫
D

1Q+k

( ·
ε

)
∇v0

ε · ∇u0
ε,

where we note that only a �nite number of indices k contribute to the above sum.

Using Lemma 2.16 and denoting by ∇W 0
the matrix given by (∇W 0)i,j =

∂w0
j

∂xi
,

we have

∇u0
ε =

[
Idd +∇W 0

( ·
ε

)]
∇u0

? + ruε

and likewise for v0
ε . It follows that I1

ε reads as

I1
ε = −(Cε

1 + Cε
u + Cε

v − Cε
r ), (2.57)

with Cε
1 , Cε

u, Cε
v and Cε

r respectively de�ned by

Cε
1 = ε−d/2

∑
k∈Zd

Xk(ω)

∫
D

1Q+k

( ·
ε

)
×
[(

Idd +∇W 0
( ·
ε

))
∇v0

?

]
·
[(

Idd +∇W 0
( ·
ε

))
∇u0

?

]
and

Cε
u = ε−d/2

∑
k∈Zd

Xk(ω)

∫
D

1Q+k

( ·
ε

)
ruε · ∇v0

ε ,

Cε
v = ε−d/2

∑
k∈Zd

Xk(ω)

∫
D

1Q+k

( ·
ε

)
rvε · ∇u0

ε,

Cε
r = ε−d/2

∑
k∈Zd

Xk(ω)

∫
D

1Q+k

( ·
ε

)
rvε · ruε .

We successively study the limit when ε→ 0 of Cε
1 , Cε

u, Cε
v and Cε

r .

Step 1: limit of Cε
u and C

ε
v

We show that lim
ε→0

E
[
(Cε

u)
2
]

= 0. Since Xk are i.i.d. centered random variables, we

compute that

E
[
(Cε

u)
2
]

= ε−d
∑
k∈Zd

Var(X0)

[∫
D

1Q+k

( ·
ε

)
ruε · ∇v0

ε

]2

≤ ε−d Var(X0)
∑
k∈Zd

∫
D

1Q+k

( ·
ε

)∫
D

1Q+k

( ·
ε

) ∣∣ruε ∣∣2 ∣∣∇v0
ε

∣∣2.
Using Lemma 2.15 and the fact that

∫
D

1Q+k

( ·
ε

)
≤ εd, we get

E
[
(Cε

u)
2
]
≤ Var(X0) ‖∇v0

ε‖2
L∞(D)

∑
k∈Zd

∫
D

1Q+k

( ·
ε

) ∣∣ruε ∣∣2
= Var(X0) ‖∇v0

ε‖2
L∞(D)‖ruε ‖2

L2(D).
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Using Lemma 2.16, we deduce that

E
[
(Cε

u)
2
]
≤ Cε. (2.58)

Of course the same result holds for Cε
v .

Step 2: limit of Cε
r

By de�nition (see (2.50)), we have ruε = ∇u0
ε − ∇u0

? −
d∑
i=1

∇w0
i

( ·
ε

) ∂u0
?

∂xi
. In view of

Lemmas 2.13 and 2.15, we know that ‖∇w0
i ‖L∞(Rd) ≤ C and that ‖∇u0

ε‖L∞(D) ≤ C .

Furthermore, since f is a Hölder continuous function, we know by elliptic regularity

(see Lemma 2.14) that u0
? belongs to C2,β(D) for some β > 0. This implies that u0

?

belongs to W 1,∞(D). We thus deduce that

‖ruε ‖L∞(D) ≤ C (2.59)

for some C independent of ε.
We now compute E

[
(Cε

r )
2
]
. We have that

E
[
(Cε

r )
2
]

= ε−d
∑
k∈Zd

Var(X0)

[∫
D

1Q+k

( ·
ε

)
ruε · rvε

]2

≤ ε−d Var(X0)
∑
k∈Zd

∫
D

1Q+k

( ·
ε

)∫
D

1Q+k

( ·
ε

) ∣∣ruε ∣∣2 ∣∣rvε ∣∣2
≤ Var(X0) ‖ruε ‖2

L∞(D)

∑
k∈Zd

∫
D

1Q+k

( ·
ε

) ∣∣rvε ∣∣2
= Var(X0) ‖ruε ‖2

L∞(D) ‖rvε‖2
L2(D).

Using the bound (2.59) for ‖ruε ‖L∞(D) and Lemma 2.16, from which we infer that ‖rvε‖L2(D) ≤
C
√
ε, we get that

E
[
(Cε

r )
2
]
≤ Cε. (2.60)

Step 3: limit of Cε
1

We prove that Cε
1 converges in law to a Gaussian random variable. To that aim, we

introduce

Λ(y) =
(

Idd +∇W 0(y)
)T (

Idd +∇W 0(y)
)

and

ψ(x, y) = (∇v0
?(x))TΛ(y)∇u0

?(x), (2.61)

so that Cε
1 can be recast as

Cε
1 = ε−d/2

∑
k∈Zd

Xk(ω)

∫
D

1Q+k

(x
ε

)
ψ
(
x,
x

ε

)
dx.

We note thatψ isZd-periodic with respect to its second variable. In view of Lemma 2.13,

we have Λ ∈ L∞(Rd). As pointed out in Lemma 2.14, we have that ∇u0
? ∈ L∞(D),

and similarly for ∇v0
? . The function ψ is thus uniformly bounded with respect to its

two variables.



52 Chapter 2. Numerical approximation of fluctuations

We introduce

Zε
k = ε−d/2

∫
D

1Q+k

(x
ε

)
ψ
(
x,
x

ε

)
dx,

which also reads

Zε
k = εd/2

∫
(Q+k)∩(D/ε)

ψ(εy, y) dy.

Using the above bound on ψ, we have that, for any ε and k,

|Zε
k| ≤ εd/2 ‖ψ‖L∞(D×Rd). (2.62)

We also note that Zε
k does not vanish for a number of indices k which is bounded by

Cε−d.

The random variable Cε
1 then reads

Cε
1 =

∑
k∈Zd

Zε
kXk(ω).

We show that it converges in law toward a Gaussian by showing the convergence of

its characteristic function θCε1 , de�ned for ξ ∈ R by

θCε1 (ξ) = E
[

exp(iξCε
1)
]

= E

[
exp

(
iξ

(∑
k∈Zd

Zε
kXk(ω)

))]
.

Since the random variables Xk are i.i.d., we have

θCε1 (ξ) =
∏
k∈Zd

E
[

exp(iξ Zε
kXk(ω))

]
=
∏
k∈Zd

θX0(ξ Zε
k) (2.63)

where θX0(ζ) = E
[

exp(iζX0)
]

is the characteristic function of X0(ω). Since X0 is

a.s. bounded, θX0 is a smooth function. We observe that, for any �xed ξ ∈ R, we have,

in view of (2.62), that |ξ Zε
k| ≤ εd/2 |ξ| ‖ψ‖L∞(D×Rd) ≤ Cξε

d/2
for any k ∈ Zd and

any ε, where Cξ is independent of k and ε. The quantities {ξ Zε
k}k∈Zd thus remain in

a neighbourhood Vξ of the origin, and the quantities {θX0(ξ Zε
k)}k∈Zd thus remain in

a neighbourhood of θX0(0) = 1. We now introduce the real-valued functions a and b
such that, for any ζ ∈ R, we have θX0(ζ) = exp(a(ζ) + ib(ζ)), with b(ζ) ∈ [−π, π).

We next set φ(ζ) = a(ζ) + ib(ζ). When restricting ourselves to ζ ∈ Vξ , it is possible

to de�ne the function b (and thus the function φ) in a manner such that b (and thus φ)

is smooth, similarly to θX0 .

By de�nition,

θX0(0) = 1, θ′X0
(0) = E[iX0] = 0, θ′′X0

(0) = E[−X2
0 ] = −Var(X0),

and thus

φ(0) = 0, φ′(0) = 0, φ′′(0) = −Var(X0).

The Taylor expansion of φ thus reads

φ(ζ) = −ζ
2

2
Var(X0) +

∫ ζ

0

(ζ − t)2

2
φ(3)(t) dt.

We insert this expansion in (2.63):

θCε1 (ξ) =
∏
k∈Zd

θX0(ξZε
k) =

∏
k∈Zd

exp
[
φ(ξZε

k)
]

= φεG(ξ) φεr(ξ) (2.64)
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with

φεG(ξ) = exp

(
−Var(X0)

2
ξ2
∑
k∈Zd

(Zε
k)

2

)
, (2.65)

φεr(ξ) = exp

(∑
k∈Zd

∫ ξZεk

0

(ξZε
k − t)2

2
φ(3)(t) dt

)
.

We successively study the two above quantities.

We �rst claim that, for any ξ ∈ R,

lim
ε→0

φεr(ξ) = 1. (2.66)

We �x some ξ ∈ R. In view of (2.62), for any k ∈ Zd and any ε, we have |ξ Zε
k| ≤

εd/2 |ξ| ‖ψ‖L∞(D×Rd) ≤ Cεd/2. Since φ(3)
is bounded on the interval [−C,C] which

contains the interval [0, ξ Zε
k], we obtain that there exists some Cξ independent of ε

and k such that ∣∣∣∣∫ ξZεk

0

(ξZε
k − t)2

2
φ(3)(t) dt

∣∣∣∣ ≤ Cξ ε
3d/2.

In addition, as pointed out above, Zε
k does not vanish for a number of indices k which

is bounded by Cε−d. We thus get that∣∣∣∣∣∑
k∈Zd

∫ ξZεk

0

(ξZε
k − t)2

2
φ(3)(t) dt

∣∣∣∣∣ ≤ Cξ ε
d/2,

which implies (2.66).

Second, we turn to φεG(ξ). We note that

∑
k∈Zd

(Zε
k)

2 = εd
∑
k∈Zd

(∫
Q∩(D/ε−k)

ψ
(
ε(y + k), y + k

)
dy

)2

= Sε +Rε (2.67)

with

Rε = εd
∑

k s.t. Q+k 6⊂D/ε

(∫
Q∩(D/ε−k)

ψ
(
ε(y + k), y + k

)
dy

)2

and

Sε = εd
∑

k s.t. Q+k⊂D/ε

(∫
Q∩(D/ε−k)

ψ
(
ε(y + k), y + k

)
dy

)2

= εd
∑

k s.t. Q+k⊂D/ε

(∫
Q

ψ
(
ε(y + k), y + k

)
dy

)2

.

In view of Lemma 2.17 and of the de�nition (2.61) of ψ, we have that

lim
ε→0

Sε = σ2
per (2.68)

with

σ2
per =

∫
D

(
∇u0

?(x) · Λ∇v0
?(x)

)2

dx (2.69)



54 Chapter 2. Numerical approximation of fluctuations

and where the d× d symmetric matrix Λ is given by

Λ =

∫
Q

Λ(y) dy =

∫
Q

(
Idd +∇W 0(y)

)T (
Idd +∇W 0(y)

)
dy. (2.70)

In addition, the number of indices k ∈ Zd such thatQ∩(D/ε−k) 6= ∅ andQ+k 6⊂ D/ε
is bounded by Cε1−d

(this corresponds to cellsQ+k close to the boundary ofD/ε). In

the sumRε, there are hence at most Cε1−d
non-vanishing terms, and each term can be

bounded by ‖ψ‖2
L∞(D×Rd)

. We thus have Rε ≤ C ε. Collecting this bound with (2.67)

and (2.68), we deduce that

lim
ε→0

∑
k∈Zd

(Zε
k)

2 = σ2
per.

Inserting this result in (2.65) and collecting (2.64) and (2.66), we get that, for any ξ ∈ R,

lim
ε→0

θCε1 (ξ) = exp

(
−Var(X0)

2
ξ2σ2

per

)
,

which means that the random variable Cε
1 converges in law to a centered Gaussian

random variable of variance Var(X0)σ2
per.

Conclusion: limit of I1
ε

We recall (see (2.57)) that

Iε1 = −Cε
1 − Cε

u − Cε
v + Cε

r ,

and we have shown (see (2.58) and (2.60)) that

E
[
(Cε

u + Cε
v − Cε

r )
2
]
≤ Cε.

This implies that Cε
u + Cε

v − Cε
r converges in probability to 0. Indeed, for any κ > 0,

we have

P
[∣∣∣Cε

u + Cε
v − Cε

r

∣∣∣ ≥ κ
]
≤

E
[
(Cε

u + Cε
v − Cε

r )
2
]

κ2
−→
ε→0

0.

Using the Slutsky theorem and the fact that Cε
1 converges in law, we get that Iε1 con-

verges in law to a centered Gaussian variable of variance σ2
1 = Var(X0)σ2

per.

We now provide a more explicit expression for σ2
1 . By de�nition of σ2

per (see (2.69)),

we have

σ2
1 = Var(X0)

∫
D

(
∇u0

?(x) · Λ∇v0
?(x)

)2

dx

= Var(X0)

∫
D

(
d∑

i,j=1

∂u0
?

∂xi
Λij

∂v0
?

∂xj

)2

= Var(X0)
d∑

i,j,k,`=1

∫
D

∂u0
?

∂xi

∂v0
?

∂xj
Λij Λk`

∂u0
?

∂xk

∂v0
?

∂x`

=

∫
D

(
∇u0

? ⊗∇v0
?

)
: Q1 :

(
∇u0

? ⊗∇v0
?

)
with the fourth order tensor Q1

de�ned by

Q1
i,j,k,` = Var(X0) Λij Λk`.

In view of (2.70), we obtain the convergence (2.48) with σ2
1 indeed de�ned by (2.36)

and (2.39). This concludes the proof of Proposition 2.12.
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2.4 Limit of (the leading order term of) QL

In this section, we consider the fourth order tensor QL,1, which is (see (2.26)) the �rst

order term (in the expansion in powers of η) of QL, and study its limit when L→∞.

The main result of this section is Proposition 2.20.

We have shown (see (2.29)) that

QL,1i,j,m,n =
1

|QL|
E
(∫

QL

ρ1
i,j

∫
QL

ρ1
m,n

)
(2.71)

where ρ1
i,j is given (using (2.27) and the symmetry of Aper and A?per) by

ρ1
i,j = (ei +∇w0

i ) · A1(ej +∇w0
j ) +∇w1

i ·
(
Aper(ej +∇w0

j )− A?perej
)

+∇w1
j ·
(
Aper(ei +∇w0

i )− A?perei
)
. (2.72)

The function w1
i is the solution (unique up to the addition of a random constant)

to (2.21). In view of (2.16), we are in position to use [14, Lemma 3.2]. Recalling that the

expectation of Xk (and thus of A1) vanishes, we have that

∇w1
i (·, ω) =

∑
`∈Zd
∇φi(· − `)X`(ω), (2.73)

where the sum is a convergent series in L2(Q × Ω), and where φi is a deterministic

function, which is the (unique up to the addition of a constant) solution to{
− div[Aper∇φi] = div[1Q(ei +∇w0

i )] in Rd,

φi ∈ L2
loc(Rd), ∇φi ∈ (L2(Rd))d.

(2.74)

We recall the fact (see [14, Lemma 3.1]) that there exists a solution φi to (2.74) which

satis�es

∀y ∈ Rd
with |y| ≥ 1, |∇φi(y)| ≤ C

|y|d
, (2.75)

∀y ∈ Rd, |φi(y)| ≤ C

1 + |y|d−1
, (2.76)

for some �niteC . In the sequel, we always consider for φi a solution to (2.74) satisfying

the above two bounds.

We �rst compute

∫
Q+k

ρ1
i,j(·, ω) for any k ∈ Zd. In view of (2.72) and (2.16), we

have ∫
Q+k

ρ1
i,j(·, ω) =

∑
`∈Zd

X`(ω)

∫
Q+k

∇φi(· − `) ·
(
Aper(ej +∇w0

j )− A?perej
)

+
∑
`∈Zd

X`(ω)

∫
Q+k

∇φj(· − `) ·
(
Aper(ei +∇w0

i )− A?perei
)

+Xk(ω)

∫
Q

(ei +∇w0
i ) · (ej +∇w0

j ). (2.77)

Introduce

βk,`i,j =

∫
Q+k

∇φi(· − `) ·
(
Aper(ej +∇w0

j )− A?perej
)

(2.78)

=

∫
Q+k−`

∇φi ·
(
Aper(ej +∇w0

j )− A?perej
)
.
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We then recast (2.77) as∫
Q+k

ρ1
i,j(·, ω) = Xk(ω) Λij +

∑
`∈Zd

X`(ω) βk,`i,j +
∑
`∈Zd

X`(ω) βk,`j,i

where the matrix Λ is de�ned by (2.70).

In view of the de�nition (2.8) of QL, we thus deduce that∫
QL

ρ1
i,j(·, ω) =

∑
|k|∞≤L

(
Xk(ω) Λij +

∑
`∈Zd

X`(ω)
(
βk,`i,j + βk,`j,i

))
,

where we recall that |k|∞ = max
1≤i≤d

|ki|.
In view of (2.71), we thus get

QL,1i,j,m,n

=
1

|QL|
E
[∫

QL

ρ1
i,j

∫
QL

ρ1
m,n

]
=

1

|QL|
∑
|k|∞≤L

∑
|q|∞≤L

E
[
Xk(ω)Xq(ω) Λij Λmn

]
+

1

|QL|
∑
|k|∞≤L

∑
|q|∞≤L

∑
`∈Zd

∑
`′∈Zd

E
[
X`(ω)X`′(ω)

(
βk,`i,j + βk,`j,i

) (
βq,`

′

m,n + βq,`
′

n,m

)]
+

1

|QL|
∑
|k|∞≤L

∑
|q|∞≤L

∑
`′∈Zd

E
[
Xk(ω)X`′(ω) Λij

(
βq,`

′

m,n + βq,`
′

n,m

)]
+

1

|QL|
∑
|k|∞≤L

∑
|q|∞≤L

∑
`∈Zd

E
[
Xq(ω)X`(ω) Λmn

(
βk,`i,j + βk,`j,i

)]
.

Since Xk are i.i.d. and centered, we get

QL,1i,j,m,n = Var(X0) Λij Λmn

+
Var(X0)

|QL|
∑
|k|∞≤L

∑
|q|∞≤L

∑
`∈Zd

(
βk,`i,j + βk,`j,i

) (
βq,`m,n + βq,`n,m

)
+

Var(X0)

|QL|
Λij

∑
|k|∞≤L

∑
|q|∞≤L

(
βq,km,n + βq,kn,m

)
+

Var(X0)

|QL|
Λmn

∑
|k|∞≤L

∑
|q|∞≤L

(
βk,qi,j + βk,qj,i

)
. (2.79)

Introducing

BL
1,i,j =

1

|QL|
∑
|k|∞≤L

∑
|q|∞≤L

βk,qi,j , (2.80)

BL
2,i,j,m,n =

1

|QL|
∑
`∈Zd

 ∑
|k|∞≤L

(
βk,`i,j + βk,`j,i

) ∑
|q|∞≤L

(
βq,`m,n + βq,`n,m

) , (2.81)

we can recast (2.79) as

QL,1i,j,m,n = Var(X0)
(

Λij Λmn +BL
2,i,j,m,n

+ Λij

(
BL

1,m,n +BL
1,n,m

)
+ Λmn

(
BL

1,i,j +BL
1,j,i

) )
. (2.82)

We have the following results.
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Lemma 2.18. Assume that (2.15) and (2.16) hold, and that Aper is an Hölder continuous

function. Then, for any 1 ≤ i, j ≤ d, we have

lim
L→∞

BL
1,i,j = 0.

The proof of Lemma 2.18 is postponed until Section 2.4.1. It actually shows that,

for any 1 ≤ i, j ≤ d, we have ∣∣∣BL
1,i,j

∣∣∣ ≤ C lnL

L
(2.83)

for some C independent of L.

Lemma 2.19. Assume that (2.15) and (2.16) hold, and that Aper is an Hölder continuous

function. Then, for any 1 ≤ i, j,m, n ≤ d, we have

lim
L→∞

BL
2,i,j,m,n = 0.

The proof of Lemma 2.19 is postponed until Section 2.4.2. It actually shows that,

for any 1 ≤ i, j,m, n ≤ d, we have∣∣∣BL
2,i,j,m,n

∣∣∣ ≤ C(lnL)2

L
(2.84)

for some C independent of L.

The main result of this section is the following.

Proposition 2.20. Assume that (2.15) and (2.16) hold, and that Aper is an Hölder con-

tinuous function. Then, for any 1 ≤ i, j,m, n ≤ d, we have

lim
L→∞

QL,1i,j,m,n = Q1
i,j,m,n

with Q1
i,j,m,n de�ned by (2.39).

Proof of Proposition 2.20. Using Lemmas 2.18 and 2.19, we infer from (2.82) that

lim
L→∞

QL,1i,j,m,n = Var(X0) Λij Λmn.

In view of the de�nition (2.70) of the matrix Λ, we get (2.40) with (2.39). Note also

that (2.83) and (2.84) provide a convergence rate: |QL,1i,j,m,n − Q1
i,j,m,n| ≤ C(lnL)2/L.

We are now left with proving Lemmas 2.18 and 2.19. To that aim, we need the

following result (see [61, Proposition 4.1]) to represent divergence-free vector �elds.

Lemma 2.21. Consider G : Rd 7→ Rd
a Zd-periodic vector �eld such that divG = 0 in

Rd
,

∫
Q

G = 0 and G ∈ C0,α(Q).

Then there exists a matrix �eld τ : Q 7→ Rd×d
with τ ∈ C1,α(Q), which is skew-

symmetric, Zd-periodic, such that each component τm,` belongs toH
1
loc(Rd) (for any 1 ≤

m, ` ≤ d) and such that

∀1 ≤ ` ≤ d, G · e` =
d∑

m=1

∂τm,`
∂xm

.
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This result is also given in [58, p. 27] for �elds G in L2(Q) (and therefore τ ∈
H1(Q)).

In the following, we apply Lemma 2.21 for the vector �eld

Gj = Aper(ej +∇w0
j )− A?perej, (2.85)

which indeed satis�es the assumptions of Lemma 2.21 (the regularity ofGj
stems from

the assumption that Aper is Hölder continuous and from Lemma 2.13). For any 1 ≤
j ≤ d, there hence exists a matrix �eld τ j satisfying the above properties and such that

∀1 ≤ ` ≤ d, Gj · e` =
d∑

m=1

∂τ jm,`
∂xm

. (2.86)

Remark 2.22. Our proofs of Lemmas 2.18 and 2.19, given in the subsequent sections,

essentially follow the same arguments as those used in [14, Proof of Proposition 3.1]. It is

proven there that the quantity

B
L

2,i,j,m,n =
1

|QL|

∑
`∈Zd

 ∑
|k|∞≤L

(
β
k,`

i,j + β
k,`

j,i

) ∑
|q|∞≤L

(
β
q,`

m,n + β
q,`

n,m

) ,
where

β
k,`

i,j =

∫
Q+k

∇φi(· − `) · Aper(ej +∇w0
j ),

is uniformly bounded with respect toL. The proof in [14] uses the fact thatAper(ej+∇w0
j )

is a divergence-free �eld, a direct consequence of the corrector equation.

In the expression of βk,`i,j de�ned by (2.78) that we manipulate here, the key quantity

isGj = Aper(ej +∇w0
j )−A?perej . This vector-�eld is not only divergence-free, but it has

also a vanishing mean, by de�nition of the homogenized tensor A?per. This is the reason

why we are able to show a stronger result on BL
2,i,j,m,n (namely the fact that it converges

to 0 when L→∞) than on B
L

2,i,j,m,n, which is only shown in [14] to be bounded.

We also need the following technical results.

Lemma 2.23. For any 1 ≤ i, j ≤ d and any k ∈ Zd, let

Pi,j(L, k) =

∫
k+QL

∇φi ·Gj, (2.87)

where Gj
is de�ned by (2.85), φi is a solution to (2.74) satisfying (2.75)–(2.76), and QL =

(−L− 1/2, L+ 1/2)d (see (2.8)).
Assume that |k|∞ < L. Then we have∣∣∣Pi,j(L, k)

∣∣∣ ≤ C

∫
∂(k+QL)

dy

|y|d
(2.88)

for some C independent of L and k.

Proof of Lemma 2.23. We know that φi ∈ H1
loc(Rd). For any |k|∞ < L, we have Q ⊂⊂

k + QL (this property may not be true if |k|∞ = L). There thus exists a smooth

neighboorhood DL,k of ∂(k + QL) for which Q ∩ DL,k = ∅. In view of (2.74), we

thus have div[Aper∇φi] = 0 on DL,k. In view of [43, Corollary 8.36], we get that

φi ∈ C1,α(DL,k).
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Since C∞
(
(k + QL) ∪ DL,k

)
is dense in H1

(
(k + QL) ∪ DL,k

)
, there exists φηi ∈

C2
(
(k +QL) ∪DL,k

)
such that φηi −→

η→0
φi for the norm H1

(
(k +QL) ∪DL,k

)
. More-

over, since φi is C1,α
on DL,k, we can choose φηi such that φηi converges to φi in the

C1,α(DL,k) norm, and hence such that lim
η→0
‖φηi − φi‖C1(DL,k) = 0.

As pointed out underneath Lemma 2.21, for any 1 ≤ j ≤ d, there exists a matrix

�eld τ j , satisfying the properties of Lemma 2.21, and such that the divergence-free

vector �eld Gj
can be written (see (2.86)) as Gj · e` =

d∑
m=1

∂τ jm,`
∂xm

.

We then have

P η
i,j(L, k) :=

∫
k+QL

∇φηi ·Gj

=

∫
k+QL

d∑
m=1

d∑
`=1

∂φηi
∂x`

∂τ jm,`
∂xm

.

= −
∫
k+QL

d∑
m=1

d∑
`=1

∂2φηi
∂x`∂xm

τ jm,` +

∫
∂(k+QL)

d∑
m=1

d∑
`=1

∂φηi
∂x`

τ jm,` nm.

Since τ j is skew-symmetric, the �rst term above vanishes, and we thus get

P η
i,j(L, k) =

∫
∂(k+QL)

d∑
m=1

d∑
`=1

∂φηi
∂x`

τ jm,` nm. (2.89)

We now pass to the limit η → 0 in (2.89). We �rst have∣∣∣P η
i,j(L, k)− Pi,j(L, k)

∣∣∣ =

∣∣∣∣∫
k+QL

∇(φηi − φi) ·Gj

∣∣∣∣ ≤ C‖φηi − φi‖H1(k+QL),

and hence, by de�nition of φηi , we obtain that P η
i,j(L, k) −→

η→0
Pi,j(L, k). For the right-

hand side of (2.89), we write, for any 1 ≤ m, ` ≤ d, that∣∣∣∣∫
∂(k+QL)

(
∂φηi
∂x`
− ∂φi
∂x`

)
τ jm,` nm

∣∣∣∣ ≤ ‖φηi − φi‖C1(DL,k) ‖τ jm,`‖C0(DL,k).

By de�nition of φηi , we obtain that the above right-hand side converges to 0 when

η → 0. Passing to the limit in (2.89), we hence get that

Pi,j(L, k) =

∫
∂(k+QL)

d∑
m=1

d∑
`=1

∂φi
∂x`

τ jm,` nm.

Since τ j is Zd periodic and C1,α
, this implies that∣∣∣Pi,j(L, k)
∣∣∣ ≤ Cd ‖τ j‖C0(Q)

∫
∂(k+QL)

|∇φi|. (2.90)

Using again that |k|∞ < L, we see that any y ∈ ∂(k + QL) satis�es |y| > 1. We are

thus in position to bound ∇φi using (2.75). This yields (2.88) and concludes the proof

of Lemma 2.23.

Lemma 2.24. Under the same assumptions as in Lemma 2.23, except that we now assume

that |k|∞ ≥ L+ 2 instead of |k|∞ < L, we again have (2.88).
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Proof of Lemma 2.24. The proof follows exactly the same arguments as that of Lemma 2.23.

Recalling that QL = (−L − 1/2, L + 1/2)d, we note that Q is at a positive distance

from k+QL whenever |k|∞ ≥ L+ 2. There thus exists a smooth neighboorhoodDL,k

of k + QL for which Q ∩DL,k = ∅. In view of (2.74), we thus have div[Aper∇φi] = 0
on DL,k. In view of [43, Corollary 8.36], we get that φi ∈ C1,α(DL,k).

We can thus perform the same computations as in the proof of Lemma 2.23, and

we obtain (2.90), namely∣∣∣Pi,j(L, k)
∣∣∣ ≤ Cd ‖τ j‖C0(Q)

∫
∂(k+QL)

|∇φi|.

Using again that |k|∞ ≥ L+2, we see that any y ∈ ∂(k+QL) satis�es |y| > 1. We are

thus in position to bound ∇φi using (2.75). This yields (2.88) and concludes the proof

of Lemma 2.24.

2.4.1 Proof of Lemma 2.18

In view of (2.80), (2.78) and (2.85), we have

BL
1 =

1

|QL|
∑
|k|∞≤L

∑
|q|∞≤L

βk,qi,j =
1

|QL|
∑
|k|∞≤L

∫
k+QL

∇φi ·Gj, (2.91)

where we recall (see (2.8)) that QL = ∪|q|∞≤L Q + q. For the sake of simplicity, we

omit in this proof the dependence of BL
1 with respect to (i, j). We split the sum (2.91)

in two parts:

BL
1 = BL

1,bndry +BL
1,bulk, (2.92)

with

BL
1,bndry =

1

|QL|
∑
|k|∞=L

∫
k+QL

∇φi ·Gj,

BL
1,bulk =

1

|QL|
∑
|k|∞<L

∫
k+QL

∇φi ·Gj. (2.93)

Bound on BL
1,bndry

Using that Gj
is divergence-free, we have

BL
1,bndry =

1

|QL|
∑
|k|∞=L

∫
∂(k+QL)

φiG
j · n.

We have observed underneath Lemma 2.21 that Gj
is periodic and Hölder continuous.

Using (2.76), we get that∣∣∣BL
1,bndry

∣∣∣ ≤ C

|QL|
∑
|k|∞=L

∫
∂(k+QL)

dy

1 + |y|d−1
. (2.94)

Let ZLbndry = {k ∈ Zd, |k|∞ = L}. This set is �nite and its cardinal is smaller than

Cd (2L + 1)d−1
. For any k ∈ ZLbndry, we note that the origin ORd of Rd

belongs to the

interior of the cube k + QL = k + (−L − 1/2, L + 1/2)d and we have d
(
ORd , ∂(k +

QL)
)

= 1/2.
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For any facet Fn (with 1 ≤ n ≤ 2d) of the cube k + QL, let On be the orthogonal

projection of the origin ORd on that facet. Each facet is a cube in dimension d − 1 of

side length 2L + 1: it is thus included in the ball (of Rd−1
) of center On and of radius

RL = (2L+ 1)
√
d− 1, that we denote Bd−1(On, RL). For any y ∈ Bd−1(On, RL), we

have that

|y|2 = |y −ORd |2 = |y −On|2 + |On −ORd|2 ≥ |y −On|2,

and thus ∫
Fn

dy

1 + |y|d−1
≤
∫
Bd−1(On,RL)

dy

1 + |y|d−1

≤
∫
Bd−1(On,RL)

dy

1 + |y −On|d−1

= Cd

∫ RL

0

rd−2

1 + rd−1
dr

= Cd ln
(
1 +Rd−1

L

)
.

We hence get that, for any |k|∞ = L,∫
∂(k+QL)

dy

1 + |y|d−1
=

∑
facet of ∂(k +QL)

∫
Fn

dy

1 + |y|d−1

≤ Cd ln
(
1 +Rd−1

L

)
. (2.95)

Inserting this bound in (2.94), we get that∣∣∣BL
1,bndry

∣∣∣ ≤ C

|QL|
∑

k∈ZLbndry

ln
(
1 +Rd−1

L

)
≤ C

L
ln
(
1 +Rd−1

L

)
≤ C lnL

L
. (2.96)

Bound on BL
1,bulk

In view of (2.93) and (2.87), we have

BL
1,bulk =

1

|QL|
∑
|k|∞<L

Pi,j(L, k).

Using Lemma 2.23, we get∣∣∣BL
1,bulk

∣∣∣ ≤ C

|QL|
∑
|k|∞<L

∫
∂(k+QL)

dy

|y|d
=

C

|QL|
∑
|k|∞<L

∫
∂QL

dy

|y − k|d
. (2.97)

For any k such that |k|∞ < L and any y ∈ ∂QL, we recall that |y − k| > 1. We wish

to �nd some ỹk de�ned as a convex linear combination of k and y such that

B(ỹk, 1/8) ⊂ B(y, |y − k|), (2.98)

B(ỹk, 1/8) ⊂ k +Q. (2.99)
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To that aim, we set ỹk = k +
y − k

8|y − k|
.

The inclusion (2.98) holds true. Indeed, we note that ỹk − y = k − y +
y − k

8|y − k|
and thus, recalling that |y − k| > 1, we obtain |ỹk − y| = |y − k| − 1/8. Considering

now any z ∈ B(ỹk, 1/8), we write

|z − y| ≤ |z − ỹk|+ |ỹk − y| = |z − ỹk|+ |y − k| −
1

8
< |y − k|,

and thus z ∈ B(y, |y − k|). This proves (2.98).

The inclusion (2.99) also holds true. Indeed, for any z ∈ B(ỹk, 1/8), we have

|z − k| ≤ |z − ỹk|+ |ỹk − k| = |z − ỹk|+ 1/8 < 1/4

and thus z ∈ k +Q. This proves (2.99).

Denote by Vd the volume of the ball B(ỹk, 1/8). For any z ∈ B(ỹk, 1/8), we have,

using (2.98), that |z − y| ≤ |y − k|, hence

1

|y − k|d
≤ 1

Vd

∫
B(ỹk,1/8)

dz

|y − z|d
≤ 1

Vd

∫
k+Q

dz

|y − z|d
, (2.100)

where the second inequality stems from (2.99). We thus deduce from (2.97) that∣∣∣BL
1,bulk

∣∣∣ ≤ C

|QL|
∑
|k|∞<L

∫
∂QL

dy

|y − k|d

≤ C

|QL|Vd

∫
y∈∂QL

∑
|k|∞<L

∫
z∈k+Q

dz dy

|y − z|d

=
C

|QL|Vd

∫
y∈∂QL

∫
z∈QL−1

dz dy

|y − z|d

=
C (2L+ 1)2d−1

(2L+ 1)d |QL|Vd

∫
y∈∂Q

∫
z∈(QL−1)/(2L+1)

dz dy

|y − z|d

≤ C

L

∫
y∈∂Q

∫
B(y,
√
d)\B(y, 1

2L+1
)

dz dy

|y − z|d
,

where we have used that

(QL−1)/(2L+ 1) =

(
− 2L− 1

2(2L+ 1)
,

2L− 1

2(2L+ 1)

)d
⊂ B

(
y,
√
d
)
\B
(
y, 1/(2L+ 1)

)
whenever y ∈ ∂Q. We hence deduce that

∣∣∣BL
1,bulk

∣∣∣ ≤ C

L

∫
y∈∂Q

∫ √d
1

2L+1

dr

r
≤ C lnL

L
. (2.101)

Conclusion

Collecting (2.92), (2.96) and (2.101), we deduce that lim
L→∞

BL
1 = 0 (and more precisely

that (2.83) holds), which concludes the proof of Lemma 2.18.
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2.4.2 Proof of Lemma 2.19

For the sake of simplicity, we omit in this proof the dependency of BL
2 with respect to

(i, j,m, n). We split the sum (2.81) in two parts:

BL
2 = BL

2,long +BL
2,short, (2.102)

with

BL
2,long =

1

|QL|
∑
|`|∞>2L

 ∑
|k|∞≤L

(
βk,`i,j + βk,`j,i

) ∑
|q|∞≤L

(
βq,`m,n + βq,`n,m

)
BL

2,short =
1

|QL|
∑
|`|∞≤2L

 ∑
|k|∞≤L

(
βk,`i,j + βk,`j,i

) ∑
|q|∞≤L

(
βq,`m,n + βq,`n,m

) . (2.103)

Bound on BL
2,long

In view of (2.78), (2.85) and (2.87), we have∑
|k|∞≤L

βk,`i,j =

∫
QL−`

∇φi ·Gj = Pi,j(L,−`),

hence

BL
2,long =

1

|QL|
∑
|`|∞>2L

(
Pi,j(L, `) + Pj,i(L, `)

) (
Pm,n(L, `) + Pn,m(L, `)

)
.

Since |`|∞ > 2L ≥ L+ 2, we are in position to use Lemma 2.24, which yields∣∣∣BL
2,long

∣∣∣ ≤ C

|QL|
∑
|`|∞>2L

[∫
∂(`+QL)

dy

|y|d

]2

≤ C

|QL|
∑
|`|∞>2L

[
Ld−1

(|`| − L− 1/2)d

]2

,

where we have used that any y ∈ ∂(`+QL) with |`|∞ > 2L satis�es |y| ≥ |`|−L−1/2.

We thus deduce that ∣∣∣BL
2,long

∣∣∣ ≤ C

L2
(2.104)

for some C independent of L.

Bound on BL
2,short

For the sum (2.103), we essentially argue as for the sum BL
1 de�ned by (2.91) and we

split it in two parts:

BL
2,short = BL

2,short,bndry +BL
2,short,bulk (2.105)

with

BL
2,short,bndry =

1

|QL|
∑

|`|∞=L orL+1

 ∑
|k|∞≤L

(
βk,`i,j + βk,`j,i

) ∑
|q|∞≤L

(
βq,`m,n + βq,`n,m

) ,

BL
2,short,bulk =

1

|QL|
∑

|`|∞≤2L,
|`|∞ 6=L, |`|∞ 6=L+1

 ∑
|k|∞≤L

(
βk,`i,j + βk,`j,i

) ∑
|q|∞≤L

(
βq,`m,n + βq,`n,m

) .
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We successively bound these two terms.

