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Chapter 1

Résumé étendu en francais

1.1 L’ensemble des espaces métriques labellés, topologie et
propriétés

Une des premieres tentatives de comparer deux espaces métriques compacts vient de Gromov
[39]. Son idée est de plonger isométriquement les deux espaces & comparer dans un troisieéme
espaces métrique et de comparer les plongements a 1’aide de la distance de Hausdorff. La
distance de Gromov-Hausdorff est I'infimum pour tous les plongements de la distance de
Hausdorff entre les plongements. Comme la distance de Hausdorff n’est définie que pour les
compacts, la distance de Gromov-Hausdorfl n’est définie que pour les compacts. La distance
de Gromov-Hausdorff a été rapidement généralisée aux espaces compacts munis d’une mesure
finie par la distance de Gromov-Hausdorff-Prokhorov. Elle est définie comme la distance de
Gromov-Hausdorff, mais en remplacant la distances de Hausdorff par le maximum de la
distance de Hausdorff entre les plongement des deux ensembles et la distance de Prokhorov
entre les plongement des deux mesures.

Ces deux distances ont été étendues de plusieurs manieres, sur des espaces avec toutes
sortes de structures supplémentaires, mais toujours avec l'une des contraintes suivantes :

1. les espaces sont compacts (Gromov [39)]);

2. les espaces sont complets, pointés et toutes les boules fermées sont compactes (Abraham,
Delmas & Hoscheit [1], Khezeli [43]);

3. Les espaces sont complets, séparables et munis d’une mesure finie dont le support est
I'espace entier (Aldous [6] and [5], Greven, Pfaffelhuber & Winter [36]).

Dans cette section, on considere une classe d’espaces métriques mesurés munis de fonctions
1-lipschitziennes, dans le but d’obtenir une version plus large de 2, en considérant des espaces
qui ne sont ni bornés ni pointés, équipés avec des mesures finies sur tout compact. En échange,
on doit remplacer la condition “les boules sont compactes” par “les tranches sont compactes”
(une tranche est ’ensemble des points dont les labels sont dans un compact [—h, h] C R) qui
est un peu plus forte. On appelle espace métrique labellé mesuré tout quatruplet (E,d, H, v),
ou (E,d) est un espace métrique complet séparable, v est une mesure de Bore][] positive et

!Une mesure de Borel est une mesure définie sur ’ensemble des boréliens de (E, d) qui est finie sur tous les
compacts de FE.
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H est une fonction 1-lipschitzienne de E dans R.

Pour tout h € Ry, on appelle Slicey(E,d, H,v,) ou simplement Ej l'ensemble {x €
E||H(z)| < h}, muni des restrictions de d, H et v. On dit que (E,d, H,v) est S-compact si
pour tout h € Ry, Slicep(E, d, H,v) est compacte.

On dit que deux espaces métriques labellés mesurés (E,dgp, Hg,vg) et (F,dr, Hp,vF)
sont équivalents si il existe une isometrie bijective ¢ de (E,dg) sur (F,df) telle que Hp =
Hp o ¢ et la mesure image de vg par ¢ est égale a vp (c-a-d ¢(vg) = vp). Clest une
relation d’équivalence sur la classe X de tous les espaces métriques labellés mesurés, qui
préserve la compacité et la S-compacité. On appelle X I'enemble des classes d’équivalence
dans X. On appelle X% lensemble des classes d’équivalences d’espaces métriques labellés
mesurés S-compacts et XX I’ensemble des classes d’équivalences d’espaces métriques labellés
mesurés compacts. On note abusivement E ’espace métrique labellé mesuré (F,d, H,v), et
on confondra souvent une classe d’équivalence avec n’importe lequel de ses representants.

Pour (E,dg,Hg,vE) et (F,dr, Hp, vr) deux espaces métriques labellés mesurés compacts,
(Z,dz) un espace métrique séparable, ¢p (resp. ¢p) une isometrie de E (resp. F') dans Z,
on considere le plongement ¢%, (resp. ¢3) de E (resp. F) dans Z x R défini par ¢p(z) =
(¢p(z), Hg(x)) (resp. ¢5(y) = (¢r(y), Hr(y)). Avec cette construction, on représente E, F'
et leurs labels dans un méme espace Z* = Z x R. On munit Z* de la distance d7, définie par

dy ((z, h), (@', h)) = dz(x,2") vV |h = K|.

On pose
A7 o (B F) = du(¢5(E), 65p(F)) V dp (65 (vE), 65 (vr)),

ou dy (resp. dp) est la distance de Hausdorff (resp. Prohorov) sur (Z*,d%), ¢35 (F) est
I'image directe de E par ¢}, et ¢} (vg) est la mesure-image de vp par ¢}, (on procede de
méme pour F'). Ainsi, le nombre Agﬁ ¢F(E , ) tient compte de tous les aspects de E et F.
Sur le modele de la distance de Gromov-Hausdorff-Prohorov pour les espaces compacts sans
labels, on définit
: z
dGHP(Ea F) = Z,(;lgaliﬁF Aqu,ng (E7 F)7
ou 'infimum est pris sur tous les espaces métriques Z et isometries ¢pp (resp. ¢r) de E (resp.
F) dans Z.
Pour (E,dg, Hg,vE) et (F,dp, Hp, vr) deux espaces métriques labellés mesurés S-compacts,
on définit

dLGHP (E7 F) = /0 (1 A dgap (Eh, Fh))efhdh.

De la méme maniére, on définit dgy et dpgn pour les espaces métriques labellés (sans
mesures) par

deu((E,dg, Hg), (F,dp, Hr)) = deup ((E,dg, Hg, 0), (F,dr, Hr,0))

et
dieu((E,dg, Hg), (F,dp, Hr)) = dueupe ((E,dg, Hg,0), (F,dp, Hp,0)).

On notera que dgpp (resp. drgrp), qui est défini sur la classes des espaces métriques labellés
mesurés S-compact (resp. compact), peut étre défini sur XX (resp. X9), puisque la valeur



1.2. UN NOUVEL ESPACE D’ARBRES GENEALOGIQUES ET SA TOPOLOGIE 7

pour deux classes d’équivalence ne dépend pas du représentant choisi. On prouve le résultat
suivant :

Proposition [3.1.13| et Théoreme La fonction digpp est une distance sur X° et
I'espace métrique (X, dygup) est polonais.

On définit X l'ensemble des espaces métriques labellés mesurés S-compacts (E,d, H,v)
(& équivalence pres) pour lesquels H(E) est connexe (c-a-d. un intervalle). Posons XK =
XK NXC on a:

Proposition and Lemme Sur XX, la topologie induite par dgup est stricte-
ment plus fine que la topologie induite par drcgp. Les distances dgup et drcpp induisent la
méme topologie sur XX,

Dans la definition de dpgmup, 0 joue un role particulier puisque les tranches Slice, sont
prises entre —h et h. Les changements au niveau des labels proches de 0 sont plus visibles
pour la distance que les changements loin de 0. Pour voir si cette différence se voit dans
la topologie, on définit une autre distance ou les tranches sont centrées autour de a € R.
Pour a € R, (F,d, H,v) un espace métrique labellé mesuré S-compact et h € R, on définit
Ej = Slice},(E,d, H,v) 'ensemble

{w € Bl|H(z) - | < h}
muni des restrictions de d, H et v. Pour a € R, (E,dg,Hg,vg) et (F,dp, Hp,vp) deux
espaces métriques labellés mesurés S-compacts, on définit

dicup(E, F) :/ (1/\dGHP(E;1wFIg))e_hdh'

0
Cette distance est une version de dp,ggp ou on a donné a a le role particulier qu’avait 0 dans
dLGHP- On a

Proposition Pour tout a € R, la translation (F,d, H,v) — (E,d, H + a,v) est con-
tinue. De maniere équivalente, df qyp induit la méme topologie que dygup sur X5.

1.2 Un nouvel espace d’arbres généalogiques et sa topologie

On rapelle qu’un arbre est un espace de longueur dans lequel chaque paire de point est relié
par un unique chemin, qui doit étre une géodésique. On cherche & donner un cadre pour des
arbres comme les arbrbres aléatoires stationnaires (voir par exemple Chen & Delmas [16])
et la généalogie du processus look-down (Donnelly & Kurtz [22]), qui ne sont pas compacts
et dont la mesure naturelle est infinie. De plus, la “racine” de ces arbres est & —oo, donc ils
ne tombent pas dans le cas des espaces de longueur pointés décrit dans Abraham, Delmas &
Hoscheit [I]. Pour représenter ces arbres, on oublie la notion de racine et on appelle arbres
labellés par la hauteur tous les éléments (T,d, H,v) € X° tels que (T, d) est un arbre et pour
tout x,y €T,
d(z,y) = H(x) + H(y) — 2hmin,
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Ol hpin est le minimum de H sur la geodesique de z & y. L’idée est que (T, d) est un arbre
généalogique et H(z) represente le temps auquel l'individu x a vécu. La distance entre deux
points est alors la somme des temps qui séparent les deux individus de leur plus proche
ancétre commun. On note T C X° I’ensemble des arbres labellés par la hauteur, considérés a
équivalence pres.

L’espace des arbres labellés par la hauteur est muni de dygpp. On prouve

Théorémes [4.1.15| L’espace (T, d,gup) est un fermé de X%, donc polonais.

Notons que pour tout arbre labellé par la hauteur (T,d, H,v), (T,d) est connexe, donc
I'image directe H(T') est toujours un intervalle. Ainsi, l'espace des arbres labellés par la
hauteur T N XX est inclus dans XX, On en déduit par le Lemme que dgyp definit la
méme topologie que dp,gup sur T.

On donne dans Proposition une bijection entre arbres labellés par leur hauteur,
et les arbres codés (arbres labellés dont la distance a été remplacée par un ordre partiel
(Pordre généalogique)), ce qui fournit une caractérisation alternative des arbres labellés par
leur hauteur.

1.3 Quelques operations mesurables sur les arbres

On définit quelques opérations sur les arbres labellés par leur hauteur, et on étudie leur
mesurabilité.

Le e-trimming est défini dans la litterature comme ’ensemble des points d’un arbre qui
sont le milieu d’une géodésiqu de longueur au moins 2¢. Dans cette définition, on supprime
systématiquement 'extrémité des branches. Cela affecte la hauteur des branches, et rends les
tranches plus difficiles & controler (on perd la propriété selon laquelle dpgup (T, Trim. (7)) <
e). Il est donc plus confortable de redéfinir le e-trimming Trim.(7") = (7°,d°, H%,v®) d’'un
arbre labellé par la hauteur (T, d, H, v) comme un quotient de 'arbre. On considere que deux
points z,y € T sont dans la méme classe si H(z) = H(y) et d(z,y) < 2¢ (c’est une relation
d’équivalece), et on définit T¢ le quotient de T par cette relation. Pour x,y € T, on définit

& (x,y) = (d(z,y) — 2¢) v [H(z) — H(y)]

H*(x) = H(x),

ou x,y sont deux representants de x,y € T¢. Les definitions ci-dessus ne dépendent pas du
choix des representants x,y. On pose p la projection canonique de 7" dans T¢,et on définit
V¢ la mesure image de v par p. On prouve que

Lemmes 4.2.7}, (4.2.8 & |4.2.10| Pour 7" un arbre labellé par la hauteur, ¢ > 0, Trim.(7")
le e-trimming de 7', on a

e Trim.(7') est bien défini et donne un arbre discret,
o digup(T, Trim (7)) <,

o T — Trim.(7T) est 1-lipschitzienne de T dans T.
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Pour (T, d, H,v) un arbre labellé par la hauteur et h € R, on définit Stump;, (") I’ensemble
{z € T|H(x) < h} muni des restrictions de d, H et v. C’est la partie de T sous le niveau h.

Proposition 4.2.11| La fonction (T, h) — Stump;,(T") est mesurable de T x R dans 7.

On souhaite définir la couronne Crowny (7)) d’un arbre labellé par la hauteur 7" comme
la forét non-ordonnée des branches de T' au-dessus du niveau h. Pour ce faire, nous devons
commencer par construire un espace dans lequel définir les couronnes. On commence par
définir 'ensemble des séquences dont on a oublié 'ordre. On pose X2 C (X*)N" I’ensemble

des suites convergentes de X°, et on consideére la pseudo-distance définie sur Xg par:

diéup (Tn)nenss (T )nen+) = inf sup dLGHP(TmTC,r(n))-
o€G(N*) peN*
On définit Xg le quotient de Xg par la relation d’équivalence dfgpp(-,-) = 0. L’espace
(x2, dfgmp) est un espace métrique complet séparable.

On définit ensuite un borélien Xg qui contiendra toutes les couronnes. Pour tout h € R,
on note 0y, = ({h},0,h,0) I'arbre constitué d’un seul point au niveau h muni de la mesure
nulle. On pose T 'ensemble des éléments (T7),en+ € TN pour lesquels il existe h € R tel
que

e lim, T, = 0y
e tous les arbres (7}, ),en+ sont enracinés a hauteur h.

Pour un arbre (T,d,H,v), h € H(T) et g € Skel(T') tel que H(xy) = h, on appelle
branche au-dessus de h le sous-arbre {z € T|z¢g < 2} muni des restrictions de d, H et v. Si T
est S-compact, 'ensemble de ses branches au-dessus de h est au plus dénombrable. Quand il
y a une infinité de branches, on pose Crowny(7') une énumération (7},),en+ de ses branches
au-dessus de h. notons que pour chaque énumération, lim, 7;, = 0p. Si 7" a un nombre fini
de branches au-dessus de h, on complete la suite avec une succession infinie de 0;. dans les
deux cas, on a Crowny(T") € Te. On étend la definition de Crowny, (7') aux cas ou h ¢ H(T)
par Crowny(T) = (0p)nen+ quand il n’y a aucun point strictement au-dessus de h (T = () ou
supy H < h), et que la couronne ne contient aucune branche, et par Crowny, (7)) = (7', 0p, ...)
quand minyp H > h (tous les points de T sont au-dessus de h, donc il y a une unique branche
enracinée strictement au-dessus de h). Notons que dans ce dernier cas, Crown,(T) € X2\ T¢
car miny H # h. Ainsi, (h,T) — Crowny,(T') est défini de R x T dans X2.

Proposition |4.3.11| La fonction (h,T’) — Crowny,(T") est mesurable.

Notre principal résultat sur les opérations concerne la greffe aléatoire d’une couronne sur
un arbre. Comme nos arbres sont définis & ismoétrie pres, on ne peux pas indiquer les endroits
ou greffer les points. Nous n’avons donc pas d’autre choix que de greffer les arbres au hasard,
suivant une probabilité sur I’arbre sur lequel on greffe.

Pour comparer plus facilement la greffe de deux couronnes sur deux arbres, il vaut mieux
considérer la loi de la greffe aléatoire. Pour un arbre labellé par la hauteur (T,d, H,v,p)
muni d’une mesure de probabilité supplémentaire p concentrée qu niveau H~'({h}) pour un
certain h € H(T), T' un autre arbre labellé par la hauteur contenant au moins un point
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& hauteur h, prenons un représentant (7, dy, Hp, Vn)nen+ de Crownp(T”) et (X,,)nen+ une
suite i.i.d de variables aléatoires dans T' de loi marginale p. On note T %, T” le résultat de
la greffe de chaque T}, au point X,, € T, avec d’ la distance H' la fonction label. On pose
aussi v/ = v+, vp et on note Pr, 1 laloi (T'%,T",d’, H',v',p). Si on muni 'ensemble des
probabilités sur (X°, dyqup) de la distance de Prokhorov, on a

Théoreme m et Proposition L’opération de mélange ((T,p),T") ~ Pr,, 1
est bien définie. C’est une mesure de probabilité independente du choix de représentant pour
T et Crowny,(T"). Elle est mesurable de son domaine de définition D C TP x T dans TP, ot
T2 est une généalisation de (T,dpgup) aux arbres labellés par la hauteur équipés de deux
mesures. D est un borélien de T2 x T.

Ces résultats completent Abraham, Delmas & Hoscheit [2], ot la mesurabilité de 'opération
de greffe n’était pas démontrée.

1.4 Arbre brownien conditionné par son temps local, une ten-
tative de généralisation

Dans [7], Aldous presente la loi de ’excursion brownienne conditionnée par son temps local.
Pour construire cette loi a partir du temps local (I(h))x>0 (c’est une densité de probabilité car
Pexcursion est normalisée pour étre sur [0,1]), il crée n € N* feuilles & des hauteurs i.i.d (avec
densité [(h)dh), et construit un coalescent a partir des feuilles (chaque couple de branche
fusionne avec intensité ﬁdh) pour obtenir un arbre 7. Il montre que la suite (7!),en

converge vers un arbre aléatoire 7' qu’il prouve étre I’arbre brownien conditionné au temps
local (Construction 1 and Theorem 2 respectivement dans Aldous [7]).

On se propose de généraliser ces lois. Plutot que de les caractériser par un temps local [,
on utilise une mesure de coalescence p (qui joue le role de ﬁdh) et une mesure de masse v
qui décide la répartition de la masse entre les différents étages. Pour définir notre arbre, nous
mélangeons des coalescents a taux g commencant a différents niveaux. Cela ne pose aucun
probléeme tant qu’on ne prend qu’un nobre fini de niveaux, et on utilise une convergence en loi
pour obtenir un arbre limite. On prouve dans le Lemme que ’arbre limite ne dépend pas
de la suite des niveaux utilisés pour le construire, tant que cette suite est dense. On prouve
une régularité faible dans le Lemme qui constitue un premier pas vers la construction
presque-sure d’une famille de mesures intrinseques a presque-tout niveau.



Chapter 2

Introduction

2.1 Biological motivations

The objects in this thesis derive from a variety of works describing genealogies and, in a
broader sense, the transmission and diffusion of genes in a population. In each cell, the
genetic information is encoded in molecules of DNA, one by chromosome. Each information
is coded as a sequence of nucleotides (ACGT) at a locus (a segment of the DNA specific to
that information). The human genom consists in 6.5 - 10° nucleotides. In a given specie,
the loci are in the same position, but will hold different sequences of nucleotides, hence a
different information. Those different sequences are called versions of a gene, or alleles. In
diploids, the chromosomes are split in pairs (23 for humans). Two chromosomes of a pair
will have the same loci, but may carry different alleles. Through meiosis, each of the two
parents produces a gamete, a reproductive cell holding one chromosome from each pair.
When two gametes meet, the resulting offspring receives two chromosomes for each pair.
Since the genetic information is held in the chromosomes, most genetic models will study the
chromosomes rather than the parents. A way to study the diffusion of genes in the population
is to draw the genealogical tree of the population, or rather of its chromosomes. To simplify
matters, we will only consider a single pair of chromosomes in the rest of this section.

This view must still be refined, as we neglected another mechanism. Each parent possesses
two chromosomes inherited from its own parents (labelled as grandparents from here on).
Sometimes, during gamete production, the two chromosomes of one parent will exchange
material, such that the first part of the resulting chromosomes holds material from one
grandparent, while the latter part holds material from the other grandparent. This exchange
is symmetric, so that the recombined chromosomes still have the same loci as the originals,
but a new repartition of alleles. The process is called recombination, illustrated in Figure
Recombination is a rather frequent occurence, as both Sun & al. [59] and Kong and
al.[47] find an order of around 50 recombination events per meiosis in humans, so about 2
per chromosome and reproduction.

When recombinations occur, we note a drastic change in the genealogical tree. As indi-
viduals with two parents appear, loops become possible. With recombinations, the natural
representation of the genealogy is no longer a loop-free tree and becomes a regular graph.
This graph is called the ancestral recombination graph (ARG). On it are represented all the
contributors to the chromosomes of the top-most individuals. This means that past individ-

11
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Figure 2.1: On the left, we see the usual process for meiosis (the production of gametes). On
the right,we see how recombination may happen during meiosis.

Figure 2.2: In black, a normal genealogical tree. In red and black, the ancestral recombination
graph. See that the recombination event gave rise to additionnal ancestors to our initial
population, and changed the depth of the latest common ancestor.

uals whose genetic material was not passed on to the current generation are not represented.
This is shown in Figure

Since chromosomes that where made by recombination have two parents, it is no longer
possible to draw a loop-free genealogical tree for the whole chromosome, but we can still do
it for a single locus. A locus comes from only one of the parent chromosomes, so it can be
considered to have a single parent. This gives us a loop-free genealogical tree for each locus
of a chromosome.

A way to look at recombination is to compare the genealogical tree of a locus directly on
the left of the point to that of a locus directly to the right of the point. Looking to the left,
it is the child of the parent that gave the left side. Looking to the right, it is a child of the
parent that provided the right side. Note that this relation of coming from one parent of the
other carries for all the offspring of the recombined chromosome. In a recombination event,
the genealogical branch of our chromosome and all its descendants, is cut from one parent
then grafted to the other. All the recombination events can thus be encoded in the process
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recombined chromosome

Recombination point

1ere

|
\

!

Recombination point

Figure 2.3: This is an exemple of the process with a single recombination event, where we show
how the relative position of the locus = to the recombination point affects the genealogical
tree for x. The recombination displaces a chromosome and the branch of all its descendants
(in red) from one parent (yellow) to the other (blue). Note that all the individuals are
represented, not only the ancestors of the current generation.

of the successive genealogical trees read along the chromosome. In this setting, we report all
the individuals, past and present on the tree, not only those who contribute genetic material,
lest we omit the ancestor of another locus when drawing the genealogical tree of the first
locus. An example is shown in Figure [2.3] Most of the biologial considerations can be found
in Durret [26], along with a number of phylogenetic models and tests.

2.2 Modelisation of genealogies

2.2.1 Discrete modelisations

To infer a philogenetic tree from the repartition of different alleles in a population (see
Givnish & al. [35]), or predict the diffusion of a new allele after its apparition, we need
a model for the population, or, more precisely, a model of the genealogy. One of the first
models developed to study the diffusion of an allele in a population is the Wright-Fisher model
(see for example [26]), where each member of a generation picks its parent independently at
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random in the previous generation (the generations are non-overlapping). This allows to study
the varying proportion of an allele in the population (without additional mutations). This
model has since been subjected to many refinements, allowing for mutations. The Moran
model (Moran [55]) adds a natural mutation rate between the two alleles, departing from
the simplistic long-term behaviour of the Wright-Fisher model, where all but one version of
the gene disappear. Another model adding mutations can be seen in Wirtz & Wiche [61].
Other variations are present in the literature, with different offspring distributions (Cannings
[15]) and varying population size, as in the Galton-Watson tree or in more complex models
introducing competition (Lambert [4§]).

Under the Wright-Fisher model, a particular genealogical structure appears when looking
at the genealogical tree of n individuals in a population of size N — oo (with proper time
rescaling). This structure, shown by Kingman in [46], is called the Kingman coalescent.

Another important mention for population models goes to Galton-Watson trees, which is
a good representation for varying size population. A particular attention has been given to
critical and sub-critical Galton-Watson trees conditioned to survive.

Other population models explore spatial repartition of individuals. In Kimura & Weiss
[45], we see a model with different sites, whereas Etheridge [30] presents a model which ac-
counts for spacial distribution of individuals, with individuals living in very populated neigh-
bourhoods experiencing a drop in fertility. Models with selections are studied for example in
Kimura & Otha [44] and Kaplan, Darden & Hudson [41].

2.2.2 Limits for large populations

Models for large populations include the family of superprocesses, that is, measures-valued
processes. They can be a limit object for particles systems characterized by a Markov process
IT over some space E, a branching process with generating function ¢'(z,2) = Y, p'(x)z"
(x € E,z € [0,1]) and a function K from E to R. Each particle moves independently from
the other following II, and dies at rate K(x) (x is the position of the particle). When a
particle dies, it gives birth to new particles according to the branching process at the point
of its death. A typical example would be the position of the individuals in space or the
representation of some trait (height, speed, fitness...). Discussion on superprocesses can be
found in Dynkin [2§], Perkins [19] and Dawson & Perkins [I8]. Note that the mechanics of the
patricules model makes this class of superpocesses a limit representation for inhomogenous
Galton-Watson processes (the inhomogenous Galton-Watson processes are a generalization
of Galton-Watson trees) see Dawson [17].

The Fleming-Viot process is the limiting object for the Moran process with a spatial
component, so, when a particle dies, it gives birth to exactily one particle at the location of
one of the other particles, chosen uniformly at random. This makes it a model with constant-
size population. See Donnelly & Kurtz [22] and two articles from Ethier & Kurtz: [32] and
[31].

2.2.3 Continuous coalescent and ARG

After the sucess of Kingman’s coalescent, which is the limit of the genealogy in a range of
settings (see Durret & Schweinsberg [27], Mohle & Sagitov [53]), many generalizations have
been constructed to give limiting genealogy in other models (coalescence events of more than
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two particles: Pitman [56], many coalescences occurring at the same time: Schweinsberg [58]).
We see in Mohle & Sagitov [52] and Eldon & Wakeley [29] the link between the coalescents
and a Wright-Fisher model with different exchangeable offspring distributions. In Greven,
Pfaffelhuber & Winter [36], we find the condition for a coalescent process to converge to a
(locally compact) tree.

Another generalization of the Kingman tree is given in Aldous [§], where the coalescence
rate of two clusters depends on their size.

The Ancestral Recombination Graph (ARG) is a variant of the Kingman coalescent which
accounts for recombination. We start with n particles, which coalesce at rate 1 (for each pair
of particle) and split at rate » > 0 (for each particle). By looking at the birth and death
process, we see that when there are k particles, the birth rate is kr (recombination event)
and the death rate @ (coalescence event). Note that when the process hits 1, the birth
rate is r and the death rate 0. Thus, the birth-death process is a recurrent Markov process
and the number of particles eventually hits 1. This means that under this model, all current
chromosomes of any n individuals descend from an ancestral chromosome that is the sole
contributor to their genome. See Griffith & Marjoram [38] for an example.

2.2.4 Real trees as a scaling limit

We have seen with the coalescents that a notion of continuous tree (as opposed to graph) is
pertinent when considering large populations over large timescales. The notion of continuous
tree was introduced in Aldous [4] to describe the Brownian tree, a limit object for the uniform
random ordered binary tree. Other laws exist, like Levy trees Duquesne & Le Gall [24] that
provide a limit for critical and sub-critical Galton-Watson trees. See also Haas & Miermont
[40].

Random real trees are used in non-biological settings as well. For example, they are
instrumental in the construction of the Brownian map in Miermont [54].

2.3 Topologies for spaces of metric spaces

2.3.1 Topology on the space of metric spaces

One of the first attempts to compare two metric spaces comes from Gromov [39]. To compare
two metric spaces, the idea is to isometrically embed them in a third metric space and com-
pare their embeddings using the Hausdorff distance. Taking the infimum over all isometrical
embeddings in all metric spaces yields the Gromov-Hausdorff distance. The use of the Haus-
dorff distance means that the Gromov-Hausdorff distance is only defined between compact
metric sets. A commonly seen extension, the Gromov-Hausdorff-Prohorov distance, is defined
on the space of compact metric spaces equipped with a finite measure. It is defined by tak-
ing the max between the Prohorov of the embedded measures and Hausdorff distance of the
embedded spaces for each embedding, before taking the infimum of the resulting quantities
for all embeddings.

Convergence for this distance has been characterized in many ways, and some of them
give rise to topologically equivalent distances. One way is to introduce a correspondence
between the two spaces, and measuring how fitting the correspondence is by measuring how
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much it distorts the distance. The study of correspondences gives rise to a reformulation of
the distance, see Evans, Pitman & Winter [33] or Proposition of the present paper.

A way to define a Gromov distance for non-compact metric spaces is to compare increas-
ingly large compact subsets. This is explored in Abraham, Delmas & Hoscheit [I] to define
a Gromov distance on complete locally compact length spaces with a marked point, called
the root (this setting is well-suited to the study of real trees). In a complete locally com-
pact length space, the closed balls centred at the root are compact. We take as distance
between two rooted metric spaces E' and [ the integral [z, (1A d(By, B;))e™"dr, where B,
and B are the closed balls of radius r centred on the root in E and F respectively, and d is
the Gromov-Hausdorff distance for compact sets. There is a similar distance over complete
measured locally-compact length spaces, as long as the measure is finite over every compact
(still in [I]). These two distances have been extended to the spaces of boundedly—compactﬂ
pointed metric spaces in Khezeli [42], adding a variety of decorations in Khezeli [43].

To define a distance over complete separable metric spaces with a probability measure,
we see in Greven, Pfaffelhuber & Winter [36] the Gromov-Prohorov distance. The resulting
topology coincides with the Gromov-weak topology, where a sequence (Ey, dy, vy) of proba-
bility metric spaces converges to (E,d,v) if and only if for every n € N*, an i.i.d sequence
(XF)ien+ with marginal vy, and an i.i.d sequence (X;);en+, with marginal v the random matrix
of distances (dj(XF, Xjk))lgmgn converges in law to (d(X;, XJ))lgi,jgn'

See Athreya, Lohr & Winter [9] and Lohr [51], on the relations between different Gromov-
like topologies.

2.3.2 Definition of labelled metric spaces, topology and new results

The distances exposed so far all require one of the following conditions :
1. the metric spaces are compact (Gromov [39]);

2. the metric spaces are rooted, complete and boundedly-compact (Abraham, Delmas &
Hoscheit [I], Khezeli [43]);

3. the metric spaces are complete, separable, and carry a finite measure or a probability
measure, and the metric space is equal to or function of the support of this measure
(Aldous [6] and [5], Greven, Pfaffelhuber & Winter [36]).

In this section, we consider a class of measured metric spaces decorated with 1-Lipschitz
maps and aim to give a relaxed version of 2, namely, to consider non-compact non-pointed
metric spaces equipped with boundedly-finite measures. This comes at a small cost, since we
have to replace boundedly-compactness with the slightly stricter condition of S-compactness
(see below for a definition of S-compactness; see Remark for a comparison of S-
compactness and boundedly-compactness). We call measured labelled metric spaces any
quadruple (F,d, H,v), where (E,d) is a complete separable metric space, v is a Borel mea-
sureﬂ and H is a 1-Lipschitz map from E to R.

'Here, a metric space (E,d) is boundedly compact if every closed bounded set is compact, that is if closed
balls are compact.
2 A Borel measure is defined on the Borel sets of (E, d) such that all compact sets of E have finite measure.
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For every h € Ry, we call Slicey(E, d, H,v,) or simply Ej, the set {z € E||H(z)| < h},
equipped with the restrictions of d, H and v. We say that (E,d, H,v) is S-compact if for
every h € Ry, Slices(E,d, H,v) is compact.

We say that two labelled metric spaces (E,dg, Hg,vg) and (F,dp, Hp, vr) are equivalent
if there exists an isometric bijection ¢ from (E, dg) to (F,dr) such that Hg = Hpo¢ and the
image measure of vp by ¢ equals vp (that is, ¢(vg) = vp). This relation is an equivalence
relation on the class X of all measured labelled spaces, which preserves compactness and S-
compactness. We call X the set of all equivalence classes of measured labelled metric spaces.
We call X° the set of all equivalence classes of S-compact measured labelled metric spaces
and XX the set of all equivalence classes of compact measured labelled metric spaces. We will
abusively denote by E the measured labelled space (E,d, H,v), and confuse an equivalence
class with any of its representatives when convenient.

For (E,dg,Hg,vg) and (F,dp, Hp,vp) two compact measured labelled metric spaces,
(Z,dz) a separable metric space, ¢p (resp. ¢p) an isometry from E (resp. F') to Z. We
consider the embedding ¢}, (resp. ¢} ) from E (resp. F) to Z x R defined by ¢} (z) =
(¢r(z), Hg(x)) (resp. ¢5(y) = (¢r(y), Hr(y)). This way, we embed both the metric and the
labels of E and F' in a single space Z* = Z x R. We equip Z* with the distance d7, defined
as follows :

d% ((z, h), (@', h)) = dz(x,2") vV |h = H|.

We set
A7 4 (B F) = du(¢5(E), 65(F)) V dp (65 (ve), o5 (vr)),

where dy (resp. dp) is the Hausdorff (resp. Prohorov) distance in (Z*,d%), ¢3(E) is the
direct image of E by ¢}, and ¢},(vg) the push-forward of vg by ¢}, (similarly for F'). Thus,
the number Ag& ¢F(E, F') takes into account all the aspects of E and F'. As in the Gromov-
Hausdorff-Prohorov metric for compact metric sets, we set

doup(E,F) = inf AZ , (E,F
aup (B, F) = inf Aoy or (B F),
where the infimum is taken on all the metric spaces Z with isometries ¢ and ¢p from E
and F respectively to Z.

For (E,dg,Hg,vg) and (F,dp, Hp,vF) two S-compact measured labelled metric spaces,
we define

drcup(E, F) = /0 (1 A dGHp(Eh,Fh))e_hdh.

We define similar quantities dgy and dp gy for labelled metric spaces (without measures),
by
dGH((Ea dE7 HE)7 (Fa dF7 HF)) == dGHP((Ea dE7 HE7 0)7 (F7 dF7 HF7 0))

and
diecu((E,dg, Hg), (F,dp, Hr)) = dueupe ((E,dg, Hg,0), (F,dp, Hp,0)).

We note that dogp and digup, that are defined on classes of measured height-labelled trees,
can be defined on XX and X° respectively, as their value for two given equivalence classes
does not depend on the choice of representatives. We have the following results :
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Proposition [3.1.13| and Theorem The function dpgyp is a distance over X° and
the metric space (X°,dpgup) is a Polish space.

Define X¢ the space of measured labelled spaces (E,d, H,v) (up to equivalence) such that
H(FE) is connected (i.e. an interval). Define XX = XX N XY we have:

Proposition and Lemma On XX, the topology induced by dgup is strictly
finer than the topology induced by drcup. The two distances dggp and dpcgp induce he
same topology on X¢X.

In the definition of dr,ggp, 0 plays a special role since the slices Slicey, are taken such that
—h < H < h. Thus, changes at height 0 induce bigger change in the distance. To see the
effect on topology, we define another distance with slices taken around a € R. For a € R,
(E,d,H,v) a measured labelled metric space and h € R, define Eff = Slicef(E,d, H,v) as
the set

{w € Bl|H(z) - al < 1}

equipped with the restrictions of d, H and v. For a € R, (E,dg, Hg,vg) and (F,dp, Hp,vF)
two S-compact measured labelled metric spaces, we define

di.aup(E, F) 2/ (1/\dGHP(Ez>F}?>)e_hdh.

0

This distance is the same as dp,gp, but with a playing a special role instead of 0. We have

Proposition For every a € R, the shift application (E,d, H,v) — (E,d,H + a,v)
is continuous. Equivalently, df yp induces the same topology as digup on X5,

2.4 The space of real trees

2.4.1 Real trees and topology on the space of real trees

We call real trees, or simply trees (in the context of this thesis), any acyclic geodesic metric
space. A metric space (F,d) is called acyclic if between any two points z,y € E, there exists
a unique injective continuous path from z to y, and is also called geodesic if the length of
this path is equal to d(z,y). Additional structures or restrictions may be placed on this
notion. It is often convenient to restrict ourself to complete, compact or locally compact
metric spaces. Trees have been decorated with measures and marked points (most often, a
root). See examples of additional decorations on metric space in Depperschmidt, Greven &
Pfaffelhuber [20] and of decorations on trees in Donnelly & Kurtz [23]. Aldous considered
trees as measures over Lj, while other may consider functions, ultrametric spaces (Greven,
Pfaffelhuber & Winter [37]) or equivalence classes in the class of metric spaces.

The setting of Gromov-Hausdorff and Gromov-Hausdorff-Prohorov distance over com-
plete locally compact pointed length spaces developed in Abraham, Delmas & Hoscheit [1] is
especially adapted to rooted trees.

Comparisons between the contour functions are a highly convenient way to bound the
Gromov-Hausdorff-Prohorov between two trees. This bound allows us to translate conver-
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gence of random processes to the convergence of associated trees, but doesn’t yield a topo-
logically equivalent distance. See Le Gall [50] for example.

2.4.2 A new space of decorated trees and its topology

In this paper, the trees that interest us include examples like the stationary random tree (as
appearing in Chen & Delmas [16]) and the genealogy of the look-down process (Donnelly &
Kurtz [22]), which is not compact and has infinite measure. Furthermore, its natural “root”
is infinitely ancient, so it won’t fall under the “complete boundedly-compact rooted metric
space”. Representing the trees will need another approach. To this end, we remove the notion
of root and and call height-labelled trees all the elements (T, d, H,v) € X such that (T, d) is
a tree and for every z,y € T,

d(z,y) = H(z) + H(y) — 2hmin,

where hpiy is the minimum of H on the geodesic between x and y. The idea is that (7', d) is
a genealogical tree, and, for z € T\, H(x) represents the time at which the individual z lived,
and that the distance between two points be the time to their closest common ancestor and
back. We note T C X5 the set of height-labelled trees up to equivalence.

On the space of height-labelled trees, we use dr,cup. We prove

Theorems [4.1.15| The space (T, drgup) is a closed subset of X and thus Polish.

Note that for any height-labelled tree (T, d, H,v), (T, d) is connected, so the direct image
H(T) is always an interval. Thus, the space of compact height-labelled trees T N XX is a
subset of X& X Tt follows that, by Lemma dcup defines the same topology as drgup
on the space of compact trees.

We give an alternate characterization of those trees, showing that the distance can be
replaced by the genealogical order without loss of information, see Proposition [4.1.14] See
Lambert & Bravo [49] to a different use of an order on random trees.

2.5 Operation on trees

2.5.1 Cutting and grafting

In the literature, we see several commonly-used operations on trees. The cutting is the
operation of removing a part of the tree, in general the part beyond a cutting point. A
variant of the cutting is the truncation, where we remove everithing beyond a certain level
(usually measured from the root). The grafting, reverse of the cutting, consists in glueing
some tree to another, obtaining a bigger tree. A last operation is the e-trimming, where we
only keep points that are the middle of a geodesic of length at least 2¢. The effect is to “delete”
small branches. The trimming operation is very useful, since the Gromov-Hausdorff between
a tree and its e-timming is less than e for both versions of the distance : compact trees
(Gromov [39] or complete locally compact rooted trees (Abraham, Delmas & Hoscheit[I]).
The trimming of a locally compact tree is discreteﬁ See Evans, Pitman & Winter [33] (cut

3A tree is discrete if its nodes form a discrete set and all have finite degree
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and regraft, e-trimming), Evans & Winter [34] (cut and regraft), Duquesne & Winkel [25]
(Bernoulli leaf colouring), Abraham, Delmas & Voisin [3] (cut) and Pitman & Winkel [57]
(forest growth by wrapping) for other examples.

2.5.2 Some measurable operations on height-labelled trees

We define some operations on measured height-labelled trees, and study their measurability.

In the e-trimming as defined in the literature, the extremities are deleted. This affects
the maximum height of branches, and makes the slices harder to control (we would typically
lose the property that dpgup (7, Trim (7)) < €). As a result, it is convenient to redefine
the e-trimming Trim.(T") = (7%, d?, H¢,v®) of a height-labelled tree (T, d, H,v) as a quotient
of the tree. Consider that two points z,y € T are in the same class if H(x) = H(y) and
d(x,y) < 2¢ and name T¢ the quotient. For x,y € T¢, we define

& (x,y) = (d(z,y) — 2¢) v [H(z) — H(y)]
H*(x) = H(x),

where x,y are any two representatives of x,y € T¢. The above definitions do not depend on
the choice of representatives x,y. We set p the canonical projection from 7" to T, and define
v® the pushforward of v by p. We prove that

Lemmas [4.2.7], [4.2.8| & [4.2.10| For T' a measured height-labelled tree, € > 0, Trim_(7)
the e-trimming of T, we have

e Trim.(7) is well-defined and a discrete height-labelled tree,
e dicup(7T, Trim. (7)) <,
o T — Trim.(7T) is 1-Lipschitz from T to T.

For (T,d, H,v) a measured height-labelled tree and h € R, we define Stump,, (") the set
{z € T|H(x) < h} equipped with the restriction of d, H and v. This corresponds to the part
of T below level h.

Proposition |4.2.11| The function (7', h) — Stumpy,(7’) is measurable from T x R to T'.

We want to define the crown Crowny(T') of a tree as the forest consisting in the infinite
unordered collection of its branches above above a certain level h. To do so, we first define
a suitable space to contain the crowns. Fistly, we define the set of unordered converging
sequences. Set Xg - (Xs )N* the set of all converging sequence in X°, and consider the

. . 7 S .
following pseudo-distance on Xg:
df%HP((Tn)neN*a (Té)neN*) = inf sup dLGHP(TmTé(n))‘
o€G(N*) peN*
We define X‘g the quotient of Xg by the equivalence relation dfgyp(-,-) = 0. The space
(Xg, dféyp) is a complete separable metric space.

Now, we define a Borel subset of Xg adapted to crowns. For every h € R, consider
0n, = ({h},0,h,0) the tree consisting in a single point at height h with null measure. We
consider T¢ the set of all sequences (T"),en* € TN for which there exists h € R such that
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e lim, 7, = 0j,
e all the trees (T},)nen+ are rooted at height h.

For (T,d,H,v) a tree, h € H(T) and xo € Skel(T') such that H(xo) = h, we call branch
above h the subtree {x € T|zy < z} equipped with the restrictions of d, H, v. If T is
S-compact, the set of its branches above h is at most countable. When there are countably
many branches, we set Crowny (7)) an enumeration (7},)nen+ of its branches above h. Note
that for any such enumeration, lim, T}, = 0. If T has a finite number of branches above h,
we complete the sequence with a succession of 05,. In both cases, we have Crowny(T) € Te.
We extend the definition of Crowny (7)) to cases where h ¢ H(T) by Crowny(T') = (0p)nen+
when there are no points strictly above h (T' = () or supy H < h), so the crown holds no
branches at all and by Crowny(T") = (7,04, ...) when ming H > h (all the points of T are
above h, so there is a single branch which is rooted strictly above level h). Note that in this
last case, Crowny,(T') € X2, \ T¢ because miny H # h. Thus, (h,T) — Crowny,(T') is defined
from R x T to X2..

Proposition |4.3.11| The function (h,T) — Crowny(T) is measurable.

The main result on operations concerns the grafting of a crown on a tree. Since our trees
are defined up to an isometry, we cannot indicate the location of the grafting through a point,
so we have to graft the branches of the crown at random according to a probability measure
on the receiving tree.

This means that the resulting grafting is the law of a random tree. For (T,d, H,v,p)
a measured height-labelled tree equipped with an additional probability measure p concen-
trated on H~1({h}) for some h € H(T), T" another measured height-labelled tree containing
at least one point at height h, we take a representative (T},,dy, Hy, Vn)nen+ of Crowny (T7)
and (X, )nen+ an 1.i.d sequence of random variables in 7' with marginal law p. Note T %, T"
the grafting of each T}, at the point X,, € T, equipped with distance d’ and label function
H'. Set v/ = v+ 3, v, and note Pr, 7 the law of (T'x, T',d', H',V', p). We equip the set of
all probability measures over (XS ,dpcrp) with the Prohorov distance, and have

Theorem and Proposition The mixing operation ((T,p),T") — Pry,1
gives a well-defined probability measure, independent of the choice of representative for T'

and Crowny(T"), and is measurable from its domain D C T x T to T, where TI? is the
genealization of (T, dpgup) to height-labelled trees equipped with two measures. D is a Borel
set of TR x T.

