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Chapter 1

Resume etendu en francais

1.1 L’ensemble des espaces metriques labelles, topologie et
proprietes

Une des premieres tentatives de comparer deux espaces metriques compacts vient de Gromov
[39]. Son idee est de plonger isometriguement les deux espaces a comparer dans un troisieme
espaces metrique et de comparer les plongements a I'aide de la distance de Hausdor . La
distance de Gromov-Hausdor est I'in mum pour tous les plongements de la distance de
Hausdor entre les plongements. Comme la distance de Hausdor n’est de nie que pour les
compacts, la distance de Gromov-Hausdor n’est de nie que pour les compacts. La distance
de Gromov-Hausdor a ete rapidement generalisee aux espaces compacts munis d’une mesure
nie par la distance de Gromov-Hausdor -Prokhorov. Elle est de nie comme la distance de
Gromov-Hausdor , mais en remplacant la distances de Hausdor par le maximum de la
distance de Hausdor entre les plongement des deux ensembles et la distance de Prokhorov
entre les plongement des deux mesures.
Ces deux distances ont ete etendues de plusieurs manieres, sur des espaces avec toutes
sortes de structures supplementaires, mais toujours avec I’'une des contraintes suivantes :

1. les espaces sont compacts (Gromov [39]);

2. les espaces sont complets, pointes et toutes les boules fermees sont compactes (Abraham,
Delmas & Hoscheit [1], Khezeli [43]);

3. Les espaces sont complets, separables et munis d’une mesure nie dont le support est
I’espace entier (Aldous [6] and [5], Greven, Pfa elhuber & Winter [38]).

Dans cette section, on considere une classe d’espaces metriques mesures munis de fonctions
1-lipschitziennes, dans le but d’obtenir une version plus large de 2, en considerant des espaces
gui ne sont ni bornes ni pointes, equipes avec des mesures nies sur tout compact. En echange,
on doit remplacer la condition \les boules sont compactes" par \les tranches sont compactes"
(une tranche est I’ensemble des points dont les labels sont dans un compact [—h, h] [CR) qui
est un peu plus forte. On appelle espace metrique labelle mesure tout quatruplet (E, d, H, V),
ou (E, d) est un espace metrique complet separable, v est une mesure de BoreE] positive et

1Une mesure de Borel est une mesure de nie sur I’ensemble des boreliens de (E, d) qui est nie sur tous les
compacts de E.
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H est une fonction 1-lipschitzienne de E dans R. 7

Pour tout [CR., on appelle Sliceh(E,d, H,v,) ou simplement En I'ensemble x [
E%—I(x)| <h, mun| des restrictions de d, H et v. On dit que (E, d, H,Vv) est S-compact si
pour tout h ERI+, Slicen(E, d, H, v) est compacte.

On dit que deux espaces metriques labelles mesures (E,dg, He,Ve) et (F,de, Hg,VE)
sont equivalents si il existe une isometrie bijective ¢ de (E,dg) sur (F,dg) telle que Hg =
He - @ et la mesure image de ve par ¢ est egale a ve (c-a-d @(vg) = Vg). Clest une
relation d’equivalence sur la classe X de tous les espaces metriques labelles mesures, qui
preserve la compacite et la S-compacite. On appelle X I'enemble des classes d’equivalence
dans X. On appelle XS I’ensemble des classes d’equivalences d’espaces metriques labelles
mesures S-compacts et XX I’ensemble des classes d’equivalences d’espaces metriques labelles
mesures compacts. On note abusivement E I’espace metrique labelle mesure (E, d, H,v), et
on confondra souvent une classe d’equivalence avec n’importe lequel de ses representants.

Pour (E, deg, He, ve) et (F, dr, HE, Vi) deux espaces metriques labelles mesures compacts,
(Z,dz) un espace metrique separable, gg (resp. @) une isometrie de E (resp. F) dans Z,
on considere le plongement (pED(resp. (pS‘ de E (resp. F) dans Z x R de ni par (p,gx) =
(9e(X), HE(X)) (resp. oEly) = (0F (), He (Y)). Avec cette construction, on represente E, F
et leurs labels dans un méme espace Z=%= Z x R. On munit Z~de la distance d5-de nie par

a5 '(x, ), (<hY = dz (x, X L — i}

On pose

(PE oF (E.F) =dy (quE) @HF) E} (quVE) (PHVF)

ou dy (resp. dp) est la distance de Hausdor (resp. Prohorov) sur (Z5U5), oS(E) est
I'image directe de E par @=et E€vg) est la mesure-image de ve par @5(on procede de
méme pour F). Ainsi, le nombre AgE,th (E, F) tient compte de tous les aspects de E et F.
Sur le modele de la distance de Gromov-Hausdor -Prohorov pour les espaces compacts sans
labels, on de nit

- _ , O
dGHP E,F): inf A E,F),

Z,(PE,(P PE.PF
ou I'in mum est pris sur tous les espaces metriques Z et isometries g (resp. @g) de E (resp.
F) dans Z.

Pour (E,dg,Hg, ve) et (F, dr, HE, Vi) deux espaces metriques labelles mesures S-compacts,
on de nit
- Cd £ CE]
dichp E,F) = . 1 Cdgnp Eh,Fh e "dh.
De la meéme maniere, on de nit dgy et d gy pour les espaces metriques labelles (sans
mesures) par

] ] ] ]
den (E,de,Hg), (F,de,He) =dgnp (E,de,Hg,0), (F,de, Hg,0)

et O] O - -
dien (E,de,Hg), (F,dr,HF) =dighp (E,de,Hg,0),(F,dr, HE,0) .

On notera que dgnp (resp. digHp), qui est de ni sur la classes des espaces metriques labelles
mesures S-compact (resp. compact), peut €tre de ni sur XX (resp. X%), puisque la valeur
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pour deux classes d’equivalence ne depend pas du representant choisi. On prouve le resultat
suivant :

Proposition [3.1.13| et Theoreme La fonction d_gnp est une distance sur XS et
I’espace metrique (XS, d, gHp) est polonais.

On de nit X© I'ensemble des espaces metriques labelles mesures S-compacts (E,d,H,v)
(a equivalence pres) pour lesquels H(E) est connexe (c-a-d. un intervalle). Posons X©K =
XK n XC, on a:

Proposition and Lemme Sur XX, la topologie induite par dgnp est stricte-
ment plus ne que la topologie induite par d_gyp. Les distances dgnp et dignp induisent la
méme topologie sur XK,

Dans la de nition de d gHp, 0 joue un réle particulier puisque les tranches Slice, sont
prises entre —h et h. Les changements au niveau des labels proches de 0 sont plus visibles
pour la distance que les changements loin de 0. Pour voir si cette di erence se voit dans
la topologie, on de nit une autre distance ou les tranches sont centrees autour de a [R.
Pour a [R, (E,d, H,Vv) un espace metrique labelle mesure S-compact et h [Rl,, on de nit
Eg = Slicefi(E, d, H,v) I'ensemble

I%IEEE—I(X)—M shlzI

muni des restrictions de d, H et v. Pour a R, (E,dg,Hg,vg) et (F,dr, Hg,VE) deux
espaces metriques labelles mesures S-compacts, on de nit

td 1 ] 5]
d?5up(E,F) = . 1 Cdgnp EZ,F2 e Ndh.

Cette distance est une version de d_gup OU 0on a donne a a le réle particulier gu’avait 0 dans
dLGHP- Ona

Proposition Pour tout a [R, la translation (E,d,H,v) B (E,d,H + a,v) est con-
tinue. De maniere equivalente, d;,,p induit la méme topologie que digrp sur XS.

1.2 Un nouvel espace d’arbres genealogiques et sa topologie

On rapelle qu’un arbre est un espace de longueur dans lequel chaque paire de point est relie
par un unique chemin, qui doit étre une geodesique. On cherche a donner un cadre pour des
arbres comme les arbrbres aleatoires stationnaires (voir par exemple Chen & Delmas [16])
et la genealogie du processus look-down (Donnelly & Kurtz [22]), qui ne sont pas compacts
et dont la mesure naturelle est in nie. De plus, la\racine™ de ces arbres est a —co, donc ils
ne tombent pas dans le cas des espaces de longueur pointes decrit dans Abraham, Delmas &
Hoscheit [I]. Pour representer ces arbres, on oublie la notion de racine et on appelle arbres
labelles par la hauteur tous les elements (T,d, H,v) [XP tels que (T, d) est un arbre et pour
tout x,y [T,
d(x,y) = H(x) + H(y) — 2hmin,
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ouU hpmin est le minimum de H sur la geodesique de x a y. L’idee est que (T, d) est un arbre
genealogique et H(X) represente le temps auquel I'individu x a vecu. La distance entre deux
points est alors la somme des temps qui separent les deux individus de leur plus proche
ancétre commun. On note T [ X¥ I’ensemble des arbres labelles par la hauteur, consideres a
equivalence pres.

L’espace des arbres labelles par la hauteur est muni de d_gyp. On prouve

Theoremes |4.1.15| L’espace (T,d_gnp) est un ferme de XS, donc polonais.

Notons que pour tout arbre labelle par la hauteur (T,d,H,v), (T,d) est connexe, donc
I'image directe H(T) est toujours un intervalle. Ainsi, I'espace des arbres labelles par la
hauteur T n XK est inclus dans XK. On en deduit par le Lemme que dgnp de nit la
méme topologie que d gHp sur T.

On donne dans Proposition une bijection entre arbres labelles par leur hauteur,
et les arbres codes (arbres labelles dont la distance a ete remplacee par un ordre partiel
(lordre genealogique)), ce qui fournit une caracterisation alternative des arbres labelles par
leur hauteur.

1.3 Quelques operations mesurables sur les arbres

On de nit quelques operations sur les arbres labelles par leur hauteur, et on etudie leur
mesurabilite.

Le e-trimming est de ni dans la litterature comme I’ensemble des points d’un arbre qui
sont le milieu d’une geodesiqu de longueur au moins 2e. Dans cette de nition, on supprime
systematiquement I’extremite des branches. Cela a ecte la hauteur des branches, et rends les
tranches plus di ciles a contréler (on perd la propriete selon laquelle di gup (T, Trimg(T)) <
€). Il est donc plus confortable de rede nir le e-trimming Trim¢(T) = (T&,d%, HE,v¥) d’un
arbre labelle par la hauteur (T, d, H,v) comme un quotient de I’'arbre. On considere que deux
points X,y [Tl sont dans la méme classe si H(x) = H(y) et d(X,y) < 2¢ (c’est une relation
d’equivalece), et on de nit T¥ le quotient de T par cette relation. Pour x,y [TF, on de nit

d5(x,y) = dx,y) — 26 LBI(x) — H(y)D

HE(X) = H(x),

ou X,y sont deux representants de x,y [TF. Les de nitions ci-dessus ne dependent pas du
choix des representants x,y. On pose p la projection canonique de T dans T%,et on de nit
vE la mesure image de v par p. On prouve que

Lemmes |4.2.7|,|4.2.8| & [4.2.10| Pour T un arbre labelle par la hauteur, € > 0, Trimg(T)
le e-trimming de T, on a

Trimg(T) est bien de ni et donne un arbre discret,
dighp(T, Trime(T)) <¥,

T B Trimg(T) est 1-lipschitzienne de T dans T.
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Pour (T, d, H,v) un arbre labelle par la hauteur et h [CRl, on de nit Stump,(T) I’ensemble
{x CTJH(x) < h} muni des restrictions de d, H et v. C’est la partie de T sous le niveau h.

Proposition [4.2.11) La fonction (T, h) B Stump,,(T) est mesurable de T xR dans T.

On souhaite de nir la couronne Crownn(T) d’un arbre labelle par la hauteur T comme
la forét non-ordonnee des branches de T au-dessus du niveau h. Pour ce faire, nous devons
commencer par construire un espace dans lequel de nir les couronnes. On commence par
de nir I’ensemble des sequences dont on a oublie I'ordre. On pose f((sj IZXS)NDI’ensemble
des suites convergentes de XS, et on considere la pseudo-distance de nie sur >~(8 par:

052 (T o AT ) = nf ,sup dicrp(Tn, Totn)-

On de nit X3 le quotient de >~<8 par la relation d’equivalence d°Gup(-,-) = 0. L’espace
(X(S:, d’Gyp) est un espace metrique complet separable.

On de nit ensuite un borelien X2 qui contiendra toutes les couronnes. Pour tout h [R,
on note 0, = ({h},0, h,0) I'arbre constitue d’un seul point au niveau h muni de la mesure
nulle. On pose T¢ I’ensemble des elements (T™), mpE[l\‘:'pour lesquels il existe h tel
que

Ilmn Tn = Oh
tous les arbres (Tn)n 80Nt enracines a hauteur h.

Pour un arbre (T,d,H,v), h CH(T) et xo [Skel(T) tel que H(Xg) = h, on appelle
branche au-dessus de h le sous-arbre {x [Tlxqg X} muni des restrictionsded, Hetv. Si T
est S-compact, I’ensemble de ses branches au-dessus de h est au plus denombrable. Quand il
y a une in nite de branches, on pose Crown(T) une enumeration (Tn)n mi=de ses branches
au-dessus de h. notons que pour chaque enumeration, lim, T, = 0. Si T a un nombre ni
de branches au-dessus de h, on complete la suite avec une succession in nie de On. dans les
deux cas, on a Crownn(T) [Tk. On etend la de nition de Crown(T) aux cas ou h Y H(T)
par Crowny(T) = (0n)n me=gquand il n’y a aucun point strictement au-dessus de h (T = [Cdu
supt H < h), et que la couronne ne contient aucune branche, et par Crownn(T) = (T, O, ...)
guand mint H > h (tous les points de T sont au-dessus de h, donc il y a une unique branche
enracinee strictement au-dessus de h). Notons que dans ce dernier cas, Crownu(T) I:XE \Tc
car miny H 8 h. Ainsi, (h,T) B Crown,(T) est de ni de R < T dans X%.

Proposition |4.3.11] La fonction (h, T) B Crowny(T) est mesurable.

Notre principal resultat sur les operations concerne la gre e aleatoire d’une couronne sur
un arbre. Comme nos arbres sont de nis a ismoetrie pres, on ne peux pas indiquer les endroits
ou gre er les points. Nous n’avons donc pas d’autre choix que de gre er les arbres au hasard,
suivant une probabilite sur I'arbre sur lequel on gre e.

Pour comparer plus facilement la gre e de deux couronnes sur deux arbres, il vaut mieux
considerer la loi de la gre e aleatoire. Pour un arbre labelle par la hauteur (T,d,H,v,p)
muni d’une mesure de probabilite supplementaire p concentree qu niveau H~1({h}) pour un
certain h CCH(T), T un autre arbre labelle par la hauteur contenant au moins un point
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a hauteur h, prenons un representant (Tn,dn, Hn, Vn)n e Crownn(TY et (Xn)n e une
suite i.i.d de variables aleatoires dans T de loi marginale p. On note T I@TDIe resultat de
la gre e de chalqie_lTn au point X,, 1, avec d"”la distance H"la fonction label. On pose
aussi v'=v + v, et on note Prrola loi (T [T Hd7HE v p). Si on muni I'ensemble des
probabilites sur (XS, d_cnp) de la distance de Prokhorov, on a

Theoreme et Proposition L’operation de melange ((T,p), TH B Prgro
est bien de nie. C’est une mesure de probabilite independente du choix de representant pour

T et Crownnh(T5. Elle est mesurable de son domaine de de nition D [T x T dans T, ou
Tl est une genealisation de (T,d_gnp) aux arbres labelles par la hauteur equipes de deux
mesures. D est un borelien de T[? < T.

Ces resultats completent Abraham, Delmas & Hoscheit [2], ou la mesurabilite de I’operation
de gre e n’etait pas demontree.