Step 1: bound on BL
2,short,bndry. Using an integration by parts as in Section 2.4.1 and

the bound (2.76), we get∣∣∣BL
2,short,bndry

∣∣∣
≤ 1

|QL|
∑

|`|∞=L orL+1

∣∣∣∣∫
∂(`+QL)

(
φiG

j · n+ φj G
i · n

)∣∣∣∣
×
∣∣∣∣∫
∂(`+QL)

(φmG
n · n+ φnG

m · n)

∣∣∣∣
≤ C

|QL|
∑

|`|∞=L orL+1

(∫
∂(`+QL)

dy

1 + |y|d−1

)2

. (2.106)

In the case when |`|∞ = L, we are in position to use (2.95), which yields that∫
∂(k+QL)

dy

1 + |y|d−1
≤ Cd lnL. (2.107)

In the case |`|∞ = L+ 1 (there are at most Cd L
d−1

such indices), we note that the

origin of Rd
is outside the cube `+QL = `+ (−L− 1/2, L+ 1/2)d. For any facet Fn

(with 1 ≤ n ≤ 2d) of the cube `+QL, letOn be the orthogonal projection of the origin

ORd on the hyperplane containing this facet. Each facet is a cube in dimension d−1 of

side length 2L + 1: it is thus included in the ball (of Rd−1
) of center On and of radius

RL = (2L+ 1)
√
d− 1, that we denote Bd−1(On, RL). For any y ∈ Bd−1(On, RL), we

have that

|y|2 = |y −ORd |2 = |y −On|2 + |On −ORd|2 ≥ |y −On|2,

and thus, following the same computations as in Section 2.4.1, we get that, for any

|`|∞ = L+ 1, ∫
∂(`+QL)

dy

1 + |y|d−1
≤ Cd lnL. (2.108)

Collecting (2.106), (2.107) and (2.108), we obtain∣∣∣BL
2,short,bndry

∣∣∣ ≤ C
(lnL)2

L
. (2.109)

Step 2: bound on BL
2,short,bulk. We have

BL
2,short,bulk =

1

|QL|
∑

|`|∞≤2L,
|`|∞ 6=L, |`|∞ 6=L+1

(
Pi,j(L, `) + Pj,i(L, `)

) (
Pm,n(L, `) + Pn,m(L, `)

)
.

Using Lemmas 2.23 and 2.24, we deduce that∣∣∣BL
2,short,bulk

∣∣∣ ≤ C

|QL|
∑

|`|∞≤2L,
|`|∞ 6=L, |`|∞ 6=L+1

(∫
∂(`+QL)

dy

|y|d

)2

≤ C

|QL| (2L+ 1)2

∑
|`|∞≤2L,

|`|∞ 6=L, |`|∞ 6=L+1

(∫
∂Q

dy∣∣y − `
2L+1

∣∣d
)2

. (2.110)
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For any facet Fn (with 1 ≤ n ≤ 2d) of the cube Q, let On be the orthogonal projection

of `/(2L + 1) on that facet. For any ` such that |`|∞ 6= L and |`|∞ 6= L + 1, the

distance between `/(2L+ 1) and On is larger than Cd/(2L+ 1) for some constant Cd
only depending on the dimension. Each facet is a cube in dimension d− 1 of unit side

length: it is thus included in the ball (of Rd−1
) of centerOn and of radiusRd =

√
d− 1,

that we denote Bd−1(On, Rd). For any y ∈ Bd−1(On, Rd), we have that

∣∣∣∣y − `

2L+ 1

∣∣∣∣2 = |y −On|2 +

∣∣∣∣On −
`

2L+ 1

∣∣∣∣2 ≥ |y −On|2 +
Cd

(2L+ 1)2

and thus

∫
Fn

dy∣∣y − `
2L+1

∣∣d ≤
∫
Bd−1(On,Rd)

dy∣∣y − `
2L+1

∣∣d
≤
∫
Bd−1(On,Rd)

dy∣∣|y −On|2 + Cd
(2L+1)2

∣∣d/2
= Cd

∫ Rd

0

rd−2 dr∣∣r2 + Cd
(2L+1)2

∣∣d/2
= Cd (2L+ 1)

∫ (2L+1)Rd/Cd

0

rd−2 dr∣∣r2 + 1
∣∣d/2

≤ Cd (2L+ 1)

(
1 +

∫ (2L+1)Rd/Cd

1

dr

r2

)
≤ Cd (2L+ 1).

We hence get that, for any |`|∞ 6= L and |`|∞ 6= L+ 1,

∫
∂Q

dy∣∣y − `
2L+1

∣∣d =
∑

facet of ∂Q

∫
Fn

dy∣∣y − `
2L+1

∣∣d ≤ Cd (2L+ 1). (2.111)

Inserting this bound in (2.110), we get

∣∣∣BL
2,short,bulk

∣∣∣ ≤ C

|QL| (2L+ 1)

∑
|`|∞≤2L,

|`|∞ 6=L, |`|∞ 6=L+1

∫
∂Q

dy∣∣y − `
2L+1

∣∣d
=

C

|QL|
∑

|`|∞≤2L,
|`|∞ 6=L, |`|∞ 6=L+1

∫
∂QL

dy

|y − `|d
.

Using the estimate (2.100) (which we proved in Section 2.4.1 for |k|∞ < L but which
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is also valid for |k|∞ ≤ 2L as soon as |k|∞ 6= L and |k|∞ 6= L+ 1), we obtain∣∣∣BL
2,short,bulk

∣∣∣ ≤ C

|QL|Vd

∫
y∈∂QL

∑
|`|∞<L

∫
z∈`+Q

dz dy

|y − z|d

+
C

|QL|Vd

∫
y∈∂QL

∑
L+1<|`|∞≤2L

∫
z∈`+Q

dz dy

|y − z|d

≤ C

|QL|Vd

∫
y∈∂QL

∫
z∈QL−1

dz dy

|y − z|d

+
C

|QL|Vd

∫
y∈∂QL

∫
z∈Q2L\QL+1

dz dy

|y − z|d

≤ C (2L+ 1)2d−1

|QL|Vd (2L+ 1)d

∫
y∈∂Q

∫
z∈(QL−1))/(2L+1)

dz dy

|y − z|d

+
C (2L+ 1)2d−1

|QL|Vd (2L+ 1)d

∫
y∈∂Q

∫
z∈(Q2L\QL+1)/(2L+1)

dz dy

|y − z|d
.

We now use that, whenever y ∈ ∂Q, we have

(QL−1))/(2L+ 1) ⊂ B
(
y,
√
d
)
\B
(
y, 1/(2L+ 1)

)
,

(Q2L \QL+1)/(2L+ 1) ⊂ B
(
y,
√
d
)
\B
(
y, 1/(2L+ 1)

)
.

We thus deduce that∣∣∣BL
2,short,bulk

∣∣∣ ≤ C

L

∫
y∈∂Q

∫
z∈B(y,

√
d)\B(y,1/(2L+1))

dz dy

|y − z|d

=
C

L

∫
y∈∂Q

∫ √d
1/(2L+1)

dr

r

≤ C
lnL

L
. (2.112)

Conclusion

Collecting (2.102), (2.104), (2.105), (2.109) and (2.112), we deduce that lim
L→∞

BL
2 = 0 (and

more precisely that (2.84) holds), which concludes the proof of Lemma 2.19.

2.5 Numerical approximation of QL

We consider now the practical case when we manipulate the approximate corrector

wNp , solution to the problem (2.7) posed on the bounded domain QN , instead of the

exact corrector wp, solution to the corrector problem (2.2) posed on the whole space.

This section is devoted to the proof of Theorem 2.10.

Similarly to expansion (2.73) of the �rst-order (in η) term w1
p in the corrector wp,

we have the expansion

∀x ∈ QN , ∇wN,1i (x) =
∑
|`|∞≤N

∇φNi (x− `)X`(ω)

where we have used that

{
` ∈ Zd, Q+ ` ⊂ QN

}
=
{
` ∈ Zd, |`|∞ ≤ N

}
and where

φNi is a solution (unique up to the addition of a constant) to{
− div[Aper∇φNi ] = div[1Q(ei +∇w0

i )] in QN ,

φNi is QN -periodic.

(2.113)
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In view of (2.45) and (2.16), we have, for any k ∈ Zd such that Q+ k ⊂ QN , that∫
Q+k

ρN,1i,j (·, ω) = Xk(ω) Λij +
∑
|`|∞≤N

X`(ω) βN,k,`i,j +
∑
|`|∞≤N

X`(ω) βN,k,`j,i

where the matrix Λ is de�ned by (2.70) and where

βN,k,`i,j =

∫
Q+k

∇φNi (· − `) ·
(
Aper(ej +∇w0

j )− A?perej
)
.

For any L ≤ N , we hence get that

∫
QL

ρN,1i,j (·, ω) =
∑
|k|∞≤L

Xk(ω) Λij +
∑
|`|∞≤N

X`(ω)
(
βN,k,`i,j + βN,k,`j,i

) .

In view of (2.44), we deduce (similarly to (2.82)) that

QL,N,1i,j,m,n = Var(X0)
(

Λij Λmn +BL,N
2,i,j,m,n

+ Λij

(
BL,N

1,m,n +BL,N
1,n,m

)
+ Λmn

(
BL,N

1,i,j +BL,N
1,j,i

))
(2.114)

with

BL,N
1,i,j =

1

|QL|
∑
|k|∞≤L

∑
|q|∞≤L

βN,k,qi,j , (2.115)

BL,N
2,i,j,m,n =

1

|QL|
∑
|`|∞≤N

 ∑
|k|∞≤L

(
βN,k,`i,j + βN,k,`j,i

) ∑
|q|∞≤L

(
βN,q,`m,n + βN,q,`n,m

) . (2.116)

Theorem 2.10 is a direct consequence of the following two lemmas.

Lemma 2.25. Assume that (2.15) and (2.16) hold, and that Aper is an Hölder continuous

function. Then, for any 1 ≤ i, j ≤ d and whenever N > L, we have∣∣∣BL,N
1,i,j

∣∣∣ ≤ C lnL

L
(2.117)

for some C independent of L and N .

Lemma 2.26. Assume that (2.15) and (2.16) hold, and that Aper is an Hölder continuous

function. Then, for any 1 ≤ i, j,m, n ≤ d and whenever N > L, we have∣∣∣BL,N
2,i,j,m,n

∣∣∣ ≤ C(lnL)2

L
(2.118)

for some C independent of L and N .

The proof of Lemma 2.25 (resp. Lemma 2.26) is postponed until Section 2.5.2 (resp.

Section 2.5.3). Before turning to them, we recall now some useful results on Green

functions.
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2.5.1 Green function with QN -periodic boundary conditions

Let GN be the Green function of the operator L := − div[Aper∇·] supplied with peri-

odic boundary conditions on QN . We recall that GN(·, y) is solution to
− div[Aper∇GN(·, y)] = − 1

|QN |
+
∑
k∈Zd

δ(· − y −Nk) in Rd,

GN(·, y) is QN -periodic.

(2.119)

We recall (see [60, Proposition 1.2]) that, under the assumption that Aper is Hölder

continuous, the Green function GN satis�es the following estimates:

∀x, y ∈ Rd, |∇xGN(x, y)|+ |∇yGN(x, y)| ≤ C

|dN(x, y)|d−1
, (2.120)

∀x, y ∈ Rd, |∇x∇yGN(x, y)| ≤ C

|dN(x, y)|d
, (2.121)

for some C independent of N , where dN(x, y) = inf
k∈Z3
|x− y −Nk|.

We note that estimates similar to (2.120) and (2.121) are well-known for the case

of the operator L := − div[Aper∇·] supplied with homogeneous Dirichlet boundary

conditions on the boundary of some bounded domain Ω, and for the case of the opera-

tor L in the whole space Rd
. We refer to [18] for a recent review. The case of periodic

boundary conditions on QN has been studied in [60], where (2.120)–(2.121) are estab-

lished. For the sake of completeness, we provide a proof of (2.120)–(2.121) in the case

when d = 3 and Aper = Id in Appendix 2.A below.

In the sequel, we use the following result, which is a direct consequence of (2.120)–

(2.121). This result provides estimates on φNi similar to the estimates (2.75) and (2.76)

on φi.

Lemma 2.27. Assume that (2.120)–(2.121) hold. Then there exists a solution φNi to (2.113)

which satis�es

∀x ∈ QN , |φNi (x)| ≤ C

1 + |x|d−1
, (2.122)

∀x ∈ QN with |x| ≥ 1, |∇φNi (x)| ≤ C

|x|d
(2.123)

for some C independent of N .

Proof of Lemma 2.27. The proof follows the same argument as that of [14, Lemma 3.1].

Let GN be a solution to (2.119). Then

φNi (x) =

∫
QN

GN(x, ·) div[1Q(ei +∇w0
i )]

is a solution to (2.113). By an integration by part, we obtain that

φNi (x) = −
∫
Q

(ei +∇w0
i ) · ∇yGN(x, ·). (2.124)

Let x ∈ QN and y ∈ Q. We know from (2.120) that |∇yGN(x, y| ≤ C

|x− y|d−1
, and

thus ∇yGN(x, ·) ∈ L1(Q). Since ∇w0
i ∈ L∞(Q) (see Lemma 2.13), we deduce that
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φNi (x) is (uniformly inN and x ∈ QN ) bounded. Furthermore, we deduce from (2.120)

and (2.124) that, when |x| ≥ 1, we have |φNi (x)| ≤ C/(1 + |x|d−1) for some C inde-

pendent of N . This proves (2.122).

We next infer from (2.124) that

∇φNi (x) = −
∫
Q

(ei +∇w0
i ) · ∇x∇yGN(x, ·),

hence, using (2.121), we get

|∇φNi (x)| ≤ C

∫
Q

dy

|x− y|d
.

For any x ∈ QN with |x| ≥ 1, we write

|∇φNi (x)| ≤ C

|x|d

∫
Q

dy

| x|x| −
y
|x| |d
≤ C

|x|d
,

where the last inequality stems from the fact that the integral is bounded. This proves (2.123)

and concludes the proof of Lemma 2.27.

2.5.2 Proof of Lemma 2.25

We have ∑
|q|∞≤L

βN,k,qi,j =

∫
k+QL

∇φNi ·Gj, (2.125)

and thus, similarly to (2.91), we have

BL,N
1 =

1

|QL|
∑
|k|∞≤L

∫
k+QL

∇φNi ·Gj,

where we recall that Gj
is de�ned by (2.85) (we again omit the dependency of BL,N

1

with respect to (i, j)).

If N ≥ 2L, then the set k+QL (for any |k|∞ ≤ L) is a subset of QN , on which we

have the estimates (2.122) and (2.123) on φNi . These estimates are uniform in N , and

identical to the estimates (2.75) and (2.76) on φi. We can hence proceed as in the proof

of Lemma 2.18 (see Section 2.4.1) and deduce (similarly to (2.83)) that

if N ≥ 2L, then

∣∣∣BL,N
1

∣∣∣ ≤ C lnL

L
(2.126)

for some C independent of N and L.

In the sequel of the proof, we address the caseL < N < 2L. In that situation, some

sets k + QL are a subset of QN (this corresponds to the case |k|∞ ≤ N − L), while

some others are not (in particular for the case |k|∞ = L). In that latter case, we can

translate the cells of (k + QL) \ QN (shown in blue on Figure 2.1) by QN periodicity

to some cells in QN , that we denote RN,L
k (shown in green on Figure 2.1).

We split the sum BL,N
1 as

BL,N
1 = BL,N

1,bulk,int +BL,N
1,bulk,ext +BL,N

1,bndry (2.127)
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O
•

O + k
•

QN

QL

QL + k

Figure 2.1: Schematic representation (when L < N < 2L) of a case of some k ∈ Zd
with |k|∞ ≤ N such that k+QL 6⊂ QN . The domain (k+QL) \QN is represented in

blue. ByQN -periodicity, this blue domain is mapped back in a open set inQN , denoted

RN,L
k , and which is represented in green.

with

BL,N
1,bulk,int =

1

|QL|
∑

|k|∞≤N−L

∫
k+QL

∇φNi ·Gj, (2.128)

BL,N
1,bulk,ext =

1

|QL|
∑

N−L<|k|∞<L

∫
k+QL

∇φNi ·Gj,

BL,N
1,bndry =

1

|QL|
∑
|k|∞=L

∫
k+QL

∇φNi ·Gj.

Using the QN periodicity of ∇φNi ·Gj
, we have

BL,N
1,bulk,ext =

1

|QL|
∑

N−L<|k|∞<L

(∫
(k+QL)∩QN

∇φNi ·Gj +

∫
RL,Nk

∇φNi ·Gj

)
(2.129)

and

BL,N
1,bndry =

1

|QL|
∑
|k|∞=L

(∫
(k+QL)∩QN

∇φNi ·Gj +

∫
RL,Nk

∇φNi ·Gj

)
. (2.130)

Bound on BL,N
1,bulk,int

For this �rst term (2.128), we have k + QL ⊂ QN and |k|∞ ≤ N − L < L. We can

hence use Lemma 2.23 (written for φNi instead of φi) to bound the integral of∇φNi ·Gj
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on k +QL (since φNi satis�es the same estimates as φi). We hence get∣∣∣BL,N
1,bulk,int

∣∣∣ ≤ C

|QL|
∑

|k|∞≤N−L

∫
∂(k+QL)

dy

|y|d

=
C

|QL|
∑

|k|∞≤N−L

∫
∂QL

dy

|y − k|d

≤ C

|QL|
∑
|k|∞<L

∫
∂QL

dy

|y − k|d
.

We can next proceed as underneath (2.100) in Section 2.4.1, and obtain (similarly to (2.101))

that ∣∣∣BL,N
1,bulk,int

∣∣∣ ≤ C lnL

L
. (2.131)

Limit of BL,N
1,bulk,ext

For this second term, written in the form (2.129), we consider k ∈ Zd such thatN−L <
|k|∞ < L. We hence have that Q ⊂⊂ (k +QL) ∩QN . We can thus again use a result

similar to that shown in Lemma 2.23 to bound the integral of∇φNi ·Gj
on (k+QL)∩QN .

We hence get ∣∣∣∣∫
(k+QL)∩QN

∇φNi ·Gj

∣∣∣∣ ≤ C

∫
∂
(

(k+QL)∩QN
) dy|y|d .

The boundary of (k + QL) ∩ QN is made of a part of the boundary of k + QL and a

part of the boundary of QN :

∂
(
(k +QL) ∩QN

)
⊂ ∂(k +QL) ∪ ∂k,LQN , (2.132)

where

∂k,LQN ⊂ ∂QN is a part of the boundary of QN

of measure bounded by CLd−1
.

(2.133)

The property (2.133) will be useful in Section 2.5.3 below. Here, we simply observe that

the above inclusion of course implies that ∂
(
(k + QL) ∩ QN

)
⊂ ∂(k + QL) ∪ ∂QN ,

and we hence have∣∣∣∣∫
(k+QL)∩QN

∇φNi ·Gj

∣∣∣∣ ≤ C

∫
∂(k+QL)

dy

|y|d
+ C

∫
∂QN

dy

|y|d
. (2.134)

In the same fashion, the distance betweenQ andRL,N
k is bounded away from 0. We

can hence again use a result similar to that shown in Lemma 2.24 to bound the integral

of∇φNi ·Gj
on RL,N

k . We hence get∣∣∣∣∣
∫
RL,Nk

∇φNi ·Gj

∣∣∣∣∣ ≤ C

∫
∂RL,Nk

dy

|y|d
.

In general, the setRL,N
k is disconnected (see the green set on Figure 2.1), and composed

of at most Cd connected components (Cd = 3 when d = 2). The boundary of each of

these connected components is contained in ∂QN ∪ (∪1≤i≤d∂QLi), with Li = 2N −
L− |ki|. We hence have

∂RL,N
k ⊂ ∂k,LQN ∪ (∪1≤i≤d∂k,L,NQLi) , (2.135)
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where ∂k,LQN satis�es (2.133) and where

∂k,L,NQLi ⊂ ∂QLi is a part of the boundary of QLi
of measure bounded by CLd−1

.

(2.136)

The property (2.136) will be useful in Section 2.5.3 below. Here, we again simply ob-

serve that the above inclusion of course implies that ∂RL,N
k ⊂ ∂QN ∪ (∪1≤i≤d∂QLi),

and thus ∣∣∣∣∣
∫
RL,Nk

∇φNi ·Gj

∣∣∣∣∣ ≤ C

∫
∂QN

dy

|y|d
+ C

d∑
i=1

∫
∂QLi

dy

|y|d
.

Since Li ≥ 2N − L− |k|∞, we deduce that∣∣∣∣∣
∫
RL,Nk

∇φNi ·Gj

∣∣∣∣∣ ≤ C

∫
∂QN

dy

|y|d
+ C

∫
∂Q2N−L−|k|∞

dy

|y|d
. (2.137)

Indeed, there exists a constant Cd (which only depends on the dimension d) such that∫
∂QLi

dy

|y|d
=
Cd
Li
≤ Cd

2N − L− |k|∞
=

∫
∂Q2N−L−|k|∞

dy

|y|d
.

Collecting (2.129), (2.134) and (2.137), we thus get that∣∣∣BL,N
1,bulk,ext

∣∣∣
≤ C

|QL|
∑

N−L<|k|∞<L

(∫
∂(k+QL)

dy

|y|d
+

∫
∂QN

dy

|y|d
+

∫
∂Q2N−L−|k|∞

dy

|y|d

)

≤ C

|QL|
∑

N−L<|k|∞<L

(∫
∂QL

dy

|y − k|d
+

1

N
+

1

2N − L− |k|∞

)

≤

 C

|QL|
∑
|k|∞<L

∫
∂QL

dy

|y − k|d

+
C

|QL|
Ld − (N − L)d

N

+
C

|QL|

L−1∑
j=N−L+1

jd−1

2N − L− j
. (2.138)

The �rst term of (2.138) is estimated as underneath (2.100) in Section 2.4.1, and hence

bounded by (C lnL)/L (see (2.101)). The second term is obviously bounded by C/N .

Turning to the third term, we write

C

|QL|

L−1∑
j=N−L+1

jd−1

2N − L− j

=
C

|QL|

N−1∑
j=2N−2L+1

(2N − L− j)d−1

j

=
C

|QL|

d−1∑
p=0

(
d− 1
p

)
(2N − L)d−1−p (−1)p

N−1∑
j=2N−2L+1

jp−1.
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Bounding from above each sum in j, we get

C

|QL|

L−1∑
j=N−L+1

jd−1

2N − L− j

≤ C

Ld
(2N − L)d−1 lnN +

C

Ld

d−1∑
p=1

(
d− 1
p

)
(2N − L)d−1−pNp.

Since 1 ≤ N/L ≤ 2, we deduce that

C

|QL|

L−1∑
j=N−L+1

jd−1

2N − L− j

≤ C

L

(
2
N

L
− 1

)d−1

ln (2L) +
C

L

d−1∑
p=1

(
d− 1
p

)(
2
N

L
− 1

)d−1−p (
N

L

)p
≤ C lnL

L
+
C

L
.

We therefore infer from (2.138) that∣∣∣BL,N
1,bulk,ext

∣∣∣ ≤ C lnL

L
+
C

N
+
C

L
≤ C lnL

L
. (2.139)

Bound on BL,N
1,bndry

For that term (2.130), we proceed as in Section 2.4.1. Using that Gj
is divergence-free,

we recast (2.130) as

BL,N
1,bndry =

1

|QL|
∑
|k|∞=L

(∫
∂
(

(k+QL)∩QN
) φNi Gj · n+

∫
∂RL,Nk

φNi G
j · n

)
.

Using that Gj
is periodic and Hölder continuous and the estimate (2.122), we get that∣∣∣BL,N

1,bndry

∣∣∣
≤ C

|QL|
∑
|k|∞=L

(∫
∂
(

(k+QL)∩QN
) dy

1 + |y|d−1
+

∫
∂RL,Nk

dy

1 + |y|d−1

)

≤ C

|QL|
∑
|k|∞=L

(∫
∂(k+QL)

dy

1 + |y|d−1
+

∫
∂QN

dy

1 + |y|d−1
+

d∑
i=1

∫
∂Q2N−L−|ki|

dy

1 + |y|d−1

)
,

where we have used the same remarks about the boundaries of (k + QL) ∩ QN and

RL,N
k as in Section 2.5.2 (see (2.132) and (2.135)). The last two integrals can be bounded

by a constant independent of N and L. We thus obtain∣∣∣BL,N
1,bndry

∣∣∣ ≤ C

L
+

C

|QL|
∑
|k|∞=L

∫
∂(k+QL)

dy

1 + |y|d−1
.

We can then proceed as underneath (2.94) and deduce (similarly to (2.96)) that∣∣∣BL,N
1,bndry

∣∣∣ ≤ C

L
+
C lnL

L
≤ C lnL

L
. (2.140)
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Conclusion

Collecting (2.126) (in the case N ≥ 2L) and (2.127), (2.131), (2.139) and (2.140) (in the

case L < N < 2L), we deduce (2.117).

2.5.3 Proof of Lemma 2.26

In view of (2.125), we recast the sum (2.116) as

BL,N
2,i,j,m,n =

1

|QL|
∑
|`|∞≤N

(∫
`+QL

∇φNi ·Gj +

∫
`+QL

∇φNj ·Gi

)

×
(∫

`+QL

∇φNm ·Gn +

∫
`+QL

∇φNn ·Gm

)
with Gj

de�ned by (2.85) and φNi de�ned by (2.113).

Similarly to (2.102) and (2.105) (and again omitting the dependency of BL,N
2 with

respect to (i, j,m, n)), we split the sum as

BL,N
2 = BL,N

2,long +BL,N
2,short,bndry +BL,N

2,short,bulk (2.141)

with

BL,N
2,long =

1

|QL|
∑

2L<|`|∞≤N

(∫
`+QL

∇φNi ·Gj +

∫
`+QL

∇φNj ·Gi

)

×
(∫

`+QL

∇φNm ·Gn +

∫
`+QL

∇φNn ·Gm

)
, (2.142)

BL,N
2,short,bndry =

1

|QL|
∑

|`|∞=L orL+1

(∫
`+QL

∇φNi ·Gj +

∫
`+QL

∇φNj ·Gi

)

×
(∫

`+QL

∇φNm ·Gn +

∫
`+QL

∇φNn ·Gm

)
(2.143)

and

BL,N
2,short,bulk =

1

|QL|
∑

|`|∞≤min(2L,N),
|`|∞ 6=L, |`|∞ 6=L+1

(∫
`+QL

∇φNi ·Gj +

∫
`+QL

∇φNj ·Gi

)

×
(∫

`+QL

∇φNm ·Gn +

∫
`+QL

∇φNn ·Gm

)
. (2.144)

If N ≤ 2L, then the sum in BL,N
2,long is simply void.

Limit of BL,N
2,short,bndry

Assume �rst that N ≥ 2L + 1. Then, in (2.143), all the cubes ` + QL (for any ` ∈ Zd
with |`|∞ = L or L + 1) are included in QN . In QN , we have the same estimates for

φNi as we have for φi. Following the same arguments as in Section 2.4.2 (Step 1), we

hence get (similarly to (2.109)) that

if N ≥ 2L+ 1, then

∣∣∣BL,N
2,short,bndry

∣∣∣ ≤ C
(lnL)2

L
. (2.145)
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We now consider the case N < 2L + 1. For any ` ∈ Zd with |`|∞ = L or L + 1, we

write ∫
`+QL

∇φNi ·Gj =

∫
(`+QL)∩QN

∇φNi ·Gj +

∫
RL,N`

∇φNi ·Gj, (2.146)

where RL,N
` ⊂ QN is obtained by QN periodicity from (` + QL) \ QN . Using an

integration by parts as in Section 2.4.2 and the bound (2.122), we get∣∣∣∣∫
`+QL

∇φNi ·Gj

∣∣∣∣ ≤ ∫
∂
(

(`+QL)∩QN
) C dy

1 + |y|d−1
+

∫
∂RL,N`

C dy

1 + |y|d−1
.

Using next the inclusions (2.132) and (2.135), we infer that∣∣∣∣∫
`+QL

∇φNi ·Gj

∣∣∣∣
≤
∫
∂(`+QL)

C dy

1 + |y|d−1
+

∫
∂QN

C dy

1 + |y|d−1
+

d∑
i=1

∫
∂Q2N−L−|`i|

C dy

1 + |y|d−1

≤ C

(
1 +

∫
∂(`+QL)

dy

1 + |y|d−1

)
.

We thus obtain that∣∣∣BL,N
2,short,bndry

∣∣∣ ≤ C

|QL|
∑

|`|∞=L orL+1

(
1 +

∫
∂(`+QL)

dy

1 + |y|d−1

)2

≤ C

L
+

C

|QL|
∑

|`|∞=L orL+1

(∫
∂(`+QL)

dy

1 + |y|d−1

)2

.

We next proceed as underneath (2.106) and deduce (similarly to (2.109)) that

if N < 2L+ 1, then

∣∣∣BL,N
2,short,bndry

∣∣∣ ≤ C
(lnL)2

L
. (2.147)

Limit of BL,N
2,short,bulk

Assume �rst that N ≥ 3L. Then, in (2.144), all the cubes `+QL (for any ` ∈ Zd with

|`|∞ ≤ min(2L,N) ≤ 2L) are included in QN . In QN , we have the same estimates for

φNi as we have for φi. Following the same arguments as in Section 2.4.2 (Step 2), we

hence get (similarly to (2.112)) that

if N ≥ 3L, then

∣∣∣BL,N
2,short,bulk

∣∣∣ ≤ C
lnL

L
. (2.148)

We now consider the case L < N < 3L and split the sum (2.144) into

BL,N
2,short,bulk = BL,N

2,short,bulk,int +BL,N
2,short,bulk,ext (2.149)

with

BL,N
2,short,bulk,int =

1

|QL|
∑

|`|∞≤N−L,
|`|∞ 6=L, |`|∞ 6=L+1

(∫
`+QL

∇φNi ·Gj +

∫
`+QL

∇φNj ·Gi

)

×
(∫

`+QL

∇φNm ·Gn +

∫
`+QL

∇φNn ·Gm

)
(2.150)
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and

BL,N
2,short,bulk,ext =

1

|QL|
∑

N−L<|`|∞≤min(2L,N),
|`|∞ 6=L, |`|∞ 6=L+1

(∫
`+QL

∇φNi ·Gj +

∫
`+QL

∇φNj ·Gi

)

×
(∫

`+QL

∇φNm ·Gn +

∫
`+QL

∇φNn ·Gm

)
. (2.151)

The cubes `+QL appearing in (2.150) are also contained in QN . We can thus proceed

as in Section 2.4.2 (Step 2) and get (similarly to (2.112)) that∣∣∣BL,N
2,short,bulk,int

∣∣∣ ≤ C
lnL

L
. (2.152)

We next turn to (2.151). For the cubes ` + QL which are a subset of QN , we proceed

as in Section 2.4.2. For the others, we again write (2.146), and note that φNi is smooth

on a neighborhood of the boundary of (` + QL) ∩ QN and on a neighborhood of the

boundary of RL,N
` . We can hence proceed as in Lemma 2.23 and deduce from (2.146)

that ∣∣∣∣∫
`+QL

∇φNi ·Gj

∣∣∣∣ ≤ ∫
∂
(

(`+QL)∩QN
) C dy|y|d +

∫
∂RL,N`

C dy

|y|d
.

Using the inclusions (2.132) and (2.135), we obtain that∣∣∣∣∫
`+QL

∇φNi ·Gj

∣∣∣∣
≤
∫
∂(`+QL)

C dy

|y|d
+

∫
∂QN

C dy

|y|d
+

d∑
i=1

∫
∂Q2N−L−|`i|

C dy

|y|d

≤
∫
∂(`+QL)

C dy

|y|d
+
C

N
+

d∑
i=1

C

2N − L− |`i|

≤
∫
∂(`+QL)

C dy

|y|d
+
C

N
+

C

2N − L− |`|∞
.

Inserting this estimate in (2.151), we thus obtain that∣∣∣BL,N
2,short,bulk,ext

∣∣∣
≤ C

|QL|
∑

N−L<|`|∞≤min(2L,N),
|`|∞ 6=L, |`|∞ 6=L+1

[(∫
∂(`+QL)

dy

|y|d

)2

+
1

N2
+

1

(2N − L− |`|∞)2

]

≤ C

|QL|
∑

N−L<|`|∞≤2L,
|`|∞ 6=L, |`|∞ 6=L+1

(∫
∂(`+QL)

dy

|y|d

)2

+
C

LdN2

((
min(2L,N)

)d − (N − L)d
)

+
C

Ld

min(2L,N)∑
j=N−L+1

jd−1

(2N − L− j)2
. (2.153)

The �rst term in the right-hand side of (2.153) is estimated as underneath (2.110). We

hence obtain, similarly to (2.112), that it is bounded by C (lnL)/L. The second term is
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estimated by C/L2
, since we work in the regime L < N < 3L. To estimate the third

term of the right-hand side of (2.153), we write that

C

Ld

min(2L,N)∑
j=N−L+1

jd−1

(2N − L− j)2

=
C

Ld

N−1∑
j=2N−L−min(2L,N)

(2N − L− j)d−1

j2

=
C

Ld

d−1∑
p=0

(
d− 1
p

)
(2N − L)d−1−p (−1)p

N−1∑
j=2N−L−min(2L,N)

jp−2.

Bounding from above each sum in j, we get

C

Ld

min(2L,N)∑
j=N−L+1

jd−1

(2N − L− j)2

≤ C

Ld

d−1∑
p=0

(
d− 1
p

)
(2N − L)d−1−p

N−1∑
j=2N−L−min(2L,N)

jp−2

≤ C

Ld
(2N − L)d−1

N−1∑
j=2N−L−min(2L,N)

j−2 +
C

Ld
(d− 1)(2N − L)d−2

N−1∑
j=2N−L−min(2L,N)

j−1

+
C

Ld

d−1∑
p=2

(
d− 1
p

)
(2N − L)d−1−pNp−1

≤ C

Ld
(2N − L)d−1 +

C

Ld
(d− 1)(2N − L)d−2 lnN

+
C

LdN

d−1∑
p=0

(
d− 1
p

)
(2N − L)d−1−pNp

≤ C Nd−1

Ld
+
C Nd−2 lnN

Ld
+

C

LdN
(3N − L)d−1

≤ C Nd−1

Ld
+
C Nd−2 lnN

Ld
+
C Nd−2

Ld
.

Using that L < N < 3L, we bound from above this third term of the right-hand side

of (2.153) byC/L+C lnL/L2+C/L2 ≤ C/L. Inserting the previous results in (2.153),

we deduce that, when L < N < 3L,∣∣∣BL,N
2,short,bulk,ext

∣∣∣ ≤ C lnL

L
+
C

L2
+
C

L
≤ C lnL

L
. (2.154)

Collecting (2.149), (2.152) and (2.154), we deduce that

if L < N < 3L, then

∣∣∣BL,N
2,short,bulk

∣∣∣ ≤ C
lnL

L
. (2.155)

Limit of BL,N
2,long

For this term (2.142) not to be void, we assume that N ≥ 2L + 1. For the cubes

` + QL which are a subset of QN , we proceed as in Section 2.4.2. For the others, we

again write (2.146), and note that φNi is smooth on a neighborhood of the boundary
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of (` + QL) ∩ QN and on a neighborhood of the boundary of RL,N
` , because Q is at a

positive distance away from these boundaries. We can hence proceed as in Lemma 2.24

and deduce from (2.146) that∣∣∣∣∫
`+QL

∇φNi ·Gj

∣∣∣∣ ≤ ∫
∂
(

(`+QL)∩QN
) C dy|y|d +

∫
∂RL,N`

C dy

|y|d
.

Using the inclusions (2.132) and (2.135) and the properties (2.133) and (2.136), we obtain

that ∣∣∣∣∫
`+QL

∇φNi ·Gj

∣∣∣∣
≤
∫
∂(`+QL)

C dy

|y|d
+

∫
∂`,LQN

C dy

|y|d
+

d∑
i=1

∫
∂`,L,NQ2N−L−|`i|

C dy

|y|d

≤
∫
∂(`+QL)

C dy

|y|d
+

C

Nd

∣∣∂`,LQN

∣∣+
d∑
i=1

C

(2N − L− |`i|)d
∣∣∂`,L,NQ2N−L−|`i|

∣∣
≤
∫
∂(`+QL)

C dy

|y|d
+

C

Nd

∣∣∂`,LQN

∣∣+
d∑
i=1

C Ld−1

(2N − L− |`i|)d

≤
∫
∂(`+QL)

C dy

|y|d
+
C Ld−1

Nd
+

C Ld−1

(2N − L− |`|∞)d
.

We thus obtain that∣∣∣BL,N
2,long

∣∣∣
≤ C

|QL|
∑

2L<|`|∞≤N

[
L2d−2

N2d
+

L2d−2

(2N − L− |`|∞)2d
+

(∫
∂(`+QL)

dy

|y|d

)2
]

≤ C

Ld
L2d−2

N2d

(
Nd − (2L)d

)
+
C L2d−2

Ld

N∑
j=2L+1

jd−1

(2N − L− j)2d

+
C

|QL|
∑

2L<|`|∞≤N

(∫
∂(`+QL)

dy

|y|d

)2

. (2.156)

The �rst term of the above right-hand side is bounded by C/L2
, simply using that

L ≤ N . The third term is estimated by C/L2
, similarly to (2.104) in Section 2.4.2.

Turning to the second term, we write that

C L2d−2

Ld

N∑
j=2L+1

jd−1

(2N − L− j)2d

=
C L2d−2

Ld

2N−3L−1∑
j=N−L

(2N − L− j)d−1

j2d

=
C L2d−2

Ld

d−1∑
p=0

(
d− 1
p

)
(2N − L)d−1−p (−1)p

2N−3L−1∑
j=N−L

1

j2d−p .
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Bounding from above each sum in j, we get

C L2d−2

Ld

N∑
j=2L+1

jd−1

(2N − L− j)2d

≤ C L2d−2

Ld

d−1∑
p=0

(
d− 1
p

)
(2N − L)d−1−p 1

(N − L)2d−p−1

=
C L2d−2

Ld

d−1∑
p=0

(
d− 1
p

)(
2N − L
N − L

)d−1−p
1

(N − L)d
.

Using that using that

2N − L
N − L

≤ 3 and that N − L ≥ L (both bounds being conse-

quences of the fact that N ≥ 2L+ 1), we deduce that

C L2d−2

Ld

N∑
j=2L+1

jd−1

(2N − L− j)2d
≤ C L2d−2

Ld

d−1∑
p=0

(
d− 1
p

)
3d−1−p 1

Ld
≤ C

L2
.

We thus infer from (2.156) that ∣∣∣BL,N
2,long

∣∣∣ ≤ C

L2
. (2.157)

Conclusion

Collecting (2.141), (2.157), (2.145), (2.147), (2.148) and (2.155), we obtain that∣∣∣BL,N
2

∣∣∣ ≤ C

L2
+ C

(lnL)2

L
+ C

lnL

L
≤ C

(lnL)2

L
.

This proves (2.118).