These results complete Abraham, Delmas & Hoscheit [2], where the grafting operation
was not proven to be measurable.

2.6 Brownian tree conditioned on its local time

2.6.1 Aldous’ construction, using coalescing particles

In [7], Aldous presents a law for the standard Brownian excursion conditioned on its local
time. To build this law of the tree for a given local time (I(h))n>0 (which must be the density
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of a probability measure since the excursion is defined on [0,1]), he first creates n € N* leaves
at random i.i.d heights (with density I(h)dh), and builds a coalescent from them (each couple
of branch coalesces at rate ﬁdh) to obtain a tree T'. He finds that the sequence (T%),en=

converges to a random tree T', then proves it is the Brownian tree conditioned on its local
time(Construction 1 and Theorem 2 respectively in Aldous [7]).

This tree can be interpreted as the limit of Wright-Fisher genealogy with varying popu-
lation size. For constant population, this limit is given by the Fleming-Viot process. Note
that this genealogy can be build with a look-down process which is similar to the approach
of Aldous. This means that Aldous’ construction with varying coalescence rate can be repro-
duced with a simple time-change of the Fleming-Viot genealogy. See Birkner & al. [13] for
results on time-changes of coalescents.

2.6.2 An attempt at generalization

We mean to extend the previous construction to a further class of laws. Rather than charac-
terizing our trees by the local time [, we use a coalescence measure p (which plays the role of
ﬁdh} and a mass measure v, whose only purpose is to decide the mass repartition on the
tree. To define the tree, we mix coalecents at rate u, starting at different levels. This poses
no problem when mixing a finite number of coalescents, and we use the convergence in law of
the random trees to build a limiting tree. We prove that the limiting tree is independent from
the sequence used to build it in Lemma We prove a weak regularity for the measures
of the coalescent in Lemma [5.4.3] which is a step toward equipping the tree with an intrinsic
probability measure almost-surely at almost-every level.

An approach with time-change may be possible, and a simpler way to derive stronger
properties from the original object (continuity in h of the measure at level h for example).

2.7 Motivation and perspectives

In Depperschmidt, Pardoux & Pfaffelhuber [21], we see a process generalizing the ARG from
Durett [26] for an infinite number of individuals living at the same time. We aim, in future
works, to do the same for entire genealogical trees.

Note that for every locus ¢ on the chromosome, the ARG gives a coalescent tree, so we
can also see the ARG as the family of those trees. This approach is easier to generalize to a
limit where the sample size is equal to the population size. In [2I], such a generalization is
given, through a distance on a set of individuals (the leaves of Kingman’s coalescent). Our
main perspective is to generalize the ARG to encompass all of the genealogy, past and future
in a T-valued process (1})icr, (see Figure for the discrete version, where the parameter ¢
is the position on the chromosome). Here, we give a sketch of the constructions and proofs.

The construction of the process (13, ds, Hy, vt)ier, , described in the next paragraph, re-
quires an initial random tree equipped with probability measures at almost-every levels (a
paper is in progress to provide a Polish space adapted to such an object). To ensure that it
stays a tree at every time, we need, in a number of proofs, to have a stationary and reversible
process, so the initial law needs to be a stable law. The Brownian tree conditioned on its
local time, and our generalization, happen to be stable laws (there may be others).

The idea, conditionally on (1o, do, Ho, (Vi )her (1y)), then to code all the jumps of (T})ier,,
through triplets (u,v,t), for a cut at the point u, regraft at the v, ¢ beeing the time of the
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jump. We take a Poisson process X on Ty x Tp x Ry with intensity A(du)vg(,)(dv)dt at
the point (u,v,t), where A is the length measure of Tp. A potential difficulty is that A is
often infinite, so we have to be prepared for infinitely many jumps in any time interval. This
is not a problem, as we can directly build the tree T3 from Tj and the Poisson process X.
Since height-labelled trees can be characterized indifferently by the distance or its genealogical
order, changing the genealogical order is equivalent to changing the distance (this equivalence
is proven in Proposition of the present thesis). Seen in Tp, the ancestral line of a point
jumps each time it meets a cutting point u such that (u,v,s) € X and s < ¢. Almost-surely,
this does not happen too much since the distance between two cutting points follows the
exponential law of parameter 1, so the ancestral line is well-defined. To get the distance d;
between two points x and y, follow their ancestral lines to their common ancestor x A y and
define d(z,y) = H(x) + H(y) — 2H (z A y). This works almost-surely for almost-every point
in Ty, but not for all. Thus, Ty is cut in a jigsaw that leaves a negligible set of points out,
and completion is necessary at each time.
At this stage, there are many questions about this process:

pending questions :

e is T} is a random variable?

e is the process Markov?

e is the process stationary and reversible?

e is almost-surely, T} stay always connected?
e is the process cadlag for digup?

e at any time t € Ry, does each piece of the jigsaw (the connected component of T’
without the cutting points) have positive measure for [p v,dh?

o if we take an entire level (or generation) h, and look at their ancestors at height h — ¢
in all the trees (T's)p<s<¢, is the number of ancestors is finite (this has a meaning since
almost all points in (T%) are points of Tp) 7

Our conjecture is that the answer to all those questions is yes.
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Chapter 3

Topology on measured labelled
metric spaces

In this chapter, we develop a distance on a new class of decorated metric spaces, the measured
labelled spaces, which will be needed in Chapter The interest here is to describe and
compare metric spaces such as the tree with stationary quadratic branching process, which
is not rooted but has a natural time direction. In this sense, we could say that it escapes
the scope of [I] and [43]. To encode the time direction, we use a map, called label or height.
This chapter deals about general metric spaces, while trees will be looked at in more details
in Chapter

3.1 Definitions

3.1.1 Labelled Spaces

We call M the class of all separable metric spaces. All the elements (Z,d) € M are equipped
with their Borel o-field #(Z). For (E,dg), (F,dr) two separable metric spaces, we define
Iso(E, F) the set of all isometries from F to F. The set Iso(E, F') can be empty and the
isometries are not necessarily surjective. If v is a measure over F, ¢ a measurable function
from E to F and f a measurable function from E to Ry, we note ¢v or ¢(v) the image
measure on F' of v through ¢ and f - v the measure that has density f with respect to
v. In the case of the indicator function of A € ZA(FE), we have for every B € #(E) and
¢ € Iso(E, F) that

v(B) = ¢v(¢(B)) ; [1a-v|(B) =v(ANB); ¢p[la-v] =1Ly - (¢v). (3.1.1)

We call labelled metric space any triplet (E,d, H), where (E,d) is a complete separable
metric space and H a 1-Lipschitz map from E to R. For (E,d, H) a labelled metric space
and for h € R, we set

Slicep(E,d, H) = {x € E||H(x)| < h}.

The set Slicey(E, d, H) is equipped with the restriction of d to form a labelled metric space.
We say that a labelled metric space (E, d, H) is S-compact if for every h € Ry, Slice,(F,d, H)
is compact.

25
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We call measured labelled metric space any (E,d, H,v) where (E, d, H) is a labelled metric
space and v a non-negative measure on #A(E) such that for all h € R:

v(Slicen(E,d, H)) < oc.

Recall that a Borel measure is a measure defined on the Borel o-field such that all the compact
sets have finite measure (as in Definition 25.2 in [I0]). Since for every compact K C E, H is
bounded on K, so v(K) < oo, we deduce that v is a Borel measure.

For (E,d, H,v) a measured labelled metric space and h € R, we define Slicey,(E, d, H, v)
by equipping the already defined Slice,(E,d, H) with the restriction of v to form a mea-
sured labelled metric space. We will often use the abusive notation E to designate (F,d, H)
or (E,d,H,v). In Sections to we will use the more convenient notation E; =
Slicey(E,d, H,v) for every measured labelled space (E,d, H,v) and h € Ry.

Remark 3.1.1. Here are some examples of S-compacity.

o If we take (7', d,v) the Brownian tree with its mass measure, w € T and H the function
from T to R defined by H(z) = d(w,z) for x € T, then (T,d, H,v) is a measured
labelled set, and it is S-compact since the Brownian tree is compact.

e There are S-compact spaces that are not compact, like (R, dg,Idgr), with dg the Eu-
clidean distance on R.

e The notion of S-compactness is stronger than local compactness. We give an example
of locally compact labelled metric space that is not S-compact. Take E = (R4 x {0})U
(N x Ry), and define, for every (z,v), (2',y) € E, H(z,y) =y — x and

N |y_y/’ if z =2
d((m,y),(:l:,y))—{ |z —2'|+y+y if x#a.

The function d is sometimes called the comb distance on R?. The space (FE,d) is
separable, complete, locally compact and H is 1-Lipschitz, but Sliceg(E) = {(n,n)|n €
N} is not compact, so E is not S-compact. See Figure for a representation of
(T',d, H) with some distinguished points of T'.

H

Figure 3.1: This comb-tree is locally compact, but is not S-compact as a labelled metric
space.
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Definition 3.1.2. We note X the class of all measured metric labelled spaces. We say that
two measured metric labelled spaces (E,dg, Hp,vE) and (F,dp, Hp,vF) are equivalent if there
exists a bijection ¢ € Iso(E, F) such that Hg = Hp o ¢ and vp = ¢vg. We note X the set of
all equivalence classes in X. We note X0 = {E € X|V(E,d, H,v) € E,v(E) =0} (here only,
E is the equivalence class containing E) the set of all classes of metric labelled spaces up to
equivalence, seen as measured metric labelled spaces with the null measure. We note XX and
XOK the restrictions of X and X° to compact spaces, X° and X°° the restrictions of X and
XY to S-compact spaces.

3.1.2 Distances

For (Z,d) a metric space, we define the e-closure and the e-neighborhood of a set A C Z as
A® ={x € Z|d(z,A) <e} and A° = {z € Z|d(x,A) < }.

We now introduce the Prohorov distance, which can be found in Section 6 of [12], along
with a proof of Lemma [3.1.5]in the special case of probability measures.

Definition 3.1.3 (Prohorov distance). Let (Z,d) be a separable metric space with B = B(Z)

its Borel o-field, and v, V' two finite non-negative measures over Z. We define déz’d)(l/, V)
the Prohorov distance between v and V' as

ay" ()
= inf{e > O|VA € B,v(A) <V'(A® )+ e} Vinf{e > 0|VA € B,V (A)
/

V(AT )+ e}
= min{e > 0|VA € B,v(A) <V (A°) + e} Vmin{e > 0|VA € B,V (A) <v

<
< p(A%) + €.

When the choice of the underlying metric space (Z,d) is clear, we use the notation dp.
Note that for A C B C Z two Borel sets we have

dp(la-v,1p-v) =v(B\ A). (3.1.2)

Remark 3.1.4. In Definition [3.1.3] we give two expressions for the Prohorov distance. The
first one is standard and a close look at the second one shows that they are equal. We still
need to prove that the minimum exists in the second equality of Definition Set 0 =
inf{e > 0|VA € B,v(A) < V' (A%)+e}. For every A € £ and £ > § we have v(A) < V' (A%)+e.
Since A% is closed and equal to the intersection N.-5A®, we have by dominated convergence
that
! Az‘S — L / A°
vi{AT) = lim v{A°),

so v(A) < V(A% 46 for every Aie. § € {e > 0VA € B,v(A) < V/(A%)+¢}, so the minimum
exists. O

To avoid proving v(A) < V/(A°) + ¢ and v/'(A) < v(A®) + ¢ each time we need an upper
bound of the distance, the next lemma provides a shortcut. We use for z € R the notation
()t =2 V0 =max(z,0).

Lemma 3.1.5. If v,V are two finite non-negative measures over a metric space (Z,d) such
that for some ¢ > 0 and every Borel set B C Z we have v(B) < V/(B?) + ¢ then dp(v,V') <
e+ (V(2) - v(Z)*.



28 CHAPTER 3. TOPOLOGY ON MEASURED LABELLED METRIC SPACES

Proof. First, notice that for n > ¢ and every Borel set B C Z we have v(B) < V/(B" ) + 1.
Take B € #(Z). We have BC Z\ (Z\ B" )" so

V(B) <V(Z2) =V ((Z\B" )" ) <V(Z) = v(Z\B" ) +n=1V(2) - v(Z) +v(B" ) +n,

where we used the hypothesis: v(Z \ B" ) < V' ((Z\ B" )" )+ n for the second inequality.
This proves that dp(v,v') <n+ (V' (Z) — v(Z))* for every n > e so dp(v,V) < e+ (V(Z) —
v(Z)T. O

If v(Z) = V'(Z), then, using Lemma we get that the two infimums in the definition
of the Prohorov distance are equal and we have with Remark

dp(v,V') = min{e > 0|VA € B(Z),v(A) <V'(A°) +¢e}
=min{e > 0|VA € B(Z),V (A) < v(A®) +¢}.

The next lemma links the distance of two measures and the distance of their restriction
to a smaller set.

Lemma 3.1.6. Let (Z,d) be a separable metric space, v, V' two finite non-negative measures
over Z and o > dp(v,v'). Take H a 1-Lipschitz map from Z to R and set for every h € Ry
Zy ={z € Z||H(z)| < h}. In this setting, we have for every h € Ry :

dp(1z, v, 1z, V) <a+ (V' (Znta) —v(Zn))".
Proof. Take A € #(Z) a Borel set. Since H is 1-Lipschitz, (Z;)* C Zp4+q and we have
v(ANZy) <V((ANZp)*) + a < V(AN Zpia) + o
With Lemma this gives dp(lz, - v, 1z,,, V) < a+ (V(Zhia) —v(Zn))". O

Definition 3.1.7 (Hausdorff distance). Define dy(K, K') the Hausdorff distance between two
compacts sets K, K' of a metric set (Z,d) as

du(K,K') =min{e > 0|K C (K')*, K' C K}
= in d(z,’ ind(z', z)).
Uhee e A e )V (g g A7)

By convention, we consider that () is a compact set, that dg(0,0) = 0 and that for every
non-empty compact K we have dy(K,0) = oo. As with the Prohorov distance, we will use

the notation d%Z’d) when the underlying metric space is not obvious.

For a proof that dy is a distance see Chapter 4| of [60].
For (E,dp, Hg) a metric labelled space, (Z, d) a metric space and ¢ € Iso(E, Z), set  x H
the function from F to Z x R defined by

[¢ x Hg)(z) = (¢(z), Hp(x)).
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Definition 3.1.8. Let (E,dg,Hg) and (F,dr,HF) be two compact metric labelled spaces.
We define:

dGH((E7dEa HE)> (Fv dFa HF))

B (z,fzrzlfem [ maxmin (dz(6(2), o (y) V [He(w) — Hr(y))

¢p€lso(E,Z)
¢r€lso(F,Z)

v maxmin (dz(66(x), or (1) V | Hp(w) = Hr(y)])].
yeF zek
This definition is very close to that of the Gromov-Hausdorff distance, with the additional
term |Hp(x)— Hp(y)| to check whether the labels of the two spaces are close from one another.
Note that if we set d7, the distance on Z x R defined by

dy((z, ), (2 ) = dg(z,2)V|h — ], (3.1.3)
we get
a2 (o x Hp)(E), [pr x Hp](F))
= [ maxmin (dz(05(2). 05 (v)) V [Hp(2) ~ Hr(y))

vV I;lea;( gélg (dz(¢E(z), ¢r(y)) V|Hp(x) — HF(?J)’)}

This provides a more compact formulation for the next definitions:

. ZXR,d%
den((E,dp, Hg), (F,dp, Hr)) = inf _ do %) (|
(Z,dz)eM
or€lso(E,Z)
¢r€lso(F,Z)

o x Hpl(E), [¢pr x HF](F)).

The construction of d7, will occur again on different distances. From now on, adding a star
to a distance will always refer to the construction done in (3.1.3)).

Definition 3.1.9. Let (E,dg,Hg,vg), (F,dp, Hp,vp) be two compact measured labelled
metric spaces, we define:

dGHP((EvdE7HEaVE)a (F7 dFv-HFaVF))

) R,d*
= it max (diy 0 ((gp x Hp)(B), [6r x HF)(F)).
(Z,dz)eM
¢p€lso(E,Z)
¢r€lso(F,Z)
ZxXR,d%
A ) ((6p x Helve, [oF x Hrlvr) ).

For two compact measured labelled metric spaces (E,dg, Hg,0) and (F,dp, Hp,0) with
the null measure, we have that

dagup((E,dg, Hg,0), (F,dr, Hp,0)) = dgu((E,dg, Hg), (F,dr, Hr)).

To define the next two symmetric functions from Definitions [3.1.11] and [3.1.12] we need the
following lemma, which is proved in Subsection . Recall that Ej, = Slice,(E,dg, Hg,vE).
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Lemma 3.1.10. For (E,dg,Hg,vE), (F,dp, Hrp,vr) two S-compact measured labelled met-
ric spaces, the maps

h — deu(Ep, Fr) 5 h— dgup(En, Fp)

are measurable.

Definition 3.1.11. Let (E,dg, Hg) and (F,dp, Hr) be two S-compact metric labelled spaces,
we define:

dLGH((Ea dE,HE), (F, dF,HE)) = /0 (1 A dGH(Eh, Fh)) e_hdh.

Definition 3.1.12. Let (E,dg,Hg,vg), (F,dr, Hp,vr) be two S-compact measured labelled
metric spaces, we define:

dLGHP((E7 dE7 HEa VE)a (F7 dFv HFa VE)) = /0 (]- A dGHP (Eh7 Fh)) e_hdh'

Note that for (F,dg, Hg,0) and (F,dp, Hp,0) two S-compact measured labelled metric
spaces equipped with the null measure, we have digup(F, F) = digu(E, F).

The purpose of dgy, daup, drcu and drggp is to adapt the Gromov-Hausdorff and
Gromov-Hausdorff-Prohorov distances introduced in [39] and [36] to compact and S-compact
measured labelled metric spaces. This adaptation follows the one developed for rooted
length spaces in [I], only replacing the balls (centered on the root) of a rooted length
space by our compact slices. This replaces the condition “locally compact rooted length
space”, by “compact slices”, but most of the proof still follows the same logic. Choose
d € {dgu,dcup, dLcn, dLcup} and E, E', F, F' four measured labelled spaces such that F
and E’ are equivalent, F' and F” are equivalent and d(E, F') is defined. From the definitions of
dcu ,dgup, drcn and digup, we find that d(E’, F’) is defined and d(E, F) = d(E’, F"). This
means that d is constant on equivalence classes, so we can consider dgu, dggp, drgu and
drcup as functions on (X%%)2 (XK)2 (X0%)2 and (X*)2 respectively. Moreover, dgu(F, F)
is the restriction of dgup(E, F) to XX and dpgu(E, F) is the restriction of dpqup(E, F) to
X059,

Now, we state one of our main results.

Proposition 3.1.13. We have that:
o dam is a distance over XOK
o damup is a distance over XX,
e dicn is a distance over X9,
e dicup is a distance over X°.

We will prove Proposition [3.1.13]in Section
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3.1.3 Proof of Lemma B.1.10

For (E,dg,Hg,vg) and (F,dp, Hp,vF) two S-compact measured labelled metric spaces,
set D(E, F') the set of all distances d on the disjoint union F'UF such that for every x,2’ € F,
v,y € F, d(z,2") = dg(z,2") and d(y,y") = dr(y,y’). We recall that for every h € R, we
note Ej, = Slice,(E). Note dr the Euclidean distance on R. For d € D(E, F), h € R, we
define

Au(E, F,d, h) = d\FFRNE) (119, « Hy)(Ey), [Idp x He(Fp))

and
Ap(E, F,d, h) = d\PHERNE) (10,0« Hp)(1, - vg), [Idp x Hp](15, - vE)).
We begin with 3 intermediate lemmas.

Lemma 3.1.14. If E and F are S-compact measured metric labelled spaces, then we have

deup(Ep, F) = deﬂ)i>?Ef . Au(E,F,d,h) vV Ap(E, F,d,h).

Proof. Let us note A = daup(Er, Fj) and A" = infyep g py Au(E, F,d,h) V Ap(E, F,d, h).
If B, or Fy, is empty, we refer to the convention for dy adopted in Definition [3.1.7] and find
that we have for every d € D(E, F):

A =Ay(E,F,d,h) = Ap(E,F,d,h) =0 when E}, = F}, = (),
A =Ag(E,F,d,h) = c0 when only one is empty.

This proves the lemma in those cases. We suppose from now on that Ej and F} are non-
empty, so that A and A’ are finite. Since for every d € D(E, F), G = (EUF,d) is a separable
metric space and Idg, , Idp, are isometries of Iso(E}, G) and Iso(F}, G), we naturally have
A <A

Choose € > 0. Take (Z,dz) € M, ¢ € Iso(E}, Z) and ¢p € Iso(F}, Z) such that

A7 (65 x He)(By), [éF x Hel(F) < A+e,
dEDZXR’d}) ([¢E X HE}(lEh : VE)a [(bF X HF}(th ’ VF)) < A+e.

Consider A = {(z,y) € Ep X Fy|dz(¢p(x), or(y)) V|Hp(z) — Hp(y)| < A+e¢}, and define d’
the symmetric function on E U F such that for every z,y € EU F,

dE(xvy) if z,y € E
d(x,y) =1 dr(z,y) if x,y e F
inf(,r yealde(z, o) +dr(y',y)] + A+e ifzc B,y € L.

The function d’ is symmetric definite-positive. Let us prove it satisfies the triangular inequal-
ity. f x,y,2 € E or z,y € E z € F, then we simply obtain d'(z, z) < d'(z,y) + d'(y, 2) from
the triangular inequality of dg and the definition of d’. If x,z € E, y € F, then, using the
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triangular inequalities of dg and dr we get

d@y)+dy2)=_ of = [deo(2)+dp’ 2]+ [de,y) +dry.y")] + 24 +e)
> inf dg(z,2) —dg(2',2") + drp(y',y") + 2(A + ¢)

(x/7yl)7(xl/7yll) EA

=dp(z,2) +2(A+e)—  sup  d(ép(a’), op(z")) — dér(y), ¢r(y"))

('Z/7yl)7(x//7y//) EA

> dE(x7 Z) + Q(A + 6) - sup d(¢>E($/)7 ¢F(y/)> + d((bE(x//)a ¢F(y//))
('), (2" y")eA

> dE(.’L',Z)-

The last inequality follows from the definition of A. Using those three cases, the symmetry
of d and the fact that £ and F play symmetric roles, we have the triangular inequality.
This implies that d’ is a distance and d’ € D(E, F). We deduce that A" < Ay(FE, F,d',h)V
Ap(E,F,d',h). Since for every z € E, y € F we have

(d'(2,9) <A+e) & (2,y) € A (dz(dp(x), 6r(y) V [Hp(z) — He(y) < A+e),
we deduce from the conditions on Z, ¢, ¢ that
Au(E,F,d',h) < A+¢ and Ap(E,F,d,h)<A+e.
This shows that A’ < A + ¢. Since A < A’ and ¢ is arbitrary, we must have A = A/, O
Corollary 3.1.15. If E and F are S-compact metric labelled spaces, then we have

dGH(Eh7Fh) = dE[Di)?lg F) AH(E’a F.d, h)

Proof. Simply note that we can consider E¥ and F' as measured labelled spaces equipped with
the null measure, and that dgy(E}, Fr) = daup(En, F},) for spaces with the null measure.
This gives

deu(En, Fy) = dgup(En, Fp) = inf  Ap(E, F,d,h) vV Ap(E, F,d, h)
deD(E,F)

with Ap(E, F,d, h) = 0. O

Lemma 3.1.16. If E and F are two S-compact measured metric labelled spaces and d an
element of D(E, F), then h — Ang(E, F,d,h) and h — Ap(E, F,d,h) are right-continuous
functions.

Proof. Step 1: We prove that h — Ap(FE, F,d, h) is right-continuous. For Ap(E, F,d, h), we
can use the triangular inequality. For 0 < h < h/ we have:

|Ap(E, F,d,h) — Ap(E, F,d, /)|

<dg™" RN (Tdp x Hp)(1p, - ve), Idp x Hel(1s,, - vE))

n d%)EUFXR,d\/dR)([IdF X Hpl(1p, - vp), [Idp % HF}(lph, “VF))

=ve(Ep \ Ep) +ve(Fp \ Fp).
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We used Equation (3.1.2) for the last line. We deduce that Ap(FE, F,d, -) is right-continuous.

Step 2: We prove that the function h — Ag(E, F,d,h) is right-continuous. Consider
hg = ming |Hg| € [0,00] and hy = ming |Hp| € [0,00]. We have Ay(E, F,d,h) = 0 for
h € [O,hE A hp) and Ag(E, F,d,h) = oo for h € [hE A hp,hg V hp), so Ag(E, F,d,-) is
right-continuous on [0,hg V hr). This covers the case where E or F is empty, so we can
assume that hg V hp < co. For x € E,y € F, note d*(x,y) = d(x,y) V |Hg(x) — Hp(y)|. We
now prove that the function defined by

. *
0p.ra(h) = max min d*(z, y)

is right-continuous on [hgVhp, c0). Set € > 0. Since the slices of E are compact by definition,

E is the union of a non-decreasing sequence of compact sets, so we can choose a locally finite

partition (B;);es of E (that is, such that every bounded subset A C E only intersects a finite

number of elements of the partition) such that for every i € I, diam (B;) < . Now, for

every i € I, choose z; in the adherence of B; such that |Hg(z;)| = infp, |[Hg|. We have

En CU ier B;. We deduce, with d*(x, Fj) = mingep, d*(z,y), that
.Z'iEEh

o, rd(h) > max d* (s, Fp),
m:gEh

and

6E‘,F,d(h> < I?GaIX d*<$z‘, Fh) + sup [dE(x, .%'l) V ’HE(.%') — HE(m‘Z)H

z,€Ep z€B;

< max d*(z;, Fp) + ¢,
el

T, €Ep
where the last inequality comes from the diameter of each of the B; and the fact that Hg is
1-Lipschitz. The function h — d*(z;, F},) is cadlag. The set {i € I|x; € Ej} is finite and the
map h+— {i € I|x; € Ep,} is piece-wise constant, right-continuous and non-decreasing. Thus,
the function

h — max d*(x;, Fy)
el
(EiGEh

is right-continuous. It follows that dg 4 is the uniform limit of right-continuous functions,
0 0 Fq is right-continuous. This implies that Ag(E, F,d,h) = 6g pa(h) V 0r gq(h) is right-
continuous over [0, 00). O

The following lemma is similar to Theorem 4 and Proposition 1 in Chapter IV Section 6
of [14], stating respectively that the lower bound of a collection of non-negative continuous
functions is upper semi-continuous, and that upper semi-continuous functions are measurable.

Lemma 3.1.17. Let (f;)icr be a collection of right-continuous functions from an interval
D CR toRy. We set f=inf; f;. Then the function f is measurable and for every h € I,

f(h) > limsup f(y).

y—ht
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Proof. For x € D, € > 0, take i € I such that f;(z) — f(x) < e. Since f; is right-continuous
and f < f;, we have

lim sup f(y) < yl_i>r;1+ fily) = filz) < f(x) +e

y—axt

s f(z) > lmsup, .+ (3).
Now, take h > 0 and let us prove that A = {x € D|f(z) < h} is measurable. Suppose
that A is non-empty. For every xz € A, if x is not the maximum of D we have

f(z) = limsup f(y),

y—axt

so there exists &’ > z such that for every y € [z,2'], f(y) < h. It follows that [z,2'] C A. We
deduce that AN (—o0o,sup D) is a union of disjoint intervals. The union is at most countable,
so A is measurable. O

We now give the proof of Lemma 3.1.10} Using Lemma[3.1.14] and its Corollary [3.1.15|we

see that for every h € R4 we have

dGHP(Ethh) = dE]I%)I(lEf' F) AH(E7F7 d, h) v AP(E7 F.d, h)a

E, F)= inf Ag(E,F .
dGH( h» h) dEH%)?E,F) H( ) 7dah)

Lemma [3.1.16 tells us that h — Ap(FE, F,d,h) and h — Ay(E, F,d,h) VvV Ap(E, F,d,h) are
right continuous, so, using Lemma [3.1.17] the functions

h— dGH(Eh7 Fh) and h+— dGHP(Eh7 Fh)

are measurable. O

3.2 Proof of Proposition |3.1.13

We prove in this section that dgg, doup, diga and dpggp are distances. The symmetry
of dgy, digH, dgup and drgpyg is obvious from the definitions. To complete the proof of
Proposition we shall prove the triangular inequality in Lemma and that they are
positive-definite in Lemma Since dgy is the restriction of dggp to X%X and digp is
the restriction of drgup to X°°, we limit ourselves to the study of dgpp and dicmp.

Remark 3.2.1. (A) We we will prove, on several occasions, results of the type A C B* for A,
B parts of some metric space (Z,d) and € > 0. Note that since () C ()* C B, we can suppose
A # () whenever it suits us. It follows that a proof of the form “Take x € A, ... , we have
found y € B such that d(z,y) < e, so A C B®” is always valid.

(B) The same holds when proving dy (A, B) < ¢, we can apply this remark to both A C B®
and B C Af to obtain the result.

(C) In a more general manner, recall that when proving results of the form “for all z € A,
we have...” it does not matter if A is empty.
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3.2.1 Triangular inequality

We first introduce a construction to “glue” two metric spaces. The construction is used
explicitly in the proof of the triangular inequality, and similar constructions are used in the
proof of the positive-definiteness and for the completeness in Section

For (F,dr),(Z,dz),(Z',dz) three separable metric spaces, and ¢ : ' — Z, ¢ : F' — Z'

two isometries, we set Z the disjoint union of Z and Z’ and d the symmetric function from
Z? to R, such that

dZ(x7y) if T,y € Z
d(l’,y) = dZ’(may) if T,y € A
inf.erdz(z, ¢r(2)) +dz/(¢p(2),y) if v€ZyeZ,

with the convention inf,cy(-) = oo if F = .

The function d is symmetric and satisfies the triangular inequality. We define Z” the
quotient of Z by the equivalence relation d(x,y) = 0 (for z,y € Z) so that (Z”,d) is a
separable metric space. We write Z Ug Z' = (Z",dzn). There are two canonical isometric
embeddings, from Z to Z” and from Z’ to Z”, which are the projections on the quotient Z”
of the inclusions Z C Z and Z’ C Z. This is a classical construction and can be found, in
explicit and implicit forms throughout literature.

Lemma 3.2.2. The triangular inequality holds for dgup and dramp.

Proof. Let us begin with dgup. Let (E,dg, Hg,vEg), (F,dr, Hp,vr), (G,dq, Hg, va) be three
compact labelled measured metric spaces, (Z,dz), (Z',dz/) two separable metric spaces, and
four isometries ¢p : E — Z;¢p : F — Z;¢)p 1 F = Z'5¢5 - G — Z'. Set Z" = Z Ugp g, 4
and p: Z — Z", p' : Z' — Z" the canonical isometric embeddings of Z and Z’ into Z”.

(5] p
FE Z zZ"
OF 4
F— 2
F
o
G

Figure 3.2: Diagram of the embeddings into Z”.

The diagram of Figure commutes, as we have p o ¢p = p' o ¢ by definition of Z”.
Recall the notation of d* from Equation (3.1.3). Since p and p’ are isometries, we can use
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the triangular inequality for d%Z”XR’d*) to obtain

a7 ) ([(po dp) x He(E), (0 o ¢5) x Ha(G))
< dZ"® ) ((po p) x Hg|(E),[(po ¢r) x Hp](F))

+dE R (o 0 ¢lp) x He)(F), [( © ¢1z) x H)(@))

— dV " ((9p x HE)(E), [6p x Hp](F))

+d R (16 x HE(F), [0 x HE)(G)).

The same holds for d;z XRd*z"):

(2" xR,d?%,,)
dp 2" ([(po ¢p) x Helvm, (5 o ¢z) x Hlve)
R,d
< dZ®D (b x Hglug, [or x Helvp)
(Z'xR,d,)

+dp (¢ x Hrlvr, (¢ x Helva).
Getting the infimum over Z, Z', ¢p, ¢r, ¢» and ¢ implies the triangular inequality for
dggp. This in turn implies the triangular inequality for drcup. ]

3.2.2 Positive-definiteness

We prove that doggp and diggp are positive-definite. Recall the equivalence relation from
Definition and the notation Ej, = Slicep,(E) for any measured labelled metric space E.

Lemma 3.2.3. Let (E,dg, Hg,vg) and (F,dp, Hrp,vr) be two S-compact labelled measured
metric spaces. If there exists an increasing sequence (hy)ren+ of positive real numbers such
that

lim h; = oo and dGHP(Ehk7Fhk) =0,
k—o0

then E and F are equivalent.

Proof. From a sequence of isometric embeddings of F and F, we will build an isometry p~!o¢
from E to F. We will show that it preserves the labels, then that it is a bijection, then that
it preserves the measure.

Step 1: building p~!o¢ that preserves the labels. Take (Zy, dg)ren+ a sequence of separable
metric spaces and (% )rens, (resp. (% )ken+) a sequence of isometries in Iso(Ey, , Zx) (resp.
Iso(Fp, , Z)) such that for every k € N*

1 (ZexRdy) o N
Lo a5 (6 < Hi) (B ). [0 x HEI(F,))
(ZikxRydy ) o N
Vv dp “([¢p x Hel(1g,, -ve),[¢F x Hp|(1R,, -vr)). (3.2.1)

Now, set Z’ the disjoint union of all the Zj, d the function from (Z’)? to R, defined by
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di(7,y) if z,y€Zy
d(z,y) = infxerhk d(z, qS’fE(m’)) +dp(d,y) + dk/(gi)%(y’),y) if ze€Z,yeZy.
yIEEhk,

Set Z the quotient of Z’ by the equivalence relation d(x,y) = 0. The metric space (Z,d) is
separable. For every k € N* note p; the canonical embedding of Z; in Z. For k € N*, z €
Ep, \ En,_,, we set p(z) = py o ¢¥(x). For every k' > k, x € E, we have d(¢% (2), o5 (z)) = 0
by definition of Z, so ppr 0 ¢% (x) = p(z). It follows that the restriction of p to each Ej, is an
isometry, so p is an isometry. On Figure[3.3|we see two diagrams summing up the construction.

Ep, —— Ep, — Epy — Ep, Fpy — Fpy — Fpy — Fp,
o5 0% o} ok, \ OF o% ot ok,
A 75 Zs3 Z E A Z 73 Z
3 k /P 2 3
2\ P/ X / / 5
A A

Figure 3.3: The left-hand diagram is commutative thanks to the definition of d, but the
right-hand diagram isn’t.

To simplify the expressions, we abusively use the notation (;5’1% for each embedding py o d)’} of
Finto Z, resulting in Figure

Fh1 th th Fy, N
% | o Bk,
dﬁm\
A
P
FE

Figure 3.4: The embeddings of (F}, )ren+ and of E into Z.

Now, define for every h € R.:

K, = p(Epsq) U ( U Qb%(Fh/\hk)) C Z. (3.2.2)

keN*

The image of a compact by a continuous map is also compact, so p(Exy1) is compact and
¢’}(Fh/\hk) is compact for every k € N*. Let us prove that K} is compact using the Bolzano-
Weierstrass characterization. If K}, is empty, it is compact. If not, let (x,),en+ be a sequence
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of elements of Kj. If an infinite number of terms are in p(Ejy1), then we can extract a
converging sub-sequence since p(Ejp11) is compact. If not, we can without loss of generality
choose (kp)nen+ a sequence of integers such that z,, € qﬁ]}" (Fhnny, ). I (kn)nens visits some
integer k an infinite number of times, then we can extract a converging sequence because
d)’}(Fh/\hk) is compact. If not, k;, goes to infinity and, with x,, € Fjap,, and , there
exists a sequence (Y, )nen+ of elements of p(E}y1) such that d(zy, y,) < é as soon a hg, > h.
Since p(Ep41) is compact, we can extract a converging sub-sequence of (yy, )nen+ and thus of
(2 )nen+- This directly implies that K} is compact.

The sequence (¢’})k€N* is equicontinuous and K} is compact, so the Arzela-Ascoli the-
orem gives us a sub-sequence that converges uniformly to an isometry over F}. A diagonal
extraction gives us a sub-sequence (qﬁlf;")neN* that converges uniformly over every compact
Fj, to an isometry ¢ : F' — Z.

Since E is a complete set and p is an isometry, the set p(F) is closed. Adding the fact
that d(¢%.(z), p(E)) < 4 for every k € N* such that hy > |Hp(z)|, we find that ¢ is actually
an isometry from F to p(FE). Taking k — oo in Equation , we have Hpop~lo¢p = Hp,
so p~! o ¢ preserves the labels.

Step 2: prove that p~! o ¢ is a bijective label-preserving isometry. We already know that

p~!o ¢ is a label-preserving isometry from F to E. Let us prove that p~! o ¢ is surjective.
For every y € E, consider ky € N* such that y € Ehko' With 1) there exists a sequence
(Tk)k>ko of elements of Fj, .1 such that d(¢%(zk), p(y)) < 4. Let us prove that (2, )nen- is
a Cauchy sequence:

dF('Tkn ; xkn/ )

d(¢ (zk, ), S5 (21, ,))
k

<d(¢f (x1,), p(y)) + d(p(y), O3 (xx,,) + d(d5 (zx,, ), S5 (z,,))
St s dR (@), o (o)
n n' mthk0+1

Since ((;Sl}")neN* converges uniformly over Fj, 1, the sequence (g, Jken+ is Cauchy and

converges to some limit x € Fjp, 41. Since (%) ren+ is equicontinuous, we have ¢(x) =

-1

lim,, gi)l;,” (zx,) = p(y), so ¢ is surjective, and p~" o ¢ is a bijective isometry from F' to E,

preserving the labels.

Step 3: p~! o ¢ preserves the measure. To ease the notations, we let go of the extraction
and from now on we suppose without loss of generality that (qﬁ’})kew converges to ¢ uniformly
over every compact Fj. Recall (and keep in mind for the rest of the proof) Equation
that will help us to handle the indicator functions and image measures. Take h € Ry. For
k € N*; such that hy > h + 1, we deduce from Equation that we have dp(gb’;;(thk .

VF)ap(lEhk : VE)) < %7 Y

45 (S (15, - ve), p(1g, - Vi)
<dZ2) (g (15, - vr), p(lE, - vE)) +d(ZdZ)(p(1Eh+% -vE),p(lp, - vE))

(B.dg)

<+ (I, - ve(2) - (ks - vel(2)) +d (1, - ve s, vm) (3:23)

ol el e

+ (vB(Byy 1) —vr(E0) "+ ve(Ey 1 \ By)
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where we used the triangular inequality for the first inequality. In the second inequality, we
applied Lemma [3.1.0] to the first term; for the second term, we used the fact that p 1s an

isometry. Note from Equation (3.2.1)) that for b < hy, [px Hg](Ey) C ([¢h x Hr|( Fhk ) , SO
for every x € Ej, C Ej,, there exists y € Fj, such that d(p(z), ¢%(y)) V |Hg(z) — Hp(y)| < 1.
We have |Hp(y)| < |Hp(z)|++ <h+fsoy€ Fl 4 1)ap, - Thus, we have

k

=

[p x Hg|(Ey) C ([¢f x HF](Fth%)) : (3.2.4)

We also have for h < hy, — 2:
vE(Epy 1) = [pvel(p(Eyy 1))
< 6By )
< vl (Fa)) + 1
< [Whvel (@5 (Fuya)) + 1

1

el

)+

ol

We used for the first equality, that dp(gZ)F(th -vr),p(lg,, -vE)) < 7 for the first

inequality, we derive from Equation (3.2.4)) that p(E), +E) C (¢f(Fy 2 ))% for the second, and
that Hp is 1-Lipschitz for the third. Combining this with Equation ([3.2.3) we get

2
45 (S (Lg, - ve), p(Lg, - vi)) < 7 tvr(E s N ) +vp(Byy L\ Er) — 0.

k—o00

Since (¢%)ren+ converges toward ¢ uniformly over Fj,, we have
Jlim & (¢ (1p, - vr), 615, - vr)) = 0.

We deduce that ¢(15, - vr) = p(1g, - vr). Since p is injective, we have [p~! o ¢]vp = vg. The
map p~! o ¢ is an isometry from F to E preserving the measure and the labels, so F and F

are equivalent. O

Lemma 3.2.4. The functions dgup and drggp are positive-definite.

Proof. Using Lemma we see that dgmp is a positive-definite over XX. For dramnp, take
(E,dg,Hg,vg) and (F,dp, Hp,vp) two S-compact labelled metric spaces with

dLGHP((EadEvHE7VE)7 (F7 dFaHF7VF)) =0.

There exists an increasing sequence of positive real numbers (hy)ken+, with limg_,o by = 00
such that for every n € N*, dgup(Eh,,, Fr,) = 0. Using Lemma we see that £ and F
are equivalent, so di,gup is positive-definite. O
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3.3 Polish spaces

The aim of this section is to prove the following main result:
Theorem 3.3.1. The metric space (X%, dyaup) is a Polish space.

Since digy is the restriction of di,gup to the closed set X% we get as a corollary that
(X039 dpqn) is Polish. Theorem is a direct consequence of the separability proved in
Lemma [3.3.3] and the completeness proved in Lemma [3.3.6l The demonstrations of those two
lemmas are close to the proof of Theorem 2.9 (ii) in [I], which states the same result for a
marginally different distance over the space of rooted locally compact length spaces. We do
not prove that (XX dggp) and (X®X, dgy) are polish, although the proofs should be very
similar to those for the Gromov-Hausdorff and Gromov-Hausdorff-Prohorov distances in the
more classical setting of metric (not labelled) spaces (see [39] and [36] for more details).

3.3.1 Separability

We first prove that (X%, dpqup) is separable with the help of a preliminary lemma. Recall
that Ej, = Slice,(E).

Lemma 3.3.2. If (E,d, H,v) is a compact measured labelled metric space, then for all e > 0
there exists a measure vx over a finite set X C E such that for every h € R

dH(Eh,Xh) V dp(lEh v, 1y, vx) <e.

Proof. For E = (), X = () and vy = 0 satisfies the condition of the lemma. Since F is
compact, v(E) is finite. Take ¢ > 0. For h € R,, define f(h) = v(Ep). The map f is
non-decreasing, cadlag and bounded by v(E), so we can choose k € N* and real numbers
0= ho < ... < hj; = oo such that for every integer 0 < j < k we have f(h;jy1) — f(h;) < 5.
Now, set (B, ..., By) a measurable partition of E such that for every 1 <i <mn,

<

e diam (B;) < 5,

e there exists 0 < j < n such that |H|(B;) C [hj, hjt1).