1.4 Arbre brownien conditionne par son temps local, une ten-
tative de generalisation

Dans [[7], Aldous presente la loi de I’excursion brownienne conditionnee par son temps local.
Pour construire cette loi a partir du temps local (I(h))n=o (c’est une densite de probabilite car
I’excursion est normalisee pour €tre sur [0,1]), il cree n CNI"feuilles a des hauteurs i.i.d (avec
densite I(h)dh), et construit un coalescent a partir des feuilles (chaque couple de branche
fusionne avec intensite ﬁdh) pour obtenir un arbre T!. 1l montre que la suite (T)n

converge vers un arbre aleatoire T' qu’il prouve etre I’arbre brownien conditionne au temps
local (Construction 1 and Theorem 2 respectivement dans Aldous [7]).

On se propose de generaliser ces lois. Plutodt que de les caracteriser par un temps local I,
on utilise une mesure de coalescence u (qui joue le réle de ﬁdh) et une mesure de masse v
qui decide la repartition de la masse entre les di erents etages. Pour de nir notre arbre, nous
melangeons des coalescents a taux |4 commencant a di erents niveaux. Cela ne pose aucun
probleme tant qu’on ne prend qu’un nobre ni de niveaux, et on utilise une convergence en loi
pour obtenir un arbre limite. On prouve dans le Lemme [5.3.7|que Iarbre limite ne depend pas
de la suite des niveaux utilises pour le construire, tant que cette suite est dense. On prouve
une regularite faible dans le Lemme [5.4.3] qui constitue un premier pas vers la construction
presque-sure d’une famille de mesures intrinseques a presque-tout niveau.



Chapter 2

Introduction

2.1 Biological motivations

The objects in this thesis derive from a variety of works describing genealogies and, in a
broader sense, the transmission and di usion of genes in a population. In each cell, the
genetic information is encoded in molecules of DNA, one by chromosome. Each information
is coded as a sequence of nucleotides (ACGT) at a locus (a segment of the DNA speci ¢ to
that information). The human genom consists in 6.5 - 10° nucleotides. In a given specie,
the loci are in the same position, but will hold di erent sequences of nucleotides, hence a
di erent information. Those di erent sequences are called versions of a gene, or alleles. In
diploids, the chromosomes are split in pairs (23 for humans). Two chromosomes of a pair
will have the same loci, but may carry di erent alleles. Through meiosis, each of the two
parents produces a gamete, a reproductive cell holding one chromosome from each pair.
When two gametes meet, the resulting o spring receives two chromosomes for each pair.
Since the genetic information is held in the chromosomes, most genetic models will study the
chromosomes rather than the parents. A way to study the di usion of genes in the population
is to draw the genealogical tree of the population, or rather of its chromosomes. To simplify
matters, we will only consider a single pair of chromosomes in the rest of this section.

This view must still be re ned, as we neglected another mechanism. Each parent possesses
two chromosomes inherited from its own parents (labelled as grandparents from here on).
Sometimes, during gamete production, the two chromosomes of one parent will exchange
material, such that the rst part of the resulting chromosomes holds material from one
grandparent, while the latter part holds material from the other grandparent. This exchange
is symmetric, so that the recombined chromosomes still have the same loci as the originals,
but a new repartition of alleles. The process is called recombination, illustrated in Figure
2.1 Recombination is a rather frequent occurence, as both Sun & al. [59] and Kong and
al.[47] nd an order of around 50 recombination events per meiosis in humans, so about 2
per chromosome and reproduction.

When recombinations occur, we note a drastic change in the genealogical tree. As indi-
viduals with two parents appear, loops become possible. With recombinations, the natural
representation of the genealogy is no longer a loop-free tree and becomes a regular graph.
This graph is called the ancestral recombination graph (ARG). On it are represented all the
contributors to the chromosomes of the top-most individuals. This means that past individ-

11
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Figure 2.1: On the left, we see the usual process for meiosis (the production of gametes). On
the right,we see how recombination may happen during meiosis.

Figure 2.2: In black, a normal genealogical tree. In red and black, the ancestral recombination
graph. See that the recombination event gave rise to additionnal ancestors to our initial
population, and changed the depth of the latest common ancestor.

uals whose genetic material was not passed on to the current generation are not represented.
This is shown in Figure 2.2

Since chromosomes that where made by recombination have two parents, it is no longer
possible to draw a loop-free genealogical tree for the whole chromosome, but we can still do
it for a single locus. A locus comes from only one of the parent chromosomes, so it can be
considered to have a single parent. This gives us a loop-free genealogical tree for each locus
of a chromosome.

A way to look at recombination is to compare the genealogical tree of a locus directly on
the left of the point to that of a locus directly to the right of the point. Looking to the left,
it is the child of the parent that gave the left side. Looking to the right, it is a child of the
parent that provided the right side. Note that this relation of coming from one parent of the
other carries for all the o spring of the recombined chromosome. In a recombination event,
the genealogical branch of our chromosome and all its descendants, is cut from one parent
then grafted to the other. All the recombination events can thus be encoded in the process
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recombined chromosome

Recombination point

ere

ooX
\

|

Recombination point

Figure 2.3: This is an exemple of the process with a single recombination event, where we show
how the relative position of the locus x to the recombination point a ects the genealogical
tree for X. The recombination displaces a chromosome and the branch of all its descendants
(in red) from one parent (yellow) to the other (blue). Note that all the individuals are
represented, not only the ancestors of the current generation.

of the successive genealogical trees read along the chromosome. In this setting, we report all
the individuals, past and present on the tree, not only those who contribute genetic material,
lest we omit the ancestor of another locus when drawing the genealogical tree of the rst
locus. An example is shown in Figure [2.3] Most of the biologial considerations can be found
in Durret [26], along with a number of phylogenetic models and tests.

2.2 Modelisation of genealogies

2.2.1 Discrete modelisations

To infer a philogenetic tree from the repartition of di erent alleles in a population (see
Givnish & al. [35]), or predict the di usion of a new allele after its apparition, we need
a model for the population, or, more precisely, a model of the genealogy. One of the rst
models developed to study the di usion of an allele in a population is the Wright-Fisher model
(see for example [26]), where each member of a generation picks its parent independently at
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random in the previous generation (the generations are non-overlapping). This allows to study
the varying proportion of an allele in the population (without additional mutations). This
model has since been subjected to many re nements, allowing for mutations. The Moran
model (Moran [55]) adds a natural mutation rate between the two alleles, departing from
the simplistic long-term behaviour of the Wright-Fisher model, where all but one version of
the gene disappear. Another model adding mutations can be seen in Wirtz & Wiehe [61].
Other variations are present in the literature, with di erent o spring distributions (Cannings
[15]) and varying population size, as in the Galton-Watson tree or in more complex models
introducing competition (Lambert [48]).

Under the Wright-Fisher model, a particular genealogical structure appears when looking
at the genealogical tree of n individuals in a population of size N — oo (with proper time
rescaling). This structure, shown by Kingman in [46], is called the Kingman coalescent.

Another important mention for population models goes to Galton-Watson trees, which is
a good representation for varying size population. A particular attention has been given to
critical and sub-critical Galton-Watson trees conditioned to survive.

Other population models explore spatial repartition of individuals. In Kimura & Weiss
[45], we see a model with di erent sites, whereas Etheridge [30] presents a model which ac-
counts for spacial distribution of individuals, with individuals living in very populated neigh-
bourhoods experiencing a drop in fertility. Models with selections are studied for example in
Kimura & Otha [44] and Kaplan, Darden & Hudson [41].

2.2.2 Limits for large populations

Models for large populations include the family of superprocesses, that is, measures-valued
processes. They can be a limit object for particles systems characterized by a Mar 0Cess
M over some space E, a branching process with generating function @'(x,z) = ,pt(x)z"
(x [H,z []0,1]) and a function K from E to R. Each particle moves independently from
the other following I, and dies at rate K(x) (X is the position of the particle). When a
particle dies, it gives birth to new particles according to the branching process at the point
of its death. A typical example would be the position of the individuals in space or the
representation of some trait (height, speed, tness...). Discussion on superprocesses can be
found in Dynkin [28], Perkins [19] and Dawson & Perkins [18]. Note that the mechanics of the
patricules model makes this class of superpocesses a limit representation for inhomogenous
Galton-Watson processes (the inhomogenous Galton-Watson processes are a generalization
of Galton-Watson trees) see Dawson [17].

The Fleming-Viot process is the limiting object for the Moran process with a spatial
component, so, when a particle dies, it gives birth to exactily one particle at the location of
one of the other particles, chosen uniformly at random. This makes it a model with constant-
size population. See Donnelly & Kurtz [22] and two articles from Ethier & Kurtz: [32] and
[31].

2.2.3 Continuous coalescent and ARG

After the sucess of Kingman’s coalescent, which is the limit of the genealogy in a range of
settings (see Durret & Schweinsberg [27], Mohle & Sagitov [53]), many generalizations have
been constructed to give limiting genealogy in other models (coalescence events of more than
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two particles: Pitman [56], many coalescences occurring at the same time: Schweinsberg [58]).
We see in Mohle & Sagitov [52] and Eldon & Wakeley [29] the link between the coalescents
and a Wright-Fisher model with di erent exchangeable o spring distributions. In Greven,
Pfa elhuber & Winter [36], we nd the condition for a coalescent process to converge to a
(locally compact) tree.

Another generalization of the Kingman tree is given in Aldous [8], where the coalescence
rate of two clusters depends on their size.

The Ancestral Recombination Graph (ARG) is a variant of the Kingman coalescent which
accounts for recombination. We start with n particles, which coalesce at rate 1 (for each pair
of particle) and split at rate r > 0 (for each particle). By looking at the birth and death
process, we see that when there are k particles, the birth rate is kr (recombination event)
and the death rate @ (coalescence event). Note that when the process hits 1, the birth
rate is r and the death rate 0. Thus, the birth-death process is a recurrent Markov process
and the number of particles eventually hits 1. This means that under this model, all current
chromosomes of any n individuals descend from an ancestral chromosome that is the sole
contributor to their genome. See Gri th & Marjoram [38] for an example.

2.2.4 Real trees as a scaling limit

We have seen with the coalescents that a notion of continuous tree (as opposed to graph) is
pertinent when considering large populations over large timescales. The notion of continuous
tree was introduced in Aldous [4] to describe the Brownian tree, a limit object for the uniform
random ordered binary tree. Other laws exist, like Levy trees Duquesne & Le Gall [24] that
provide a limit for critical and sub-critical Galton-Watson trees. See also Haas & Miermont
[40].

Random real trees are used in non-biological settings as well. For example, they are
instrumental in the construction of the Brownian map in Miermont [54].

2.3 Topologies for spaces of metric spaces

2.3.1 Topology on the space of metric spaces

One of the rst attempts to compare two metric spaces comes from Gromov [39]. To compare
two metric spaces, the idea is to isometrically embed them in a third metric space and com-
pare their embeddings using the Hausdor distance. Taking the in mum over all isometrical
embeddings in all metric spaces yields the Gromov-Hausdor distance. The use of the Haus-
dor distance means that the Gromov-Hausdor distance is only de ned between compact
metric sets. A commonly seen extension, the Gromov-Hausdor -Prohorov distance, is de ned
on the space of compact metric spaces equipped with a nite measure. It is de ned by tak-
ing the max between the Prohorov of the embedded measures and Hausdor distance of the
embedded spaces for each embedding, before taking the in mum of the resulting quantities
for all embeddings.

Convergence for this distance has been characterized in many ways, and some of them
give rise to topologically equivalent distances. One way is to introduce a correspondence
between the two spaces, and measuring how tting the correspondence is by measuring how
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much it distorts the distance. The study of correspondences gives rise to a reformulation of
the distance, see Evans, Pitman & Winter [33] or Proposition 3.4.1] of the present paper.

A way to de ne a Gromov distance for non-compact metric spaces is to compare increas-
ingly large compact subsets. This is explored in Abraham, Delmas & Hoscheit [I] to de ne
a Gromov distance on complete locally compact length spaces with a marked point, called
the root (this setting is well-suited to the study of real trees). In a complete locally com-
pact length space, the closed balls centred at the root are pompact. Welﬂake as distance
between two rooted metric spaces E and F the integral 1 [d{By, BS) e "dr, where By
and B[ are the closed balls of radius r centred on the root in E and F respectively, and d is
the Gromov-Hausdor distance for compact sets. There is a similar distance over complete
measured locally-compact length spaces, as long as the measure is nite over every compact
(still in [1]). These two distances have been extended to the spaces of boundedly—compaclﬂ
pointed metric spaces in Khezeli [42], adding a variety of decorations in Khezeli [43].

To de ne a distance over complete separable metric spaces with a probability measure,
we see in Greven, Pfa elhuber & Winter [36] the Gromov-Prohorov distance. The resulting
topology coincides with the Gromov-weak topology, where a sequence (Eg, dk, vk) of proba-
bility metric spaces converges to (E,d,v) if and only if for every n [CN%'an i.i.d sequence
(XK, mﬂ/\/it&marginal vm?lnd an i.i.d sequence (Xj); @With n@’ginal v the random matrix
of distances di(X¥, X}) 1=i j=n CONVerges in law to d(Xi, Xj) ;.-

See Athreya, Lohr & Winter [9] and Lohr [51], on the relations between di erent Gromov-
like topologies.

2.3.2 De nition of labelled metric spaces, topology and new results

The distances exposed so far all require one of the following conditions :
1. the metric spaces are compact (Gromov [39]);

2. the metric spaces are rooted, complete and boundedly-compact (Abraham, Delmas &
Hoscheit [1], Khezeli [43]);

3. the metric spaces are complete, separable, and carry a nite measure or a probability
measure, and the metric space is equal to or function of the support of this measure
(Aldous [6] and [5], Greven, Pfa elhuber & Winter [38]).

In this section, we consider a class of measured metric spaces decorated with 1-Lipschitz
maps and aim to give a relaxed version of 2, namely, to consider non-compact non-pointed
metric spaces equipped with boundedly- nite measures. This comes at a small cost, since we
have to replace boundedly-compactness with the slightly stricter condition of S-compactness
(see below for a de nition of S-compactness; see Remark for a comparison of S-
compactness and boundedly-compactness). We call measured labelled metric spaces any
guadruple (E,d, H,v), where (E, d) is a complete separable metric space, v is a Borel mea-
surg’l and H is a 1-Lipschitz map from E to R.

IHere, a metric space (E, d) is boundedly compact if every closed bounded set is compact, that is if closed
balls are compact.
2A Borel measure is de ned on the Borel sets of (E, d) such that all compact sets of E have nite measure.
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For every h [CR., we call Slice,(E,d,H,v,) or simply E}, the set %I EEH—|(X)| < hl,:I
equipped with the restrictions of d, H and v. We say that (E,d,H,v) is S-compact if for
every h R, Slicen(E, d, H,v) is compact.

We say that two labelled metric spaces (E, dg, Hg, ve) and (F, dg, Hg, V) are equivalent
if there exists an isometric bijection ¢ from (E, dg) to (F, dg) such that He = Hg ¢ and the
image measure of vg by @ equals vg (that is, (ve) = vg). This relation is an equivalence
relation on the class X of all measured labelled spaces, which preserves compactness and S-
compactness. We call X the set of all equivalence classes of measured labelled metric spaces.
We call XS the set of all equivalence classes of S-compact measured labelled metric spaces
and XX the set of all equivalence classes of compact measured labelled metric spaces. We will
abusively denote by E the measured labelled space (E, d, H,v), and confuse an equivalence
class with any of its representatives when convenient.