2.6 Numerical results

We now turn to numerical experiments. Our aim is twofold:

• investigate whether (2.33) holds in a fully random setting, i.e. beyond the weakly

random setting considered in Theorem 2.7.

• investigate whetherQL,N de�ned by (2.42) converges toQ in a fully random set-

ting (recall that Theorem 2.10 states this convergence result in a weakly random

setting).

The conclusions of the tests discussed below is that we indeed numerically observe,

even for strongly random problems, that QL,N provides an accurate approximation

(for large values of N and L) of the limit of the variance of Iε(f, g) when ε vanishes.

We now proceed in details. As explained above, we assume here that the random-

ness is not small. In line with the expected convergence (2.33), we compare the vari-

ance of Iε(f, g) (computed by a reference, computationally expensive method) with σ2

de�ned by (2.34).

We have considered the classical two-dimensional random checkerboard test-case:

the random matrix A in (2.1) is diagonal, A(x, ω) = a(x, ω) Idd, and the function a is
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piecewise constant and takes the values a = 0.2 or a = 1.8 with equal probability 1/2
(see Figure 2.2):

a(x, ω) =
∑
k∈Zd

1Q+k(x)Xk(ω)

where the random variables Xk are i.i.d. and satisfy P(Xk = 1.8) = P(Xk = 0.2) =
1/2. We consider (2.1) on D = (0, 1)2

for some given right-hand side f , and we �x

some test function g in (2.22). The functions f and g will be made precise below.

Figure 2.2: Two realizations of the checkerboard: ε = 1/10 (left) and ε = 1/50 (right).

The tensorQL,N is de�ned (see (2.42)) as a covariance. In practice, this covariance

is approximated by an empirical mean: we hence de�ne

QL,N,Mi,j,k,` := CovM

(
1

|QL|

∫
QL

ρNi,j,

∫
QL

ρNk,`

)
, (2.158)

where, for any random variables X and Y ,

CovM(X, Y ) =
1

M

M∑
m=1

(Xm −X) (Ym − Y )

with X =
1

M

M∑
m=1

Xm, where {Xm}1≤m≤M are M i.i.d. realizations of the random

variable X(ω) (and likewise for Y ). The quantityQL,N,M can be computed in practice

(see Figure 2.3 for a schematic representation of the approximation procedure).

In Section 2.6.1, we investigate the convergence of QL,N,M to some Q when L, N
and M increase. In Section 2.6.2, we consider several choices of functions f and g. For

each choice, we show that the law of Iε(f, g) indeed converges to a Gaussian law when

ε→ 0, and we show that its variance can indeed be computed from Q.

2.6.1 Approximation of Q
We �rst investigate the convergence of QL,N,M when the size N of the truncated do-

main increases. To that aim, we �x L = 5 and M = 104
and we show one component

ofQL,N,M as a function of N on Figure 2.4 (the conclusions for the other components

of the tensor is identical). We observe that the approximation QL,N,M quickly con-

verges when we increase N , and that setting N = 10 is su�cient to reach the large N
limit for the example we have considered.
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(FE) Solution wNi (·, ωm) on QN

Quadrature

∫
QL

ρNi,j(·, ωm)

QL

QN

Compute in parallel for each of the M realizations

Compute empirical covariance CovM

(∫
QL

ρNi,j,

∫
QL

ρNk,`

)

Figure 2.3: Procedure to approximate the tensorQ byQL,N,M : N ≥ L denotes the size

of the domain on which we compute the corrector, L denotes the size of the domain

on which we consider the corrected energy density, while M denotes the number of

realizations we consider to approximate the covariance.
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Figure 2.4: QL,N,M1111 as a function of N (L = 5 and M = 104
). We also plot con�dence

intervals (CI) computed from the M realizations.
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Remark 2.28. The above computations have been performed withM = 104
realizations,

which is a huge number. As a consequence, the con�dence interval on Figure 2.4 is small.

It is currently unclear to us how to reduce this number M of realizations (and thus the

cost of the procedure) while keeping the same accuracy on the evaluation of the tensorQ.

We next perform the same study forL = 10 (with againM = 104
realizations). The

results shown on Figure 2.5 again show that setting N to a small value (here N = 15)

is su�cient to reach the large N limit.
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Figure 2.5: QL,N,M1111 (left) andQL,N,M1122 (right) as a function of N (L = 10 and M = 104
).

The comparaison of the results of Figures 2.4 and 2.5 suggest to choose N slightly

larger than L (since convergence is reached for N ≈ 10, resp. N ≈ 15, when L = 5,

resp. L = 10). We thus consider the choice N = L + 10, again with M = 104

realizations and for increasing values of L, on Figure 2.6.
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Figure 2.6: QN−10,N,M
1111 (left) and QN−10,N,M

1122 (right) as a function of N (L = N − 10
and M = 104

).

Theorem 2.10 states a convergence in the regime N > L. As pointed out in Re-

mark 2.11, the choiceN = L leads to a very particular situation in our weakly stochas-

tic case. Our theoretical analysis thus does not provide insights on the behavior of

QL,N,M whenN = L. This motivates the numerical results shown on Figure 2.7, where

we compare the evolution of QL,N,M as a function of N , in the case when N = L and

whenN = L+10. We can see that both approximations seem to converge to the same

limit. Of course, for a �xed value of L and M , computing QL,N,M is cheaper in the

case N = L than in the case N = L + 10, since the corrector problem (2.7) needs to
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be solved in a smaller domain. Making the choice N = L hence seems to lead to the

most e�cient computations.
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Figure 2.7: Evolution of QL,L,M1111 and QL,L+10,M
1111 as a function of L (M = 104

).

The fourth order tensorQL,N,M (and more precisely its limit when L, N and M go

to∞) is eventually used in (2.34) and (2.35) to compute the variance σ2
. We show on

Figure 2.8 the approximation

(σL,N,M)2 =

∫
D

(∇u? ⊗∇v?) : QL,N,M : (∇u? ⊗∇v?), (2.159)

of σ2
. We have chosen f(x, y) = 10e−80(x−0.5)2

and g(x, y) = 10e−80(y−0.5)2
. In prac-

tice, we approximate u? in (2.159) by the solution to

−div

(
A?N(ω)∇uN? (ω)

)
= f in D, uN? (ω) = 0 on ∂D,

where A?N(ω) is de�ned by (2.6), and likewise for v?.

The quantity (σL,N,M)2
(which depends on all the components of the tensorQL,N,M ,

and not only on one of them as shown on the above �gures) again reaches its asymp-

totic limit for limited values of N and L. The con�dence interval computed with

M = 104
realizations is again small.
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Figure 2.8: Variance (σL,N,M)2
computed from the tensor QL,N,M as a function of N

(L = N − 10 and M = 104
).
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2.6.2 Estimation of the asymptotic law of Iε(f, g)

In this section, we present numerical experiments that show that the theoretical re-

sults established in the weakly stochastic case (namely that the fourth order tensorQ1

characterizes the �uctuations of I1
ε (f, g)) also hold (as least for the numerical examples

considered here) in the full, non weakly random setting.

We proceed as follows:

1. We approximate Q by QL,N,M with L = 20, N = 30 and M = 104
.

2. We consider multiple choices of functions f and g.

3. For each choice of (f, g), we computeM realizations of Iε(f, g) for several val-

ues of ε. To do so, for each of these M realizations of A, we solve (2.1) (in

practice, we use P1 �nite elements and the software FreeFEM++ [50]).

4. We check whether Iε(f, g) is distributed according to a Gaussian law. To do so,

we plot the empirical distribution of Iε(f, g) (computed from itsM realizations),

the associated QQ-plot and we perform a Shapiro-Wilk test [79].

5. If the Gaussian approximation is su�ciently accurate, we compute the empirical

variance of Iε(f, g) and compare it with the asymptotic value (σL,N,M)2
de�ned

by (2.159).

In what follows, we consider M = 104
realizations of Iε(f, g) for intermediate

values of ε, andM = 103
realizations when ε becomes small. Recall indeed that the

smaller ε is, the more expensive the computation of Iε(f, g) is (the meshsize we use to

solve (2.1) is h ' ε/10).

In the following Sections 2.6.2 and 2.6.2, we consider two cases with various f and g,

where the heterogeneous problem (2.1) is complemented with homogeneous Dirichlet

boundary conditions. In Section 2.6.2, we explore the case when the heterogeneous

problem (2.1) is complemented with homogeneous Neumann boundary conditions.

Case of a quantity of interest localized in Df,g ⊂⊂ D

We start by considering some functions f and g (see Figure 2.9) so that the integrand

of Iε(f, g) is (essentially) supported in a domain Df,g strictly included in D (the quan-

tity (uε(·, ω) − E[uε])g thus essentially vanishes in a neighbourhood of ∂D). Such a

choice is motivated by the fact that, in general, the solution uε to (2.1) (as always for

heterogeneous problems) has a speci�c behaviour close to the boundary of D: pres-

ence of boundary layers, . . .Our choice of (f, g) is aimed at making the impact of such

particular features, occurring in a neighbourhood of ∂D, as small as possible.

First, we investigate whether the law of Iε becomes closer to a Gaussian law when

ε decreases. To do so, we plot the empirical distribution of Iε on Figure 2.10 and the

QQ-plot on Figure 2.11. We have considered several values of ε and only provide the

results for the largest (ε = 1/10) and the smallest (ε = 1/70) values. We also perform

a Shapiro-Wilk test with a 5% p-value.

When ε is not su�ciently small (e.g. ε = 1/10), we can see that Iε does not follow

a Gaussian distribution, as expected. The QQ-plot shows that the extreme quantiles do

not match with those of a normal distribution. This is con�rmed by the Shapiro-Wilk

test that rejects the hypothesis that the distribution of Iε is Gaussian with a probability

of 95%. On the other hand, when ε is small enough (here smaller than 1/70), the

distribution of Iε is close to that of a Gaussian: the QQ-plot shows that the quantiles of
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Figure 2.9: [Test case 1] Right-hand side f(x, y) = 10e−80(x−0.5)2
(left) and test function

g(x, y) = 10e−80(y−0.5)2
(right).

Figure 2.10: [Test case 1] Empirical distribution of Iε (left: ε = 1/10; right: ε = 1/70)

computed fromM = 104
realizations.

Figure 2.11: [Test case 1] QQ-plot for the distribution of Iε (left: ε = 1/10; right:

ε = 1/70) computed fromM = 104
realizations.

the distribution accurately match those of a Gaussian and the Shapiro-Wilk test cannot

reject the Gaussian hypothesis with enough con�dence.

We next compare the variance σ2
emp of Iε(f, g) (computed empirically fromM real-

izations of uε) with the asymptotic variance σ2
theo (computed fromQL,N,M withL = 20,
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N = 30 and M = 104
). Figure 2.12 shows that, when ε is not small enough (namely

1/40 ≤ ε ≤ 1/10), the asymptotic variance σ2
theo is an inaccurate approximation of

the variance σ2
emp of Iε(f, g): they di�er by at least 10%. This is not unexpected, since

our result only holds in the limit ε → 0. On the other hand, when ε is small enough

(say ε < 1/40), then the con�dence intervals associated to both estimations are close

to each other. For instance, when ε = 1/70, the two variances only di�er by 5%.

The relative error decreases when ε decreases. These numerical results hence seem to

con�rm that the empirical variance σ2
emp converges, when ε → 0, to the asymptotic

variance computed from the tensor Q.
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Figure 2.12: [Test case 1] Left: comparison between the empirical variance σ2
emp of Iε

and the variance σ2
theo obtained with our approximation of Q in function of ε. Right,

blue curve: relative error |σ2
emp − σ2

theo|/σ2
emp on the variance. Right, green curve:

relative error |σemp − σtheo|/σemp on the standard deviation.

Case when f or g are localized on the boundary of D

We now consider another choice for f and g (see Figure 2.13), so that the integrand in

Iε(f, g) is not localized in a subdomain of D.
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Figure 2.13: [Test case 2] Right-hand side f(x, y) = 10e−40(x2+y2)
(left) and test func-

tion g(x, y) = 10e−40(x2+(y−0.5)2)
(right).

As in Section 2.6.2, we �rst check whether the distribution of Iε(f, g) is close to

a Gaussian distribution, for severak values of ε. To that aim, we plot the (empirically
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computed) distribution of Iε(f, g) (see Figure 2.14) and the QQ-plot (see Figure 2.15).

We also perform a Shapiro-Wilk test with a 5% p-value.

Again, for values of ε not small enough (e.g. ε = 1/10), the distribution of Iε(f, g)
is not a Gaussian. This is obvious from the left-hand side of Figure 2.14, and quantita-

tively con�rmed by the left-hand side of Figure 2.15, where we see on the QQ-plot that

the extreme quantiles do not match with those of a normal distribution. The Shapiro-

Wilk test rejects the hypothesis that the distribution of Iε is Gaussian with a proba-

bility of 95%. On the other hand, when ε is small enough (here smaller than 1/70),

the distribution of Iε is very close to a Gaussian distribution, as can be seen from the

right-hand side of Figure 2.14. On the right-hand side of Figure 2.15, the QQ-plot shows

that the quantiles of the distribution of Iε are close to those of a Gaussian distribution

(though the extreme quantiles are still slightly di�erent). Somewhat unexpectedly, the

Shapiro-Wilk test again rejects the Gaussian hypothesis, even for this small value of ε
(the hypothesis is actually rejected for any ε between 1/10 and 1/100), although the

test scores decreases when ε decreases (meaning that the rejection is performed with a

smaller probability as ε decreases). The convergence towards a Gaussian distribution

hence seems to be reached for smaller values of ε than in Section 2.6.2 (compare e.g.

the right-hand sides of Figures 2.11 and 2.15).

Figure 2.14: [Test case 2] Empirical distribution of Iε (left: ε = 1/10; right: ε = 1/100)

computed fromM = 103
realizations.

Figure 2.15: [Test case 2] QQ-plot for the distribution of Iε (left: ε = 1/10: right:

ε = 1/100) computed fromM = 103
realizations.

We next compare the variance σ2
emp of Iε(f, g) (computed empirically fromM real-

izations of uε) with the asymptotic variance σ2
theo (computed fromQL,N,M withL = 20,
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N = 30 and M = 104
). Figure 2.16 shows that, when ε is not small enough (here

ε ≥ 1/70), the asymptotic variance σ2
theo is very di�erent (say by 70%) from the vari-

ance σ2
emp of Iε(f, g). On the other hand, when ε is su�ciently small (here ε < 1/80),

then the con�dence intervals associated to both estimations are close to each other.

When ε ≤ 1/90, the con�dence intervals (in the estimation of σ2
emp and σ2

theo) have a

non-empty overlap, yielding an accurate estimate of the variance (i.e. an estimate with

a relative error smaller than 5%). The relative error between σ2
emp and σ2

theo decreases

when ε decreases. These results seem to show that, when ε→ 0, the law of Iε indeed

converges to a Gaussian law and that the empirical variance σ2
emp converges to the

theoretically predicted asymptotic variance σ2
theo, all convergences being reached for

smaller values of ε than in the case of Section 2.6.2.
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Figure 2.16: [Test case 2] Left: comparison between the empirical variance σ2
emp of Iε

and the variance σ2
theo obtained with our approximation of Q in function of ε. Right,

blue curve: relative error |σ2
emp − σ2

theo|/σ2
emp on the variance. Right, green curve:

relative error |σemp − σtheo|/σemp on the standard deviation.

The case of Neumann boundary conditions

We consider now the oscillatory problem (2.1) where the homogeneous Dirichlet bound-

ary condition is replaced by a homogeneous Neumann boundary condition. We then

of course need to consider functions f and g with vanishing mean, and we make the

choice shown on Figure 2.17. The solution uε is only de�ned up to an additive (possi-

bly random) constant, which is irrelevant in our quantity of interest Iε(f, g) since the

mean of g vanishes.

We proceed as in Sections 2.6.2 and 2.6.2, �rst investigating whether the distribu-

tion of Iε becomes closer to a Gaussian distribution when ε decreases (see Figures 2.18

and 2.19). We observe that the convergence seems to be reached very quickly (the

threshold in terms of ε seems to be larger here than in the Dirichlet case). This is con-

�rmed by the Shapiro-Wilk test (again with a 5% p-value), which does not reject the

Gaussian hypothesis whenever ε < 1/30.

We next compare the variance σ2
emp of Iε(f, g) (computed empirically fromM real-

izations of uε) with the asymptotic variance σ2
theo (computed fromQL,N,M withL = 20,

N = 30 and M = 104
). Results are shown on Figure 2.20. They are very similar to the

ones obtained in the Dirichlet case, and con�rm the fact that the threshold ε0 below

which convergence is reached can be estimated at ε0 = 1/40, a larger value than in

the Dirichlet case.
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Figure 2.17: [Neumann test case] Right-hand side f(x, y) = cos(2πx) sin(2πy) (left)

and test function g(x, y) = cos(2πy) sin(2πx) (right).

Figure 2.18: [Neumann test case] Empirical distributions of Iε (left: ε = 1/10; right:

ε = 1/70) computed fromM = 104
realizations.

Figure 2.19: [Neumann test case] QQ-plot for the distribution of Iε (left: ε = 1/10;

right: ε = 1/70) computed fromM = 104
realizations.
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2.A Estimates for theGreen function of the laplacian

operator with periodic boundary conditions

Our aim is to show (2.120) and (2.121), in the case d = 3 and when Aper = Id. The

Green function GN is thus here the solution to
−∆GN(·, y) = − 1

|QN |
+
∑
k∈Z3

δ(· − y −Nk) in R3,

GN(·, y) is QN -periodic.

(2.160)

2.A.1 Analytical expression

The existence and uniqueness (up to the addition of a constant) ofGN solution to (2.160)

is shown in [67] (see also [23, 29]). We recall the following result, which provides an

analytic expression of GN .

Lemma 2.29. Consider ZP
N de�ned by

ZP
N(x) =

∑
k∈Z3, |k|≤P

fN(x−Nk),

where

fN(x) =
1

4π|x|
− 1

|QN |

∫
QN

dy

4π|x− y|
.

We have that ZP
N ∈ L2

loc(R3) and that ZP
N converges in L2

loc(R3), when P →∞, to some

GN , which is a solution to (2.160) with y = 0.
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Proof of Lemma 2.29. We �rst show thatZP
N indeed converges inL2

loc(R3), and we next

prove that the limit is a solution to (2.160).

Step 1: Bound on fN . We claim that there exists Cf > 0 independent of N such that

|fN(x)| ≤ CfN
3

|x|4
whenever |x| ≥ N . (2.161)

We set ρ(x) =
1

4π|x|
. In dimension d = 3, we note that Q = (−1/2, 1/2)3 ⊂ B(0, r?)

for some r? < 1. Thus, for any z ∈ Q and any r ∈ R3
with |r| = 1, we write

ρ(r − z) = ρ(r)− z · ∇ρ(r) +
1

2
z · ∇2ρ(r)z +R(r, z),

with

|R(r, z)| ≤ CTaylor|z|3,

where CTaylor is independent of r and z. For any x ∈ R3
with |x| ≥ N , we then have∫

QN

dy

4π|x− y|

=
1

|x|

∫
QN

ρ

(
x

|x|
− y

|x|

)
dy

=
1

|x|

[∫
QN

ρ

(
x

|x|

)
dy −

∫
QN

y

|x|
· ∇ρ

(
x

|x|

)
dy

+

∫
QN

1

2

y

|x|
· ∇2ρ

(
x

|x|

)
y

|x|
dy +

∫
QN

R

(
x

|x|
,
y

|x|

)
dy

]

where we have used that y/|x| ∈ Q. We successively consider the di�erent terms in

the above right-hand side. The second term vanishes by symmetry. The third term

reads ∫
QN

y

|x|
· ∇2ρ

(
x

|x|

)
y

|x|
dy =

3∑
i,j=1

∫
QN

yi yj
|x|2

∂2ρ

∂xi∂xj

(
x

|x|

)
dy

=
3∑
i=1

1

|x|2
∂2ρ

∂x2
i

(
x

|x|

)∫
QN

y2
i dy

=
CN
|x|2

∆ρ

(
x

|x|

)
= 0,

where we have noted CN =

∫
QN

y2
1 dy. We thus deduce that

1

|QN |

∫
QN

dy

4π|x− y|
=

1

4π|x|
+

1

|QN |
1

|x|

∫
QN

R

(
x

|x|
,
y

|x|

)
dy,

where the last term is estimated as∣∣∣∣∫
QN

R

(
x

|x|
,
y

|x|

)
dy

∣∣∣∣ ≤ CTaylor

∫
QN

∣∣∣∣ y|x|
∣∣∣∣3 dy ≤ C

|x|3
N6,
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for some C independent of N . We thus deduce that |fN(x)| ≤ C N3

|x|4
, which is the

claim (2.161).

Step 2: Convergence of ZP
N in L2

loc(R3). The function x ∈ R3 7→
∫
QN

dy

4π|x− y|
is

continuous, hence fN is continuous on R3
except at the origin, where it behaves like

1/(4π|x|). Hence fN ∈ L2
loc(R3) and thus ZP

N ∈ L2
loc(R3).

Choose x ∈ R3
, x 6∈ NZ3

. The terms fN(x − Nk) are all de�ned, and, in view

of (2.161), we see that the series

∑
k∈Z3

fN(x − Nk) is absolutely convergent. We can

thus introduce GN(x) =
∑
k∈Z3

fN(x−Nk), which is well-de�ned almost everywhere.

We now prove that ZP
N converges in L2

loc(R3) towards GN . To that aim, choose a

compact S ⊂ B(0, s) and consider the di�erence, for any x ∈ S,

rP (x) =
(
ZP
N(x)−GN(x)

)2
=

∑
|k|>P

fN(x−Nk)

2

.

Using (2.161), we see that there exists P0 = s+ 1 such that, when P ≥ P0 and for any

x ∈ S, we have

rP (x) ≤

∑
|k|>P

CN3

|x−Nk|4

2

≤

∑
|k|>P

CN3

(|k|N − s)4

2

≤ CN <∞,

where CN is independent of x and P . We thus have that GN ∈ L2(S) and that ZP
N

converges in L2(S) towards GN .

Step 3: GN is a solution to (2.160) with y = 0. Since ZP
N converges in L2

loc(R3)
towards GN , we have that, in the sense of distributions on R3

,

−∆GN = lim
P→∞

−∆ZP
N = lim

P→∞

∑
k∈Z3, |k|≤P

(−∆fN)(· −Nk).

Writing fN(x) =
1

4π|x|
− 1

|QN |

∫
R3

1QN (y)
dy

4π|x− y|
, we see that−∆fN = δ0−

1QN
|QN |

.

We therefore get

−∆GN = lim
P→∞

∑
k∈Z3, |k|≤P

[
−1Nk+QN

|QN |
+ δNk

]
= − 1

|QN |
+
∑
k∈Z3

δNk.

By construction, GN is NZ3
-periodic. We have thus shown that GN is a solution

to (2.160) with y = 0. This concludes the proof of Lemma 2.29.

2.A.2 Estimates on GN

Lemma 2.30. Consider the functionGN built in Lemma 2.29. There existsC independent

of N such that

for any x ∈ QN , we have

∣∣GN(x)
∣∣ ≤ C

|x|
.
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Proof of Lemma (2.30). We write that∣∣GN(x)
∣∣ ≤ ∑

k∈Z3, |k|<2

|fN(x−Nk)|+
∑

k∈Z3, |k|≥2

|fN(x−Nk)|. (2.162)

We note that, when |k| ≥ 2 and x ∈ QN , we have |x−Nk| ≥ N |k|−|x| ≥ 2N−|x| ≥
N where we have used that QN ⊂ B(0, N). We are thus in position to use (2.161) in

the second term of (2.162) and write∑
k∈Z3, |k|≥2

|fN(x−Nk)| ≤
∑

k∈Z3, |k|≥2

CfN
3

|x−Nk|4
≤

∑
k∈Z3, |k|≥2

CfN
3

N4(|k| − 1)4
≤ C

N
,

where C is independent of N . For the �rst term of (2.162), we write∑
k∈Z3, |k|<2

|fN(x−Nk)| ≤ C
∑

k∈Z3, |k|<2

(
1

|x−Nk|
+

1

|QN |

∫
QN

dy

|x−Nk − y|

)
.

(2.163)

For the second term of (2.163), we use that there exists r independent of N such that,

for any x ∈ QN and any |k| < 2, we have QN ⊂ B(x−Nk, rN). Hence∑
k∈Z3, |k|<2

1

|QN |

∫
QN

dy

|x−Nk − y|
≤

∑
k∈Z3, |k|<2

1

|QN |

∫
B(x−Nk,rN)

dy

|x−Nk − y|

=
∑

k∈Z3, |k|<2

1

|QN |

∫
B(0,rN)

dy

|y|

≤ C

N

for some C independent of N . For the �rst term of (2.163), we write∑
k∈Z3, |k|<2

1

|x−Nk|
=

1

|x|
+

∑
k∈Z3, 1≤|k|<2

1

|x−Nk|
,

and we recall that Q ⊂ B(0, r?) for some r? < 1. Hence any x ∈ QN and any

1 ≤ |k| < 2, we have |x−Nk| ≥ N |k| − |x| ≥ N − r?N , hence∑
k∈Z3, |k|<2

1

|x−Nk|
≤ 1

|x|
+
C

N
.

Collecting the above estimates, we deduce from (2.163) that∑
k∈Z3, |k|<2

|fN(x−Nk)| ≤ 1

|x|
+
C

N
.

We then deduce from (2.162) that, for any x ∈ QN ,∣∣GN(x)
∣∣ ≤ 1

|x|
+
C

N
,

which yields the claimed result. This concludes the proof of Lemma 2.30.

We recall (see Section 2.5.1) that, for any x and y in R3
, we denote dN(x, y) =

inf
k∈Z3
|x − y − Nk|. It is easy to check that, for any x, y and z in R3

, we have the

triangular inequality

dN(x, y) ≤ dN(x, z) + dN(z, y). (2.164)
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Lemma 2.31. Let GN be a solution to (2.160). Then, for any x and y in R3
, we have

|∇xGN(x, y)| ≤ C

|dN(x, y)|2
, (2.165)

|∇yGN(x, y)| ≤ C

|dN(x, y)|2
, (2.166)

|∇y∇xGN(x, y)| ≤ C

|dN(x, y)|3
, (2.167)

where C is independent of N , x and y.

For the proof of Lemma 2.31, we need the following result from Avellaneda and Lin

(see [4, Lemma 16]).

Lemma2.32 (Lemma 16 of [4]). Consider aZd periodicmatrix �eldA, with λ ≤ A(x) ≤
M a.e. on Y , for some constants 0 < λ < M . We also assume that A ∈ C0,γ(Y ) for
some 0 < γ ≤ 1 with ‖A‖C0,γ(Y ) ≤ M . Let δ > 0, r > 0 and take f ∈ Ld+δ(B(0, r)).
Consider uε solution to

− div
[
A
( ·
ε

)
∇uε

]
= f in B(0, r),

and assume that ‖uε‖L∞(B(0,r)) <∞.

Then there exists a constant C depending only on λ,M , γ, d and δ such that, for any

ε > 0 and any r > 0, we have

‖∇uε‖L∞(B(0,r/2)) ≤ C
(
r−1‖uε‖L∞(B(0,r)) + rµ‖f‖Ld+δ(B(0,r))

)
,

where µ = 1− d/(d+ δ).

Proof of Lemma 2.31. The function GN built in Lemma (2.29) satis�es (2.160) with y =
0. Let x ∈ QN and r = |x|/2. The ball B(x, r) does not intersect NZ3

. Thus, on

B(x, r), we have−∆GN = − 1

|QN |
. Using Lemma 2.32 and next the periodicity ofGN

and Lemma 2.30, we write, for a constant C independent of N and x (and with d = 3),

that ∥∥∇GN

∥∥
L∞(B(x,r/2))

≤ C

(
r−1
∥∥GN

∥∥
L∞(B(x,r))

+ rµ
∥∥∥∥ 1

|QN |

∥∥∥∥
Ld+δ(B(x,r))

)
,

≤ C

(
r−1

(
sup

z∈B(x,r)

1

dN(z, 0)

)
+

rµ

|QN |
rd/(d+δ)

)
,

≤ C

(
r−1

(
sup

z∈B(x,r)

1

dN(z, 0)

)
+

r

|QN |

)
.

We next observe that, for any x ∈ QN and z ∈ B(x, r), we have

|x| = dN(x, 0) ≤ dN(x, z) + dN(z, 0) ≤ |x− z|+ dN(z, 0)

≤ r + dN(z, 0) =
|x|
2

+ dN(z, 0),

hence dN(z, 0) ≥ r and thus∥∥∇GN

∥∥
L∞(B(x,r/2))

≤ C

(
1

r2
+

r

|QN |

)
≤ C

(
1

|x|2
+
|x|
|QN |

)
≤ C

(
1

|x|2
+

1

N2

)
≤ C

|x|2
.
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In view of the equation satis�ed by GN , we know that GN ∈ C∞(B(x, r/2)). We thus

deduce from the above that

∀x ∈ QN ,
∣∣∇GN(x)

∣∣ ≤ C

|x|2
. (2.168)

Let GN be a solution to (2.160). We know that the solution to (2.160) is unique, up to

the addition of a constant. We thus haveGN(x, y) = GN(x−y)+CN(y) whereCN(y)
only depends on y andN , and thus∇xGN(x, y) = ∇GN(x−y). Consider x and y such

that x− y ∈ QN . We have dN(x, y) = |x− y| and the bound (2.168) implies (2.165) for

such x and y. The case x− y 6∈ QN is obtained using the QN -periodicity of GN(·, y).

The function G?
N(x, y) = GN(y, x) is the Green function associated to the adjoint

operator. We thus deduce (2.166) from (2.165).

We now prove (2.167). Let y ∈ R3
and x ∈ R3

with x 6∈ y + NZ3
. For any r0 <

3dN(x, y)/4, we have −∆GN(·, y) = − 1

|QN |
on B(x, r0). We can di�erentiate with

respect to y, which shows that −∆∇yGN(·, y) = 0 on B(x, r) with r = dN(x, y)/2.

Using again Lemma 2.32 and next (2.166), we write, for a constant C independent of

N , x and y, that

‖∇x∇yGN(·, y)‖L∞(B(x,r/2)) ≤
C

r
‖∇yGN(·, y)‖L∞(B(x,r)) ,

≤ C

r
sup

z∈B(x,r)

1

|dN(z, y)|2
.

Using the triangular inequality (2.164), we now write, for any z ∈ B(x, r), that

2r = dN(x, y) ≤ dN(x, z) + dN(z, y) ≤ |x− z|+ dN(z, y) ≤ r + dN(z, y),

thus

‖∇x∇yGN(·, y)‖L∞(B(x,r/2)) ≤
C

r3
≤ C

|dN(x, y)|3
.

This concludes the proof of (2.167) and thus that of Lemma 2.31.





CHAPTER 3

A MULTI-SCALE FINITE ELEMENT APPROACH USING

HIGH ORDER POLYNOMIALS

This chapter corresponds to a manuscript in preparation, co-authored with U. Hetma-

niuk, C. Le Bris and F. Legoll.

We consider a variant of the classical MsFEM approach with enrichments based

on Legendre polynomials, both in the bulk of mesh elements and on their interfaces.

A convergence analysis of the approach is presented. Numerical tests show a signi�-

cant reduction in the error in comparison to classical MsFEM approaches, at a limited

additional o�-line cost.

3.1 Introduction

We consider the problem

− div(A∇u) = f in D, u = 0 on ∂D, (3.1)

where D is a bounded polygonal domain in R2
, f is a given right-hand side and the

symmetric elliptic coe�cient matrix A presents heterogeneities at very small scales

compared with the characteristic size ofD. Classical approximation techniques such as

�nite elements are known to poorly perform in such cases, unless the mesh size is taken

(possibly prohibitively) small. Multiple alternative dedicated approaches have there-

fore been introduced. Among those, the multi-scale �nite element method (henceforth

abbreviated as MsFEM), introduced in [34, 55], uses a Galerkin approach of (3.1) on a

pre-computed basis. The basis functions are obtained by solving local problems mim-

icking (3.1) at the scale of mesh elements, with carefully chosen right-hand sides and

boundary conditions. The vanilla version of the approach, called linear MsFEM, uses

as basis functions the solutions to these local problems, posed on each mesh element,

with null right-hand sides and with the coarse P1 elements as Dirichlet boundary con-

ditions. Various improvements of that version are possible. In particular, the so-called

oversampling variant, which solves local problems on larger domains and restricts their

solutions to the considered element, is very e�ective. The �ip side is that the approach

is not conformal and the size of the oversampling area must be carefully calibrated,

which can be a delicate practical issue.

Our purpose here is to introduce and study a MsFEM method improved di�erently.

It essentially elaborates upon the Special Finite Element Method introduced in [53] and

fully analyzed in [52]. In that approach, the linear MsFEM basis is enriched with local
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eigenvectors related to the scalar product associated with the variational formulation

of (3.1). The approach is very e�ective but the resolution of eigenproblems for each

element of the coarse discretization can prove computationally challenging, even for

an o�-line step. This is the reason why the approach we present here complements

the linear MsFEM basis with enrichments that are not eigenvectors, but solutions of

edge and bulk problems using polynomials either as boundary condition or right-hand

side (see Section 3.2). As for the other MsFEM variants, all basis functions for such en-

richments can be computed in parallel. One cannot indeed too much emphasize that, if

the dogma of multi-scale approaches is to drastically reduce the on-line cost at the ex-

pense of an increase of the o�-line cost, it might be the case for a large class of complex

enough problems that the approach is doomed because of a prohibitively computation-

ally expensive o�-line stage. Another advantage of the approach presented here is that

the classical Legendre interpolation results apply, allowing one to get rigorous a priori

and a posteriori error estimates for the approach more easily. A similar approach has

been introduced independently in [41], for the speci�c case of quadrangles, Legendre

polynomials and Gauss-Lobatto quadratures. The approach shows promising results in

time-domain acoustic-wave modeling: it compares well with reference solutions com-

puted with the spectral �nite element method. Our aim is to push further the approach

by expanding it to triangular meshes and to provide a detailed convergence analysis,

along with some theoretical tools for adaptivity. We emphasize that our method is both

local and conformal: the support of the enrichment function is either the two elements

associated with the edge when an edge is considered, or the one element itself when a

bulk element is considered. Also, as said above, it is fully parallel in the o�-line stage.

In contrast, we mention that another, very interesting and e�cient, line of thought is

exempli�ed by the approach called Localized Orthogonal Decomposition method (LOD)

introduced in [70]. There, the classical �nite elements are enriched with corrector

functions that are solutions to speci�c PDEs. These functions have global supports,

however they turn out to rapidly decay away from the element considered. This prop-

erty allows one to design an approximation space with functions solution to PDEs with

smaller, truncated supports (typically of size of orderO(H lnH)). The associated error

estimates in the energy norm are then independent of the scales of the heterogeneities.

We prove (see Section 3.3) that, with enough enrichments, we can get a conver-

gence rate that does not depend on the oscillations of A. Moreover, numerical exper-

iments (see Section 3.4) show that already a small number of enrichment functions

signi�cantly reduces the error. Our analysis applies to both quadrangular and triangu-

lar meshes, the latter being more �exible and allowing one to discretize more complex

geometries than those accessible to quadrangular meshes. Furthermore, we propose

an a posteriori estimator that can be used to locally adapt the level of enrichment.

The numerical experiments we present in Section 3.4 show that the proposed

approach outperforms the linear MsFEM especially in the regime where H ' ε, al-

lowing for results of comparable quality to those obtained using the Special Element

Method, and is on par with non-conformal approaches such as the variant of MsFEM

using oversampling at a reasonable additional computational cost. Numerical results

also seemingly indicate that the a posteriori estimator we propose reproduces truly the

qualitative trend of the error in energy norm.

3.2 Discretization approach

We de�ne (TH)H a family of conforming partitions ofD into a �nite number of convex

quadrilaterals (or triangles) with straight edges. The mesh is assumed conformal (there
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is no hanging nodes and each internal edge is shared by exactly two elements of the

mesh) and regular in the following sense:

for any element K , there exists an a�ne transformation F : K 7→ K,
where K is the reference element (here the reference square or triangle),

such that ‖∇F‖L∞ ≤ γ H and ‖∇F−1‖L∞ ≤ γ H−1,
where γ > 1 is a constant independent of K and H .

(3.2)

In practice, the latter property is ensured using a mesh with quadrilateral (or triangu-

lar) elements with a minimum angle condition. We denote by Γ the interior skeleton,

that is Γ = (∪K∈TH∂K) \∂D.

The variational formulation of (3.1) is expressed using, for u, v ∈ H1
0 (D), the

bilinear form a(u, v) =

∫
D

(∇v)TA∇u. The associated energy norm is denoted by

‖v‖E =
√
a(v, v). Since A is symmetric, the unique solution u to (3.1) satis�es also

u = argmin
v∈H1

0 (D)

(
1

2
a(v, v)− 〈f, v〉L2(D)

)
.

We denote by

VB =
{
v ∈ H1

0 (D), v|K ∈ H1
0 (K) for any K ∈ TH

}
,

where the subscript B stands, understandably, for bubbles. We also de�ne

VΓ =
{
EDτ ∈ H1

0 (D), τ ∈ H1/2
00 (Γ)

}
,

which is the subspace of energy minimizing extensions of trace functions on Γ, where

the extension ED(τ) solves the minimization problem inf
v∈H1

0 (D)
a(v, v) subject to v|Γ =

τ , that is, in the weak sense,
− div (A∇(EDτ)) = 0 in K , for any K ∈ TH ,
EDτ = τ on Γ,

EDτ = 0 on ∂D.

(3.3)

The following orthogonal decomposition with respect to the scalar product a(·, ·) holds:

H1
0 (D) = VB ⊕ VΓ. (3.4)

The decomposition is orthogonal because of the de�nition of the energy-minimizing

extension. Indeed, it holds that

∀vB ∈ VB, ∀vΓ ∈ VΓ, a(vB, vΓ) = 0,

by using the variational formulation of problem (3.3) with a test function in H1
0 (K).

Although not often stated in this form, property (3.4) is at the heart of the analysis and

development of domain decomposition methods for elliptic partial di�erential equa-

tions [42, 77, 80] and modern component mode synthesis methods [10, 21].