Since FE is compact, we can choose (z1,...,x,) € E such that for every i, z; is in the closure
of B; and |H (z;)| = infp, |H|. Set X = {z1,...,x,}. We have for every h € Ry, X, C Ej, C
(Xh)%, SO dH(Eh,Xh) < % Set

n

vVx = Z V(Bi) : 6961"

i=1
Take h € Ry and j such that h; < h < hjii. By choice of (hq, ..., hj) and monotony of f, we
have

€ €
vx(Bn) < sup f(0) < f(h)) + 5 < v(ER) + o (33.1)
t<hj+1
For any Borel set B C Ej, we have 1g, - v(B) < 1g, - vx(B?), so using (3.3.1) and Lemma
we finally obtain

g
dp(lEh -V, 1Eh . l/)() < 5 + Vx(Eh) — V(Eh) <e.
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Lemma 3.3.3. The space (XS, drcup) is separable.

Proof. Take (E,d,H,v) € X5. The space F is the limit of Ej, when h — oc. Since Ej, is
compact, the compact labelled spaces are dense in X°.

Using Lemma we find that for every measured labelled compact set (K, d, H,v) we
have a measure vx over a finite set X C K such that for every h € R,

du(Kp, Xpn) Vdp(lg, -v,1x, -vx) <€,

so dpcup(K, X) < e. This proves that the set of finite measured labelled spaces are dense in
X5,

Finite measured labelled metric sets can be approximated by finite sets with rational
distance, measure and labels. This provides a countable dense family, and we find that
(X5, dpgup) is separable. O

3.3.2 Completeness

In the next two lemmas, we build the limit of a Cauchy sequence in a simpler case where all
measured metric spaces (F¥)en- are already embedded in a single separable metric space
(Z,d) with a common 1-Lipschitz label function H. We will then go on and prove Theorem
B31

Let (Z,d) be a separable complete metric space, H a 1-Lipschitz map from Z to R and
(hi)ken+ an increasing sequence of positive real numbers with h; > 1 and limit +oo. Let
(F¥)ren+ be a sequence of closed sets of Z, (vF)ren+ a sequence of Borel measures over Z
such that Supp (v¥) C F*. For every k € N*,h € Ry set FF = Slice,(F*) and v} = Lpk - vk
We suppose that for every k € N*,h € Ry, FF is compact. This makes (F*,d, H,v¥) a
S-compact measured labelled space. Finally, we suppose that for every k € N* we have

1

k k
dH(F}]fk, Fh;j_l) \% dP(V;]fk, l/h:1> = 9kt

(3.3.2)
Take k € N* and h € [0, hx — 51, 2 € Fﬁ;g C Fytt. Since du(Ff, Fyt') < 5+, there
exists 2’ € F,’fk such that d(z,z') < Qk% Since H is 1-Lipschitz, |H(2')| < |H(z)| + Qk%
Thus, we have 2’ € F }’f R and we conclude that

ok

1

FFL c(FF AT, 3.3.3
e © g (3335)

With Remark [3.2.1(A), we see that the inclusion still holds when F) ::1 , is empty. Note
ok+1

that this result only supposes that H is 1-Lipschitz and a Hausdorff control for a bigger slice.
Similarly, we have for h € [0, hg] that

EF c (FkH 2FT
h C( (h+—2k1+1)/\hk)

By an immediate induction we see that for h € [0, h], k' > k, we have

’ K’ 1 ’ 1
Ff c (FFTL, Lok 35T C (FF E. 3.3.4
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Lemma 3.3.4. There exists a closed set E C Z such that (E,d, H) is an S-compact labelled
metric space and

lim du(FF, Ep)e™"dh = 0.

k—o0 Jo

Proof. Consider for h > 0 the closed set

1
Ew= (1 (Fa)F (3.3.5)
kEN* 2
he>ht spr

From Equation (3.3.3) we infer that the intersection is monotonic, that is, each term is a
subset of the previous. We set £ = Upcr, En)-

Step 1: we prove that E) is compact. We assume for this step that E,) # (0, since the

empty set is always a compact. Since F }’f L is compact, we can choose a finite covering of
ok
F ,’; 1 using balls of of diameter zik We denote by (21, ..., z,) their centers. Changing their
oF

diameter to 21%17 we get a covering of E(y), so E) is totally bounded. Since Ey is closed
and Z is complete, Ej) is compact.

Step 2: we prove that E(;) = Ej and deduce that E is S-compact. From the definition
of Eyy, we see that SUpg,, |H| < h, which proves the inclusion Ey C Ep. To prove

the other inclusion, take 2 € Ej C Uper, E(r), set h" = |H(z)| and take h' such that
z € Epy. We have h < SUPE,,,, |H| < h'. Take k such that hy > h' + 21@1+1- Since

1
z € Egy C (F;’furg)?ka there exists 2/ € F* | such that d(z, 2') < 2% As H is 1-Lipschitz,
ok

YRR
ok
we have |H(2')| < |H(z)| + 2% =n"+ 2% <h-+ 2% and 2’ € F}]f,,+i. Since h' > h” and the
ok
intersection in (3.3.5)) defining E3) is monotonic, see (3.3.3), we have
a1 1
RS ﬂ (F}]:,,_’_L)?k = ﬂ (F}]:,,_"_i)ﬁ :E(h”) CE(h).
2k ok
keN* keN*
hkzh/+2k1+1 hkzh”""gkl-u
We conclude that
By = Egu.

Since E;) = Ej, is compact by Step 1, (E,d, H) is an S-compact labelled set.

Step 3: we prove that
lim dy(FF, Bp)e™"dh = 0.

k—o0 Jo

Take 0 < € <1, hmax = 1 — log(e). Using Lemma we can choose a finite set X C Ej,_ .
such that for every h € [0, hmax],
dH(Eh,Xh) S E.

Now, consider k € N* such that hmax + 1 < hy, Ay = U.ex[|H(2)| — 3¢, [H(2)| + 5] and
h € [0, hmax — 1]\ Ag. Let us prove that dy(FF, Xp) < e + 2% Take 2 € X, C E. By

definition of E), there exists 2’ € F]f .1 such that d(z,7') < 2% Since H is 1-Lipschitz,
ok
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|H(2')| < \H(z)\—i—%k Since z € X}, and h ¢ Ay, we must have h—|H (z)| > 2% so |H(Z")] < h.

1
With this, we have 2z’ € Fff. We have proven that X;, C (FF)2F.
Since h € [0, hmax| C [0, b — 1], we have from Equation (3.3.4)) that

w"‘

EfF (Bpy 3 )2 (3.3.6)

Since h < hyax — 1, for every 2/ € F/f we can choose 2" € Eh+2ik such that d(2/,2") < 2% and
there exists z € Xh+ik such that d(2",z) < e, s0d(2/,2) <e+ Qik By definition of Aj and
2
by choice of h, Xh+ik = X}, so z € Xj,. We have for every h € [0, hyax — 1] \ Ag that
2

1
dH(F,f,Xh) < 27 + €.
With this, we get for every k such that hx > hyax + 1 and A € [0, hypax — 1] \ Ag that

1
dH(F’]lc’Eh) = dH(Fi]vah) + du(Xn, Ep) < oF + 2e.

If we take n the cardinality of X, this translates to
> 1
/ (1 A du(FY, Eh)) e "dh < / (o5 +2e)e "dh+ | dh+e (el
0 [0, 7max—1\Aj 2 Ay

1 2n
§(27+26)+27k+6.

This means that for every € > 0,

Jim sup / (1A di(Ff. Er)) e "dh < 3.
0

k—o00

O]

Recall that for every measured labelled space (E, d, H, 1) and h € R4 we note pp, = 1g, - 1.

Lemma 3.3.5. There exists a measure p over E such that

lim / dp (v, pup)e "dh = 0.
0

k—o0

Proof. Step 1: we build a family (y(5))ner, such that

o0

lim (LA dp(V;f, ,u(h)))e_h =0.

k—o00 .Jo
Take h € Ry and ko(h) = min{k € N*|h < hy—1}. For every k > ko(h), we have by Equation
(3-3.2) that

1
k k+1
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We have

1
k1 (k1 k k1 2k 1 k 1
v (Fh+2,€1+1> <v <<Fh+ . ) N Supp (V) | + SR

ok+1
T 1
ok k+1 2k+ k

ST

+

Since H is 1-Lipschitz, for every y € <F:i1k1+1 ) 7 A F* we have |H(y)| < h+ 5+ + 2,€1+1 =
2

h+2ikso

1
k+1 [ pk+1 k k+1 2k+1 k 1 k( k
v (Fh+2,§+1> sv <(Fh+2,§+1> ne ) + ok+1 sv Fh+2ik + ok+1
and we obtain by induction that for ¥ > k > ko(h):

1 / / 1
k k k k

This is equivalent to
1
k

L (Z2) +

V _— —_—
h+2—k 2k — h+2— oK’

(3.3.7)

The sequence (V¥ | (Z)+ &) is decreasing and non-negative so it converges for ever
q het L ok Jk>ko(h) g g g y
2

h € Ry, we set M (h) its limit. The function h V}]f a1 (Z2)+ 2% is right-continuous, so using
ok
Lemma we see that for every h € R,

M(h) > limsup M(y).

y—ht

Since M is non-decreasing, M is cadlag.
Using Lemma we find that for every k > ko(h) we have

1 +
k+1 k k k+1
dp <I/h+2k1+1,vh+21k) SW"" (Vh+211c(Z) _Vh+2k1+1(Z)>
< ! ko (g) 4 2 Kl (g 1AW
Somrt (e D+ 52) = W2, D)+ g

1 k 1 k+1 1
=gk T (%;,JZ) + 2k> - (Vh+ 1 (D) + 51 )

ok+1

where the equality comes from Equation (3.3.7). By induction, this yields, for every k' > k

' 1 1
k k k
dP(”h—l—Qlk’Vh—‘r;C,)§2/€+(Vh+2lk(Z)+2k>_M(h)k—_>>ooo'

This means that (uf’f et ) is a Cauchy sequence. Since (Z, d) is Polish, the space of finite
2k / keN*

measures over Z is Polish for the Prohorov distance. It follows that (V}]: et ) converges
2k / keN*
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to a limit py,) for every h € Ry, with p)(Z) = M(h). The map h V]];_L is measurable,
ok

so its point-wise limit h — p(p,) is measurable as well. By dominated convergence, we have

, > k —hgp
klirgo A (1/\dp<l/h+21k,u(h))>e dh = 0.

Since M is cadlag, we also have the dominated convergence

Jlim. OOO (1 A ( (h + 21k> M(h))) e hdh = 0.

Using these two limits, we have
- 1Ad vy, e_hdh
(e (v )
1 00 )
SQik + \/i <1 A <dP (Vflj7ﬂ(h2ll€)> +dP (’Lll(h;k)?:l'l’(h)))) e hdh
2
1 00 L L
Tf+/0 (1/\dp <Uh+21k"u(h)>)e dh
o 1
N / (1 . (M (h + k) - M(h))> e "dh,
0 2

Step 2: build p such that up = py) for almost-every h € Ry. We define p = supp,eg p(p)
which is a measure as the sequence (,u(h)) n>0 is non-decreasing. Let us prove that for every
h € Ry, un = p). We use notation from the proof of Lemma From Lemma we
deduce that

\)

which converges to 0.

lim inf dy (FF, Ej,) = 0

k—o0

for almost-every h € R, and Supp (I/h+i) C Ffleri' Therefore, thanks to (3.3.5), we get
ok ok

Supp (u(n)) C Eny = Ep. For almost-every h € RT, this gives pupy = 1g, -y < 1g, -1t = pin-
Conversely, take A’ > h. Define for every k € N* the non-negative real number ¢, =
dp(v k, x ,u(h/)). By convergence, limy e, = 0 a.e. and we can define for a.e. h’' the quantity

€max = maxkeN* gg. Using the definition of dp we have
n(Ep) < inf ¥ ((Ep)° < inf UF,_ (Z .. 3.3.8
pewy(Bn) < inf 7 ((Ep)™) +ew < inf vhi. (Z) +en (3.3.8)

Recall ko(h) = min{k € N*|h < h — 1} from Step 1. Using Equation (3.3.7)), we find that
for every k € N* such that k1 = ko(h + emax) < k < k', we have

1 1

k/
Vhte, (Z) +ep < vF oF T oW

(Z) tep <uF

h+€k/+ <Z> +

h+s e~ T Ew

Combining the last line with Equation (13.3.8]), we get

1 1
/ < i k i ,
#owy (Bn) < inf - min (Vh+ek,+2;<2> + +€k)

1 1
<hl££f1}€rri>1£f< Vite, o+ (Z)+27 o —i—ek/)

= lim (V}’er;k(Z)—i-;k) = M(h).

k—00
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We deduce that a.e. up(Z) = M(h) = ppy(Z). Since ppy < pp ae., we get pp) = pp a.e.
and

lim / dp(vF, puy)e "dh = 0.

k—o00 .J0

Lemma 3.3.6. The space (X°,d gup) is complete.

Proof. Take (Ek, dy, Hy, pi* )ken+ a sequence of S-compact measured labelled spaces such that
for every k € N*,

dLGHP(Ek,Ek+1) < 67

SFTT (3.3.9)

Step 1: we embed (E*)pen+ in a common space (Z*,d*, H*). For every h € RT, note
pk = 1k - ¥, From (3.3.9), we can choose hy € [k — 1, k] such that

1
danp(Eh, B < g

By definition of dgup, we can chose (Z,dz, ) a separable metric space, ¢y € ISO(E}’ik, Zy),
and Y1 € Iso(E}]f;H, Zy,) such that

(0Bl ), v (BT V dp (o, ran) < g (3.3.10)

Set Z' the disjoint union of all the (Z;)ren+. Set d the symmetric function from (Z’)2
R4 such that d(z,y) = dz, (z,y) if ,y € Z) and recursively for € Z;, and y € Zj with
k<k:

dz,y) = inf  d(z,Yp(2w)) +dz, (dr(2),Y)-

kv EEh -

Since Yy (21r) € Ziy—1, d is well-defined.

We call Z the completion of Z’ quotiented by the equivalence relation d(x,y) = 0. The

pair (Z,d) is a separable metric space.
Remark 3.3.7. The idea in the construction of Z is to form a chain by successively gluing
the metric spaces (Z*, ZF¥T1),en- along the isometric embeddings of (Ef:l)keN*. It is very
similar to the constructions in Lemmas and We sum up the construction of Z in
Figure [3.5]

Set Z* = Z xR and d* the distance over Z* defined by d*((z, h), (', 1')) = d(z,2")V|h—1|.
The space (Z*,d*) is complete and separable. Set FF = [¢} x Hk](E’ffk) C Z and VF =
[Pr X Hk](ﬂlﬁ,k) for every k € N*. Set H* the projection from Z* to R and p the projection
from Z* to Z such that for z € Z*, z = (p(2), H*(z)). The map H* is 1-Lipschitz. For every
ke N set Zp = {w € Z*||H*(z)| < h}, Ff = FFN Z;, v =15 -v

Step 2: we use Lemma and Lemma to obtain a limit in (Z*,d*, H*). By

construction, we have
1
ko okt E o k+l
dH(Fhk7Fhk ) v dP(th7th ) < ok+
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E,ﬁl B} —— E} Ehk ) E,’jk

/Eh2 ‘ / d)kzk
\\ /

Figure 3.5: The commutative diagram of the construction of Z. The unlabeled arrows to Z
are the canonical projections into the quotient.

¢1 ¢2

Using Lemmas and we see that there exists £* C Z* and p* a measure over E*
such that

[e.e]

lim [ (1A (du(FF,E}) Vv dp(vF, p})))e "dh = 0.

k—oo Jo

We define E = p(E*) and p = p(u*).

d
E’,f LGHP B
k k — oo
gf)k X Hk Y
Fk Z E*
k — oo

Figure 3.6: We solved the convergence in Z*, and we want to obtain the topmost convergence.
To that end, we want to reformulate the convergence of (F¥),cn+ to E* into the convergence
of (E*)pen+ to E. According to the diagram, it is enough to write p~! in the form Idg x H.
Note that p must be injective for the label function H to be defined on E.

Step 3: we build a map H and prove that (E,d, H,u) is the limit of (E*¥)gen<. For
z=(v,h) € E*, 2/ = (2/,h') € B*, e > 0, take k € N* and z, 2, € F"* such that d*(z, z;;) < e
and d*(#', 2}) < e. By definition of F¥, there exists zy, 2}, € E;fk such that z = [¢r x Hg|(xk),
z;, = [ x Hgl(x}). Since ¢y, is an isometry and Hy, is 1-Lipschitz, we have that

|H"(21) — H*(21,)| = [Hi(xx) — Hy(23)| < di(p, 23) = d(p(zx), p(21)),

SO
d(z,2') > d(p(zk), p(21)) — 26 > [H" (2) — H(21,)| — 26 > |h — 1| — de.

Since ¢ was arbitrary, we have d(z, ') > |h—h'| so p is bijective from E* to E and H = H*op™!

is 1-Lipschitz. Since p is continuous, (F,d, H,u) is a S-compact labelled metric space. We
have E* = [Idg x H](E) so for every k € N*,

ducp(Bfy B) < [ (A Wu(FE B7) Y de(h pi)))e™"dh — 0.

0 k—o0
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Since
draup(E", Ef,) < e ™

and limg hy, = 0o, we have
lim digup(E, E*) =0.
k—o0
]

Remark 3.3.8. We can see in the proof of Lemma m that if (E¥)pen+ is a sequence of
elements of X* satisfying

1
k
dGHP(E}Ifk ) Eh,j_l) < %

for some increasing sequence of positive real numbers (hy)ren+ going to +00, then there exists
E € X% such that
dLGHp(Ek,E) — 0.

k—o0

Lemma 3.3.9. Let (E™),en+ be a sequence of elements of X°. If there exists an increasing
sequence of positive real numbers (hg)ren= going to +00 such that the sequence (E}), )nen~ is
Cauchy in (XK, dgup) for every k € N*, then there exists E € X such that

dLGHp(En,E) — 0.

n—oo

Proof. For every k € N*, define by induction ng = 0 and

. 1
ng = min{n > ng_1|¥Vn',n" > n, dGHP(E;LL;,E}?;/) < W}

Note F the set of all extractions ¢ such that for every n € N* we have ¢(k) > ny. For every
¢ € F, ke N* we have ni < ¢(k) < ¢p(k+ 1), so

k k+1 1
dGHP(E;f,E )aEZj,E )) < W

The sequence (hy)ren+ is increasing to oo so by Remark there exists Fy € X< such that

dLGHP(E¢(k),E¢> — 0.

k—o00

Now, take ¢, ¢’ € F, and let us prove that E, = E(’b We define by induction an extraction
¢" € F taking its terms alternatively in ¢ and ¢':

¢"(1) = (1)
#"(2k) = min (¢'(N*) N (ngy, V ¢"(2k — 1), +00)),
¢"(2k + 1) = min (¢(N*) N (nog11 V 9" (2k), +00)).

Note that for every k € N*| ¢ (k) > ny, so ¢” € F. Thus, we have

dLGHP(E¢//(k),E¢//) — 0.
k—o00
By construction of ¢", we have Ey = Ey4» = Ey, so we can call E the common limit.
From every subsequence (E¥™),en+, we can extract a converging sub-subsequence (E?F);cn-
converging to E by taking ¢(k) = 1)(ny), which is in F. Since X° is a metric space, this
implies that (E™),ecn+ converges to E. O
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3.4 e-correspondences and properties of subspaces of X

3.4.1 e-correspondences

In this part, we introduce another way to compute/control dgup.
We call correspondence between two metric spaces F and F' any Borel set A C E x F
such that

e for every x € E there exists y € F' such that (z,y) € A,

e for every y € F there exists x € F such that (z,y) € A,

In order to ease some proofs, we define a e-correspondence between two compact labelled sets
(E,dg,Hg,vg) and (F,dp, Hp,vr) as any correspondence A C E x F satisfying:

for every (z,9), (+¥/) € A, |dp(z,2') — dr(y,y')| < 22, (
for every (z,y) € A, |Hg(x) — Hp(y)| <, (3.4.2
for every Borel set B C E, vg(B) <vp({y € F|3z € B,(x,y) € A)}) +¢, (
for every Borel set B’ C F, vp(B') <vp({r € E|3y € B, (z,y) € A)}) + . (3.4.4

Condition (3.4.1) allows us to build a metric d over the disjoint union Z = E U F such
that (z,y) € A = d(z,y) < ¢, (3.4.2) controls the labels and (3.4.3)), (3.4.4) ensure that

the Prohorov distance on (Z,d) between vg and vp is smaller than e. The main interest of
correspondences is to provide a simpler way to compute Gromov distances, with Proposition

B.41

Proposition 3.4.1. Let (E,dg,Hg,vg), (F,dr, Hp,vr) be compact measured labelled spaces.
We have

deup(E, F) = inf{e > 0|3A C E x F, A is an e—correspondence between E and F'}.

The proof of the proposition still holds for £ and F' arbitrary measured labelled spaces,
but we only defined dy for compacts and dgygp for compact spaces.

Proof. Step 1: suppose that A is an e-correspondence between E and F', and let us prove
that dgup(E, F) < e. Build Z the disjoint union of E and F and set d(z,y) the symmetric
function on Z? defined by

dg(x,y) ifz,ye FE
d(z,y) =1 dr(z,y) if x,y e F

inf,r yyeade(z,2’) +e+dr(y,y) ifze B ycF.
The function d is positive-definite. Let us prove the triangular inequality. Take u,v,w € Z,
the most difficult case is to prove d(u,w) < d(u,v) + d(v,w) for u,w € E and v € F or
u,w € F and v € E. Since F and F play symmetric roles we only prove the former:

d(u,v) +d(v,w) = inf dg(u,z)+e+dp(y,v)+ inf dp(w,z')+e+dp(y,v)
(zy)eA (a'y')EA

= inf dg(u,z) + dp(w,2") + dp(y,v) + dp(v,y') + 2¢
(zy),("y") €A

Z dE‘(U, U)) + inf (dF(ya yl) - dE(LU, l‘/) + 25)
(z,y),(z' ¥y )EA
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We used the triangular inequality of dp and dp at the first inequality and the fact that
A is an e-correspondence to conclude. Thus, (Z,d) is a metric space. Let us prove that
deup(E, F) < e. We consider ¢ = Idg and ¢/ = Idp the isometric eembeddings of E and F
into Z. We have, by definition of a correspondence that

d\PF) (1 x He|(E), [Idp x Hp|(F)) =e¢,

where d* is defined as in (3.1.3)). By construction of d, we have for every Borel set B C E
that

{y € F|3z € B,(z,y) € A} C {y € Z|3x € B,d(x,y) V |H(x) — H(y)| < ¢},
so by and (and symmetry of E and F'), we also have
A7 B (1dg x Helvg, [Idp x Helvg) = €.
By definition of dggp, it follows that

deupr(E,F) <e

Step 2: suppose that deup(F, F) < g, and let us build a e-correspondence between E and
F. Take (Z,dz) e M, ¢ € Iso(E,Z), ¢' € Iso(F, Z) such that

dH([qZS X HE](E), [gb, X HF](F)) V dp([¢ X HE]I/E, [(;5/ X HF]I/F) =)<e

and define A = {(z,y) € E x Fldz(¢(x),¢'(y)) V |Hg(x) — Hp(y)| < €}. By definition of dy,
A is a correspondence between E and F, satisfying (3.4.1) and (3.4.2). For B C E a Borel
set, we have

vp(B) < vp(B°) +

=vr({y € Fld(y, B) <6})+96
(
(

AN

vr({y € F|3z € B,d(y,x) <e})+¢
=vr({y € F|3z € B, (z,y) € A}) +¢.

We have proven Condition (3.4.3). We can see that F and F' play symmetric roles, so we
similarly have

vp(B) <vg({x € E|3y € B, (z,y) € A}) +¢
Condition (3.4.4)) is satisfied.

We have proven that A is a e-correspondence and € > dgup(F, F') was arbitrary, so
deup(E, F) > inf{e > 0|3A C E x F, A is an e—correspondence between F and F'}.

Adding the result of Step 1, we have proven the Proposition. O
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3.4.2 Properties of (X°, dygup) and (XX, daup)

In this section, we prove some useful topological results on (X, dpqup). We will give con-
vergence criterions for drqgp and compare topologies. Most results from this section follow
from the following technical lemma.

Lemma 3.4.2. Let (Fk, di, Hy, Vi) ken+ be a sequence of S-compact measured labelled spaces,
(E,d,H,v) a S-compact measured labelled space and (hy)gen+ a sequence of positive real
numbers with limy, hy, = co. For every k € N*, let EF and G* be two compact sets such that
F,’fk c G¥ c F¥ and Ey, C EF C E. The set G* (resp. E¥) is equipped with the restrictions
of di, Hy, and vy (resp. d, H, v).
If we suppose
dGHp(Gk,Ek) — 0,

k—o0

then we have
dLGHp(Fk,E) — 0.

k—o0

Recall the construction model of d* given in Equation (3.1.3]).

Proof. For € € (0,1), take hAmax = —log(e). Using Lemma on the compact slice Ep,___,
there exists a finite set X C Ej, .. equipped with d, H and some measure vx such that for
every h € [0, hmax), daup(Xn, En) < . We set R = {|H(2)|}zex C [0, hmax]. Now, take
k € N* such that hj > hmay and 6 = 2dgup(GF, EF). By definition of dgyp, we can choose
(Z,dz) € M, ¢ € Iso(EF, Z), ¢y, € Iso(G*, Z) such that

dy V dp([¢pr x Hp](G*),[¢ x H|(E¥)) < 6. (3.4.5)

We will give an upper bound on dygup(F*, E) depending only on &, X and &, then imme-
diately use it to conclude.

Step 1: We prove that for h € [0k, Amax — 0x] \ (R)%, we have
du([¢x x Hi)(G), [¢ x HI(E})) < 2€ + 0.

For every h < hpax — 0k, we have, like in Equation ((3.3.3)):

Ok

(6 % B © (i x Hl(Gheg) and fonx (G (10 H(BE5))" (3:46)

For every h € [0, hmax — 0k] \ (R)%, since dg(Xp, Ep) < ¢, it is enough to prove that
du([pr x Hi](GF), [px H](X1)) < e+6) and Ej, = EF. Since h ¢ (R.)%, we have |h—|H (z)|| >
Op, for every x € X, so

Vo e X, (|H(@)| <h -6 |H@)| <h e [H@)| <h+ o),

l.e.
Xn—s, = Xp = Xpys,- (3.4.7)
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Since Ep, C E* and hy, > h + 0y, Ef]f+6k = FEhys,, 50 dH(Xh+5k7E}]f+5k> <eand X, C E, =
E,’f . Thus, we have

O

(o x Hg)(GF) € ([¢ x H] Eh+6k))

{
C (¢><H Xh+5k))€+5k
(¢><H X)

>€+5k

c (1o x m(EH) ™.

We used h + 0 < hmax and the right-hand of (3.4.6) for the first inclusion. The equality
comes from the right hand of (3.4.7). Similarly,

(6 x H)(Bf) <([6 x HI(Xn))
= (16 x H|(Xn-s,))
(1o x HI(Bf5,))
c(lon x HJGH) ™

)

so du([¢r x Hi(G}), [¢ x H|(Xp)) < € + 6.
Step 2: We prove that for h € [0k, Amax — 0x] \ (R)%, we have

dp([¢ X H](lE}’i : 1/), [¢k X Hk](lG’fL . Vk)) < e + 26;.

For h € [0, hmax — 0], we have dp ([¢ x H](1gx - v), [¢pr X Hi)(1gr - vg)) < Ok, so using Lemma

B.I.0, we get
dp((6 % H)(Lge - v). [0 x Hil (g - 1)) < 0+ 0(Bfys,) — (@) (3.48)
We have h € [0, hmax] and the Prohorov control from (3.4.5). Additionally, we have
(6 x HI(Ef_5,))™ N [6x x HiJ(G*) C [o x Hi)(GE),
so we can deduce that
V(E}_s,) =[[6 x H(1pe - v)| (16 x HI(Bf_5,))
<[lgw x Hl(gr - vi)| (& x HI(EF_5))™) + 0%

<|[x x Hi(Lr - )] ([0 x H)(GE)) +
= (GF) + 6.

Using this, we can rewrite Equation (3.4.8)):

dp([6 x H)(Lgg,, ~v).lon < Hil(lgy - m0)) < 260+ ((Ef5) = v(Efs))". (3.4.9)
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Since dp(1g, - v, 1x, - vx) < € for h € [0, hmax], we have a control on the total masses:
[v(En) —vx (Xp)| <e.

For h € [0k, hmax — 0k] \ (R)%, recall that Ej, = EF. This allows us to use Equation (3.4.7)
to further simplify Equation (3.4.9).

V(Efys,) — V(EF_5,) < vx(Xfiis) — vx(XF_s,) + 2 = 2e. (3.4.10)
With this, Equation (3.4.9)) finally gives

dp([¢ X H](1E£+6k : V), [¢k X Hk}(lG”,j . Vk)) < 2e + 26;. (3411)
With the triangular inequality of dp, we have

dp([¢ x H|(1gr - v), (o x Hi](1gk - 1))
<dp([¢ x H](1g: - v),[¢ x H|(1E, 5, - V)
+dp([p x H](1gr —-v), ok x Hil(1gs - vi))
+4, h
<v(Ep,s,) — V(EF) + 2 + 25y,
<v(Ejys,) — v(Eh_s,) + 2¢ + 20,
<4e + 26;.
For the second inequality, we used Equation (1.1.2) on the first term and Equation (3.4.11)
on the second term. We used (3.4.10)) for the last inequality.

Step 3: conclusion. Combining Step 1 and 2, we have proven that for every h € [0k, hmax] \
(R),
denp(GF, Ef) < 4e + 20;.

Recall that for h € [0, hmax] and hg > hmax, we have Ej C E* and F,’f C G*, s0 B, = Eﬁ
and FF = GF. When we set n = #(X), we obtain:

o0

dLGHp(Fk,E) = / (1 A dGHP(F/f,Eh)e_hdh
0

< / daup (GY, EF)e ™ "dh + e dh
[6k7hmax_6k]\(R)6k (RU{O})akU[hmax_(Skvoo)
< de 4 20, + / dh + e~ imex
[Oaék)U(R)ékU[hmaxfékyhmax]

<4de+ 20, +2(n+1)0; + ¢
= be + 2(n + 2)5k

With our choice of hyax and k, we have proven that for every k such that hy > —log(e),
drcup(E, F¥) < 5 + 2(n + 2)d;. Since n depends only on X and X depends only on E and
€, we have

lim sup dr,gup (F, Fk) < Be.
k—o00

This concludes the proof since £ was arbitrary. O
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Lemma has many corollaries:

Lemma 3.4.3. For a sequence (F’“)keN* of S-compact measured labelled metric spaces, and
a S-compact measured labelled metric space E, we have the convergence

lim dLGHP(Fk,E) =0
k—o0

if and only if there exists a sequence (hy)ren+ of positive real numbers with limy hy, = oo such
that

. k .
kli)I{.lo dGHP (Fhk 5 Ehk) =0.

Proof. For the direct sense, set for every k € N* 6, = dpgup (F*, F) and hy, = —% log(1 Adg),

so that we have e™™ = 1 A (4}, 2. For every k such that 6, < 1, we have dyqup(F*, E) =

(5k)%e_hk. By Definition [3.1.12, there exists hj, > hy such that dgup(Fp ,Eh;) < (5k)% We
k

have limy, ), = co and

lim depp(FF , By ) < lim (65)2 = 0.
s, donp (B, Eay) < |l (00)2
The converse sense is a special case of Lemma with GF = F, }]fk, EF = Ey, . O

Proposition 3.4.4. On XX, the topology induced by dgup is strictly finer than the topology
induced by dycup.

Proof. Step 1: we prove that on XX the topology induced by dggp is finer than the topol-
ogy induced by drgup. Since our topologies are defined by distances, we can compare them
through their converging sequences. Take (K*,dy, Hy, v )ren+ a sequence of compact mea-
sured labelled spaces converging for dgpp to a compact measured labelled space (K, d, H,v).
Since H and all the Hj are continuous and defined on compact sets, they are bounded. From
the convergence for dggp, we deduce that

lim (sup|Hk]> =sup|H|.
Kk K

k—o0

Since a converging sequence of real numbers is always bounded, there exists h € Ry such
that for every k € N*, |Hy| is bounded by h. We have for every k € N* that

K'=Ki=Kf}., ; K=Ky=FKnu,

SO
danp (KF g, Knir) = denp(K*, K) — 0.

k—o00

With Lemma we find that (K k)keN* also converges to K for dpggp. Since K and
(K*)ren+ were arbitrary, we find that dgup defines a finer topology than dyqup.

Step 2: we prove that on XX, the topology induced by dgup and diqup are different. We
only need to find a sequence that converges for dr,grp but not for dggp. Take dgr the usual
distance on R and consider the sequence

(FkadkaHk’ayk’)k’EN = ({07 k}adeldv O)k’EN*‘
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The sequence (F*)pen+ converges to FO for dpgup since we have dpgup(F¥, FO) = e7*, but
is not a Cauchy sequence for dgpp since we have in this case

daup(F*, F*) > | max Hy, — max Hy | = |k — K|
Fk FE

O]

When we define trees in Chapter EL we will find that dggp and dy,gup are topologically
equivalent on the set of non-empty compact trees. Here, we give the proof in a more general
setting.

We define X the set of measured labelled spaces (E,d, H,v), up to equivalence, such
that H(E) C R is connected (that is, an interval). We also introduce XX ¢ X9 ¢ X the
restrictions of X¢ to compact and S-compact spaces respectively.

Lemma 3.4.5. The set X&K\ {0} is open in (X%, dpgup), and on XOK N\ {0}, daup and
dr,qgup induce the same topology.

Proof. Since X&K \ {}} ¢ X, we already know from Proposition that the topology
defined by dgpp is finer. Take some arbitrary (K,d, H,v) in X5\ {}}. For every e > 0, set

BGHP(E) = {K, € XC’K|dGHp(K, K/) < E} ; BLGHP(E) = {K/ S XC’S|dLGHp(K, K/) < E}.

Note that, by convention in Definition deup(K,0) = oo, so Beup(e) € XGE\ {0}
Set hg = maxg |H|. To prove that the topologies are equal and that XX \ ) is open in
(XES dpgup), it is enough to prove that for € € (0, 1), Brgup(ee"~%) C Banp(e).

Take (K',d', H',v') € Brgup(ce ™ ~¢). By Deﬁnition there exists h > hg + ¢ such
that dgup(Kp, Kj) < €. We can choose (Z,dz) € M, ¢ € Iso(K, Z), ¢/ € Iso(K’, Z) such
that

dy V dp([¢p x H|(Ky),[¢' x H'|(K})) < €. (3.4.12)

By choice of h we have K}, = K # (. Since doup(Kp, K}) < € < oo, K}, is non-empty as
well. We have
sup |[H'| <sup |H|+e=sup|H|+e=hy+e<h.
] Kp, K
We have sup g/ |H'| < h and H'(K") is an interval, so supy. |[H'| = Supg |H'| < h. It follows

that we have Kj, = K and K; = K'. Since K’ is S-compact, K’ = K} is compact and we
can rewrite Equation (3.4.12)) as

du V dp([¢ x H|(K),[¢' x H'|(K')) <&,
which proves that dgpp (K, K') < e. We have Brgup(ce " ~%) C Bgup(e). O

When we defined di,gup, we distinguished the label 0, and we can ask our-self whether
this has any topological implication. We prove in Proposition that it doesn’t.
For a € R and (E,d, H,v), F a S-compact measured labelled space, define

Slicefy = {z € E||H(z) — a| < h},
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equipped with the restrictions of d, H and v. We define the distance df qp on X* by

2 g (B, F) = / (1 A dgp (Slice (), Slice} (F))) e~ "dh.
0

For every a € R, define the application ®, from X to itself with
®,(F,d,H,v)=(E,d,H + a,v),

where H + a represents the map x — H(x) + a. Recalling Definition note that £ —
®,(F) is an isometry on (X[;, dng). We h%gve zi%GHP = dr,qup and for every a,b € R, @, is
a bijective isometry from (X, d} oyp) to (X7, dy Exp)-

Proposition 3.4.6. For every a € R, the application @, is continuous from (XS, drcup) to
itself. Furthermore, digup and di cyp define the same topology on X5,

Proof. Step 1: continuity. Take (F¥,dy, Hy, v )ren+ a sequence of S-compact measured la-
belled spaces converging to some S-compact measured labelled space (E,d, H,v) for dicup-
Using Lemma there exists a sequence (hy)ken+ such that limy hy = oo and such that
limy, dGHp(F,]fk,Ehk) = 0. Take ky € N* such that for every k > ko, hy > |a|. Set, for k > ko,
GF = @a(F}’fk), E* = &,(Ey,) and hf, = hy — |a|. Since ®, doesn’t affect the metric of its
argument, G* and E¥ are compact as images of the compact sets F), ,’fk and Ejp,. The map @,
preserves dgup, so dgup(GF, EF) = dGHp(F/fk,Ehk), and thus limy, dgpp(G*, E¥) = 0. We
have limy, b}, = oo,

Slicey: (4(F*)) C G* C ®4(F*),  Slicey (®4(E)) C EF C ®4(E),
so we can apply Lemma to get that
dcup(®a(F¥), ®a(E)) — 0.

k—o0
This means that for every a, ®, is continuous from (X°, dqup) to itself.

Step 2: equivalence of topologies. Let us prove that for every a,b € R df qyp and d? yp
define the same topology. Take U an open set of (X%, d¢qyp). Since ®,_, is a bijective
isometry from (X%, dfqyp) to (X%, d qyp), it is bi-continuous and thus the direct image
U' = &, ,(U) is an open set of (X%, d?qyp). As seen in Figure for every b € R, @, is
continuous from (X%, d? oyyp) to itself, so U = (®,_,) 1 (U’) is still an open set of (X, d? o yp)-
Since a and b are arbitrary, they play symmetric roles, so (X7, df cyp) and (X5, diGHP) have
the same topology. In particular, df oyp induces the same topology as d[ﬁGHp =dLogp. O

3.4.3 Some closed sets of X°

In the next chapter, we will talk about trees as particular elements of X°. We would like to
know that the space of trees is a closed set. Since trees can be characterized by the so-called
four points condition and the (exact) middle-point condition, one way to prove that the set
of trees is closed in X¥ would be to prove for each condition that the set of spaces satisfying
the condition is closed, that is

Vri,..,x4 € E,
Fu_points = { (E,d,H,v) € X5 d(x1, x2) + d(x3, 24)
< (d(x1,x3) + d(x2,24)) V (d(x1, 24) + d(2, 73))
(3.4.13)
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a

(XS7 dll),GHP)

Py,

(st dlﬁGHP)

oy

a

(X%, drgup) (X%, dr.cup)

Figure 3.7: Here, ®;, and ®_; are isometries so continuous, while ®, is continuous on
(X%, dr,gup). Since the diagram commutes, the top arrow ®, = &, o ®, o _, is contin-
uous from (X%, d? qyp) to itself.

and
1
Fyeo ={(E,d,H,v) € XSWa:l,xg € E,3z3 € E,d(x1,23) = d(x3,22) = §d($1,az2)} (3.4.14)

are closed. Lastly, to exclude the empty set from our closed sets, we need to check that the
set of measured labelled spaces (E,d, H,v) such that Fj is non-empty is a closed set, that is

Fs={(B,d, H,v) € X[y € B, |H(21)| < h}. (3.4.15)

We will prove in three lemmas that well-chosen generalizations of Fy_points, Fgeo and F5 are
always closed in (XS ,drLcHp)-

To generalize closed conditions on the distance between points of F and their labels, we
introduce a function M to reduce any n-uple of points of F to their “usable” characteristics.
This function resembles (except on the diagonal) those used in [39] and [36] to define the
Gromov-weak topology. We note M, (R) the set of square real matrices of size n, equipped
with the norm || - [|. For n € N*, we set My the empty function. For every non-empty
measured labelled metric space (E,d, H,v), n € N* and z1,...,z, € E, we set

H(x1) %d(wl,xg) %d(:}:l,xn)

%d(l‘g, :El) H(l’g)
Mp(z1, ..., zp) =

%d(In—lu xn)

Sgpr) o Mdese)  H)

This first lemma generalizes the example of Fy., to other sets with conditions of the type
“v3”. We find in the proof that a control (f in the lemma) on the height is paramount in the
“3” part to have a closed set.
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Lemma 3.4.7. For every n,p € N*, f a continuous function from My (R) to Ry and F C
My ip(R) a closed set,

Vri,...,xn € E,
A= (E, d, H, V) € XS Ell'nJrl) vy Tngp € Ef(Mg(atl,a:n))v
Mg (xy, oy tpgyp) € F

is a closed set of (X°,drgup).

In less formal and more legible terms,
{(E) d7 H) V) € XS|VI]_, cey Ty € E7 3xn+1) <oy Tndp € Eh(xl,...,l'n)vg(xlv ceey anrp) = O}

is a closed set of (X*, drgup) if h(z1,...,7,) is a continuous function of (H(x;))1<i<n and
of (d(z4,25))1<i<j<n and g(x1,...,Tnyp) is a continuous function of (H(x;))i1<i<ntp and of
(d(@i; ) hr<i<j<ntp:

Remark 3.4.8. As an example, we can apply the lemma to Fy., from Equation
to prove that it is closed. Since H is 1-Lipschitz, d(z1,z3) = 3d(z1,22) = |H(z3)| <
|H(21)| + 3d(z1,22), so

Vri,29 € B,
Fyeo = { (B, d, H,v) € X¥| 323 € Eyy(a,)| 4 La (o 0)
d(x1,23) = d(z3, 12) = §d(21,22)

With this new expression, we can apply Lemma with f((aj)1<ij<2) = |ai1
and the closed set of M3(R):

1
+35012

F = {((ai,jhgmg?, € M3(R)

1
a1 3 = a23 = §a1,2 .

Equivalently, we can see it as
_ S —
Fgeo - {(Eu d7 H7 V) eX ‘vxla vy Ty € E7 Elx'fl-f-la --wxn-&-p € Eh(xl,...,x‘n)7g(x17 "'7xTZ+P> - 0}

with h(z1,22) = |H(z1)| + %d(xl,xg) and

g(z1, z2,23) = |d(x1,23) — %d(fﬁl,fﬁg) + ‘d($2,$3) — %d(:ﬂl,fﬂg) .