For (E,dg,Hg,ve) and (F,dg, HE,VE) two compact measured labelled metric spaces,
(Z,dz) a separable metric space, @ (resp. @) an isometry from E (resp. F) to Z. We
consider the embedding @£ (resp. @f) from E (resp. F) to Z x R de ned by o5€x) =
(9 (X), HE (X)) (resp. oEty) = (9r (¥), HE (y)). This way, we embed both the metric and the
labels of E and F in a single space Z== Z x R. We equip ZSith the distance d>-'de ned
as follows : N

1
dz'(x, h), (x7hY = dz(x,xJ CJA—hY.
We set
] ] ] 1
DG o (E.F) = dn 0e(E), oe(F) Ldd 0ve), 0rtve) |

where dy (resp. dp) is the Hausdor (resp. Prohorov) distance in (Z5U5), oE(E) is the
direct image of E by ¢t'and @E¢vg) the push-forward of ve by @5 (similarly for F). Thus,
the number A%E,(PF (E, F) takes into account all the aspects of E and F. As in the Gromov-
Hausdor -Prohorov metric for compact metric sets, we set

[ _ , O
deup E,F)=_inf A E,F),

Z.0,0F Pe.OF
where the in mum is taken on all the metric spaces Z with isometries g and @ from E
and F respectively to Z.
For (E,dg,Hg,ve) and (F,dr, HE, VE) two S-compact measured labelled metric spaces,
we de ne
Ld

] o _ 5,
dighp E,F) = . 1 Cdgnp En,Fn e ''dh.

We de ne similar quantities dgq and d_gn for labelled metric spaces (without measures),
by C1 O C1 -]
deH (E,de,Hg), (F,dr,Hr) =derp (E,de, Hg,0), (F,dr, Hr,0)

and O] ] O] ]
digH (E,de,Hg), (F,dr,HF) =dignp (E,dg,Hg,0), (F,dr,HE,0) .

We note that dgyp and d_cnp, that are de ned on classes of measured height-labelled trees,
can be de ned on XX and XS respectively, as their value for two given equivalence classes
does not depend on the choice of representatives. We have the following results :



18 CHAPTER 2. INTRODUCTION

Proposition (3.1.13| and Theorem The function d, gnp is a distance over X° and
the metric space (XS, d gnp) is a Polish space.

De ne XC the space of measured labelled spaces (E,d,H,v) (up to equivalence) such that
H(E) is connected (i.e. an interval). De ne X&K = XK n XC, we have:

Proposition and Lemma On XK, the topology induced by dgnp is strictly
ner than the topology induced by d gup. The two distances dgqp and digup induce he
same topology on X&K,

In the de nition of d_gnp, O plays a special role since the slices Slicey, are taken such that
—h = H = h. Thus, changes at height 0 induce bigger change in the distance. To see the
e ect on topology, we de ne another distance with slices taken around a ['R. For a [R,
(E,d, H,v) a measured labelled metric space and h [ R4, de ne E2 = Slicef(E,d,H,v) as

the set O -
X IZEH—I(X) —al<h

equipped with the restrictions of d, H and v. For a [R], (E,dg, Hg,Vve) and (F,dg, Hg, Vi)
two S-compact measured labelled metric spaces, we de ne

g o,
d?sup(E,F) = . 1 Cdgwp ER, FE2 e Ndh.

This distance is the same as d_gyp, but with a playing a special role instead of 0. We have

Proposition For every a [CR, the shift application (E,d,H,v) B (E,d,H + a,v)
is continuous. Equivalently, d25,,p induces the same topology as dignp 0n X>.

2.4 The space of real trees

2.4.1 Real trees and topology on the space of real trees

We call real trees, or simply trees (in the context of this thesis), any acyclic geodesic metric
space. A metric space (E, d) is called acyclic if between any two points X,y [H, there exists
a unique injective continuous path from x to y, and is also called geodesic if the length of
this path is equal to d(x,y). Additional structures or restrictions may be placed on this
notion. It is often convenient to restrict ourself to complete, compact or locally compact
metric spaces. Trees have been decorated with measures and marked points (most often, a
root). See examples of additional decorations on metric space in Depperschmidt, Greven &
Pfa elhuber [20] and of decorations on trees in Donnelly & Kurtz [23]. Aldous considered
trees as measures over L,, while other may consider functions, ultrametric spaces (Greven,
Pfa elhuber & Winter [37]) or equivalence classes in the class of metric spaces.

The setting of Gromov-Hausdor and Gromov-Hausdor -Prohorov distance over com-
plete locally compact pointed length spaces developed in Abraham, Delmas & Hoscheit [1] is
especially adapted to rooted trees.

Comparisons between the contour functions are a highly convenient way to bound the
Gromov-Hausdor -Prohorov between two trees. This bound allows us to translate conver-
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gence of random processes to the convergence of associated trees, but doesn’t yield a topo-
logically equivalent distance. See Le Gall [50] for example.

2.4.2 A new space of decorated trees and its topology

In this paper, the trees that interest us include examples like the stationary random tree (as
appearing in Chen & Delmas [16]) and the genealogy of the look-down process (Donnelly &
Kurtz [22]), which is not compact and has in nite measure. Furthermore, its natural \root"
is in nitely ancient, so it won’t fall under the \complete boundedly-compact rooted metric
space". Representing the trees will need another approach. To this end, we remove the notion
of root and and call height-labelled trees all the elements (T,d, H,v) [XP such that (T,d) is
a tree and for every x,y [T],

d(x,y) = H(x) + H(y) — 2hmin,

where hpin is the minimum of H on the geodesic between x and y. The idea is that (T, d) is
a genealogical tree, and, for x [Tl H(X) represents the time at which the individual x lived,
and that the distance between two points be the time to their closest common ancestor and
back. We note T [CXF the set of height-labelled trees up to equivalence.

On the space of height-labelled trees, we use d gnp. We prove

Theorems [4.1.15| The space (T, d_ghp) is a closed subset of XS and thus Polish.

Note that for any height-labelled tree (T, d, H,Vv), (T, d) is connected, so the direct image
H(T) is always an interval. Thus, the space of compact height-labelled trees T n XX is a
subset of X©K_ It follows that, by Lemma , deHp de nes the same topology as d_gnp
on the space of compact trees.

We give an alternate characterization of those trees, showing that the distance can be
replaced by the genealogical order without loss of information, see Proposition [4.1.14] See
Lambert & Bravo [49] to a di erent use of an order on random trees.

2.5 Operation on trees

2.5.1 Cutting and grafting

In the literature, we see several commonly-used operations on trees. The cutting is the
operation of removing a part of the tree, in general the part beyond a cutting point. A
variant of the cutting is the truncation, where we remove everithing beyond a certain level
(usually measured from the root). The grafting, reverse of the cutting, consists in glueing
some tree to another, obtaining a bigger tree. A last operation is the e-trimming, where we
only keep points that are the middle of a geodesic of length at least 2e. The e ect is to\delete"
small branches. The trimming operation is very useful, since the Gromov-Hausdor between
a tree and its e-timming is less than € for both versions of the distance : compact trees
(Gromov [39] or complete locally compact rooted trees (Abraham, Delmas & Hoscheit[1]).
The trimming of a locally compact tree is discrete{f]. See Evans, Pitman & Winter [33] (cut

3A tree is discrete if its nodes form a discrete set and all have nite degree
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and regraft, e-trimming), Evans & Winter [34] (cut and regraft), Duquesne & Winkel [25]
(Bernoulli leaf colouring), Abraham, Delmas & Voisin [3] (cut) and Pitman & Winkel [57]
(forest growth by wrapping) for other examples.

2.5.2 Some measurable operations on height-labelled trees

We de ne some operations on measured height-labelled trees, and study their measurability.

In the e-trimming as de ned in the literature, the extremities are deleted. This a ects
the maximum height of branches, and makes the slices harder to control (we would typically
lose the property that dygup(T, Trime(T)) < €). As a result, it is convenient to rede ne
the e-trimming Trim¢(T) = (T&, d%, HE, v¥) of a height-labelled tree (T, d, H,v) as a quotient
of the tree. Consider that two points x,y [T are in the same class if H(x) = H(y) and
d(x,y) < 2¢ and name T¢ the quotient. For x,y [TF, we de ne

d5(x,y) = dx,y) — 26 LBI() — H(y)D
HE(x) = H(x),

where X,y are any two representatives of X,y [TF. The above de nitions do not depend on
the choice of representatives x,y. We set p the canonical projection from T to T, and de ne
v the pushforward of v by p. We prove that

Lemmas |4.2.7} 14.2.8| & |4.2.10| For T a measured height-labelled tree, € > 0, Trimg(T)
the e-trimming of T, we have

Trimg(T) is well-de ned and a discrete height-labelled tree,
dighp(T, Trime(T)) <¢,
T B Trimg(T) is 1-Lipschitz from T to T.

For (T,d, H,v) a measured height-labelled tree and h [CR|, we de ne Stump,(T) the set
{x CTJH(x) < h} equipped with the restriction of d, H and v. This corresponds to the part
of T below level h.

Proposition [4.2.11) The function (T, h) B Stump,(T) is measurable from T<R to T.

We want to de ne the crown Crowny(T) of a tree as the forest consisting in the in nite
unordered collection of its branches above above a certain level h. To do so, we rst de ne
a suitable space to contain the crowns. Fistly, we de ne the set of unordered converging
sequences. Set X3 [(XS)N''the set of all converging sequence in XS, and consider the
following pseudo-distance on X3

A (Tnmes(Tdnmws) = _ inf _sup digrp (Tn, To(oy)

We de ne X2 the quotient of Xg by the equivalence relation d%p(,:) = 0. The space
(X%, d’Gyp) is a complete separable metric space.

Now, we de ne a Borel subset of X2 adapted to crowns. For every h [CR, consider
On = ({h},0,h,0) the tree consisting in a single point at height h with null measure. We
consider T¢ the set of all sequences (T"), o TN for which there exists h such that
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Ilmn Tn = Oh
all the trees (Tn)n =are rooted at height h.

For (T,d,H,v) a tree, h CH(T) and xo [Skel(T) such that H(xp) = h, we call branch
above h the subtree {x [T|xo [X} equipped with the restrictions of d, H, v. If T is
S-compact, the set of its branches above h is at most countable. When there are countably
many branches, we set Crownn(T) an enumeration (Tn)n miof its branches above h. Note
that for any such enumeration, lim, T, = 0n. If T has a nite number of branches above h,
we complete the sequence with a succession of 0,. In both cases, we have Crownn(T) [CTk.
We extend the de nition of Crownn(T) to cases where h Y H(T) by Crownn(T) = (On)n e
when there are no points strictly above h (T = [dr supy H < h), so the crown holds no
branches at all and by Crownn(T) = (T,O0Op,...) when mint H > h (all the points of T are
above h, so there is a single branch which is rooted strictly above level h). Note that in this
last case, Crown(T) X \ Tc because mint H & h. Thus, (h,T) 3 Crownp(T) is de ned
from R < T to X2.

Proposition [4.3.11) The function (h,T) B Crownn(T) is measurable.

The main result on operations concerns the grafting of a crown on a tree. Since our trees
are de ned up to an isometry, we cannot indicate the location of the grafting through a point,
so we have to graft the branches of the crown at random according to a probability measure
on the receiving tree.

This means that the resulting grafting is the law of a random tree. For (T,d,H,v,p)
a measured height-labelled tree equipped with an additional probability measure p concen-
trated on H™1({h}) for some h [CH(T), T “another measured height-labelled tree containing
at least one point at height h, we take a representative (Tn, dn, Hn, Vn)n o of Crownp (T 5
and (Xn)nmoi—an i.i.d sequence of random variables in T with marginal law p. Note T l;l]’D
the grafting of ea?h_li, at the point X, [T, equipped with distance d”and label function
HY Set vi=v + v, and note Py rothe law of (T LT 5dYH v p). We equip the set of
all probability measures over (XS, d_gnp) With the Prohorov distance, and have

Theorem and Proposition The mixing operation ((T,p),TH B Prpro
gives a well-de ned probability measure, independent of the choice of representative for T

and Crownn(TY, and is measurable from its domain D [T# x T to T4, where T[4 is the
genealization of (T, d_gHp) to height-labelled trees equipped with two measures. D is a Borel
set of Tl x T,

These results complete Abraham, Delmas & Hoscheit [2], where the grafting operation
was not proven to be measurable.

2.6 Brownian tree conditioned on its local time

2.6.1 Aldous’ construction, using coalescing particles

In [7], Aldous presents a law for the standard Brownian excursion conditioned on its local
time. To build this law of the tree for a given local time (I(h))n=0 (which must be the density
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of a probability measure since the excursion is de ned on [0,1]), he rst creates n [NI"feaves
at random i.i.d heights (with density I(h)dh), and builds a coalescent from them (each couple
of branch coalesces at rate ﬁdh) to obtain a tree T!. He nds that the sequence (T\)n i

converges to a random tree T', then proves it is the Brownian tree conditioned on its local
time(Construction 1 and Theorem 2 respectively in Aldous [7]).

This tree can be interpreted as the limit of Wright-Fisher genealogy with varying popu-
lation size. For constant population, this limit is given by the Fleming-Viot process. Note
that this genealogy can be build with a look-down process which is similar to the approach
of Aldous. This means that Aldous’ construction with varying coalescence rate can be repro-
duced with a simple time-change of the Fleming-Viot genealogy. See Birkner & al. [13] for
results on time-changes of coalescents.

2.6.2 An attempt at generalization

We mean to extend the previous construction to a further class of laws. Rather than charac-
terizing our trees by the local time I, we use a coalescence measure p (which plays the role of
ﬁdh) and a mass measure v, whose only purpose is to decide the mass repartition on the
tree. To de ne the tree, we mix coalecents at rate p, starting at di erent levels. This poses
no problem when mixing a nite number of coalescents, and we use the convergence in law of
the random trees to build a limiting tree. We prove that the limiting tree is independent from
the sequence used to build it in Lemma[5.3.7] We prove a weak regularity for the measures
of the coalescent in Lemma[5.4.3| which is a step toward equipping the tree with an intrinsic
probability measure almost-surely at almost-every level.

An approach with time-change may be possible, and a simpler way to derive stronger
properties from the original object (continuity in h of the measure at level h for example).

2.7 Motivation and perspectives

In Depperschmidt, Pardoux & Pfa elhuber [21], we see a process generalizing the ARG from
Durett [26] for an in nite number of individuals living at the same time. We aim, in future
works, to do the same for entire genealogical trees.

Note that for every locus t on the chromosome, the ARG gives a coalescent tree, so we
can also see the ARG as the family of those trees. This approach is easier to generalize to a
limit where the sample size is equal to the population size. In [21], such a generalization is
given, through a distance on a set of individuals (the leaves of Kingman’s coalescent). Our
main perspective is to generalize the ARG to encompass all of the genealogy, past and future
in a T-valued process (Ti)t=y (See Figure for the discrete version, where the parameter t
is the position on the chromosome). Here, we give a sketch of the constructions and proofs.

The construction of the process (Tt, di, Ht, Vo)t =y, described in the next paragraph, re-
quires an initial random tree equipped with probability measures at almost-every levels (a
paper is in progress to provide a Polish space adapted to such an object). To ensure that it
stays a tree at every time, we need, in a number of proofs, to have a stationary and reversible
process, so the initial law needs to be a stable law. The Brownian tree conditioned on its
local time, and our generalization, happen to be stable laws (there may be others).