Following the decomposition (3.4), the solution u can be uniquely expressed as

u = uB + uΓ with the bubble part uB = argmin
w∈VB

(
1

2
a(w,w)− 〈f, w〉L2(D)

)
and the

interface part uΓ = argmin
v∈VΓ

(
1

2
a(v, v)− 〈f, v〉L2(D)

)
.
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In our approach, instead of approximating u directly, we approximate uB and uΓ

separately. This splitting is motivated as follows. First, the decomposition (3.4) im-

plies a natural splitting of the error. If we indeed consider a numerical approximation

(uH , uB,H , uΓ,H), the error in energy norm reads as ‖u − uH‖2
E = ‖uB − uB,H‖2

E +
‖uΓ − uΓ,H‖2

E . Second, the analysis of the classical MsFEM suggests that the inter-

face part is more di�cult to approximate than the bubble part. Approximating uB by

uB,H = 0 gives an energy error of order O(H) (see (3.11) below). Moreover, uB is

the collection of solutions to independent local problems with homogeneous Dirichlet

boundary conditions. Hence, uB can be computed e�ectively in parallel by using a FE

solver for the Dirichlet problems. However, for uΓ, there is no decrease of the error

with respect to H when one takes uΓ,H = 0: the error is of order O(1). Moreover,

when approximating uΓ by uΓ,H = uMsFEM−lin, which is the best approximation ob-

tained when considering extensions of continuous and piecewise a�ne functions on Γ
(corresponding to the linear MsFEM approximation introduced in [55]), then the error

is of orderO(1) whenH is close to the small scale ε. In essence, MsFEM type methods

are directed towards �nding the correct bulk solutions assuming a certain, unknown

shape of the solution along the interfaces. The recent history of the development of

this category of methods can be revisited as the quest to determine the “right” interface

conditions.

Our approach designs two independent approximation spaces: (i) on the one hand,

a space to approach uB by solving problems similar to (3.1) though localized on the

elements and with high order polynomials as right-hand sides and (ii) on the other

hand, a space that approximates uΓ with an harmonic lifting de�ned by (3.3) of high

order polynomials. We now detail these two approximation spaces, which are denoted

VB,H,{MK} (resp. VΓ,H,{Ne}) for the space VB (resp. VΓ), where {MK} (resp. {Ne}) is a

set of positive integers associating a polynomial degreeMK (resp. Ne) to each element

K ∈ TH (resp. each edge e ⊂ Γ).

We �rst consider the bubble space VB . For any element K , we choose a positive

integer MK and consider the space of polynomial functions on K of degree smaller or

equal to MK (by degree, we mean total degree if K is a triangle, and partial degree in

each variable if K is a quadrangle). We denote byNMK
the dimension of this space of

polynomials and introduce a basis of this set, that we denote {Pi}i=1,...,NMK . For any

1 ≤ i ≤ NMK
, we introduce the function φBK,i ∈ H1

0 (K), which is supported inK , and

which is the solution to

φBK,i = 0 on ∂K and ∀ v ∈ H1
0 (K),

∫
K

(∇v)TA∇φBK,i =

∫
K

Pi v. (3.5)

If K is a quadrangular element, we readily note that, in practice, Pi can be chosen

as the polynomial that has value 1 at the ith Gauss-Lobatto point and 0 at the other

Gauss-Lobatto points within K . Note that we do not consider the case MK = 0.

Then, we de�ne the �nite dimensional space

VB,H,{MK} = Span
{
φBK,i, 1 ≤ i ≤ NMK

, K ∈ TH
}
⊂ VB (3.6)

and the approximation uB,H,{MK} ∈ VB,H,{MK} of uB ∈ VB as the solution to

∀vB,H,{MK} ∈ VB,H,{MK},

∫
D

(∇vB,H,{MK})
TA∇uB,H,{MK} =

∫
D

f vB,H,{MK}.

Besides considering the above �nite dimensional space (3.6), it is also possible to choose

VB,H,{MK} = {0}, in which case uB is approximated by uB,H,{MK} = 0 and we have

‖uB − uB,H,{MK}‖E ≤ CH (see (3.11) below).
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Remark 3.1. We have mentioned above that, in the case of quadrangles, we choose poly-

nomials Pi associated with the Gauss-Lobatto points. Indeed, such a choice makes the

quadrature formulas (to compute the local integrals needed to assemble the sti�ness ma-

trix and the right-hand side) particularly simple, since Pi vanishes at almost every inte-

gration point. From a theoretical viewpoint, any choice of basis is of course possible.

We now turn to the interface space VΓ. For any interior edge e of the coarse mesh,

we choose a positive integer Ne. For any 2 ≤ k ≤ Ne, we de�ne the edge enrichment

function φΓ
e,k, which is supported on the two elements sharing the edge e, and which

satis�es (see Figure 3.1) 
− div(Aε∇φΓ

e,k) = 0 in K,

φΓ
e,k = Pk on e,

φΓ
e,k = 0 on ∂K \ e,

(3.7)

where K is any of the two elements containing the edge e, and where Pk is a poly-

nomial function of degree k that vanishes at the vertices of the edge e. Note, for the

practice, that Pk is chosen to be the boundary-adapted kth
Legendre polynomial on the

edge (see e.g. [22, Fig. 2.12 p. 83]).

•

•

φ
Γ e,
k
=

0

•

φ Γ
e,k (x) =

P
k (x)

•
φΓ
e,k = 0

K

Figure 3.1: Local problem de�ning an edge enrichment

Formally, the cases k = 0 and k = 1 correspond to the linear MsFEM nodal basis

functions associated with the two vertices of e. Denoting ie and je these two vertices,

we set φΓ
e,0 = φMsFEM

ie and φΓ
e,1 = φMsFEM

je , where φMsFEM
i is the solution on any

element K to {
− div(Aε∇φMsFEM

i ) = 0 in K,

φMsFEM
i = φi on ∂K,

where φi is the nodal P1 Finite Element basis function associated with the vertex i.
Note that the support of φMsFEM

i is the set of elements having i as a vertex.

We next de�ne the �nite dimensional space

VΓ,H,{Ne} = Span
{
φMsFEM
j , 1 ≤ j ≤ Nbvertex, φΓ

e,k, 2 ≤ k ≤ Ne, e ⊂ Γ
}

= Span
{
φΓ
e,k, 0 ≤ k ≤ Ne, e ⊂ Γ

}
, (3.8)

which is a subset of VΓ, and the approximation uΓ,H,{Ne} ∈ VΓ,H,{Ne} of uΓ ∈ VΓ as the

solution to

∀vΓ,H,{Ne} ∈ VΓ,H,{Ne},

∫
D

(∇vΓ,H,{Ne})
TA∇uΓ,H,{Ne} =

∫
D

f vΓ,H,{Ne}.
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Remark 3.2. In order to approximate VΓ, we decided to use liftings of polynomials de-

�ned on Γ. Such choice has been motivated by the versatility of polynomials (simplic-

ity of implementation and good approximation properties). However, other choices could

have been made. The main challenge here is to build an approximation space that ac-

curately captures the oscillations of uΓ on Γ. For instance, one can think of approach-

ing such oscillating functions by a sinus basis with increasing frequencies like in Fourier

approximation. It turns out that, if we enrich the MsFEM linear basis with liftings of

PN(x) = sin(πNx/H), then we get similar numerical results as with our polynomi-

als. We have here chosen to work with polynomials because the derivation of approxi-

mation properties for a sinus basis proved to be more di�cult than with a polynomial

basis, for which we can rely on the extensive theory for polynomial approximation (see

e.g. Lemma 3.18 below).

Remark 3.3. Note that the boundary condition which is imposed in (3.7) is continuous

on ∂K , since we have considered polynomial functions Pk that vanish at the two ends

of the edge e. Note that, if the boundary condition had some jumps on ∂K , then the

problem (3.7) would be ill-posed in H1(K). We have chosen to work with the boundary-

adapted Legendre polynomials, but other choices can be made, as long as the boundary

conditions vanish at the two ends of the edge. Our speci�c choice is motivated by the fact

that the boundary adapted Legendre polynomials are easy to compute (there is an explicit

and simple recursion relation to compute their coe�cients).

Since we see our approach as an enrichment of the MsFEM linear method, the a�ne

nodal functions φMsFEM
xi

must be part of the space which is spanned by our boundary

conditions on ∂K . What matters for the analysis is that the space spanned by the bound-

ary conditions on each edge e is the space of polynomial functions of degree smaller or

equal to some Ne.

Denoting byVH,{MK},{Ne} = VB,H,{MK}⊕VΓ,H,{Ne}, our approximationuH,{MK},{Ne}
ofu is de�ned byuH,{MK},{Ne} = uB,H,{MK}+uΓ,H,{Ne}. Note that the choicesVB,H,{MK} =
{0} and Ne = 1 for each edge e leads to an approximation space (and therefore a dis-

crete solution) which is identical to the space used in the linear MsFEM approach.

The sets of positive integers {MK , K ∈ TH} and {Ne, e ∈ Γ} de�ne the approx-

imation space that is used in the variational problem. For the sake of clarity, in the

case when we choose MK = M for any element K ∈ TH (resp. Ne = N for any edge

e ⊂ Γ), we replace the notation {MK} by M (resp. {Ne} by N ).

We conclude this section by collecting several general remarks.

Remark 3.4. Note that, although presented here in the context of the self-adjoint prob-

lem (3.1), the discretization procedure we just described can also be used in a case where the

operator is not self-adjoint. However, the numerical analysis results that are established

in the next section are, to date, restricted to the self-adjoint case.

Remark 3.5. In practice, one does not have access to the space VH,M,N . Indeed, the

enrichments φΓ
e,i or φ

B
K,i are solutions to local problems with no analytical expression.

Usually, such functions are approximated by a �nite element approach using a �ne mesh

of size h adapted to the characteristic length of variation of the di�usion coe�cient A.

Hence, in practice, for the numerical implementation, we use the space VH,M,N,h =

VB,H,M,h⊕VΓ,H,N,h spanned by the functions φ
Γ,h
e,i and φB,hK,i , which are the approximation

(on the mesh of size h) of φΓ
e,i or φ

B
K,i. The study of the convergence of the approach with

respect to the parameter h is outside of the scope of this article.
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Remark 3.6. The construction of our basis, that is the o�ine stage, can be performed

totally in parallel. Indeed, the basis functions for either the bubble or the interface ap-

proximation spaces are solutions to independent local problems. We notice that, in the

special �nite element approach introduced in [53] and analyzed in [52], the computa-

tion of the interface enrichments (which are eigenvectors of some operator associated with

the edge e) requires solving a problem posed on the two elements sharing the edge e. In
contrast, all our local problems are posed on a single element.

In addition, the sti�ness matrix and the right-hand side term for f = 1 can be pre-

computed in parallel to further reduce the computational cost of the online stage.

3.3 A priori and a posteriori estimates

Our global a priori error estimate reads as follows:

Proposition 3.7. Assume that there exists 0 < αmin ≤ αmax such that, almost every-

where in D, we have αmin |ξ|2 ≤ A(x)ξ · ξ ≤ αmax |ξ2| for all ξ ∈ R2
. We also assume

that the solution u to (3.1) belongs to H1
0 (D) ∩ Hs(D) for some s > 3/2 and that the

right hand side f belongs to H`(D) for some ` ≥ 0. We consider our MsFEM approach

in the case when MK = M for all elements K and Ne = N for all edges e, for some

M,N ∈ N?
. We then have

‖u− uH,M,N‖E ≤
C
√
αmin

Hmin(`,M+1)+1

M `+1
‖f‖H`(D)

+ C
√
αmax

Hmin(s,N+1)−1

N s−1
‖u‖Hs(D) (3.9)

where the constant C is independent of H ,M , N , A, u and f (but depends on ` and s).
The above estimate holds both if we use triangular or quadrangular elements.

In the case when no bubble enrichments are used (that is when VB,H,M = {0}), we
have

‖u− uH,M,N‖E ≤
C
√
αmin

H ‖f‖L2(D) +
√
αmax

Hmin(s,N+1)−1

N s−1
‖u‖Hs(D)

where the constant C is again independent of H , N , A, u and f (but depends on s).

Some remarks are in order.

We note that, for f only in L2(D) (that is ` = 0), increasing the polynomial degree

M decreases the error at a rate O(1/M). When f is a more regular function, the error

decreases with respect to M with a better rate.

We next discuss the classical case of a rescaled periodic matrix coe�cient (that is

A(x) = Aper(x/ε) for some Zd-periodic matrixAper) and a coarse mesh of sizeH ≈ ε.
In that regime, it is well known that the classical linear MsFEM approach su�ers from

an error which does not decrease when H and ε tend to 0. In contrast, it is possible

in our approach to increase N in order to still have a converging approximation. It is

indeed expected that |u|Hs(D) ≈ O(ε1−s). Choosing N of the order of 1/ε thus allows

to keep a small error.

Note �nally that the e�ciency of our approach sensitively depends on the regular-

ity of u and on the norm of its derivatives. On the optimistic side, this implies that the

more regular u is, the more e�cient our approach is. This unfortunately also means,

on the pessimistic side, that the more oscillatory the solution is, the larger the norm
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of the derivatives of the solution is and thus the larger N has to be taken to obtain a

given accuracy. In this respect, the LOD method [70] is way more robust, since the

accuracy only depends onH , f and the contrast of A but neither on the regularity nor

on the scale of the oscillations (although this is obtained at the price of computing “not

so” local solutions elsewhere than in the given element).

Remark 3.8. In the periodic caseA(x) = Aper(x/ε) for someZd periodicmatrixAper, we

typically have that ‖u‖Hs(D) is of the order of 1/εs−1
. In such a case, for givenH ,M and

N , the right-hand side in the error estimate (3.9) goes to∞when ε goes to 0. However, the
actual error does not blow up. Recall indeed that our approximation space VH,M,N contains

the linear MsFEM approximation space, for which the estimate ‖u − uMsFEM−lin‖E ≤
C
(
H +

√
ε+

√
ε/H

)
holds. The error in our approach being smaller that the linear

MsFEM error, we hence get that our approximation does not blow up when ε goes to 0 and

H ,M and N are �xed.

This observation raises the question of deriving a better estimate for our approach in

the periodic case. It turns out that following the classical proof for estimating the MsFEM

error (see e.g. [56]) yields the same estimate for our approach as the one obtained for

the linear MsFEM approach. Indeed, in [56], an homogenization argument is used, which

yields the contribution of the order of

√
ε and

√
ε/H in the error. This step is independent

of the numerical approximation scheme used in the method and thus cannot be expected to

be improved in our approach. Therefore, �nding a sharper estimate in the periodic case for

our approach does not seem to be an easy task, even when using periodic homogenization

arguments.

The proof of Proposition 3.7 is a direct consequence of the orthogonal decompo-

sition (3.4) and the following Lemma 3.9 and Lemma 3.10, which respectively address

the bubble approximation and the interface approximation:

Lemma 3.9. Assume that there exists 0 < αmin ≤ αmax such that, almost everywhere

in D, we have αmin |ξ|2 ≤ A(x)ξ · ξ ≤ αmax |ξ2| for all ξ ∈ R2
. We also assume that

f ∈ H`(D). In the case whenM ≥ 1, the components uB and uB,H,M satisfy

‖uB − uB,H,M‖E ≤
C`√
αmin

Hmin(`,M+1)+1

M `+1
‖f‖H`(D) (3.10)

for some C` independent of H ,M , A and f . If VB,H,M = {0}, then

‖uB − uB,H,M‖E ≤
C
√
αmin

H ‖f‖L2(D) (3.11)

for some universal constant C .

Lemma 3.10. Assume that there exists 0 < αmin ≤ αmax such that, almost everywhere

inD, we have αmin |ξ|2 ≤ A(x)ξ · ξ ≤ αmax |ξ2| for all ξ ∈ R2
. We also assume that the

solution u to (3.1) belongs to H1
0 (D) ∩ Hs(D) for some s > 3/2. Then, in the case of a

quadrangular mesh, the components uΓ and uΓ,H,N satisfy

‖uΓ − uΓ,H,N‖E ≤ Cs
√
αmax

Hmin(s,N+1)−1

N s−1
‖u‖Hs(D), (3.12)

where the constant Cs is independent ofH ,N , A and u. The same estimate holds true for

a triangular mesh.
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In sharp contrast to the estimate (3.10) which does not depend on the oscillations

of A, the estimate (3.12) depends on the norm of derivatives of u, hence, indirectly on

the oscillations of A. As expected, the interface component is more di�cult to capture

than the bubble component.

Remark 3.11. The assumption that the solution u belongs to Hs(D) for some s > 3/2
can be relaxed in the case of quadrangular elements. Indeed, in that speci�c case, we

perform below the proof of Lemma 3.10 using polynomial interpolation results at Gauss-

Lobatto points, which only require the continuity of u on Γ. This continuity is satis�ed

as soon as u ∈ Hs(D) for s > d/2, that is s > 1 in the case when d = 2. In the case of

quadrangular elements, we hence only require that u ∈ Hs(D) for some s > 1.
Polynomial interpolation results are more di�cult to obtain in the case of triangu-

lar elements because triangles are not cartesian product domains. Recall indeed that, in

the reference square, the Gauss-Lobatto points are located at (xk, yk), where xk are the
Gauss-Lobatto points of the segment [0, 1]× {0} and yk are the Gauss-Lobatto points of
the segment {0} × [0, 1]. This construction can obviously not be extended to the case of

triangles. Choosing relevant interpolation points for triangles is still an open problem (a

possible choice is that of Fekete points, see [76]). Hence, to recover similar interpolation

properties, it can be expected that stronger constraints (namely u ∈ Hs(D) for some

s > 3/2 rather than s > 1) are required.

An estimate similar to (3.12) is obtained for the Special Finite Element Method

in [52]. The estimate then depends on the kth
largest eigenvalue λke for the associated

edge eigenproblem. The rate of decrease of λke with respect to k and H is not known,

although the numerical experiments suggest it is O(k/H), which would give a similar

estimate as in Lemma 3.10.

The proof of Lemma 3.9 and Lemma 3.10 essentially follows, and it is not unex-

pected, the pattern of the proof of the classical Céa’s Lemma. The best approximation

is estimated using the Legendre projection (for Lemma 3.9) or the Legendre interpolant

on the bulk and the lifting of the interpolant along the edges (for Lemma 3.10). Some

technicalities arise for Lemma 3.10 in the case of triangular meshes and an alterna-

tive proof using hp-Finite Element methods must be used. This alternative proof also

extends for the quadrangular case.

We now turn to our a posteriori estimator. In contrast to our a priori estimates

above, we now consider the general case when the polynomial degrees Ne (resp. MK)

associated to each edge e (resp. each element K) can be di�erent. For some tech-

nical reasons (in particular due to the use of Scott-Zhang interpolation results, see

Lemma 3.23), we assume that the polynomial degrees of the edges are comparable on

neighbouring edges, in the sense that

∀e, e′ ∈ Γ s.t. e ∩ e′ 6= ∅, Ne√
γ
≤ Ne′ ≤

√
γ Ne, (3.13)

where γ is the mesh regularity constant of (3.2).

Proposition 3.12. We assume that the di�usion coe�cient matrix is of the formA(x) =
a(x) I for some scalar-valued function a ∈ C1(D) satisfying αmin ≤ a(x) ≤ αmax

almost everywhere in D, for some 0 < αmin ≤ αmax. We also assume that the solution u
to (3.1) belongs toH1

0 (D)∩Hs(D) for some s > 3/2 and that, for any elementK of the

coarse mesh, f ∈ H`K (K) for some `K ≥ 0.
Consider the MsFEM approach on the discrete space VH,{MK},{Ne}, whereMK > 0 is

the maximal degree of the polynomial functions used as right-hand sides for the bubble
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basis functions in the element K , and Ne > 0 is the maximal degree of the polynomial

functions used as boundary conditions for the interface basis functions associated to the

edge e. We assume that the degrees {Ne} satisfy (3.13).

The discrete solution uH,{MK},{Ne} satis�es the a posteriori estimate

‖u− uH,{MK},{Ne}‖E

≤ Cs,A

{∑
K∈TH

H2
K

H
min(`K ,MK+1)
K

M `K
K

‖f + div
(
A∇uB,H,{MK}

)
‖L2(K) ‖f‖H`K (K)

+
∑
K∈TH

‖f‖2
L2(K)

(∑
e⊂∂K

H2
e

Ne pe

)
+
∑
e⊂Γ

He

pe

∥∥Je(νTA∇uΓ,H,{Ne}
)∥∥2

L2(e)

}1/2

(3.14)

where Je(ψ) denotes the jump of a given function ψ across the edge e, and ν is the normal

vector to the edge. In the above estimate, we have set pe = min{Nẽ | ẽ ⊂ ∂K1
e ∪ ∂K2

e}
where K1

e and K2
e are the two elements sharing the edge e. The constant Cs,A depends

only on s (i.e. the regularity of u) and the di�usion coe�cient A.
When no bubble enrichments are added, that is when VB,H,{MK} = {0}, we have the

estimate

‖u− uH,{MK},{Ne}‖E ≤ Cs,A

{∑
K∈TH

H2
K ‖f‖

2
L2(K) (3.15)

+
∑
K∈TH

‖f‖2
L2(K)

(∑
e⊂∂K

H2
e

Ne pe

)
+
∑
e⊂Γ

He

pe

∥∥Je(νTA∇uΓ,H,{Ne}
)∥∥2

L2(e)

}1/2

.

Several remarks are in order.

The right-hand side of (3.14) actually de�nes an error indicator: the actual error is

bounded from above by the product of the indicator times a constant independent of

HK , Mk and Ne.

The proof of Proposition 3.12 follows the analogous proof performed for the Spe-

cial Element Method in [52]. However, Scott-Zhang type polynomial interpolation

approaches have to be introduced instead of classical polynomial interpolation. The

restriction to scalar-valued di�usion coe�cients comes from our use of Lemma 3.22 be-

low. The above estimate most probably also holds true in the case of a matrix-valued

coe�cient.

Some illustrations of the behavior of the a posteriori estimator are presented in

Section 3.4.

3.4 Numerical experiments

This section is divided into two parts. We �rst compare our approach to standard

MsFEM approximations (linear MsFEM and oversampling MSfEM approaches). Sec-

ond, we investigate the performance of the a posteriori estimator proposed in Propo-

sition 3.12.

3.4.1 Comparison with other MsFEM approaches

In our numerical experiments, the emphasis is put on the enrichment by edge func-

tions. As already mentioned above, the bubble error when no enrichments are used

behaves like classical FE estimates for the Poisson problem: it decreases linearly with
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respect to H , with a prefactor which only depends on the L2
norm of the right-hand

side and the coercivity constant of the di�usion coe�cientA. In contrast, the interface

error depends on the oscillations ofA and has a more intricate behaviour. Moreover, in

the classical MsFEM approaches (linear and oversampling), the basis functions belong

to VΓ. Hence, such approaches can also be enriched by bubble elements. In order to

compare their respective e�ectiveness, it thus appears that it is best not to consider

bubble enrichments. We therefore only act on VΓ and no bubble enrichment is used,

that is we keep VB,H,{MK} = {0}.
We recall that the choice VH,M,N corresponds to the uniform choice {Ne} = N

and {MK} = M for all K ∈ TH and for all edge e ⊂ Γ. The linear MsFEM approach

corresponds to the choice VB,H,{MK} = {0} and N = 1.

We solve (3.1) for a classical benchmark test introduced in [55], whereA is periodic

and oscillates at the scale ε. More speci�cally, we consider

Aε(x) = a
(x
ε
,
y

ε

)
I2, a(x, y) =

2 + 1.8 sin(2πx)

2 + 1.8 cos(2πy)
+

2 + sin(2πy)

2 + 1.8 sin(2πx)
(3.16)

on the domain D = (0, 1)2
, and solve

− div(Aε∇uε) = −1 in D, uε = 0 on ∂D. (3.17)

We consider ε ranging from 1/32 to 1/128.

In order to compute errors, we have computed a reference solution of (3.17) using

P2 Finite Elements with a mesh of size h = 1/2048. Note that h � ε for the range of

values of ε that we consider. Similarly, on each elementK , the interface basis functions

φΓ
e,i have no analytical expression and are approximated using P1 Finite Elements on

a mesh of a small size (of the order of h).

We present here a selection of the extensive volley of numerical tests we have per-

formed to establish the performance of our approach as compared to some other ex-

isting approaches.

To start with, we wish to illustrate the somewhat intuitive statement made above

regarding the fact that multiscale approaches typically do a better job at approximating

the solution in the bulk than on the interfaces, thus the interest of focusing our study

and our e�orts on the enrichment by Legendre polynomials on the edges. To support

this claim, we show on Figure 3.2 the typical error obtained using the linear version of

MsFEM (left). Speci�cally, we show the relative error log10

[∣∣∇ (uε − uH,M,N
ε

)∣∣ / |∇uε|]
as a function of x ∈ D. The largest errors are evidently concentrated on the interfaces.

Already an enrichment of Legendre polynomials of degree N = 4 on the edges allow

one to dramatically reduce the latter error, as shown by the right of Figure 3.2. We

notice on Figure 3.2 that the relative errors seem really large in the center part of D.

This is probably an artefact stemming from the fact that |∇uε| is very small in that

region.

Further enriching the description of the solution along the edges with a large num-

ber of Legendre polynomials, say N = 10, would typically render the error almost

homogeneous throughout the computational domain. All in all, the above set of com-

ments justify our tactical choice to keep VB,H,M = {0} and focus on increasing N .
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Figure 3.2: Error on the approximation of the gradient for MsFEM-lin (left) and for our

approach with 4 polynomials (right): the accuracy is poor in the yellow regions, much

better in the light blue regions, and excellent in the dark blue regions.

The next observation we want to make, and this is the purpose of Figure 3.3, is

the poor performance of all previously existing multiscale approaches in the regime

H ≈ ε (often called the resonance regime) where the coarse mesh size matches the

typical size of oscillations. Whether one argues in terms of the meshsize H (left of

Figure 3.3), or in terms of the number of degrees of freedom (right of that �gure),

traditional approaches saturate, while the Legendre enriched approach performs in-

creasingly better. In Figure 3.3, and likewise in Figures 3.4, 3.5 and 3.6 below, all

errors are relative errors in the energy norm

Erel =

√
a(uε − uH,M,N

ε , uε − uH,M,N
ε )

a(uε, uε)
, (3.18)

while the approaches we test are respectively denominated as MsFEM-lin for the stan-

dard version of linear MsFEM, MsFEM-OS for its variant using oversampling (where

the oversampling domain is 3 times larger in each direction than the original coarse

element), Legendre-N = . . . for the approach presented here using the corresponding

degree N of Legendre polynomials on the edges, and Eigen . . . for the Special Element

approach.

The relative error (3.18) is easy to compute. Introduce indeed the energy E , de�ned

for any v ∈ H1
0 (D) by

E(v) =
1

2

∫
D

(∇v)TAε∇v −
∫
D

fv.

Since the matrix Aε is symmetric, the solution to (3.1) is also the minimizer of the

energy E in H1
0 (D). Hence, denoting E? = E(uε), it holds that E(v)− E? =

1

2
a(uε −

v, uε − v) for any v ∈ H1
0 (D).
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Remark 3.13. This de�nition of the error is in practice very useful because comput-

ing (3.18) only requires to compare two scalars (namely E? and E(uH,M,N
ε )) that can be

obtained independently. We get E? by computing the energy for our reference solution

and E(uH,M,N
ε ) can be computed in parallel over the coarse elements K once the global

problem has been solved at the online stage. In practicular, it is not needed to store the

reference and numerical solutions, or compute their di�erence on a �ne common Finite

Element space, an operation which would be computationally very expensive.
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Figure 3.3: Compared performances in the regime H ≈ ε.

We next perform, for ε �xed (namely at the value ε = 1/32), andH decreasing from

1/4 to 1/64 (or, correspondingly, the number of degrees of freedom increasing), full

comparisons of the accuracy obtained for the various methods considered, including

the Special Element Method. The results are shown on Figures 3.4 and 3.5 respectively.

For any �xed H , our approach is more accurate than the MsFEM oversampling

method when N is large enough, say here N ≥ 9 (see left side of Figure 3.4). For

N = 5, our approach and the MsFEM oversampling method essentially share the same

accuracy. The oversampling variant is more accurate for smaller values ofN . However,

for a �xed H , our approach needs more degrees of freedom than the oversampling

approach. We thus compare the appoaches for a given number of degrees of freedom

on the right side of Figure 3.4. When H is not too small (and thus the number of

degrees of freedom is not too large), the MsFEM oversampling method provides better

results than our approach. However, for smaller values of H (and thus larger numbers

of degrees of freedom, say larger than 104
), our approach outperforms the MsFEM

oversampling method. We also notice that the oversampling approach su�ers from a

resonance e�ect (the error is essentially the same for anyH between 1/128 and 1/32),

whereas our approach provides an error which is monotonically decreasing with H .

Our tests of Figure 3.5 clearly show that our approach is equally accurate as (and

in some cases more accurate than) the Special Element Method, for each given level of

enrichment.



110 Chapter 3. A MsFEM approach using high order polynomials

101 102

1/H

10-2

10-1

100
R
e
la
ti
v
e
 e
rr
o
r

Error for ǫ=1/32 function of 1/H

MsFEM-OS

MsFEM-lin

Legendre N=2

Legendre N=3

Legendre N=5

Legendre N=9

Legendre N=11

102 103 104

Number of DOF

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Error for ǫ=1/32 function of number of DOF

MsFEM-OS

MsFEM-lin

Legendre N=2

Legendre N=3

Legendre N=5

Legendre N=9

Legendre N=11

Figure 3.4: Comparison of our approach with classical MsFEM approaches
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Figure 3.5: Comparison of our approach with the Special Element Method, at equal

number of enrichments per edge (for instance, “Eigen 1” and “Legendre N=2” both

correspond to adding one enrichment per edge vs the MsFEM-lin approach).

Our next test presented here compares the performance of our approach for trian-

gular meshes and for quadrangular meshes. We set ε = 1/32 and present the relative

energy error as a function of 1/H (left of Figure 3.6) and of the number of degrees

of freedom (right of Figure 3.6). Our conclusion is that, essentially, the approach per-

forms equally well in both cases, thereby making possible the application to a large

class of computational domains, with intricate geometries for which quadrangular

meshes cannot be used.
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Figure 3.6: Our approach for triangles and quadrangles, in terms of 1/H (left) or of the

number of degrees of freedom (right). The approaches “Triangle N=1” and “Quadrangle

N=1” both correspond to the MsFEM-lin approach, on triangular (resp. quadrangular)

meshes. The approaches “Triangle N=2” and “Quadrangle N=2” both correspond to

adding one enrichment per edge vs the MsFEM-lin approach.

3.4.2 A posteriori estimator

We now investigate the performance of the a posteriori estimate given in Proposi-

tion 3.12. As the previous section, we do not use bubble enrichments. This is why,

instead of using as before the whole energy error, we now use the interface error de-

�ned by

Erel,Γ =

√
a(uΓ

ε − u
H,M,N
ε , uΓ

ε − u
H,M,N
ε )

a(uΓ
ε , u

Γ
ε )

. (3.19)

We compare this actual relative error with the error indicator given in (3.15), and more

precisely with the indicator of the interface error, that is

Epost,Γ =

{∑
K∈TH

‖f‖2
L2(K)

(∑
e⊂∂K

H2
e

Ne pe

)
+
∑
e⊂Γ

He

pe

∥∥Je(νTA∇(uΓ,H,{Ne})
)∥∥2

L2(e)

}1/2

.

(3.20)

Remark 3.14. As above, we compute the relative error (3.19) thanks to the energy E .
The orthogonal decomposition (3.4) ensures that the energy of uΓ is also a minimizer of

the energy on VΓ. Hence, the error can also be expressed as the di�erence between the

energy of our approximation (which belongs to VΓ as VB,H,M = {0}) and the energy of

uΓ. We compute the energy of uΓ by computing explicitly a reference solution for uB (this

simply requires to solve homogeneous Dirichlet problems in parallel in each element K)

and get the associated energy. The energy of uΓ is equal to E(u)−E(uB). This procedure
is simpler than computing uΓ, which would need to store the value of u on Γ.

We consider here f(x, y) = −10 exp(−80 ((x− 0.5)2 + (y − 0.5)2)), keep the def-

inition (3.16) for Aε, and set ε = 1/32. On the following �gures, we compare the rela-

tive interface error (3.19) with the a posteriori estimator (3.20) for several values of N
and H . Figures 3.7 and 3.8 show the evolution of both errors when N increases and

when 1/H increases, respectively.
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In Figure 3.7, we see that, forH = 1/4 andH = 1/8, the a posteriori error behavior

is an upper bound of the relative error interface and is a reliable indicator only for

N < 10. When H = 1/16, 1/32, 1/64, the a posteriori error seems to represent well

the relative interface error for anyN ≤ 10. For higher polynomial degrees, the relative

interface error decreases sharply and the a posteriori indicator does not present such

behavior. We are unsure to be able to trust the results for small values of H and large

values of N for several reasons. First, we do not know the energy of uΓ, but only

approximate it by the energy of uhΓ (computed on the mesh of size h = 1/2048 using

P2 Finite Elements). Likewise, we only manipulate numerical approximations of the

basis functions. Finally, when the di�erence of the energies is much smaller than the

energies themselves, computing a relative error may become challenging.
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Figure 3.7: Left: a posteriori error (3.20) and relative interface error (3.19) as a function

ofN forH = 1/4, 1/8. Right: a posteriori error (3.20) and relative interface error (3.19)

as a function of N for H = 1/16, 1/32, 1/64.

We turn now to Figure 3.8, which shows the behavior of the a posteriori estimator

whenH decreases for a �xed value ofN . WhenH is large (sayH = 1/4, 1/8), there is a

signi�cant di�erence between the a posteriori estimator and the relative error interface.

For smaller values of H (say H ≤ 1/16), the a posteriori error seems to behave like

the relative error interface for N = {1, 2, 4, 6, 8}. We can see that the a posteriori

estimator does not su�er from any resonance e�ect: it is decreasing with respect to H
for all values of N tested.
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Figure 3.8: A posteriori error (3.20) and relative interface error (3.19) as a function of

1/H for di�erent polynomial degrees N = {1, 2, 4, 6, 8}.

One of the main interest of an a posteriori estimator for which the error admits a

local decomposition is to allow for local re�nement with respect to the parameters of

the method: in our case, the polynomial degree Ne of enrichments on each edge e and

the size HK of any element K . To that end, it is important to know whether the local

behavior of the a posteriori estimator represents well the local behaviour of the actual

error. This question is investigated on Figures 3.9, 3.10 and 3.11, where we show the

error maps for N = 1, 5 and 10 respectively (with H = 1/16 �xed). We distribute the

a posteriori estimator (3.20) onto the edges. The �rst term of (3.20) is element based.

For each edge, we therefore add the contributions of this �rst term associated to the

two elements sharing the edge. The second term of (3.20) is simpler to handle since it

is already edge based. Using such a localization procedure, we obtain an a posteriori

estimator which reads as a sum of contributions over the edges. Stated otherwise, we

write (3.20) as

Epost,Γ =

√∑
e⊂Γ

(
Epost,Γ(e)

)2

with

(
Epost,Γ(e)

)2
=
He

pe

∥∥Je(νTA∇(uΓ,H,{Ne})
)∥∥2

L2(e)
+

∑
K∈TH , e⊂∂K

‖f‖2
L2(K)

(∑
ẽ⊂∂K

H2
ẽ

Nẽ pẽ

)
.

We plot on the �gures below the resulting values Epost,Γ(e) on a 16× 16 coarse mesh.

Regarding the actual error, we compute the relative energy error (3.19) elements by

elements by loading a reference solution on each element and comparing it to the nu-

merical approximation. Similarly to the �rst term of (3.20), we can write the numerator

of (3.19), which is an element-based quantity, as a sum of contributions over the edges

(the denominator of (3.19) is kept unchanged and is never localized). In some of the
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�gures below, we plot the error map showing the ratio between the actual local error

and the local a posteriori estimator Epost,Γ(e).

Figure 3.9: Error maps edge by edge for N = 1. Left: relative interface error; Center: a

posteriori estimator; Right: ratio of the relative interface error and a posteriori estimator

(the plots are shown in a base-10 log scale).

Figure 3.10: Error maps edge by edge forN = 5. Left: relative interface error; Center: a

posteriori estimator; Right: ratio of the relative interface error and a posteriori estimator

(the plots are shown in a base-10 log scale).

Figure 3.11: Error maps edge by edge for N = 10. Left: relative interface error; Cen-

ter: a posteriori estimator; Right: ratio of the relative interface error and a posteriori

estimator (the plots are shown in a base-10 log scale).

We see on the three error maps that the a posteriori estimator overestimates the

actual error in the center of the domain (note also that this overestimation does not

depend on N ). When N = 1 and N = 5, we can see that the ratio between the local

actual error and the local a posteriori estimator does not change much over the domain

D, except near the center. It is thus possible to use the local a posteriori estimator

to drive an adaptive discretization procedure: the edges where Epost,Γ(e) is large are

indeed the edges where the actual error is large. In contrast, when N = 10, the ratio

between the actual and the predicted error takes very di�erent values over the domain

D. This is consistent with the above Figure 3.7 showing a big di�erence between the

global actual error and the global estimated error for large values of N . For this large

value of N , the quantity Epost,Γ(e) cannnot be used to drive an adaptation procedure.
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The above numerical tests hence show that the a posteriori estimator de�ned in

Proposition 3.12 seems to be able to represent the behaviour of the actual error in the

regime H close or smaller than ε and for N < 10. In such regime, it can be used to

locally re�ne the polynomial degree Ne associated with the edge e and the size HK of

the element K . However, in the regime N > 10 or for large values of H , the estimator

fails to reproduce the actual error behavior and must be used carefully.
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3.5 Proofs

The proofs of the above results critically rely on results about polynomial approxima-

tion theory, fractional Sobolev spaces, traces operators and elliptic regularity. For the

sake of clarity, the main results used here are also presented in Annex B in a more

comprehensive manner.

3.5.1 Proof of Lemma 3.9

The proof of Lemma 3.9 needs the following approximation result (which is shown,

for integer values of `, in [22, Eqation (5.8.27) p. 318] for the case of quadrangles

and [22, Section 5.9] for the case of triangles).

Lemma 3.15. Assume that (TH)H is a family of conforming partitions ofD into a �nite

number of convex quadrilaterals (resp. triangles) with straight edges. We assume that the

mesh is regular in the sense of (3.2). For any quadrangle K (resp. triangle K), let ΠK
M

be the L2(K)-orthogonal projection on the vector space of polynomials of degree in each

variable (resp. total degree) at mostM . Then, for any non-negative real number `, there
exists C` independent of H , M and of the elements K of the family of partitions such

that, for any v ∈ H`(K),

∥∥v − ΠK
M(v)

∥∥
L2(K)

≤ C`
Hmin(`,M+1)

M `
|v|H`:M (K) ≤ C`

Hmin(`,M+1)

M `
‖v‖H`(K)

where | · |2H`:M (K) =

b`c∑
k=M+1

| · |2Hk(K) + | · |2H`(K).