Proof. We have () € A, so A is non-empty. Take (E*, dy, Hy,vx) a sequence of elements
of A converging for dpgpp to some S-compact measured labelled space (E,d, H,v). Let
us prove that £ € A. If F is empty, then we have E € A. We suppose that E is
non-empty in the remaining of the proof. Choose z1,...,x, € E, ¢ > 0, and set hg =
max (|H(z1)|, ..., |H(zn)], fF(MB(21,...,2,))). Since f is continuous, there exists a radius
d € (0,¢) such that for every M € M, (R),

(1M = M2(21, ooy 20) oo < 8) = (IF(M) — F(ME(21, ... 20))| < €). (3.4.16)
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Now, take k € N* such that dpgup(E*, E) < de~"0~¢. Since f,f§+6 e "dh = e "¢ we can
choose h > ho+¢ such that dgup(EF, Ej) < 8. Thus, there exists (Z,dz) € M, ¢ € Iso(Ej, Z),
¢r € Iso(E¥, Z) such that

dit v dp ([0 x Hy)(ER), [ x H(En)) <.

Since x1,...,xn € Ej, there exists x]f,...,xfl € E,li such that for every 1 < i < n we have
dz(d(x%), ¢(x;)) V |Hy(x¥) — H(x;)| < 6. This yields, for 1 <i < j < n:

1 Lk 1
idk(%’al‘j) - §d(fﬂia$j)

=[Sz 0utet, onat) — Sazto@n, ot

1
<

A7 (0u (), 6(z0)) + Sz (Ox(ah),6(,))

IN
Sl )

It follows that HMgk(x’f, oy B — MB(21, ..., 20)| |00 < 6, 50, according to (3.4.16)), we have
FMB (af, ..., 2k)) < fF(MB(z1, ... n)) +€ < hog+e < h.

Since E* € A, there exists xﬁﬂ, ...,x,’?LﬂD € E’;(M”k (ak,..h)) C EF such that
E n

n+p, .k k
Mg P2, s o) € F.

We can choose 2, 41(€), ..., Tn4p(€) € Ej, such that for n < i < n+ p we have
dz(on(af), d(xi(e))) V [Hy(xf) — H(wi(e))| <6 < e.

We have Zp41(€), ... Tntp(€) € Ef(Mp(ar,....0n))+2¢ and we have
HMg:p(xlf, ...,:L'Z_H)) — Mgﬂ'(xl, oy Ty Tig1(€) s vty Tipp (6)) || oo < 0 < e

Since M (2, ...,2k ) € F, the distance between M (21, ..., Tn, Tn41(€), ..., Tnip(€)) and
F is less than e.

Since e was arbitrary, there exists a sequence (Zn+1(%), .- Znip(3))ken+ such that for
every k € N*, 2y 11(%), oy Tnp(3) € Ef(Mg(an,‘..,o:n))Jr% C Epy+2 and the distance between
MpE™P(21, ooy T, Tng1 (1), ooy Tngp(£)) and F s less than +. The space Ep,41 is compact, so
we can choose a sub-sequence of (25,11(3), -, Tn4p(F))ken converging to Some Tp 1, ..., Tngp.
By continuity of H and Mp'?, the distance between Mp P(x1, ..., xnyp) and F is 0, so

-----

arbitrary, we have £ € A and A is closed by sequential characterization. O
Lemma 3.4.9. For every n € N* and FF C M,(R) a closed set,
A={(E,d, Hv)eXVay, ...,z € E,M¥(z1,...,x,) € F}

is a closed set of (X°,drgup).
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In less formal and more legible terms,
{(E,d,H,v) € XS|V1’1, vy Tp € E g(21, ..., 2,) = 0}

is a closed set of (X¥, dqup) if (21, ..., Zn+p) is a continuous function of (H(z;))1<i<n+p and
(d(@i, zj))1<icj<n+p-

Proof. This is a special case of Lemma for p = 0. O

Remark 3.4.10. This second lemma generalizes the example of Fj_ppints from Equation

(3.4.13]) to other sets with conditions of the type “V”. We can apply Lemma to Fu—points
to prove that it is closed, using the closed set of Mj3(RR):

F = {((aij)i<ij<a € M3(R)|a1 2+ aza < (a13 +ag4) V (a14 +az3)} .
Equivalently, we can see it as
Fyeo = {(E,d, H,v) € X5\Va1, ... 2p € E, g(21, .., Tnisp) = 0}
with
g(z1, 22, 23, 24) = (d(21, 22) + d(23, 24) — [(d(21, 23) + d(22, 24)) V (d(21,24) + d(22, .’E3))D+

This last lemma lets us consider the set of all spaces with at least one point in some
compact range.

Lemma 3.4.11. For every compact set K CR, h € Ry,
A={(E,d,H,v)e X3z € E,H(z) € K}
is a closed set of (X°,drgup).

Proof. Take (E,d,H,v) in the closure of A. Set hg = max|K|. For ¢ > 0, there ex-
ists (E',d',H',V) € A such that dygup(E,E') < (se_ho.~ There exists h > hg such that
dgup (En, E}) < €. It follows that we can find (Z,dz) € M, ¢ € Iso(E}, Z), ¢’ € Iso(E}, Z)
such that

du (¢ x H|(Ep),[¢' x H'|(E})) < e.

Since E' € A and K C [—hg, ho] C [—h, h], there exists 2’ € Ej such that H'(2') € K. Thus,
we can find x € E}, such that dz(¢(z), ¢’ (2')) V |H(z) — H'(2)| < e. We automatically have
|H(z)| < ho+ ¢, 80 & € Epyt.. This means that for every € > 0, we can find some x € Ep 4.
such that the distance between H(z) and K is less than e.

Take (zx)ren+ a sequence of points in Ejp 11 such that for every k € N* the distance
between H(zj) and K is less than % Since E},4+1 is compact, there exists a sub-sequence
(zx)ken+ converging to some point x € E. By continuity of H and closure of K, H(z) € K.
We deduce that E € A. O
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3.4.4 Some measurable maps on (X°, dygpp)

In this subsection we will prove the continuity or measurability of simple functions of interest.
The first of those is the projection of the measure (E,d, H,v) — Hv, defined on X4, To study
its continuity, we equip the space of Borel measures on R with the local-Prohorov distance

drp(p, 1) = /0 (1 A dp (1 p) - 1, [ p,h) 'M’)) e~"dh. (3.4.17)

Lemma 3.4.12. (E.d, H,v) — Hv is 1-Lipschitz from (X%, dygup) to the space of Borel
measures on R equipped with the local Prohorov distance.

Proof. Consider (E,d, H,v),(E',d', H',v") € X%, v, and v}, the restrictions of v and v’ to E},
and E}. We have
(ZxR,d

dvcup(E, E') > /0 - (1 At d7 ) (6 x ). [0 H’](yh))) ol

> / (1A dp(Huvp, H'W})) e " dh.
0

The last term is exactly dpp(H (v), H'(V")). O
The next lemma will help us in many measurability questions.

Lemma 3.4.13. Let (X, dx) be a separable metric space, (Z,dz) a metric space, both equipped
with their Borel o-field, Y a space equipped with some o-field and f a function from X XY to
Z. If f is continuous in the first variable and measurable in the second, then f is measurable.
If (X,dx) = (R,dr), then if f is right-continuous in the first variable and measurable in the
second, then f is measurable.

Proof. The result is obvious if X is at most countable. Since X is separable, there exists a
dense sequence (Zy)nen+. Set X' = {x, }nen+. Since X' is countable, the restriction of f to
X’ x Y is measurable. For every n € N*, z € X, take ¢,(z) = min{k € N*|dx (z,z;) < L}
The application z +— x4, () is measurable, so f, : (2,y) = f(z4,(2),y) is measurable. We
have dx (7,74, (2)) < % by definition and f is continuous in x, so f, converges point-wise to
f, and f is measurable as limit of measurable functions.

We proceed similarly for the right-continuous case with ¢, (x) = @ We have that
¢n(x) L x as n — oo and f is right-continuous, so f is the point-wise limit of the measurable
sequence of functions ((x,y) — f(on(z), y))) . O

neN*

Lemma 3.4.14. The functions
(h, (B, d, H,v)) > (E,d, H, 1< -v) and (b, (E,d, H,v)) % (E,d, H,1-p - v),

from (R x X%, dg V drgup) to (X%, digup), are measurable with regard to the o-field B(R) ®
B(X5).

Proof. To get the result, we prove that f(h,-) is measurable as the limit of measurable
functions over X% x R. We define for every S-compact labelled space (E,d, H,v) and real
number € > O:

Jfe(hE) = (E,d,H, . p, - V)
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where for every x € E, A\.p(x) = 0V i(h+e— H(z)) Al To study the continuity in
E throughout Step 1 and 2, we use (F,d, H,v) and (E’,d', H',v') two S-compact measured
labelled spaces. Note that f. and Slice commute, and that for every h € R, A’ > 0 we have

Shceh’(fa(ha E)) = fa(ha Eh’)'

Step 1: for any h € R, h' > 0, we bound daup(f:(h, En), fe(h, E},)). For b/ € Ry,
(Z,dz) € M, ¢ € Iso(Ey, Z), ¢' € Iso(E},, Z), consider

An = du([¢ x H](Ew),[¢' < H|(E)) 3 Ap =dp([¢ x H](1p,, -v),[¢' x H(1g, -V)).

Since we did not change the metric spaces the Hausdorff distance stays the same between
fe(h,E) and f.(h, E"), so to bound the distance we only have to bound the Prohorov part:

p=dp([¢p x H|(Aep - v), [¢ x H'|(Acp - V).

If By or Ej, is empty, then doup(f-(Epn, h), f-(E},, h)) = dgup(Ew, E},) (0 if they are both
empty, oo if exactly one is empty). If both are non-empty we set for every h” € [0, 1/]:

Fyn = [qb X H](Eh//) and F],/L// = [QZ)/ X H/](E;L//).
We have for every Borel set B C [¢ x H|(Ey):

[[¢ x H](Aep - )](B)

= /1[¢ x Hlv(B N Fyye)dt
0

1
< [0 % (B O FL )i+ A

1
< [ (18 % HW/(BF 0 Fja) + 16 % B (Fierya, \ Fieed)) dt 4+ B
’ ) (3.4.18)
:HWXH%&ﬁWﬂ@#ﬂ+AP+Afﬁ“w+dﬁ+d+Aﬂmt

IN

6/ O ¥ (BA) + Bp o+ S2HY/ (< + A
— [ e - V)| (BE®) + <1 +HY (e + Ap])) Ap.

For the first equality, we used the Fubini Theorem and the definition of ). ;. We use the same
method to obtain the first term after the second equality, while the second term is obtained
with the Fubini Theorem alone. The last inequality is obtained as follows: fol H'V' ((h+et, h+
et + Ap|)dt is the integral of [H'v'](dh”)dt on the domain

D . 0<t<1
’ h+et<h”"<h+et+ Ap.

The system is equivalent to

D . h<h"<h+e+Ap
: Ovh”‘h%gtgl/\@-
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We define a new domain

oo h<h”"<h+e+Ap
. h//_};_AP S t S h//a_h

and note that D C D’. It follows that
1
/ H'Y ((h + et, h + et + Ap])dt = / (H'V)(dh")dt
0 D

< / [H)(dh" )t

htetde (p_h B —h— A
- / ’ ( - P ) [H'V|(dR")
h & e

= %[H’v’]([h, h+ e+ Ap]).

From ((3.4.18)) and by symmetry of F and E’, we have
1
Ap < (1 + g[Hu + H'V|([h,h + e+ Ap])> Ap.

Recall that the Hausdorff distance isn’t affected by f.. Taking the infimum on Z, ¢, ¢, we
have for every h’ > 0 that:
dGHP(fE(ha Eh’)? fa(ha E;L,))
1
< <1 + g[Hz/ + H'V'|([h,h + & + daup (Ep, E;L/)])> daup(Ew, Epy). (3.4.19)

Step 2: prove that f. is continuous in F. Take (E,d, H,v) a S-compact measured labelled
space and (E", dy,, Hy,, Vn)nen+ a sequence of S-compact measured labelled spaces converging
to E. Noting

A (') = daup (Ew, Epy),

we have, using Equation (3.4.19))
dreup(fe(h, E), fe(h, E™))
= [ (0 ndonp(Le(h, B £ B e an

< /DOO <1 AL+ é(HV—i— Hyvp)([hyh+ €+ An(h/)])]An(hl)> o an

We know from the convergence of (E™),en+ that A, =% 0 80 Axo(h') = sup,en- An(R') is
finite for almost every h'. Since the function (F,d, H,v) — Hv is continuous, the function
(E,d,H,v) — Hy(F) is upper semi-continuous for every compact interval F' C R, that is
lim sup(Hp v (F)) < Hv(F). When A, (h') — 0, Axo(h') is finite and we have

limsup(Hv + Hyvp)([h, h+ & + A, (R)]) < limsup(Hv + Hyvy)([h, b+ € + A (R')))
n—oo

n—oo

< 2Hv([h,h+ &+ Ax(R)]) < c0.
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This give that for every b’ such that A, (h') — 0,

lim sup A, ()1 + %(Hu T Hav) (b + 2+ A (1)]

n—o0

< (limsup A, (') {1 + E limsup(Hv + Hpvy)((h,h + e + An(h/)))}

n—oo € n—oN*

=0.

By dominated convergence, lim sup dpgup (fe(h, E), f-(h, E™)) converges to 0 and f. is con-
tinuous in F.

Step 3: prove that f. is measurable. Since f. is continuous in F and R is separable, it
is enough, with Lemma to prove that f. is continuous in h. Take (F,d,H,v) a S-
compact measured labelled space. Take h < h' two real numbers. Since f(h, E) and f.(h', E)
are supported by the same labelled metric space (F,d, H), we have

digup (fo(h, E), fo(W,E)) < dp(Aep - v, Ay - V).

Since Ao p-v < Ag - v, we have dp(Acp -V, ey - V) < Jo(Aen — Ae,n) [HY](dR). By monotonic
convergence, we have

}LlTrflLl, dicup(f-(h, E), f-(W,E)) =0

}Ll’?flL dLGHP(fE(ha E)a fE(h/7 E)) =0.

We deduce that h +— f.(h, E) is continuous on R. Thus, f. is measurable on R x X*.

Step 4: express f and ¢ as limits of measurable functions. We use the same method as in
Step 3 to prove that for every (h, E),
f(h, E) = Tim fi(h, E).
To get g, consider the function o : (E,d, H,v) — (E,d,—H,v). The function o clearly is a

isometric involution of X%, so is measurable, and we have by the same method as in Step 3
that

. . 1
(0 B) = lim (E,d,H. sy ) =0 (Jim f(—h = a(B))).

n—00 n

As limits of measurable functions, f and g are measurable. O



Chapter 4

The space of height-labelled trees

4.1 Height-labelled trees

4.1.1 Definition

Let (E,d) be a metric space. For z,y € E, let C(z,y) be the set of all continuous maps f
from [0, 1] to E such that f(0) =z, f(1) = y. We say that (E,d) is arc-connected if for all
x,y € E, C(z,y) is non-empty. We say (E,d) is a length space if it is arc-connected and for
every 7,y € E, d(x,y) = inffcc(z,) L(f), where

n
L(f) = sup d(f(zi-1), f(z:)).
neN* i=1
O=zp<x1<...<Tp=1
We say (E,d) is a geodesic space if it is a length-space and for every =,y € E, d(x,y) =
min rec(z.y) L(f). In this case, for z,y € E, we call geodesic between x and y the image of
any path f € C(x,y) such that L(f) = d(z,y). We say (E,d) is acyclic if for all x,y € E,
there does not exist f,g € C(x,y) such that f([0,1]) N g([0,1]) = {x,y}.

We call tree any acyclic length space. We recall the so-called four-points condition. A
connected metric space (T,d) is a tree if and only if for every four points x1,x9, x3,24 € T
the following holds

d(x1,z2) + d(x3, x4) < max(d(z1,x3) + d(z2,x4),d(x1,24) + d(22, 23)).

Trees have been extensively studied and we will only shortly point out some of the properties
of a tree (T,d):

e Between two points z,y of T there is always a unique geodesic which we note [z, y].

o If I C T is connected then (F,d) is a tree and F is called a sub-tree of (T, d). In
particular, F' is geodesic and for every z,y € F, [z,y] C F.

e For z € T and F a closed sub-tree of (T, d), we can and will define p(z, F’) the projection
of z on F as the unique point in F' such that d(z, p(x)) = d(z, F'). For every y € F, it
satisfles d(z,y) = d(z, p(z, F)) + d(p(z, F), y).

65
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Figure 4.1: A tree.

As usual, we call leaf every point = € T such that 7"\ {z} is connected. We note Skel(T’)
and call skeleton of 7' the complementary of the set of the leaves. We call branching point
every point € T such that T\ {x} has at least three connected components. For any tree
T, we call length measure the measure A over the skeleton of T' such that for any geodesic
[a, 8], A([z, y]) = d(z,y).

In this chapter, we introduce the height-labelled trees which are a particular class of
labelled measured spaces along with a bijective coding of the tree (7', d, H,0) using the height
and a partial order (7, H, <,0). Additionally, we prove the measurability of some functions
of interest.

Definition 4.1.1. We call height-labelled tree any quadruple (T, d, H,v) where (T,d) is a
tree, H a map from T to R such that for every x,2’ € T,

d(z,2") = H(x) + H(z') —2 min _H/(y) (4.1.1)

y€fz,2’]

and v is a o-finite measure such that
V({.CE e T||H(z)| < h}) < oo forallheR,. (4.1.2)

We shall see in Lemma that H is always 1-Lipschitz, making any complete separable
height-labelled tree (T, d, H,v) a measured labelled space. We set T the space of S-compact
height-labelled trees, up to label- and measure-preserving isometry.

Remark 4.1.2. For every non-empty tree (T, d) there are an infinite number of ways to label
it. For example, pick a point w € T as the root of 7" and A € R, then set H(z) = A+ d(w, z).
This makes (T, d, H) a height-labelled tree.

To prove this last statement, take x, 2" € T and y the projection of the root w on [z, z'],
we have H (y) = minp, ,, H and

H(z) = A +d(w,r) = A +d(w,y) +d(y,z) = H(y) + d(y, z).

It follows that d(z,y) = H(z) — H(y). Similarly, we have d(2',y) = H(z') — H(y). Since
y € [z, 2'], we have

d(z,2") = d(z,y) + d(y,2") = H(x) + H(2') — 2H (y) = H(z) + H(z') — 2 min H.

[z,2']

This concludes the remark.

Lemma 4.1.3. Every complete separable height-labelled tree is a measured labelled space.
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Figure 4.2: A height-labelled tree.

Proof. Take complete separable (T',d, H,v) a height-labelled tree. Given the definition of a
height-labelled tree, we only have to prove that H is 1-Lipschitz. For z,y € T, we have

d(x,y) = H(z) + H(y) — 2[[1361}51111 > H(x) + H(y) — 2(H(x) A H(y)) = |[H(x) — H(y)|-

O]

Lemma 4.1.4. If (T',d, H,0) is a height-labelled tree, then the completion (T,d, H,0) (where
H is extended by continuity) of T' is still a height-labelled tree.

Proof. The space (T, d, H,0) is the completion of the height-labelled tree (17", d, H, 0), so it still
satisfies the four-points-condition, it is still connected and the extension of H' is 1-Lipschitz.
In particular, (T, d, H,0) is a tree.

To prove that (7,d, H,0) is a height-labelled tree, we need to check that holds.
Take x,y € T, there exists (x)nen+ and (yn)nen+ two sequences of T” converging to x and y
respectively. Let us prove that d(x,y) = H(x) + H(y) — 2infy, ;) H. For ¢ > 0, take n € N*
such that d(z,z,) < ¢ and d(y,y,) < . We have

[[x’y]] C [[xvxn]] U [[xna yn]] U [[ynay]]-
It follows that
inf H> (inf H)A( inf H)A(inf H)

[=.y] [z,2n] [zn,yn] [yl
> (H(zn) —€) A ([[ inf H) A (H(yn) —€)
Tn,Yn

> inf H—e.

[[$n7yn]]

Since (z,y) and (zy,yn) play symmetric roles here, we have proven that (z,y) — inf, ,j H
is continuous. We deduce that

d(:p,y) = nlggo d(l‘nayn)
= lim H(x,)+ H(y,) —2 inf H
Jim H (n) + H(yn) L
=H(z)+ H(y) — 2 inf H.

[z,y]

This ends the proof of the lemma. O
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4.1.2 Coded trees

The aim of this part is to give another characterization of a height-labelled tree, using a
partial order function rather than a distance. The main result of this section is Proposition
which states that under sufficient assumptions, a partially ordered set with a label
function can be equipped with a distance making it a height-labelled tree.

Lemma 4.1.5. For (T,d, H,v) a height-labelled tree and x,x’ € T, the minimum of H over
[x,2'] is reached at a single point ¢ and, for every y € [z, 2'], H(y) = H(c) + d(c,y).

Proof. The geodesic [z, '] is compact and H is continuous, so we can consider ¢ € [z, ']
such that H(c) = min, ,; H. Since H is 1-Lipschitz, we have

H(z) — H(c) <d(z,c¢) and H(z")— H(c) <d(c,'), (4.1.3)
and since c¢ is on the geodesic,
d(z,c) +d(c,2') = d(x,2") = H(z) + H(2') — 2H(c)

by definition of a height-labelled tree. From that last line, we deduce that the inequalities in
Equation (4.1.3]) are equalities, and we have:

H(x)— H(c) =d(z,c) and H(z')— H(c) =d(c,a").

Since the length d(z,c) of the segment [z, c] is equal to the difference H(z) — H(c), there
is exactly one 1-Lipschitz map f from [z, c] to R such that H(z) = f(x) and H(c) = f(c).
The function f : y +— H(c) + d(c,y) is 1-Lipschitz and satisfies f(¢) = H(c) and f(x) =
H(e)+d(c,x) = H(x), so H = f. We have the same result on [c, 2], so H(y) = H(c)+d(c,y)
for every y € [z, 2']. From the last formula, we see that ¢ is the unique point of [z, y]] where
H reaches its minimum. O

Definition 4.1.6. For (T,d, H,v) a height-labelled tree, we call most recent common ancestor
(MRCA) of x and y the unique point x Ay € [x,y] such that H(x Ay) = minf,, H.

For every z,y € T, we have d(z,y) = H(z) + H(y) — 2H(z N\ y).

Recall that an order is a relation =< that is reflexive (Vz,x < ), transitive (Vz,y, z, (z <
y and y < z) = x < 2) and anti-symmetric (Vz,y, (r <y and y < x) = = = y). We say that
a set F is totally ordered for < if for every x,y € E, x and y are comparable, that is z < y
or y = z. If F isn’t totally ordered, we say that < is a partial order. Note that even for a
partial order < over a set E, we can use the notions of minimum and maximum when they
apply, the exact formulation being: x is the maximum (resp minimum) of F if z € E and for
every y € E, y <z (resp x < y). The minimum is of particular significance in a tree since it
represents the root of the tree.

From now on, we write x < y when d(x,y) = H(y)— H(x), and x < y when we have z < y
and z # y. The condition d(x,y) = H(y) — H(z) is equivalent to H(xz A y) = H(z), which
is in turn equivalent to x = x A y by uniqueness of the minimum in Definition We say
in this case that z is an ancestor of y or that y descends from x. We call < the genealogical
order on (T, d, H), and we will consider it is canonical.



4.1. HEIGHT-LABELLED TREES 69

Lemma 4.1.7. Let (T,d, H,v) be a height-labelled tree. Its genealogical order < is an order
relation over T

Proof. We must prove that =< is reflexive, transitive and anti-symmetric. The reflexivity is
obvious. Take any three points z,y,z € T. If < y < z then H(z)—H(x) = d(z,y)+d(y, z) >
d(z,z) and since H is 1-Lipschitz we have H(z) — H(z) = d(z, z). This means that z < z,
which yields the transitivity. If + <y < x then d(z,y) = H(z) — H(y) = —d(y,z),sox =y
and = is anti-symmetric. O

Lemma 4.1.8. For h € H(T) the range of H and x € T such that h < H(x) there ezists a
unique *’' € T such that H(z') = h and 2’ < x.

Proof. For x € T, h < H(z), take y € T such that H(y) = h. Using Lemma there is a
point ¢ € [z, y] such that H(c) = ming, 1 H and for every 2’ € [z,y], H(z") = H(c)+d(c,2").
Since H is continuous [z, c], there exists 2’ € [z, ¢] such that H(z') = h. We have

H(z)— H(z') = H(c) + d(c,x) — H(c) — d(c,2') = d(z,c) — d(2,c) = d(z,2"),

so ' is an ancestor of z with height h. To prove the uniqueness, consider 2" another ancestor
of z at height h, we have d(2’,2") = 2h — 2ming, ,» H. Now, we use the fact that [z, 2] C
[«', 2] U [z, z"] to see that

min H > min H=~nh

[z’ ,2'"] [z z]U[z,z"]

so d(a’,2") =0 and 2’ = 2. O

Remark 4.1.9. Combining Lemma and Lemma we find another equivalent defi-
nition of x A y. With the uniqueness in Lemma and the transitivity of <, we see that
{z € T|z < x,z < y} is totally ordered for < and that z A y can also be characterized as the
maximum of {z € Tz < z,z < y}.

Remark 4.1.10. In a height-labelled tree, only one branchﬂ can go to —oo. Indeed, suppose
that a height-labelled tree (T, d, H,v) satisfies infp H = —oco. For x € T, Lemma tells
us that H induces a bijection from the set A(x) = {y € T'ly < =} to (—oo, H(x)]. We know
from Remark that A(x) is totally ordered for <, so by definition of <, H is an isometry
from A(z) to (—oo, H(x)], and A(x) is a branch going to —oc.

Let us prove that it is the only one. Suppose that A’(z) is another infinite branch starting
from x, we prove that it does not go to —oo. Since A(z) and A’(x) are two distinct geodesics
starting from x, and since T is acyclic, then A(x) N A'(x) = [z,2'] for some 2/ € T. Since
A(x) is the set of all ancestors of z, we have for every y € A'(x) that Ay € A(z). Since
A'(z) is connected, we have x Ay € [z,y] C A'(x), so z Ay € A(z) N A(x) = [z,2']. Tt
follows that

inf H = inf (minH)= inf H(zAy)> min H=H(zAz')>—.
yoiley AW = Jnf (minf) = inf H@Ay)=miy [@Az)

For the first equality, we use the fact that A'(z) = Uycar(p[z, y] It follows that A'(z) has a
lower bound. This implies that A(x) is the unique branch going to —oc.

'"Here, a branch is an isometrical embedding ¢ from [0, a] to the tree such that ¢(0) = = and ¢(a) is a leaf,
or an isometric embedding from Ry to the tree such that ¢(0) = z, where z is a point fixed in advance.



70 CHAPTER 4. THE SPACE OF HEIGHT-LABELLED TREES

Definition 4.1.11. Let T be a set, H a map from T to R and < an order on T. We say
that (T, H,=) is a coded tree if the following conditions are satisfied:

1. the direct image H(T) is connected,
2. H is strictly increasing for <,

3. for every x € T and h € H(T) with h < H(x), there exists a unique y < = with
H(y) = h,

4. foreveryx,y € T the set of all common ancestors {z € T|z X x,z < y} has a mazimum,
denoted by x N y.

Proposition |4.1.14] ensures that any coded tree, equipped with the right distance, is a
height-labelled tree. Condition 2 could be derived from 3, but we keep it to avoid an unnec-
essary lemma. Condition 3 emulates the result from Lemma for height-labelled trees,
while condition 4 ensures that we can define a tree distance, as proven in Proposition
Remark tells us that the definition of x A y for height-labelled trees agrees with the
notation given in Condition 4. Note that (z Ay) Az is the maximum of the common ancestors
of x,y, z. This characterization means that A is commutative and associative.

Remark 4.1.12. If three points z,y,z € T of a coded tree (T, H, <) satisfy y < x and z < z
then y and z are comparable for <.

Indeed, suppose H(z) < H(y) and, by Condition 3, consider 2z’ <y with H(2') = H(z).
By transitivity, we have 2z’ < x. We deduce that z’ = z by uniqueness in Condition 3, so
z =2y

Lemma 4.1.13. If (T,d,H,v) is a height-labelled tree and =< its genealogical order, then
(T, H,=) is a coded tree.

Proof. We prove all the conditions from Definition
Condition 1: we have that H is continuous and (7', d) is geodesic.
Condition 2: by definition, < y and  # y implie H(y)— H (z) = d(z,y) > 0 for z,y € T.
Condition 3 is exactly Lemma
Condition 4 is proved by Remark [£.1.9] since the maximum in the condition is exactly
T AYy. ]

For every coded tree (T, H, <), we note (7T, H, <) = (T,d, H,0), with:
d(z,y) = H(z) + H(y) — 2H(z A y). (4.1.4)

Proposition 4.1.14. For any coded tree (T,H,=), ®(T,H,<) = (T,d,H,0) is a height-
labelled tree, and the genealogical order of (T, d, H,0) is <.

The transformation ®, is a bijection from coded trees to height-labelled trees with null
measure.

Proof. Step 1: let us prove the four-points condition. Consider four points x1,z2,x3,24 € T
and suppose that for every i # j € {1,2,3,4}, H(z;Azj) < H(xz1Az2). It follows from Remark
4.1.12 that x1 A x3 < 21 A x2, so we have 1 A x3 = (1 A x2) A (21 A x3) = (21 A 22) A T3.
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Since x1 and x5 play similar roles, we have zo A x3 = (1 A x2) A 23 = 21 A x3. Similarly, we
have x1 A x4 = z9 A x4. This yields

d($1,$3) + d(.%'g,x4) = H(.%’l) + H(l’g) — 2H(.7}1 AN xg) + H(xQ) + H(l‘4) — 2H($2 A l‘4)
= H({L‘l) + H(ZL‘4) — 2H(."L‘1 N ZL‘4) + H(IL‘Q) + H(l‘g) — QH(ZEQ A l‘g).

That is
d(x1,x3) + d(x2, x4) = d(z1,z4) + d(x2, 73). (4.1.5)

Moreover, x1 A x3 and 1 A x4 are comparable for < so we can take the minimum min(z; A
x3, 01 AN xg) = 21 A x3 Axg = x3 A x4. Since H is increasing and z1 A x4 = x2 A x4, we have

d(x1,m2) + d($3,$4) H(x1) + H(z2) — 2H(x1 AN x2) + H(x3) + H(zq) — 2H (x3 A 4)
H(xy)+ H(xz2) — 2H(max(x1 A x3, 21 A\ xy))
(x3) + H(z4) — 2H (min(x1 A x3,21 A 24))
H(x3) — 2H(x1 Ax3) + H(xo) + H(xy) — 2H (1 N 24)
:d(xl, x3) + d(xa, x4)
=d(x1,x4) + d(z2,23).
(4.1.6)
We used Equation for the last two equalities.
Set a; = d(x1,x2) + d(x3,24), az = d(x1,x3) + d(x2,24) and a3 = d(x1,24) + d(x2, x3).
Equations and imply that a1 < as = ag, so

a1 < max(ag,as)
as < max(as,a)
as < max(ay,ag).

With those three inequality, we have proven the four points condition for (7', d).

Step 2: let us prove that d is a distance. The function d is non-negative since H is
increasing. If d(z,y) = 0 then H(x) = H(y) = H(x Ay). We have z Ay < x and H(z) =
H(x Ay), so by uniqueness in condition 3 we have z Ay = x. We find similarly z Ay = y, so
x = y. We have proven that d is positive-definite. The triangular inequality of d is implied
by the four-points condition: d(z, z) + d(z,y) < d(z, z) + d(z,y). We have proven that d is a
distance.

Step 3: let us prove that (7', d) is a tree. Given Steps 1-2, we just need to prove that 7" is
connected. We note that for x <y, we have d(x,y) = H(y) — H(z). Using conditions 1 and
3 we find that in that case

[z,9] :={z € T|z 2 2 2y}

is a geodesic since for every y,y' € [z, 2], d(y,y’') = |H(y) — H(y')|. For every two points
x,x’ € T, we use condition 4 and see that

[z,2'] =[x,z A2'JU [z A2, 2]

is a geodesic between z and 2’ so (T, d) is connected. It satisfies the four points condition
so (T,d) is a tree. We see that ming, . H = H(x A z’) so by (4.1.1) and the definition of d,
(T,d, H,0) is a height-labelled tree.
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Step 4: We prove =< is the canonical order of (T,d, H,0) and that ® is bijective. Let us
first prove that =< is the canonical order of (T, d, H,0). We have already seen that if x < y
then d(x,y) = H(y) — H(x). Conversely, if d(z,y) = H(y) — H(z) then H(z Ay) = H(z) so
r=xAyand x Xy.

Since we can express (7, H, =) as a function of ®(T', H, <), we deduce that ® is injective.

To prove that ® is bijective, take (T, d, H,0) a height-labelled tree < its canonical order.

By Lemma [4.1.13| (7, H, <) is a coded tree. By Definition 4.1.6| we have d(z,y) = H(z) +
H(y) — 2H(xz A y). Using Remark and the construction of ®, we have ®(T, H, <) =
(T,d, H,0).

We have proven < is the canonical order of (T, d, H,0) and that ® is bijective.

With the conclusions of Steps 3 and 4, we have proven our proposition. O

4.1.3 Induced topology on T

We prove Theorem [{.1.15] stating that the space of all S-compact height-labelled trees T
equipped with the distance dr,qyp is Polish.

Theorem 4.1.15. The space (T, dyrgup) is Polish.

Proof. Since (X°,dyqup) is Polish, it is enough to prove that T is closed in (X%, dy,gup). A
S-compact measured labelled space (T,d, H,v) is a tree if and only if (7', d) is a geodesic
space satisfying the four-points condition. It is a height-labelled tree if for every z,y € T,
d(w,y) = H(z) + H(y) — 2ming,,; H.

The set Fy_points of all S-compact measured labelled space satisfying the four-points
condition, defined in 1D is closed in (XS ,d,gap) as seen in Remark|(3.4.10, The set Fy,
of geodesic spaces is closed, by Remark For the last condition, we want to prove that
the set of trees (7', d) equipped with a 1-Lipschitz map H : T'— R that satisfy the condition

Ve, w0 €T, d(z1,22) = H(x1) + H(z2) —2 min  H(x3) (4.1.7)
x3€[x1,x2]
is closed in (X®, dr,gup). To this end, we will find equivalent formulations of Condition
so that we can apply Lemma

Note that for x3 € [z1,2z2], we have d(x1,23) + d(x3,22) = d(z1,22). Since H is 1-
Lipschitz, this implies H(x1) + H(x2) —2H (x3) < d(x1, z3) + d(z3, 22) = d(x1,22). It follows
that

d(x1,m9) = H(x1) + H(xe) —2 min  H(x3)
I3€|[Z‘1,LI:2]]
< Jx3 € [x1,22], H(x1)+ H(xz) — 2H (x3) = d(x1,x2).
We can reformulate (4.1.7)) as
Vay,x9 € T, 3Jxs € [21,22],d(x1,22) = H(21) + H(22) — 2H (23)

i.e.

V:L‘l, o €T, dxgc€ T, d(l’l, 1'3) + d(ZEg, :L'Q) = d(fL‘l, {L‘g) = H(l‘l) + H(l‘g) — 2H({L‘3).
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which is equivalent to

H(l‘g) = %(H(l‘l) + H(.TQ) — d(ﬂ?l,l’g)),

A T, 4 T
Tz E S, S e ’{d(xl,x3>+d<x3,x2>—d(xl,m—H<x1>+H<x2>—2H<x3>.

It follows that the set of trees satisfying (4.1.7)) is Fy_points N Fyeo N Fr, with

Fy = {(T,d,H, v) e X%

vl'l,l'Q € T, 31’3 € Shce|%(H({L’1)+H($2)*d({E1,wg))l(T)’
d(ml,mg) + Cl((l?g,xQ) = d(xl, xg) = H(xl) + H(.%'Q) — 2H(x3) ’

and Fg is closed thanks to Lemma [3.4.7, The set Fy of S-compact measured labelled spaces

satisfying (4.1.7) is closed in (X°, dpqup).
We have T = Fi_points N Fyeo N Fr, so T is closed in (X%, drgup)- O

Remark 4.1.16. By definition, H(T) is an interval for every height-labelled tree (T,d, H,v).
We deduce from Lemma that dgup and drgup induce the same topology on the space
of non-empty compact trees, and that this set is open in (T, drgup) as the trace on T of the
open set X%\ {(}. In particular, this means that for 7 a compact tree, ¢ > 0, there exists
0 > 0 such that

e for every compact height-labelled tree T, if dgup(T,T") < ¢ then dygup(T,T") < ¢;

e for every S-compact height-labelled tree T”, if dygup(T,T") < § then T” is compact and
dGHp (T, T/) <e.

Note that for (T,d, H,v) € T, T is compact if and only if H(T') is compact.

Definition 4.1.17. For every h € R, we define T}, the set of trees (T,d,H,v) € T such
that minp H = h. We define T_o, the set of trees (T,d,H,v) € T such that T = () or
infr H = —o00.

We can rewrite
T o ={(T,d,H,v) € T|Vx1 € T, 312 € T\f(g,))|4+1, H (72) = H(x1) — 1}
and
Ty, ={(T,d,H,v) € T|Vxy € T,H(x1) > h} N {(T,d,H,v) € T|3x € T, H(z) = h}.
With this expression of T_.,, we can use Lemma to see that T_., is closed. The set

Ty, is the intersection of two sets. The first set is closed by Lemma and the second by
Lemma [3:4.11] so T}, is closed for every h.

4.2 Some measurable maps over T

We will study in this section some measurable maps of interest defined over T.
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4.2.1 Number of balls in a level

For (T,d, H,v) a height-labelled tree, h € H(T), the set H~({h}), that we call level h of T,
is ultra-metric when equipped with d. This implies that for every € > 0, the closed balls of
diameter 2¢ form a partition of H~*({h}).

Definition 4.2.1. For h < W € R, (T,d,H,v) a height-labelled tree, we call n"(T) e
NU {oc} the number of closed balls of diameter 2(h' — h) at level ' of T'. In the case where
T has no point at level b/, then we consider that n"" (T) = 0.

We set
D ={(T,h,)) € T x R*|h < '}

the domain of definition of the function (T, h, h') — n™" (T). Notice D is an open set.

Remark 4.2.2. Note that for b’ € H(T) and every ball B C H~1(h') of radius 2(h' — h), the
MRCA of B (that is the maximal element of {z € T|z < z,Vz € B}) exists in T, and its
height is above h. If B’ ¢ H=1(}I/) is another ball of radius 2(h’ — h), then for z € B, 2’ € B,
H(xAz') is strictly below k. It follows that when h € H(T), ' (T) is the number of points
at height h that are ancestors of at least one point at height A’.

Lemma 4.2.3. A height-labelled tree (T,d, H,v) is S-compact if and only if it is complete
and Ya < b € R, n®(T) < occ.

Proof. Step 1: = Suppose that T is S-compact. For every Cauchy sequence (2, )pen € T,
the sequence (|H (zy)|)nen+ is Cauchy also as H is 1-Lipschitz. It follows that (|H (z,)|)nen+
is bounded from above by some h € R, so (z,)nen+ is actually a Cauchy sequence in T},
which is compact, 8o (zy,)nen+ converges. As (zy,)nen+ was arbitrary, T' is complete.

For every h/ € R, T} is compact and d is ultra-metric over T}, so for every h < h' the
closed balls of diameter 2(h' — h) form a partition of 7}, of cardinal n"" (T). Since T
is ultra-metric, the closed balls are open sets. Thus, they form a minimal coverin% of Ty
with open sets. Since T/ is compact, the minimal covering is finite. We have proved that
n/h (T) is finite.

Step 2: < Suppose that T is complete and Va < b, n®?(T) < oo. Take hg € Ry, () nen-
a sequence of points of Tj,. We want to prove that (x,)n,en+ has a converging sub-sequence.
The sequence (H(xy))nen+ has its terms in the compact space [—hg, hg], so we can find an

extraction ¢ such that (H(x4(,)))nen+ converges to some hoo € [—ho, ho).
If hoo = inf7 H, then we have

A(@p(n)> To(ntp)) = H(@pm)) + H(@pmtp) = 2H (Zp(n) N Tontp))
H(@g(m)) + H(Zgm+p) — 2hoo
— 0.

n—oo

IN

This proves that (4(,))nen is a Cauchy sequence, so it converges.
If hoo > infp H, then for every h < b’ € H(T)N[infr H, hoo), we can set y1, ..., Yt () € T
the ancestors at height h of level h/. Take ng € N* such that for all n > ng, [H (2 4(n)) = hoo| <

2A covering is minimal if its only sub-covering is itself.
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heo —h. We have H(xy,y) > h' € H(T), so x4, has an ancestor at height h', and by
definition of nh’h/(T) there is an index i such that 1 < i < nf" (T) and y; < Tp(ny- I Tgenr)
has the same ancestor y; for some n’ > ng, we have y; < Zg(n) N Tg(nr) SO

d(x¢>(n)7$¢(n’)) < H(x¢(n)) + H(x¢>(n’)) - 2H(yi) < 2(hoo + (hoo - h/)) —2h < 4(hoo - h)

We have proven that the set {Z4(n) fnen+ is covered by at most ng + n/o" (T balls of diameter
4(hos —h). Since (hoo — h) can be arbitrarily small, and ng+n/" (T') is finite, we have proven
that {Z4(n)tnen+ is precompact. Since T' is complete, the closure of {x4(,)}nen+ is compact
and there exists a converging sub-sequence. Since T}, is closed, the closure of {Z4(,) }nen+ is
a subset of T}, .

We have proven that (z,),en+ has a converging sub-sequence in T},,. Since (2, )nen+ Was
an arbitrary sequence of T}, we have proven that Tj,, is compact. Since hy was arbitrary, T’
is S-compact. O

Lemma 4.2.4. The map (T, h, ') — n/ (T) is measurable on D when T and R are equipped
with their Borel o-fields.

Proof. Step 1: we prove that Dy = {(T, h, ') € D|n" (T) = 0} is open. We have
Do = {(T,h,}) € T x R*|h < B/ ,n™" (T) = 0}

(T d By i) eTx 2| PR .
A VeeT,H(zx)#h

The space T is S-compact, so the image H(T) N [—r,r] is compact for every r € Ry. It
follows that H(T) is always a closed set of R, so (Vz € T,H(x) # h') is equivalent to
(infzer |H(x) — A'| > 0). From this, we deduce that

Jdg<p <q €Q,
Dy = ((T,d,H,V),h,h’) ceTxR? h< q, P <h <,
Vo e T, H(z) ¢ [p',q]
= U Up’,q/ X (—oojq) « (p/7 q/)7
q<p’'<q’€Q

where

urd = {(T, d,H,v) € 11“ Vo eT,H(z) ¢ [, ] }

The set [p/, ¢'] is compact so the complement of U?"¢ is closed by Lemma[3.4.11} This means
that U?"? is open, so Dy is an open set as the reunion of open sets.

Step 2: we prove that Dy = {(T,h,h') € D|ming H = h’} is measurable. Notice that
n" (T) =1 on D},. We can write:
/ 1
D/OZ m U Vq’nx(—oo,q)x(q/,q/—i——),
neN* g<q'€eQ n
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with

/ > ¢
Vq’”:{(T,d,H,u)€T| vz eT, H(z) > g }

el d <H(y) <q+1

Use Lemma and Lemma [3.4.11| to get that V7" is closed. This implies that Dj is
measurable.