The idea, conditionally on (To, do, Ho, (Vh)n renT,)), then to code all the jumps of (Te)tza
through triplets (u,v,t), for a cut at the point u, regraft at the v, t beeing the time of the
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jump. We take a Poisson process X on T x To % R+ with intensity A(du)vyy(dv)dt at
the point (u,v,t), where A is the length measure of To. A potential di culty is that A is
often in nite, so we have to be prepared for in nitely many jumps in any time interval. This
is not a problem, as we can directly build the tree T¢ from T and the Poisson process X.
Since height-labelled trees can be characterized indi erently by the distance or its genealogical
order, changing the genealogical order is equivalent to changing the distance (this equivalence
is proven in Proposition of the present thesis). Seen in To, the ancestral line of a point
jumps each time it meets a cutting point u such that (u,v,s) [X and s < t. Almost-surely,
this does not happen too much since the distance between two cutting points follows the
exponential law of parameter 1, so the ancestral line is well-de ned. To get the distance d;
between two points x and y, follow their ancestral lines to their common ancestor x [yland
de ne d(x,y) = H(X) + H(y) — 2H(x [y). This works almost-surely for almost-every point
in Tp, but not for all. Thus, Tg is cut in a jigsaw that leaves a negligible set of points out,
and completion is necessary at each time.
At this stage, there are many questions about this process:

pending questions :
is T¢ is a random variable?
is the process Markov?
is the process stationary and reversible?
is almost-surely, T¢ stay always connected?
is the process cadlag for d_gpp?

at any time t [ R4, does each piece of the jigsaw (ﬂe connected component of T
without the cutting points) have positive measure for vpdh?

if we take an entire level (or generation) h, and look at their ancestors at height h — ¢
in all the trees (T s)p<s<t, iS the number of ancestors is nite (this has a meaning since
almost all points in (Ts) are points of Tp) ?

Our conjecture is that the answer to all those questions is yes.
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Chapter 3

Topology on measured labelled
metric spaces

In this chapter, we develop a distance on a new class of decorated metric spaces, the measured
labelled spaces, which will be needed in Chapter [4l The interest here is to describe and
compare metric spaces such as the tree with stationary quadratic branching process, which
is not rooted but has a natural time direction. In this sense, we could say that it escapes
the scope of [1] and [43]. To encode the time direction, we use a map, called label or height.
This chapter deals about general metric spaces, while trees will be looked at in more details
in Chapter [4]

3.1 De nitions

3.1.1 Labelled Spaces

We call M the class of all separable metric spaces. All the elements (Z,d) M are equipped
with their Borel o- eld B(Z). For (E,dg), (F,dr) two separable metric spaces, we de ne
Iso(E, F) the set of all isometries from E to F. The set Iso(E,F) can be empty and the
isometries are not necessarily surjective. If v is a measure over E, @ a measurable function
from E to F and f a measurable function from E to R4+, we note @v or ¢(v) the image
measure on F of v through ¢ and f - v the measure that has density ¥ with respect to
v. In the case of the indicator function of A [CB(E), we have for every B [CB(E) and
¢ [I30(E, F) that

v(B) = ov(9(B)) ; [1a-VI(B) = V(AN B); 0[1la - V] = 1y - (9V). (8.1.1)

We call labelled metric space any triplet (E,d, H), where (E, d) is a complete separable
metric space and H a 1-Lipschitz map from E to R. For (E,d,H) a labelled metric space
and for h [Rl, we set

Slicen(E. d, H) = {x CEFH ()| < h}.

The set Slicen(E, d, H) is equipped with the restriction of d to form a labelled metric space.
We say that a labelled metric space (E, d, H) is S-compact if for every h [Rl,, Slicen(E, d, H)
is compact.
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We call measured labelled metric space any (E, d, H,v) where (E, d, H) is a labelled metric
space and v a non-negative measure on B(E) such that for all h [CRl,:

v(Slicen(E, d, H)) < oo.

Recall that a Borel measure is a measure de ned on the Borel o- eld such that all the compact
sets have nite measure (as in De nition 25.2 in [10]). Since for every compact K [CE] H is
bounded on K, so v(K) < oo, we deduce that v is a Borel measure.

For (E,d, H,v) a measured labelled metric space and h R, we de ne Slicen(E, d, H,Vv)
by equipping the already de ned Slice,(E, d, H) with the restriction of v to form a mea-
sured labelled metric space. We will often use the abusive notation E to designate (E, d, H)
or (E,d,H,v). In Sections to , we will use the more convenient notation E, =
Slicen(E, d, H, v) for every measured labelled space (E,d,H,v) and h [Rl..

Remark 3.1.1. Here are some examples of S-compacity.

If we take (T, d,v) the Brownian tree with its mass measure, w [Tland H the function
from T to R de ned by H(x) = d(w,x) for x [, then (T,d,H,v) is a measured
labelled set, and it is S-compact since the Brownian tree is compact.

There are S-compact spaces that are not compact, like (R, dg, Idgr), with dr the Eu-
clidean distance on R.

The notion of S-compactness is stronger than local compactness. We give an example
of locally compact labelled metric space that is not S-compact. Take E = (R+ > {0}) [
(N x Ry), and de ne, for every (x,y), (x5yY [CH, H(x,y) =y —x and

L1

O _ly—=yH if x = x-
Ay YN = Sy 4y if x 8 xC

The function d is sometimes called the comb distance on R2. The space (E,d) is
separable, complete, locally compact and H is 1-Lipschitz, but Sliceg(E) = {(n,n)|n [
N} is not compact, so E is not S-compact. See Figure for a representation of
(T, d, H) with some distinguished points of T.

H

0+ (4,4) (0,0)

(4,0)

s

Figure 3.1: This comb-tree is locally compact, but is not S-compact as a labelled metric
space.
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De nition 3.1.2. We note X the class of all measured metric labelled spaces. We say that
two measured metric labelled spaces (E, dg, Hg, ve) and (F, dg, Hg, Vg) are equivalent if there
exists a bijection @ [ISo(E, F) such that He = Hg = ¢ and ve = @vg. We note X the set of
all equivalence classes in X. We note X% = {E [X|(E,d,H,v) [H,v(E) = 0} (here only,
E is the equivalence class containing E) the set of all classes of metric labelled spaces up to
equivalence, seen as measured metric labelled spaces with the null measure. We note XX and
XOK the restrictions of X and X° to compact spaces, XS and X%S the restrictions of X and
X° to S-compact spaces.

3.1.2 Distances

For (Z,d) a metric space, we de ne the g-closure and the g-neighborhood of a set A [Zlas
A% = {x [Z|d(x,A) < €} and A® = {x [CZld(x,A) < £}.

We now introduce the Prohorov distance, which can be found in Section 6 of [12], along
with a proof of Lemma [3.1.5in the special case of probability measures.

De nition 3.1.3 (Prohorov distance). Let (Z,d) be a separable metric space with B = B(Z)

its Borel o- eld, and v, vPtwo nite non-negative measures over Z. We de ne d,(az’d)(v,vﬁ
the Prohorov distance between v and vPas

d& P v, v5
= inf{e = 0| [Al B, v(A) < v{(A® ) + ¢} Cinf{e = 0|[Al [B,Vv(A) < Vv(A® ) + £}
= min{e = 0| [Al (B, v(A) < V{{A®) + £} [min{e = 0|[AI [B,v{A) < v(A®) + £}.

When the choice of the underlying metric space (Z,d) is clear, we use the notation dp.
Note that for A [ Bl [_Zltwo Borel sets we have

dp(1a -V, 1g - v) = V(B \ A). (3.1.2)

Remark 3.1.4. In De nition 3.1.3, we give two expressions for the Prohorov distance. The
rst one is standard and a close look at the second one shows that they are equal. We still
need to prove that the minimum exists in the second equality of De nition [3.1.3] Set & =
inf{e = 0| [Al [B,v(A) < vi(A%)+¢£}. Forevery A [B and £ > & we have v(A) < V{A®) +¢.
Since A is closed and equal to the intersection ng=5AE, we have by dominated convergence
that
vi{A?) = Jim_ vi{A®),

so V(A) < V(A% +3 for every Ai.e. 3 [{& = 0|[Al [B,V(A) < v{A?)+¢}, so the minimum
exists. O

To avoid proving v(A) < vi(A%) + & and v'(A) < v(A®) + € each time we need an upper
bound of the distance, the next lemma provides a shortcut. We use for x [CR the notation
(X)* = x O max(x, 0).

Lemma 3.1.5. If v,vPare two nite non-negative measures over a metric space (Z,d) such
that for some € > 0 and every Borel set B [Zlwe have v(B) < v{B¢) + ¢ then dp(v,v) <
e+ (VKz) —v(2))".
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Proof. First, notice that for > € and every Borel set B [Zlwe have v(B) < v{B" ) +n.
Take B [B(Z). We have B CZI\ (Z\B" )" so

vi{B) = vi{Z) —v{(Z \B" )" ) =vXZ) —v(Z\B" )+n=vXZ) —v(Z) +v(B" ) +n,
where we used the hypothesis: v(Z \B" ) < vi{(Z \B" )1) +n for the second inequality.
This proves that dp(v, vy <n+ (vi{Z) —v(Z2))* for every n > € so dp(v,v) < e+ (vKZ2) —
v@Z)*. 0

If v(Z) = vXZ), then, using Lemma(3.1.5, we get that the two in mums in the de nition
of the Prohorov distance are equal and we have with Remark [3.1.4}

dp(v, v = min{e = 0| [Al CB(Z),V(A) < V{A®) + £}
= min{e = 0| [Al LB (Z),v{A) < V(A®) + &}.

The next lemma links the distance of two measures and the distance of their restriction
to a smaller set.

Lemma 3.1.6. Let (Z,d) be a separable metric space, v, vPtwo nite non-negative measures

over 4__a]nd dp(v,vﬁjTake H a 1-Lipschitz map from Z to R and set for every h [ Rl
Zn = z LZ4H(2)] = h . In this setting, we have for every h [Rl;:

dp(lz, Vv, 1z o VY S O+ (V{Zhea) = V(Z0)™.
Proof. Take A [B(Z) a Borel set. Since H is 1-Lipschitz, (Zn)® [Z}+q and we have
V(AN Zn) < VA N Z)% +a < VA% n Zhio) + Q.
With Lemma [3.1.5] this gives dp(1z, -V , 1z, V) < o+ (Vi{Zn+o) = V(Zn)*. O

De nition 3.1.7 (Hausdor distance). De ne dy(K, K5 the Hausdor distance between two
compacts sets K, K™ of a metric set (Z,d) as

du(K, KY =min{e = 0|K C(RYE, KX CKF}
=(res g0 Lengx mig e 9

By convention, we consider that [Cik a compact set, that d4(C )= 0 and that for every
non-empty compact K we have dy(K, D= oco. As with the Prohorov distance, we will use

the notation d(HZ'd) when the underlying metric space is not obvious.

For a proof that dy is a distance see Chapter |4{ of [60].
For (E, dg, Hg) a metric labelled space, (Z, d) a metric space and ¢ [Id0(E, Z), set o <H
the function from E to Z x R de ned by

[o < HE](X) = (9(x), HE(X)).
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De nition 3.1.8. Let (E,dg,Hg) and (F,dr, Hg) be two compact metric labelled spaces.
We de ne:

den((E,dg, Hg), (F, dg, H,:)?:I

. = 1
= inf _ max min dz (e (X), ¢r (y)) CJHE(X) — He ()]
(Z,dz) M1 x[Ely [E]
o [Ise(E,Z)
o Osé(F,Z2)

C]
Cmax min, dz (9 (X). 9 (v)) HHe() —Hr )]

This de nition is very close to that of the Gromov-Hausdor distance, with the additional
term |He (X)—HEg ()] to check whether the labels of the two spaces are close from one another.
Note that if we set d5-the distance on Z x< R de ned by

dg{(z, ), (z7hY) = dz(z,2" O - hf, (3.1.3)

we get

4RI ([ge x HE)(E). [9F * HEI(F))
o o =
= maxmin z(@e (), ¢ (y)) CJHEe(X) — He (y)|

Crxmin a0 (). 9F (v)) CHIE(X) — He (V)]

This provides a more compact formulation for the next de nitions:

don((E,de, He), (F.de, He)) = inf _ dF%%) (gg x HE](E), [or > HEI(F)).
(Z,dz) M
(015 I:I§Ib(E,Z)
oF Oso(F,Z2)

The construction of d>-will occur again on di erent distances. From now on, adding a star
to a distance will always refer to the construction done in (3.1.3).

De nition 3.1.9. Let (E,dg,Hg,ve), (F,dr,HE,VE) be two compact measured labelled
metric spaces, we de ne:

dehr((E,de, He, Ve), (F,de, He ,VE))

= _inf _ max dy <RdzY
(2,dz) [f
e Os8(E,Z)
oF Osd(F,Z)

([oe < HEI(E), [or * HE](F)),

1

d'(DZXR'dzq([(pE x He]Ve, [9r * HE]VE) .

For two compact measured labelled metric spaces (E, dg, Hg, 0) and (F,dg, Hg, 0) with
the null measure, we have that

derp((E, de, Hg, 0), (F,dr, HF, 0)) = dgn((E, de, HE), (F, dr, HE)).

To de ne the next two symmetric functions from De nitions [3.1.11] and [3.1.12, we need the
following lemma, which is proved in Subsection . Recall that Ey, = Slicen(E, dg, Hg, VE).




30 CHAPTER 3. TOPOLOGY ON MEASURED LABELLED METRIC SPACES

Lemma 3.1.10. For (E,dg, Hg,ve), (F,dr, HE, VE) two S-compact measured labelled met-
ric spaces, the maps

h B deu(En, Fn) ; h B denp(En, Fn)

are measurable.

De nition 3.1.11. Let (E,dg,Hg) and (F, dg, Hg) be two S-compact metric labelled spaces,
we de ne:

C] O b [ .,
dLGH (EadE’HE),(F,dF,HE) = 0 1 mH Eh,Fh e "'dh.

De nition 3.1.12. Let (E,dg, Hg,Ve), (F,dr, HE, vE) be two S-compact measured labelled
metric spaces, we de ne:

] o B o oo,
dighp (E,de,Hg,ve), (F,dr,HE,VE) = . 1 Cdgwp En Fn e 'dh.

Note that for (E,dg, Hg,0) and (F,dg, Hg, 0) two S-compact measured labelled metric
spaces equipped with the null measure, we have d, gup(E,F) = d gnH(E, F).

The purpose of dgH, dgHp, dign and d gnp is to adapt the Gromov-Hausdor and
Gromov-Hausdor -Prohorov distances introduced in [39] and [36] to compact and S-compact
measured labelled metric spaces. This adaptation follows the one developed for rooted
length spaces in [I], only replacing the balls (centered on the root) of a rooted length
space by our compact slices. This replaces the condition \locally compact rooted length
space”, by \compact slices", but most of the proof still follows the same logic. Choose
d [({lgH, dgup, digH, diehr} and E, EY F, FYfour measured labelled spaces such that E
and EMare equivalent, F and F “are equivalent and d(E, F) is de ned. From the de nitions of
deh ,dehp, dign and digxp, We nd that d(EFFD is de ned and d(E,F) = d(EFFY. This
means that d is constant on equivalence classes, so we can consider dgy, deyp, digH and
dicnhp as functions on (X%¥)2, (XK)2, (X®5)? and (X5)? respectively. Moreover, dgn(E, F)
is the restriction of dgnp(E, F) to X%K and d g (E, F) is the restriction of di gup(E, F) to
X0S,

Now, we state one of our main results.

Proposition 3.1.13. We have that:
dgn is a distance over X%K,
dgup is a distance over XK,
dLcH is a distance over X235,
d_cup is a distance over XS.

We will prove Proposition [3.1.13]in Section [3.2]
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3.1.3 Proof of Lemma

For (E,dg, Hg,ve) and (F,dg, He, Ve) two S-compact measured labelled metric spaces,
set D(E, F) the set of all distances d on the disjoint union E [Flsuch that for every x, x” [H,
y,yP A, d(x, x5 = de(x, x5 and d(y,yY = de(y,yD. We recall that for every h R, we
note E,, = Slicen(E). Note dr the Euclidean distance on R. For d CO(E,F), h R4, we
de ne

An(E, F,d,h) = diE PR (1de > HEI(En), [Ide > HEI(Fh))
and
D (E,F,d, h) = dS& BRI (10 > Hel(Le, - ve), [Ide % HeI(, - VE))-
We begin with 3 intermediate lemmas.