To prove Lemma 3.15, one �rst considers the case when ` is an integer. The general

case of real values of ` is obtained using the following Sobolev interpolation result.

Lemma 3.16. (see [68, Theorem 5.1]) Let (X ,Y) be a couple of separable Hilbert spaces
with X ⊂ Y , such that X is dense in Y and such that the injection from X to Y is

continuous. Let (X, Y ) be another couple of Hilbert spaces with analogous properties.

Denote by L(X, Y ) the set of linear continuous operators from X to Y , and likewise
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for L(X ,Y). Let π be an operator satisfying π ∈ L(X ,Y) ∩ L(X, Y ). Then, for all

0 < θ < 1, we have
π ∈ L([X , X]θ, [Y , Y ]θ)

where the interpolated space [X , X]θ is de�ned in [68, Definition 2.1].

Remark 3.17. Lemma 3.16 is useful especially when considering Sobolev spaces and al-

lows to easily extend properties shown for Sobolev spaces with integer index to fractional

Sobolev spaces. Indeed, for any 0 < s < 1, one can de�ne Hs(D) as [L2(D), H1(D)]s.
As an application of Lemma 3.16, consider a linear operator π de�ned inL2(D) and which
satis�es ‖πu‖L2(D) ≤ ‖u‖L2(D) for any u ∈ L2(D) and ‖πu‖L2(D) ≤ C‖u‖H1(D) for any

u ∈ H1(D). Then we know that π ∈ L(Hs(D), L2(D)). The proof of Lemma 3.16 actu-

ally provides an explicit value for the continuity constant, and yields that ‖πu‖L2(D) ≤
Cs‖u‖Hs(D) for any u ∈ Hs(D).

Proof of Lemma 3.15. When ` = 0, the result comes from the fact that a projection

is stable. When ` is a positive integer, we refer to [22, Eq. (5.8.27) p. 318] in the case of

quadrangles, and [22, Sec. 5.9] in the case of triangles. For the case when ` is a non-

integer real number, we �rst consider a reference element K with diam(K) = 1 and

proceed by using a Sobolev interpolation argument (see Lemma 3.16). This yields an

estimate with the right power inM . We next perform a rescaling and use the regularity

of the mesh, which implies the fact that the transformation betweenK andK is a�ne

with a gradient bounded by H .

Proof of Lemma 3.9. We show �rst that ‖uB‖E ≤ CH‖f‖L2(D)/
√
αmin. We have

that

‖uB‖2
E =

∫
D

(∇uB)TA∇uB =

∫
D

fuB =
∑
K∈TH

∫
K

fuB.

Using the Cauchy-Schwarz inequality and the Poincaré inequality (recall indeed that

uB ∈ H1
0 (K)), it holds that∫

K

fuB ≤ ‖f‖L2(K)‖uB‖L2(K) ≤ ‖f‖L2(K)CH|uB|H1(K)

for some universal constant C . We hence have

‖uB‖2
E ≤ CH

∑
K∈TH

‖f‖L2(K)|uB|H1(K)

≤ CH‖f‖L2(D)|uB|H1(D)

≤ CH
√
αmin

‖f‖L2(D)‖uB‖E,

from which we deduce that ‖uB‖E ≤
CH
√
αmin

‖f‖L2(D) for some universal constant C .

This proves (3.11).

We now consider the case when we add bubble enrichments for each element

K ∈ TH with a uniform degree M ≥ 1. Galerkin orthogonality implies that, for

any vB,H,M ∈ VB,H,M ,

a(uB − uB,H,M , uB − uB,H,M) ≤ a(uB − vB,H,M , uB − vB,H,M). (3.21)

Recall that VB,H,M is the span of the functions {φBK,i}i=1,...,NM (see (3.6)) which solve

in the element K the problem − div(A∇φBK,i) = Pi, where {Pi}i=1,...,NM is a basis of
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polynomial functions with (total or partial) degree M . Because of that very de�nition,

we may uniquely de�ne vB,H,M ∈ VB,H,M as the solution to

∀v ∈ VB, a(vB,H,M , v) =

∫
D

ΠM(f) v,

where ΠM(f) =
∑

K∈TH 1K ΠK
M(f), where ΠK

M is de�ned in Lemma 3.15. Using the

de�nition of uB , we next obtain that, for any v ∈ VB ,

a(uB − vB,H,M , v) =

∫
D

fv −
∫
D

ΠM(f) v

=
∑
K∈TH

∫
K

(
f − ΠK

M(f)
)
v

=
∑
K∈TH

∫
K

(
f − ΠK

M(f)
) (
v − ΠK

M(v)
)
.

Choosing now v = uB − vB,H,M in the above equality yields

a(uB − vB,H,M , uB − vB,H,M)

≤
∑
K∈TH

∥∥f − ΠK
M(f)

∥∥
L2(K)

∥∥uB − vB,H,M − ΠK
M (uB − vB,H,M)

∥∥
L2(K)

≤ C`
Hmin(`,M+1)+1

M `+1

∑
K∈TH

|f |H`:M (K) |uB − vB,H,M |H1(K)

where we have used in the last line the polynomial projection properties stated in

Lemma 3.15, the fact that f ∈ H`(D) and that M ≥ 1. We thus deduce that

a(uB − vB,H,M , uB − vB,H,M)

≤ C`
Hmin(`,M+1)+1

M `+1
|f |H`:M (D) ‖∇(uB − vB,H,M)‖L2(D)

≤ C`√
αmin

Hmin(`,M+1)+1

M `+1
|f |H`:M (D)

√
a(uB − vB,H,M , uB − vB,H,M)

hence√
a(uB − vB,H,M , uB − vB,H,M) ≤ C`√

αmin

Hmin(`,M+1)+1

M `+1
|f |H`:M (D). (3.22)

Inserting (3.22) into (3.21), we obtain√
a(uB − uB,H,M , uB − uB,H,M) ≤ C`√

αmin

Hmin(`,M+1)+1

M `+1
|f |H`:M (D),

which is the bound (3.10). This concludes the proof of Lemma 3.9.

3.5.2 Proof of Lemma 3.10

For the proof of Lemma 3.10, we separately consider the case of quadrangles and the

case of triangles. For the former case, we need the following approximation result (see

the discussion in [22] between Eqation (5.8.27) and Section 5.8.4).
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Lemma 3.18. Assume that (TH)H is a family of conforming partitions ofD into a �nite

number of convex quadrilaterals with straight edges. We assume that the mesh is regular.

For any quadrangleK , let iKN be the Legendre interpolant at the (1 +N)2
Gauss-Lobatto

points in K (iKN is thus a polynomial function in QN ). Let s > 1 and N ≥ 1. Then there

existsCs independent ofH ,N and of the elementsK of the family of partitions such that,

for any v ∈ Hs(K),∣∣v − iKN (v)
∣∣
H1(K)

≤ Cs
Hmin(s,N+1)−1

N s−1
|v|Hs(K).

Note that a function v ∈ Hs(K) with s > 1 is continuous (recall that we consider

a two-dimensional setting), thus iKN (v) is well-de�ned.

Proof of Lemma 3.10 for quadrangles. As for Lemma 3.9, Galerkin orthogonality

implies that, for any vΓ,H,N ∈ VΓ,H,N ,

a(uΓ − uΓ,H,N , uΓ − uΓ,H,N) ≤ a(uΓ − vΓ,H,N , uΓ − vΓ,H,N). (3.23)

Since u ∈ Hs(D) with s > 3/2, u is continuous on D, hence on Γ (note here that

u ∈ Hs(D) with s > 1 would be su�cient). We denote by iΓN(u) the interpolant (at

the Gauss-Lobatto points on Γ) of u on the set of continuous functions on Γ which are

piecewise equal to polynomial functions of degree lower or equal to N .

Let w = ED(iΓN(u)) ∈ VΓ,H,N denote the harmonic lifting of iΓN(u), that is the

solution to − div(A∇w) = 0 on each coarse element K with the Dirichlet boundary

conditions w = iΓN(u) on Γ. We then have

a
(
uΓ − ED(iΓN(u)), uΓ − ED(iΓN(u))

)
=
∑
K∈TH

∫
K

(
∇uΓ −∇ED(iΓN(u))

)T
A
(
∇uΓ −∇ED(iΓN(u))

)
≤
∑
K∈TH

∫
K

(
∇u−∇IΓ,H,N(u)

)T
A
(
∇u−∇IΓ,H,N(u)

)
≤ αmax

∑
K∈TH

|u− IΓ,H,N(u)|2H1(K) (3.24)

where IΓ,H,N(u) ∈ H1
0 (D) is de�ned piecewise on eachK as the Legendre interpolant

of u|K at the Gauss-Lobatto points in K (it is thus a polynomial function in QN ). The

�rst inequality of (3.24) holds for the following reasons:

• First, ED(iΓN(u)) and IΓ,H,N(u) agree on Γ for quadrangular mesh elements (re-

call indeed that the Gauss-Lobatto points of each edge of ∂K are a subset of the

Gauss-Lobatto points ofK ; on each edge, ED(iΓN(u)) and IΓ,H,N(u) are thus two

polynomial functions of degree lower than or equal toN which are equal on the

(1 +N) Gauss-Lobatto points of the edge, and are thus equal).

• Second, uΓ and u agree on Γ, by de�nition of uΓ.

• The function uΓ−ED(iΓN(u)) thus agrees with u−IΓ,H,N(u) on Γ, and the former

is energy-minimizing in each element K . This hence shows the �rst inequality

of (3.24).

Using Lemma 3.18, we see that(∑
K∈TH

|u− IΓ,H,N(u)|2H1(K)

)1/2

≤ Cs
Hmin(s,N+1)−1

N s−1
‖u‖Hs(D).
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Collecting this bound with (3.23) (that we use for vΓ,H,N = ED(iΓN(u))) and (3.24), we

deduce that√
a(uΓ − uΓ,H,N , uΓ − uΓ,H,N) ≤ Cs

√
αmax

Hmin(s,N+1)−1

N s−1
‖u‖Hs(D),

which concludes the proof of Lemma 3.10 for quadrangles.

We now turn to the proof of Lemma 3.10 for the case of triangles. Actually, the proof

given below also holds in the case of quadrangles, and provides the same estimate as

the above proof (we have kept the above proof for the case of quadrangles because the

choice of vΓ,H,N is constructive, in contrast to the proof below). To address this second

case, the following result is useful.

Lemma 3.19. (see [6, Theorem 4.1] and [5, Theorems 4.6, 4.8 and Section 4.2]) Consider

a mesh T H composed of quasiuniform triangular or quadrilateral elements with meshsize

H . Let u ∈ Hs(D) ∩H1
0 (D) with s > 3/2. Let V N

H,0 = {v ∈ C0(D) ∩H1
0 (D); v|K ∈

PK
N } where PK

N is the set of polynomial functions on K which are of (total or partial)

degree lower or equal to N . We then have

min
v∈V NH,0

‖u− v‖H1(D) ≤ Cs
Hmin(s,N+1)−1

N s−1
‖u‖Hs(D) (3.25)

where Cs is independent of H , N and u.

This result will play the role in the general case of Lemma 3.18 in the case of quad-

rangles.

Remark 3.20. Theorems 4.6 and 4.8 in [5] consider the problem of approximating the

solution u ∈ H1
0 (D) to −∆u + u = f in D. Their proof relies of some approxima-

tion results. These approximation results have their own interest and can be stated as in

Lemma 3.19 for any u ∈ Hs(D) ∩H1
0 (D).

Proof of Lemma 3.10, alternative proof for triangles and quadrangles. Using

Galerkin orthogonality, it holds, for any vΓ,H,N ∈ VΓ,H,N , that

a(uΓ − uΓ,H,N , uΓ − uΓ,H,N) ≤ a(uΓ − vΓ,H,N , uΓ − vΓ,H,N). (3.26)

Thanks to Lemma 3.19, there exists a function P (u) ∈ V N
H,0 such that, for any s > 3/2,

‖u− P (u)‖H1(D) ≤ C
Hmin(s,N+1)−1

N s−1
‖u‖Hs(D). (3.27)

We consider the harmonic lifting w = ED(P (u)) of P (u)|Γ on D, that is the solution

to− div(A∇w) = 0 on each coarse elementK with the Dirichlet boundary conditions

w = P (u) on Γ. Note that P (u) is continuous on Γ and smooth on each edge, which

implies thatw is well-de�ned and belongs toH1(D). Moreover, on each edge, P (u) is a

polynomial function of degree lower or equal toN . We therefore have thatw ∈ VΓ,H,N .

We now write

a
(
uΓ − ED(P (u)), uΓ − ED(P (u))

)
=
∑
K∈TH

∫
K

(∇uΓ −∇ED(P (u)))T A (∇uΓ −∇ED(P (u)))

≤
∑
K∈TH

∫
K

(∇u−∇P (u)))T A (∇u−∇P (u))

≤ αmax

∑
K∈TH

|u− P (u)|2H1(K)

= αmax|u− P (u)|2H1(D), (3.28)
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where the �rst inequality above again comes from the fact that uΓ − ED(P (u)) is

energy-minimizing in each element K and agrees with u − P (u) on ∂K . Collect-

ing (3.26) (that we use for vΓ,H,N = ED(P (u))), (3.28) and (3.27), we deduce that√
a(uΓ − uΓ,H,N , uΓ − uΓ,H,N) ≤ C

√
αmax

Hmin(s,N+1)−1

N s−1
‖u‖Hs(D),

which concludes the general proof of Lemma 3.10.

3.5.3 Proof of Proposition 3.12

The proof of Proposition 3.12 requires the three following results, Lemmas 3.21, 3.22

and 3.23.

Lemma 3.21. Consider an element K of diameter H in the mesh. We assume that K is

convex and that H ≤ 1. Let f ∈ L2(K) and consider z ∈ H1
0 (K) solution to

−∆z = f in K.

Then z ∈ H2(K) and there exists C , which only depends on the regularity of the mesh

(in the sense of (3.2)), such that, for any edge e ⊂ ∂K , we have

‖∇z‖H1/2(e) ≤ C ‖f‖L2(K). (3.29)

Proof of Lemma 3.21. The fact that z ∈ H2(K) stems from elliptic regularity and

the fact that K is convex (see [44, Chapter I, Theorem 1.8] or [48, Corollary 2.6.8]).

We proceed by scaling to show the estimate (3.29).

We �rst consider the case when K is obtained from the reference element by an

homothetic transformation of ratio H . Let zref(x) = z(Hx) and fref(x) = f(Hx) be

de�ned on the reference element Kref of unit diameter. We compute that, in Kref ,

−(∆zref)(x) = −H2(∆z)(Hx) = H2f(Hx) = H2 fref(x).

By elliptic regularity, we thus have ‖∇zref‖H1/2(eref)
≤ C H2 ‖fref‖L2(Kref)

. We now

proceed by scaling. We have

‖fref‖2
L2(Kref)

=

∫
Kref

f 2(Hx) dx = H−2

∫
K

f 2(x) dx = H−2 ‖f‖2
L2(K).

Furthermore,

‖∇zref‖2
L2(eref)

=

∫
eref

|(∇zref)(x)|2 dx = H2

∫
eref

|(∇z)(Hx)|2 dx

= H

∫
e

|(∇z)(x)|2 dx = H ‖∇z‖2
L2(e)

and

|∇zref |2H1/2(eref)
=

∫
eref

∫
eref

|∇zref(x)−∇zref(y)|2

|x− y|2
dx dy

= H2

∫
eref

∫
eref

|(∇z)(Hx)− (∇z)(Hy)|2

|x− y|2
dx dy

= H2

∫
e

∫
e

|(∇z)(x)− (∇z)(y)|2

|x− y|2
dx dy = H2 |∇z|2H1/2(e) .
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We hence write that

‖∇z‖2
H1/2(e) = ‖∇z‖2

L2(e) + |∇z|2H1/2(e) = H−1 ‖∇zref‖2
L2(eref)

+H−2 |∇zref |2H1/2(eref)

≤ H−2 ‖∇zref‖2
H1/2(eref)

≤ C2H2 ‖fref‖2
L2(Kref)

= C2‖f‖2
L2(K),

which is (3.29) in the simple homothetic case.

To show (3.29) in full generality, we again de�ne zref(x) = z(F (x)) and fref(x) =
f(F (x)) for any x in the reference elementKref of unit diameter, where F is the a�ne

transformation introduced at the beginning of Section 3.2. We then compute that, in

Kref ,

− div(H2A∇zref) = H2 fref ,

where A is a constant matrix de�ned by A = (∇F−1)T∇F−1
. Using the bounds on

∇F and∇F−1
assumed in (3.2), we observe that the matrixH2A is bounded indepen-

dently of H and coercive with a constant independent of H . By elliptic regularity, we

thus again have ‖∇zref‖H1/2(eref)
≤ C H2 ‖fref‖L2(Kref)

, as in the simple homothetic

case. The sequel of the proof follows the same lines as above, simply using the bounds

on ∇F and∇F−1
. This concludes the proof of Lemma 3.21.

Lemma 3.22. Consider an element K of diameter H in the mesh. We assume that K is

convex and that H ≤ 1. Let a ∈ W 1,∞(K) with a(x) ≥ αmin > 0 almost everywhere in

K . Let f ∈ L2(K) and consider z ∈ H1
0 (K) solution to

− div(a∇z) = f in K. (3.30)

We then have the following assertions:

(i) The function z belongs to H2(K) and there exists Ca, which only depends on the

regularity of the mesh, αmin and ‖∇a‖L∞(K), such that, for any edge e ⊂ ∂K , we

have

‖∇z‖H1/2(e) ≤ Ca ‖f‖L2(K). (3.31)

(ii) There exists pSob
K > 2 depending on the largest inner angle of ∂K such that, when

f ∈ Lp(K) for some 2 ≤ p < pSob
K , then z ∈ W 2,p(K).

In relation to the assertion (ii) above, note that, if K satis�es an exterior sphere

condition and f is a Hölder function, then z ∈ C2,α(K) for some α > 0 (see [43,

Theorem 6.24]).

Proof of Lemma 3.22. The proof of assertion (i) is performed by using Lemma 3.21.

Since a is scalar-valued, we can rewrite (3.30) as −a∆z = f +∇a · ∇z, that is

−∆z = F in K with F =
f

a
+
∇a
a
· ∇z. (3.32)

We know that ∇z ∈ L2(K). Since ∇a ∈ L∞(K), we get that F ∈ L2(K). Using

Lemma 3.21, we hence obtain that z ∈ H2(K) and that

‖∇z‖H1/2(e) ≤ C ‖F‖L2(K) ≤
C

αmin

(
‖f‖L2(K) + ‖∇a‖L∞(K) ‖∇z‖L2(K)

)
.

To estimate ‖∇z‖L2(K), we use the variational formulation of (3.30), which leads to

αmin‖∇z‖2
L2(K) ≤

∫
K

(∇z)Ta∇z =

∫
K

f z ≤ ‖f‖L2(K)‖z‖L2(K) ≤ C H ‖f‖L2(K)‖∇z‖L2(K),
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where we have used for the �nal estimate a Poincaré inequality on K , which is of

diameter H . We thus obtain that αmin‖∇z‖L2(K) ≤ C H ‖f‖L2(K), and hence

‖∇z‖H1/2(e) ≤
C

αmin

(
‖f‖L2(K) + C H

‖∇a‖L∞(K)

αmin

‖f‖L2(K)

)
.

Assuming that H ≤ 1, we hence obtain (3.31).

To prove assertion (ii), we again use the formulation (3.32). Consider any pSob
K > 2

that will be �xed later. Assume that f ∈ Lp(K) for some p ∈ [2, pSob
K ). We have

shown that ∇z ∈ H1(K), hence ∇z ∈ Lp(K) using Sobolev embeddings. We hence

have F ∈ Lp(K). Using [44, Chapter I, Theorem 1.8 (ii)], we deduce the existence

of some pSob
K > 2 (depending on the largest inner angle of ∂K) such that the fact that

F ∈ Lp(K) for some 2 ≤ p < pSob
K implies that z ∈ W 2,p(K). This concludes the

proof of Lemma 3.22.

Our last technical result is the following approximation result. Consider a mesh

TH and choose a maximal polynomial degree pK ∈ N?
for any element K ∈ TH . We

assume that these degrees are comparable on neighbouring elements, in the sense that

∀K,K ′ ∈ TH s.t. K ∩K ′ 6= ∅, pK
γ
≤ pK′ ≤ γ pK , (3.33)

where γ is the mesh regularity constant of (3.2).

Lemma 3.23. (Scott-Zhang type interpolation result [72, Theorem 2.3]) Assume that

TH is a conformal mesh which is shape regular in the sense of (3.2). For any element

K ∈ TH , we choose a maximal degree pK ∈ N?
and we assume that these degrees {pK}

satisfy (3.33). Then there exists a continuous interpolation operator SZ from H1
0 (D) to

H1
0 (D) ∩ S({pK}) with

S({pK}) = {u ∈ C0(D); u|K is a polynomial function of degree at most pK}.

Furthermore, there exists a constant C which only depends on the mesh regularity γ
of (3.2) such that, for any u ∈ H1

0 (D) and any edge e ⊂ Γ, it holds that

‖u− SZ(u)‖L2(e) ≤ C

(
He

pe

)1/2

|u|H1(ωe) (3.34)

where ωe is the union of all the elements who share a vertex with the edge e, He is the

length of the edge e and pe = min{pK | e ⊂ ∂K}.

Proof of Proposition 3.12. The proof falls in two steps. We �rst estimate the error

uΓ − uΓ,H,{Ne} and next estimate uB − uB,H,{MK}.

Step 1: interface approximation. For the numerical solution uΓ,H,{Ne} ∈ VΓ,H,{Ne},

we write, using an integrating by parts over every element K and (3.7), that, for any

wΓ ∈ VΓ,

a(uΓ,H,{Ne}, wΓ) =

∫
D

(
∇uΓ,H,{Ne}

)T
A∇wΓ

=
∑
K∈TH

∑
e⊂∂K

∫
e

(
νTA∇uΓ,H,{Ne}

)
wΓ

=
∑
e⊂Γ

∫
e

wΓ Je
(
νTA∇uΓ,H,{Ne}

)
, (3.35)
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where Je(ψ) denotes the jump of a given function ψ across the edge e.
Using Galerkin orthogonality, we deduce that, for any vΓ ∈ VΓ and any vΓ,H,{Ne} ∈

VΓ,H,{Ne},

a(uΓ − uΓ,H,{Ne}, vΓ)

= a(uΓ − uΓ,H,{Ne}, vΓ − vΓ,H,{Ne})

= a(uΓ, vΓ − vΓ,H,{Ne})− a(uΓ,H,{Ne}, vΓ − vΓ,H,{Ne})

=

∫
D

f (vΓ − vΓ,H,{Ne})−
∑
e⊂Γ

∫
e

(vΓ − vΓ,H,{Ne}) Je
(
νTA∇uΓ,H,{Ne}

)
(3.36)

where, in the last line, we have used the de�nition of the exact solution uΓ and (3.35)

for wΓ = vΓ − vΓ,H,{Ne}.

We now make a speci�c choice for vΓ,H,{Ne}, under the additional assumption that

vΓ ∈ C0(D). We de�ne a function w on Γ by

w = SZ(vΓ)|Γ +
∑
e∈Γ

Πe,0
Ne

(vΓ − SZ(vΓ)) (3.37)

where, for each edge e ⊂ Γ, Πe,0
Ne

is the L2
projection on the polynomial functions

whose values are 0 on the two vertices of the edge and of degree lower or equal than

Ne on e (by construction, for any function ψ, Πe,0
Ne

(ψ) is supported on the edge e).
In (3.37), SZ is the Scott-Zhang type interpolant de�ned in Lemma 3.23, where we

choose, for each element K , the polynomial degree

pK = min{Ne | e ⊂ ∂K}. (3.38)

We observe that, by construction, the degrees {pK} satisfy (3.33). Consider indeed

two neighbouring elementsK andK ′. Then, denoting ẽ the edge shared byK andK ′,
we have

pK
pK′

=
min{Ne | e ⊂ ∂K}

min{Ne′ | e′ ⊂ ∂K ′}
=

min{Ne | e ⊂ ∂K}
Nẽ

Nẽ

min{Ne′ | e′ ⊂ ∂K ′}
≤ γ

where we have used the property (3.13). We likewise have that pK/pK′ ≥ 1/γ. Since

the degrees {pK} satisfy (3.33), we will be in position to use the approximation re-

sult (3.34) in the sequel.

We next observe that, on each edge e, w is a polynomial function of degree lower

or equal than Ne. This is obviously the case for the second term in (3.37). This is also

the case for the �rst term, which is indeed a polynomial function of degree pK1
e

(resp.

pK2
e
) on K1

e (resp. K2
e ), where K1

e and K2
e are the two elements sharing the edge e. By

construction, pK1
e
≤ Ne and likewise for pK2

e
.

Since w is continuous on Γ (because SZ(vΓ) is continuous on D and Πe,0
Ne

is a

polynomial that vanishes at the edge boundaries) and smooth on each edge, we can

consider its harmonic lifting

vΓ,H,{Ne} = ED(w) = ED

(
SZ(vΓ)|Γ +

∑
e∈Γ

Πe,0
Ne

(vΓ − SZ(vΓ))
)
. (3.39)

Since w is a polynomial function of degree lower or equal than Ne on any edge e, we

observe that w belongs to the approximation space VΓ,H,{Ne}.

For any vΓ ∈ C0(D) ∩ VΓ, we thus de�ne vΓ,H,{Ne} ∈ VΓ,H,{Ne} by (3.39). In the

sequel of the proof, we bound vΓ−vΓ,H,{Ne} in various norms, in order to bound (3.36).
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Step 1a. To bound the �rst term of (3.36), we need to estimate ‖vΓ − vΓ,H,{Ne}‖L2(K)

for any element K ∈ TH . To that aim, we introduce the unique solution z in H1
0 (K)

to

− div(A∇z) = vΓ − vΓ,H,{Ne} in K.

Since K is convex and A ∈ C1(D), we get that z ∈ H2(K) (see Lemma 3.22, as-

sertion (i)). Furthermore, we have that vΓ − vΓ,H,{Ne} ∈ H1(K) ⊂ Lq(K) for any

�nite q ≥ 2. The assertion (ii) of Lemma 3.22 hence shows that z ∈ W 2,p(K) for any

2 ≤ p < pSob
K . Using Sobolev embeddings, this implies that z ∈ C1(K). Furthermore,

since z = 0 on each edge, its tangential derivative vanishes on each edge. Using that

∇z ∈ C0(K), we deduce that∇z vanishes on each vertex of K .

Using the de�nition of z, we have

‖vΓ − vΓ,H,{Ne}‖2
L2(K)

=

∫
K

(∇z)TA∇(vΓ − vΓ,H,{Ne})−
∑
e⊂∂K

∫
e

(
vΓ − vΓ,H,{Ne}

)
νTA∇z

= −
∑
e⊂∂K

∫
e

(
vΓ − vΓ,H,{Ne}

)
νTA∇z, (3.40)

since both vΓ and vΓ,H,{Ne} are harmonic. Since A ∈ C1(D) and z ∈ H2(K), we

have that νTA∇z ∈ H1/2(e). Furthermore, since z ∈ C1(K) and ∇z vanishes on the

vertices ofK , we have νTA∇z ∈ C0
0(e), whereC0

0(e) is the set of continuous functions

on e which vanish at both ends of e.
Introduce

se(vΓ − vΓ,H,{Ne}) = sup
w∈H1/2(e)∩C0

0 (e)

∫
e

(
vΓ − vΓ,H,{Ne}

)
w

‖w‖H1/2(e)

.

We deduce from (3.40) and from Lemma 3.22 that

‖vΓ − vΓ,H,{Ne}‖2
L2(K) ≤

∑
e⊂∂K

se(vΓ − vΓ,H,{Ne})
∥∥νTA∇z∥∥

H1/2(e)

≤ CA
∑
e⊂∂K

se(vΓ − vΓ,H,{Ne}) ‖∇z‖H1/2(e)

≤ CA
∑
e⊂∂K

se(vΓ − vΓ,H,{Ne}) ‖vΓ − vΓ,H,{Ne}‖L2(K), (3.41)

where CA only depends on A and the regularity of the mesh. Using our speci�c

choice (3.39), we get

‖vΓ − vΓ,H,{Ne}‖L2(K) ≤ CA
∑
e⊂∂K

se

(
vΓ − SZ(vΓ)− Πe,0

Ne
(vΓ − SZ(vΓ))

)
. (3.42)

We next write

se

(
vΓ − SZ(vΓ)− Πe,0

Ne
(vΓ − SZ(vΓ))

)
= sup

w∈H1/2(e)∩C0
0 (e)

∫
e

(
vΓ − SZ(vΓ)− Πe,0

Ne
(vΓ − SZ(vΓ))

)
w

‖w‖H1/2(e)

= sup
w∈H1/2(e)∩C0

0 (e)

∫
e

(
vΓ − SZ(vΓ)− Πe,0

Ne
(vΓ − SZ(vΓ))

) (
w − Πe,0

Ne
(w)
)

‖w‖H1/2(e)

≤
∥∥vΓ − SZ(vΓ)− Πe,0

Ne
(vΓ − SZ(vΓ))

∥∥
L2(e)

sup
w∈H1/2(e)∩C0

0 (e)

∥∥w − Πe,0
Ne

(w)
∥∥
L2(e)

‖w‖H1/2(e)

,

(3.43)
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where the second equality stems from the fact that Πe,0
Ne

is a L2(e) orthogonal projec-

tion. We now bound from above the two factors of (3.43). For the second factor, we

�rst write, using the stability of the projection, that

∀w ∈ L2(e),
∥∥w − Πe,0

Ne
(w)
∥∥
L2(e)

≤ ‖w‖L2(e) . (3.44)

Second, for any w ∈ C0
0(e) ∩H1(e), we have

‖w − Πe,0
Ne

(w)‖L2(e) ≤ ‖w − INe(w)‖L2(e) ≤ C
He

Ne

|w|H1(e) (3.45)

where INe is the interpolant of degree Ne at the Gauss Lobatto points on e (the last

inequality is for instance given in [22, Eq. (5.4.42)]). Note that it is critical here to

assume that w vanishes at the two vertices of the edge.

By Sobolev interpolation (see Lemma 3.16), we deduce from (3.44) and (3.45) that

∀w ∈ H1/2(e) ∩ C0
0(e), ‖w − Πe,0

Ne
(w)‖L2(e) ≤ C

√
He

Ne

‖w‖H1/2(e). (3.46)

Collecting (3.43), (3.44) and (3.46), we obtain that

se

(
vΓ − SZ(vΓ)− Πe,0

Ne
(vΓ − SZ(vΓ))

)
≤ C

√
He

Ne

‖vΓ − SZ(vΓ)‖L2(e). (3.47)

By using Scott-Zhang type interpolation results (see Lemma 3.23) and collecting

(3.47) and (3.42), we have

‖vΓ − vΓ,H,{Ne}‖L2(K) ≤ CA
∑
e⊂∂K

√
He

Ne

‖vΓ − SZ(vΓ)‖L2(e)

≤ CA
∑
e⊂∂K

He√
Ne pe

|vΓ|H1(ωe) (3.48)

with

pe = min{pK1
e
, pK2

e
} = min{Nẽ | ẽ ⊂ ∂K1

e ∪ ∂K2
e} (3.49)

whereK1
e andK2

e are the elements sharing the edge e and pK1
e

and pK2
e

are the degrees

chosen in (3.38) for the construction of the Scott-Zhang type interpolation operator

SZ .

We �nally infer from (3.48) that∣∣∣∣∫
D

f(vΓ − vΓ,H,{Ne})

∣∣∣∣ ≤ ∑
K⊂TH

‖f‖L2(K)‖vΓ − vΓ,H,{Ne}‖L2(K)

≤ CA
∑
K⊂TH

‖f‖L2(K)

(∑
e⊂∂K

He√
Ne pe

|vΓ|H1(ωe)

)

≤ CA

√√√√∑
K⊂TH

‖f‖2
L2(K)

(∑
e⊂∂K

He√
Ne pe

)2√∑
K⊂TH

|vΓ|2H1(ωK)

≤ CA |vΓ|H1(D)

√√√√∑
K⊂TH

‖f‖2
L2(K)

(∑
e⊂∂K

H2
e

Ne pe

)
(3.50)

where ωK = ∪e⊂∂Kωe. We have thus bounded the �rst term of (3.36).
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Step 1b. We now consider with the second term of (3.36). Using the L2(e) stability of

the projection operator Πe,0
Ne

and next (3.34), we have

‖vΓ − vΓ,H,{Ne}‖L2(e) ≤ ‖vΓ − SZ(vΓ)‖L2(e) ≤ C

√
He

pe
|vΓ|H1(ωe), (3.51)

with pe again given by (3.49). We are thus in position to bound the second term of (3.36):∣∣∣∣∣∑
e⊂Γ

∫
e

(vΓ − vΓ,H,{Ne})Je
(
νTA∇uΓ,H,{Ne}

)∣∣∣∣∣
≤
∑
e⊂Γ

∥∥Je (νTA∇uΓ,H,N

)∥∥
L2(e)

‖vΓ − vΓ,H,{Ne}‖L2(e)

≤ C
∑
e⊂Γ

√
He

pe

∥∥Je (νTA∇uΓ,H,{Ne}
)∥∥

L2(e)
|vΓ|H1(ωe),

where we have used (3.51) in the last line. Using the Cauchy-Schwarz inequality, we

deduce that ∣∣∣∣∣∑
e⊂Γ

∫
e

(vΓ − vΓ,H,{Ne})Je
(
νTA∇uΓ,H,{Ne}

)∣∣∣∣∣
≤ C

√∑
e⊂Γ

He

pe

∥∥Je (νTA∇uΓ,H,{Ne}
)∥∥2

L2(e)

√∑
e⊂Γ

|vΓ|2H1(ωe)

≤ C|vΓ|H1(D)

√∑
e⊂Γ

He

pe

∥∥Je (νTA∇uΓ,H,{Ne}
)∥∥2

L2(e)
. (3.52)

Step 1c. Collecting (3.36), (3.50) and (3.52), we obtain, for any vΓ ∈ VΓ ∩ C0(D), that

a(uΓ − uΓ,H,{Ne}, vΓ)

|vΓ|H1(D)

≤ CA


√√√√∑

K⊂TH

‖f‖2
L2(K)

(∑
e⊂∂K

H2
e

Ne pe

)

+

√∑
e⊂Γ

He

pe

∥∥Je (νTA∇uΓ,H,{Ne}
)∥∥2

L2(e)

}
.

We use the above estimate for the choice vΓ = uΓ−uΓ,H,{Ne}, which obviously belongs

to VΓ. In addition, we have assumed that u ∈ Hs(D) for some s > 3/2, hence u ∈
C0(D). Since uΓ = u on Γ, this implies that uΓ ∈ C0(Γ), and thus, by elliptic regularity

(see [43, Theorem 8.30]), that uΓ ∈ C0(K) for any element K . Likewise, uΓ,H,{Ne} is

continuous on Γ and thus, using again [43, Theorem 8.30], we get that uΓ,H,{Ne} ∈
C0(K). We thus indeed check that vΓ ∈ C0(D). We thus deduce that

‖uΓ − uΓ,H,{Ne}‖E ≤ CA

{ ∑
K⊂TH

‖f‖2
L2(K)

(∑
e⊂∂K

H2
e

Ne pe

)

+
∑
e⊂Γ

He

pe

∥∥Je (νTA∇uΓ,H,{Ne}
)∥∥2

L2(e)

}1/2

. (3.53)
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Step 2: bubble approximation. Regarding the bubble approximation, the a priori

error already provides an a posteriori estimator since the right-hand sides in Lemma 3.9

is independent of uB . The following arguments yield another estimate, in the case

when bubble enrichments are considered (if no enrichement is used, then we simply

use the right-hand side of (3.11) as a posteriori estimator). We thus consider the case

whenMK ≥ 1 for any elementK . For the numerical solution uB,H,{MK} ∈ VB,H,{MK},

we write, using an integrating by parts over every element K , that, for any wB ∈ VB ,

a(uB,H,{MK}, wB) =

∫
D

(
∇uB,H,{MK}

)T
A∇wB

= −
∑
K∈TH

∫
K

wB div
(
A∇uB,H,{MK}

)
. (3.54)

Using Galerkin orthogonality, we deduce that, for any vB ∈ VB and any vB,H,{MK} ∈
VB,H,{MK},

a(uB − uB,H,{MK}, vB)

= a(uB − uB,H,{MK}, vB − vB,H,{MK})

= a(uB, vB − vB,H,{MK})− a(uB,H,{MK}, vB − vB,H,{MK})

=

∫
D

f (vB − vB,H,{MK}) +
∑
K∈TH

∫
K

(vB − vB,H,{MK}) div
(
A∇uB,H,{MK}

)
=
∑
K∈TH

∫
K

(vB − vB,H,{MK})
(
f + div

(
A∇uB,H,{MK}

) )
, (3.55)

where, in the fourth line, we have used the de�nition of the exact solution uB and (3.54)

for wB = vB − vB,H,{MK}.

We now make the following speci�c choices. For vB , we take

vB = uB − uB,H,{MK}. (3.56)

We now choose vB,H,{MK}. Let ΠK
MK

be the L2(K)-projection on the polynomials of

degree at most MK on the element K . We then consider vB,H,{MK} ∈ VB,H,{MK} such

that, on each K , we have

− div(A∇vB,H,{MK}) = ΠK
MK

(z) in K, vB,H,{MK} = 0 on ∂K, (3.57)

with

z = − div(A∇vB) in K.

In view of (3.56) and of the de�nition of uB , we see that, in K ,

z = − div(A∇uB) + div(A∇uB,H,{MK}) = f + div(A∇uB,H,{MK}). (3.58)

In view of (3.5), we thus see that the right-hand side ΠK
MK

(z) in (3.57) satis�es

ΠK
MK

(z) = ΠK
MK

(f) + div(A∇uB,H,{MK}). (3.59)

In the sequel of the proof, we bound vB − vB,H,{MK} in order to bound (3.55).