Step 2: we prove that the auxiliary map

fi(T,hh) =1V Sup n™ (T) (4.2.1)

is measurable on D. For every (T,d,H,v) € T, k > 2, h < h' € R we have nhh’ (T) > k if
and only if there exists z1,...,x; € T such that H(z1) = ... = H(x;) = b/ and

3 . . / —
lglingjngnd(:m,x]) > 2(h — h).

It follows that

Ur ={((T,d,H,v),h,h') € D|3R" > 1',n"""(T) > k}

h <H,

K >k, 3xq, ...,z €T
B , 2 5 1y---s Lk )
= ((T, d, H, I/),h,h) eTxR H(.Il) R H(l‘]g) — h”,

V1<i<j<n,d(xzz;)>2(h" —h)

We hayve:

h <MW,
dzq,...,x €T
_ / 2 1y ey bk ’
Uk: - ((T7 d; H? V),h,h) € T X R minlgigk H<1,Z) > h/,
V1<i<j<n,d(z;z;) > H(x;)+ H(xzj) —2h

In this equality, the inclusion (C) is obvious. We now prove the inclusion (D). Take
((T,d,H,v),h,k') in the right-hand set and x1,...,z; € T such that minj<;<x H(x;) > b’
and V1 < i < j < n,d(z;,x;) > H(x;) + H(xj) — 2h, we can take h” = miny<;<i H(z;) > I/
and y1, ...,y the ancestors of xq, ...,z at height h”. For every 1 < ¢ < j < n, we have
d(zs,xj) > H(x;) + H(zj) — 2h, so H(xz; A xj) < h. Since H(z; Azj) < h < W < h' =
H(y;) = H(y;j), we have y; Ay; = x; A zj, so we have H(y; A y;) < h. It follows that
d(yi,y;) = 2(h" — H(y; Ny;)) > 2(h"” — h). We have found A" > 1/, y1,...,yx, € T such that
H(y1) =...=H(yx) = h" and V1 < i < j < n,d(y;,y;) > 2(h" — h), so (T,d,H,v),h,}') is
in the left-hand set. This proves the inclusion (D), so the equality holds.
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We can reformulate the last expression for Uy:

dp.q € Q,
p<h<h <g,
Up =4 (T,d, H,v),h, k') € T x R?| Jy,...,24 € T,
miny <<k H(x;) > g,
V1<i<j<n,d(xiz;) > H(x;)+ H(xj) —2p

= U UP'x{(hh)eRp<h<h<q}
p<qeQ

where we set

dxq, ...,z €T,
Ul}:q = (T, d,H, l/) eT ming<;<g H(ZEl) > q,
V1<i<j<n,d(zx;) > H(z;)+ H(x;) —2p

Now, let us look at the complement of UL'?:

V:El,...,l‘k S T,
T\U,? = (T.d, H,v) € T| mini<i<; H(w;) < g or
1 <i<j<n,d(zz;) < H(x;) + H(zj) —2p

It is closed by Lemma SO U,?’h/ is open. We have proven that the map f : (T,h,h') —
1V supyisy 0" (T) is measurable on D.

Step 3: conclusion. Set
D,y =D\ Dy.

The set D is the set of all triplets (7', h,h') such that n™"(T) > 0. Not that this is
equivalent to b’ € H(T). It is a Borel set since Dy is a Borel subset of D (Step 1). Note
that for every S-compact T, the map A’ nhb (T') is non-increasing, piece-wise constant
and left-continuous on H(T) N (h,c0). It follows that if n"" (T) # 0, then &' € H(T) and
one of two cases arises.

o If h < miny H, then h/ — n"(T) = 1 for every h/ € H(T) and 0 everywhere else.
By definition of f, we have 1 < f(T, h, ') < supprs), n" (T) =1 for every b’ > h, so
n P (T) = 1 = limprqpy f(T, by B").

e If A’ > h > miny H, then, since the map h’ — nhh’ (T") is non-increasing, piece-wise
constant and left-continuous on H(T') N (h,00), there is a non-empty interval [h”, k')
on which n""(T) is constant equal to n»" (T). Since the map h' — n™" (T) is non-
increasing, we have f(T,h,-) = n™"(T) > 1 on [h", 1), so """ = limpuyy f(T, h,h").

It follows that (T, h, ') — n/»"' (T) is the point-wise limit of the sequence

1 1
((T,h, W) s Lpo (T b 1) - f (T, By Sht (1 )h’)) .
n n neN*

With Step 2 and since D is a Borel set, each term is a measurable map, so the point-wise
limit (7', h, h') — n™" (T is measurable on D. O
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4.2.2 Trimming

In this subsection, we adapt the e-trimming from real trees to our height-labelled trees. The
e-trimming is a powerful tool for approximation and will play an extensive role in the following
sections.

For (T,d,H,v) € T and € > 0, define for every z,y € T

d*(z,y) = max(|H(z) — H(y)|, d(z,y) — 2¢).

We will prove in Lemma that d° is a pseudo-distance, so we can define T as the quotient
of T by the equivalence relation d®(z,y) = 0 and p : T'— T¢ the canonical projection. Note

that by definition of d®, H is constant on each equivalence class, so H is still defined on the
quotient T and H(p(z)) = H(z) for all z € T

Definition 4.2.5. For (T,d,H,v) € T and € > 0, we define Trim.(T) = (T¢,d°, H, pv) the
e-trimming of T.

See Figure 4.3| for an instance of T' and Trim.(T).

H

Figure 4.3: Example of an e-trimming. The left-hand tree represents 7', the right-hand
one T¢. The general shape is preserved, as the height of the root. The branching points
are elevated by e, as shown by the dotted lines. The branches shorter than e disappear.
Represented in gray are the projections of some chosen points.

Lemma 4.2.6. Trim.(7T) is a well-defined height-labelled tree of T.

Proof. Let us prove that d° satisfies the triangle inequality. Take z,2’,2” € T and suppose
without loss of generality that x A2’ < 2’ A 2”. We then have x A2’ =z A2/ N2 <o A2
and

d®(z,2") = max(|H(z) — H(z")|, H(z) + H(2") — 2H (z A 2") — 2¢)
<max(|H(z) — H(z")|,H(z) + H(z") — 2H(z N 2') — 2¢)
<max(|H(z) — H(z")|, H(z) + H(2') — 2H(z A 2') — 2¢) + |H(2") — H(z")|
< d&*(z,2") + d° (', ")
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Thus, the function df is symmetric, non-negative and satisfies the triangle inequality, so T°
is well-defined and d° is a distance over T°. The function H is well defined and 1-Lipschitz
on T*.

For y,y’ € T¢ we note y' <¢ y when d°(y,y’') = H(y) — H(y'). To prove that <¢ is a order,
the reflexivity and anti-symmetry are straightforward, so let us check the transitivity. Since
H is 1-Lipschitz for d., so, for x < y <¢ z € T, we have

de(x,2z) > H(z) — H(x) = H(z) — H(y) + H(y) — H(z) = dc(2,y) + de(y, x) > d-(z, 2)
so de(x,2) = H(z) — H(x), and we have z =<° z.

Set < the canonical order of T'. Let us prove that (7°, H, <%) is a coded tree. Recall
Conditions 1-4 in Definition The proof of 1. and 2. are directly included.

1. The image H(T*) is connected as H(T%) = H(T).

2. H is strictly increasing by definition for =<¢.

3. For every y € T¢ and h € H(T®) such that h < H(y), there exists a unique y’ € T*¢
such that ¥/ <y and H(y') = h.

4. For y,y’ € T¢, there exists a point y A° ¢/ = max{y” € T¢|y" < y,y"” =° y'}. We shall
also check that for y,y’ € T°:

d(y,y') = H(y) + H(y') = 2H(y \° ¢/). (4.2.2)

Proof of 3.: takey € T¢, h € H(T¢) = H(T) such that h < H(y). Choose x an antecedent
of y by p and let us find 3. Take 2’ € T the only point such that H(z') = h and 2’ < z. Set
y' = p(z’). Since d(x,2’) = H(z) — H(2') we have d*(z,2’) = H(z) — H(2') = H(x) — h, so

/ €
Yy =y

Now, for the uniqueness, take y” <° y such that H(y") = h and 2” € p~*({y"}), and let
us prove that y” = /. The point 2" satisfies H(z") = H(y") = h and d°(x,2") = d*(y,y") =
H(z)—h. We have H(2") = H(2') and d(z,2") > d*(z,2") = d(z,2), so x A" <z A2’ = 2.
This implies 2 A 2" =z A2’ Az =2’ Az and we have

d(z", ') = H(z")+ H(z') — 2H (2" N 2)
= H(2")+ H(z) — H(z) + H(z') — 2H (2" A z)
=d(z",2) - (H(z) = h)
< d (2", z) +2¢ — (H(z) — h) = 2¢.
We conclude that d®(y”,y’") = d°(«”,2") = 0 so 3/ is the only ancestor of y at height h.

Proof of 4. Figure should help to visualize the following proof. Take y,y’ € T¢. If
d*(y,y') = |H(y) — H(y')| then y and y' are comparable so min(y,y’) is the MRCA that is
max{z € T¢|z <% y,z <¢ ¢/}. If not, then d°(y,vy') > |H(y) — H(y')|. Use Figure for
reference. Take x, 2’ € T respective antecedents of y and 3’ by p. Since

d(z,2") = d*(y,¢') > |[H(y) — H(y')| = |H(x) - H(2')],
we have d(z,2') — 2e = d*(z,2’) > |H(xz) — H(2')|. Consider h = H(z A 2') 4+ €, we have
H(z) + H(z') — 2min(H(z), H(2")) = [H(z) — H(a')|
<d(z,2") - 2¢
=H(z)+ H(z') —2(H(z A2') +€),



80 CHAPTER 4. THE SPACE OF HEIGHT-LABELLED TREES

soh=H(xzANz')+e <min(H(z), H(z")). Take 2" < x and 2’ < 2/ the two points of [z, 2']
such that H(2") = H(2"") = h. Note that 2" A 2" = x A 2’. We have d(z”,2") = H(2") +
H(z")—2H (2" N2"") =2(h—H(xAx')) = 2e so d° (2", 2"") = 0. We set v = p(2”) = p(z).
We want to prove that y” <° y, y” <¢ ¢/ and that if z € T* satisfies 2 <° y and z <° ¢/, then
we have z <° 3.

We have

d*(y,y") = max(|H (x) — H(z")|,d(z,2") — £) = H(z) — H(2") = H(y) — H(y").

So we deduce that 3" <° y and similarly 3" < ¢/.
Let z € T¢ be such that z <¢ y and z < ¢/. We have:

d*(y,y') < d°(y,2) + d°(z,9') = H(y) + H(y') — 2H(=).

This implies that H(z) < H(y"). According to 3., there exists 2z’ € T¢ such that 2’ <¢ ¢
and H(z') = H(z). Thus, we have 2/ < y” <°y, 2 <° y and H(2') = H(z). This implies
that 2/ = 2. Thus z < 3", and so y’ = max{y” € T¢|z <° y,z <° ¢/}, that is by convention
y" =y A°y'. We also have that holds as:

da(ya y/) = d(l‘, l', — 2
— d(x,x//) —|—d($”,l’”/\l’”’) “I‘d(l’”’,l’”/\x,/,) +d(m/,m///) _ 26
— d(fE,I‘H) +d($///,$/)
= H(z)— H(z") + H(z") — H(z"")
=H(y)+H(Y') - 2H(y A\ y).
)
x
x’ vy
ZL‘// y// _ h
x/// 8]
z ANz =a" N —— H(x Nz')

H

Figure 4.4: Position of z,2’,2"”,2",y,y’ and y” on a simple example. The left-hand tree
represents T, the right-hand one T°. The dashed arrows represent p.. z” and z””’ have the
same image y”.

We have proven Conditions 1-4, so (T, H, =) is a coded tree. Using Proposition
with , we see that Trim.(T") is a height-labelled tree with its genealogical order <.
Since d° < d, p is continuous, so for every h € R4, Slice,(7°) is the continuous image of the
compact Slicey, (T'), hence Slice, (T°) is compact. It follows that Trim.(7) is S-compact. For
every h € Ry, pr(Slice,(T°)) = v(Slicen(T")) < oo; We get that Trim.(T) € T. O

The next lemma assert that Trim.(7") is an approximation of 7.
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Lemma 4.2.7. Let T € T and € > 0. We have:
dLGHP(T; Tl“lms(T)) S E.

Proof. Consider the Borel subset of TxT¢: A = {(z, p(x)) },er. The projection p is surjective
by definition of 7%, so A is a correspondence. Note that, since p preserves H, the restriction
A = {(z,p(x))}zer, is a correspondence between Tj, = Slice,(T) and T; = Slice,(T°).
Recall Conditions (3.4.1)) to (3.4.4) to be a e-correspondence between T}, and T, and let us
check them for Ay, using the properties of p.

Condition (3.4.1). We have for every (z,y), (2',y') € Ap: |d(z,2") — d°(y,y)| < 2e.

Condition (3.4.2)). We have for every (z,y) € Ap: H(x) = H(y).

Condition (3.4.3)). We have v(B) < pv(p(B)) for every Borel set B C T},

Condition (3.4.4).We have pv(B') = v(p~1(B’)) for every Borel set B’ C T§.

We get that Ay is a e-correspondence. So Proposition gives that daup(Th,T;) < €
for every h € Ry so dpgup (7, Trim. (7)) < e. O

Lemma 4.2.8. The map T + Trim (T') defined on T is 1-Lipschitz, hence measurable.

Proof. Consider (T,d,H,v),(T",d',H',v') € T, h € Ry, T}, = Slice,(T) and T}, = Slice,(T”).
Set (U, 6, H, p) = Trim.(T) and (U’, ¢, H', i) = Trim(T"), Uy, = Slicey, (U), U;, = Slicep, (U’).
We note p and p’ the projections T' +— U and T" — U’. By Proposition we can
choose A a ng-correspondence between T}, and Tj with 1y > daup(Th,T},). We set A =
{(p(z), p'(2'))}(z,0ryca- Let us prove that A’ is a no-correspondence between Uj, and Uj,.
By construction of A and A’; A’ is a correspondence satisfying Condition and
(3.4.4) with e replaced by ng. So we only have to prove Condition (3.4.1)). Take (u,u’), (v,0') €
A" and (z,2), (y,y') € A some respective antecedents by p and p’. Using the fact that A is
a dg-correspondence, we have

16(u,v) — &' (W', 0"
= |max(|H (z) — H(y)|,d(z,y) — 2¢) — max(|H'(z") — H'(y)|.d (2", ¢) — 2¢)|
< max (|| H(z) — H(y)| - |H'@") - B, |(d(z,y) — 26) — (@ (o)) — 22)]
< max (||H(z) — H'(2')| + [H(y) — H'(y)|], |d(z,y) — d'(', ¢)])
< 2np.

We used Condition (3.4.2) and condition (3.4.1) for A in the last equality. We have proven
that A’ is a np-correspondence. Using Proposition we see that dgup (U, U}) < no. Since

no > daup(Th, Tj) was arbitrary, we have dgup (Un, Uj,) < dgup(Th,T},). By Definition 3.1.12
we see that dpgup(U,U’) < dpeup(T,T"), so T — T¢ is 1-Lipschitz on (T, dLgup)- O

Definition 4.2.9. We call discrete tree any tree T € T satisfying the following conditions:
(i) For every h € R, T has only finitely many points at height h;
(ii) For every compact interval I, T has only a finitely many leaves with heights in I.

Any slice of a discrete tree T only contains finitely many branching points. For any leaf
x € T, take y(x) the closest branching point in 7', we call B(x) = [z, y] the external branch
of z.
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Lemma 4.2.10. For every T € T, ¢ > 0, Trim.(T) is a discrete tree.

Proof. The number of points at any height h € R in Trim.(7") is simply n"~"(T) which is
finite by Lemma [4.2.3] since T is S-compact.

Take F the set of all leaves of Trim.(7T') except, if inf H > —oo the unique leaf at height
infr H (which is usually called the root of T'). For every x # y € E, we can take 2/,y € T
some antecedents of x and y by p, the canonical projection from T' to Trim.(7"). Since x and
y are leaves, they are distinct maximal elements for <%, so they are not comparable for <=.
By definition of <¢, this means that d*(z,y) > |H(z) — H(y)|, so d*(z,y) = d(z',y) — 2¢ >
|H(z')— H(y')|. Tt follows that d(z,y’) > 2¢. Let h > 0. Take E’ a set of elements of T such
that p is one-to-one from E’ to E. Since infy yepr g2y d(2’,y") > 2¢ and T}, is compact, E’
has only a finite number of elements in Tj. Since p is a height-preserving one-to-one map
between E' and F, Trim.(7T') only has a finite number of leaves with height in [—h,h]. O

4.2.3 Stump

We define the stump below h of a height-labelled tree (T, d, H, v) as the sub-tree Stump;,(T") =
{z € T|H(x) < h}. Stump,,(T) is equipped with the restriction of d, H and v to Stump,(T).
The function Stump can easily be extended to measured labelled spaces. Note that Stump
commutes with Slice and Trim.

Lemma 4.2.11. The map (T, h) — Stump;,(T") is measurable on (T x R).
Proof. We write Sy, (T') = Stumpy,(T") for simplicity.

Step 1: we prove that for every h € R, the map T +— Sp(7T) is measurable. Recall
the measurable map f(h,(T,d,H,v)) = (T,d,H,1y< - v) from Lemma and write
fu(T) = f(h,T). Note that Sy(T) = Sp(f(h,T)). Recall that T is closed in (X%, dpgup)
according to Theorem Since T+ f;(T') is measurable, we only need to prove that S,
is measurable on the direct image

fn(T)={(T,d,H,v) € T|Hv((h,)) = 0}.

Since the application p — p((h,4+00)) € [0,+00] defined on the set of Borel measures (i.e.
measures which are finite on compact sets) on R is measurable, we deduce using Lemma
and Theorem that fn(T) is a Borel subset of T. We will prove that Dg =
{(T,d,H,v) € T|Sy(T) = (0} is a Borel set, then we will prove that on D;, = f,(T) \D%, the
map 1"+ Sy, (T) is 2-Lipschitz in T'.

Step 1.1: we prove that D% is a Borel set. We have Dg ={(T,d,H,v) € TVx,H(zx) €
(h,00)}. Set
F={(T,d,H,v) € TVz,H(z) € [h,00)} and U ={(T.d,H,v)e T|Vz, H(z) # h},

so that we have D?L = FNU. The set F is closed in T by Lemma and since T is closed
in X9, while
T\U = {(T,d,H,v) € T3z, H(z) = h}

is closed in T by Lemma [3.4.11] This makes D% the intersection of a closed set and an open
set, thus a Borel subset of T.
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Step 1.2: we prove that on Dy, the map T +— Sp(T) is 2-Lipschitz in T. Take h €
R, (T,d,H,v), (T',d',H',V) two S-compact height-labelled trees of Dy, i.e. such that
Hu((h,00)) = H'V'((h,00)) = 0 and Sp(T) # 0 # Sp(T’). For r € Ry, take (Z,dy) a
separable metric space, ¢ € Iso(T,, Z), ¢’ € Iso(T), Z). Note

Au = du([¢ x HI(Ty),[¢' x H)(T))) and Ap = dp([6 x H)(1z, -v),[¢/ x H)(Lz; /'),

We are looking at upper bounds for

i = du([¢ x H|(Sn(Ty)), [¢' x H'|(S(T})))
Ap = dp([¢ x H](Ls, (1) ), [¢' x H'[(Ls, (1) - V'))-

We obviously have A, = Ap. Let us prove that when Ay < oo,

(6 x H)(S(T:)) © ([¢' x H')(SK(T}))".

Recall Remark (A). For any x € Sy (T}), there exists y € T, such that

dz(¢(x),¢'(y)) vV |H(z) — H'(y)| < An.

If y € Sp(T)) then we are done. If not, we have h < H'(y). Since Sp(T") # 0, infp» H < h,
so we can take y' the ancestor of y in 7" at height h. Since z € Si(T}.), and y € T). \ Sp(T"),
we have —r < H(z) < h < H'(y) < r. Since H'(y') = h, we have y’ € S,(T}). Let us check
that 3 is close to . We have

dz(o(x),¢'(y)) < dz(o(z), ¢/(y)) +d'(y,y')
< Ap+ H'(y) -
< Ap+ H'(y) - H( )
< 2Aq

and |H'(y') — H(z)| = h— H(x) < H'(y) — H(z) < Ag. We have proven that

(6 x H](S(T;)) < ([¢' x H'[(Su(T})))**".

Since T and T” hold symmetric roles, we have A} < 2Ap.
Taking the infimum in Z, ¢, ¢', we have for every r € R, that

danp (Sk(Tr), Su(T})) < 2dane(T;, T;),

SO dLGHP(Sh(T)a Sh(T/)) < 2dLGHP(Ta T/), so T — Sh(T) is Q—LipSChitZ on Dh. This implies
that S,1p, is measurable. Then notice that

Su(T) = Sn o fu(T) = Su(fu(T)1 g, myepy, + 014, (ryepo-
We deduce that S, = (Sp1p,) o fn + 010 o f and thus S}, is measurable for every h.
h

Step 2: we prove that for every T' € T, the map h — S(T) is right-continuous on R. Take
(T,d,H,v) a S-compact height-labelled tree and h € R. If T' is empty, then S is constant.
Suppose T not empty.
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Case 1. Assume Sy (7T) is empty. This implies that h < ming H. Since h — Sy (T) is
constant on (—oo, miny H), we get that S (7T') is right-continuous at h.

Case 2. Assume that Sy (7)) is not empty. We will prove intermediary result, then make
a second disjunction between sub-cases 2.1 and 2.2 to prove the right-hand continuity on
R4, then on R. For every b’ > h we can use the inclusion Sy, (T) C Sp/(T) as a particular
embedding to give an upper bound for dpggp(Sy(T), Sp(T)). For r € R4, note

An(r) = du([Id x H|(Sx(T)), [Id x H}(Sw(T})))

and
Ap(r) =dp([Id x H(Lg<p,|mj<r - V), 1d X H|(1g<p, |H|<r = V))-

For every r, we have Si,(T;) C Syp/(T}).
Let us prove that when |h| < r we have

Ag(r) <h'—h and Ap(r) < Hv((h,}']). (4.2.3)

We first prove that Sp/(T}) C (Sh(T}))" ~". Recalling Remark (A), take z € Sp/(T}).
If x € Si(T}), we are done. If not, we have H(z) € (h,h']. Since S,(T) is non-empty
by hypothesis, we can take z’ the ancestor of z at height h. Since —r < h < 7, we have
' € Sp(T,) and d(x,2’") = H(xz) — H(2') < B/ — h. Since Sp(T) C Sp/(T'), we have proven
that Ap(r) <A’ — h. Since 1g, (1,yv < 1g,,(1,)V, We have with Lemmathat

Ap(r) < v(Sp(T})) — v(SK(T,)) = Hv((h, K] N [—r,7]) < Hv((h,1]).

We have proven Equation (4.2.3]).

Case 2.1: if h > 0 and since Sp,(T") is non-empty, then for r € [0, h], we have

T, = Sp(T)) = Sp/(T}),

so Ag(r) = Ap(r) = 0. For r > h, Equation (4.2.3) holds. By Definitions [3.1.9( and [3.1.12]
this gives

dLGHp(Sh(T), Sh (T)) < /OOO (1 A\ (AH V AP))Q_TdT

h o)
g/ 0" dr +/ (Jh— W[V Hu((h, b)) "dr
0 h
< (|h=1| v Hu((h,1']))e™"
— 0,
Wik

so, with the eventual addition of Case 1, h — Sy (T) is right-continuous on R..

Case 2.2: we treat the last case h < 0. We shall only consider that h’ € (h,0). For
r € [0,—h"), we have Sy(T,) = Sp/(T,) = 0. For r € [—-h', —h) we know nothing as Ay may
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be infinite. For r > —h, Equation (4.2.3) holds. By Definitions [3.1.9/ and |3.1.12] this gives

dLGHp(Sh(T), Shy (T)) < /OO (1 A\ (AH V Ap))eirdT

0
—h )
<0 +/ oo "dr + / (Jh— |V Hu((h, W']))e"dr
Yy —h
=" — e+ (|h—W|AHu((h,h])e ™"
—
WLk
This concludes Step 2, as we have proven that h +— Sj,(T) is right-continuous on R.

Using Lemma the measurability in T" and right-continuity in A imply the measur-
ability of (T, h) — Sp(T). O
4.2.4 Measurability of the ancestral process

In this section, we give a parametrization of some trees which will be used in the next chapter.
We define the vertical deformation of a tree, and give its action on the parametrization.

Definition 4.2.12. For (T,d, H,v) a height-labelled tree such that v(T) is finite and f a
non-decreasing continuous function from R to R, we call vertical deformation of T by f the
4-uple (T',d', H', V'), where

o« H' = foH,

o d(a,y) = H'(x) + H'(y) — 2H"(x \y),

o T" is the quotient of T by the relation d'(-,-) =0,
e 1" is the completion of T" for d’,

e p(x) is the natural projection of T into T",

oV =pov,

e H' is the 1-Lipschitz extension of H" over T'.

Remark 4.2.13. The hypothesis v(T') < oo is only used when f is bounded, to prevent the
accumulation of an infinite measure at finite height for /. We could alternatively suppose
that f is surjective on R. Similarly, the completion step in the definition of 7" comes into
play when f is bounded, and allows 7" to be S-compact (this is proven in Lemma .

Lemma 4.2.14. The vertical deformation (T',d', H',pov) of a S-compact tree (T,d, H,v),
with v(T) finite, by a non-decreasing continuous function f is still a S-compact height-labelled
tree.

Proof. Step 1: we prove that (T”,d, H',0) is a height-labelled tree. Set <" the relation such
2y e d,y)=H (y)— H (z'). With Proposition we just have to prove that
T" = (p(T),H',=<') is a coded tree. Let us prove the four conditions in Definition and
that <’ is an order.
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Condition 1: f is continuous, so H'(T") = f o H(T) is an interval.

Condition 2: if 2/ =’ ¢/ and 2/ # o/, then H'(y) — H'(z) = d'(«/,y') > 0, so H' is
increasing.

We now prove that the relation <’ is an order on T”. The reflexivity is obvious since
d'(«',2") = H'(x) — H'(2") = 0; Condition 2 implies the anti-symmetry; and for 2’ <’ ¢/ and
y' <" 2/, we use the fact that H’ is 1-Lipschitz for d’ to prove that

H’(Z/) . H,(:U/) < dl(zl’xl)
<d(Z,y)+d Y, 2"
=H'()-H'(y)+H () - H'(z)
=H'(¢)- H'(2),

and deduce that 2’ <’ 2/, so <’ is transitive. We have proven that =<’ is an order on T".

Condition 3: take ' € T” and b/ € H'(T") such that b’ < H'(z) and let us prove that
there exists ¢’ =<’ 2’ such that H'(y') = h’. Choose x € T, h € H(T) such that p(z) = 2’
and f(h) = h'. If ' = H'(2') then the result is obvious. If A’ < H'(2'), then h < H(x), so
there exists y < x such that H(y) = h. Set v = p(y), we have H'(y') = h'. Since y = y A z,
we have d'(2/,y") = H'(¢') + H'(y') — 2H'(p(y A x)) = H'(2') — H'(Y), so ¢y =<' 2/. We
have proven the existence. Now, suppose that there exists v, v, =" 2/ with H'(y]) = H'(v}).
Take z,y1,y2 € T some respective antecedents of 2/, yi and vy by p. z Ay1 and x A yy are
ancestors of z, so they are comparable by Remark Suppose without loss of generality
that A y1 = & Ayo. This means that x A y; is a common ancestor of y; and y» and thus
H(z ANy1) < H(yi1 A y2). We have

d/(ylpyé) d' Y1,Y2)

= H'(y1) + H'(y2) — 2H' (31 A y2)
H'(y1) + H'(yz) — 2H'(y1 A )
H'(y2) +d'(z,y1) — H'(2)

H'( H'(fﬂ')+d’(ﬂf Y1)
H'(
0

<
= — H'(a') + H'(z") - H'(y1)

)

where for the first and fourth equality, we used the fact that p preserves d’ and H’; the fifth
equality comes from the fact that yj <’ 2’. We have proven Condition 3.

Condition 4: let us prove that for every x/,1y’ € T”, the set of all points 2’ € T” such that
2/ <" 2/ and 2’ <’ ¢ has a maximal element. With Condition 2, if we find 2’ maximizing
H'(%"), 2 is automatically maximal. Take x,y antecedents of 2/, 3y’ for p. For any 2’ such that
2 <2’ and 2/ X' ¢/, we have H'(2') —2H'(2") + H'(y') = d'(«',2") + d' (2, ') > d'(2',y) =
H'(z') —2H'(z Ny) + H'(V), so H(Z') < H'(z A y). Tt follows that taking 2’ = p(z A y)
provides a maximal element.

We have proven that (7", H', <') is a coded tree, so with Proposition (T",d',H',0)
is a height-labelled tree.

Step 2: We prove that (T',d’, H',1') is an S-compact height-labelled tree. The space
(T',d', H',0) is the completion of (T”,d’, H', 0) which is a height-labelled tree, so it is a height-
labelled tree by Lemma We also have v/(T") = v(T") = v(T) < o0, so (T',d', H', V) is
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a height-labelled tree. To prove that (I”,d’, H',v') is S-compact, we will use Lemma [4.2.3]
Take by < hy, € Rand 0 < £ < 3(h,—h}). Suppose that n"1:%2(T") > k for some integer k > 1.
Since H'(T") is the closure of the interval H'(T') and b} < h} + & < hl, — e < hl, there exists
hi(e) < ha(e) € H(T) such that f(hi(e)) = b} +¢ and f(ha(e)) = hy, —e. By definition, there
exists 7, ..., x3 € T" such that for every i # j, H'(z}) = hy and d'(z}, ;) > 2(hy — h}). Take
e > 0. Since T = p(T) is dense in T’, there exists x1, ...,z € T such that for every i # j,
|H'(z;) —hy| < e and d'(x;, ;) > 2(hy,—h}). Since d'(z4, ;) = H' (x;) + H'(xj) —2H' (x; N 5),
we have

1
H'(zi Nzj) = 3 (H'(x;) + H'(zj) — d'(xi,25)) < hy+¢e— (hy — h}) = h} +e.

It follows that for every i # j, H'(x;) > h —e and H'(z; Ax;) < b} + €. Recalling the choice
of hi(e), ha(e) and since f is non-decreasing, we deduce that for every i # j, H(x;) > ha(e)
and H(z; A xj) < hi(e). This means that n/1(€):h2()(T) > k.

We have proven that for for every k > 1, nfv"2(T") > k = n©:m20E)(T) > k, so we
have nf1:h2(T) < 1vnM(E)h2(e)(T). Since T is S-compact, so with Lemma we get that
nh1(€):h2(€)(T') is finite. We have proven that n"1:72(T") is finite with arbitrary h; < hy. Since
T’ is complete, we know from Lemma that T” is S-compact. O

Now, we give a construction similar to the ancestral processes defined in [§], that is a
tree with all the leaves at the same height, a measure concentrated on the leaves and a
characterization of the tree by the coalescence times.

Set Rfo the set of non-increasing sequences of non-negative real numbers converging to 0,
and RY , C Rfe the set of non-increasing sequences of non-negative real numbers containing
only a finite number of positive terms. We set

D = {(un)nen+ € (0, )N Vi < 5, u; # uj}.

The spaces RY  and ]Rl}lfo are equipped with the norm ||-|| of uniform convergence, for which
RY  is dense in RI}I_TO. The space D equipped with the topology of the pointwise convergence,
for which it is a Borel set of the Polish space [0, 1]™".

Definition 4.2.15. For h € R, ((u)nen+ € RTO and (up)nen+ € D, we define E = (0,1) x
(_OO’ h]? and for (:va)¢ (-’L‘,,y/) €L, H(l’,y) =Y,
d((z,y), (@) =y+y =2 Ay A _inf (h=Ga)),

r<unp<z’

with the convention that inf ) = +oo. Let v be the 1-dimensional Lebesgue measure on (0, 1) x
{h} and T the quotient of E by the relation d(-,-) = 0. We call 7(h, ({n)nen+, (Un)nen+)) the
space (T",d', H',v"), where (T',d') is the completion of (T,d), H' the 1-Lipschitz extension
of H to T, and V' the projection of v onto the quotient.

Lemma 4.2.16. Let h € R, ((n)nen+ € RETO, and (up)nen< € D. The space 7(h, (Cn)nens,
(un)nen+)) is well-defined, and is a S-compact tree.

Proof. In the proof, we use the notations from Definition 4.2.15] Let us define the relation
=, such that for every (x,y)(2’,y') € E = (0,1) x (—o0, h] we have

< (2, y) < (@, y)=ey<y A inf h—¢n).
(zy) 2@ y) 2 (@,y) ey<y mﬂgﬁ@w( Cn)
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U9 (?Lg — 11,1) (1 — 71,3)

v l N /

I

(uz, b — Co)

(u3, h — (3)

]

to —oo (UI,h._ Cl) to —oo
J |

Figure 4.5: Example of the construction.

Step 1. We will prove that d(-,-) = 0 is an equivalence relation, and that < is an order on
the quotient of E by d(-,-) = 0. The relation < is reflexive. Let us prove that it is transitive.
Suppose (2", y") = (2/,y') < (x,y). We need to consider the order of the abscissas, there are
three cases to consider, depending on which abscissa is in the middle. Since the demonstration
is the same in each case, we only do the case " < 2/ < z. In this case, we have 2"/ < z and

yA(,inf_ (h=G))=yA(, dnf_ (h=G))A(, Inf_ (h=Gu))
> i —
=5 (w”§135<x’(h Cn))
> y//

where we used the definition of (2/,y’) < (z,y) for the first inequality and (2", y") < (2/,y')
for the second. We have proven that (z”,4") < (x,y), so < is transitive. Finally, let us prove
that (2/,y) < (z,y) and (z,y) = (2, ) if and only if d((z,y), (2/,y’)) = 0. Suppose without
loss of generality that x < x’/. We see easily that

(@y) 2 (z,y) ] ¢ <y (infocy, <o (h = G))
Yy < yl A (infxgun<:r’(h - Cn))
sy=y < inf (h—2¢)

r<un <z’

Sy+y —2WAYA( inf (h—(,)) =0

r<un, <z’
& d((z,y), (@, y)) = 0.

Since =< is transitive and reflexive, we have proven that d(-,-) = 0 is an equivalence relation,
so the quotient T" of E by this relation is well-defined. This means that < is defined without
ambiguity and is anti-symmetric on 7', so < is an order on 7.

In particular, note that if d((x,y), (/,y')) = 0, then y = ¢/, so H is also defined on T
This means that (7, d, H) is well-defined.
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Step 2. Let us prove that (T, H, <) is a coded tree, by checking the four conditions from
Definition [£.1.111

Condition 1: the direct image H(T') is equal to (—oo, h] by choice of E, so it is an interval.

Condition 2: by definition of <, the map H : (z,y) — y is strictly increasing.

Condition 3: we work on E. Take (xo,y0) € E, ho € (—00, yp], so that the point (xo, ko)
satisfies (xg, ho) < (x0,y0) and H(xo, ho) = ho. Let us prove that for every (z,y) such that
(z,y) = (z0,y0) and H(x,y) = hy, we have d((x,y), (zo, ho)) = 0. Suppose that zo < x (the
demonstration is the same for x < xg), we have

y<yoA( inf (h=(n))

zoLlun<zT

by definition of <. It follows that, by definition of d,

d((mo,ho),(x,y)):ho—i—y—Q(hg/\y/\( inf (h_Cn)»

To<un<T

=ho+y—2(hoAy).

Since we have y = H(z,y) = ho, the last line gives that d((zo, ho), (x,y)) = 0. Since p
(the projection from E to T') is surjective onto T', we have proven that p(zg, hg) is the only
ancestor of p(xo,yo) at height hog, so (T, d, H) satisfies Condition 3.

Condition 4: once again we work on E. Take (x,y), (¢/,y’) € E. From Step 1 and the
proof of Condition 3, we see that (z”,y"”) is an ancestor of (z,y) at height y” if and only if
it is equivalent to (z,y”) and y” < y. It follows that (z”,y”) is a common ancestor of (z,y)
and (2/,y') if and only if d((z,vy"), (z",y")) =0, d((2',y"), (", y")) = 0 and v < yAy'. This
means that there exists a common ancestor of (z,y) and (2/,y') at height 3" if and only if
d((z,y"), (2',y")) =0 and y”’ < y Ay'. Supposing without loss of generality that = < 2/, we
have

d((z,y"), (@', y") =0y +y" =20" Ay" A( _inf (h—(n))) =0

r<un, <z’

sy’ <( inf (h—C)).

r<unp <z’

(4.2.4)

It follows that (z,y Ay’ Ainf,<y,<w(h — (,)) is the MRCA of (z,y) and (2,y). Noticed
that:

d((z,y), @,y ) =y+y =2wAy' A _inf (h—¢))

r<un <z’

= H((z,y)) + H(x,,y)) = 2H((z,y) A (2",9)))-

Thus (4.1.4) holds. We have proven that (T, d, H) is a coded tree, so with Proposition [4.1.14
(T,d, H,0) is a height-labelled tree.

Step 3 : Using Lemma we prove that (T",d’, H',v') is S-compact height-labelled
tree. Thanks to Lemma (T',d', H',0) is a complete height-labelled tree, and v/ is finite,
so, with Lemma we only have to prove that n/1:"2(T") < oo for every hy < hy € R. For
every hi < hy < h we have nv"(T") < p?:"2(T"), so it is enough to prove it for hy # h. We
have H'(T") = H(T) = (—o0, h], so, if hy > h, we have n"1"2(T") = 0 < co. We can suppose
ho < h without loss of generality.
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Set n(hz) the number of integers n € N* such that h — ¢,, < ha. Since lim,, ;, = 0, n(ha)
is finite, and Equivalence implies that T has exactly n(h2) + 1 points (21, ..., Zn(hy)+1)
at height he. In E, every point (x,y) with y < hy satisfies (z,y) < (x,ha). This means
that {z € T'|H(z) < ha} is covered by the sets {z € T'|z < z;} for 1 < i < n(hg) + 1. For
every i, H is an bijective isometry from {z € T'|z < z;} to (—o0, ha], which is complete, so
{z € T|3i,z = z;} is a closed set of T". Tt follows that {x € T|H(x) < hy} is a closed subset
of T, so all the points of 77\ T are at height at least ho. In particular, the points at height
hy in T” are all in T', so they are all ancestors of {z1, ..., zn(hQ)}. By Condition 3, there are at
most n(hg) + 1 points at height h;. Since n*"2(T") is the number of ancestors at height Ay
of the points at level ho. We get nt'2(T") < n(hy) + 1 < oco. Since the restriction hy # h
was done without loss of generality, we have proven that for all hy < hg < h, n""2(T") < o0,
so (T",d',H',v") is a S-compact height-labelled tree. O

Lemma 4.2.17. Let (h,((n)nen+, (Un)nen<) € R X RI}I_TO x D and f a continuous non-
decreasing map from R to R. Set (T,d,H,v) = 7(h,((n)nenss (Un)nen+). Then (f(h) —
f(h = Cn))nen+ belongs to RI}IFTO and the vertical deformation of (T,d, H,v) by f is equal to
the only non-Op term of

CI‘OWIIh/T(f(h), (f(h) - f(h - Cn))neN*v (un>n€N*)7

where h' = lim,—, o f(7).

Proof. Tt suffices to carefully consider the height of the leaves (they are all at height f(h))
and of the branching points (they were at height (h — &, )nen+ in T, so they are at height

(f(h=&))nen= in 7). O

Leznma 4.2.18. The function (h,((n)nents (Un)nen=) — T(hy (Co)nens, (Un)nen+) from R x
Rﬁo x D to T is measurable.

Proof. Step 1: we prove that for every ((u)nen+ € R and (up)nen+ € D, the map h
T(h, (Cn)nen+, (Un)nen+) is continuous. Take h € R, (T, d, H,v) = 7(h, ((n)nen+, (Un)nen+)
and (0 )ken+ a sequence of real numbers converging to 0 such that sup,en- [0x] < 1. Note
that replacing h by h + J; only introduce a shift in H, such that we have the simple relation
T(h + 0k, (Ca)nens (Un)nen<) = (T,d, H + 0y, v), where H + 0 represents the map x= —
H(x) + 0. We shall now prove that (T',d, H + 0y, v) converges to (T,d, H,v) when J; goes
to 0.

For all k € N*, let us set E* = Slice|p|4x+1(T, d, H,v) and Gk = Slice|)—s,+k+1(T, d, H +
Ok, ). We have —(|h| +k+1) < h = maxy H < |h| + k + 1, so E¥ is non-empty and we have
EF ={z e T|H(z) > —(|h| + k +1)}. Since k > 1, we have

—(|h|—5k+k‘—|—1)§—(|h|—|—/€)Sh—i—(slg:m]@X(H-i-(sk)S|h|+k§|h‘—5k+k+1.

This implies that G* is non-empty and that
GF={zeT|H@x)+6,>—(h| -0 +k+1)}={zeT|H(x) > —(|h|+ k+1)}.
This means that G¥ is just the shift in height of E*, so

dGHP(Ek,Gk) < |6k| — 0.
k—o0
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The sets E* and G* are both compact, and we have min(|h|+k+1, |h| — 6, +k+1) > |h| +k,
so Slice| 4 (T, d, H,v) C E¥ C (T,d,H,v) and Slicey, (T, d, H + 6,v) C GF C (T,d,H +
dx,v). The sequence (|h| + k)ren+ goes to oo, so, by Lemma

dLGHP((Ta d7 H + 5k7 V)7 (T7 d7 H, V)) — 0.

k—o0

We have proven that the sequence of trees (7(h+d,, ((n)nen+ (Un)nen))ken+ converges to the
tree 7(h, (Cu)nen+ (Un)nen+) for doaup. The choice h and (0x)zen € [—1, 1] was arbitrary,
s0 h+— 7(h, (¢n)nen*, (Un)nen+) is continuous by sequential characterization.