Lemma 3.1.14. If E and F are S-compact measured metric labelled spaces, then we have

dore(En, Fn) = | Inf_ An(E,F,d.h) (2% (E,F.d, ).

Proof. Let us note A = dgnp(En, Fn) and A= infdME,F)AH(E, F,d,h) COp(E, F,d, h).
If E,, or Fp is empty, we refer to the convention for dy adopted in De nition and nd
that we have for every d CD(E, F):

L1
A =Ay(E,F,d,h) =Ap(E,F,d,h) =0 when E, =F, =[]
A =Ay(E,F,d,h) =00 when only one is empty.

This proves the lemma in those cases. We suppose from now on that E;, and Fy, are non-
empty, so that A and A are nite. Since for every d CDKE, F), G = (E [E]d) is a separable
metric space and Idg,,, Idg, are isometries of I1so(Ep, G) and Iso(Fn, G), we naturally have
A=A

Choose € > 0. Take (Z,dz) M, @ [130(Eh, Z) and @ [IS0(Fp, Z) such that

45" ((9e % Hel(En). [or X Hel(Fn) < A+,
4% (jpe x Hel(le, - ve), [9r % Hel(r, -VF)) < A+e.

Consider A = {(x,y) [Eh x Fp|dz(9e(x), o (v)) OJHE(X) —HF (Y)| < A+¢}, and de ne d”
the symmetric function on E [Flsuch that for every x,y [CH [CF],

1
=k (x,y) if x,y CH
d{x,y) = %(x,y) if X,y CEl
oy adde (<, XY + de (YY) + A +e if x CH,y CH

The function dis symmetric de nite-positive. Let us prove it satis es the triangular inequal-
ity. If x,y,z CHor x,y [CHz [CF, then we simply obtain d'{x, z) < dx,y) + d{y, z) from
the triangular inequality of dg and the de nition of d¥ If x,z [CH, y [CH, then, using the
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triangular inequalities of dg and dr we get

dtx,y) + dy.2) = e (XY + de(xT2) + de (yTy) + de (v, YT+ 2(A +5)

inf
(x5, (xEy T Al
= it de(x,2) —de (X)X + de (yTy +2(A + ¢
oy o oy 18 O 2) G H+de Yy +2(A+¢)

=de(x,z) +2(A+€)—  sup %g(cpe(xg, oe(xD) — d(@r (vY, 0= (v'D)

(Y, (X1

=de(x,z) +2(A+ge)— sup  d(@e(XT, or (vY) + d(pe (X, 9= (vD)
(Y, (<Y ) (251

= de(X,2).

The last inequality follows from the de nition of A. Using those three cases, the symmetry
of d”and the fact that E and F play symmetric roles, we have the triangular inequality.
This implies that d"is a distance and d” CD(E, F). We deduce that A< Ay(E,F,dYh) 1
Np(E,F,d5h). Since for every x [CH, y [Flwe have

1 1 1 1
dx,y)=A+e = (x,y) [A - dz(@e(X),0r(y)) OHe(X) —He ()| <A+¢ ,
we deduce from the conditions on Z, g, ¢ that
Aj(E,F,d'h)<A+¢ and Ap(E,F,d7h)<sA+e.
This shows that A< A + €. Since A < AMand ¢ is arbitrary, we must have A = A" O

Corollary 3.1.15. If E and F are S-compact metric labelled spaces, then we have

don(En,Fn) = inf | A(E,F.d.h).

Proof. Simply note that we can consider E and F as measured labelled spaces equipped with
the null measure, and that dgy(En, Fn) = deup(En, Fn) for spaces with the null measure.
This gives

En Fp) = En, Fp) = inf Ay4(E,F h E,F h
deH(En, Fn) = denp(En, Fn) dm'_EE,F) n(E,F,d,h) CAR(E,F,d, h)

with Ap(E, F,d, h) = 0. O

Lemma 3.1.16. If E and F are two S-compact measured metric labelled spaces and d an
element of D(E,F), then h B Ax(E,F,d,h) and h B Ap(E,F,d, h) are right-continuous
functions.

Proof. Step 1. We prove that h 3 Ap(E, F,d, h) is right-continuous. For Ap(E, F,d, h), we
can use the triangular inequality. For 0 < h < hPwe have:
|AR(E,F,d, h) — Ap(E, F,d, hY|
sdéE FERRATD (11 de x He](1g, - ve), [1de % Hel(1g, o VE))

+dS TR (1de < HE(1R, - ve), [1de < HEI(LF, o VE))
=Ve (Eno\ En) + Ve (Fho\ Fn).
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We used Equation (3.1.2) for the last line. We deduce that Ap(E, F,d, ) is right-continuous.

Step 2: We prove that the function h O Ay(E,F,d, h) is right-continuous. Consider
hg = ming |Hg| [0, o] and hg = ming |He| [0, c0]. We have Ax(E, F,d,h) = 0 for
h []0,hg [ChE) and A4(E,F,d,h) = oo for h [hg [ChE,hg ChE), so Ax(E,F,d, ") is
right-continuous on [0, hg [ChE). This covers the case where E or F is empty, so we can
assume that hg [hE < oo. For x [H,y [FI, note d(k,y) = d(x,y) CJHEg(X) — He (y)|]. We
now prove that the function de ned by

8e,F.a(h) = max min d"k,y)

is right-continuous on [hg [hg, co0). Set € > 0. Since the slices of E are compact by de nition,
E is the union of a non-decreasing sequence of compact sets, so we can choose a locally nite
partition (B;j)i—of E (that is, such that every bounded subset A [CElonly intersects a nite
number of elements of the partition) such that for every i [1] diam (B;) < €. Now, for
every H_:rn’ choose X; in the adherence of B; such that |He(x;)| = infg, |[He|. We have
En [T iog Bi. We deduce, with dYk, Fr) = miny =5 d5k, y), that

xi [E}
Og,F,a(h) = max dki, Fn),
xi [(EH
and
[ [
] [
de,ra(h) < max d ki, Fn) + sup de(x,xi) C/HEg(X) — He (i)
i1 x B3
X [EH
= max dki, Fp) + &,
xi [E}

where the last inequality comes from the diameter of each of the B; and the fact that Hg is
1-Lipschitz. The function h 3 d%k;, Fy) is cadlag. The set {i [I}x; [EL} is nite and the
map h B {i CI)x; CEL} is piece-wise constant, right-continuous and non-decreasing. Thus,
the function
hQ max dki, Fn)
xi [E4

is right-continuous. It follows that dg r 4 is the uniform limit of right-continuous functions,
S0 Og k4 IS right-continuous. This implies that Ay(E, F, d, h) = g g q(h) [8d g q(h) is right-
continuous over [0, o). O

The following lemma is similar to Theorem 4 and Proposition 1 in Chapter IV Section 6
of [14], stating respectively that the lower bound of a collection of non-negative continuous
functions is upper semi-continuous, and that upper semi-continuous functions are measurable.

Lemma 3.1.17. Let (fj)ibe a collection of right-continuous functions from an interval
D [RIto R4+. We set T = inf| f;. Then the function f is measurable and for every h 1]

f(h) = limsup f(y).
y-h*
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Proof. For x (3, € > 0, take i [Tsuch that fj(x) — f(x) < €. Since f; is right-continuous
and f < fj, we have

limsupf(y) < lIim fi(y)=fix) =f(xX) +¢
y-x*

y-x*

so F(x) = limsup, _ .+ F(y).
Now, take h > 0 and let us prove that A = {x [CD|f(x) < h} is measurable. Suppose
that A is non-empty. For every x A, if X is not the maximum of D we have

f(x) = limsup f(y),

y X+

so there exists x”> x such that for every y [JX,x, f(y) < h. It follows that [x, x] Al We
deduce that A n (—oo, sup D) is a union of disjoint intervals. The union is at most countable,
so A is measurable. m

We now give the proof of Lemma[3.1.10] Using Lemma[3.1.14]and its Corollary [3.1.15 we
see that for every h Rl we have

dorp(En, Fn) = inf | Au(E,F,d h) [Z(E, F.d.h),

deH(En, Fn) = dttigé F)AH(E, F,d, h).

Lemma |3.1.16| tells us that h 3 Ay(E,F,d,h) and h 3 Ay(E,F,d, h) CAp(E,F,d, h) are
right continuous, so, using Lemma the functions

h 3 den(En,Frn) and h 3 denp(En, Fn)

are measurable. O

3.2 Proof of Proposition [3.1.13|

We prove in this section that dgy, dgup, digH and d gnp are distances. The symmetry
of dgH, digH, deHp and d gpH is obvious from the de nitions. To complete the proof of
Proposition we shall prove the triangular inequality in Lemma[3.2.2]and that they are
positive-de nite in Lemma . Since dgn is the restriction of dgup to X% and dign is
the restriction of d gnp to X%S, we limit ourselves to the study of dgnp and dygHp.

Remark 3.2.1. (A) We we will prove, on several occasions, results of the type A [CBF for A,
B parts of some metric space (Z,d) and € > 0. Note that since [CI_TF1[BF, we can suppose
A 8 [Whenever it suits us. It follows that a proof of the form \Take x [CA, ... , we have
found y Bl such that d(x,y) <€, so A [BF"is always valid.

(B) The same holds when proving dy(A, B) < €, we can apply this remark to both A [BF
and B [CA¥ to obtain the result.

(C) In a more general manner, recall that when proving results of the form \for all x A,
we have..." it does not matter if A is empty.
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3.2.1 Triangular inequality

We rst introduce a construction to \glue" two metric spaces. The construction is used
explicitly in the proof of the triangular inequality, and similar constructions are used in the
proof of the positive-de niteness and for the completeness in Section [3.3]

For (F,dr), (Z,dz), (Z5dzr) three separable metric spaces, and ¢ : F — Z, ¢ : F — Z"
two isometries, we set Z the disjoint union of Z and Z5Yand d the symmetric function from
Z2 to R4 such that

-
Edr (x,y) if x,y [Z
d(x,y) = X, y) if x,y 2
ez (X, 9F (2)) + dz(@E (2),y) if x Ay A"

with the convention inf, ) = oo if F = [

The function d is symmetric and satis es the triangular inequality. We de ne Z™the
guotient of z by the equivalence relation d(x,y) = 0 (for X,y I:j) so that (Z™d) is a
separable metric space. We write Z I;FI,(pEZD: (Z2™d,w). There are two canonical isometric
embeddings, from Z to Z™and from ZPto Z™ which are the projections on the quotient Z™
of the inclusions Z CZland ZP [CZ1 This is a classical construction and can be found, in
explicit and implicit forms throughout literature.

Lemma 3.2.2. The triangular inequality holds for dgyp and d_gnHp .-

Proof. Let us begin with dgyp. Let (E, dg, He, Ve), (F,dr, HE, VE), (G, dg, Hg, Vg) be three
compact labelled measured metric spaces, (Z,dz), (Z5dz0) two separable metric spaces, and
four isometries e 1 E - Z;9r 1 F - Z;9¢ 1 F - Z59g : G —» Z% set ZW=Z [0 Z"
andp:Z - zWp": zP_, ZzMthe canonical isometric embeddings of Z and Zinto Z™

015 p

E z zm
OF p-
F A
OF
e
G

Figure 3.2: Diagram of the embeddings into Z™

The diagram of Figure [3.2] commutes, as we have p = o = p“= @F by de nition of Z™
Recall the notation of d™from Equation (3.1.3). Since p and pare isometries, we can use
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the triangular inequality for d(HZm;(R‘dqlto obtain

ZDkR,d
dy

]
Mo = 9e) x HEI(E), [(0™ 93) x Hal(G) ~
< dZBRIVE 00y x HEIE), [0 » 05) * HEI(F) _
+ 4@ RV 00y x HEI(F)., (0™ 9) x Hol(©)

= dPRID o X HE(E), [or x HEI(F)
(Z5%R,d
+d7 R o0 x He J(F), [08 x Hal(G) -
MR gd
The same holds for d,(aZ Rz,
(Z™R,dL{ 1
dp [(P 9e) * Helve, [(p™ 9g) * Hglve
]
= d(z RO [0 * HE]VE, [0r > HE]VE
Z5R,d 1
+ d( 20y [oF * HEIVE, [93 * Hglve -

Getting the in mum over Z, Z5 ¢g, ¢oF, oF and ¢g implies the triangular inequality for
dgnp. This in turn implies the triangular inequality for d gnp. O

3.2.2 Positive-de niteness

We prove that dgyp and d gup are positive-de nite. Recall the equivalence relation from
De nition|3.1.2| and the notation Ey = Slice,(E) for any measured labelled metric space E.

Lemma 3.2.3. Let (E,dg, Hg,ve) and (F,dg, HE,VE) be two S-compact labelled measured
metric spaces. If there exists an increasing sequence (hy)k m—of positive real numbers such
that

lim hy = oo and dgnp(En,. Fn,) =0,

k - o0

then E and F are equivalent.

Proof. From a sequence of isometric embeddings of E and F, we will build an isometry p~to@
from E to F. We will show that it preserves the labels, then that it is a bijection, then that
it preserves the measure.

Step 1: building p~—te@ that preserves the labels. Take (Z, di)k ri-@ Sequence of separable
metric spaces and ((p'é)kmp(resp. ((p',é)kmﬁ a sequence of isometries in Iso(Ep, , Zk) (resp.
1s0(Fn, , Zk)) such that for every k NI

> o779 [k x HEI(Eny). [0k % HEI(Fno)

Iiii “Riz) ([pE < Hel(le,, Ve), [OF x HEI(LF, - VF))- (32.1)

X\I—‘

Now, set ZPthe disjoint union of all the Zy, d the function from (Z52 to R+ de ned by
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L1
Edl(x,y) if Xy CZ
d0xY) = i cere, de(x 0K +de () + delof () y) if x [y [
y1EM o

Set Z the quotient of ZUby the equivalence relation d(x,y) = 0. The metric space (Z,d) is
separable. For every k N5 'note py the canonical embedding of Zy in Z. For k CNY'x [
En, \ En,_,, We set p(x) = p > 0K (x). For every k"= k, x [H, we have d(pk (x), oK (x)) = 0
by de nition of Z, so pxme (p'éE(x) = p(x). It follows that the restriction of p to each Ep, is an
isometry, so p is an isometry. On Figure[3.3|we see two diagrams summing up the construction.

Eh1 — Eh2 — Eh3 — Ehk Fhl — th — Fh3 — Fhk
w%j 02 o ok \ 03 o2 w%j cp'él
Z1 Z Z3 Zk E Z1 Zy Z3 Zk
3
e F/ x p% o
Z Z

Figure 3.3: The left-hand diagram is commutative thanks to the de nition of d, but the
right-hand diagram isn’t.

To simplify the expressions, we abusively use the notation (p‘; for each embedding pg ° (p'é of
F into Z, resulting in Figure [3.4]

Fn, Fn, Fns, Fri
OF
Z
p
E

Figure 3.4: The embeddings of (Fp, )k mand of E into Z.

Now, de ne for every h Rl :

1 1
Kh = p(Eh+1) @ O (Fh [m) IEZ] (3.2.2)
k [NTH!