Step 2a. We see that

− div(A∇(vB,H,{MK} − vB)) = ΠK
MK

(z)− z in K, vB,H,{MK} − vB = 0 on ∂K,
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hence

αmin‖∇(vB,H,{MK} − vB)‖2
L2(K) ≤

∥∥ΠK
MK

(z)− z
∥∥
L2(K)

‖vB,H,{MK} − vB‖L2(K).

Using the Poincaré inequality ‖vB,H,{MK}−vB‖L2(K) ≤ C HK ‖∇(vB,H,{MK}−vB)‖L2(K),

we deduce that αmin‖∇(vB,H,{MK}−vB)‖L2(K) ≤ C HK

∥∥ΠK
MK

(z)− z
∥∥
L2(K)

and thus

‖vB,H,{MK}−vB‖L2(K) ≤ C
H2
K

αmin

∥∥ΠK
MK

(z)− z
∥∥
L2(K)

= C
H2
K

αmin

∥∥ΠK
MK

(f)− f
∥∥
L2(K)

,

(3.60)

where, for the last equality, we have used (3.58) and (3.59).

Step 2b. Collecting (3.55) and (3.60), and using that vB is given by (3.56), we get that

a(uB − uB,H,{MK}, uB − uB,H,{MK})

= a(uB − uB,H,{MK}, vB)

≤
∑
K∈TH

‖vB,H,{MK} − vB‖L2(K) ‖f + div
(
A∇uB,H,{MK}

)
‖L2(K)

≤ C

αmin

∑
K∈TH

H2
K ‖f + div (A∇uB,H,M) ‖L2(K)

∥∥ΠK
MK

(f)− f
∥∥
L2(K)

. (3.61)

Since f ∈ H`K (K) for some `K ≥ 0, then we know from Lemma 3.15 that

∥∥f − ΠK
MK

(f)
∥∥
L2(K)

≤ C
H

min(`K ,MK+1)
K

M `K
K

‖f‖H`K (K). (3.62)

Collecting (3.61) and (3.62), we obtain

‖uB − uB,H,{MK}‖E ≤

C
√
αmin

{∑
K∈TH

H2
K

H
min(`K ,MK+1)
K

M `K
K

‖f + div
(
A∇uB,H,{MK}

)
‖L2(K) ‖f‖H`K (K)

}1/2

,

(3.63)

where the right-hand side is completely computable, up to the unknown constant C .

Step 3. Collecting (3.53) and (3.63), and using the orthogonal decomposition (3.4), we

obtain (3.14). This concludes the proof of Proposition 3.12.



CHAPTER 4

MSFEM IMPLEMENTATION IN FREEFEM++

This chapter discusses the implementation of some MsFEM variants in FreeFem++, a

Finite Element solver developed by F. Hecht [50].

FreeFem++ is a Finite Element software that can be used for a wide range of ap-

plications. MsFEM techniques are by nature intrusive as they require one to know

exactly the variational formulation in order to be applied. MsFEM approaches are two

step methods: one creates coarse basis functions that are solutions to some local prob-

lems and then a Galerkin problem is solved on the space spanned by these functions.

Although the basis functions are similar to the classical �nite element basis, the Ms-

FEM approach cannot be implemented in a general fashion. Indeed, the de�nition of

the local problems changes according to the equation to solve. Also, the local problems

often cannot be solved analytically and an approximation at a �ne scale h has to be

made. The basis functions are not as easy to manipulate as Finite Elements functions

because they depend on the local �uctuations of the coe�cient. Hence, quadrature

formulas depend on more parameters than in standard FE where quadrature formulas

are simple and require only minimal information on the element.

All these arguments advocate for the implementation of MsFEM approaches as a

template form and not as a hard-coded element in the software FreeFem++. In that

sense our implementation can be seen as a simple multi-grid approach where we de-

sign a coarse approximation space with basis functions that are solutions to local prob-

lems approximated on a �ner embedded grid of size h.

The implementation will be applied to the multi-scale problem (1.2):{
−div(Aε∇uε) = f in D,

uε = 0 on ∂D,

for a coe�cient Aε that can be periodic or not.

We present here the implementation of three di�erent MsFEM variants: Linear

MsFEM, MsFEM oversampling and MsFEM à la Crouzeix-Raviart. We refer to Sec-

tion 1.4.2 for the principle of these methods. Also, a template to couple these ap-

proaches with standard techniques such as Finite Elements as well as a template to use
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MsFEM as a two level additive preconditioner will be presented.

This section is intended to show and explain the structure of the templates and

the main guidelines of the implementation. For the sake of clarity, we do not present

here the actual scripts associated with our templates but included them in Annex A

as FreeFem++ scripts.

4.1 Linear MsFEM and MsFEM oversampling

The Linear and oversampling MsFEM approaches are grouped together as the imple-

mentation between the two is basically the same. Indeed, the basis functions are as-

sociated with vertex degrees of freedom. The di�erence lies in the computation and

de�nition of local problems. Here the techniques and de�nitions can be easily trans-

posed in 3D as only degrees of freedom associated with vertices are involved.

The approach is divided into two steps: the o�ine phase (described in Algorithm 1

implemented in the FreeFem++ script in Section A.1.1) and the online phase (de-

scribed in Algorithm 2 implemented in the FreeFem++ script in Section A.2.1).

Algorithm 1 Linear MsFEM: o�ine phase

Require: Coarse mesh TH , the coe�cient Aε and a small meshsize h
Ensure: h� ε (often h ' ε

10
is used)

Initialize A the sti�ness matrix of the new basis and B the generic RHS

for K ∈ TH in parallel do

Build T Kh (meshing K with meshsize h)

for i ∈ K do

Solve with P1 FE

− div(Aε∇ψi) = 0 inK, ψi = φi on ∂K, (4.1)

with φi the standard P1 FE basis function and store ψi.
end for

Compute and store Aloci,j =
∫
K

(Aε∇ψi) · ∇ψj and Bi = Bi +
∫
K
ψi × 1

with Aloc the local sti�ness matrix and B the generic RHS

Assemble and store A the sti�ness matrix associated with the new basis

{ψi}i=1..Nvertices

end for

Algorithm 1 can be implemented simply in FreeFem++. Indeed, as the degrees of

freedom are based on the vertices of the coarse mesh TH , the numbering of the degrees

of freedom and the structure of the sparse matrices associated with the right-hand side

and the sti�ness are exactly the same as for a P1 formulation posed on TH . Hence,

we de�ne a P1 dummy problem on TH to initialize our matrices, then we parallelize

the loop over the elements of our mesh using the Message Passing Interface (MPI)

formalism. All computations are performed in parallel. Mesh and local matrices are

computed on the �y in order to limit storage load. Basis functions are stored locally

in �les that are indexed by the element. One could store more information, if needed,

such as local sti�ness matrix or local mesh used to compute basis functions for instance.
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Such partitioning speeds up the reading time needed to recover the basis functions in

a parallel framework.

Remark 4.1. We put the emphasis on the fact that the MsFEM solution is de�ned only

locally. Hence, when solving 4.1 one could use other higher order �nite elements instead

of P1 FE in order to better adapt to Aε changes, though in this case the information must

be stored in order to recover the basis.

Remark 4.2. The MsFEM oversampling approach follows the same steps (see the script

in section (A.1.2)). However, in the loop over the element a mesh T̂ Kh for the enlarged

element is designed instead of a considering T Kh a sub-mesh of the element K . On this

enlarged mesh or super-element K̂ , we compute ψ̂i solution of equation (4.1). The bound-
ary conditions are taken as the corresponding P1 coarse FE basis functions associated with

the super element K̂ . Then, we consider T Kh a sub-mesh of our initial elementK and the

actual new basis functions ψi are de�ned as the restrictions of ψ̂i on this mesh.

There are numerous ways of de�ning a super-element. In the current implementation, we

choose an enlargement factor Cover ≥ 1. Then, the super-element is the polygon de�ned

by the vertices one gets from the initial vertices when multiplying the vector from the

barycenter to the vertices by Cover. When the element is close to the boundary ofD some

truncature rule is used on the enlarged element, in order to stay in the domain. This step

is crucial as it allows us to simply enforce boundary conditions by imposing values on the

degrees of freedom on the boundary.

Algorithm 2 Linear MsFEM: Online phase

Require: f the right-hand side, the MsFEM basis {ψi}, QOF a quantity of interest to

compute from the solution u, the sti�ness matrix A and the generic RHS B
Ensure: QOF the quantity of interest can be computed locally

Assemble the right-hand side RHSi = Bi × f(xi)
Solve the coarse linear system AX = RHS
Reconstruct the solution locally:

for K ∈ TH in parallel do

Load the �ne mesh T Kh
for i ∈ K do

Compute and store UK
MsFEM = UK

MsFEM +Xi × ψi
end for

Compute QOFK = G(UK
MsFEM)

end for

Return QOF =
∑

K∈TH QOFK

The online step described by Algorithm 2 is more straightforward, compute the

right-hand side vectorRHS, solve the coarse linear formulationAX = RHS, recover

the MsFEM approximation and compute the quantity of interest. The most expensive

operation here is to compute the right-hand side RHSi =
∫
D
ψif . There are two op-

tions: either the computation can be performed in parallel inducing an extra cost or

one can suppose that the RHS function f does not vary much at the coarse scale H
and approximate f by f(xi) with xi ∈ Suppφi in RHSi. In the linear and oversam-

pling MsFEM approach the degrees of freedom are located on the vertices {xi} and the

support of the basis function ψi is centered on xi. Thus, RHSi can be approximated

by Bif(xi), a quantity that is less expensive to compute than the full integral RHSi
since it only requires the evaluation of f at the vertices.
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Remark 4.3. In order for the quantity of interest to be computed e�ciently, it is required

to be local. For instance, considering g an inline function and the associated quantity of

interest QOF = G(uMsFEM) =
∫
D
g uMsFEM , the computation can be performed in

parallel e�ciently. However, if we consider g de�ned on a global FE space, then computing

QOF = G(uMsFEM) =
∫
D
g uMsFEM can be challenging as one either would have to

project the MsFEM solution on the FE space ofG or projectG on each local sub-mesh. Both

operations are very costly and will impair the MsFEM e�ciency.

Remark 4.4. Building a global representation of the MsFEM approximation is possible,

though not advisable as there will be a costly projection step from a FE space de�ned on a

local mesh to a FE space de�ned on a global mesh. Such operation must be executed with

special care in the oversampling case as the solution is not continuous over the coarse

elements. In FreeFem++, an intermediate Discontinuous Galerkin (DG) global FE space

has to be used (for linear MsFEM) since the projection element by element will give twice

the value on the FE degrees of freedom associated with the edges. One has to transfer

element to element the local solution to the DG FE space and then take another projection

step (for instance L2
projection) to have a result in a conformal global FE space.

4.2 MsFEM à la Crouzeix Raviart

The implementation of MsFEM à la Crouzeix Raviart (in short MsFEM-CR) described in

section 1.4.2 seems similar to the linear MsFEM and oversampling MsFEM approaches.

However, the degrees of freedom are located on the edges and in the center of the

elements instead of the vertices. Thus, the implementation has to be modi�ed.

The method is divided into two parts: the o�ine phase (described in Algorithm 3

and implemented in FreeFem++ as explained in section A.1.3) and the online phase

(described in Algorithm 4 and implemented in FreeFem++ as explained in section

A.2.2).

The o�ine part is similar to Algorithm 1. The computation of the new basis will

be performed locally in a parallelized loop over the element of the coarse mesh TH .

Note however that the structure and numbering of the basis will be di�erent as we

consider degrees of freedom not on the vertices but on the edges and the center of the

elements. In order to get the optimal numbering needed to simplify the resolution of

the �nal coarse linear system on the new basis, one has to �nd a simple equivalent

coarse problem similarly to the P1 FE coarse dummy problem in the linear MsFEM

case. FreeFem++ allows us to do that easily by using P0 FE space and P0edge FE space.

The P0 FE space corresponds to the space of functions that are piecewise constant over

the elements and the P0edge space is generated by an edge based basis {φe}e=1..Nbedge

where φe equals to 1 on e, 0 on other edges and φe is piecewise constant over the el-

ements. Then, we design a coarse dummy problem from P0 FE space and P0edge FE

space to initialize our matrices and perform the computation of the new basis in par-

allel over the elements.

There is also a di�erence in the design of the basis functions associated with the

edges compared to linear and oversampling MsFEM. Indeed, the local problem are

not solved with classical boundary conditions (of type Dirichlet) a constraint enforced

on edges by a Lagrange multiplier method. Such an operation is performed simply in

FreeFem++ as we have access to all matrices, instead of solving aNbvertices×Nbvertices
corresponding to a P1 discretization of the element, aNbvertices+Nbedges×Nbvertices+
Nbedges system is solved where the additional degrees of freedom corresponds to the
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Algorithm 3 MsFEM-CR: o�ine phase

Require: Coarse mesh TH , the coe�cient Aε and a small meshsize h
Ensure: h� ε (often h ' ε

10
is used)

for K ∈ TH in parallel do

Build T Kh (meshing K with meshsize h)

Solve with P1 FE

−div(Aε∇ψK0 ) = 1 inK, ψK0 = 0 on ∂K,

with ψK0 the basis function associated with the center of K
for ei ⊂ ∂K do

Solve with P1 FE (constraint enforced with Lagrange multiplier method)

−div(Aε∇ψKi ) = 0 inK, s.t.

∫
ej

ψKi = δi,j

with ψi the basis function associated with the edge ei (i = 1..Nedge).

end for

Compute and store Aloci,j =
∫
K

(Aε∇ψKi ) · ∇ψKj and Bi =
∫
K
ψKi , for i, j =

0..Nedge),

with Alocal the local sti�ness matrix and B the generic RHS

Assemble and store A the sti�ness matrix associated with the new basis

{ψKi }i=0..Nedge

end for

lagrange multipliers.

We solve for the function basis associated with edge ei a system of the form[
AK CK
CT
K 0

] [
XK

λKei

]
=

[
BK

BK
ei

]
where A =

∫
K

(Aε∇φi) · ∇φj , CK,i,j =
∫
ei
φj , Xk is the vector of the basis coe�-

cients in the P1 FE basis, λKei are the Lagrange multipliers associate to the edges of K ,

Bk =
∫
K

0× φi = 0, and BK
ei

= δei,ej .

Remark 4.5. When we use the Crouzeix-Raviart MsFEM method, the solution is discon-

tinuous. There is only a weak-continuity property: the mean of the jump is equal to 0 on

each edge. The edge based basis function associated with edge e satis�es this property as

the mean is equal to 1 on the two element sharing e and 0 on the other edges.

The online part described by Algorithm 4 follows up the o�ine part. In this step,

one computes the right-hand side and solve the coarse linear system associated with

the new basis. The most expensive tasks are the resolution of the linear system AX =
RHS and the assembling of the right-hand side RHS. Contrary to the linear MsFEM

approach, approximating RHS is not so easy as the degrees of freedom are located

on the edges and on the barycenter of the elements, not on the vertices. In the case

where i corresponds to a bubble basis function associated with the element K then

RHSi ' Bi × f(xk) with xK the barycenter of K . In the case where i correspond to

an edge basis function associated with the edge ei then RHSi ' Bi × f(xei) with xei
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Algorithm 4 MsFEM-CR: Online phase

Require: f the right-hand side, the MsFEM basis {ψKi }, QOF a quantity of interest

to compute from the solution u, the sti�ness matrix A and the generic RHS B
Ensure: QOF the quantity of interest can be computed locally

Assemble the right-hand side RHSi = Bi × f(xi)
Solve the coarse linear system AX = RHS
Reconstruct the solution locally

for K ∈ TH in parallel do

Load the �ne mesh T Kh
for i ∈ 0..Nedge do

Compute and store UK
MsFEM = UK

MsFEM +Xi × ψKi
end for

Compute QOFK = G(UK
MsFEM)

end forreturn QOF =
∑

K∈TH QOFK

the middle of the edge ei. As in the linear MsFEM case, the MsFEM approximation is

built locally in parallel to compute the quantity of interest QOF .

4.3 Coupling MsFEM

MsFEM approach is really useful when the coe�cient is highly heterogeneous. It is

however computationally demanding if the coe�cient does not vary much on the

coarse mesh, especially when compared to P1 FE for instance. Hence, it would be in-

teresting to distinguish two areas in the domain, Aslow the area where the coe�cient

Aε does not vary much andAfast the area where Aε is highly heterogeneous. One can

see such an example in Figure 4.1 where Aε is oscillating in the middle square and is

constant otherwise.

We will consider MsFEM approaches where the degrees of freedom are located on

the vertices to simplify the coupling between standard FE functions and MsFEM basis

functions. The structure of the implementation is described in Algorithm 5 and the

corresponding FreeFem++ script is presented in Section A.3.

Algorithm 5 Coupling MsFEM and P1

Require: Aε the expression of the coe�cient, rules to determine if MsFEM basis func-

tions or P1 basis functions are used, h a small meshsize and f a right-hand side

Create TH a coarse mesh of the whole domain with meshsize H
Separate the mesh into two submeshes T P1

H and T MsFEM
H

Renumber the elements of the coarse mesh TH according to the two submeshes T P1
H

and T MsFEM
H

Build the coarse sti�ness matrix AH =
∫
D

(Aε∇φi) · ∇φj and the right-hand side

RHS =
∫
D
φif with φi the P1 basis function associated with vertex i of TH

for K ∈ T MsFEM
H in parallel do

Build or load the MsFEM basis functions associated with the vertices

Update AH with local MsFEM Sti�ness matrix and remove P1 FE part

Update RHS with local MsFEM right-hand side and remove P1 FE part

end for

Solve the coarse linear problem AHX = RHS
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The �rst step is to separate the mesh into two areas according to the variation of

Aε. FreeFem++ allows to do that easily, one meshes the whole domain �rst and then

de�nes a submesh by using a separation function fsep.
For instance, if fsep(x, y) = 10.25<x<0.75(x, y) × 10.25<y<0.75(x, y) then we get in the

submesh all the elements of TH where f(x, y) > 0 see (Figure 4.1).

Figure 4.1: Left: Mesh of the domain (H = 1/16): we use both MsFEM functions (in

orange) and P1 FE functions (in red). Right: coe�cient Aε considered

Then, once the areas have been de�ned by the two submeshes T P1
H and T MsFEM

H ,

we can precompute MsFEM basis function on T MsFEM
H . Finally, the mesh of the whole

domain is reconstructed by rearranging the numbering such that the elements where

P1 will be used come before the elements where MsFEM basis function are used. Re-

garding the elements on the interface, as we have chosen to associate degrees of free-

dom to vertices, the corresponding basis function will simply be the P1 basis function

on P1 elements and the MsFEM basis function in the MsFEM elements, see Figure 4.2.

KP1

KMsFEM

i

Figure 4.2: Basis functions φi associated with interface degrees of freedom: Left - ele-

ments where φi is supported (in the red element, φi is a P1 basis function; in the yellow

element, φi is a MsFEM basis function), Right - plot of basis function associated with

degrees of freedom i

For the assembling of the sti�ness matrix, we will compute it for the whole P1 FE

problem on the mesh TH and modify it locally only on the elements where MsFEM

will be used. The same procedure can be used for the right-hand side term. Then we
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can solve the coarse linear system associated with the coupled problem and get our

approximation.

Figure 4.3: Graph of error for P1 coupled with MsFEM lin (Left, relative H1
error

28.3%), P1 coupled with MsFEM oversampling (Middle, relative H1
error 23.5% ) and

P1 (Right relative H1
error 34%)

We consider Aε described in Figure 4.1 and choose H = 1/16. Then, we used

MsFEM linear approach coupled with P1 FE and compare it to a reference solution.

The relative error in H1
norm when the MsFEM oversampling approach is used on

the whole domain is 22.8%. We can see in Figure 4.3 that the error of our coupled

approach is close to this error and smaller than the case where only P1 FE are used.

Remark 4.6. Choosing the separation function according to Aε �uctuations is not an
easy problem, especially when the coe�cient admits rough changes (from constant to

a rapidly oscillating function as on Figure 4.1). Indeed, the separation must be chosen

carefully since the error can be large across the separation in some cases (see Figure 4.5

corresponding to the choices in Figure 4.4). Recalling that the MsFEM linear basis func-

tions correspond to P1 FE basis functions in case of constant coe�cient, one could make

the MsFEM part larger to account for such changes. Also, using oversampling MsFEM

approach signi�cantly mitigates this e�ect.

Figure 4.4: Separation of the domain into the P1 subdomain (red) and a large (left),

medium (center) or small (right) MsFEM subdomain

Remark 4.7. The coupled method using MsFEM linear approach is conformal and con-

tinuous even in the degrees of freedom located on the interface since the MsFEM basis

functions share the same values as P1 FE on the edges. This approach can also be used

with an oversampling MsFEM approach since the degrees of freedom are located on the

vertices too. However, the approximation is no longer conformal even for the degrees of
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Figure 4.5: Error corresponding to a large MsFEM subdomain (Left relative H1
error

23.5% ), a medium MsFEM subdomain (Middle relative H1
error 23.8%) and small

MsFEM subdomain (Right relative H1
error 31.1%)

freedom located on the interface between P1 and MsFEM areas since MsFEM oversampling

basis functions are not linear on the edges. A functional FreeFem++ template has been

designed for both methods.

Remark 4.8. We decided to consider a simple coupling where the degrees of freedom

are located on the vertices. One could consider other choices, for instance Discontinuous

Galerkin methods. Such approaches may be more e�ective, though it complicates the

coupling formulation and increases the computational load needed to solve the coarse

problem.

Such work is still at a preliminary stage. Only a Freefem++ implementation for

MsFEM linear and MsFEM oversampling coupled with P1 FE is available (see Section

A.3). Currently, up to our knowledge, no error analysis has been performed and such

analysis is out of the scope of this discussion.

4.4 Using MsFEM approach as a second level precon-

ditioner

In this section, �rst we will do a quick review on the main tools to solve large linear

systems. Then, a two level preconditioner implementation using MsFEM linear basis

function as a coarse space will be presented.

The aim here is to approximate u solution to (1.2) by uh the P1 approximation at

the small scale h� ε. To that end, we de�ne a �ne grid Th. We then we have to solve

the corresponding linear system:

AX = B, Ai,j =

∫
D

(
Aε∇φhi

)
· ∇φhj , Bi =

∫
D

φhi f, (4.2)

with {φhi }i=1..Nbvertices the P1 basis functions associated with the vertices on the mesh

Th
.

In the multi-scale applications we have to consider h � ε, hence matrices A and

B have large dimension typically Nrows ' 1/h2
in 2D.

Techniques to solve linear systems fall into two categories:
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• Direct solvers: solve the linear system exactly by using linear algebra. We can

cite for instance the LU decomposition, Cholesky decomposition, Gaussian elim-

ination.

• Iterative solvers: solve the system by re�ning an initial guess X0 with an itera-

tive scheme that reduces at each step the error ‖AXi − B‖ in a relevant space.

Conjugate Gradient (CG) and Generalized minimal residual method (GMRES)

fall into that category.

For a more thorough review on linear system solvers one can refer to the mono-

graphs [69] and [30].

Direct linear solvers, such as the LU decomposition, are less e�cient in our case as

the complexity and memory required is usually in O(N2
rows). Although direct solvers

are very accurate, in most of multi-scale applications they cannot be applied as the

memory requirement is too high.

To circumvent this issue iterative solvers such as conjugate gradient (used for sym-

metric de�nite positive matrices) or GMRES (used in more general cases) are used. In-

stead of solving the problem directly, the solution is updated at each step with only

vector product operations. Though the methods is sure to converge after Nrows steps,

this would induce a cost larger than when using of direct solvers. These methods are

all the more e�ective the number of steps needed to get an accurate approximation is

small. The number of steps which is needed is related to κA, the condition number of

the matrix A, that is the ratio between its highest eigenvalue and lowest eigenvalue (if

A is symmetric positive de�nite matrix). Usually, κA increases when h decreases. In

order to mitigate this e�ect, we precondition the problem: instead of solving AX = B
we solve M−1AX = M−1B and we hope that κM−1A � κA. The best preconditioner

is A−1
, in such case the associated condition number is 1 and the problem is solved in

one step: X = A−1B. Obviously, we do not have access to A−1
as it would require to

have already solved the problem. So the goal is to �nd a preconditioner that is as close

to A−1
as possible and that is fast to compute. One can notice that the preconditioner

method is independent from the right-hand sideB, hence the same preconditioner can

be used in a multi-query context.

Usually in decomposition domain methods (DDM), the preconditioner M−1
are

chosen to be solutions to local problems (inversion of small matrices) that are linked

together to invert a reasonably small global problem. One of the simplest is called the

Jacobi preconditioner de�ned by

MJ,i,j =

{
Ai,j, if i = j

0 if i 6= j

ThenM−1
J is just the inverse of the diagonal ofA. More complicated precondition-

ers are used in practice such as Block Jacobi preconditioning and Schwarz precondi-

tioning. Often preconditioners from DDM are really e�ective in the detection of local

features (called high frequency features) but are not as e�cient in identifying more

global patterns (low frequencies features). Hence, in practice a more e�cient precon-

ditioner is built by mixing coarse information and local information to get low and

high frequencies. This is called a second level preconditioner: a local high frequency

preconditioner from DDM is enriched by a coarse approximation of the solution that

is fast to compute.
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In the Jacobi case and considering a coarse space VH = Span({φi}, i = 1..n) with

n � Nrows, we de�ne R0 the matrix of size n × Nrows such that the row i is the

coe�cient of φi on the P1 basis functions associated with the �ne mesh Th. We can

compute the preconditioner M−1
C de�ned by:

M−1
C = RT

0 (R0AR
T
0 )−1R0 +M−1

J (4.3)

The operation seems costly as one has to invert (R0AR
T
0 )−1

. However, such matrix

is of size n×nwith n� Nrows making the inversion a�ordable. Moreover, in practice

one always apply the preconditioner to a vector and this operation is equivalent to

solve a linear system.

In our case, the coarse MsFEM space de�ned as the span of our basis function

seems to be a good candidate for a second level preconditioner coarse space because of

its good approximation properties. The implementation of M−1
C using MsFEM linear

approach is described in Algorithm 6 with the actual implementation in Section A.4.

Algorithm 6 Linear MsFEM: Online phase

Require: Th a �ne mesh, f the right-hand side, the MsFEM basis functions {ψi} ex-

pressed in the P1 FE basis associated with Th.

Assemble the linear system AX = B on the �ne mesh Th
Load R0 the transformation matrix between the MsFEM basis functions and the P1

FE basis functions associated with the �ne mesh Th
Load AMsFEM the sti�ness matrix associated with the MsFEM basis functions

De�ne the preconditioner function P (Y ) 7→M−1
C Y

with M−1
C = RT

0A
−1
MsFEMR0 +M−1

J

Apply an iterative solver preconditioned by P to AX = B

The implementation in FreeFem++ is straightforward: one use Algorithm 1 to get

the MsFEM basis functions expressed in the P1 FE basis associated with the �ne mesh

Th. Then, we get A the sti�ness matrix and B the right-hand side associated with the

�ne discretization h. In FreeFem++ one does not give the matrix M−1
C as an argument

of an iterative solver command. Indeed, the user has to de�ne P , a preconditioning

function de�ned by P (Y ) = M−1Y with Y a vector having the same size as B (usu-

ally, at each step operations of type M−1
C (AXi − B) have to be computed). Such an

implementation is useful as since the preconditioner is allowed to change with the cur-

rent number of iterations allowing adaptive schemes. Moreover, fwhen small number

of iterations are considered then M−1
C Y can be seen as solving MX = Y that is less

expensive than computing M−1
C (complexity of O(n2) instead of O(n3)). Finally, the

iterative solver is used and gives the result when the prescribed accuracy in relative

residual error is reached or when the maximal number of steps is exceeded.

Considering a periodic Aε where ε = 1/32 with D = (0, 1)2
, we test this approach

for H = 1/8, h = 1/256 by using linear MsFEM basis function as a coarse precon-

ditioner and a GMRES iterative solver. It turns out that compared to a simple Jacobi

preconditioning, our approach requires approximately three times less steps to con-

verge when the tolerance is set to 10−6
see Figure 4.6.

Such a method is not intended to compete with more re�ned preconditioning ap-

proaches usually seen in DDM like additive Schwarz or Block Jacobi methods. Indeed,
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Figure 4.6: Left - Coarse MsFEM approximation (H = 1/8), Middle - �ne approxi-

mation obtained with GMRES preconditioned by our approach where convergence is

achieved (150 iterations, h = 1/256), Right - �ne approximation obtained with GMRES

preconditioned by Jacobi after 150 iterations and h = 1/256.

the aim here is to show how one can easily design and improve a preconditioned ap-

proach within FreeFem++ framework by using MsFEM approaches. The analysis re-

garding the reduction of the condition number of the preconditioned problem and the

convergence is out of the scope of this discussion.
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APPENDIXA

CODES

This annex presents the actual implementation in FreeFem++ of the methods presented

in Chapter 4. The codes can be run on the latest FreeFem++ version ( FreeFem++ 4.0)

except for the transposition operator " ’ " that has been replaced by " ˆ T " for aesthetic

purposes in the present manuscript (it shows more relevant syntax highlighting).

A.1 O�line step: Basis creation

A.1.1 Linear MsFEM

1 // P.-L. Rothe - F. Legoll ENPC(CERMICS/Navier) - Inria
Matherials

2

3 // Create the basis functions for MsFEM linear approach
4

5 // run with command line: mpirun -np number_of_processor
FreeFem++-mpi basis_creation_parallel.edp

6

7 verbosity=0;
8

9 // MPI
10 mpiComm comm(mpiCommWorld,0,0);
11

12 int nbproc = mpiSize(comm); // number of processes in parallel
13 int iproc = mpiRank(comm); //current processes
14

15

16 int H=256; // size of coarse mesh
17 int h=1024; // size of fine mesh (ideally h<oscillation length

/10)
18 int nsplit=h/H; // ratio between coarse and fine mesh
19

20

21 // Create the directory to store the basis element by element
22 if(iproc==0) // only the first process create the directory
23 {
24 string Createrep="mkdir -p basis_repository";
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25 exec(Createrep);
26 }
27 mpiBarrier(comm); // wait for process one to finish
28

29

30 // Definition of Mesh and FE coarse space
31 mesh TH=square(H,H,[x,y]); // Coarse global mesh
32 int nbtri=TH.nt;
33

34 fespace Tri(TH,P0); // P0 on coarse mesh
35 fespace P1Tri(TH,P1); // P1 on coarse mesh
36

37 // Definition of oscillating coefficient
38 real eps = 1./32.; // size of oscillations
39 // coef of PDE :- div(aeps grad u)=f
40 func aeps =((2+1.8*sin(2*pi*x/eps))/ (2+1.8*cos(2*pi*y/eps)) +

(2+sin(2*pi*y/eps))/(2+1.8*sin(2*pi*x/eps)));
41

42 // macro for the coefficients
43 macro Aeps(u,v) (Grad(u)^T*Grad(v)*aeps) //
44 macro Grad(u) [dx(u),dy(u)] //
45

46 // Creation of the basis, storing the Stiffness matrix and
right-hand sides

47

48 // using coarse problem formulation
49 varf vA(u,v)= int2d(TH)(u*v*0 )+on(1,2,3,4,u=0);// bilinear

form of the coarse P1 problem
50 varf vB(unused,v)= on(1,2,3,4,unused=0);// RHS for the coarse

P1 problem
51

52 matrix Ai=vA(P1Tri,P1Tri); // Stiffness matrix for the coarse
P1 pb

53 real[int] RHSi=vB(0,P1Tri); // RHS for the coarse P1 pb
54 real[int] RHS=RHSi;
55 matrix A=Ai;
56

57 Tri ChiK; // function PO to mark element i
58

59 // Loop to compute the linear MSFEM basis for the ith element,
60 for (int i = 0; i < nbtri; i++)
61 {
62

63 //bool to test if processor iproc deal element i
64 bool elemtest= (iproc==i%nbproc); // Bool to assign Element

i to process iproc according modulo
65 if(elemtest) // If triangle assigned to current process
66 {
67 // Generating fine submesh of element i
68 mesh THK, ThK;
69 ChiK[][i]=1; // P0 function used to mark the element i
70 THK=trunc(TH,ChiK>0.1,split=1); // a mesh made of only

one triangle
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71 ThK=trunc(THK,1,split=nsplit); // each triangle refined
by nsplit ratio

72 ChiK[][i]=0; // reinitialize the function
73

74 // Computing the basis
75 fespace VKH(THK,P1);
76 fespace VKh(ThK,P1);
77

78 VKh[int] uki(3);
79

80 // One file per element to store basis
81 string namesol="./basis_repository/basis_element"+i+".

txt";
82 //emptying the file
83 {
84 ofstream storebasis(namesol);
85 }
86

87 // Computing the basis functions associated to vertices
88 for (int j=0;j<3;j++)
89 {
90 // P1 coarse function to set the BC for the basis

function
91 P1Tri Test;
92 Test[][P1Tri(i,j)]=1; // set the P1 coarse fonction

for the the vertex j
93 varf vAK(u,v)=int2d(ThK)(Aeps(u,v))+on(1,2,3,4,u=

Test); // Stiffness expression for the fine
MSFEM pb

94 varf vBK(u,v)= on(1,2,3,4,u=Test); // RHS
expression for the fine MSFEM pb

95

96 real [int] bk=vBK(0,VKh); // RHS for the fine
MSFEM pb

97 matrix AK=vAK(VKh,VKh); // Stiffness matrix for the
fine MSFEM pb

98

99 set(AK,solver=UMFPACK);
100 uki[j][]=AK^-1*bk; // solve the linear system
101

102

103 {
104 ofstream storebasis(namesol,append);
105 storebasis << uki[j][] << endl; // store basis

associated to vertex j of element i
106 }
107

108 }
109

110 // Assembling the stiffness matrix and RHS vector for
the global problem

111 varf Stiffloc(u,v)= int2d(ThK)(Aeps(u,v) );
112 varf rhsloc(u,v)= int2d(ThK)(v);
113 matrix KK=Stiffloc(VKh,VKh);
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114 real[int] RHSloc=rhsloc(0,VKh);
115

116 // Double loop on dof MSFEM to compute the local
stiffness matrix and RHS

117 for (int j=0;j<3;j++)
118 {
119 // P1 element to remove the P1 Stiffness part (

no splitting of DOF, DOF are vertices)
120 real bMsFEM=uki[j][]^T*RHSloc; // RHS MSFEM-L

coarse
121 int I=P1Tri(i,j); // global numbering of vertex

j
122 for (int l=0;l<3;l++)
123 {
124 int J=P1Tri(i,l); // global numbering

of vertex l
125 real[int] dummy= KK*uki[l][];
126

127 real KMsFEM=uki[j][]^T*dummy; // local
stiffness MSFEM

128 Ai(I,J)=Ai(I,J)+KMsFEM; // new
stiffness

129 }
130 int btestj=(TH[i][j].label>0); // test if dof (

vertex i) on boundary
131 if (!btestj)
132 {
133 RHSi[I]+=bMsFEM; // change in global

RHS
134 }
135 }
136

137

138 }
139 }
140

141 // Post process of the result concatenate results from all
processes

142

143 mpiReduce(RHSi,RHS,processor(0,comm),mpiSUM); // transfer RHSi
from all processes in RHS for process 0

144 mpiReduce(Ai, A,processor(0,comm),mpiSUM); // transfer Ai from
all processes in A for process 0

145

146 // Storing the basis, Stiffness matrix and RHS performed only
by process 0

147 if (mpiRank(comm)==0)
148 {
149

150 cout << "Post process of the result storing the basis,
Stiffness matrix and RHS" << endl;

151 string Stiffnessmatrix="Stiffness_matrix.txt";
152 {
153 ofstream save(Stiffnessmatrix);
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154 save << A << endl;
155 }
156

157 string Rhsvector="Rhs_vector.txt";
158 {
159 ofstream rhsstore(Rhsvector);
160 int nvect=RHS.n;
161 rhsstore << nvect << endl;
162 rhsstore<< RHS << endl;
163 }
164 cout << "Basis and matrices stored" << endl;
165 }

A.1.2 Oversampling MsFEM

1 // P.-L. Rothe - F. Legoll ENPC(CERMICS/Navier) - Inria
Matherials

2

3 // Create the basis functions for MsFEM oversampling approach
4

5 // run with command line: mpirun -np number_of_processor
FreeFem++-mpi basis_creation_parallel.edp

6 // or ff-mpirun -np number_of_processor
basis_creation_parallel.edp

7

8 verbosity=0;
9

10 // MPI
11 mpiComm comm(mpiCommWorld,0,0);
12

13 int nbproc = mpiSize(comm); // number of processes in parallel
14 int iproc = mpiRank(comm); //current processes
15

16 int H=64; // size of coarse mesh
17 int h=1024; // size of fine mesh (ideally h<oscillation length

/10)
18 int nsplit=h/H; // ratio between coarse and fine mesh
19 real coeffover=2; // oversampling coefficient
20

21 // Create the directory to store the basis element by element
22 if(iproc==0) // only the first process create the directory
23 {
24 string Createrep="mkdir -p basis_repository";
25 exec(Createrep);
26 }
27 mpiBarrier(comm); // wait for process one to finish
28

29

30 // Definition of Mesh and FE coarse space
31 mesh TH=square(H,H,[x,y]); // Coarse global mesh
32 int nbtri=TH.nt;
33
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34

35

36 fespace Tri(TH,P0); // P0 on coarse mesh
37 fespace P1Tri(TH,P1); // P1 on coarse mesh
38

39 // Definition of oscillating coefficient
40 real eps = 1./32.; // size of oscillations
41 // coef of PDE :- div(aeps grad u)=f
42 func aeps =((2+1.8*sin(2*pi*x/eps))/ (2+1.8*cos(2*pi*y/eps)) +

(2+sin(2*pi*y/eps))/(2+1.8*sin(2*pi*x/eps)));
43

44 // macro for the coeffcients
45 macro Aeps(u,v) (Grad(u)^T*Grad(v)*aeps) //
46 macro Grad(u) [dx(u),dy(u)] //
47

48 // Creation of the basis, storing the Stiffness matrix and
right-hand sides

49

50 // using coarse problem formulation
51 varf vA(u,v)= int2d(TH)(u*v*0 )+on(1,2,3,4,u=0);// bilinear

form of the coarse P1 problem
52 varf vB(unused,v)= on(1,2,3,4,unused=0);// RHS for the coarse

P1 problem
53

54 matrix Ai=vA(P1Tri,P1Tri); // Stiffness matrix for the coarse
P1 pb

55 real[int] RHSi=vB(0,P1Tri); // RHS for the coarse P1 pb
56 real[int] RHS=RHSi;
57 matrix A=Ai;
58