Step 2: we prove that (¢n)nen* — T(h, (Co)nen+, (Un)nen+) is 1-Lipschitz, that is:

dr.cup (T(h, (gn)nEN*u (un)HEN*)7 T(h7 (€1/7,)TL€N*7 (un)neN*)) < Sg\[{l |Cn - C;L| (425)

Set 0 = sup, ey« |Gn — (|- Take E = [0,1] x (—o0, h], equipped with vg the 1-dimensional
Lebesgue measure on [0,1] x {h} C E. We note (T,d, H,v) C 7(h, ({n)nen+, (tn)nen+) the
quotient of E by the pseudo-distance

d((z,y), (" y) =y +y =2 Ay’ A _inf h—G),

r<un<z’

and (T",d', H', V") C 7(h, () nen+, (un)nen+) the quotient of E by the pseudo-distance

d'((z,y), (" y) =y+y =2y Ay’ A _inf h-0).
rz<un <z’
Let us call p the projection of E to the quotient T, and p’ the projection of E to the quotient
T'. Note that 7(h, (¢n)nen+, (Un)nen+) is the completion of (T, d, H,v) and that p is surjective
from E to T. We set A = {(p(z,y), /' (z,9))} @z y)cE-

Take r € R4, and let us prove that A induces a d-correspondence between Slice,(T") and
Slice,(T"). For every (z,y) € E, we have H(p(z,y)) = H'(p'(z,y)), so p(z,y) € Slice,(T) <
p'(z,y) € Slice,.(T"). Since p and p’ are surjective, A induces a correspondence between
Slice,(T) and Slice,(T"). Recall Conditions (3.4.1)-(3.4.4) to be a d-correspondence, and
let us prove that they are satisfied by A. Take (x,y),(2,y') € E, and let us compute the
distortion of A. We have

’d(p($7y)7 p(xla y/)) - d/(p/(l’,y),pl(l’/, yl))‘
_ ’ / : . . I ! . o
=lly+y —2ry'A inf h=G)] =[y+y 2 Ay' A inf h-G)
:2|(y/\y//\ <inf</h—Cn)—(y/\y//\ inf h—C;L)|

r<unp <z’
<2[( sup ) —( sup ()]

r<un <z’ r<un <z’
<2 sup |G — Gl <26
r<un <z’

This implies that A satisfies Condition (3.4.1) with € replaced by §. For (z,y) € E, we have
H(p(z,y)) = H'(p'(z,y)), so A satisfies Condition (3.4.2)). Finally, for B C T a Borel set, we
define B' = {p/(x,y), p(x,y) € B} = p' o p~1(B). We have

v(B) = vi(p\(B)) < vi(p "\ (B") = V/(B)).
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This proves Condition . Since T and T” play symmetric roles here, we have Condition
as well. We have proven that A induces a d-correspondence between Slice,(T") and
Slice,.(T") for every r € R.

The spaces T" = 7(h, (Cu)nen*, (Un)nen<) and T = 7(h, (¢}, )nen+, (un)nen+) are the
respective completions of T and T”. Set A’ the closure of A in T” x T", and let us prove
that A’ is a d-correspondence. For every x € T”, there exists a sequence (2, )nen+ of elements
of T converging to x. Since A is a correspondence, there exists a sequence (z},)nen+ of
elements of 7" such that (z,,z)) € A. By definition of A, we have H'(z])) = H(xy,), so

n
lim,, H(z],) = H(x). Since T" is S-compact, it follows that (z/,),en+ has an adherence value
x' € T". By choice of 2/, we have immediately H'(z') = H(z) and (z,2") € A’. Since T and
T"" have symmetric roles, we have proven that A’ is an height-preserving correspondence.
Since T" \ T is v-negligible and 7" \ T" is /-negligible, A’ still satisfies Conditions (3.4.1)-
(3.4.4). For every r € Ry, since A’ is an height preserving d-correspondence, it induces a
d-correspondence between Slice,(7") and Slice,(7""). With Proposition we have

dGHp(Slicer(T"), Slicer(T"')) S 0.
By definition of dyqyp, this yields
dLGHP(T”,T”/) S 6

Since T" and T"" are the completions of T"and 7", we have T" = 7(h, ({;)nen*, (un)nen+) and
T" = 7(h, (¢, nen+, (Un)nen+). Since § = ||(Cn)nen — (€, )nen+||oo, we have proven that the
application ((p)nen+ — T(hy (Cn)nen+, (Un)nen+) is 1-Lipschitz.

Step 3: we prove that if ((u)nene € RY o, (un)nens = 7(h, (Go)nen, (Un)nen+) is continu-
ous from D with the pointwise convergence topology to T. Take € > 0 and ng € N* such that
g

for every n > ng, (n = 0. Set § = 555 A (2 mini<jcj<n, [u; — ujl), and take (u),)nen+ € D

such that max,<p, [un, — ul| < d. We set

T =7(h, (Ca)nen*s (Un)nen+),
T’ :T(h, (Cn)nGN*7 (u;)HGN*%

and p (resp. p') the projection from (0,1) x (—oo,h] to T (resp. T”). Note that since
(Cn)nen+ € RY g, the projections p(E) and p'(E) are complete discrete trees. This implies that
T = p(E) and T" = p/(E). Consider o the permutation such that us ) < tg(2) < ... < Ug(ng)-
Since § < %minlgiqgn |u; — uj|, we have “:7(1) < u;@) <. < u;(no) as well. Set

where E = (0,1) x (—o0,h], and we set by convention uy() = u;(o) = 0 and Uy(ny41) =

u;(n0+1) = 1. Now, consider A = {p(,y), p'(z',¥')} (2,y)ca,> and let us prove that A is a e-

correspondence. Since for every 4, uq(;) < Uq(i41) and u;(i) < u;( ) Ag is a correspondence.

i+1
By surjectivity of p and p, A is a correspondence as well. Now, we find a simpler expression of
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dand d'. For (21, 2}), (22, 25) € A, there exists ((z1,y1), (z1,9))), (2, y2), (25, v4)) € A such
that (z1,2]) = (p(x1,91), 0" (21, v))) € A and (z2,25) = (p(z2,y2), p'(xh,y5)). By definition
of Ag, there exists i1, ia between 0 and ng such that for j € {1,2}, Ug(iy) < Tj < Ug(i;41)-
Suppose 1 < x9, we have

d(21,22) = y1 +y2 — 2(y1 A y2 A ( niéll\fﬁ h —Gn))

1 Sun<x2

=y1+y2 21 Aya A( min - h—(p)A( inf b= ()

1<i<ng n>ng
21 <Ug () <T2 1 <unp<z2
=y1+y2 =21 Ay2 A (. Iglgmh Co(i)))-

For the last equality, we used the fact that for n > ng, h — (, = h > y1, and the fact that
since for j € {1,2}, ug(;;) < j < Ug(s; 1), We have uy(;) < z; if and only if i <4i;. Note that
the distance depends only on (i1,y1) and (i2,y2), so we have

d(z1,22) =1 +y2 —2(y1 Aya A (ur?zl?@ h = (o))

as soon as ¢1 < t9. Similarly, we have, supposing that i; < iy, that:

d'(z1,25) =91 +yp —2(y1 Aya A min b — (o))
11 <i<ig
By definition of Ag, we have y; = ¢} and y2 = y5, so we have proven that d(z1, z2) = d' (2], 25)
and H(z1) = H'(z]). This means that A induces a height-preserving isometry between 7" and
T’, and satisfies Conditions (3.4.1)) and (3.4.2)).
We set, for all 0 < i < ng, B; = {h} X (ug(i),ug(i+1)] and B, = {h} X (u; (i)’ ;(erl)]
For every 0 < i < ng, ¥(B;) = Uy (iy1) — Uo(;) and v(B;) = a(z+1) ( )- According to our

previous calculation, p is constant on each B; and p’ on each B, and the B; form a partition
of Supp(v). Take B C T'. Since all the mass is at height h and A preserves the height, we can
neglect the part of B situated strictly under height h. Since p is constant on the B;, p~1(B) is
of the form (J;c; B; for I some subset of {0, ...,ng}. Set B’ = {2/ € T' | 3z € B, (2,7') € A}.
By definition of A, it means that B’ = p’(Uzel 7). Tt follows that

v(B) = Z v(B;)
iel
= Z;(ua(i-H) - ua(i))

< Z U(z+1 z) + 25)

el

= Z —I— 2 n() + 1)5
el

<v(B')+e.

We have proven Condition (3.4.3) for A. By symmetry of the roles for T and T”, we have
Condition (3.4.4) as well, so A is a e-correspondence. Since A preserves the labels, A induces
a e-correspondence between Slice,.(T) and Slice,(T") for every r € R,. Using Proposition
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we have dgpp(Slice,(T), Slice,(T")) < e for every r € R, so by Definition [3.1.12| we
have dygup(T,7T") < . Since € was arbitrary in R* and (u;,)nen+ was arbitrary in a ball

of center (up)nen+ and radius § > 0, we have proven that if ((,)nen+ € RY 5, the map
(un)nen+ — T(hy (Cn)nen+, (Un)nen+) is continuous.

Conclusion: Since 7(h, (¢n)nen+, (Un)nen+) is 1-Lipschitz in ({,)pen+ and limyen+ ¢, = 0,
the map (up)nen+ — 7(hy (Cn)nen+, (Un)nen+) is the uniform limit of

(un)neN* — T(ha (lnSnOCn)neN*a (un)nEN*)

when ng goes to co. With the result of Step 3, (un)nen+ — 7(h, ((n)nen+, (Un)nen+) is the
uniform limit of continuous functions, hence is continuous.

The map 7(h, (Cn)nen*, (Un)nen+) is continuous in (uy)pen+ and 1-Lipschitz in ((,)nen+
over its domain, so it is continuous in (((n)nen+, (Un)nen+). The map

(s (Galnenrss (tn)nere) ) = T(h, (Galnenrs (tn)ner)

is continuous in its two variables h and (((n)nen+, (Un)nen+), and R is separable, so, using
Lemma |3.4.13| the map 7 is measurable from R x ]RI_\{:O x D to (T, dLgup)- O

4.3 Crown of a tree

4.3.1 Unordered forest Topology

The aim of this subsection is to define and study unordered forests of height-labelled trees.
The main result of this chapter is Theorem giving a filtration (.%,)ner of (T, drgup)
adapted to growth process (for example in the case of Galton-Watson and Lévy trees), and
a filtration (€_p)ner of (T, drcup) adapted to coalescent processes (for example in the case
of Kingman’s or A-coalescent).

For every h € R, we set 0, = ({h},d{p),h,0) € T, where dyy, is the only distance over
the singleton {h}. We consider T¢ the set of all sequences (Ty, dy, Hy, Vn)nen+ of S-compact
height-labelled trees such that lim,, dpgap(Ty,0p) = 0 for some h € R and for all n € N* but
possibly one, ming, H,, = h and if there is a ng such that minTn0 H,, # h then T,,, = () or
ming, Hp, > h. We define, for (T},)nen-, (T )nen+ € Te,

dieup (Tn)nenss (Ty)nen+) = inf sup draup(Th, Tyy), (4.3.1)
gE€G(N*) peN*

where G(N*) is the set of all permutations of N*. The function dfgyp is non-negative and
satisfies the triangular inequality, so it is a pseudo-distance over Te. We define T the
quotient of T¢ by the equivalence relation df&yp((Th)nens, (T%)nen+) = 0, and call crowns
the equivalence classes. Note that (T, dfgyp) is separable, but not complete. The space T¢
is Polish though, since the distance

(T)nenss (Tp)nen+) = diGup (Tn)nen, (T )nen) V [h = 1],

where 0, and 0y are the respective limits of (T},)pen+ and (7}, )pen+ induces the same topology
and makes T¢ complete.
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Remark 4.3.1. We give an intuition of the equivalence relation on T¢. Take two sequences
(Tn)nen+ and (T7,)nen+ elements of Te. We have d8yp (Th)nens, (T)nen+) = 0 if and only
if (T},)nen+ and (T} )nen+ have the same limit 0p, and the terms different from 0y, are the same
in both sequences. For example, for (T},)nen+ and 05, = lim,, T},, the following sequences:

L4 (0h7T17T27T37T47T57 )7
o (0h7T170h7T270h7T37”')7
® (Ty(n))nen, for ¢ a permutation of N*,

are all in the equivalence class of (T}, )nen+. But adding or removing any term from (7),),en-
different from 0p would change the equivalence class.

An element of T¢ can always be represented as the class of a sequence (T, dy,, Hy, Vn ) nen=
such that (supy,, Hy)nen- is a non-increasing sequence of elements converging to some h € R.
To ease of notation, we will abusively confuse the classes of T¢r with the representents in Te.
If the terms of (T}, )nen+ and (T),)nen+ € Te are all compact trees, then we can define

d&tip (Tn)nenss (T )nen) = inf sup daup(Tn, Typ)-
o€G(N*) peN*
Note that, like df@yp, the function d&§p is a pseudo-distance, and that d&jp has the same
zeros as df%p thanks to Remark It follows that d33p defines the same quotient as
dpéup, 50 dSyp is a distance on the set of all crowns containing only compact terms.
For h € R, r > |h| and (T},)nen+ € Te with lim,, T;, = 0y, we define

Slice, ((Tn)nen+) = (Slice, (Th))nen+-
Lemma 4.3.2. For h € R, r > |h| and (T),)nen+ € Te with lim, T,, = 05, we have
Slicer((Tn)neN*) e Te.

Proof. Let (T,,,dy, Hy, Vn)nen+ be an element of Te. Take n € N* such that ming, H,, €
[—r,7]. Tt follows immediately that Slice,(T;,) contains the root of T),, so Slice,(T},) is non-
empty and mingjice, (7;,) Hn = ming, Hy. Since ming, H, € [—r,7], we have H,,(T,)N[~r,7] =
H,(T,,) N (—oo,r]. It follows that

Slice,(T},) = {z € Tp|Hp(x) < r}.

For every z,y € Slice,(T},), we have maxy, ,j Hy, = Hp(7)V Hy(y) <7, so [z,y] C Slice,(T,).
We have proven that if minr, H, € [~7,7], then Slice,(T) is a tree and mingjce, (7,,) Hn =
ming, H,.

If ming, H,, > r or if T,, = () then Slice,(T},) = 0.

From these two results, we see that for every n € N* such that ming, H, = h € [—r,7],
Slice,(Ty) is a tree and mingjice, (1,,) Hn = ming, H, = h. If ming, H, > h or T,, = (), which
happens for at most one index, then we either have mingjce,(7,,) Hn = ming, Hy, > h or
Slice,(T5,) = () and in the former case Slice,(T},) is a tree with mingjce, (7,,) Hn > h-

We deduce that Slice, ((T},)nen+ is in Te. O

To help prove convergences, we adapt Lemma to T¢ and prove the following result.
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Lemma 4.3.3. Let (T, dy, Hy, vn)nen+ and ((TF, dE, HE, UF) ene ) ren+ be elements of Tc.
Take h € R (resp h € R) such that lim,, T, = 0p, (resp. lim, T* = 0y, ) and (rx)gen+ @
sequence of positive real numbers such that limyg, 7, = oo and for every k € N*, ri > |h|V |hg|.
If

d&Sp(Slice,, ((Ty)nen-), Slice, (TF)pen+)) — 0, (4.3.2)

k—o0
then, we have:
drcup ((Th)nen, (quf)neN*) k—> 0.
—00

Proof. Take ¢ € (0,1) and h the real number such that lim,, T, = 05,. The tree 0y, is compact,
so according to Remark [4.1.16| there exists ¢/ € (0,1) such that for every compact height-
labelled tree T,

g
danp(T,0n) < €' = draup(T,04) < 5 (4.3.3)

and €” € (0,1) such that for every S-compact height-labelled tree T,
/
drcup(T,0,) < e = (T is compact and dgup(T,0p) < %) (4.3.4)

By definition of d§fjp and donp, there exists a sequence of permutations of N*: (o) pen+,
such that for every k,

sup dgpp(Slice,, (T},), Slice,, (Tfk(n)))
neN*
. . 6/
< déOHP (Shcerk ((Tn)neN* )7 Shcerk ((Trlf)nEN* )) + g (435)

Take ng € N* such that for every n > ng, draup(Tn,0,) < €” A 5. Thanks to Equation
[.3.4), we have
6/
denp (T, 0p) < 5 (4.3.6)

From the <« direction of Lemma we have that for every n < ny,
Jim. drcup Ty, (1, Tn) = 0. (4.3.7)

Combining (4.3.7) line with limg 7y = oo and (4.3.2)), we can take kg such that for every
k > ko, we have

vn < no, diaup (Tn, T), ) < €

re > |h| + ¢’

d&syp (Slicer, ((Tn)nen+ ), Slicer, (T )nen+)) < -

Let us prove that for k > ko, df&up ((Tn)nenss (TF)nen+) < e. By choice of kg, we already
have dygup(Th, Tclfk (n)) < ¢ for n < ng. For n > ng, we have by choice of o1 and (4.3.5)) that

sup damp (Slice, (T;,), Slice,, (T* )

Ok
n>ng

. . g
< ZdEOHP(Shcerk((Tn)neN*),Shcerk((Tﬁ)neN*)) < 3 (4.3.8)
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From Equa‘mon , we have dgup(Th, 0r) < 5, so the label function of T;, takes its values

in [h— 7, h+ 5]. Slnce T, > |h|+¢’ and the labels of a tree always span an interval, it follows
that T, = Slice,, (T,). Using (4.3.8]), we find that the label function of Slice,, (Tfk (n)) takes

its values in [h — &', h + £'], so Slice,, (Tfk(n)) = Tfk(n). This gives, using (4.3.5)) again, that:

daup (T (), 0n) < danp(Tn, Ty, () + daup(Tn, 05) < €

With Equation 1) we have dLGHP( o (n)? ,0,) < §- By definition of ng, we also have

drcup(Th,0n) < §, s0 dLGHP(Tfk(n),Tn) <e
We have for k > kq:

df&mp (Tn)nenss (TF)pen) < sup drcup (TY L (n)» In) < e
neN*

We conclude the proof as ¢ is arbitrary. O

4.3.2 Crown of a tree

For (T,d,H,v) a S-compact height-labelled tree, h € H(T), we define the elements of the
skeleton at level h
Iy(T) = {z € Skel(T")|H(z) = h} (4.3.9)

and the collection Crp(T) of sub-trees of T" above level h as
Crp(T) = (Cih(T»iEI;L(T)y
with for i € Z,(T), C(T) € T defined by:
CMT) = ({x € T|x = i},d, H, 1=y, - v). (4.3.10)

For h/ > h, recall ™" (T') of Definition and note with remarkthat nfM (T) is
the number of indices i € Z),(T') such that C;(T) reaches height A’. Lemma[4.2.3]tells us that
n!" (T) is finite. If C;(T) doesn’t reach &/, then H(C;(T)) C [h, ). By definition, it follows
that for such an index i, its total measure is less than Hv((h,h')), so

danp (Ci(T),00) < (B — h) v Hu((h, 1)) "2 0

This means that Z,(T) is at most countable, and that if Z;(7T') is infinite then, thanks to

Lemma [3.4.5]
li}ln dGHP(Cin (T), Oh) =0 and h?Izn dLGHP(Cin (T), Oh) =0

for every enumeration (i,)nen+ of the elements of Z;(T"). This allows us to define an object
in T similar to Cr:

(0p) nen= if T =0 or supp H < h;
) (T,0p,...) if miny H > h;
Crownn(T) = (€0 (), - Cs (T), 0, ) if Ty(T) = {i1, -yin} with distinct i1, ... in:
(Ci, (T ))neN* if Zp(T') = {in fnen+ with distinct (i, )npen+.
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Note that with this definition, Crowny(7") belongs to T¢ since the sequences converge to 0.
We shall denote by Crowny(T') its equivalence class in T whose definition does not depend
on the choice of the enumeration of Z;,(T"). So the map Crown is defined on R x T and takes
values in Tq.

As T is S-compact, then with Lemma all the (nM(T))>y, are finite, so we can

order (CHM(T ))iez(r) in some order of non-increasing height, and it will converge to 0p.

Our aim for the rest of this section is to prove, after a series of technical lemmas, that the
function (h,T") — Crowny (7)) is measurable from (R x T,dgr x drgup) to (Tc, d;Syp), see
Proposition We set D the set of all (h,T) € R x T such that Crowny,(T")#(0p)nen=-
Looking at the definition of Crown, this is equivalent to “there exists x € T such that
H(x) > h".

Lemma 4.3.4. The set D, 1s open in R x T.

Proof. Take (h,(T,d,H,v)) € D.. By definition of D and Crowny, there exists x € T
such that H(z) > h. Take any element (b, (T",d’, H',v')) € R x T that satisfies |h' — h| <
$(H(z) — h) and

duaup (T, T) < %(1 A (H(z) = h))e1H@),

Since 3(1 A (H(z) — h)) < 1 there exists 7 > |H(z)| such that
1
danp (Slice, (T, Slice,(T")) < §(H(x) —h)

by definition of drgup. Note that z is in Slice,(7"). By Proposition there exists a
$(H(z) — h)-correspondence A between Slice,(T) and Slice, (1”). Take 2’ € Slice, (") such
that (z,2') € A. We have

H'(z') — I > H(z) — |H'(z') — H(z)| — h — |I — h]
1

> H(w)— h—25(H(@) ~ h)

= 0.
We have H'(z') > h'. By definition of Crown, (hj,T*) € D. Since h’ and T” were arbitrary

in a small ball, we have proven that D is open. O

Lemma 4.3.5. Let (h,(T,d,H,v)),(W,(T",d',H',V")) € Dy, r € Ry, i € R and 6 > 0
be such that b > hV K, 0 < § < h” =1 and r > |h| VvV |W'|V |h'|. Set T, = Slice,(T),
T! = Slice,(T"). If A C T, x T) is a d-correspondence between T, and T such that for every
(z,2'), (y,9) € A,

H(z) NH(y) > W' = (H(z Ay) > he H'(@ Ay) > 1),
then

d&%p (Slice, (Crowny, (T')), Slice, (Crowny (T7)))
<2(h" = (hAR))+ Hv([h AR — 6,1 +25]). (4.3.11)
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Proof. Note that Slice,(Crowny (T, d, H,v)) = Slice,(Crown,(T,d, H,17. - v)) and that
[ (stcencry - 2B A B — 6,07 +28]) = Hu([h A R — 6,1 +25]).

In the Inequality (4.3.11), if we replace (T, d, H,v) and (T",d, H',v") by (T, d, H, 17, - v) and
(T",d) H', 172 - V'), we do not change the left-hand term, and we replace the right-hand term
by a smaller (or equal) upper bound. This means that proving the lemma with the additional
assumption [Hv V H'V'|((—o0, —r) U (r,00)) = 0 is sufficient to prove the lemma. Thus, we
assume [Hv V H'V'|((—o0, —r) U (r,o0)) = 0 in the rest of the proof.

Step 1: we handle all the non-empty terms of Slice,(Crowny(T")) reaching level h” (if
any). Take n € N and C1, ..., C,, the terms of Slice,(Crowny,(T)) reaching at least level h”. If
n = 0, that is if supy H < h”, there are none and we can directly go to Step 2. In the rest
of Step 1, suppose that n > 0, that is supy, H > h". Take x € T, with H(x) > h”, and the
index i such that « € C;. Take 2’ € T) such that (z,2') € A. Since A is a d-correspondence,
H'(z') > H(z) —0 > h" — § > R/ so there exists a sub-tree C}, of Crown (T”) such that
x' € C;. Take (y,y’) € A with H(y) > h”, we find that 3’ is in the same sub-tree as z’ if and
only H'(x' Ay') > R/, which is equivalent by hypothesis to H(z A y) > h, that is if and only
if z and y are in the same sub-tree Cj. Thus, we find that C’, is defined independently from
the choice of (z, ") and that for 1 <i,j <n, C; =C; & C, = C;-/. Therefore, we shall keep
the same index ¢ and write C; instead of C/,.

Now, we try to build a correspondence between C; and C/. Consider

A ={(z,2) € Alz € C;,H(z) > W'} U{x € Ci|H(z) < 1"} x {2’ € C{|H'(2") < h"" + 6}.

Let us prove that A; is a correspondence between C; and CJ. For z € Cj, it is straight-
forward to see that there is 2/ € C! such that (z,2’) € A;. Reciprocally for 2’ € CJ,
if H'(2') < h"” 4+ 6 then 2z’ is in correspondence with elements of C; thanks to the sec-
ond term of A;. If H'(2') > h” + 4, then there exists x € T, such that (z,2") € A, and
H(z) > H'(2') —§ > h”, so x € C; by definition of C/, and thus (z,2’) is in the first term of
A;. So A; is a correspondence between C; and C]. We compute the distortion of A;. We find
that

sup |H(x) — H'(z')| < max(6,h" —h, " +5—h")) <5+ 1" —(hAR) <2(h — (R AK)).
(z,x")€A;

Take (z,2'), (y,y') € A;, we have three cases to check. If H(xz) > h” and H(y) > h” then
(xz,2'), (y,y') € A and we have |d(z,y) — d'(2/,y")] < 24. If H(x) < h” and H(y) < h”, then
the distortion is at most

|d(z,y) — d'(2,y')] < Diam({z € C;|H(z) < h"}) vV Diam ({z’ € C]|H'(z') < h" + §})
<2(h"+8§—(hAHK)),
since the diameter of a tree is at most twice its height. In the last case, suppose H(y) < h” <
H(z). We have h < H(x Ay) < H(y) < h”, so
d(z,y) = H(x) + H(y) — 2H(z A y)
€ [H(z) — H(y), H(x) + H(y) — 2h]
C (H(xz)—h",H(z) + 1" — 2h).
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Similarly, we have h' < H'(2' Ay') < H'(y') < h” + 6, so
d(a',y) = H'(2) + H'(y') — 2H'(z' Ny)
c [Hl(l‘,) _ H/(y/),H/(x/) +H/(y/) _ 2h/]
C (H' ()= h'"=06,H (z') + 1" + 6 —2K).

From those two intervals and the fact that |H(xz) — H'(2')| < §, we deduce that

|d(z,y) — d'(2',y)]
< ((H(z)+h"=2h)— (H'(z") =" =0)) v (H'(z') + h" + 8§ —21") — (H(z) — h"))
< |H(z) — H'(z')| + (6 + 2h" — 2h) v (6 + 21" — 2h/)
<26 +2h" —2(h A R).

In the three cases the distortion is less than 2(6 +h” — (h A R')) < 4(h" — (h A R)).

Finally, let us control the measures. Set v; the measure of C; and v the measure of C/.
For any Borel set By C T, A9 C T x T", we note (BO)Z) = {2/ € T'|3z € By, (z,2) € Ap}.
Take B C C; a measurable set, B> = BN HY([h",00)), B« = BN H'((—o0,h”)). Using
the fact that A is a d-correspondence, we have:

vi(B) < VA((B2)A) + 6+ 1i(B<) = Vi((B2)A) + 8 + Hui([h, b)),

e
For any Borel B C T', we note (B(’)): ={z € T|32" € B, (z,2') € A} and (Bj)4 = {x €
Ci|3z’ € By, (z,2') € A;}. Take B’ C Cf a measurable set, BL = B' N (H')~' ([ + 6, 00)),
BL = B'n(H')"!((—o0,h” +§)). Using the fact that A is a é-correspondence, we have:
— —
A

Vi(B') < vi((BS)4) + 0+ vi(BL) = vi((BL)A) + 6 + H'vi([W, 1" + 0)).
We find that A; is a d;-correspondence, with
1
6; = max (2(h" = (h A 1)), 5 A" = (WA R), 8+ Hyi([h, 1)), 8 + HVi(W W' + 9)))
= max (2(h" = (h A 1)),6 + Hyi([h, b)), 8 + H'V/([l, b + 5))).

Since A; is a d;-correspondence, we get with Proposition that deup(Ci, CY) < 6;. We
set
8 = max (2(h" — (h AR)), 8+ Hu([h, b)), 8+ H'V ([}, b +5)).

We shall use later on that since h” > h V I/, we have
[h—H|<hVh —hAKW <K —hARK <2 (4.3.12)
Notice that ¢’ depends neither on i nor on n. It follows that

max d, C;.CH < max §;
1<i<n anp(Ci, C7) < 1<i<n

< max (max (2(h" = (h AI)),6+ Hui([h, k")), 0 + H'V([W, 1" +9))))

T 1<i<n
<.
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Step 2: we prove the result when there exists an term By of Crowny,(T") or of Crowny/ (T")
such that Slice,(By) = (). For convenience, assume that By = (T},,dy, Hy, ) is a term of
Crowny,(T'). By Lemma [4.3.2] Slice,(Crown(T))) € T¢, so Slice,(T},) is the only empty term.
Since there can’t be empty terms in Crowny, (1) by definition, and terms of Crowny,(7") rooted
at height h have at least a point at height h € [—r, 7], we have minp, H,, > h. A second look
at the definition of Crowny(7') immediately tells us that 7,, = T'.

We have T, = Slice,(T},) = 0, and dgup(T7,T)) < d < " —h < o0, so T) = (. By
hypothesis, Crowny (T")# (0 )nens, so T” has at least a point at height > h’. Since b’ € [—r, 7]
and 7T = (), T" does not have a point at height h’. Since H'(T”) is an interval containing a point
above h” > h/ but none at height h’, we have miny» H' > 1/, so Crowny, (T") = (T”,0p/, Opr, -..)
and we have

d&%p (Slice, (Crowny, (T')), Slice, (Crowny (T7))) = d&p (0, 0n, - . ), (0,04 .. .))
= h-
<4

Step 3: control of the short sub-trees. Suppose that there are non trivial elements in
Slice, (Crowny (T)) or Slice,(Crowny/ (T")). Recall Ci,...,Cyp,C],...,C! from Step 1. Set
(Ci)isn and (Cl);>n the rest of the sub-trees. None of the sub-trees (C;)i>, reache h” while
none of the sub-trees (C7);>, reache h” 4+ 4. For i > n, we take A; = C; x C]. A, is a
correspondence between C; and C/ satisfying

sup |H(z)—H'(')|<é+h"—(hAK)<S.
(z,2")EA;

Its distortion is less than
Diam(C;) V Diam(C}) < 2(h" +6 — (h A K)) < 26
We have that for every measurable sets B C C;, B’ C C!

v(B) = V(B')| < max (v(Cy), V(C7))

< max (Hz/([h, W), HV (W, B+ 5))

<.

We deduce that A; is a ¢’-correspondence. We have proven that for i € N*, dgup(Ci, C}) < ¢
SO

d&% p(Slice, (Crowny, (T)), Slice, (Crowny (T"))) < sup dgup(C;, Cr) < §'.
1EN*

Step 4: conclusion. We only need to prove &' < 2(h” — (hAW))+Hv([hA (W —08), " +24)).
Recall that we have either [h AR/, h"” + 0] C [—r,r] or [R AR B + 8] N [—r,r] = 0. Recall the
assumption that [Hv V H'V']((—oo, —7) U (r,00)) = 0, and

8 = max (20" — (A A)), 8+ Hu([h, 1)), 6 + BV (I, b + ).
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If [hAKW B 40N [—r,r] =0, then 64+ Hv([h,h")) =5+ H'V'([W,h"+6)) =06 < h'—h' <
R —hARK,sod =2(h"—(hAL)) and we are done.

Now, suppose [h AR/, h" + 6] C [—r,r]. Since A is a §-correspondence between T, and 7T
we have |H(x) — H'(z')| < 6 for all (z,2') € A, so

%
({«" eT|\H'(z') e [W,h" +0)})A c{xz e T|H(z) € [h —§,h" + 26]}.
Since A is a d-correspondence between T, and T}, we have, with the last inclusion:
H'V([ 0" +6)) =V ({a" e T'|H'(z') € [W, 1" +6)})
—

<v(({2' e T|H'(2) € [, 1"+ 0)})A) +6

<v ({x e T|H(x) € [0 — 0,h" +20]}) + 0
Hy([h' -9, h” + 26]) + 4.

As & < h” — h A I, this means that

§ < max(2(h" — (h A1), 26 + Hu([h A (W — 8), 1 + 25]))
<o(h" — (WA K)) + Hu([h AW — 8,1 + 20]).

This ends the proof of the lemma. O

The next lemma uses Lemma to give a sufficient (very technical) criterion for the
dgp-convergence of the crown of a sequence of trees.

Lemma 4.3.6. Take (h,(T,d,H,v)) € D, with Hv({h}) = 0, (T*,dk, Hy, V*)gen+ a se-
quence of elements of T, (R )ren+, (h])ken+ two sequences of real numbers converging to h
and satisfying hy > hVhy, (ri)ken+ a sequence of positive real numbers with limit 0o, (0f)ken
a sequence of positive real numbers with 6 < hj, — h.. If for every k € N*, there exists a Oj-
correspondence A* between Slice,, (T') and Slice,, (T*) such that for every (z,2'), (y,y') € A¥,

H(x) NH(y) > b = (H(z Ay) > he Hy(@' Ay) > b)), (4.3.13)
then

dienp (Crowny (T), Crovvnh;c (Tk)) kjo 0.

Proof. Recall that by Lemma [4.3.4] D is open in R x T. As limy, d, = 0, we see by Lemma
B.4.3] that

lim dLGHP (Tk, T) =0.

k—o0

Since limy, k), = h and (h,T) € D, there exists ko such that for every k > ko, (h},, T¥) € D.
By hypothesis, limy, |h},| = limy, |h]| = |k, so

sup|h | V|| < oo.

Since limy, 7, = 0o, there exists k{, > ko such that for every k > k),

re > |h|V osup |h| VR > |h] V| kL] VR
k' eN*
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Using Lemma we have for every k > k{ that

dgirp (Slicer, (Crowny (7)), Slicey, (Crowny, (T*)))
< 2(hy — (h A hy)) + Hu([h A hi, — 8k, by, + 20k]) e Hu({h}) = 0.

Using Lemma 4.3.3 we have dpg,yp(Crowny,(T'), Crowny, (T)) . 0. O
—00

The next three lemmas apply Lemma to obtain some form of continuity for the
application (h,T) — Crowny(T) in three specific settings.

Lemma 4.3.7. For every (h,T) € D such that Hv({h}) = 0, we have:

drrp(Crowny,(T), Crown,, 1 (Trim1 (7)) — 0.

n—o0

Proof. Take (h,(T,d,H,v)) € Dy. Set, for k € N*, (T* dy, H,vy,) = Trim, (T) (see Def-

inition [4.2.5)), p1 the projection from T to T* and A1 = {(z, p1( )}zer the canonical
correspondence. According to the proof of Lemma - for all r > 0 the restriction
of A 1 to Slice,(T") x Slice,(Trim 1 (T)) provides a -correspondence between Slice,(T') and
Slicer(Trim% (T)). For every k € N*, set hj, = h+ 1, h{l = h}, + 21 and 0 = . Thus, Ay s
a 0j-correspondence.

Consider (z,2'), (y,y) € A with H(x) > h} and H(y) > hj. Let us prove that  and y
are in the same sub-tree of Crownh( ) if and only if 2/ and ¢y’ are in the same sub-tree of
Crownh;c(Trim1( )). We have 2/ = p%( x)and ¥y = p1 (y), so

2H(x' Ny') = H(a") + H(Y') — di(2",y)

= H() + H(y) — wax([H(z) — H(y), dz,y) - 27)
= min(H (@) + H(y) — |[H() — H)| H@) + ) - dw,g) +27)

=2min(H(x) AN H(y), H(x AN y) + %)7

where, at the second line, we used Definition If x and y are in the same sub-tree of
Crowny,(T) then H(x Ay) > h, so we have

1 1
H(a' A y') = min(H (@) A H(y), H(z Ay) + ) = min(hi, h+ ) = By
so 2’ and y’ are in the same sub-tree of Crowny, (T%).
If x and y are not in the same sub-tree, then H(z Ay) < h, so we have
1 1 1
H(z' ANy') :min(H(x)/\H(y),H(x/\y)—l-%) < H(x/\y)—i-% < h—}-E = h},

so 2’ and y' are not in the same sub-tree of Crowny, (T*). This means that Condition
holds.

We have h < h), < h}l =00 h and 0 < 0, = % < h}l — h},. Let (r)ren+ be any sequence
of positive real numbers converging to infinity. (h,7T") € Dx, so we can apply Lemma m
with parameters (Tx)gen = (Trim%(T))keN* hj,=h+ 1%, hj = h+ 2 and §; = 1. This gives
the result. n
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Lemma 4.3.8. Take (h,(T,d,H,v)) € D+ such that Hv({h}) =0, we have

dreap(Crowny, (T'), Crowny, (7)) m 0
Proof. Take (h},)ren+ a non-decreasing sequence of real numbers in (—oo, k) converging to h.

The set A = {(z, x) }rer is a d-correspondence between T, = Slice,(T") and T, for every r > 0
and 0 > 0. Let us find a sequence (h})gen+ x>k, such that h} |, h and for every z,y € T,

H(z) NH(y) > b = (H(z Ay) > he H(z Ay) > b).

Finding such a sequence will immediately solve our problem, by taking 0 = %(h% — h),
r, = k + max(|hj|, |1} + 0x|), and by applying Lemma [4.3.6]

Take h” > h. The application i’ — n""""(T) is left-continuous on (—oco, ") and has
integer values, so there exists h{(h”) < h such that the map h’ — n""*"(T) is constant on
[h(R"), h]. From this and the convergence of (h})ren+, we can define kjy» the smallest positive
integer such that for every k > kp», nh" (T) = n™h" (T).

For k > kpy1, set By = {n € N*[nV k, 1 < k} and ny = max(Ey). The sequence
(k) k>ky,, 18 well-defined since Ej, is bounded and non-empty (it contains 1). By definition
of kh+%, we see that k — {n € N*|n Vv kh+% < k} is non-decreasing, and that limg ng = oo.
For k > kpy1 set by = h+ ;- We have hj, < h < hj and n"»"(T) = n""(T). So the
definition of khg =k, L < k 1s consistent with the first part of the proof.

Set 0 = %(h’k’ — h) and ry = k + max(|h}], |h}] + k]). The set A = {(xvx)}xGSliceTk(T) is

a dg-correspondence between Slice,, (T') and itself. Let us prove that for all z,y € T, with
H(z) A H(y) > hj, we have

H(zAy)>h< H(x Ay) > hy. (4.3.14)

If there are no points in 7, above level A, then (4.3.14) is true. If there are points in
Slice,(T') above level h} but no point in T at level b}, then ming H > hj > h > hj, so
(4.3.14)) is true in this case as well. In the remaining case, T has at least one point at level
hY. Reasoning on the ancestors of « and y at level h} (which might be equal), we can suppose
without loss of generality that H(x) = H(y) = hy. The distance d is ultra-metric on level
h} and the sub-trees for Crowny(T) (resp Crowny, (T)) are the equivalence classes of the
relation Ry, : d(z,y) < 2(hy —h) (resp. Ry : d(z,y) < 2(hi—hy,)). Since hj, < h we naturally
have xRy = th;Cy. It follows that the partition induced by Ry, is finer than the partition
induced by Rh;g . The partition induced by Ry, consists of n"x (T') equivalence classes, and

the partition induced by Rhﬁc consists of nx (T) equivalence classes. By choice of h}, they
have the same number of classes, and one is finer, so the relations are equal. We have

HxzAy)>he HxAy) >H.
Since (h,T) € D, we get by Lemma that:

klim drGap (Crowny (T), Crowny, (T)) = 0.
—00
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The sequence (h},)ken+ was arbitrary, so we have the continuous limit by sequential charac-
terization:
,111,%11 drémp (Crowny, (T), Crowny (1)) = 0.

O]

Lemma 4.3.9. Let (h,(T,d,H,v)) € D+ be such that Hv({h}) = 0. If T' has no branching
point at height h, then the map (h',T") — Crowny (T"), taking its values in (Tc,dfyp), s
continuous at the point (h,(T,d,H,v)) € R x T.

Proof. Take (h},)ren+ a sequence of real numbers converging to h, (T*, dy,, Hy, Vg )pen+ a se-
quence of S-compact height-labelled trees converging to T for dpgpp. Thanks to Lemma
and Proposition there exists (ry)ren+ and (0x)gen+ two sequences of positive
real numbers such that limg ry = oo, limg dp = 0 and for every k € N*, there exists Ay a
S-correspondence between Slice,, (T') and Slice,, (T%). We shall find an integer ko and a
sequence (h])ken+ k>k, Such that for every k € N*, k! > (h}, V h) + 6, limy h)) = h and for
every (z,2'), (y,y') € Ag,

H(z)NH(y) > h)l = (H(x ANy) > h < Hi(z' Ay') > hy).

Then, we shall use Lemma to end the proof.

Take h” > h. Set Kyp» = {x € T|H(x) = h"}. Since T is S-compact, K~ is compact. We
set 6(h") = & infy yek, , |d(z,y) — 2(h” — h)| if Kp» is non empty, else take 6(h") = |h” — h|.
Let us prove that we still have 0 < §(h”) < h” — h. It is true by definition when Kj~ is empty
so we only prove the case Kp» is non-empty. Take x € Kp», and we see that by definition,
5(h") < $|d(z,z) — 2(h” — h)| = |W" — h|. A continuous map on a non-empty compact set
reaches its minimum, so there exists xo,yo € K~ such that 6(h”) = |d(zo,y0) — 2(h" — h)|.
We have

(1) = 3 ld(o.0) — 2(h" — h)

= 1|H(fﬁo) + H(yo) — 2H (g Ayo) — 2(h" — h)|

2

1
= §|2h” —2H(x9 ANyo) — 2n" + Qh‘
= ’h - H(l’o /\y0)|.

Since T' has no branching points at height h, H(xo Ayo) # h and §(h”) > 0. This means that
whether Kj» is empty or not, 0 < 6(h”) < h” — h. From the convergence of (h},)gen+ and
(0 )ken, for all B’ > h, we can define kp» the smallest positive integer such that for every
k> ke, S(R") > 26, + |, — hl.

For k > kpy1, set By = {n € N*[nVk, 1 < k} and ny = max(Ey). The sequence
(k) k>ky,, 18 well-defined since Ej, is bounded and non-empty (it contains 1). By definition
of kh+%, we see that k — {n e N*[nvV kh+1 < k} is non-decreasing, and that limy ng =

For k > kp1 set hj, = h+ - By construction kpy < k. Thus, we have 6(hy) > 26, + [hy — |
for all £ > k as khg =k, L < k. So taking ¢ = k gives:

S(h}l) > 264 + |l — hl
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and, as §(h") < h"” — h, we have hjl > h + §(h})) > h + |h}, — h| 4+ 26 > (b V h}) + .
Let us prove that for (z,xy), (y, yx) € Ak, we have

H(x) NH(y) > b = (H(z Ay) > h e Hp(o, Aye) > hi).

If T doesn’t reach above the level A, that is if supy H < hj, there is nothing to do. If it
does, let us take (x,zy), (v, yx) € Ay such that H(x) A H(y) > h}. We have :

[(Hia A i) — B) — (H(x A y) = h)
< S P2H (i A ) — 2H(w A y)] + [~

= 31k, o) — i) — H ) — (d(a, ) — H(w) — H)| + B — )

1

< §(|dk(%’k,yk) —d(z,y)| + [Hi(zx) — H(z)| + |H(yx) — H(y))|) + |hy, — Rl
1

< 520k + 0 + 0k) + B — bl

= 265 + |h}, — Al

< d(hy),

where for the third inequality, we used the fact that (x,zx), (y,yx) € Ax and that Ay is a
dx-correspondence.
Let us prove that 0(h}) < |H(x Ay) — h|. If H(xz Ay) > hj, then we have

\H(z Ay)— h| > i — h > 8(h).
If H(x ANy) < hj, set 2’ and y’ the respective ancestors of x and y at level h]. We have
H(x'ANy')=H(xAy) and 2,y € Ky, and thus [H(z Ay) — h| = |H (' Ny') —h| > () by
definition of 6(h}). Applying this to the upper bound on |(Hy(xk Ayx) —h)) — (H(x Ay) —h)|,

we find
|(Hp(xp Ayr) — hi) = (H(z Ay) = h)| < 3(hy) < |H(z Ay) — hl.