The image of a compact by a continuous map is also compact, so p(En+1) is compact and
(p',é (Fnay) is compact for every k NI~ Let us prove that K}, is compact using the Bolzano-
Weierstrass characterization. If Ky, is empty, it is compact. If not, let (Xn)n i-be a sequence
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of elements of Ky. If an in nite number of terms are in p(En+1), then we can extract a
converging sub-sequence since p(En+1) is compact. If not, we can without loss of generality
choose (kn)n e sequence of integers such that xn lja,t_”(Fh g, ). 1f (Kn)n owrvisits some
integer k an in nite number of times, then we can extract a converging sequence because
ok (Fn ry) Is compact. If not, kn goes to in nity and, with X, [ By, and , there
exists a sequence (Yn)n mo0f elements of p(Ep+1) such that d(Xn, yn) < % as soon a hy,, = h.
Since p(En+1) is compact, we can extract a converging sub-sequence of (Yn)n m—and thus of
(Xn)n o2 This directly implies that Ky, is compact.

The sequence (@F )k mri-is equicontinuous and Ky, is compact, so the Arzela-Ascoli the-
orem gives us a sub-sequence that converges uniformly to an isometry over F,. A diagonal
extraction gives us a sub-sequence (cp,‘é“)nmpthat converges uniformly over every compact
Fn to an isometry ¢ : F - Z.

Since E is a complete set and p is an isometry, the set p(E) is closed. Adding the fact
that d(@F (X), p(E)) < + for every k [CNIS3uch that hy = |[Hg (X)|, we nd that ¢ is actually
an isometry from F to p(E). Taking k - oo in Equation , we have Hg e p™t =@ = HE,
so p~1 o @ preserves the labels.

Step 2: prove that p~1 < @ is a bijective label-preserving isometry. We already know that
p~1 o @ is a label-preserving isometry from F to E. Let us prove that p~1 o @ is surjective.
For every y [CH, consider kg [CNI"$uch that y [Hn, . With (3.2.1), there exists a sequence
(X )k=k, Of elements of Fp, +1 such that d(@k (xk), p(y)) < &. Let us prove that (X, )n s
a Cauchy sequence:

dF (Xkns Xk 0) =AOF (Xicn ), P (Xkc )

K K
<d(0F" (Xka), PY)) + d(P(Y), OF" Xk, D) + d(@F (X, s OF" (X))
1 1 k
s+ —+ sup  d(@"(X), oF (X)):

kn  kno X LBy +1
Since ((p‘;”)n miiconverges uniformly over Fhk0+1, the sequence (Xk,)xmis Cauchy and
converges to some limit x CBhy,+1- Since (@K )k s equicontinuous, we have @(x) =
limp (p‘;“(xkn) = p(y), so @ is surjective, and p~! o @ is a bijective isometry from F to E,
preserving the labels.

Step 3: p~ 1 o @ preserves the measure. To ease the notations, we let go of the extraction
and from now on we suppose without loss of generality that (¢K )« r-converges to @ uniformly
over every compact Fp. Recall (and keep in mind for the rest of the proof) Equation (3.1.1)
that will help us to handle the indicator functions and image measures. Take h [CR.. For
k CNY such that hy = h + 1, we deduce from Equation 4) that we have dp(@F (LF, -

Vi), p(Le,, - VE)) <, SO

d5~ " (0k (Lr, + Ve ). P(Ley, - VE))
N (Z,dz)
e (@K (L5, - Vi), p(lEh+% “VE)) +dp (p(lEh+% -VE), P(1E, * VE))
. -
=+ (e, VeI@) ~ s, vOI@)  +dE P e, Ve le, ve) (323)

X

L1 L]
=it VE(Ehi1) —Ve(Fn)  +Ve(Epi1 \Ep)

=~
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where we used the triangular inequality for the rst inequality. In the second inequality, we

applied Lemma [3.1.6) to the rst term; for the second term, we usedélhe fact that p an
1

isometry. Note from Equation (3.2.1) that for h < hy, [p < HE](Eh) E[b,'é xHg](Fn,) X, so

for every x [Hy, [CE},, there exists y [E}, such that d(p(x), ok (y)) OHe () —He (Y)| < %
We have [He(y)| < [HE(X)|+ t <h+ % soy CEln+ 2y - THus, we have

,
[p>He](En) LIbp < He](Fq 1) *. (3.2.4)
We also have for h < hy — 2:

Ve (Epv1) = [PVEl(P(Ep. 1))
< [OEVEI((P(Epy2))¥) + %
< [OEVEI((@F (Fpe2))<) + %

1
=< [OFVE IO (Frea)) +
1
We used (3.1.1) for the rst equality, that dp(@F (1F,, - VF) P(le,, - VE)) < [ for the rst
inequality, we derive from Equation (3.2.4) that p(Eh+%) E@',é (Fh+g))% for the second, and
that He is 1-Lipschitz for the third. Combining this with Equation (3.2.3) we get

2
A5 (9K (1r, - VE). P(Ley - VE)) < o+ Ve (it \Fn) +Ve(Epi 3 \Ep) — 0.
Since ((p';)k mri-converges toward @ uniformly over Fn, we have
lim d“2 (0 (1r,, - Ve), 9(1r, - VE)) = 0.

We deduce that @(1f, - Ve) = p(Lg, - Ve). Since p is injective, we have [p~! e g]vg = vg. The
map p~! e @ is an isometry from F to E preserving the measure and the labels, so E and F
are equivalent. O

Lemma 3.2.4. The functions dgqp and d_cnqp are positive-de nite.

Proof. Using Lemma [3.2.3] we see that dgnp is a positive-de nite over XK. For d, gnp, take
(E,dg,Hg,ve) and (F,dgr, Hg, V) two S-compact labelled metric spaces with

dighp((E,de,Hg,ve), (F,de,HE,VvE)) = 0.

There exists an increasing sequence of positive real numbers (hy)k o with limy _ oo hy = oo
such that for every n IZISI‘,jdGHp(Ehk, Fn,) = 0. Using Lemma [3.2.3, we see that E and F
are equivalent, so d, gqp is positive-de nite. O
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3.3 Polish spaces

The aim of this section is to prove the following main result:
Theorem 3.3.1. The metric space (X5, d_gnp) is a Polish space.

Since dygn is the restriction of d_gnp to the closed set XS, we get as a corollary that
(X°S,d_gn) is Polish. Theorem is a direct consequence of the separability proved in
Lemma [3.3.3 and the completeness proved in Lemma(3.3.6] The demonstrations of those two
lemmas are close to the proof of Theorem 2.9 (ii) in [I], which states the same result for a
marginally di erent distance over the space of rooted locally compact length spaces. We do
not prove that (XK, dgup) and (X°K,dgn) are polish, although the proofs should be very
similar to those for the Gromov-Hausdor and Gromov-Hausdor -Prohorov distances in the
more classical setting of metric (not labelled) spaces (see [39] and [36] for more details).

3.3.1 Separability

We rst prove that (X5,d, gnp) is separable with the help of a preliminary lemma. Recall
that Ey, = Slicen(E).

Lemma 3.3.2. If (E,d, H,Vv) is a compact measured labelled metric space, then for all € > 0
there exists a measure vx over a nite set X [CElsuch that for every h Rl

dH(En, Xn) Cdd(1g, -V, 1x, - Vx) <&

Proof. For E = [IX = [And vx = 0 satis es the condition of the lemma. Since E is
compact, V(E) is nite. Take € > 0. For h R4, de ne f(h) = v(E,). The map T is
non-decreasing, cadlag and bounded by v(E), so we can choose k [CN™&nd real numbers
0 = hp < ... < hg = oo such that for every integer 0 < j < k we have f(hj+1) — f(h;) < 5.
Now, set (B4, ..., Bn) a measurable partition of E such that for every 1 <i<n,

diam (Bj) < §,
there exists 0 < j < n such that [H|(B;) IOy, hj+1).

Since E is compact, we can choose (X1, ..., Xn) [CH such that for every i, x; is in the closure
of Bj and |H(x;)| = infg; |[H|. Set X = {X1,...,Xn}. We have for every h [ R, X, CE}, [
(Xn)2, 50 du(En, Xp) < §. Set

1

vx =  V(Bij) - dx;.

i=1
Take h Rl and j such that hj < h < hj+1. By choice of (ho, ..., hx) and monotony of f, we
have

Vx(En) < sup F(t) < F(hj) + & < v(Ep) + = (3.3.1)
t<hj+1 2 2

For any Borel set B [_E} we have 1g, - v(B) < 1g, - vx(B2), so using (3.3.1) and Lemma

[3.1.5/we nally obtain

£
dp(len V. 1, " Vx) = 5 +Vx(En) = V(En) <&
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Lemma 3.3.3. The space (X5,d_gnp) is separable.

Proof. Take (E,d,H,v) [XS. The space E is the limit of E;, when h — oo. Since Ej, is
compact, the compact labelled spaces are dense in XS.

Using Lemma (3.3.2, we nd that for every measured labelled compact set (K, d, H,v) we
have a measure vx over a nite set X [Klsuch that for every h [R],

dn(Kn, Xp) Cdp(lk, -V, 1x, - Vx) <€,

so d gup (K, X) < &. This proves that the set of nite measured labelled spaces are dense in
XS,

Finite measured labelled metric sets can be approximated by nite sets with rational
distance, measure and labels. This provides a countable dense family, and we nd that
(XS, d gHp) is separable. O

3.3.2 Completeness

In the next two lemmas, we build the limit of a Cauchy sequence in a simpler case where all
measured metric spaces (FX), rare already embedded in a single separable metric space
(Z,d) with a common 1-Lipschitz label function H. We will then go on and prove Theorem
B.3.11

Let (Z,d) be a separable complete metric space, H a 1-Lipschitz map from Z to R and
(hkk orian increasing sequence of positive real numbers with h; = 1 and limit +oco. Let
(F¥) mibe a sequence of closed sets of Z, (V). @ sequence of Borel measures over Z
such that Supp (V) CEF. For every k [N h [CRL set FX = Slicen(FX) and vk = 1ek vk,
We suppose that for every k [CNSh [CR., FX is compact. This makes (FK,d,H,v¥) a
S-compact measured labelled space. Finally, we suppose that for every k [CNI"e have

1
dn(Fi, Fi ™) COBOV Vi) < o (3.3.2)

Take k [CN"and h [0, hy — 5], z CEF,  CEL™. Since du(F, FE) < 5o, there

+2k+1
exists zH CHY_ such that d(z,z% < 5&=. Since H is 1-Lipschitz, |H(z5| < |H(2)| + 5.

Thus, we have zPCEK , , and we conclude that
O,

k+1 K L
FhI gl E(E(hﬁlg)tm)zﬁ- (3.3.3)

With Remark [3.2.1(A), we see that the inclusion still holds when Fk+1 . IS empty. Note
torFT

that this result only supposes that H is 1-Lipschitz and a Hausdor control for a bigger slice.
Similarly, we have for h []Q, hy] that

1
Fkll( IIH(T’]_:-:L 1 )Em)zk-'—l'

ok+1

By an immediate induction we see that for h [0, hi], k"= k, we have

@
Fk IIHKELJ.IEKI 1) [@ i=k 2I+1 IIH(h-Q- 1 )Dﬂ) . (3,3.4)
i 21+
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Lemma 3.3.4. There exists a closed set E [Zlsuch that (E, d, H) is an S-compact labelled
metric space and 1

Jim du(F, Ep)e "dh = 0.
—»00

Proof. Consider for h = 0 the closed set

x"“

1
Em = (GNEDES (3.3.5)
k N B

1
he=h+ s

From Equation (3 we infer that the intersection is monotonic, that is, each term is a
subset of the prewous We set E = | 3 Eqn)-

Step 1: we prove that E) is compact. We assume for this step that E,y 8 L $ince the
empty set is always a compact. Since Frll(+é is compact, we can choose a nite covering of
2ok

Fk+ . using balls of of dlameter . We denote by (X1, ..., Xn) their centers. Changing their
2K

diameter to Zﬁ, we get a covering of Egy, so Egy is totally bounded. Since Ey is closed
and Z is complete, E) is compact.

Step 2. we prove that Ey = En and deduce that E is S-compact. From the de nition
of Ey, we see that SUPE,,, Hl = h,l%hlich proves the inclusion Egy [Hp. To prove

the other inclusion, take z [CH, [ g, Eqy set h™ = |H(z)| and take h"such that
z CHpy. We have h'< SUpg,,; IH| = h? Take k such that h, = h™+ 5&;. Since

z CHpy E(th 1 )zk there exists zDIZE|qEL L such that d(z,z") < 5. As H is 1-Lipschitz,
we have |H(zY| < |H(z)| + 5 =hl+ L < h+ % and zDIZE‘qEDJF L - Since h"= h™and the
intersection in (3.3.5) de ning En) is monotonic, see (3.3.3), we have

—1 N — n
z L1 (Fpm. 1) = (FhEEEb- 1 )¢ = E(ny LE}y).
k N 2 k N
thhDIb'zka-l

We conclude that
Eh - E(h)

Since Eny = Ep is compact by Step 1, (E,d,H) is an S-compact labelled set.
Step 3: we prove that 1
Jim du(F&, En)e "dh = 0.
—00

Take 0 <e <1, hpmax =1 —1log(€). Using Lemma(3.3.2 we can choose a nite set X [E}
such that for every h ], hmax],

max

du(En, Xp) <&

. L1
Now, consider k [CN™$uch that hpax + 1 < hy, Ax = ZEX{|H(z)| 2k’ [H(2)| + ] and
h [0, hmax — 1] \ Ax. Let us prove that dH(Fh,Xh) e+ 5 - Take z XA} IZEkh)
de nition of E,, there exists z EEIr‘f+ . such that d(z,z"Y) < 2% Since H is 1- Llpschltz
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IH(z"Y| < |H(2)|+ 4. Since z Xy, and h I Ak, we must have h—|H(z)| > 5 so [H(Z"| < h.
With this, we have zZ[CFK. We have proven that Xp IIEIr'f)zik.
Since h [0, hmax] CJQ hy — 1], we have from Equation (3.3.4) that

1
PR C(Hp, 3 )2 (3.3.6)

Since h < hmax — 1, for every zP CEJ we can choose z[']]EIHMElR such that d(z5z"™ < 4 and
there exists z [X;,, 1 such that d(z™z) <€, so d(z7z) < € + x. By de nition of Ay and
2
by choice of h, Xh+ik = Xp s0 z [XAy. We have for every h []0, hpmax — 1] \ A that
2

1
dn(Frf, Xn) < o5 + .
With this, we get for every k such that hy = hmax +1 and h CJd, hmax — 1] \ A that
1
du(FX, En) < du(FX, Xp) + dy(Xn, Ep) < x T 2¢.

If we take n the cardinality of X, this translates to

L 1 L1 1 L1
1 Cdy(FX, Ep) e Ndh< (5 +2e)e"dh+  dh+ e (maD
[0,hmax—1NAK 2 Ak

1 2
S(?+28)+2—E+8.

This means that for every € > 0,

Ld 1
lim sup 1 Cdy(FX, Ep) e Ndh < 3e.
k - co 0

O]

Recall that for every measured labelled space (E, d, H, p) and h Rl we note pp = 1g, -M.