59 Tri ChiK; // function PO to mark element i
60 // Loop to compute the linear MSFEM basis for the ith element
61 for (int i = 0; i < nbtri; i++)
62 {
63

64 //bool to test if processor iproc deal element i
65 bool elemtest= (iproc==i%nbproc);
66 if(elemtest) // one element is dispatched on one processor

according to bool value
67 {
68 // Generating fine submesh of element i
69 mesh THK, ThK;
70 ChiK[][i]=1; // P0 function used to mark the element i
71 THK=trunc(TH,ChiK>0.1,split=1); // a mesh made of only

one triangle
72 ThK=trunc(THK,1,split=nsplit); // each triangle divived

by nsplit
73 ChiK[][i]=0; // reinitialize the function
74

75

76 // Computing the basis
77 fespace VKH(THK,P1);
78 fespace VKh(ThK,P1);
79
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80 VKh[int] uki(3);// MsFEM local basis 3 dof vertices of
triangles

81

82 // One file per element
83 string namesol="./basis_repository/basis_element"+i+".

txt";
84 //emptying the file
85 {
86 ofstream storebasis(namesol);
87 }
88

89 //generating oversampling mesh
90 // triangle i vertices
91 real[int] Xtriold(3);
92 real[int] Ytriold(3);
93 // os triangle vertices
94 real[int] Xtri(3);
95 real[int] Ytri(3);
96

97 real Xb,Yb;
98 for (int j=0;j<3;j++)
99 {

100 int I=P1Tri(i,j);
101 Xtriold[j]=TH(I).x;
102 Ytriold[j]=TH(I).y;
103 // compute barycenter of triangle
104 Xb=Xb+1./3.*Xtriold[j];
105 Yb=Yb+1./3.*Ytriold[j];
106 }
107

108 for (int j=0;j<3;j++)
109 {
110 // expand triangle by barycenter
111 Xtri[j]=Xb+(Xtriold[j]-Xb)*coeffover;
112 Ytri[j]=Yb+(Ytriold[j]-Yb)*coeffover;
113 // bool to test if new point out of the boundary
114 int booltest=(Xtri[j]<0)+(Xtri[j]>1) + (Ytri[j]<0)+

(Ytri[j]>1);
115 if (booltest)
116 {
117 // if out then the point remains the same
118 Xtri[j]=Xtriold[j];
119 Ytri[j]=Ytriold[j];
120 }
121

122 }
123

124 // Definition of the local oversampling mesh
125 border as(t=0,1){x=t*(Xtri[1]-Xtri[0])+Xtri[0];y=t*(

Ytri[1]-Ytri[0])+Ytri[0];label=8;};
126 border bs(t=0,1){x=t*(Xtri[2]-Xtri[1])+Xtri[1];y=t*(

Ytri[2]-Ytri[1])+Ytri[1];label=9;};
127 border cs(t=0,1){x=t*(Xtri[0]-Xtri[2])+Xtri[2];y=t*(

Ytri[0]-Ytri[2])+Ytri[2];label=10;};
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128 real mult=1;
129 mesh ThOS=buildmesh(as(mult*ceil(coeffover)*nsplit)+bs(

mult*ceil(coeffover)*nsplit)+cs(mult*ceil(coeffover)
*nsplit));

130 // More refined than h to keep the same accuracy in the
local mesh

131 mesh THOS=buildmesh(as(1)+bs(1)+cs(1));
132

133

134 fespace VHOS(THOS,P1); // coarse oversampling FE
135 fespace VhOS(ThOS,P1);// fine oversampling FE
136

137

138

139 // fine FE vector storing the local basis functions
140 VhOS[int] ukios(3);
141

142 // Loop to compute the MSFEM OS basis for the ith
element

143 for (int j=0;j<3;j++)
144 {
145 // P1 coarse function to set the BC for the basis

function
146 VHOS Test;
147 Test[][j]=1; // set the P1 coarse fonction for the

the vertex j
148

149 varf vAKos(u,v)=int2d(ThOS)(Aeps(u,v))+on(8,9,10,u=
Test); // Stiffness expression for the fine
MSFEM OS pb

150 varf vBKos(u,v)= on(8,9,10,u=Test); // RHS
expression for the fine MSFEM OSpb

151 real [int] bk=vBKos(0,VhOS); // RHS for the fine
MSFEM OS pb

152 matrix AK=vAKos(VhOS,VhOS); // Stiffness matrix for
the fine MSFEM OS pb

153 set(AK,solver=UMFPACK);
154 ukios[j][]=AK^-1*bk; // solve the linear system
155 }
156

157 // Rebuilding the solution on the old mesh
158

159 real[int,int] val(3,3);
160 for(int s=0; s<3; s++)
161 {
162 for(int t=0; t<3; t++)
163 {
164 val(t,s)=ukios[s](Xtriold[t],Ytriold[t]);
165 }
166 }
167 matrix vmat=val;
168 set(vmat, solver=UMFPACK);
169
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170 // MSFEM os solution satisfying phii(xj)=deltaij on
element i

171 VhOS [int] ukiosnew(3);
172 for(int s=0; s<3; s++)
173 {
174 real[int] e(3), c(3);
175 e=0; e[s]=1;
176 c=vmat^-1*e;
177 ukiosnew[s]=0;
178 for(int k=0; k<3; k++)
179 {
180 ukiosnew[s]=ukiosnew[s]+c[k]*ukios[k];
181 }
182 VKh dummy=ukiosnew[s];// interpolate sol on

local fine mesh of element i
183 uki[s][]=dummy[];
184 {
185 ofstream storebasis(namesol,append);
186 storebasis << uki[s][] << endl; //

store basis
187 }
188

189 }
190

191

192 // Assembling the Stiffness matrix and RHS vector for
the global problem

193 varf Stiffloc(u,v)= int2d(ThK)(Aeps(u,v) );
194 varf rhsloc(u,v)= int2d(ThK)(v);
195 matrix KK=Stiffloc(VKh,VKh);
196 real[int] RHSloc=rhsloc(0,VKh);
197

198 // Double loop on dof MSFEM to compute the local
Stiffness matrix and RHS

199 for (int j=0;j<3;j++)
200 {
201 // P1 element to remove the P1 Stiffness part (

no splitting of DOF, DOF are vertices)
202 real bMsFEM=uki[j][]^T*RHSloc; // RHS MSFEM-OS

coarse
203 int I=P1Tri(i,j); // global numbering of vertex

j
204 for (int l=0;l<3;l++)
205 {
206 int J=P1Tri(i,l); // global numbering

of vertex l
207 real[int] dummy= KK*uki[l][];
208

209 real KMsFEM=uki[j][]^T*dummy; // local
Stiffness MSFEM

210 Ai(I,J)=Ai(I,J)+KMsFEM; // new
Stiffness

211 }
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212 int btestj=(TH[i][j].label>0); // test si dof
du bord pour vertex i

213

214 if (!btestj)
215 {
216 RHSi[I]+=bMsFEM; // change in global

RHS
217 }
218 }
219 }
220 }
221

222 // Post process of the result concatenate results from all
processes

223

224 mpiReduce(RHSi,RHS,processor(0,comm),mpiSUM); // transfer RHSi
from all processes in RHS for process 0

225 mpiReduce(Ai, A,processor(0,comm),mpiSUM); // transfer Ai from
all processes in A for process 0

226

227 // Storing the basis, Stiffness matrix and RHS performed only
by process 0

228 if (mpiRank(comm)==0)
229 {
230

231 cout << "Post process of the result storing the basis,
Stiffness matrix and RHS" << endl;

232 string Stiffnessmatrix="Stiffness_matrix.txt";
233 {
234 ofstream save(Stiffnessmatrix);
235 save << A << endl;
236 }
237

238 string Rhsvector="Rhs_vector.txt";
239 {
240 ofstream rhsstore(Rhsvector);
241 int nvect=RHS.n;
242 rhsstore << nvect << endl;
243 rhsstore<< RHS << endl;
244 }
245 cout << "Basis and matrices stored" << endl;
246 }

A.1.3 MsFEM Crouzeix-Raviart

1 // Pierre-Loik Rothe CERMICS/Inria Matherials
2

3 // Create the basis functions for MsFEM Crouzeix Raviart
approach

4

5 // run with command line: mpirun -np number_of_processor
FreeFem++-mpi basis_creation_parallel.edp
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6

7 // MPI
8 mpiComm comm(mpiCommWorld,0,0);
9

10 int nbproc = mpiSize(comm); // number of processes in parallel
11 int iproc = mpiRank(comm); //current processes
12

13

14 // discretization parameters
15 int H=16; // size of coarse mesh
16 int h=256; // size of fine mesh (ideally h<oscillation length

/10)
17 int nsplit=h/H; // ratio between coarse and fine mesh
18

19

20 // Create the directory to store the basis element by element
21 if(iproc==0) // only the first process create the directory
22 {
23 string Createrep="mkdir -p basis_repository";
24 exec(Createrep);
25 }
26 mpiBarrier(comm); // wait for process one to finish
27

28

29 // Definition of Mesh and FE coarse space
30 mesh TH=square(H,H,[x,y]); // Coarse global mesh
31 int nbtri=TH.nt;
32

33 fespace P1Tri(TH,P1); // P1 on coarse mesh
34 fespace Tri(TH,P0); // P0 on coarse mesh
35 fespace P0P0edge(TH,[P0,P0edge]); // Our MsFEM basis has the

same properties as P0-P0edge bubble and edge functions
36 P0P0edge [utest,vtest];
37

38

39 // Definition of oscillating coefficient
40 real eps = 1./64.; // size of oscillations
41 // coef of PDE :- div(aeps grad u)=f
42 func aeps =((2+1.8*sin(2*pi*x/eps))/ (2+1.8*cos(2*pi*y/eps)) +

(2+sin(2*pi*y/eps))/(2+1.8*sin(2*pi*x/eps)));
43

44 // macro for the coefficients
45 macro Aeps(u,v) (Grad(u)^T*Grad(v)*aeps) //
46 macro Grad(u) [dx(u),dy(u)] //
47

48 // P1 and P0 functions to navigate triangular element more
easily

49 Tri ChiK=0;
50 P1Tri TestK=0;
51

52 // Creation of the basis, storing the Stiffness matrix and
right-hand sides

53 varf VZERO(u,v)=int2d(TH)(0.*u*v);
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54 matrix A=VZERO(P0P0edge,P0P0edge); // used to define the
skeleton of the stiffness matrix of the MsFEM solution

55 matrix Ai=A; // matrix for process i
56 real[int] RHS(P0P0edge.ndof); // structure of the coarse rhs

vector for the global solution
57 real[int] RHSi=RHS; // RHS for process i
58

59 func bordglobal=(x==0)+(x==1.)+(y==0)+(y==1.);
60 // function 1 on dirichlet bc and 0 elsewhere
61

62 // Loop on triangles
63 for (int i = 0; i < nbtri; i++)
64 {
65

66 //bool to test if processor iproc deal with element i
67 bool elemtest= (iproc==i%nbproc); // Bool to assign Element

i to process iproc according modulo function
68 if(elemtest) // If triangle assigned to current process
69 {
70 // Generating fine submesh of coarse element i
71 mesh THK, ThK;
72 ChiK[][i]=1; // P0 function used to mark the element i
73 THK=trunc(TH,ChiK>0.1,split=1); // a mesh made of only

one triangle
74 ThK=trunc(THK,1,split=nsplit); // each triangle divived

by nsplit
75 ChiK[][i]=0; // reinitialize the function
76

77 // Computing the basis
78 fespace VKh(ThK,P1);
79 fespace VKH(THK,P0edge);
80

81 VKh[int] uki(4); // MsFEM CR local basis, 4 DOF : 3
edges and one bubble

82

83 // One file per element
84 string namesol="./basis_repository/basis_element"+i+".

txt";
85 //emptying the file
86 {
87 ofstream storebasis(namesol);
88 }
89

90 // Construction of expressions and matrices needed
91 real tgv=1e30; // penalization to enforce Dirichlet BC

(as on() function)
92 varf vAK(u,v)=int2d(ThK)(Aeps(u,v))+int1d(ThK)(tgv*u*v*

bordglobal); // Stiffness expression for the fine
MSFEM pb

93 varf vCedge(u,v)=-int1d(ThK)(u*v); // Lagrange part for
the fine bubble and edge pb

94 varf vBK(u,v)= int2d(ThK)(1.*v); // RHS expression for
the fine MSFEM bubble pb

95



A.1. Offline step: Basis creation 159

96 matrix CK=vCedge(VKH,VKh); // Lagrange part to set
integral value on the edges

97 matrix Asub=vAK(VKh,VKh); // Stiffness matrix for the
fine MSFEM pb

98

99 // Computation of the bubble part
100 {
101 // right hand side for lagrange multiplier integral

on the edges is 0
102 real[int] bedge(3);
103 bedge=0;
104

105 real [int] bsub=vBK(0,VKh); // RHS for the fine
MSFEM pb Bi =int(fvi)

106 real[int] bk=[bsub, bedge]; // Global RHS for
solution and lagrange multipliers

107

108 matrix AK=[ [Asub,CK],[CK^T,0]]; // Global
Stiffness matrix for solution and lagrange
multipliers

109 set(AK,solver=UMFPACK);
110 real[int] xx(bk.n);
111 // Solving the linear system
112 xx=AK^-1*bk;
113

114 // Storing solution
115 [uki[0][],bedge]=xx;
116 {
117 ofstream storebasis(namesol,append);
118 storebasis << uki[0][] << endl; // store basis
119 }
120 }
121

122 //Loop on the edges to compute the edge basis functions
123 for (int j=0;j<3;j++)
124 {
125 // P0 edge function on the coarse triangle to

locate the edge
126 VKH Test;
127 Test[][j]=1;
128

129

130 // Testing if the edge is on the global interface
where u=0 (homogeneous Dirichlet bc)

131 real valb=abs(int1d(THK)(bordglobal*Test)-int1d(THK
)(Test));

132 int boolbord=(valb<1e-15);
133 real[int] bedge(3); // edge basis is null on the

global interface or satisfy L phi i=0 et
intedgej=deltaij

134 if (boolbord)
135 {
136 uki[j+1]=0; // if edge is part of boundary do

nothing and edge function 0



160 Appendix A. Codes

137 }
138 else
139 {
140 varf vBK(u,v)=-int1d(THK)(v*Test); // RHS

expression for the lagrange multiplier int
edgej phii =deltaij

141 bedge=vBK(0,VKH); // Rhs lagrange vector
142 //bedge[j]=1; // could also set value to 1

instead of H
143 real [int] bsub(VKh.ndof); // RHS for the fine

edge MSFEM pb(f=0 here)
144 real[int] bk=[bsub, bedge]; // Global RHS
145

146 matrix AK=[ [Asub,CK],[CK^T,0]]; // Global
Stiffness matrix

147 set(AK,solver=UMFPACK);
148 real[int] xx(bk.n);
149 xx=AK^-1*bk; // solve the linear system
150 [uki[j+1][],bedge]=xx;
151 }
152 {
153 ofstream storebasis(namesol,append);
154 storebasis << uki[j+1][] << endl; // Storing

basis
155 }
156 }
157

158 // Assembling the Stiffness matrix and RHS vector for
the global problem

159 varf vAK2(u,v)= int2d(ThK)(Aeps(u,v) );
160 matrix KK=vAK2(VKh,VKh); // Matrix to compute integral

for local stiffness matrices
161

162 // Loop on local MsFEM basis to compute RHS and local
Stiffness matrix

163 for (int j=0;j<4;j++)
164 {
165 real bMsFEM=int2d(ThK)(uki[j]*(1.)); // RHS

with f=1 and assembling will be carried out
by value of f on the coarse level

166 int I=P0P0edge(i,j); // global numbering of
local MsFEM function j

167 for (int l=0;l<4;l++)
168 {
169 int J=P0P0edge(i,l); // global numbering of

local MsFEM function l
170

171 real[int] Kinter=KK*uki[l][];
172 real KMsFEM=uki[j][]^T*Kinter; // local

stiffness MSFEM term
173 Ai(I,J)=Ai(I,J)+KMsFEM; // new stiffness
174 }
175 // eliminating edge functions that are on the

global interface



A.1. Offline step: Basis creation 161

176 if (j>0)
177 {
178 // location of the edge
179 VKH Test;
180 Test[][j-1]=1;
181 // test if edge on the global interface
182 real valb=abs(int1d(THK)(bordglobal*Test)-

int1d(THK)(Test));
183 int boolbord=(valb<1e-15);
184

185 if(boolbord)
186 {
187 Ai(I,I)=tgv; // Penalization if edge on

the interface
188 }
189

190 }
191 RHSi[I]+=bMsFEM; // change in global RHS
192 }
193

194 }
195 }
196

197 // Post process of the result concatenate results from all
processes

198

199 mpiReduce(RHSi,RHS,processor(0,comm),mpiSUM); // transfer RHSi
from all processes in RHS for process 0

200 mpiReduce(Ai, A,processor(0,comm),mpiSUM); // transfer Ai from
all processes in A for process 0

201

202 // Storing the basis, Stiffness matrix and RHS performed only
by process 0

203 if (mpiRank(comm)==0)
204 {
205

206 cout << "Post process of the result storing the basis,
Stiffness matrix and RHS" << endl;

207 string Stiffnessmatrix="Stiffness_matrix.txt";
208 {
209 ofstream save(Stiffnessmatrix);
210 save << A << endl;
211 }
212

213 string Rhsvector="Rhs_vector.txt";
214 {
215 ofstream rhsstore(Rhsvector);
216 int nvect=RHS.n;
217 rhsstore << nvect << endl;
218 rhsstore<< RHS << endl;
219 }
220 cout << "Basis and matrices stored" << endl;
221 }
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A.2 Online step: Computing approximation

A.2.1 Linear MsFEM and oversampling MsFEM

The degrees of freedom are the same in the formulation of both MsFEM linear and

MsFEM oversampling approaches. Hence, once the basis functions are computed, they

are used the same way. This is why only one script to compute the associated MsFEM

approximation is presented here.

1 // P.-L. Rothe - F. Legoll ENPC(CERMICS/Navier) - Inria
Matherials

2

3 // Compute the linear MsFEM solution and compute in parallel a
QOI and points to plot the solution

4 // run with command mpirun -np 4 FreeFem++-mpi
MsFEM_computation_parallel.edp

5 // with np number of processes
6

7 verbosity=0;
8

9 // files to load matrices needed
10 string Stiffnessmatrix="Stiffness_matrix.txt";
11 string Rhsvector="Rhs_vector.txt";
12

13 // MPI definition
14 mpiComm comm(mpiCommWorld,0,0);
15

16 int nbproc = mpiSize(comm); // number of processes
17 int iproc = mpiRank(comm); // number of the current process
18

19 // File to store the solution in x y value form element by
element

20 if(iproc==0)
21 {
22 string Createrep="mkdir -p solution_repository";
23 exec(Createrep);
24 }
25

26 // Mesh parameters
27 // Size of mesh
28 int H=256; // size of coarse mesh
29 int h=1024; // size of fine mesh
30 int nsplit=h/H; // ratio between coarse and fine mesh
31

32 mesh TH=square(H,H,[x,y]); // Coarse global mesh
33 int nbtri=TH.nt; // number of MsFEM triangles
34

35

36 fespace P1Tri(TH,P1);
37 fespace Tri(TH,P0); // P0 on coarse mesh
38

39 // Definition of coefficient
40 real eps = 1./32.; // size of oscillations
41 func aeps =((2+1.8*sin(2*pi*x/eps))/ (2+1.8*cos(2*pi*y/eps)) +
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(2+sin(2*pi*y/eps))/(2+1.8*sin(2*pi*x/eps))); // coef of
PDE :- div(aeps grad u)=f

42

43 // macro to simplify variational formulation
44 macro Aeps(u,v) (Grad(u)^T*Grad(v)*aeps) //
45 macro Grad(u) [dx(u),dy(u)] // EOM
46

47

48 // Right-hand side
49 func f=-1; // function that defines RHS
50 P1Tri frhs=f; // for coarse P1 resolution (not compulsory)
51

52 // Function to compute on the fly local meshes
53 Tri ChiK=0;
54 P1Tri TestK=0;
55

56

57 // Assembling the whole Stiffness matrix and the RHS for MsFEM
basis

58

59 cout << "loading Stiffness matrix" << endl;
60 matrix Aglobal;
61 ifstream Kmat(Stiffnessmatrix);
62 Kmat >> Aglobal ;
63

64 int number;
65 ifstream RHSm(Rhsvector);
66 RHSm >> number;
67 real[int] Rhsglob(number);
68 RHSm >> Rhsglob;
69 real[int] xx=Rhsglob;
70

71 cout << "Matrices loaded" << endl;
72

73 cout << "MsFEM solution computing" << endl;
74 // Solving the global linear system P1- MSFEM
75 set(Aglobal,solver=UMFPACK);
76 Rhsglob=Rhsglob.*frhs[]; // new RHS with coefficients

corresponding to values of f
77 xx=Aglobal^-1*Rhsglob;
78 cout << "MsFEM solution computed" << endl;
79

80 cout << "MsFEM fine solution reconstructing" << endl;
81 cout << "Reconstructing the fine solution " << endl;
82

83

84 real Qoi=0; // quantity of interest to compute
85 real Qoiglobal=0; // quantity of interest to compute
86 // Loop over the triangles to compute QOI in parallel and to

store local values for display
87 for(int k=0;k<nbtri;++k)
88 {
89 bool elemtest= (iproc==k%nbproc);
90 if(elemtest)
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91 {
92 mesh THK, ThK; // local fine mesh
93 ChiK[][k]=1; // P0 function used to mark the element i
94 THK=trunc(TH,ChiK>0.1,split=1); // a mesh made of only

one triangle
95 ThK=trunc(THK,1,split=nsplit); // each triangle divived

by nsplit
96 ChiK[][k]=0;
97

98 fespace VKh(ThK,P1); // fine P1 space
99

100 VKh uloc=0; // local fine solution
101 VKh[int] usol(3);
102 // loading msfem basis on element i
103 string basisstore="./basis_repository/basis_element"+k+

".txt";
104 {
105 ifstream readbasis(basisstore);
106 for(int i=0;i<3;i++)
107 {
108 readbasis>> usol[i][];
109 }
110 }
111 // loop on MsFEM dof (3 vertices)
112

113 for(int i=0;i<3;++i)
114 {
115 real ugi=xx[P1Tri(k,i)]; // coeff of the solution

for the msfem basis i of element k
116 real[int] dummy=usol[i][]; // loading msfem basis i

of element k
117 dummy=dummy*ugi;
118 uloc[]=uloc[]+dummy;// build local solution
119 }
120

121

122 // Store the solution in x y value form
123 string solstore="./solution_repository/sol_element"+k+"

.txt";
124 {
125 ofstream writesol(solstore);
126 for(int j=0;j<VKh.ndof;j++)
127 {
128 // save coordinates for all points in the fine

mesh
129 real Xs=ThK(j).x;
130 real Ys=ThK(j).y;
131 real valsol=uloc(Xs,Ys);
132 writesol<< Xs << " " << Ys << " " << valsol <<

" " << endl;
133 }
134

135 }
136 // Compute quantity of interest for instance energy
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137 real dum=0.5*int2d(ThK)(Aeps(uloc,uloc))-int2d(ThK)(f*
uloc);

138

139 Qoi=Qoi+dum;
140 }
141

142 }
143 //cout << Qoi << endl;
144 // Sum all contribution of QOI from processes to QOIglobal of

process
145 mpiReduce(Qoi,Qoiglobal,processor(0,comm),mpiSUM);
146

147 if(iproc==0)
148 {
149 // display QOI
150 cout << "Quantity of interest = " << Qoiglobal << endl;
151 }

A.2.2 MsFEM Crouzeix-Raviart

1 // P.-L. Rothe - F. Legoll ENPC(CERMICS/Navier) - Inria
Matherials

2

3 // Compute the CR MsFEM solution and compute in parallel a QOI
and points to plot the solution

4 // run with command mpirun -np 4 FreeFem++-mpi
MsFEM_computation_parallel.edp

5

6 verbosity=0;
7

8 // files to load matrices needed
9 string Stiffnessmatrix="Stiffness_matrix.txt";

10 string Rhsvector="Rhs_vector.txt";
11

12 // MPI definition
13 mpiComm comm(mpiCommWorld,0,0);
14

15 int nbproc = mpiSize(comm); // number of processes
16 int iproc = mpiRank(comm); // number of the current process
17

18 // File to store the solution in x y value form element by
element

19 if(iproc==0)
20 {
21 string Createrep="mkdir -p solution_repository";
22 exec(Createrep);
23 }
24

25 // Mesh parameters
26 // Size of mesh
27 int H=16; // size of coarse mesh
28 int h=256; // size of fine mesh
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29 int nsplit=h/H; // ratio between coarse and fine mesh
30

31 mesh TH=square(H,H,[x,y]); // Coarse global mesh
32 int nbtri=TH.nt; // number of MsFEM triangles
33

34

35 fespace P1Tri(TH,P1);
36 fespace Tri(TH,P0); // P0 on coarse mesh
37 fespace P0P0edge(TH,[P0,P0edge]); // Space for MsFEM solution

as bubble and edge functions behave as P0-P0edge
38

39 // Definition of coefficient
40 real eps = 1./32.; // size of oscillations
41 func aeps =((2+1.8*sin(2*pi*x/eps))/ (2+1.8*cos(2*pi*y/eps)) +

(2+sin(2*pi*y/eps))/(2+1.8*sin(2*pi*x/eps))); // coef of
PDE :- div(aeps grad u)=f

42

43 // macro to simplify variational formulation
44 macro Aeps(u,v) (Grad(u)^T*Grad(v)*aeps) //
45 macro Grad(u) [dx(u),dy(u)] // EOM
46

47

48 // Right-hand side
49 func f=cos(x)*cos(y); // function that defines RHS
50 P1Tri frhs=f; // for coarse P1 resolution (not compulsory)
51 real[int] u1(P0P0edge.ndof); // coefficient for RHS as int(

phimsfemi*1) already computed
52 P0P0edge [utest,u2test]; // function to locate DOF and compute

coefficient for RHS
53

54 // loop on each dof to compute coefficient
55 for (int i=0;i<P0P0edge.ndof;i++)
56 {
57 utest[][i]=1; // Function linked mimicking dof i
58 real alpha=int2d(TH)((utest+u2test)*f)/int2d(TH)(utest+

u2test); // compute the value associated to f
representative of DOF considered

59 //(for bubble mean over triangle and edge mean over the
edge)

60 u1[i]=alpha;
61 utest[][i]=0;
62 }
63

64

65 // Function to compute on the fly local meshes
66 Tri ChiK=0;
67 P1Tri TestK=0;
68

69 // Assembling the whole Stiffness matrix and the RHS for MsFEM
basis

70

71 cout << "loading Stiffness matrix" << endl;
72 matrix Aglobal;
73 ifstream Kmat(Stiffnessmatrix);
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74 Kmat >> Aglobal ;
75

76 int number;
77 ifstream RHSm(Rhsvector);
78 RHSm >> number;
79 real[int] Rhsglob(number);
80 RHSm >> Rhsglob;
81 real[int] xx=Rhsglob;
82

83 cout << "Matrices loaded" << endl;
84

85 cout << "MsFEM solution computing" << endl;
86 // Solving the global linear system P0-P0edge MSFEM
87 set(Aglobal,solver=UMFPACK);
88 Rhsglob=Rhsglob.*u1; // new RHS with coefficients corresponding

to values of f
89 xx=Aglobal^-1*Rhsglob;
90 cout << "MsFEM solution computed" << endl;
91

92 cout << "MsFEM fine solution reconstructing" << endl;
93 cout << "Reconstructing the fine solution " << endl;
94

95

96

97 real Qoi=0; // quantity of interest to compute ( computed for
one process)

98 real Qoiglobal=0; // quantity of interest to compute (sum for
all processes)

99 // Loop over the triangles to compute QOI in parallel and to
store local values for display

100 for(int k=0;k<nbtri;++k)
101 {
102 bool elemtest= (iproc==k%nbproc); // bool to assign one

element to one process
103 if(elemtest)
104 {
105 mesh THK, ThK; // local fine mesh
106 ChiK[][k]=1; // P0 function used to mark the element i
107 THK=trunc(TH,ChiK>0.1,split=1); // a mesh made of only

one triangle
108 ThK=trunc(THK,1,split=nsplit); // each triangle divived

by nsplit
109 ChiK[][k]=0;
110

111 fespace VKh(ThK,P1); // fine P1 local space
112

113 VKh uloc=0; // local fine solution
114 VKh[int] usol(4);
115 // loading msfem basis on element k
116 string basisstore="./basis_repository/basis_element"+k+

".txt";
117 {
118 ifstream readbasis(basisstore);
119 for(int i=0;i<4;i++)
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120 {
121 readbasis>> usol[i][];
122 }
123 }
124 // loop on CR MsFEM dof ( one bubble and 3 edges)
125 for(int i=0;i<4;++i)
126 {
127 real ugi=xx[P0P0edge(k,i)]; // coeff of the

solution for the msfem basis i of element k
128 real[int] dummy=usol[i][]; // loading msfem basis i

of element k
129 dummy=dummy*ugi;
130 uloc[]=uloc[]+dummy;// build local solution
131 }
132

133

134 // Store the solution in x y value form (for all points
of the fine mesh)

135 string solstore="./solution_repository/sol_element"+k+"
.txt";

136 {
137 ofstream writesol(solstore);
138 for(int j=0;j<VKh.ndof;j++)
139 {
140 real Xs=ThK(j).x;
141 real Ys=ThK(j).y;
142 real valsol=uloc(Xs,Ys);
143 writesol<< Xs << " " << Ys << " " << valsol <<

" " << endl;
144 }
145

146 }
147 // Compute quantity of interest (for instance here

energy)
148 Qoi+=int2d(ThK)(Aeps(uloc,uloc))-int2d(ThK)(f*uloc);
149 }
150

151 }
152

153 // Sum all contribution of QOI from processes to QOIglobal of
process 0

154 mpiReduce(Qoi,Qoiglobal,processor(0,comm),mpiSUM);
155

156 if(iproc==0)
157 {
158 // display QOI
159 cout << "Quantity of interest = " << Qoiglobal << endl;
160 }
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A.3 Coupling linear MsFEM with P1

The code here is not parallelized as the aim is to show how to partition the mesh into

two pieces on which we apply either an MsFEM or a P1 formulation. It also shows a

way to deal with interface terms where the degrees of freedom are part of both P1 and

MsFEM formulations. Only the MsFEM linear coupled approach has been presented,

since the MsFEM oversampling approach would follow the same steps except for the

basis functions construction (we refer to Section A.1.2 in that respect).

1 // P.-L. Rothe - F. Legoll ENPC(CERMICS/Navier) - Inria
Matherials

2

3 // Implements a coupling method between P1-Elements and linear
MsFEM

4 // In one region classical P1 are used and in the other region
each triangle is subdivided into smaller elements to compute
linear MsFEM.

5 // The solution is continuous at the vertices as the BC for the
linear MsFEM corresponds exactly to P1 FE.

6 // of the coarse triangulation Thg continuous within each
coarse triangle and discontinuous

7 // For the time being only the Dirichlet BC are implemented and
it has not been yet parallelized

8

9 verbosity=0;
10

11 // geometric parameter for the separation between two areas
12 real hmin=0.21875; real hmin2=0.25; real valmin=hmin; real

valmax=1-hmin; real valmin2=hmin2; real valmax2=1-hmin2;
13 func fint=(x>valmin)*(x<valmax)*(y>valmin)*(y<valmax); //

function to separate P1 and MSFEM regions
14 func fint2=(x>valmin2)*(x<valmax2)*(y>valmin2)*(y<valmax2); //

function to design a two area coefficient
15

16

17 real eps = 1./16.; // size of oscillations
18 func aeps =3.*(fint2<0.3)+(fint2>0.3)*((2+1.8*sin(2*pi*x/eps))/

(2+1.8*cos(2*pi*y/eps)) + (2+sin(2*pi*y/eps))/(2+1.8*sin(2*
pi*x/eps))); // coef of PDE :- div(aeps grad u)=f

19

20 // macro for variational formulation
21 macro Aeps(u,v) (Grad(u)^T*Grad(v)*aeps) //
22 macro Grad(u) [dx(u),dy(u)] // EOM
23

24 // Right-hand side
25 func f=sin(2*pi*x)*cos(2*pi*y);
26

27 // Size of mesh
28 int H=16; // size of coarse mesh
29 int h=256; // size of size mesh
30 int nsplit=h/H; // ratio between coarse and fine mesh
31

32
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33 // Mesh generation
34 mesh TH=square(H,H); // Coarse global mesh
35 int interface=5; // interface number for integration
36 mesh Thg=trunc(TH,(fint<0.3),label=interface); // coarse mesh

P1 if (fint<0.3)=1 then element i stays in mesh
37 mesh Thd=trunc(TH,(fint>0.3),label=interface); // coarse mesh

MSFEM if (fint>0.3)=1 then element i stays in mesh
38 int nbtriP1=Thg.nt; // number of P1 triangles
39 int nbtriMsFEM=Thd.nt; // number of MsFEM triangles
40

41

42 TH=Thg+Thd; // Putting the two meshes together
43 plot(TH,wait=1); // plot of the global coarse mesh
44 fespace Tri(TH,P0); // P0 on coarse mesh
45 fespace P1Tri(TH,P1); // P1 on coarse mesh
46

47 int nbtri=TH.nt; // total number of triangles
48

49 // P1 and P0 function to navigate the mesh
50 Tri ChiK=0;
51 P1Tri TestK=0;
52

53

54 // Generating fine submeshes
55 mesh[int] THK(nbtri), ThK(nbtri);
56 for (int i=0;i<nbtri;i++)
57 {
58 ChiK[][i]=1; // P0 function used to mark the element i
59 THK[i]=trunc(TH,ChiK>0.1,split=1); // a mesh made of only

one triangle
60 ThK[i]=trunc(THK[i],1,split=nsplit); // each triangle

divived by nsplit
61 ChiK[][i]=0;
62 }
63

64

65 // using coarse problem formulation
66 varf vA(u,v)= int2d(TH)(Aeps(u,v) )+on(1,2,3,4,u=0);// bilinear

form of the coarse P1 problem
67 varf vB(unused,v)= int2d(TH)(f*v )+on(1,2,3,4,unused=0);// RHS

for the coarse P1 problem
68

69 matrix A=vA(P1Tri,P1Tri); // Stiffness matrix for the coarse P1
pb -> this matrix will be used in P1 region and changed for
MSFEM region

70 real[int] RHS=vB(0,P1Tri); // RHS for the coarse P1 pb
71 real[int] xx(RHS.n); // Coefficient for the coupled formulation

P1-MSFEM
72

73 int nbdofKMSFEM=3; // nb of DOF in MSFEM variant for one
element

74

75 mesh TK=THK[0];
76 mesh TKh=ThK[0];
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77

78 fespace VKh(TKh,P1);
79 fespace VK(TK,P1);
80

81 // Vector of FE to store the fine solutions
82 VKh[int] Ui(nbtriMsFEM*nbdofKMSFEM);// FH
83

84 // number of MSFEM element currently computed
85 int iU=0;
86

87 // Loop on the element of the MSFEM region to buid the MsFEM
basis (can be performed in parallel)

88 for (int i=nbtriP1;i<nbtri;i++)
89 {
90 //loading meshes and P1 coarse and fine of the current

element
91 mesh TK=THK[i];
92 mesh TKh=ThK[i];
93 fespace VKh2(TKh,P1);
94 fespace VK2(TK,P1);
95

96 // fine FE vector storing the local basis functions
97 VKh2[int] uki(nbdofKMSFEM);
98

99

100 // Loop to compute the linear MSFEM basis for the ith
element

101 for (int j=0;j<nbdofKMSFEM;j++)
102 {
103 // P1 coarse function to set the BC for the basis function

(P1 basis function)
104 P1Tri Test;
105 Test[][P1Tri(i,j)]=1;
106 varf vAK(u,v)=int2d(TKh)(Aeps(u,v))+on(1,2,3,4,interface,u=

Test); // Stiffness expression for the fine MSFEM pb
107 varf vBK(u,v)= on(1,2,3,4,interface,u=Test); // RHS

expression for the fine MSFEM pb
108 real [int] bk=vBK(0,VKh2); // RHS for the fine MSFEM pb
109 matrix AK=vAK(VKh2,VKh2); // Stiffness matrix for the fine

MSFEM pb
110 set(AK,solver=UMFPACK);
111 uki[j][]=AK^-1*bk; // solve the linear system
112 Ui[iU][]=uki[j][]; // store it in the global solutions
113 iU++; // increasing number of MSFEM basis computed
114 }
115

116

117 // Assembling the Stiffness matrix and RHS vector for the
global problem

118 varf vAK2(u,v)= int2d(TKh)(Aeps(u,v) );
119 matrix KK=vAK2(VKh,VKh);
120

121 // penalization term for the dirichlet BC
122 real tgv=1e30;
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123

124 // Double loop on dof MSFEM to compute the local Stiffness
matrix and RHS

125 for (int j=0;j<nbdofKMSFEM;j++)
126 {
127 // P1 element to remove the P1 Stiffness part (no

splitting of DOF like discontinuous galerkin, DOF
are vertices)

128 VK2 Tj;
129 P1Tri P1Tj;
130 P1Tj[][P1Tri(i,j)]=1;
131 Tj=P1Tj;
132 real bP1=int2d(TK)(Tj*f); // RHS P1 coarse
133 real bMsFEM=int2d(TK)(uki[j]*f); // RHS MSFEM-L coarse
134 int I=P1Tri(i,j); // global numbering of vertex j
135 int btestj=(TH[i][j].label>0)*(TH[i][j].label!=

interface); // test if dof du bord pour vertex i
136 RHS[I]=RHS[I]-bP1+bMsFEM; // change in global RHS
137 for (int l=0;l<nbdofKMSFEM;l++)
138 {
139 int J=P1Tri(i,l); // global numbering of vertex l
140 // P1 element to remove the P1 Stiffness part (no

splitting of DOF like discontinuous galerkin,
DOF are vertices)

141 VK2 Tl;
142 P1Tri P1Tl;
143 P1Tl[][P1Tri(i,l)]=1;
144 Tl=P1Tl;
145 func bordglobal=(x==0)+(y==0)+(x==1)+(y==1);
146 int btestjl=btestj+ (TH[i][l].label>0)*(TH[i][l].