For every a,b € R, |b— a| < |a| implies that a and b have the same sign, so Hy(zx A yx) — hj,
and H(z Ay) — h have the same sign. We have proven that

H(x) A H(y) > hy = (H(m/\y)Zh@Hk(xk/\yk) Zh;).

(h,T) € D4, so by Lemma we get

klim df%Hp(Crown% (T*), Crown,,(T)) = 0.
— 00

The sequences (h},)rens and (T%)gen+ were arbitrary, so we have the continuity of Crown
at (h,T) by sequential characterization. O

Definition 4.3.10. For BC R X T, he R, T € T and (Ty)nen+ a sequence of elements of
T, we note
(WDEE A IEE T (Ta)ner if (h,T) € B.
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Note that (h,T') — (0p)nen+ is a 1-Lipschitz application from R x T to T¢, so for any map
f from RxT to T¢, and Borel set B, the application (h,T) + 1(, 1yep-f(h, T') is measurable if
and only if f is measurable on B. Recall that Crowny,(T") is an unordered sequence of elements
of T. Recall the measurable map g defined on R x T by g(h, (T,d,H,v)) = (T,d, H,1g~p - V)
from Lemma, which will be useful in the proof of the next Proposition.

Proposition 4.3.11. The map (h,T) — Crowny(T) defined on (R x T,dgr x dpgup) taking
values in (Tc, diGyp) is measurable.

Proof. Step 1: we prove that f1 : (h,T) = 14, 1)ep, - Crowny,(T) is measurable, for Dy the
measurable (we will prove it in a moment) set of all (h,(T,d, H,v)) € D4 such that T has
no branching point at height h. By definition, the terms of Crowny(7) do not have positive
measure at their root, so we have Crowny, (17') = Crowny,(g(h,T)). Since the measure of g(h,T')
has no mass at height h, we can apply Lemma to find that for (h,T) € Dy, Crown is
continuous at (h, g(h,T')). It follows that on D, Crown is measurable as the composition of
a measurable function by a continuous function. Let us prove that D is a Borel set. We
have

(R xT)\ Dy
=D_U{(h,(T,d,H,v)) € Rx T|3z1,29 € T, H(x1) N H(x2) > h, H(x1 N x2) = h}

=D_ |J F.,
aEQi

where D_ = (R x T) \ D and

FE:{(h,(T,d,H,y))ERxT Jri, w3 € T }

H(z1) > h+e,H(ze) > h+e, H(zi ANz2) =h

Let us prove that for € € Q% , the set F; is a closed set. Take (hy, (T*, dy, Hy,v)) a sequence
of elements of F. converging to some (h,T) € R x T. By hypothesis, we can find a sequence
(xk,yk)keN* such that zg, yi € Tk, Hk(xk) > hip + ¢, Hk(yk) > hy + ¢ and Hk(l‘k VAN yk) = hy.
For every k € N*, infpw Hy < H(xp A yg) = hg, so we can take x) and y;, the respective
ancestors of x3 and y; at height h 4+ e. Since T is the limit of (7%)ren+, by Lemma m
and Proposition there exists two sequence (7)ken+, (0k)ken+ of positive integers such
that limg 7, = oo and limg 6 = 0 and for every k£ € N* some Ay is a J; correspondence
between Slice,, (T') and Slice,, (T*). Since (hy)gen+ converges, rj, > |hy, +¢| for k above some
ko. For k > ko, we choose z,y; € T such that (z},z}), (v, v)) € Ag. By choice, we have
H(x}),H(yY) € [hi+e— 0k, hi, +e+ k). Since (0k)ren= converges to 0, (x}) >k, and (V) )k>k,
are bounded in H. As T is S-compact, up to considering a sub-sequence, we can assume that
(@), Yl )k>k, converges to some (z,y) € T x T. By continuity, we have

H(z) = H(y) = lim H(f) = lim Hy{)=h+e
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and

d(z,y) = lim d(zf, y)
= lim dy (%, yj)
= lim Hy(z}) + Hy(yh) — 2H (2 A yj)
= lim 2(hy +¢) — 21y
= 2e¢.

It follows that H(z Ay) = 5(H(z) + H(y) — d(z,y)) = h. Since H(z) A H(y) > h + ¢, we
deduce that (h,T) € F.. We have proven that F; is closed, and D is open by Lemma m
so Dy =D ﬂserr F¢ is a Borel set. This implies that f; is measurable.

Step 2: we prove that fo : (h,T) = 1¢, 1)ep, - Crowny,(T) is measurable, for Dy the
measurable (we will prove it in a moment) set of all (h, (T,d, H,v)) € D4 such that T is a
discrete tree, see Deﬁnition We prove first that Ds is a Borel set. Take (T,d, H,v) € T.
For every r € Ry, we set E,(T) the set of leaves with height in [—r,7] and points at height
r. Set T, = Slice,(T"). Let us prove that for every = € T, there exists y € E,(T) such that
x = y. Take z € T, the set {y € T;|x < y} is a closed set. Since T, is compact, there exists
yo € T, with x < yo such that H(yo) = max H({y € T,|xr < y}). This means that yo is
maximal for < in {y € T,|x < y}, so yp is maximal in T} and yy € E.(T).

By definition, T is a discrete tree if and only if for every r € Ry, E,(T) is finite. Note that
if 0 <+’ <rand E,(T) is finite then E,./(T) is finite, so T is a discrete tree if and only if for
every r € N*| E,.(T) is finite. Note that for <, F,(T") is the set of all maximal points of 7,.. For
every i, ..., Tn, we can take yi,...,y, € Ep(T) such that for all i, z; < y;. If n < #(E(T)),
taking y1, ..., y,, distinct elements in E,.(T') provides a family of non-comparable elements since
they are maximal. If n > #(E,(T')), there necessarily exists ¢ # j such that z; < y; = y; = ;.
By Remark x; = x; or ; = x;. This means that E,(T) is finite if and only if for every
r € N*, there exists n € N* such that

Vi, .,y € Tp, 31 < 4,5 <n, (1 # j and z; < ).

This means that we have

B V$1,...7$n GTT,
Dy =D.nN (RX Tg*ng}* {(T,d,H,V) € T‘ 31 <i,j<n,(i#jand 7; < x) })
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and
Vxi,...,xn €T,
(T,d,H,v) 6']1“ o o }
TeN* e { 1 <i,j <n,(i # j and ; < )
Va1, ...,xn €T,
(T,d,H,v) € T| max(|H(z1)|, ..., |[H(zp)]) < r =
T‘EN* nEN* J1<i<j<n, d(mi,xj) = ’H(%l) — H($])|
Vai,...,x, €T,
(T,d,H,v) € T| max(|H(z1)l, ..., |H(zp)]) <7 =
T‘EN* nEN* d1 <z < j<n, d(:ci,xj) = ]H(acz) — H($])|
— n U Fr,na
reN* neN*
where

Vai, ...,z €T,
Fropn={{T,d,Hv)eT| 31 <i<j<n,
(HH (23)| = r or d(w, ;) = |H(z;) — H(x;)])

The condition max(|H (z1)|, ..., |[H(x,)|) < r is not equivalent to max(|H (z1)l, ..., |H (zn)]) <
r, but the third equality holds anyway thanks to the intersection over r» € N*. The set F} ,, is
closed thanks to Lemma [3.4.9and D is an open set by Lemma [£.3.4] so Dy is a Borel set.

Let us prove that fo is measurable. Recall from the beginning of Step 1 that Crowny (T") =

Crowny,(g(h,T)) and the measure of g(h,T’) has no mass at height h. With Lemma we
see that for every h and T,

Crowny(g(h,T)) = Jim Crown,,_1(g(h,T)).

For (h,T) € Dy, T is discrete, so, T only has a finite number of leaves with height in
[h—1,h + 1], as well as a finite number of points at height h + 1. It follows that T only has
a finite number of branching points with heights in [h — 1, h]. The tree g(h,T) has the same
branching points as T, so for all but a finite number of ' € [h — 1, 4], g(h,T) doesn’t have a
branching point at height A’. Recall that (h',T) is in the set D if and only if there exists
x € T such that H(z) > h'. Since (h,T) € Dy, we have (h',g(h,T)) € D4 for all K’ < h, so
(W, g(h,T)) € Dy for all but a finite number of b’ € [h — 1, h). It follows that
Ln,ryep, - Crowny,(T) = Ln1yeD, - (nh_{glo (1(h—%,g(h,T))eD1 . Crownh_%(g(h,T))))
1

= ln1)eD, - (nh_{rgo f (h o g(h,T))) .

This proves that fo is the point-wise limit of ((h, T)— fi (h — %, g(h, T))) . Ds.
n *
Since Do is a Borel set and f; is measurable, we have proven that fs is measurable on R x T.

Step 3: Conclusion. Recall 1, 7)ep - (Tn)nen+ from Definition |4.3.10, From Lemma
Trim: is measurable. Since fo and g are measurable and D is a Borel set, it is enough to

proventhat
1.
Crownn(T) = Jim (1rycp, - foll+ - Trim, (9(7))) )

n—oo
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If (h,T) ¢ D, the result is trivial since for every (T}, )nen+ € Tc, Yn1)en, - (Th)nen~ is
constant equal to (0p)nen+ = Crowny (7). Now, assume that (h,T) € D+. According to
Lemma |4.3.7, we have

Crowny(T') = Crowny(g(h,T)) = lim Crown, 1 (Trimi(g(h,T))).

n—oo
Since D is open, and (h + 7, Trim% (T)) converges to (h,T) € D4, we can choose ng such
that for every n > ng, (h + %,Tﬁm%(T)) € D.. Thanks to Lemma (4.2.10 Trim%(g(h, T)) is
a discrete tree, so, for every n > ng, we have (h + %,Trim%(T)) € Dsy. We deduce that, in
the metric space (T¢, dfg&up):

Crowny,(T') = nh_)ngo Crownh+% (Trim% (9(h,T)))

= lim_ (1(h+;,Trim1(g(h,T)))eD2 - Crowny, , 1 (Trim 1 (g(R, T))))

n>ng "
. | —

We have proven that for every (h,T) € R x T,

Crowny(T) = lim (1(h7T)ED# - fa(h + Tll,Trirrn(T))) )

n—oo

The map Crown is the point-wise limit of a sequence of measurable functions, so Crown is
measurable. 0

We recall that #(FE) denote the Borel o-field of a metric space E.

Definition 4.3.12. For every T-valued random wvariable T, we call (Stumpy(T))per the
growth process associated with T, and (Crown_p(T))ner the coalescent process associated
with T'.

We also define the filtrations .7 = (S )ner = (Stumpy, ' (B(T)))her and € = (€-p)her =
(Crown™} (Z(Tc)))her-

Theorem 4.3.13. The families . and € are filtrations on (T, B(T)). The growth process is
adapted for ., and the coalescent process is adapted for €.

Proof. By Lemma [4.2.11} T' + Stumpy,(7’) is measurable for every h € R, so the family
(Sn)her comsists of o-sub-algebra of B(T). For h < h/, T € T, we have Stump,(T) =
Stumpy, (Stumpy, (1')), so %, C . This proves that (.3)ner is a filtration.

By Proposition T — Crowny(7T) is measurable for every h € R, so the family
(én)her consists of o-sub-algebra of B(T). For h/ < h, T € T, we have Crowny(T) =
Crowny,(Crowny,/ (1)), so €, C €}/, and we have proven that (67,)ner is the time-reversal of
a filtration. O

For T a random variable on T, the process (Stumpy (7'))per corresponds to the growth
process adapted to (S,)ner. If T is a Lévy tree for example, the growth process is Markov
for (Fh)ner-

For T a random variable on T, the process (Crowny(T))ncr corresponds to a coales-
cence process adapted to (63)ner. If T is a Kingman or A-coalescent tree for example, the
coalescence process is Markov for (é3)ner-
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4.4 Mixing and exchangeability

The aim of this section is to define relations between the stump and the crown of a tree.
The first step is to build a random tree from the stump of a tree and the crown of another.
For measurability reasons, we will mainly consider the law of this random tree, rather than
the random tree itself. The procedure is to take a height-labelled tree T = (T,d, H,v)
decorated with an additional probability measure p on T" whose support is concentrated on
some level, say h € H(T) of T (that is, p is a probability measure and p(H~'({h})) = 1))
and another height-labelled tree 77 = (T”,d’, H', /') with at least a point at height h. We
give an enumeration (T,, = (Ty,, dp, Hp, Vn))nen= of the crown Crowny,(7”) (which is infinite
by definition). Note that for every n € N*, ming, H, = h and ), oy« Hpvy is a Borel
measure. We take an sequence (X;,)nen+ of independent random variables on T' distributed
as p, and graft each T}, on Stump,(T") at X,,. We mixing of 7" onto T according to p the
probability distribution on T of the resulting random tree, and note it Pr, 7, see Theorem
4.4.5] Then, we will define notions that are of use in the next chapter. We say that a
random decorated height-labelled tree (T,d, H,v,p) is exchangeable at level h € R with
respect to p if a.s. h € H(T), p is a probability measure over 1" concentrated at level h, and
the probability measure Pry, 7 is equal to the distribution of 7. When p is atomless, this
property is designed to be an adaptation of the discrete exchangeability of arrays, found for
example in de Finetti’s representation theorem. We will define properly the mixing operation,
prove all relevant measurability results to finally assert that the concept of exchangeability
is properly defined, see Definition [£.4.8]

We shall define decorated height-labelled trees in the next remark.

Remark 4.4.1. Let n € N*. We can generalize Definition to m-measured metric la-
belled spaces (E,dg, Hg, (V%)1<i<n), where V%, are non-negative measures on B(E) such that
v (Slice, (E,d, H)) is finite for all h € Ry and i € {1,...,n}. Then, the distance dgpp given
in Definition [3.1.9|is generalized by extending the Prohorov distance d;Z’d) from Definition
between two measures v and p on a metric space (Z,d) by the distance between two
family of n measures (v")1<;<,, and (u%)1<i<n on (Z,d) by:

A (V) 1<isn, (W 1<icn) = 125 W ), (44.1)

The generalization of local Gromov Hausdorff Prohorov distance dr,ggp from Definition|3.1.12
between S-compact measured labelled metric spaces to S-compact n-measured labelled metric
spaces is immediate, and the extensions of Proposition and Theorem [3.3.1] are straight-
forward. We keep the same notation drgpp for the corresponding local Gromov Hausdorff
Prohorov distance. Then, following Definition we say that (T, d, H, (v*)1<i<n), where
(T,d) is a tree, H is a map from T to R such that (4.1.1)) holds and v’ are o-finite measure
satisfying . We define TI" as the set of S-compact n-height-labelled trees with the cor-
responding local Gromov Hausdorff Prohorov distance. An immediate extension of Theorem
4.1.15| gives that (']I‘["], dpcup) is Polish. Notice that T = T. The results on the measur-
ability of the various functions defined on T from the two first chapters can be extended to
the analogue functions defined on T,

We could go further in this generalization by considering a space E with a countable
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family of measures (E,dg, Hg, (V%)ien+) and replacing the distance in (4.4.1) by

AP iens, (Wien) = 3 27 (LA dSD (W, i), (4.4.2)
1€N*

With evident notations, we would get that (T!*, djqup) is Polish.

Recall T¢ defined in Section Recall that a Borel measure is a measure defined on
the Borel o-field and finite on every compact set.

Definition 4.4.2. We define Tgorel the set of all (T,,, dy, Hp, Un)nen+ € Te such that

o the measure ., e+ HnVp is a Borel measure overR, i.e. such that ", cn-[Hnvn]([—k, k]) <
oo for every k € N*,

o | Coen Hava| ({8}) =0,
e for alln € N*, ming,, H, = h,
where h is the height of 0, = lim,, T},

For (T,d, H,v) an element of an equivalence class belonging to T, h € H(T), (n)nen+
a sequence of points in T" at height h and (T}, d,,, Hy, Vn)nen- an element of an equivalence
class belonging to ']I‘go“’1 such that, for every n € N*, ming, H, = h, we define the T-valued
map

X(T7 (xn)nGN*v (Tn)TLEN*) = (T/a dlv Hla V/) € Tv (443)

where T, d', H' and v/ are defined as follows. We shall check in Lemma that y is indeed
T-valued. For convenience, we suppose without loss of generality that the (z,,),en+ are the
respective roots of (T),),en+ and that the sets T and (T}, \ {z,})nen+ are disjoint. Set

u( U Tn)

neN*

and d’ the only symmetric real-valued function defined on T” x T” such that

d(z,y) if x,yeT,
/ _ dn( ) lf x7y € Tn7
d(z,y) = dn(z,20) + d(y, ) ifxecT,yecT
dn(z,20) + d(zp, 2p) + dpr (y, ) if @ € Ty € Tyrym #10.

We set H' to be H on T and, for all n, H,, on T},. There are no conflicts in this definition,
since H,(zy) = ming, H,, = h = H(xy). We define v = v+, .« Vn. By hypothesis, H'v/
is a Borel measure. This concludes the definition of .

Lemma 4.4.3. For (T,d,H,v) an element of an equivalence class belonging to T, h € H(T),
(n)nen+ a sequence of points in T at height h and (Ty,dy, Hy, Un)nen+ an element of an
equivalence class belonging to ']I‘gorel such that for every n € N* ming, H, = h, the tuple
X(T, (xn)nen+, (Tn)nen+) is a S-compact tree.
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Proof. In the whole proof, we keep the notations from (4.4.3). Let us first prove that
(T",d', H') is a height-labelled tree. For each property of an height-labelled tree, there are
many cases to consider, with pretty much the same demonstration. Since they are rather
straightforward, we only prove one case for each property.

The function d’ is symmetric and positive-definite. Let us prove the triangular inequality
d'(z,z) < d(xz,y) +d(y,z) in the case x € T),, y € T,y and z € T for n # n’. We have

d'(m,y) +d,(yv ) ( (l' xn) +d($n>$n ) +dn’(xn/7y)) + (dn/(yal‘n’) +d($n’az))

dp(z,20) + d(Tp, Tpr) + d(Tp, 2)
dp(z,20) + d(xp, 2)
d

(z, 2).

The first inequality comes from the positivity of d,s, and the second from the triangular
inequality for d; the two equalities come from the definition of d’. The other cases make
similar uses of those two properties. This proves that d’ is a distance.

Let us prove that T” is acyclic and geodesic. We prove the uniqueness of the injective path
between x and y and the existence of the geodesic in the special case x € T),, and y € T. By
definition of d’, any injective path from z to y must contain a single instance of z,,. For every
n' # n, the path can’t meet T,/ \ {2, } because its boundary in 7" consists in a single point at
most. It follows that the injective path must be the concatenation of an injective path from
x to x,, and an injective path from x,, to y. Those are unique in 7;, and T respectively. Thus,
there is at most one single injective path from z to y. Since d'(x,y) = d'(z, x,) + d'(zn,y),
[, 2] U [xn, y] is a geodesic from x to y. This means that 7" is a tree.

Now, we prove that T” is a height-labelled tree, that is for every x,y € T”,

AV

d'(z,y) = H'(x) + H'(y) — 2 min_H'(2). (4.4.4)

z€z,y]

We only consider the case x € T,, and y € T. Since x,, is the root of T},, we have H(x,) =
h = H,(zy), so

H'(z)+ H'(y) —2 min H'(z) = Hy(z) + H(y) —2( min H,(2) A min H(z))

z€[z,y] z€[z,xn] z€[zn,Y]
= [H,(z) — h] + [h+ H(y) — 2(h A er[flin HH(Z))]
2€[xn,y

= dn(IE, .an) + d(xnv y)
since

h+H(y)—2(h A min H(z)) = H(x,)+H(y) —2 min _ H(z) =d(zp,y).
2€[zn,y] 2€[zn Y]
We therefore obtain that holds in this case. The other cases being similar, we deduce
that T” is a height-labelled tree.

Let us prove that 7" is S-compact. Take r € Ry and (yi)ren+ a sequence of points of T’
such that |H'(yg)| < r for n € N*. If (yg)ken+ has an infinite number of points in T or T,
(for some n € N*), then (yx)ren+ has an adherence point by S-compacity. If not, without
loss of generality, we can assume that y; ¢ T for all K € N*. Then, we define a sequence
(ng)ken+ by setting ni = n where y, € T), \ {z,}. The sequence (z,, )ken+ is bounded in
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the S-compact space T since H(z,) = h. So we can take x an adherence point of (2, )ren+.
We have d'(yg,zn,) = H'(yx) — h < supy, Hp, — h for k large enough. By assumption,
limy ng, = oo and lim, dpgap(7,,0,) = 0, so limy, supr,, H,, —h =0. It follows that = is an
adherence point for (yx)ren+. By the Bolzano-Weierstrass characterization, 7" is S-compact.
Since H'v' is Borel over R and [—r, 7] is compact, we deduce that v/ is finite on Slice,(7") for
every r > 0. Thus, v/ is a Borel measure. O

For (Z,d) a metric space, (Zn)nen*, (Yn)nens € Z , we define

1
dlgw((@“n)neN*a (Yn)nen=) = Séll\ll)* n N d(xp,Yn)- (4.4.5)

The function dI%W is a distance metrizing the point-wise convergence for the sequences in Z.
We write dpw when there is no ambiguity on Z.

Recall drp the local-Prohorov distance on the space of Borel measures on R defined by
(3.4.17)) in Section In the following technical lemma, we prove that x is continuous (in
some specified sense).

Lemma 4.4.4. Take (Z,d) a metric space, H a 1-Lipschitz map on Z, E a closed set of Z
and p a Borel measure on E such that (E,d, H,u) € T and (x,)nen+ a sequence of elements
of E such that the sequence (H(xy))nen= is constant equal to some h € H(E). For k € N*,
take (F*)pen+ closed sets of Z and p* a Borel measure on F* such that (F*,d, H,u*) € T,
and (zF),cn+ a sequence of elements of F* such that the sequence (H(zX)),en+ is constant
equal to some hy € H(F*). Take (T, dpn, Hp, Vn)nen+ a sequence of non-empty trees such
that ming, H, = h, Hyv,({h}) = 0, lim, drgap(Th,0r) = 0 and Y,~1 Hyvn is a Borel
measure on R. For k € N*, take (T,’f,df;,HT]j,yﬁ)neN* a sequence of non-empty trees such
that mingx HY = hg, HEvE({ht}) = 0, lim,, dpgup(TF,0n,) = 0 and 3,1 H¥vE is a Borel
measure on R. -
Assume that:

dPW((xfz)nENﬂ (xn)neN*) k:jo 0 (4.4.6)

sup dLGHP (T7l§7 Tn) — 07
neN* k—o0

dip (Y HEVEDS " Huvy) =0, (4.4.7)

n>1 n>1

and there exists a sequence (rg)ren+ of positive real numbers such that limyg_,o, 1, = +00 and
(st (Sticer, (F*), Slicer, () V dp (Lmir, - ¥ Lz, - 1)) — 0.
Then we have

dr.gup (X(Fk, (xfz)neN*a (Tr]f)nEN*)v X(Ev (wn)nEN*a (Tn)nEN*)> — 0.

k—00
Proof. Lemma [3.4.2] is a key ingredient of the proof.

Step 1: We prove the following conditions: for every € € (0,1) and r > |h|+¢, there exists
ng, kg € N* such that
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1. Vk > ko, |hi — | <,
2. Yk > ko,ri >,
3. Vk > ko, du (Slice,, (F*), Slice,, (E)) < e,
4. Yk > ko, dp (L)<, - 115, U<y - 1) < €,
5. Yk > ko, sup,en+ duaup (TF, T)) < e,
6. Vk > ko, maxi<p<n, d(F, 2,) < e,
7. ¥n > ng, H,(Ty,) C [h,h + €],
8. Yn > ng, k > ko, HE(TF) C [hg, by + €],
9. > nsne Un(Th) < ¢,

10. VE > ko, Y psn, VE(TF) <e.

Note that under the hypothesis of the lemma, limy hy = h, by continuity of H and the
convergence of (2})ren+ towards x1. This gives 1 for kg large enough. Note that when ng is
given, Conditions 2 to 6 are straightforward by hypothesis, so we first focus on Conditions 7
to 10. The measure y, . Hpvy is Borel and Y, g Huvn({h}) = 0, so there exists § € (0, 5)
such that

> Huvp([h, h+26]) <
n>0

With Remark [4.1.16}, there exists ¢’ > 0 such that for T' € T,

(4.4.8)

| ™

drcup(T,05,) < 8 = (T is compact and dgup(T,0p) < 6).

Take ng € N* such that for n > ng, drgup(Tn,0n) < %l~ This condition will imply 7 and 9.
Thanks to (4.4.7), we can take k; € N* such that for k > &y,

dip (Y HEVE S Hovy) < e (F0) (4.4.9)

n>1 n>1

and sup,,en- dieup(TF, T),) < %,- The first condition will imply 10, the second will imply 8.
Note that we have sup,,~.,, drcap(TF,0,) < 6 and SUP, 50, dLaup (T, 0p) < 0", By choice
of &', this implies that for n > ng we have dgup (T}, 05) < 6 as well as dgup(TF,05,) < 6 for
k > ky. Since dgup(Th,0r) < d, we deduce that H,(T},) C [h,h + d] and thus 7 holds. Since
deup(TF,05) < 4, we deduce that HF(TF) C [h — 6, h + 8] N[hk, +00). Use that § € (0,£/2)
to get that 8 for k > k.
We also have:

S vn(Th) < Y Huvn([hh+06]) < Y Hypv([h,h + 26]) <

n>ngp n>ngo n>ng

S,

| ™

where we used that dgup (T, 0r) < ¢ implies H,(T},) C [h, h + ¢] for the first inequality and
the definition of § for the last. This gives 9.



116 CHAPTER 4. THE SPACE OF HEIGHT-LABELLED TREES

Using the definition of drp, see (3.4.17), and the Markov inequality, we deduce from
(4.4.9) that for k > ki, there exists ), > |h| + d such that:

dp <1[ ot Y HRvE 1L vl Y Ha un> < 0. (4.4.10)

n>0 n>0

This implies that for every k > ky:

> vl < Y Hyvy((h—6,h+0)

n>ngo n>ng

<> HEE(h—6,h+0))

n>1

<> Hpvn([h—20,h +20]) + 6

n>1

=Y Hpvn([h, h+26]) +6

n>1

| /\

N |
[\

™

where we used HE(TF) C [h — 6, h + 8] for the first inequality, (4 and the definition of
dp for the third inequality, that 3, ., Hnvy, has its support on [h, oo) for the first equality,
and the definition of J, see , for the last inequality. This gives 10.

By hypothesis, we can find kg > ki satisfying Conditions 1 to 6 for our chosen ng. This
concludes Step 1.

Step 2: We define some metric spaces that will be of use in the rest of the proof. For
convenience, we can suppose without loss of generality that (z,)nen, ({L‘f’;)n,keN* are the
respective roots of (T),)nen+, (T¥)nrens, and that the sets Z, (TX\ {x%}), ren+ and (T}, \
{zn})nen+ are disjoint. The following construction is the same as the construction of x in

(4.4.3). Set
u(U (mu(Um))=2zu( U (@\{=huo( L@\ {=hh)))

neN* keN* neN* keN*

and d’ the only symmetric function on Z’ x Z’ such that

d(z,y) if x,y € Z,
dn(z,y) if z,y € Ty,
d(z,y) = § dn(z,20) +d'(y,2p) if 2 €Thy ¢ T,
dy (2,y) if z,y € Ty,
dF(z,al) +d'(y,zk) if x € TF y ¢ TF.

Note that d’ is a distance on Z’. For z € T, (resp. TF), we extend H to be H(z) =
H(zy) + d'(z,2,) (resp. H(x) = H(zF) + d'(z,2F)). Note that since x, is the root of T},
we have H,(x) = hy, + dp(z, ) = H(xy) + d'(z,2,) = H(z), so H and H,, coincide on Tj,.
Similarly, H and Hﬁ coincide on Tf. The function H is 1-Lipschitz on Z’, by extension and
definition of d'.
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For every k > kg and every n € N*, we know that dLGHp(T,’f,Tn) < nioe*T. Since € < 1,
nio < 1, so there exist 7% > 1 such that

daup (Slice,« (TF), Slice, (T,,)) < nio (4.4.11)
We set
G}, = Slice,, (F*) U ( U Slice, s ( ) and Gp =G U ( U T,’f), (4.4.12)
n>ng
Ej, = Stice,, (E) U ( U Stice, (T)) and By =B u( |J Tn). (4.4.13)
~ nSno

We define v* = pF + > nen* vFand v = p+ > nen* Vn- By hypothesis, v, and v are both
Borel measures. Set:

Tk - X(Fk7 (xZ)nEN’W (Trlf)nEN*) and T = X(E7 (xn)nEN*7 (Tn)neN*)' (4'4'14)

Step 3: We prove that for k > kg, E and G}, are compact sets such that
Slice,(T*) € G, ¢ T* and Slice,(T) C Ej C T, (4.4.15)

as well as
dGHp(Gk, Ek) < Te.

Take k > ko. Since we can define T* to be equal to Fj, U (UneN* T,’f)) equipped with d’, H

and v,. We naturally have, as rp, > 7 and rfL > r, that:
Slice,(T) C Gy, C T*.

Note that |hy| < |h|+e < 7, 50 2F € Gy, for every n. Let us prove that G, is closed in T*. Take
r € TF\Gy. If z € F¥, then we have that x € F¥\Slice,, (F*). Since H is 1-Lipschitz, the ball
of center z with radius |H (z) —ry| > 0 is a subset of F*\ Slice,, (F¥) C T*\ Gy. If x € T¥ for
some n € N*, then we have that z € TF\ Slice, « (TF) for some n < ng. Since H is 1-Lipschitz,
the ball of center z with radius |H (z) —r%| > 0 is a subset of T\ Slice, « (TF) ¢ TF\ Gy. We
have proven that G}, is closed in T*.

Now, we prove that Gy is compact. We have

sup H = ri, V sup (sup H,) V. sup 7% <7V (|hg] +) V max k< 0.
Gy, n>no Tk 1<n<ng 1<n<n

3We can extract rF for each n with the Markov inequality because we have a control on

neN* n no

sup dLGHP(TT]f7Tn) = sup/ (1 A dGHp(Slices(Tff),Slices(Tn)))efsds < iefT,
R4

while a control on fR+ sup,, (1 A dgnp (Slices (TF), Slices (Tn)))e_sds would allow us to extract a common r7,.
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By Lemmam T* is S-compact. Since Gy, is closed in T% and H is bounded on Gy, Gy, is
compact.
We similarly prove that Ej is compact and that

Slice,(T) C Ex, C T.

Recall the definition of G}, and Ej given in (4.4.12) and (4.4.13). Now, we prove that
dGHP(GlmG%) < ¢ and dGHp(Ek,E,;) < &. We have dGHp(Gk,G%) < dH(Gk,G;C) V dp(lgk .
Vi, Lay, - vg). Since G, C Gy, we have

du(Gy, Gy,) = sup d'(z,G})

Gy

< sup sup d'(z,zy,)
n>no geTk

= sup sup H(z) — H(zF).
n>no zeTk

As H(z) — H(zk) = HE(2) — hy, and HF(TF) C [hs,, hi + €], we have
Vn > ng, Yo € TV, H(z) — H(@F) <hy +e—hp =¢,

which gives the inequality du(Gy,G),) < ¢
By Equation (3.1.2)), we have

dp(lay, - vk, Lay, - vi) = vi(Gr \ G}) < Z vi(TY) <e.

n>ngo

It follows that dgup (G, G},) < €. Similarly, we find that dgup(Ek, E},) < €.

Let us find a 5e-correspondence between Ej and G}.. By Conditions 2 and 3 from Step 1,
danp (Slice,, (F*), Slice,, (E)) < &

and, for n < ng, we have by (4.4.11) that dgup(Slice,x (Tff),Slicerﬁ (Tn)) < ;5 By Propo-
sition there exists for every n € N* a ;=-correspondence A, between Slice, (T, k) and
Slice,x (1r). Set

A = {(z,y) € Stice,, (F¥) x Slicerk(E)’d(:c, y) <cf.

By 2-3 from Step 1, the fact that H is 1-Lipschitz and definition of dp, A is a e-correspondence
between Slice,, (F*) and Slicey, (E). The set A" = AU (Uj<p<p, An) is a correspondence
between G}, and Ej, let us prove that it is a Se-correspondence.

Take (x,y), (2',y') € A’. We can restrict ourselves to one of the following cases:

1. (x,y),(2,y) € A,

2. (z,y), («,y') € An,

3. (z,y) € A, (¢, y) € Ap,

4. (z,y) € Ap, (2',y) € Apryn # 0.
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Let us bound A = |d(z,2') — d(y,y’)| in each case. In Case 1, A < 2e because A is a e-
correspondence. In Case 2, A < Qn% because A, is a nio—correspondence. For Cases 3 and 4,
we first prove that for every n < ny,

sup |d(z,z%) — d(y, z,)| < 4e. (4.4.16)
(z,y)€AR

Take y' € Slice,x (T},) such that (zF y') € A,. We have, for every (x,y) € A, that

\d(z, %) — d(y, zn)| < |d(z,2k) — d(y,y)| + |d(y,y") — d(y, zn)]|
<25 1d(y,zn)
no
— 2= 4 H(y) — H(z)
no

<25 4 (h+—)—h
N0 no

<35 4 lhe—hl
no
< 4e,

where we used the fact that A,, is a ns—o—correspondence for the second inequality, that H'(y') <
H'(zF) + > = hg + ;- for the third inequality and Condition 1 from Step 1 for the last
inequality. In Case 3, note that, since z¥ € Slice,(F*), x,, € Slice,(E) and d(z£,z,) < ¢, we
have (z¥,z,) € A. Since d(z,2") = d(x,2F) + d(2k, 2") and d(y, ') = d(y, z,) +d(zn, ') and
It follows that

A < |d(z,zF) — d(y, z,)| + |[d(z’, 2F) — d(y/, z,)| < 2e + 4e = 6e,

where, for the second inequality, we find that the first term corresponds to Case 1, and the
second to Equation (4.4.16[). For Case 4, we have

A < |d(z,z8) — d(y, x,)| + |d(z’, 2F) — d(v/, z,)| < 4e + 6e = 10,

using Equation (4.4.16)) on the first term and Case 3 on the second. We have proven Condition
(13.4.1)).
For every (z,y) € A', |H(z) — H(y)| <eV > < be, which proves Condition (3.4.2).

For B C X and A C X x Y, recall the notation B4 = {y € Y|3x € B s.t. (z,y) € A}
for the set of all elements in correspondence with B for A. Notice that the restriction of v*
on FkJro, Tk is equal to ¥ + 0%, v¥ and that p+ Y%, v, < v. For B C G/, a Borel set,

we have -
VH(B) = yF (BN F*) + ioj vH(BNTF)
n=1
SBAFYE) 4o+ 3 (n(BATH) + )
n=1
< uW(BA) + f: (un(BZ)) + 2

n=1

%
< v (BA") + be,
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which proves Condition (3.4.3)). Similarly, we prove Condition (3.4.4)).
We have proven Conditions (3.4.1))-(3.4.4), so A" is a 5e-correspondence between G, and
E.. Using Proposition [3.4.1} we have daup (G}, E},) < 5¢. It follows that

dcup (G, Ey) < dgup (G, G}.) + daup (G, Er) + daup(E), Ey) < e+ 5e +¢& = Te.

This concludes Step 3.

Conclusion: We have proven in Steps 1-3 that for every ¢ € (0,1), r > |h| + &, there exists
ko(r,€) € N* such that for every k > ko(r, ), there exists two compact sets G¥(r, ), E¥(r, ¢)
such that

Slice, (T*) C G¥(r,e) C Ty,

Slice,(T) € E*(r,e) c T

and
dGHp(Gk(T, 5)7 Ek(T7 E)) < Te.

From this, we deduce that there exists a sequence (7, €k )y g, (jn/41,1) i (|41, +00)x(0,1/2]
- 72

with limy rp = oo and limy e, = 0 such that for all k& > ko(|h| + 1, %), we have k > ko(rg, ).
This means that for every k > ko(|h| + 1, 3), there exists two compact sets G*(ry, &),
EF(ry,, &) such that

Slice,, (Tk) C Gk(rk,ak) C Ty, Slice, (T) C Ek(rk,sk) cT

and
daup (G*(rg, ex), E*(ri, ex)) < Teg.

By Lemma we have limy_, o dpaup(T%,T) = 0. This and (4.4.14) gives the result. [

Recall Tl defined in Remark For h € R, we denote by §;, the Dirac mass at h. Let
Tmix be the subset of T x T of all (T, p) = (T, d, H,v,p), T" = (T",d', H',)) € TP x T such
that p is a probability measure satisfying Hp = §j, for some h € H(T) (that is the support of
pisin H-1({h})), additionally satisfying h € H’(T"). Since the map (T,p) — Hp from T
to M(R) is 1-Lipschitz by Lemma this implies that the possible values for the first
component in Tpiyx form a Borel subset A of T2l on which the map f : ((T,p),T") — (h,T") is
continuous, so the map f : ((T,p),T") — (h,T") is continuous from AxT to RxT. The set B of
all (h,T') € R x T such that h € H(T) forms a closed set, so the domain Tyix = AN f~1(B)
is closed in TP x T. We have the following main result which informally states that for
((T,p),T') € Tmix and (X, )nen+ a sequence of independent T-valued random variables with
distribution p, the probability distribution Pr,, 7 on T of X(T, (X )nen+, Crowny, (T7)) is well
defined. The random tree x (7T, (Xy)nen+, Crowny(T")) corresponds to grafting at level h
according to the sampling distribution p the crown of T” on the stump of 7.

Theorem 4.4.5. Let ((T,p),T") € Twix. The probability measure P, 1 on T of

X(Tv (Xn)’nEN* ) Th)v

where x is defined by (m, (T,ﬁ) is an element of the equivalence class of (T,p) in T2,
(X)) nen+ 1s a sequence of independent random variables on T with the same distribution p and
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5, is an element in Te of the equivalence class of Crowny (T"), is well defined. Furthermore,
the probability measure Pr,,r does not dependent on choice of the element (T,;ﬁ) in the
equivalence class of (T,p) nor on the choice of the element T, in the equivalence class of
Crowny, (T"). So the probability measure Pr, 7/ is uniquely defined for ((T,p),T") € Trix.

Proof. We have to prove that Pr, 7 is a probability distribution on T, and that if the height—
labelled trees (11, p1) and (T, p2) are in the same equivalence class of T' € T2 and if 7+ and
72, elements of T¢, are in the same equivalence class of Crowny,(T"), then x (Tt (X})nens, 74)
and X (T2, (X2)nen+, 77), have the same distribution, where (X! )nen+ are independent T;-
valued random variables with distribution p;, for i € {1, 2}.

Recall the distance dpw metrizing the point-wise convergence for the sequences defined
in (4.4.5). For given S-compact 2-height-labelled tree (T',p) and 7, € T¢, we deduce from
Lemma [4.4.4| (taking E = F* = T and (T}, dp, Hp, Vp)nen- = (TF,d5 HE UF)en- = 7, for
all k € N*) that the map from (TN, dpw) to T defined by:

(fn)neN* F%;X(T¥($n)77h)

is continuous. Therefore, the probability measure Pr, 7 on T is well defined as the push-
forward of the probability measure v on T .

As (T1,p1) and (Ts,po) are in the same equivalence class of T € TP, there exists a
bijective isometric map ¢ from T onto Ty which preserves the labels and the measures p;.
Write 7, = (1}, = (Tfl,dﬁl,Hfl, ;))neN* for i € {1,2}. Let € > 0, which will be chosen later.

According to the definition of dfgyp, as 7 and 7',% are in the same equivalence class
of Crowny,(T"), there exists a permutation o € 6(N*) such that:

sup dLGHp(T T (n)) <e.

neN*
Let (X}),en+ be independent Tj-valued random variables with distribution p;. By construc-
tion, notice that (X2 = ¢( o‘(n)))”eN* are independent T5- Valued random variables with
distribution ps. Thanks to Lemma m (taking E = ¢(T1), F* = Ty, (Tp)nen = (T pen-
and (TH)pens = (T2)nen= for all k € N¥), we deduce, since Zn>1 H! v does not depend on
1, that for any § > 0, taking € > 0 small enough, we have:

dLGHP( (To, (X2)nens, (Tz)nEN*)aX(¢(Tl)7(¢(X}L))n€N*7(T7l)n€N*)> < 4.

By construction of x see (4.4.3), we have that the trees x(¢(T1), (A(X}))nenr, (T&)neN*))

and x (T4, (X))nens, (T} )nen+)) are equal in T. Notice that the distribution of the random
tree X (T2, (X2)nen+, (T2)nen+) does not depend on § or e. Since § > 0 is arbitrary, we
deduce that the random trees x (7%, (X2)nen+, (T2)nen+) and x (T, (X)) nens, (T} ) nen+) have
the same distribution. This means that the probability distribution Pr, 7 does not depend
on the choice of the elements in the equivalence classes of T and of Crowny,(T”). t

By convention, we shall say that Pr,, 7 is the probability distribution of the random tree
X(T, (Xp)nen+, Crowny, (T7)), where (X, )nen+ is a sequence of independent T-valued random
variables with probability distribution p (it is assumed that Hp = 6p,). If (T",d', H',/,p’) €
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T2 and p' is a probability measure such that {{ ! 13’ = 0y, for some h' € R, then we shall
consider the push-forward measure p of p’ on (T,d, H,v) = x(T, (zn)nen+, Crowny(1")) by
the canonical projection:

T — Crownp(T") — X (T, (zn)nen+, Crowny (T7)). (4.4.17)

If A > h, it is easy to check that p is a probability measure on T such that Hp = 6. It is
now possible to iterate the grafting procedure.

Remark 4.4.6. Using a similar approach, for n > 2, hy < ... < h,, and (T}, d;, Hi, vi, pi)1<i<n
a sequence of T such that h; € H;(T;) and H; p; = 0p,;, we define

Prysy coxy, T (4.4.18)

as the probability distribution on T of T},, where (T}, p1), ..., (Th, Pn) are defined recursively
by:

E-}—l = X(ﬂ, (X;JL)TLEN*7CI‘OWD}LZ- (,-Tl-i-l)) for 1 <1< n,
with (X!),en+ independent T;-valued random variables with distribution p;, and §;41 the

push-forward probability measure on j:‘i+1 of p;+1 by the canonical projection li but
for p; which is taken to be equal to p;. We shall not give a more formal description of
Pris, o T

In Definition and more generally in Chapter [5] we will use the distribution Pr, 7
with random trees T' and T”. To assure that this is meaningful, we prove in Propositionm
that the measure Pp, 7 is a measurable map of (7', p),T") € Thix.