Lemma 3.3.5. There exists a measure pu over E such that

Ld
lim dp (v, up)e "dh = 0.

k—oo ¢

Proof. Step 1: we build a family (Uny)n = such that

L,
Jim (@ Eb R pm))e " = 0.
Take h Rl and ko(h) = min{k CNIYh < h,—1}. For every k = kq(h), we have by Equation
(3.3.2) that

K k+1 1
dp(Vh,s Vp, ) = Pre=n
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We have
1 [ = 3, — L
k+1 pk+1 k k+1 2K K
Y For s El =Y Fh+kT n Supp (v°) + oK+l
2 2
Ceh . L 1
—yk k+1 2K* K
=V Fh_._ k1+1 nF 2k+1
1 I%
Since H is 1-Lipschitz, for every y I:Fk+1 . 7 nFKwe have |H(y)| < h+ ot + e =
h + 27 S0
1 — LEh i L1 1 -
k+1 K+1 k k+1 2k* k K K
v Fh+2k1+l v Fh+2kj:+—1 nF* + oK+l v Fh+2ik + kT
and we obtain by induction that for k™= k = kq(h):
I:I 1 1 1 1
L P e L S AT R ey
h+2k 2k h+—kD 2kEI
This is equivalent to
1 1
he 3 (2) + - = v (Z) + (3.3.7)

The sequence (v}f+%(Z) + 2—k)k2k0(h) is decreasmg and non—negatlve so it converges for every
2

h [RL., we set M (h) its limit. The function h B v s (2) + 5k is right-continuous, so using
Lemma [3.1.17] we see that for every h [R],

M (h) = limsup M (y).
y-h*

Since M is non-decreasing, M is cadlag.
Using Lemma [3.1.6, we nd that for every k = ko(h) we have

— — o, O )
dp Vrlfil al"’rlﬁzik <ot Vs (@) - rlfill (2)
) i - o
k 1
SW + h+ = (2) + ok N (Z) 2k+1
. "
— k+l
=oie1 + Vh+2ik(z) tox T h+—k—(z) 2k+1 ,

where the equality comes from Equation (3.3.7). By induction, this yields, for every k"> k
1 1 1 1

K k[l 1 1 _ N
dp Vh+2ik’vh+?i[, 27"‘ Vh+2ik(z)+27k M(h)k_’OOO
1 1
This means that vr‘j+ 1 is a Cauchy sequence. Since (Z,d) is Polish, the space of nite
2K k[N 1 1

Koa converges

2K k[N

measures over Z is Polish for the Prohorov distance. It follows that v
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to a limit pyy for every h R, with ppy(Z2) = M(h). The map h B Vlﬁ+i is measurable,
k
so its point-wise limit h 3 W, is measurable as well. By dominated conve?gence, we have

], 1 1 (11
: k —hyph —
lerEo o 1 Cdp Vh+le, H(h) e 'dh =0.
Since M is cadlag, we also have the dominated convergence
g, 1 a1 1 [TT1
lim 1CM h+— —M(t) e N"dh=o.
k-oo o 2k

Using these two limits, we have

Lo 1 o

o 1 Cdp Vﬁ,U(h) e_hdh

- L, 1 e i I [TT1]
1 |f{1, 0 O e
=K + 1 Cdp Vh+i’ H(h) e_hdh
2 0 2
R e , = (111
* 1M h+ ¢ —M(h) e Ndh,

which converges to 0.

Step 2: build p such that pn = py for almost-every h [RL.. We de ne [ = supy, gid(n)
which is a measure as the sequence (Hny)h=0 is non-decreasing. Let us prove that for every
h [CRL, uh = Yy We use notation from the proof of Lemma @] From Lemma @] we
deduce that

liminf du(FX, Ep) =0

for almost-every h R+ and Supp (v¥, . ) CEf, , . Therefore, thanks to (3.3.5), we get
ok ok

Supp (Mhy) CElny = En. For almost-every h [CRI*, this gives Yy = 1k, My < 1g, 'K = Hh.

Conversely, take h®> h. De ne for every k [CN"the non-negative real number g, =

dp(VX, 1, M(ny)- By convergence, limi ex = 0 a.e. and we can de ne for a.e. h“the quantity
ok

€max = MaXy mrgk. Using the de nition of dp we have

My (En) < inf vkE'((Eh)sk% + e inf vﬁfskE(Z) + &0 (3.3.8)
Recall ko(h) = min{k IZISI% < hx — 1} from Step 1. Using Equation (3 , we nd that
for every k [CINI3uch that k; = ko(h + €max) < k < k5 we have

1
rl?+s o+ (2) +eao=vy

Vh+s (Z) +eo=v h+8kﬁz%( )+ oK ZTD"'

Combining the last line with Equation (3.3.8)), we get
]

1
1
: k
u(hQ(Eh) = ngk klrgllgkm Vhere, o+ L (2) 2k 2kD+ EkD
<liminf liminf Vrl:+e 1 @) * = st ae

_ 1
= lim vﬁ+2%(2)+? = M(h).
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We deduce that a.e. un(Z) = M(h) = pury(Z). Since Wy < Un a.e., we get Yy = K ae.

and (.
lim dp (v, up)e "dh = 0.

Keoo g

Lemma 3.3.6. The space (X5,d gnp) is complete.

Proof. Take (EX, di, Hi, M)k i@ sequence of S-compact measured labelled spaces such that

for every k [CNI5?
ok

dicup(EX, EX*Y) < (3.3.9)

ok+1’

Step 1: we embed (EX)xmiin a common space (Z5H5HY! For every h CR*, note
uk = Lk Kk, From (3.3.9), we can choose hy K — 1, k] such that

1

derp(EE, . Eylf,jl) < ok

By de nition of dgnp, We can chose (Zy,dz,) a separable metric space, @k IZIEO(Eﬁk,Zk),
and Yy+1 CIHO(EXTT, Zy) such that

+ + 1
dr (9 (ER,). Wicr2 (E) CaR@KVE,  WeraViy ) < iy (3.3.10)

Set ZPthe disjoint union of all the (Z)« i Set d the symmetric function from (Z5? to
R+ such that d(x,y) = dz, (X,y) if X,y [k and recursively for x 4 and y [Agowith
k <kt

d(x,y) = mitggm d(X, Yk(z9) + dz, P2k, ).

z
K kL1

Since Yy(zx) [Zkrq, d is well-de ned.

We call Z the completion of Z™quotiented by the equivalence relation d(x,y) = 0. The
pair (Z,d) is a separable metric space.
Remark 3.3.7. The idea in the construction of Z is to form a chain by successively gluing
the metric spaces (ZX, Zk*1), i-along the isometric embeddings of (Eﬁ:l)ktﬂ}_kl It is very
similar to the constructions in Lemmas [3.2.2] and We sum up the construction of Z in
Figure 3.5

Set Z+= Z xR and d™the distance over Z ~de ned by d“{x, h), (x5h5) = d(x, x5 OJar-hY.
The space (Z5H5is complete and separable. Set F¥ = [, x HJ(EK ) [ and vk =
[k < HiJ(ug,) for every k [N Set H~the projection from Z~to R and p the projection
from Zto Z suchthat for;z CZ15'z £4p(2), H (2)). The map H s 1-Lipschitz. For every
k CNSset Z+= < CZHHYE) < h  Ff = F*n ZFvE = 17050k,

Step 2: we use Lemma and Lemma to obtain a limit in (Z5H5HY! By
construction, we have

1
dn(Fh, FA CabOR I < s
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Eﬁl E21 — Eh Ehk 1 Efl?k

/Ehz ' / (pkzk
\\ /

Figure 3.5: The commutative diagram of the construction of Z. The unlabeled arrows to Z
are the canonical projections into the quotient.

@1 llJz

Using Lemmas and [3.3.5, we see that there exists E —ZI-and p~4& measure over E™
such that (.

Jim (1 C@H(FR, Ep)' Cdb(vh, up)))e"dh = 0.

We de ne E = p(EH'and p = p(uH!

d
Eﬁk LGHP E
k - oo
Ok > Hg P
|
FK = EX
k — ©O

Figure 3.6: We solved the convergence in Z 5and we want to obtain the topmost convergence.
To that end, we want to reformulate the convergence of (FK)y mi-to E Sinto the convergence
of (E¥)xmito E. According to the diagram, it is enough to write p~* in the form Idg x H.
Note that p must be injective for the label function H to be de ned on E.

Step 3: we build a map H and prove that (E,d, H, ) is the limit of (E¥)x - For
z = (x,h) (AYzP= (xhYy B85 > 0, take k [NI&nd zy, z{! CFK such that d"%,z) < ¢
and d'z5z) < . By de nition of F¥, there exists xi, X CEF, such that z = [ > Hi](Xk),
2= [k > Hi](x}). Since @ is an isometry and Hy is 1- Llpschltz we have that

IH "2) — H 2| = [Hk () — Hixil = d(xi, xi) = d(p(zx), p(2)),

SO
d(x, x5 = d(p(zx), p(z0) — 2& = |H "z ) — HYZD)| — 26 = |h — hYf — 4.

Since € was arbitrary, we have d(x, x5 = |h—h{'so p is bijective from E~o E and H = Hp™1
is 1-Lipschitz. Since p is continuous, (E,d, H, ) is a S-compact labelled metric space. We
have E~= [Idg % H](E) so for every k [N’
k b k k h
dicHr(ER E) = . (1 C@n(FY, Ep) Cdb (v, uh)))e "dh 20

— 0o
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Since
diehp(EX, ER ) <e M

and limy hy = oo, we have
Jim dicre(E, EK) =o0.
L]
Remark 3.3.8. We can see in the proof of Lemma m that if (EX)kiis a sequence of
elements of XS satisfying

derp(Ef, BN < k+1

for some increasing sequence of positive real numbers (hy)k mrrgoing to +oo, then there exists
E [XP such that
digHp(EX, E) 2 0.

Lemma 3.3.9. Let (EM),i-be a sequence of elements of XS. If there exists an increasing
sequence of positive real numbers (hx)k mgoing to +oo such that the sequence (Ep )n s
Cauchy in (XK, dgnp) for every k NI then there exists E [Xlsuch that

dichr(E", E) 20
Proof. For every k CNI5de ne by induction ng = 0 and

. | 1
nk = min{n > n—1| (Y n™= n, derp(ER., EfL ) < reses

Note F the set of all extractions ¢ such that for every n CNI™We have @(k) = ny. For every
¢ A, k CN5we have ng < @(k) < ¢(k + 1), so

1

donp(E, EXHD) < pa

The sequence (hi)k rni-is increasing to oo so by Remark (3.3.8} there exists E, [XF such that
dLGHP(E(p(k):E(p) -

Now, take ¢, " [H, and let us prove that E(p = ED We de ne by induction an extraction
o™ A taking its terms alternatively in ¢ and "

9D = 0(1) -
¢"(2k) = min I%QN Y (2 Cai{ek — 1), "'0% ,
™2k + 1) = min (NY'n (Nzic+1 CQI{2K), +e0)
Note that for every k [NI5p™k) > ny, so "™ [CH. Thus, we have

dienp(E®, Eom) e 0.

By construction of ¢™ we have E, = Eqm= E, so we can call E the common limit.

From every subsequence (E¥™),, rt,We can extract a converging sub-subsequence (E®)y i
converging to E by taking @(k) = y(ny), which is in F. Since XS is a metric space, this
implies that (E™)n rni—converges to E. O
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3.4 e-correspondences and properties of subspaces of X

3.4.1 e-correspondences

In this part, we introduce another way to compute/control dgyp.
We call correspondence between two metric spaces E and F any Borel set A CEIx F
such that

for every x [Hl there exists y [Fl such that (x,y) A,

for every y [EI there exists x [H such that (x,y) A,

In order to ease some proofs, we de ne a e-correspondence between two compact labelled sets
(E,dg,Hg,ve) and (F,dg, Hg, ve) as any correspondence A [ ElIx F satisfying:

for every (x,y), x5y A, |de(x, x5 — de (y, y9| < 2, (3.4.1)
for every (x,y) CA, [HeE(X) —Hg ()| <&, (3.4.2)
for every Borel set B [E] ve(B) <= ve({y [H|XI[H, (X,y) CA)}) + ¢, (3.4.3)

for every Borel set B [CE] ve (BY < ve({x CH|LACRY (x,y) CA)}) +¢. (3.4.4)

Condition (3.4.1) allows us to build a metric d over the disjoint union Z = E [H such
that (x,y) CA [d{Ky) < &, (3.4.2) controls the labels and (3.4.3), (3.4.4) ensure that

the Prohorov distance on (Z,d) between vg and vg is smaller than €. The main interest of
correspondences is to provide a simpler way to compute Gromov distances, with Proposition
B.41

Proposition 3.4.1. Let (E,dg, Hg, ve), (F, dr, HE, VE) be compact measured labelled spaces.
We have

denp(E, F) = inf{e > 0| [Al [CElx F, A is an e—correspondence between E and F}.

The proof of the proposition still holds for E and F arbitrary measured labelled spaces,
but we only de ned dy for compacts and dgyp for compact spaces.

Proof. Step 1. suppose that A is an e-correspondence between E and F, and let us prove
that dgyp(E, F) < €. Build Z the disjoint union of E and F and set d(X,y) the symmetric
function on Z2 de ned by

1
=k (x, y) if x,y CH
d(x,y) = %(x, y) if x,y CE
oyyade (%, xY +e+de(yly) if x CH,y [CEl

The function d is positive-de nite. Let us prove the triangular inequality. Take u,v,w [Z,
the most di cult case is to prove d(u,w) < d(u,v) + d(v,w) for uuw [CH and v [H or
u,w [CFland v [CH. Since E and F play symmetric roles we only prove the former:

d(u,v) +d(v,w) = inf de(u,x)+e+de(y,v)+ inf dg(w,xY+e+de(y v
(u,v) +d(v,w) oo e(U,x) F(y,V) oy e( F(y5Vv)
= inf de (u, X) + dg (w, x5 + de (y, v) + de (v, ¥y + 2¢
(x.y).(x5yy A1 £ (U, X) +de( F(Y,v) +de(v,y

= dg(u,w) + inf de(y,y) —de (X, X) + 2¢
e(u,w) (x,y),(xE,y%ﬁ F(y,y9 —de(x,x) )

= d(u,w).
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We used the triangular inequality of dg and dr at the rst inequality and the fact that
A is an g-correspondence to conclude. Thus, (Z,d) is a metric space. Let us prove that
denp(E,F) < &. We consider ¢ = Idg and ¢"= Idg the isometric eembeddings of E and F
into Z. We have, by de nition of a correspondence that

d57® D ([1de x HEI(E), [Ide > HEI(F)) = &,

where d™is de ned as in (3.1.3). By construction of d, we have for every Borel set B [El
that

{y LHIXICH, (x,y) CA} [y CZ|ACH, d(x,y) LH(X) —H(y)| < €},
so by (3.4.3) and (3.4.4) (and symmetry of E and F), we also have
d@RIN((1dg x Helve, [Ide x Heve) = €.
By de nition of dgpp, it follows that

deup(E,F) <e.

Step 2: suppose that derp(E, F) < €, and let us build a e-correspondence between E and
F. Take (Z,dz) [M, ¢ [I30(E, Z), ¢" [1S0o(F, Z) such that

dr([e < HE](E), ["> HE](F)) Cd([p x Heve, [0™< Helve) =3 <
and de ne A = {(x,y) CHxF|dz((x), 9Ky)) OJHEg (X) — He (y)| < €}. By de nition of dy,

A is a correspondence between E and F, satisfying (3.4.1) and (3.4.2). For B [Ela Borel
set, we have

ve(B) < Ve (B®) +38
=vr({y LHId(y,B) =3}) +9
<ve({y LHIIXICB,d(y,x) <€}) +&
=ve({y LH|IXILB, (x,y) LA}) +e&.

We have proven Condition (3.4.3). We can see that E and F play symmetric roles, so we
similarly have

Ve (B) = ve({x [HIALH, (x,y) LA}) +e.

Condition (3.4.4) is satis ed.
We have proven that A is a e-correspondence and € > dgnp(E, F) was arbitrary, so

deup(E,F) = inf{e > 0| [Al [CEIx F, A is an e—correspondence between E and F}.

Adding the result of Step 1, we have proven the Proposition. O
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3.4.2 Properties of (X5,d gnp) and (XK, dghp)

In this section, we prove some useful topological results on (XS, d gHp). We will give con-
vergence criterions for d_gyp and compare topologies. Most results from this section follow
from the following technical lemma.