label!=interface);
147 real KP1=int2d(TK)(Aeps(Tj,Tl)); // local Stiffness

P1 coarse
148 real KMsFEM=int2d(TKh)(Aeps(uki[j],uki[l])); //

local Stiffness MSFEM
149 if(btestjl==0)
150 {
151 A(I,J)=A(I,J)-KP1+KMsFEM; // new Stiffness=

ancient Stiffness+ msfem contribution -P1
contribution

152 }
153 }
154 }
155 }
156

157 // Solving the global linear system P1-MSFEM
158 set(A,solver=UMFPACK);
159 xx=A^-1*RHS;
160

161 // Rebuild MSFEM solution -> the solution is evaluated
accurately locally

162

163

164 //Global coarse solution for P1 part
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165 P1Tri P1sol;
166 // Rebuild the P1 region locally
167 for(int k=0;k<nbtriP1;++k)
168 {
169 for(int i=0;i<3;++i)
170 {
171 P1sol[][P1Tri(k,i)]=xx[P1Tri(k,i)]; // fill the global p1

part with solution
172 }
173 }
174

175 // Loop on the MSFEM region triangles
176 iU=0; // counter to load msfem basis
177 for(int k=nbtriP1;k<nbtri;++k)
178 {
179 // load the coarse and fine mesh of P1 triangle k
180 TKh=ThK[k];//FH
181 // Mesh corresponding to the global fine mesh
182 mesh TKf=trunc(TK,split=nsplit,1);
183

184 fespace VKh2(TKh,P1); // fine P1 space
185

186

187 VKh2 uloc=0; // local fine MsFEM CR solution
188

189 // loop on vertices
190 for(int i=0;i<nbdofKMSFEM;++i)
191 {
192 real ugi=xx[P1Tri(k,i)]; // coeff of the solution for

the msfem basis i of element k
193 real[int] dummy=Ui[iU][]; // loading msfem basis i of

element k
194 dummy=dummy*ugi;
195 uloc[]=uloc[]+dummy;// build local solution
196 iU++;
197 }
198 // perform operation with uloc, storing quantity of

interest, ...
199 }

A.4 MsFEM as a second level preconditioner

1 // P.-L. Rothe - F. Legoll ENPC(CERMICS/Navier) - Inria
Matherials

2

3 // Implements the second level preconditioner given by MsFEM
linear basis and Jacobi fine preconditioner

4

5 verbosity=0;
6
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7 // inputs : Mesh H, mesh h, diffusion coeff A known on h, Right
hand side known on H, MsFEM basis functions,

8 // Stiffness matrix and Passage matrix from MsFEM coarse basis
to global fine mesh

9

10 // Mesh def and generation
11 // Size of mesh
12 int H=8; // size of coarse mesh
13 int h=256; // size of size mesh
14 int nsplit=h/H; // ratio between coarse and fine mesh
15

16 mesh TH=square(H,H,[x,y]); // Coarse global mesh
17 int nbtri=TH.nt; // number of MsFEM triangles
18

19 // Global fine mesh
20 mesh Thf=trunc(TH,split=nsplit,1);
21

22 //P1 on global fine mesh
23 fespace Vhf(Thf,P1);
24

25 // Definition of coefficient
26 real eps = 1./32.; // size of oscillations
27 func defcoeff =((2+1.8*sin(2*pi*x/eps))/ (2+1.8*cos(2*pi*y/eps)

) + (2+sin(2*pi*y/eps))/(2+1.8*sin(2*pi*x/eps))); // coef
of PDE :- div(aeps grad u)=f

28 Vhf aeps=defcoeff;
29 macro Aeps(u,v) (Grad(u)^T*Grad(v)*aeps) //
30 macro Grad(u) [dx(u),dy(u)] // EOM
31

32 // Right-hand side
33 func f=1;
34 P1Tri frhs=f;
35

36 Tri ChiK=0;
37 P1Tri TestK=0;
38

39 // Loading Precomputed MsFEM Stiffness matrix
40 string Stiffnessmatrix="Stiffness_matrix.txt";
41 cout << "loading Stiffness matrix" << endl;
42 matrix Aglobal;
43

44 int number;
45 ifstream Kmat(Stiffnessmatrix);
46 Kmat >> number;
47 real[int] valA2(number);
48 int[int] IA2(number),JA2(number);
49 Kmat >> IA2 >> JA2 >> valA2 ;
50 Aglobal=[IA2,JA2,valA2];
51

52 // Loading Precomputed passage matrix between MsFEM coarse
basis VH and fine mesh Vh

53 // Vh=Pglobal VH
54 string passagematrix="passage_matrix.txt";
55 cout << "loading passage matrix" << endl;



A.4. MsFEM as a second level preconditioner 175

56 matrix Pglobal;
57 ifstream Pmat(passagematrix);
58 Pmat >> number;
59 real[int] valA(number);
60 int[int] IA(number),JA(number);
61 Pmat >> IA >> JA >> valA ;
62 Pglobal=[IA,JA,valA];
63

64 cout << "MsFEM solution computing" << endl;
65

66 //Fine solution computed with preconditioning
67

68 cout << "defining fine problem" << endl;
69 //Fine problem
70 varf vAf(u,v)= int2d(Thf)(Aeps(u,v) )+on(1,2,3,4,u=0);
71 varf vBf(unused,v)= int2d(Thf)(f*v )+on(1,2,3,4,unused=0);
72

73 matrix Aref=vAf(Vhf,Vhf);
74 real[int] RHSref=vBf(0,Vhf);
75 real[int] xxref(RHSref.n);
76

77

78 cout << "defining Jacobi preconditioner" << endl;
79 //Jacobi diagonal fine preconditioner matrix
80 int n = Vhf.ndof;
81 real[int] one(n); one=1.;
82 matrix Id=one; //
83 matrix diag=one;
84 for(int i=0;i<n;i++)
85 {
86 diag(i,i)=1/Aref(i,i);
87 }
88

89 cout << "Defining whole preconditioner" << endl;
90

91 cout << "Defining preconditioner functions" << endl;
92 //Jacobi diagonal preconditioner
93 func real[int] Preconddiag(real[int] & xx)
94 {
95 real[int] xx = diag*xx;
96 return xx;
97 }
98

99 // Function giving MsFEM solution on coarse MsFEM basis for a
RHS = b

100 func real[int] ComputeMSFEM(real[int] b)
101 {
102 verbosity=0;
103 set(Aglobal,solver=UMFPACK);
104 real[int] xx=Aglobal^-1*b;
105 return xx;
106 }
107
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108 //Second level preconditioner M^-1 X= Pglobal^TComputeMsFEM(
Pglobal X)+diag X

109 func real[int] Precondmsfem(real[int] & xx)
110 {
111 // MsFEM precon part
112 real[int] xxH=Pglobal^T*xx; // transform RHS on RHS on MsFEM

basis
113 real[int] solH=ComputeMSFEM(xxH); // Compute MsFEM solution on

coarse MsFEM basis for RHS xxH
114 real[int] xxh=Pglobal*solH; // Get back to the fine mesh
115 // Jacobi part
116 real [int] MX=diag*xx; // compute the fine part of the

preconditioner
117 xx=xxh+MX;
118 return xx;
119 }
120

121 cout << "fine solution preconditioned MSFEM computing" << endl;
122 //Solve the fine pb with second level preconditioner
123 verbosity=10; // to display the value of relative error of

GMRES
124 real tol=1e-6; // GMRES stopped if err<tol or nb iteration >

nbiter
125 set(Aref,solver=GMRES,nbiter=150,precon=Precondmsfem,eps=-tol);
126 Vhf uref;
127 uref[]=Aref^-1*RHSref;
128 plot(uref,wait=1,cmm="msfem precondition");
129 cout << "fine solution preconditioned MSFEM computed" << endl

;
130

131 cout << "fine solution DIAG computing" << endl;
132 //Solve the fine pb with only Jacobi preconditioner
133 verbosity=10; // to display the value of relative error of

GMRES
134 tol=1e-6; // GMRES stopped if err<tol or nb iteration >nbiter
135 set(Aref,solver=GMRES,nbiter=150,precon=Preconddiag,eps=-tol);
136 Vhf uref2;
137 uref2[]=Aref^-1*RHSref;
138 plot(uref2,wait=1,cmm="diag precondition");
139 cout << "fine solution DIAG computed" << endl;



APPENDIXB

TRACE RESULTS AND SOBOLEV INTERPOLATION

RESULTS

In Chapter 3, we have used some analytical tools to get convergence estimates. We

have to consider liftings of functions de�ned on the boundary of local domains (solu-

tions of elliptic PDE with prescribed Dirichlet boundary conditions) and control them

in terms of Sobolev norms on the domain. This annex is intended to review and intro-

duce the tools we used in a more comprehensive manner. First, we perform a review

on the de�nition on fractional Sobolev spaces (on whole domains, boundary and sub-

set of boundaries). Then, the Trace theorem and especially the scaling with regard to

the length of the domain is discussed with some remarks on elliptic regularity. Finally,

we present some polynomial interpolation results.

B.1 Sobolev spaces on boundaries and Traces opera-

tor

This section presents Sobolev spaces properties for speci�c domains (boundary or sub-

set of a boundary) and the link between estimates on the domain and on the boundary

in Sobolev norms. This review relies heavily on the following monographs: [78, sec-

tion 2.3 through 2.8], [71, Section 3], and [47, Section 1].

B.1.1 Characterization of the regularity of a domain Ω

De�nition B.1. (see [47, Definition 1.2.1.1)] Let Ω be an open subset ofRn
. We say that

its boundary Γ is continuous (respectively Lipschitz, continuously di�erentiable, of Class

Ck,1
,m times continuously di�erentiable) if for every x ∈ Γ there exists a neighborhood

V of x in Rn
and new orthogonal coordinates {y1, . . . , yn} such that

1. V is an hypercube in the new coordinates:

V = {(y1, . . . , yn)| − aj < yj < aj, 1 ≤ j ≤ n}

2. There exists a continuous (respectively Lipschitz, continuously di�erentiable, of

Class Ck,1
,m times continuously di�erentiable) function φ, de�ned in

V ′ = {(y1, . . . , yn−1)| − aj < yj < aj, 1 ≤ j ≤ n− 1}
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Ω

Γ

Ω

Γ

Figure B.1: Left: example of Lipschitz domain, Right: a non-Lipschitz domain

and such that

|φ(y′)| ≤ an/2 for every y′ = (y1, . . . , yn−1) ∈ V ′

Ω ∩ V = {y = (y′, yn) ∈ V |yn < φ(y′)}
Γ ∩ V = {y = (y′, yn) ∈ V |yn = φ(y′)}

RemarkB.2. Polygonal domains have a boundary that is Lipschitz continuous. However,

the boundary is not continuously di�erentiable. If Ω is a bounded open convex subset of

Rn
, then Ω has a Lipschitz boundary, (see [47, Corollary 1.2.2.3 and Definition 1.2.1.1])

B.1.2 Review of fractional Sobolev spaces

Considering Ω a bounded Lipschitz domain in Rd
, we de�ne H`(Ω) the fractional

Sobolev spaces for ` ∈ R+
and λ = `− [`] ∈]0, 1[ by

H`(Ω) = {u ∈ H [`](Ω), |u|λ <∞} (B.1)

with |u|λ the semi-norm

|u|2λ =
∑
|α|=|`|

∫
Ω

∫
Ω

(∂αu(x)− ∂αu(y))2

‖x− y‖d+2λ
dx dy (B.2)

Remark B.3. H l(Ω) is an Hilbert space associated with the scalar product

(φ, ψ)` =
∑
|α|≤|`|

∫
Ω

∂αφ ∂αψ+
∑
|α|=|`|

∫
Ω

∫
Ω

(∂αφ(x)− ∂αφ(y)) (∂αψ(x)− ∂αψ(y))

‖x− y‖d+2λ
dx dy

(B.3)

and the norm ‖ · ‖` = (·, ·)1/2
` .

Moreover, it holds that the closure of C∞0 (Ω) with respect to the ‖ ·‖` norm de�nesH`
0(Ω)

as usual.
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B.1.3 De�nition of Sobolev spaces on the boundary

In Chapter 3, we have used interpolation results on boundaries of small domains and

have expanded these results in the interior of the domains. In order to do that, we

require trace theorems. Such results often involve regularities associated to fractional

Sobolev spaces de�ned on the boundary.

All Sobolev spaces cannot be de�ned on any boundary of an open bounded domain.

Indeed, the Sobolev regularity ` is bounded by a maximal order of di�erentiability

depending on the regularity of the boundary Γ. The regularity of the boundary Γ can

be seen as the maximum regularity of χ a di�eomorphism between a local part of Γ
and a bounded space in Rn−1

(typically B0
R the intersection between the ball of radius

R centered at 0 and the plane xn = 0). In such case, φ a function de�ned on the

boundary can be seen as the sum of functions φ̂ = χ ◦ φ from B0
R to R (space where

Sobolev space are well de�ned). The regularity of such function depends obviously on

the regularity of χ the di�eomorphism between the local part of Γ and B0
R. Hence, it

holds that for Lipschitz domains and Ck
domains Sobolev spaces H`(Γ) are de�ned if

` ∈ R+
satis�es

` ≤ 1 for Lipschitz domains Ω (B.4)

` ≤ k for Ck
domains Ω

H`(Γ) = {φ : Γ 7→ R| φ̂ ∈ H`(B0
R)}

We can also de�ne an associated norm and scalar product similar to (B.3) except

that d should be replaced by d − 1 in (B.2) and the integral should be computed on Γ
(instead of Ω).

Remark B.4. The de�nition of Sobolev spaces H`(Γ) and their associated norms seems

to depend on the coordinates system chosen for the di�eomorphism between Γ and B0
R.

However, it can be shown that for bounded Lipschitz domains the space contains the same

set of functions and the norm are equivalent.

Remark B.5. For closed surfaces, then H`(Γ) = H`
0(Γ), with H`

0(Γ) the closure of in-
�nitely di�erentiable functions with support on Γ with respect to H`

norm. Similarly to

domains, negative Sobolev spaces on boundaries are de�ned as

H−`(Γ) =
(
H`

0(Γ)
)′
, for ` ≥ 0 (B.5)

B.1.4 Sobolev spaces on Γ0 ⊂ Γ

In Chapter 3, we build basis functions on each element (convex polygons such as

triangle or quadrangle) by imposing boundary conditions on edges. Hence, we need

to get local approximation properties edge by edge and then get back to estimates on

the whole domain by performing liftings. To that end, we will consider Sobolev spaces

on Γ0 ⊂ Γ.

For Γ0 ⊂ Γ measurable with |Γ0| > 0, and s ∈ [0, 1], we de�ne the space Hs
0,0 (also

noted H̃s(Γ0) in the literature) by

Hs
0,0 := {u ∈ Hs(Γ)| supp(u) ⊂ Γ0} (B.6)

The associated norm is given by

‖u‖Hs
0,0

= ‖ũ‖Hs(Γ) (B.7)
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where ũ denotes the extension of u on Γ by 0.

We can also de�ne Sobolev spaces on Γ0, with negative exponents: H−s(Γ0) =(
Hs

0,0

)′
for s ∈ [0, 1].

Remark B.6. One has to be careful when considering such spaces especially when one

wants to compare the norms Hs(Γ0) and Hs(Γ). We recall results from [3, Section 2]

and [47, Lemma 1.5.1.8]. For instance let us consider Γ = Γ1 ∪ Γ2 with Γ1 and Γ2 two

line segments intersecting at a point z.

Γ1

Γ2

•z

Then, for 0 ≤ s < 1/2

f ∈ Hs(Γ) if and only if f |Γ1 ∈ Hs(Γ1) and f |Γ2 ∈ Hs(Γ2)

The norm ‖ · ‖Hs(Γ) is equivalent to ‖ · ‖Hs(Γ1) + ‖ · ‖Hs(Γ2).

For 1/2 < s ≤ 1

f ∈ Hs(Γ) if and only if f |Γ1 ∈ Hs(Γ1), f |Γ2 ∈ Hs(Γ2) and f is continuous on z.

The norm ‖ · ‖Hs(Γ) is equivalent to ‖ · ‖Hs(Γ1) + ‖ · ‖Hs(Γ2).

However, for s = 1/2, denoting σ1, σ2 the unit vectors parallel to Γ1, Γ2 respectively

pointing toward z, it holds that

f ∈ Hs(Γ) if and only if IΓ(f) =

∫ ε

0

t−1|f(z − tσ1)− f(z + tσ2)|2 dt <∞

and f |Γ1 ∈ Hs(Γ1), f |Γ2 ∈ Hs(Γ2)

The norms ‖ · ‖Hs(Γ) and ‖ · ‖Hs(Γ1) + ‖ · ‖Hs(Γ2) are not equivalent.

Hence, for s = 1/2 and Γ the boundary of a polygon in R2
composed by n edges

Γ = ∪j=1..nΓj one cannot bound easily the ‖ · ‖2
Hs(Γ) by the sum of ‖ · ‖2

Hs(Γj)
.

B.1.5 Trace theorems

The previous section helped de�ne regularity on the domain Ω and on the boundary

Γ. However, the link between both regularity is missing, that is the answer to the

following questions: If one considers a function f in Hs(Ω), what is the regularity of

f on Γ ? If we have a function f that belongs to Hs(Γ), on what conditions can one

build an extension f̃ in the whole domain which coincides with f on the boundary ?

The Trace operator theory addresses both problems.

Theorem B.7. (see [78, Theorems 2.6.8 and 2.6.9]) If Ω is a bounded Lipschitz domain

with boundary Γ, then for 1/2 < ` < 3/2, there exists a continuous linear trace operator
γ : H`(Ω) 7→ H`−1/2(Γ) such that

γφ = φ|Γ for all φ ∈ C0(Ω̄)

If Ω is a bounded Ck
domain then the same result holds for 1/2 < ` ≤ k.
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We need the following corollary describing the consequence of this theorem in the

case where ` = 1 and the domain has a small length.

Corollary B.8. If Ω is a bounded Lipschitz domain of R2
with boundary Γ, then the

trace operator γ : H1(Ω) 7→ H1/2(Γ) is continuous: for all u ∈ H1(Ω), there exists CΩ

(depending on the shape and the diameter of Ω) such that

‖u‖H1/2(Γ) ≤ CΩ‖u‖H1(Ω)

Moreover, if we consider Ω̂ a bounded domain in R2
which is polygonal and convex with

diam(Ω̂) = 1 and Ω such that diam(Ω) = H and Ω can be obtained from Ω̂ by an a�ne

transformation, then it holds that

H−1‖u‖L2(Γ) + |u|H1/2(Γ) ≤ C
(
H−2‖u‖L2(Ω) + |u|H1(Ω)

)
with C depending only on the shape of Ω.

In the case where the domain has only Lipschitz boundary, it is impossible to de�ne

Hs(Γ) with s > 1. However, in the case of polygonal domains, as the boundary is

piecewise C∞, linear continuous operator can be de�ned on more regular Sobolev

spaces though not on the whole boundary but edge by edge.

Theorem B.9. (see [48, Theorem 1.4.2]) If Ω is a polygonal bounded open subset of R2

with boundary Γ = ∪j=1..NΓj where each Γj is a segment. then, denoting by ν the unit

outward normal vector, the mapping

u 7→ {γju, γj
∂u

∂νj
, . . . , γj

∂ku

∂νkj
}

which is de�ned for u ∈ D(Ω̄) has for k < s− 1/2 a unique continuous extension from

Hs(Ω) onto
∏

0≤p≤k

Hs−p−1/2(Γj).

Theorem B.10. (see [48, Theorem 1.4.6]) If Ω is a polygonal bounded open subset of R2

with boundary Γ = ∪j=1..NΓj where each Γj is a segment, then, denoting by ν the unit

outward normal vector, the mapping u 7→ {fj,` = γj
∂`u

∂ν`j
, 1 ≤ j ≤ N, 0 ≤ l ≤ m− 1}

is linear continuous onto the subspace of T =
∏

1≤j≤N

∏
1≤`≤m−1

Hm−l−1/2(Γj) de�ned by

the following conditions.

Let L be any di�erential operator with constant coe�cients and order d ≤ 1. Denote
by Pj,`, the di�erential operators tangential to Γj such that

L =
∑
`

Pj,`
∂`

∂ν`j

then ∑
`

Pj,`fj,`(Sj) =
∑
`

Pj+1,lfj+1,`(Sj) for d ≤ m− 2∑
`

Pj,`fj,` ≡
∑
`

Pj+1,lfj+1,` at Sj for d ≤ m− 2
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The Trace operator is obviously not invertible. Let us consider Ω a closed space

with regular boundary. Two functions in H1(Ω) can share the same trace on the

boundary (in the H1/2(∂Ω) sense) and be di�erent on Ω (take for instance, f(x, y) =√
x2 + y2

and g(x, y) = x2 + y2
on B1 = {(x, y) ∈ R× R |x2 + y2 ≤ 1} ). However,

it is possible to de�ne a continuous extension operator from H`−1/2(Γ) to H`(Ω).

Theorem B.11. (see [78, Theorem 2.6.11]) Let Ω be a bounded Lipschitz domain with

boundary Γ. Then, for 1/2 < ` < 3/2, there exists a linear continuous extension operator
Z : H`−1/2(Γ) 7→ H`(Ω) with (γ ◦ Z)(φ) = φ on H`−1/2(Γ) for all φ ∈ H`−1/2(Γ).

B.2 Regularity of elliptic equations on convex domains

In Chapter 3, we need to assess the regularity (in terms of Sobolev spaces) of the

solution to {
−div(A∇u) = f in Ω,

u = 0 on ∂Ω.

(B.8)

Theorem B.12. (see [47, Theorems 2.2.2.3 and 3.2.1.2]) If A is elliptic and Lipschitz

continuous, f ∈ L2(Ω) and Ω is a convex domain then the problem (B.8) admits a unique

solution u in H1
0 (Ω). Moreover, u belongs to H2(Ω).

One can also obtain Hölder regularity results provided more regularity on f and

the domain.

TheoremB.13. (see [43, Theorem 6.24 ]) Suppose thatA is elliptic, in a bounded domain

Ω that satis�es an exterior sphere condition, and A and f are Hölder continuous with

exponent α (inC0,α(Ω)). Suppose that f andA are bounded on Ω̄. Then if φ is continuous
on ∂Ω, the Dirichlet problem −div(A∇u) = f in Ω, u = φ on ∂Ω has a unique solution

u ∈ C0(Ω̄) ∩ C2,α(Ω).

Remark B.14. The exterior domain condition is satis�ed if there exists r such that for

any x ∈ ∂Ω there exists a ball Br of radius r satisfying Br ⊂ Rn \ Ω and x ∈ ∂Br. For

a triangle and a rectangle (most generally a convex polygonal domain) this condition is

satis�ed for all r.

The Laplacian operator has unique properties allowing to control for u ∈ H2(D)∩
H1

0 (D) all second derivatives with only the L2(D) norm of the Laplacian. It is espe-

cially useful when ∆u = f with u ∈ H1
0 (D) as the norms of the function can be

bounded by f provided u is regular enough (H2(D)).

Theorem B.15. (see [48, Theorem 2.2.3]) Assume that Ω is a bounded convex polygonal

open subset of R2
such that diam(Ω) = H . For u ∈ H2(Ω) such that the trace of u on

∂Ω vanishes it holds that

H−2‖u‖L2(Ω) +H−1|u|H1(Ω) + |u|H2(Ω) ≤ C‖∆u‖L2 , (B.9)

with C independent of the length of Ω.
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B.3 Sobolev interpolation of linear operators

Lemma B.16. (see [68, Theorem 5.1]) Let (X ,Y) be a couple of separable Hilbert spaces
with X ⊂ Y , such that X is dense in Y and such that the injection from X to Y is

continuous. Let (X, Y ) be another couple of Hilbert spaces with analogous properties.

Denote by L(X, Y ) the set of linear continuous operators from X to Y , and likewise

for L(X ,Y). Let π be an operator satisfying π ∈ L(X ,Y) ∩ L(X, Y ). Then, for all

0 < θ < 1, we have
π ∈ L([X , X]θ, [Y , Y ]θ)

where the interpolated space [X , X]θ is de�ned in [68, Definition 2.1].

Remark B.17. Lemma B.16 allows to extend easily properties from integer Sobolev spaces

to fractional Sobolev spaces. Indeed, with 0 < s < 1, one can also de�ne Hs(Ω) as

[L2(Ω), H1(Ω)]s. For instance, if we have a linear operator π such that for u ∈ L2(Ω)
‖πu‖L2(Ω) ≤ ‖u‖L2(Ω) and for u ∈ H1(Ω), ‖πu‖L2(Ω) ≤ C‖u‖H1(Ω), then it holds that

for u ∈ Hs(Ω), ‖πu‖L2(Ω) ≤ Cs‖u‖Hs(Ω). Such results are crucial to prove polynomial

approximation results for fractional Sobolev norms spaces.

B.4 Polynomial interpolation results and properties

For a wide range of PDE’s (in our case elliptic PDE), the solution can be approximated

by a Galerkin approach: solving the problem on a �nite dimensional space (for instance

a Finite Element space). Denoting by u the solution to the considered PDE and uh its

Galerkin approximation on space Vh, we often have results bounding the error by the

best approximation error, for instance

‖u− uh‖H1(Ω) ≤ C min
vh∈Vh

‖u− vh‖H1(Ω).

From this point, one does not know the behavior of the error (for instance how the error

decreases with respect to the meshsize h). Hence, particular functions vh are used to get

an explicit behavior of the error. Finite Element methods use polynomials functions

that can be used to approach broader types of functions in a wide range of norms

(norms associated to Sobolev spaces, continuous functions,. . . ) through interpolation

and projection. For example, in the case of P1 FE space provided that the solution u is

regular enough, we have

min
vh∈Vh

‖u− vh‖H1(Ω) ≤ ‖u− Ih(u)‖ ≤ Ch‖u‖H2(Ω)

with Ih(u) the P1 FE interpolant such that Ih(u) =
∑

i=1..Nvertices

u(xi)φi with φi the P1

basis function associated to the vertex i. Now we know that by dividing the meshsize

by two, we also divide the error by two. That is why interpolation results are crucial

in Galerkin approaches on FE spaces. They indeed allow to obtain an explicit behavior

of the error from a best approximation error. The best approximation is often bounded

by above by using explicit polynomials (projection or interpolation of the solution u),

hence it is crucial to have a simple method to exhibit a relevant polynomial approach-

ing the solution u. This section is not aimed at being exhaustive, the goal is to give

an idea of what tools are available, especially regarding the polynomial approxima-

tion space. Most of the results are from the following monographs (see [36], [12], [13],

[22],[72]). Although there exists approximation results on interpolation and projection

on polynomial functional spaces, we present here only interpolation results.
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B.4.1 Interpolation of smooth functions

There are many ways to perform interpolation. We will focus here on polynomial

interpolation in 1D and 2D and consider especially the Legendre polynomials since it

is the cornerstone of the analysis of the approach designed in Chapter 3.

Considering Ω ⊂ RN
, the interpolation of a function u is performed by using an

operator going from a functional space (often H`(Ω)) onto the space of continuous

polynomials with a total degree N . Usually, this operator use evaluation of u on spe-

cial points to get a good approximation of u in the space of continuous polynomial

functions. Such evaluation requires u to be continuous, that is u ∈ Hs(Ω) with s > d
2
,

with d the ambient dimension.

We will �rst consider interpolation results from the Lagrange Finite Element inter-

polant associated to a regular mesh TH .

Theorem B.18. (see [36, Theorem 1.103]) Assume we use Lagrange Finite element of

degree k > 0 associated to a regular mesh Th of a domain Ω ⊂ Rn
with reference element

K̂ ∈ Rd
(here d = 2) on the space of continuous functions. We consider interpolation

results on elementK of length h that can be obtained from K̂ by a linear transformation.

We de�ne IkK(u) =
∑

i=1..Ndof u(xi)φi, with φi the FE basis function associated to

the degree of freedom i on the Finite Element space of degree k for TH (k = 1 piecewise

a�ne functions on nodes).

Then, for d/2− 1 ≤ ` ≤ k and for allm ∈ {0, . . . , `+ 1} it holds that

∀K ∈ Th, ∀u ∈ H`+1(K), |u− IkK(u)|Hm(K) ≤ Ch`+1−m
K σmK |u|H`+1(K)

with C independent of h and σK = hk
ρK
≤ σ0 since T is regular.

Such result is interesting as we have an explicit rate of convergence with respect to

the meshsize h: these estimates are the cornerstone of the h-Finite Element methods.

However, if we increase the degree of Finite Element, the rate in hK does not increase

anymore as soon as the maximal regularity Sobolev index of the function u is reached

(there is no need to take a degree k > `). Moreover, to get better rates with respect

to the regularity ` one has to take element of higher degree ` ≤ k. There exists in-

terpolation methods that are also taking into account the polynomial degree p used to

improve estimates. Such methods are called p-Finite Element or Spectral methods (see

[12] and [13]). They use speci�c properties of speci�c polynomials such as Legendre

polynomials and Chebyshev polynomials. Most recent interpolation results capitalize

on both aspects to gives estimates in h and p (see [22, Section 5]).

Proofs of such results usually follow the same pattern. First results are proved for

integer Sobolev spaces by using speci�c properties of polynomial families (for instance,

the Legendre polynomials satisfy the Legendre’s di�erential equation and the study of

the associated di�erential operator allows to obtain estimates) to get inequalities such

as inf
φ∈PN
|u − φ|Hs(D) ≤ C|u|Hm(D) for s ≤ m integers. Second, we use Sobolev inter-

polation arguments (see Lemma B.16) to get the results for fractional Sobolev spaces.

TheoremB.19. (see [22, Section 5.4.4]) If we consider I a 1D interval of size h, then con-
sidering the Legendre interpolant IHN (polynomial of degreeN such that IHN (u)(xGL−Nj ) =

u(xGL−Nj ) for all the N + 1 Gauss-Lobatto points xGL−Nj ), and any u ∈ Hm(I), 1 ≤
m ≤ N and k = 0, 1 one has

‖u− IHN (u)‖Hk(I) ≤ Chm−kNk−m|u|Hm(I)
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We have a similar result for Cartesian product domains, namely domains that can

be obtained from Ω = (−1, 1)d with an a�ne transformation. It is interesting as it

applies to quadrangular elements in a mesh.

Theorem B.20. (see [22, Section 5.8.3]) Consider Ω a quadrangle inR2
of length h and

the Legendre interpolant IHN de�ned as the polynomial of degree up toN in each variable

(x1, x2) such that

IHN (u)(xe1,GL−Nj , xe2,GL−Nl ) = u(xe1,GL−Nj , xe2,GL−Nl )

for all the (N+1)2
Gauss-Lobatto points (xe1,GL−Nj , xe2,GL−Nl ). Then for all u ∈ Hm(Ω),

(2 + 1)/2 ≤ m ≤ N and k = 0, 1 one has

‖u− IHN (u)‖Hk(Ω) ≤ Chm−kNk−m|u|Hm(Ω)

B.4.2 Interpolation of non-smooth function

In classical polynomial interpolation, in order to de�ne the interpolant one has to eval-

uate the function at speci�c points. However, if the function to interpolate is not con-

tinuous, the interpolant cannot be built. There are some tools to tackle such issue, the

non-smooth interpolation theory.

We present the most common approach: the Clément interpolation introduced in

[25].

We consider VH the piecewise a�ne functions on TH spanned by hat functions φi
de�ned on the interior vertices of the mesh.

For u ∈ H1
0 (D), the Clement interpolant CH from H1

0 (Ω) is de�ned by

CH(u) =
Nbvertex∑
i=1

∫
Ω
φiu∫

Ω
φi

φi (B.10)

Remark B.21. Such interpolation does not require any evaluation of the function at a

point. A weaker regularity (for instance L2(Ω)) is enough.

Theorem B.22. (see [36, Lemma 1.127] ) If u ∈ H1
0 (Ω) with Ω a polygonal domain in

R2
and TH a shape regular conformal mesh of Ω then it holds that for any edge e ⊂ Γ

with Γ the collection of all interior edges of the mesh, we have

‖u− CH(u)‖L2(e) ≤ CH1/2
e ‖u‖H1(ωe)

with ωe all the elements who share a vertex with the edge e andHe the length of the edge

e.

Other non-smooth interpolation methods exist such as the Scott-Zhang interpolant

that allows to take into account boundary conditions (see [36, Lemma 1.130]).

One can also design hp-Finite Element non-smooth interpolation method where

the degree of polynomial approximation is also taken into account in the estimate (see

[72]).

Theorem B.23. (Scott-Zhang type interpolation result [72, Theorem 2.3]) Assume that

TH is a conformal mesh which is shape regular in the sense of (3.2). For any element

K ∈ TH , we choose a maximal degree pK ∈ N?
and we assume that these degrees {pK}
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satisfy (3.33). Then there exists a continuous interpolation operator SZ from H1
0 (D) to

H1
0 (D) ∩ S({pK}) with

S({pK}) = {u ∈ C0(D); u|K is a polynomial function of degree at most pK}.

Furthermore, there exists a constant C which only depends on the mesh regularity γ
of (3.2) such that, for any u ∈ H1

0 (D) and any edge e ⊂ Γ, it holds that

‖u− SZ(u)‖L2(e) ≤ C

(
He

pe

)1/2

|u|H1(ωe) (B.11)

where ωe is the union of all the elements who share a vertex with the edge e, He is the

length of the edge e and pe = min{pK | e ⊂ ∂K}.



Résumé Le travail de cette thèse a porté sur la simulation numérique des matériaux multi-échelles.

On considère des matériaux hétérogènes dont les propriétés physiques ou mécaniques (conductivité

thermique, tenseur d’élasticité, . . . ) varient à une échelle petite par rapport à la taille du matériau. La

thèse s’articule en deux parties qui correspondent à deux aspects di�érents des problèmes multi-échelles.

Dans la première partie, on se place dans le cadre de l’homogénéisation aléatoire et on s’intéresse à une

question plus �ne que la caractérisation d’un comportement moyen : on cherche à étudier les �uctua-

tions de la réponse. Plus généralement, nous visons à comprendre : (i) quels paramètres de la distribution

des coe�cients du matériau à l’échelle �ne a�ectent la distribution de la réponse à l’échelle macro-

scopique, et (ii) s’il est possible d’estimer cette distribution sans utiliser une méthode type Monte-Carlo,

très couteuse. Sur le plan théorique, nous avons considéré un matériau faiblement aléatoire (micro-

structure périodique avec ajout d’une perturbation aléatoire petite). Nous avons montré qu’en utilisant

le correcteur standard issu de la théorie de l’homogénéisation aléatoire, nous sommes capables de cal-

culer un tenseurQ qui gouverne complètement les �uctuations de la réponse. Ce tenseur, dé�ni par une

formule explicite, permet d’estimer la �uctuation de la réponse sans résoudre le problème �n pour de

nombreuses réalisations. Une stratégie d’approximation numérique de ce tenseur a ensuite été dévelop-

pée et testée numériquement dans des cas plus généraux.

Dans la deuxième partie de la thèse, on considère un matériau hétérogène déterministe �xé où les hy-

pothèses classiques d’homogénéisation (périodicité, . . . ) ne sont pas véri�ées. Les méthodes de résolu-

tion standard type Éléments Finis donnent de mauvaises approximations. Pour pallier cette di�culté,

la Méthode des Éléments Finis Multi-échelles (MsFEM) a été introduite il y une vingtaine d’années. La

méthode MsFEM se décompose en deux étapes : (i) créer un espace d’approximation grossier engen-

dré par les solutions de problèmes locaux bien choisis; (ii) approximer la solution avec une approche

de Galerkine peu couteuse sur l’espace construit dans (i). Dans cette deuxième partie, plusieurs taches

ont été réalisées. Tout d’abord, une implémentation de plusieurs variantes MsFEM a été e�ectuée sous

forme de templates dans le logiciel de calcul Éléments Finis FreeFem++. Par ailleurs, plusieurs variantes

des MsFEM pâtissent d’une erreur dite de résonance : lorsque la taille des hétérogénéités est proche de

la taille du maillage grossier, la méthode devient très imprécise. Pour pallier ce problème, une méthode

MsFEM enrichie a été développée : à la base MsFEM classique on rajoute des solutions de problèmes

locaux ayant pour conditions aux limites des polynômes de haut degré. L’utilisation de polynômes nous

permet d’obtenir une convergence de l’approche à des coûts de calcul raisonnables.

Summary This thesis is about the numerical approximation of multi-scale materials. We consider

heterogeneous materials whose physical or mechanical (thermal conductivity, elasticity tensor, . . . ) vary

on a small scale compared to the material length. This thesis is composed of two parts describing two

di�erent aspects of multi-scale problems.

In the �rst part, we consider the stochastic homogenization framework. The aim here is to go beyond the

identi�cation of an e�ective behavior, by attempting to characterize the �uctuations of the response.

Generally speaking we strive to understand: (i) what parameters of the distribution of the material

coe�cient a�ect the distribution of the response and (ii) if it is possible to approximate this distribution

without resorting to a costly Monte-Carlo method. On the theoretical standpoint, we consider a weakly

random material (the micro-structure is periodic and presents some small random defects). We show

that we are able to compute a tensorQ that governs completely the �uctuations of the response, thanks

to the use of standard corrector functions from the stochastic homogenization theory. This tensor is

de�ned by an explicit formula and allows us to estimate the �uctuation of the response without solving

the �ne problem for many realizations. A numerical approximation of this tensor has been proposed and

numerical experiments have been performed in broader random frameworks to assess the e�ectiveness

of the approach.

In the second part, we consider a heterogeneous deterministic material where classical homogenization

(periodicity, . . . ) assumptions are not satis�ed. Standard methods such as Finite Elements give bad

approximations. In order to solve this issue the Multi-scale Finite Element Method (MsFEM) can be used.

This approach proceeds in two steps: (i) design a coarse approximation space spanned by solutions to

well-chosen local problems; (ii) approximate the solution by an inexpensive Galerkin approach on the

space designed in (i). On this topic, we �rst implemented the main variants of the MsFEM methods

in the Finite Element software FreeFem++ on template form. Second, many MsFEM approaches su�er

from resonance error: when the size of the heterogeneities is close to the coarse mesh size the accuracy

decreases. In order to circumvent this issue, we designed an enriched MsFEM method: to the classical

MsFEM basis, we add solutions to local problems with high degree polynomial boundary conditions.

The use of polynomials allows us to obtain a converging approach for a limited computational cost.
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