Proposition 4.4.7. The map ((T,p),T") = Pr.,1 is measurable from Ty equipped with
the distance dy,gup Vdigup (and the associated o-field) to the set of probability measures over
T, equipped with the Prohorov distance.

Proof. We decompose the mixing operation as follows:

h, (such that Hp = dj)

/g ! ¢ Stumph(T> d7 H7 V7p)
(T) d7 H) Vyp)7 (T 7d aH ’V) = CI‘Oth(Tl,d/7H/,V/)

1(h,oo) ) [H/V/]a

S Pro v, (4.4.19)

where Im(¢) € R x TP x Te x Mporel(R) is equipped with the distance dg V dpguap V
dieyp V drp (here, Mporel(R) is the set of all Borel measures over R). We will prove that ¢
is measurable, and that 1 is continuous on Im(¢).

Let us prove that ¢ is measurable. We argue component by component. For the first
component h, we first recall that the application (T,d, H,v,p) — Hp is 1-Lipschitz, see
Lemma (with T replaced by T?!). Since ((T,p),T") € Tmix, Hp is a Dirac measure dj,
for some h € R. The application d;, — h is continuous, so (T',d, H,v,p) — h is continuous,
hence measurable. This component is used as a measurable parameter for the next two
components. Since Crown and Stump are measurable, see Lemma [£.2.11] and Proposition
the corresponding components are measurable as functions of 7', 7" and h. For the
fourth, we use the continuity of (7”,d’, H', ') — H'V' and the measurability in h of the map
(h, H'V') = 1(p 00 - [H'V'], see Lemma We have proven that ¢ is measurable.
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Now, we shall use the setting of Lemma to prove the continuity of 1 over ¢(T x T?).

Step 1: We build a large separable space (Z,dz) equipped with a 1-Lipschitz map H, in
which we have the convergence of Stumpy, (T) to Stump,,(T). Take ((T,d, H,v, p),
(T',d,H' V")) € Tix. Take ((Ty,dk, Hi, vk, pr), (T}, )., Hy., I/é))keN* a sequence of elements
of Tmix such that the image by ¢ of its terms converges to ¢((7,d, H,v,p),(T",d', H',1/")).
By convergence of the second component of ¢, we have:

dLGHP (Stul’nph,c (Tk) dk7 Hkv Vkvpk)u Stumph(Tv d7 Ha v, p)) kjo 0.

It follows from Lemmas and that there exists a sequence (rj)ren+ € (Ry)N" with
limg_,00 7y = 400 such that

dLGHP (Slicerk (Stumphk (Tk, dk, Hk, I/k,pk)), Slicerk (Stumph(T, d, H, v, p))) — 0. (4.4.20)

k—o00

We note 6y, the left-hand side of (4.4.20). Recall that, for (E,dg), (F,dr) two metric spaces,
D(E, F) is the set of all distances on E LI F' whose restrictions are dg on E and dp on F. By
Lemma 1.1.14, there exists, for every k& € N*, some d € D(Stumpy, (T}), Stump,,(T')) such
that

o Vk € N*, 2,y € Stump, (T), d}(x,y) = d(z,y) (this is true by definition of D);
o Vk € N*, 2,y € Stumpy, (Tx), d}(2,y) = dp(z,y) (this is true by definition of D);

e Vk € N*, z € Slice,, (Stumpy (7)), 3y € Slice,, (Stumpy,, (T})),
& (x,y) V [H(z) — Hy(y)| < 0 + &

o Vke N* x € Slicef,«k(Stumphk (Tk)), 3y € Slice,, (Stumpy (1)),
d(x,y) V| H(y) — Hy(z)| < 0 + L

o dp(Lm,|<ry Vs YH|<ry - V)V dp(La<ry, - Prs Lu<ry, - ) < 0k + T

We set Z = Stumpy, (T') U (Uyens Stumpy, (T)) and d; the symmetric function such that

d(z,y) if x,y € Stump,(T)
dz(z,y) = § di(z,y) if x € Stumpy,(T'),y € Stumpy,, (7T})
inszStumph(T) d/]g,(mv Z) + d/]é’ (Z7 y) if z € Stulnph;C (Tk)) Y€ Stumphk/ (Tk’)

The function d’, is a distance over Z that satisfies
L. Va,y € Stumpy (T), dy (2, y) = d(z,y);
2. Vk € N*, z,y € Stumpy, (Ty), d(z,y) = dp(z,9);
)

3. Vk € N*,x € Slice,, (Stumpy, (7)), Jy € Slice,, (Stumpy,, (1)),
dy(w,y) V |H(x) — He(y)| < 6% + 33

4. Vk € N*, x € Slice, (Stumpy, (1)), Iy € Slice, (Stump,, (7)),
dy(z,y) V [H(y) — Hy(z)| < 6 + £;

zZ.d zZ.d
5. dy "7 (v, ) VY (pr,p) < G+ b
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We also define
[ H(z) if 2 € Stump,,(T),
Hz(x) = { Hy(z) if x € Stumpy, (T})

and the distance dz(z,y) = d’(x,y)V|Hz(z)—Hz(y)|. Since H and (Hy,),en+ are 1-Lipschitz,
we can replace d), with dz in 1-2. The same can be done for 3-4. For 5, we can make the
change as well since d, < dz. Furthermore, Hy is 1-Lipschitz on (Z,dy).

Step 2: We couple the measures and order the crowns. We have d%z’dz )(pk,p) k—> 0,
—00

so by Skorokhod’s representation Theorem (see [I12] p. 70), there exists a random sequence
(Xk)ken+ with marginals (pg)ren+ such that Xy converges a.s. to some random variable X
with law p. We note ((X}')ren+)nen= a sequence of independent random variables distributed
as ((Xg)ren+), and, for every n € N*, X" the a.s. limit of (X}')ren+ when k& — oo.

Take (T"",d"™, H"™ V" )en+ an enumeration of Crowny(7T”). By hypothesis, we have
that Crowny, (T}) converges to Crownp(71”) for d%&yp. Thus, there exists enumerations
(1", d,", H," . v}," )nen+ of Crowny, (T},) such that

sup dLGHp(T,;n,Tm) — 0.

Step 3: Conclusion. Since (X,)nen+ and (X}')nen+ are sequences of independent and
identically distributed random variables, the random trees

x(Stumpy, (T), (X )nen+, Crowny, (T7)) and x(Stumpy, (Tx), (Xi )nens, (T, Y nen+)

are indeed distributed according to Prs,7v and PTk*ka,; respectively. The space (Z,dyz) is
metric and Hyz is 1-Lipschitz on Z; the subsets Stump,(7'), Stumpy, (Ty) are S-compact.
Recall the definition of dgw the distance metrizing the point-wise convergence for the
sequences in Z. We also have that:

dPW((X;:)nEN*a (Xn)nEN*) k;)o 0 a.s.,

sup dLGHP (T]:;n,T/n) — 0,

neN* k—o0
dip (3" H'w" ST H™™) = dip (L to0) * Vi Lintoo) - V') i 0,
n>1 n>1 o

and there exists a sequence (7 )ken+ of positive real numbers such that limy_, o, rx = +00 and

(dH (Slicerk(Stumphk (Tk)), Slicerk (Stumph(T))) vV dP(1|H\§rk - Vg, 1\H|S7"k . I/)) — 0.

k—o0

By Lemma [£.4.4] we have that a.s.:

dr e (X(Stumpy, (Ty), (X nere, (T Inerw ), X(Stumpy (T), (X" nerre, (T nen)) — 0.

k—o0

From this coupling, we deduce the following convergence for the Prohorov distance on T:
dg(PTk*ka,gypT*pT/) v 0.

This proves that the map ¢ is continuous over Im(¢). Thus the map v o ¢ defined on
Thix taking values in the set of probability measures over T by v o ¢((T,p),T") = Pr.,1v is
measurable. 0
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We end this section with a definition which will be very useful in Chapter

Definition 4.4.8. Let h € R, and (T,d, H,v, p) be a T -valued random tree with probability
distribution A such that a.s. Hp = §,. We say that T (or the probability distribution A) is
exchangeable at level h with respect to p if Pry,7 = A, that is if the miz of T' onto itself with
respect to p has the same law as T'.

Remark 4.4.9. Let ((T,p),T") € Tmix and h € R be such that Hp = 6. Then, if 7 is a
T-valued random variable distributed as Pp, 77, then as Stump,(7) = Stump,(T), we can
see p as a probability measure on 7, so that (7,p) is a Tl2-valued random variable. By
construction, the random tree (7, p) is exchangeable at level h with respect to p.
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Chapter 5

An exchangeable random tree

In this chapter, we use the results of the previous chapter to build a family of random
trees endowed with a measure vy, at every level h that are exchangeable with respect to
vy at every level h (recall Definition of exchangeability). This construction is based
on mixing vertical deformations of Kingman’s coalescent (which is briefly reintroduced in
Section [5.1)). Intuitively, by the “cut and grafting at the same level” construction of the
ancestral recombination graph (ARG) process, the distributions of these trees should form a
whole family of reversible laws for this process.

We decided to present the results of this chapter which are the motivation of the two
previous chapters, even if, by lack of time, its redaction is yet not complete.

5.1 Kingman’s coalescent

The n-coalescent is the ancestral tree of n individuals in a large population with proper
height scaling (see [26]). It is the representation of a continuous-time Markov process (for
decreasing heights). The evolution of the process depends solely on the number & of clusters
at a given time: a coalescence will occur at rate k(k — 1)/2. When a coalescence occurs, two
clusters chosen uniformly at random merge and the process continues with the remaining
k — 1 clusters. This corresponds to the coalescence of each pair of clusters at rate 1. The
n-coalescent is obtained by starting the process with n clusters. If, for 1 < k < n, we call
hi the first height at which there are only k clusters left, then the stump of the n-coalescent
below hy is a k-coalescent independent from the crown of the n-coalescent above hy. If we
choose k clusters from the n initial clusters and consider the sub-tree generated by those
clusters, we find a tree with the same law as the k-coalescent. We define a measure on the
n-coalescent, by putting a mass % at each leaf.

Kingman’s coalescent tree (7X,d, H,vX), introduced in [46], is the limit in distribution
with respect to the Gromov-Hausdorff-Prohorov distance of the n-coalescent as n goes to
infinity. It contains the m-coalescent, in the sense that the sub-tree generated by n leaves
taken independently with distribution v¥ has the law of the n-coalescent.

We recall now the construction of the Kingman’s coalescent of [§] using our setting.
For this construction, recall the function 7 introduced in Definition and its domain
]RXRIETO x D. It is a measurable function (Lemma from RXR}—\'}-TO xD toT. Let (Up,)nen-
be a sequence of independent random variables uniformly distributed on [0,1], (X, )nen+ a

127
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sequence of independent exponential random variables of parameter 1, so that (X,,)nen+ and
(Un)nen- are independent. We set R, = > 72, ﬁXk. Since R; is a.s. finite, we can define
the random S-compact labelled tree

(TKa d7 Ha VK) = 7_(07 (Rn)nGN*7 (Un)nEN*)-

In what follows, the labelled tree (TX,d, H, VK) will be called Kingman’s coalescent.

Recall that (see Definition [4.2.1), for h < b/, ™" (T¥) is the number of points of 7X at
level h that have descendants at level h'. In particular, by construction, if (TK, d,H, I/K) is a
Kingman’s coalescent, for every ¢ > 0, n~0(TX) is just the number of points at height —e
in 7K.

For h < ' and T € T, we set (C’Zh’hl(T))KKnh,h/(T) the family of trees of Crowny,(7') that
reach height h'.

Lemma 5.1.1. If (TX,d, H,v®) is a Kingman’s coalescent, then for e > 0,

n—e0(TK) )
E [ > (I/K (CZ-_E’O(TK))) ] =1—e".

i=1

Proof. Let € > 0. Conditionally given T¥, if we take two independent random points X,Y €
TX with distribution ¥, we have

nfs,O(TK) nfs,O TK) )
P(d(X,Y) < 2 |TX) = P(X,Y € (TR = vE(C70T)

i=1 i=1
Without conditioning, this yields

n—s,O TK) 5
P(d(X,Y) < 2)=E VK (CZ._S’O(TK)) .

=1

Since P(d(X,Y) < 2¢) is the probability that the ascendancy of two leaves taken at
random coalesce before €, we have also P(d(X,Y) <2¢) =1—e"". O

A classical result given in [I1] states that a.s. Iin%s -~ =0(TE) = 2. We need also to
E—

control the expectation E[n=59(TX)].

Lemma 5.1.2. If (TX,d, H,v®) is a Kingman’s coalescent, then for e > 0, we have

E[n_&o (TK)] < 1_6};)(_3)-

Proof. For every i € N*, set TX(i) the subtree of T¥ generated by i leaves picked inde-
pendently at random with respect to vX. By definition of Kingman’s coalescent, 7X(i) is a
i-coalescent. Let us set N°(i) = n==9(TX(7)) the number of points in 7¥(i) at height —e.
Using Kolmogorov’s equation and Jensen’s inequality, we have the following inequality:

d Ne(@)(Ne(i) — 1) E[N* ()] (E[N=(5)] — 1)

—E[N*()] = -E 5 < - 5 :
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For all i € N*| (E[NN¢(i)])e>0 is bounded from above by (f;(¢€))->0 where f; is the solution
of the differential equation f'(x) = —f(z)(f(z) — 1)/2 with initial condition f(0) = i. Solving
this equation gives

fite) 1 <
(e) = < ,
' 1- (1—%) exp (—5)  1—exp (=3)
Since for all €, n=5°(TX) is the limit of the non-decreasing sequence (N¢(i));cn+, we have
1
E[n=5%(T¥)] = lim E[N°(4)] < ———-
74T = Jim EIV()] < s

5.2 The aim

The laws we intend to build in this section are an extension of the law of the Brownian tree
conditioned on its local time given in [7]. In Aldous’ construction, for ¢(h) the local time of
a normalized Brownian excursion, ¢(h)dh is the density of leaves at height h, and ﬁdh the
rate of coalescence in the corresponding tree. To have a more general setting, we decorrelate
the two and take two distinct measures. In the remaining of the chapter, we will call m the
repartition of the mass at different heights, playing the role of ¢(h)dh, and p the measure in
charge of the coalescence, playing the role of ﬁdh.
To describe informally the construction, let us start with two remarks.

e If we apply a vertical deformation (see Definition [4.2.12)) to a Kingman’s coalescent, we
obtain again a coalescent tree but with a different coalescence rate (which may depend
on the level h).

e Take two independent versions (TX,d, H, V%), (TK/, d',H' v} ) of Kingman’s coalescent,
and h € R, . If we shift downwards 7X by replacing its height H with H : z — H(x)—h,
(T¥' ., H, Vh) can be mixed at height —h onto (TX,d, H,vX) according to vx. The
corresponding distribution is the law of a random tree that can be described as follows:

— At level 0, there are a countable number of leaves that perform a coalescent at
rate 1.

— At level h, a countable number of leaves is added to the n_h’O(TK/) remaining
points of 7K, this new collection of particles performs again a coalescent at rate 1.

The strategy to construct the looked after tree is first to perform a downwards shift and a
vertical deformation on Kingman’s coalescents so that the trees start at different levels and
the coalescent rate is now given by u, and then perform recursively the mixing of the crown
of the tree on another Kingman’s coalescent along a countable dense sequence (hy)nen+ of
levels.

First, let us precise the assumptions we must set on m and p. Let I be a closed interval.
Let m be a positive Radon measure on R which satisfies m(R \ I) = 0, and p a positive
measure on R, satisfying the following conditions.
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Cl. For all a < b with b € I and a ¢ I, we have pu([a,b)) = oo, and for all a € I,

/a dh e H(h®) ~ o

C2. For all a < b e I, u((a,b)) > 0, where by convention a < b € I means a € I,b € I and
a <b.

C3. For all a € R, p({a}) = oo or there exists b < a such that p([b,a)) < oo.

We will see that Condition C2 ensures that the tree is locally compact. Notice that if
inf I is finite, then p({inf I}) = oo thanks to C1 and C3. For h € I, we define the function
fn on (—o0,0] by

fu(@) = sup{a € 1] p(la, b)) > —a}.

We can see with Condition C1 that f;, takes its values in I N (—oo, h]. The function is trivially
non-decreasing and Condition C2 ensures that f; is continuous.

Recall p is a positive measure on R satisfying C1-3. Let h € I. Informally, we define
the probability distribution King‘,ﬁ on T as the law of the vertical deformation of Kingman’s
coalescent (TX,d, H,vX) by the function f,, with, if inf f; is finite, a semi-infinite branch
(—o0,inf f;,] added at the root of the vertical deformation of the Kingman’s coalescent.

More formally, by definition, we have 7K = 7(0, (Rp)nen+, (Un)nen+). Since f, is contin-
uous, we find by Lemma that the vertical deformation of 7% by fj, is given by 77, the

only non-0p term of Crowny, (T(fh(O), (fn(0) = fo(—Rpn))nen+, (Un)neN*)) with A/ = inf fj.

Note that the operation of taking the only non-0p/ term in an element of ij is 1-Lipschitz
from its domain (the closed set of all elements of X2, with at most 1 term # 0p/) to
SS. Since 7 is measurable, the vertical deformation 77 is a T-valued random variable. If
N = —oo, we set T = T’'. Otherwise, we define 7 as the mixing of 7’ onto the tree
T = ((—o0, W], dg,1d,0,p = ) (an half-line tree with a Dirac mass at its top). Notice the
distribution Pr, 77 is conditionally on T’ a Dirac mass, thus 7 is well defined as a measur-
able deterministic function of 7¥. The distribution of the T-valued random variable 7 is
denoted King),. A random tree with law King) can be interpreted as the coalescent tree with
coalescent rate p and an infinite number of leaves at height h.

Our aim is to build, for I an interval of R and p a measure over [ satisfying Conditions
C1-3 and for every Borel measure m of R with support in I, a random S-compact tree
(T1,d, H,vr) and a family (vp,)ner of measures on 77 satisfying the following conditions.

e The map h — vy, is measurable on 1. (5.2.1)

oVhe I,P(Hyy, = o) = 1. (5.2.2)

oup— / vy m(dh). (5.2.3)
I

o Vh € I, (Stumpy, (77), (vp)w<n) and (Crownp (7T7), (vp)p>p) are independent.  (5.2.4)

e For every h € I, 7Ty is exchangeable with respect to vy,. (5.2.5)

eVh € I, the random set {x € T;|Jy € T, H(y) = h,x < y} follows the law of (5.2.6)

King), when equipped with d, H and v,
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The next two sections are devoted to the proofs or conjectures related to this aim. In
Section we build the metric tree (77,d, H), see Lemma so that it is S-compact.
Then in Section we give ideas for the proof of the existence and properties of the family

(Vn)ner-

5.3 Construction of the tree 7;

Let E = {h; <--- < hp} C 1. Let (Tp,,d;, Hi, vp,)1<i<n be n independent random weighted
trees of respective distributions Klngh for 1 <i <n. Recall the definition of the probability

measure Pryy, .., . T,, see Equation 1) in Remark and the measurability of the

mixing operation in Proposition “ Let Tr be a random tree distributed according to
P7—h1*uh T . 'To keep track of the measures v, in TE, we can either modify the proof
of Theorem m and consider the restriction of those measures to the crowns which are
grafted and denote by 7}, the corresponding probability measure on TE, or use the intrinsic
definition of the uniform probability measure v on the leaves for the Kingman’s coalescent
at level 0 as the limit of the uniform probability measures on the (finite) ancestors living
at time —e when € goes down to zero and transpose this intrinsic construction through the
vertical deformation and the downward shift.

Lemma 5.3.1. For every 1 < i < n, we set
Tn, = {x € Tg| 3y s.t. x <y and H(y) = h;}. (5.3.1)

that we endow with the distance, and height induced by those on T, and measure Up,. Then,
for all 1 <i <n, Ty, has distribution Kingj, .

-
Proof. By definition, T, @ Tr, which is distributed according to Kingzl.
Again, by definition, Stumpy,,(7z) has distribution Pr, +, T, and Th, is the tree gen-
1

erated by the leaves of Stumpy, (Ti) at level hy. Let (TX,d, H,vX) and (TX', &, H', /X"
be two independent Kingman’s coalescents and let h > 0. If we set for every x € TK/,
H'(z) = H’( ) — hoand (TX", @, H" /X"y = (TX' &', H",UX") (i.e. we shift downwards
the tree 7K' by height h), then we can define a tree 7 which has distribution PTK” o TE

Conditionally given n~0(TX), Stump_,(7T¥) is a n="9(TX)-coalescent independent of TK//,
hence the tree
{zeT|3yeTst. z=<yand H(y) =0}
is again a Kingman’s coalescent. Applying this property with the vertical deformations
implies that, if u([h1, he)) < 0o, then Tj, has distribution King), . If u([h1, h2)) = oo, then
below the level hg, Tp, is just a simple line and the result is obvious.
An easy induction then gives the result for every i < n. O

For all finite set F, this construction provides a random tree 75 and a family of mea-
sures (7 )nep such that the family (7, dn, H, Up)nep defined by (5.3.1)) satisfy the following
conditions.

C4 For all h € E, T, has distribution King};.
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C5 For all h() S E, the family (CI"OWHhO (ﬁl), ﬁh)hGE,h>ho and the family (ﬁuﬁh)heE’,hgho
are independent.

The tree (Tg,d, H, (75)ner) can be recovered from the family (7;,)ner by setting
- Te= U T (5.3.2)

heE
— Va,y € Tp,x<yif and only if: 3h € E,z € T,y € T,z <1 y.

— Va,y € Tg,d(z,y) = H(z) + H(y) — 2H(z A\ y).

In (75)ner, H is the same function for all the elements, which means that H(z) does not
depend on the choice of any particular tree containing x.

Remark 5.3.2. As a consequence of C5 and (5.3.2)), for all h € E, the crown of TE above h is
independent from its stump below h.

Remark 5.3.3. By construction, the tree Tz is exchangeable (see Definition [4.4.8]) at all the
levels h € E with respect to the measure 7, see Remark

Remark 5.3.4. Take E C E' ¢ E" C I three finite sets, and consider Tz, Tp and Tg». For
h € E”, define

’77L(EN) — {‘7; [ 7dE//| Hy s.t. x j y and H(y) = h}

Similarly, define (72(E/)) ner . We set

T = U = YR = YR

heE’ heE heE

We have ’72@/) £ 75 and (TE(E/), Ter) L (~E(E”)7 7}51?”)). Note that (7~'E(E,), Ter) provides a
coupling of Tz and Tz in which ’72(\El) C T

Lemma 5.3.5. If a random tree (T,d,H,v) has distribution King}, for some h € I and
some measure | satisfying C1-3, then, almost surely, the identity is the only height- and
measure-preserving isometry from T to T .

Proof. From the definition of Kingz, the support of v is a.s. equal to the set F' of all the
leaves of 7: F = {x € T|H(z) = h}. For n € N*  set R,, the relation on F' such that for all
x,y € F, xRyy if and only if h — H(x A y) < % Note that R, is an equivalence relation.
Set F, = {y € T|H(y) = h — +}, F, is a.s. finite and the equivalence classes of R,, are
({z € Flx > y})yer,. The repartition of the masses between the different classes has the
same law as the masses of the sub-trees above level — u([—%, 0)) in Kingman’s coalescent, so
we have a.s. that for any two classes C,C’ of R, v(C) # v(C’) and v(C) > 0 as well as
v(C") > 0.

Now, we work conditionally on 7T, assuming that for every n € N*, F}, is finite and for every
C, ', distinct classes of R,,, we have v(C) # v(C’) and v(C) > 0 as well as v(C’) > 0. Set ¢
an height- and measure-preserving isometry from 7 to 7 such that ¢ = v and Ho ¢ = H.
Since d(z,y) = H(z)+H (y)—2H (zAy), we actually have that 2R,y if and only if d(z,y) < 2,
so ¢ preserves R,. We have the following equivalences:

eV eT, (xeF & ¢(x) € F) since ¢ preserves H,
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o Vr,y € F, (zRy < ¢(x)R,¢(y)) since ¢ preserves Ry,

o Vne N* C CF, Cis aclass of R, if and only if ¢(C) is a class of R,,.

For n € N*, take C a class of R,. As ¢(C) is a class of R, and v(¢(C)) = v(C), we
have under our assumptions that ¢(C') = C. This means that for all z € F,n € N* we have
TRy ¢(z), ie. d(z,¢(z)) < 2. Tt follows that for every z € F, ¢(z) = .

Now, take y € T, we can choose a leaf x such that y < z. We have

d(d(x), o(y)) = H(p(x)) + H(p(y)) — 2H(d(x) A $(y))
= H(z) + H(y) — 2H(x A ¢(y))

as ¢ preserves H and ¢(x) = x. As ¢ is an isometry, we also have

d(¢(x), ¢(y)) = d(z,y) = H(z) — H(y)

and therefore, H(y) = H(xA¢(y)), which implies that y < ¢(y) by uniqueness of the ancestor
of x at some fixed level. As H(y) = H(¢(y)), we eventually get y = ¢(y). O

For E C I a finite set and r € R, we define
6,(E) =max{d € Ry|3z € [-rVinf I, (r Asupl) — 4], EN (z,z + §) = 0}.

In the case where I N [—r,r] = 0, we note 6,(E) = 0. Note that 6, (F) is always defined, as
the set in the right-hand is actually a closed interval containing 0 and bounded from above
by 2r. The quantity §,(F) measures the biggest gap without elements of E in I N [—7r,7].
Note that for (hy)nen+ a sequence of elements of IN[—r, 7| and E,, = {h;}1<i<n, the sequence
(6r(Ey))nen= converges to 0 if and only if (hy)nen+ is dense in I N [—r,r].

Lemma 5.3.6. For E C E' C I two finite sets and r € Ry N (— EU[—infI,400)). Recall
T and 7?_,(7El) C T from Remark m We a.s. have

dan (Slice, (TAF"), Slice, () < 6,(E).

Proof. We have ’E(ﬂEl) C Tz, so the case Slice,(Tp) = 0 is trivial as Slicer('ﬁéE,)) =0 as
well, so the distance dGH(Slicer(’ﬁéEl)), Slice, (Tzr)) is 0. In the rest of the proof, consider
x € Slice,(Tg). If there is at least one element of E in [—r, H(x)], then take h the biggest
possible. We have H(x) € [—r,r| N1, so 0 < H(z) —h < 6,(F) by definition of the latter.
Take y the ancestor of x at height h, we have y € 7~'E(E,) and d(z,y) = H(z) — h < 6,(E).

If there are no elements of F in [—r, H(x)], then —r ¢ E, so —r € (—oo,infI]. By
definition of §,(E), we have H(x)—inf I < 6,(E). By definition of 7z and Tz, they share the
only point y at height inf I, which is the common ancestor of all the tree. By definition of 6, (E)
and since there are no elements of E below H(z), we have d(z,y) = H(x) —inf I < §,(E).

Since ’EQE/) C Tz, we have proven that dgp(Slice, (7~'E(E/))7 Slice, (Tzr)) < 6,(E). O

Let E C I be a countable dense set in I and p a measure satisfying conditions C1-3.
Our objective is to build a T-valued random variable 7p for which we conjecture that the
sub-trees T}, satisfies C4-5 for all h € E, where

Th = {z € 7]5] Jy s.t. x 2y and H(y) = h}. (5.3.3)
Recall X% from Definition m as the set of all elements of X° with null measure.
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Lemma 5.3.7. For any dense sequence (hy)nen+ in I, the law of T{hl,...,hn} equipped with the
null measure converges to the law of a random tree 71 for the Prokhorov distance over X5,
Moreover, the limit is independent from the choice of the dense sequence.

Remark 5.3.8. Legitimated by this lemma, we shall denote by 7; any T-valued random vari-
able distributed as the limit where E is any countable dense subset of I.

Proof. We start with a special case. Let E C E’ C I be two countable dense sets in I. Let
(hi)ien+ be an enumeration of the elements of E and (h});en+ an enumeration of the elements
of E'. Set E, = {hi}0<i§n7 E;z = {h;}0<i§n and for all n € N*, Sf)(n) = H}ln{k S N*|En C
E}}. We want to build a random sequence alternating between 7, and Tg:. Proving the
convergence of this hybrid sequence will prove that its two subsequences converge and have
the same limit. The proof of the convergence consists in the construction and the study of
a particular coupling of those laws. For every m € N* consider the tree 7]5;( X and for

0 < k < m, define
- _(E - - (E'
T =T ana T =T

as in Remark We obtain a family (ﬂ(m), e ,’7'2(,;”) ), such that the subsequences of the
odd-numbered terms and even-numbered terms are non-decreasing for the inclusion. It is
clear that the distribution of that family is consistent from m to m + 1 i.e.

(7,1 < < 2m) £ (T, 1 < n < 2m).

Since X is Polish, we can use Kolmogorov extension theorem, so there exists a standard
probability space (£2,P) and a sequence (7")nen+ of random variables w +— 7. € T such that

for every m € N*, (7'")1gng2m 4 ('ﬁz(m)hgngzm-
Take n € N*, r € —F,, U (—inf I,400). For all £ > n, we have E,, C Fj, so by Lemma
[(.3.6l and Remark [5.3.4] we have

~ ~ ~ (E’ ~(F'
desp (Sticen (T271), Stice, (T21)) L dgpp (Shice, (Tay ), Slice,(Ta, @)

4 dgup(Slice, (7~'Ef’“)), Slicer(ﬁk))
< 0.(Ep) a.s.

Similarly for k > ¢(n) we have E,, C Ej, so a.s.
daup (Slice, (7?71, Slice, (T2)) < 6,(E,).
We have ¢(n) = #(E(;(n)) > #(E,) = n, so for every i > 2¢(n),
danp (Slice, (T*"71), Slice, (T7)) < 6,(E,).
This implies that a.s. for every i,5 > 2¢(n),
dap (Slice, (T7), Slice, (T7)) < 26,(E,).

Since F is dense, we have
lim §,(E,) =0

n—oo
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for all r € —FE U [—infI,400). Note that if I has a finite lower bound, [—inf I, +00) # 0
doesn’t have an upper bound. If I has no lower bound, neither does F since it is dense in I, so
sup(—FE) = co. In both cases, we can take (rg)ren+ an increasing sequence of elements of —FEU
[—inf I, +00). We can deduce that a.s. for every k € N*, the sequence (Slice,, (T™))nen~ is
Cauchy in (X%% dgpp). When this is true, then by Lemma (Slice,, (T™))nen+ converges
in (X%, drgup) to a random measured labelled space T7. Since T and X% are closed in X°, T;
is a random tree with null measure. The a.s. convergence of (7™)nen+ to T in this coupling
implies the convergence of their laws for the Prokhorov distance.

The sequence (T”)neN* converges in law to 7, so its subsequences converge as well. We
have proven the lemma in the special case £ C E’. Note that this covers the case £ = E’
with two different enumerations. For enumerations of E and E’ dense countable subsets in
the general case, we can use the special case by going through E” = E'U E’. This concludes
the lemma. O

At this stage, we have the following conjecture.

Conjecture 5.3.9. Let u be a measure satisfying conditions C1-3 and let £ be a countable
subset of I. The trees defined by ([5.3.3)) for all h € F satisfy C4-5.

The idea of the proof of this conjecture is to consider a non-decreasing (for the inclusion)
sequence of representatives of (7"),en+, take the completion of its limit. It will be distributed
as T;. Since the trees defined by ml) (with 7 instead of 77 for some large n) satisfy
C4-5, it is reasonable to conjecture that the trees defined by for all h € F satisfy
C4-5. However, one has to check that the completion of the limit a.s. does not change the

definition of 7, when one replaces 7™ by Tz in (5.3.3).

5.4 Construction of the measures (v)per

Let E be a dense subset of I and (h;);en+ an enumeration of E. The tree 7™ introduced in
the previous Section is naturally endowed with a family (7p,,1 < i < n). If we fix k € N*,
and consider the tree (7™, (7,,,1 < i < k)) as an element of T!¥ which is still a Polish space,
similar arguments as in the previous Section gives a limiting tree endowed with £ measures
(T1, (v, 1 <i < k)). We could make rigorous the construction of (77, (vn)ner) using the last
part of the Remark and considering it as a T!*l-valued random variable. We shall not
provide of proof of this fact, but simply conjecture its existence. In particular, this implies
that v, is a probability measure and that Hyy, = 6, for all h € E. Since T is exchangeable
at every level h;,1 <1 < k with respect to v, respectively by Remark for all n > k, we
also conjecture the same holds for 77.

Conjecture 5.4.1. Let u be a measure satisfying conditions C1-3 and let E' = {h;|i € N*} be
a countable dense subset of I. The TI*®l-valued random variable (77, (v )neg) is well defined
as the limit in distribution of (7'(”), (Thyy---,0p,,0,0,...) as n goes to infinity. Furthermore,
(T1, (Wh)ner) is exchangeable at level h with respect to vy, for all h € E.

The next step would then be to extend this family by constructing additional measures
(vp)her on Tr and proving that the law of (77, (vp)ner) does not depend on the choice of E.
We did not perform this program. However, we state, as a first step toward this goal, in the
next lemmas some regularity property for the measures vy,.
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Recall Definition of the Prohorov distance dp (v, ') between two probability measures
v,V over a metric space (F,d). For any ¢ > 0, we set n.(F) the minimal cardinality of a
partition of F' using only Borel sets of diameters smaller than e:

EI(Blw")Bk) € (‘@(F))k7
ne(F) = min < k € N*| Vi, diam (B;) <,
Vee F,A1 <i< k,x € B;

Lemma 5.4.2. Let (F,v) be a compact metric probability space, (Xp)nen+ an i.i.d. sequence
of F-valued random variables with distribution v and (cp)nen+ a sequence of non-negative real
numbers such that Y 2 | ¢, =1, then

P(dP(ch(SXn,V) >£> < 122 Zci,

Proof. Let By, ..., B,_(ry be ne(F) Borel sets of diameter at most ¢ forming a partition of F'
and # = o(Bu, ..., B,_(r)). For convenience, note v, = >, ¢ndx,. We note, for any Borel set
ACF,

BA= |J B
1<i<ne (F)
B;NA#D

For all A, we have that B(A) € #. We have the following inclusions A C B(A) C A®. This
immediately yields

sup (va(A) — V(A7) < sup (v (B(A)) — v(B(A))) = sup [v, — 1] (B).
A A Be#A

Consider the probability measures v and v, restricted to %. We have

1
sup (v, — v} (B) = 5 > Ava—vl(B).
Be# 1<i<nc(F)

Now, we recall an application of the Cauchy-Schwartz inequality to the comparison of the
norms || - ||; and || - |2 in dimension ng(F):

1
2
V(a1 ooy () € R™=F) % \ai|<(n€(F) > !ai\z)-
)

1<i<ne (F)

Using this, we have

N|=
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Using Lemma (recall that v and v, = Y, ¢,dx,, are probability measures) and the
previous inequalities, we get

A
<P (1 — v (B)? > )
=~ o n ! ns(F)
_ ne(F) Vi
= ar (l/n B;
4e? 1<z<zn:5(F) ( )>
_ ”Zg LS uB-vB) Y
1<i<ne(F) n
ne(F)

where we used the Markov inequality for the second inequality, that E ([v, — v] (B;)) = 0 for
the second equality and that Z?:E(lF) v(B;) =1 for the last inequality. O

Recall notations from the beginning of Section [4.3.2] For E C [ finite or countable,

h,h' € E with h < R/, recall (Cih(TI))z‘eIh(ﬂ) from ([£.3.9) and ([@.3.10), and n" (77) from
Definition [£.2.31 We set

{CM" (1), 1< <o (T)} = {C](Th), § € Tu(Th), H(CJ(T7)) > W'},

Let 7¥ be a random tree distributed as Kingman’s coalescent. The random number (T
has the same law as n=#("").0(TK) by definition of 77, Conjecture and Lemma
as well as by definition of the probability distribution King) and condition C2. We now give
some regularity on the measure (v, h € E). Notice the next Lemma is in fact stated for the
random tree T for n large enough so that h and A’ belongs to {h;|1 < i < n}, and it holds
for 77 if Conjecture holds.

Lemma 5.4.3. For h,h' € E such that h < h/, we have:

P(dp (v, vy +h —h)< llh, 1) '
(dp(vn,vp) > € ) 42 (1—exp <_%M([h—%,h))))

Proof. Let h < h'. From Lemma we can assume that £ = {h,h'}. Counsider (T, Tp)
two independent random trees with respective distributions King), and Kingz,, and Tg the
corresponding mixed tree. For every x € 75 such that H (x) > h, we denote by pp(z) the
unique ancestor of x at height h. We have d(x, p,(z)) = H(z) — h which implies

dp(vps, prvir) < W' — h.
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Using the triangular inequality for dp, we obtain
P(dp (vi,vp) > €+ h' —h) < P(dp(vh, ppvw) > €).

So we have to prove that

p([h, h)) .
4e2 (1 — exp (—%M([h — 5 h»))

P(dp(Vh,phI/h/) > 8) <

From the exchangeability at level h of the tree T with respect to vy, the support of
(pnvw) consists in n™" (Tz) points. Conditionally given n" (Tz) and Ts, these points
are independent with distribution v, and are also independent from the family A(7'E) =
(Vh/ (C’Zhh/('ﬁg))) . Denote F = {x € Tg|H(z) = h}. Using Lemma |5.4.2, we

have for all e > 0

1<i<nhh (Tg)

nh (Tg)
o (F :
Bldp (v ) > <l ) < "0 S (v (€1 (7))’
=1

and so

/o~

n®" (

ne(F
P(dp(uh, phuh/) > 6) <E 2(62) Z
=1

E)

(e (1" (Te)) )

We recall that n.(F) is the smallest number of Borel sets of diameter less than e parti-
tioning F. We have n.(F) = n"~2"(Tg), which has the same law as Nn_“([h_%’h)’o (TX) where
(TX,vK) is distributed as a Kingman’s coalescent. The family A(7%) has the same law as

(VK (C w([h,h"), (TK)))

is independent from n”

i) )O(TK) Since A(Tg) is a function of the crown of Ty, it
> -

(7- ) = 2"(T;). We deduce that:

m\m =

P(dp (vh, prvn) > €)
n—r([hR).0(TK)

1 —p([h—%,h),0 (7K K ((—n(hh))0 Ky )2
< qEBl el S (R (am))
Using Lemma|5.1.2) we have E [n*”([h*%’h)’O(TK)] < lfexp(fl;([hfé Y Using Lemma/5.1.1}
we have ’ i
DT h,h')),0 2 ,
E S (R(eMIUTIY))T| =1 = e ) < pu([n, b)),
i=1

Combining the two inequality gives:

P(dp(l/h/,phyh/) > 5) <
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Then, we believe that this regularity result is a corner stone to extend by continuity the
family of probability measure (vp,)pep to a family (v4)per with for a.e. h that Hyp, = dp, see
Properties and . Then Property can be seen as a definition of v;. We
now explain how to prove Property .

Conjecture 5.4.4. Let u be a measure satisfying conditions C1-3. Then, for all h € I,

Sp = (Stumpy, (T1), (Vi )nre(—oo,n))  and  Cp = (Crown(h, T1), (Vi) he(h,o0))
are independent.

Idea of the proof. If h € E, then the result is stated in Remark for T for large n,
and we conjecture it holds at the limit for 7;. Take h € I\ E. For every h/ € E N (—o0, h),
we can express C, as a measurable function of Cj/, so C}, is independent from Sy, so C}, is
independent from (Sp/)pe(—oo,n)- Since Stumpy,(77) is the Local-Gromov-Hausdorff limit of
Stumpy, (77) when b’ € E N (—o0, h| goes to h™ and v}, is conjectured to be a measurable
function of (V4/)he En(—oo,h), SO We can express Sy, as a measurable function of (Sk/) /e pn(—oo,h)
which is independent from C},. O

Because of the Conjectures and Properties (5.2.5)) and (5.2.6)) hold if 2 belongs
to the dense subset E/. Then using Lemma 5.3.8|7 one can always consider E'U {h} instead of
E and deduce that Properties (5.2.5) and (5.2.6]) hold.
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Résumé

Dans cette these, nous développons un nouvel espace pour ’étude des espaces métriques
labellés et mesurés, dans l'optique de décrire des arbres généalogiques dont la racine est
infiniment ancienne. Dans ces arbres, le temps est représenté par une fonction label qui est
1-Lipschitz. On appelle espace métrique labellé S-compact et mesuré tout espace métrique
FE équipé d’une mesure v et d’une fonction-label 1-Lipschitz de E dans R, avec la condition
supplémentaire que chaque tranche (I’ensemble des points de E dont le label appartient & un
compact de R) doit étre compact et avoir mesure finie. On note X° I’ensemble des espaces
métriques labellés mesurés S-compacts, considérés a isométries pres. Sur X°, on définit une
distance de type Gromov dpcpp qui compare les tranches. Il s’ensuit une étude de ’espace
(XS ,drcrp), dont on montre qu’il est polonais.

De cette étude, on déduit les propriétés de I’ensemble T des éléments de X° qui sont des
arbres continus dont les labels décroissent a vitesse 1 quand on se déplace vers la “racine”
(qui peut étre infiniment loin). Chaque valeur possible de la fonction label représente une
génération de l'arbre généalogique. On montre que (T, dpgup) est aussi polonais. On définit
ensuite quelques opérations mesurables sur T, dont le recollement aléatoire d’une forét sur
un arbre.

On utilise enfin cette derniére opération pour construire un arbre aléatoire qui est un bon
candidat pour généraliser I'arbre brownien conditionné par son temps local (construction due
a Aldous).

Abstract

In this thesis, we develop a new space for the study of measured labelled metric spaces,
ultimately designed to represent genealogical trees with a root at generation —oo. The time
in the genealogical tree is represented by a 1-Lipschitz label function. We define the notion of
S-compact measured labelled metric space, that is a metric space E equipped with a measure
v and a 1-Lipschitz label function from F to R, with the additional condition that each slice
(the set of points with labels in a compact of R) must be compact and have finite measure.
On the space X° of measured labelled metric spaces (up to isometry), we define a distance
dygup by comparing the slices and study the resulting metric space, which we find to be
Polish.

We proceed with the study of the subset T C X° of all elements of X¥ that are real tree
in which the label function decreases at rate 1 when we go toward the “root” (which can
be infinitely far). Each possible value of the label function corresponds to a generation in
the genealogical tree. We prove that (T,drgup) is Polish as well. We define a number of
measurable operation on T, including a way to randomly graft a forest on a tree.

We use this operation to build a particular random tree generalizing Aldous’ Brownian
motion conditioned on its local time.
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