Lemma 3.4.2. Let (FX, dy, Hy, Vi) rei-be a sequence of S-compact measured labelled spaces,
(E,d,H,v) a S-compact measured labelled space and (hy)km=a sequence of positive real
numbers with limy hy = co. For every k CN5'let EK and GK be two compact sets such that
Ff CGF [CEK and E,, [CEF [CE1 The set G¥ (resp. EX) is equipped with the restrictions
of dx, Hx and v (resp. d, H, v).
If we suppose
donp(G*, E) — 0,
then we have

dighp(FX, E) o 0.

-

Recall the construction model of d™¢iven in Equation (3.1.3).

Proof. For € [0, 1), take hmax = —log(g). Using Lemma [3.3.2 on the compact slice Eyp,,,.,.
there exists a nite set X [E},,. equipped with d, H and some measure vx such that for
every h L0, hmax], deup(Xn, En) = €. We set R = {|H(X)|}xa LId, hmax]. Now, take

k [CN-3uch that hy = hpax and 3 = 2dgnp(GK, EX). By de nition of dgyp, we can choose
(Z,dz) M, ¢ [I80(EK, Z2), @ [I30(GK, Z) such that
dn CAp([@ x HiJ(GX), [o x HI(EX)) < & (3.4.5)

We will give an upper bound on di gup(FK, E) depending only on €, X and 3y, then imme-
diately use it to conclude.

Step 1: We prove that for h [8, hmax — 3] \ (R)%, we have
du([ox > Hl(GE), [ < HI(EF)) < 2& + &.
For every h < hmax — 0k, We have, like in Equation (3.3.3)):
K L K Lol K = K Lo
[0 < H](Ep) [Tk < Hk](Gpas, ) and  [@k > Hk](Gp) Cfp x H](Efi45,) - (3.4.6)
For every h By, hmax — 0] \ (R)%, since dy(Xn, En) < &, it is enough to prove that

du ([ox < HK](GK), [9xH](Xn)) < e+8k and En, = E. Since h I (R¢), we have |h—|H (x)|| >
Ok for every x A, so

L 1
XAICX, [HX)|=h—=3 < [HX)|=h < [HX)|=h+8& ,

Xh—ék - Xh - Xh+5k. (3.4.7)
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Since Ep, [CEK and he = h + 8, Ef,5 = En+s,, 50 dn(Xn+s,, Efes ) < € and Xy, CE =
EK. Thus, we have
L] Lo
[p > HKI(GF) TTp < HI(Ef.5,)
L] Led
L_Tp < H](Xh+5,)

[
= [p><H](Xn)
Ok

] [ed
CIp < HI(EF) .

We used h + 8¢ < hmax and the right-hand of (3.4.6) for the rst inclusion. The equality
comes from the right hand of (3.4.7). Similarly,

L] el
[p < HI(EE) 19 x H](Xn)

]

= [@ * H](Xh-s)
1

1 < H])(EX_5,)
L] ‘ Le-ds,

i < HK](GR) ,

50 du([Pk < Hk](GK), [ < H](Xn)) < € + di.
Step 2: We prove that for h C8, hmax — 3] \ (R)%, we have
dp ([ > H](Lgx - V), [0k > Hid(Lgk - Vi) < 4 + 20

1 1
For h []Q, hmax — 8], we have dp [@ % H](1gk - V), [@k % Hk](1gk - Vk) < O, So using Lemma
BL6, we get
dp (0 > Hl(lgx,, - V), [0k > Hid(Lgy Vi) = 8k + (V(Efaa,) = Wk(GR) ™. (34.8)
We have h [[&, hmax] and the Prohorov control from (3.4.5). Additionally, we have

1
[ % HIEE5.)™ 0 [ % H(GX) Tk % Hi(GL),

so we can deduce that
1 111 1
V(EK_5,) = [0 < HI(1gx - v) [0 x HI(EK_5,)
1 Hi=) "
=< [k *x Hdl(1gk - Vi) [0 < H](Ef_5,)
1 111 [
< [0k < Hid(lgk - Vi) [0k % Hil(GE)  + 8k

=vi (Gf) + 8.

@I:I

+6k

Using this, we can rewrite Equation (3.4.8)):

de([p % Hl(Leg, V), [0k % Hid(ly - W) < 28+ (U(Efy5,) —V(EK5, )" (34.9)
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Since dp(1g, - V, 1x,, - Vx) < € for h [0, hmax], we have a control on the total masses:
IV(En) — vx(Xn)| = &.

For h T8, hmax — 8] \ (R)%, recall that E, = EK. This allows us to use Equation (3.4.7)
to further simplify Equation (3.4.9).

V(Efrs,) — V(Ens,) < Ux (Xnrs,) — Vx (Xi_s,) +2€ = 2¢. (3.4.10)
With this, Equation (3.4.9) nally gives

d(fe > Hl(gg,, V). [0 > Hid(Lgy - Vi) = 2€ + 20y (3.4.11)
With the triangular inequality of dp, we have

dp ([ * H1(Lgx - V), [0k < Hid (L - Vi)
=dp(l@ * H](Lgx - v), [0 < H](Lgp.5, - V))
+dp([o < HI(ek . V) [0 > Hid(Lgg - Vi)
<V(Ef,5.) — V(EK) + 2& + 25
<V(Ef.5,) — V(Ef_s,) + 2€ + 25
<4¢e + 20y.
For the second inequality, we used Equation (1.1.2) on the rst term and Equation (3.4.11)
on the second term. We used (3.4.10) for the last inequality.

Step 3: conclusion. Combining Step 1 and 2, we have proven that for every h [k, hpax]\
(R)%,
denp (G, Ef) < 4e + 25.
Recall that for h [0, hmax] and hx = hmax, we have E, [CEF and FX [GK, so E,, = EX
and FX = GEK. When we set n = #(X), we obtain:

[
dierp(FK, E) = o (1 Cdgnp(Ff, En)e "dh

1
< denp(GK, Ef)e "dh + e Ndh
[Bk Pmax —Bi ) (R {0 [[hnax—8k,0)
< 4 + 25y + dh + g~ hmax

[Ovék) [IE)BK [[mnax_ékyhmax]
<4+ 20 +2(n+1)d +¢€

= 5¢ + 2(n + 2)5.

With our choice of hmax and k, we have proven that for every k such that hy = —log(g),
dighpr(E, FK) < 58 + 2(n + 2)3,. Since n depends only on X and X depends only on E and
€, we have

lim sup d_grp (E, F¥) < 5.

— 0o

This concludes the proof since € was arbitrary. O
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Lemma has many corollaries:

Lemma 3.4.3. For a sequence (FX), miof S-compact measured labelled metric spaces, and
a S-compact measured labelled metric space E, we have the convergence

Jim dicup(FK,E) =0

if and only if there exists a sequence (hy)k mer-of positive real numbers with limy hy = oo such
that
Jim derp(FK . En,) = 0.

Proof. For the direct sense, set for every k [NIS3 = dignp(F, E) and hy = —1 log(1 [34),
so that we have e = 1 [(d)z. For every k such that & < 1, we have d gup(FK,E) =
(5 )2e . By De nition [3.1.12, there exists h= hy such that dGHp(Fr‘fE, Eno) < (B)7. We
have limy h! = oo and

: : 1
lim dapp(FAS Eng < lim (82 = 0.
The converse sense is a special case of Lemma with Gk = FX | EX = Ep,. O

Proposition 3.4.4. On XK, the topology induced by dgnp is strictly ner than the topology
induced by d gHp.

Proof. Step 1: we prove that on XK, the topology induced by dgnp is ner than the topol-
ogy induced by d_gnp. Since our topologies are de ned by distances, we can compare them
through their converging sequences. Take (KX, dk, Hy, Vi) mur@ sequence of compact mea-
sured labelled spaces converging for degyp to a compact measured labelled space (K, d, H, v).
Since H and all the Hy are continuous and de ned on compact sets, they are bounded. From
the convergence for dgyp, we deduce that

1 1

lim sup|Hx| =sup|H].
k - co Kk K

Since a converging sequence of real numbers is always bounded, there exists h [CR. such
that for every k N5 |Hy| is bounded by h. We have for every k [NI-that

Kk=KE=KE 5 K=Kn=Kn,
SO
dGHP(Krlf+k1 Kh+k) = dGHp(Kk, K) k——o»o 0.

With Lemma [3.4.3, we nd that (KX),ialso converges to K for d gup. Since K and
(K¥)k r-were arbitrary, we nd that dgnp de nes a ner topology than di gup.

Step 2: we prove that on XK, the topology induced by dgyp and dy gnp are di erent. We
only need to nd a sequence that converges for d_gup but not for dgyp. Take dr the usual
distance on R and consider the sequence

(F¥, d, Hk, ik o= ({0, k}, dr, 1d, 0)k i
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The sequence (FK)y mei-converges to FO for dignp since we have dgup(FX, F%) = e™%, but
is not a Cauchy sequence for dgyp since we have in this case

danp(FX, FXY = | max Hx — max Hyif = |k — k1.
Ek FkH

O]

When we de ne trees in Chapter [, we will nd that dgnp and d_gnp are topologically
equivalent on the set of non-empty compact trees. Here, we give the proof in a more general
setting.

We de ne XC the set of measured labelled spaces (E,d,H,v), up to equivalence, such
that H(E) [CRlis connected (that is, an interval). We also introduce X&X [CX¥S [X¥ the
restrictions of X© to compact and S-compact spaces respectively.

Lemma 3.4.5. The set X&K \ {[His open in (X©S,d gHp), and on XSK\ {[}] dgnp and
digHp induce the same topology.

Proof. Since X&K \ {1 XK, we already know from Proposition that the topology
de ned by dgnp is ner. Take some arbitrary (K, d, H,v) in XK\ {[}] For every £ > 0, set

Borp(e) = {K LXK |denp(K, K <€} ; Brenp(e) = {K"CXC®|digrp(K, K < €}

Note that, by convention in De nition denp(K, D= oo, s0 Bgup(e) XK\ {[H
Set hg = maxk |H|. To prove that the topologies are equal and that X©X \ ik open in
(XCS,d_gnp), it is enough to prove that for € [(0,1), B gup(ee " 78) [Bkup(€).

Take (KJdYHOVY B gup(ee™¢). By De nition there exists h = ho + € such
that depp(Kn, KB < €. We can choose (Z,dz) M, ¢ [18o(K,Z), o [18o(K5Z) such
that

dn Cdb ([ < H](Kn), [0™< HHKR)) <e. (3.4.12)

By choice of h we have K, = K 8 [1Since dgup(Kh, Kf;) < € < oo, K is non-empty as
well. We have

sup|Hf < sup|H|+e=sup|H|+e=hy+e<h.

Krl‘:I Kh K

We have supKE|H? < h and H{KY is an interval, so sup,|HY = supxo|HY < h. It follows
that we have Ky = K and K= K" Since K"is S-compact, K= K/'is compact and we
can rewrite Equation (3.4.12)) as

dy Cdb([o < HI(K), [0"x HT(KY) <,
which proves that dgnp (K, KY < €. We have B gnp(ee™"07¢) [CBEpp(€). O

When we de ned d_gnp, We distinguished the label 0, and we can ask our-self whether
this has any topological implication. We prove in Proposition [3.4.6] that it doesn’t.
For a and (E,d,H,v), F a S-compact measured labelled space, de ne

Slice? = {x EEEh(x) —a| = h},
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equipped with the restrictions of d, H and v. We de ne the distance d?5,,p on X5 by
L

dierp(E.F)= (1 Cdp(Slice? (E), Slice?(F))) e "dh.

For every a [R], de ne the application ®5 from XS to itself with
®,(E,d,H,v) =(E,d,H +a,v),

where H + a represents the map x B H(x) + a. Recalling De nition [3.1.9 note that E 5
®4(E) is an isometry on (XX, dgnp). We have d?g,p = digrp and for every a,b [R], ®, is
a bijective isometry from (X3, d} ,,p) to (XS, dV3,0).

Proposition 3.4.6. For every a [R], the application ®4 is continuous from (X%,d, gnp) to
itself. Furthermore, d_gup and d5,p de ne the same topology on XS.

Proof. Step 1: continuity. Take (F¥, dx, H, Vi)k i@ sequence of S-compact measured la-
belled spaces converging to some S-compact measured labelled space (E, d, H, V) for d_gnp.
Using Lemma , there exists a sequence (hy)k m=such that limy hy = oo and such that
limy dGHp(FrL(k, En.) = 0. Take ko [CNI$uch that for every k = kg, hx = |a|. Set, for k = ko,
GK = ®,(Ff ), EX = ®4(Ep,) and hi! = hx — |a|. Since ®, doesn’t a ect the metric of its
argument, GK and EX are compact as images of the compact sets Fﬂfk and Ep,. The map ®,
preserves dGHp, SO dGHp(Gk, Ek) = dGHP(FI!](ky Ehk), and thus limy dGHp(Gk, Ek) = 0. We
have limy hy! = oo,

Slicen(®a(F¥)) [GF CO}(FY),  Slicen(®a(E)) CEF COY(E),
so we can apply Lemma [3.4.2) to get that
digHp(Pa(FX), ®a(E)) s 0.

This means that for every a, ®, is continuous from (X5, d gnp) to itself.

Step 2: equivalence of topologies. Let us prove that for every a, b d254p and dP e
de ne the same topology. Take U an open set of (Xs,dﬁGHP). Since ®y,_, is a bijective
isometry from (XS,d3gp) to (X5,dP5,4p), it is bi-continuous and thus the direct image
U= ®p_,(U) is an open set of (XS, dY5p). As seen in Figure [3.7) for every b [R, @, is
continuous from (XS, dP 5,,) to itself, so U = (®Pp—,) "1 (U is still an open set of (XS, dP 5,,p).
Since a and b are arbitrary, they play symmetric roles, so (X3, d?spp) and (X5, db,_GHP) have
the same topology. In particular, d?,,p induces the same topology as d,p = digup. O

3.4.3 Some closed sets of X5

In the next chapter, we will talk about trees as particular elements of XS. We would like to

know that the space of trees is a closed set. Since trees can be characterized by the so-called

four points condition and the (exact) middle-point condition, one way to prove that the set

of trees is closed in XS would be to prove for each condition that the set of spaces satisfying

the condition is closed, that is
L1

== x xd,...,x4 [H, =
F4—points = d, H, V) (Xl, X2) + d(X3, X4)
& < (d(x1, Xa) + d(Xz, X4)) CCA(X1, Xs) + d(Xz, X3))
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()
(X3, d? g1ip) S (XS, & crp)
O oy
(XS, dighp) ——— (X3, dLcHp)

Figure 3.7: Here, ®, and ®_, are isometries so continuous, while ®, is continuous on
(XS,dLghp). Since the diagram commutes, the top arrow ®5 = ®p o ®, o d_y is contin-
uous from (XS, d 5p4p) to itself.

and
Fgeo = {(E,d,H,Vv) IZXIS| x3,x, [H, [xXd [H,d(X1,X3) = d(X3,Xx2) = %d(xl,xz)} (3.4.14)

are closed. Lastly, to exclude the empty set from our closed sets, we need to check that the
set of measured labelled spaces (E, d, H,Vv) such that E} is non-empty is a closed set, that is

1 1
Frs (E,d,H,v) EXIS%E [H,|HX)|<h . (3.4.15)

We will prove in three lemmas that well-chosen generalizations of F4—points, Fgeo and F—re
always closed in (X%, d gHp).

To generalize closed conditions on the distance between points of E and their labels, we
introduce a function Mg to reduce any n-uple of points of E to their \usable" characteristics.
This function resembles (except on the diagonal) those used in [39] and [36] to de ne the
Gromov-weak topology. We note M, (R) the set of square real matrices of size n, equipped
with the norm || - [l.. For n CN%we set M the empty function. For every non-empty
measured labelled metric space (E,d, H,v), n [N~and X4, ..., Xn CH, we set

1 1
H (x1) $d(x1,%2) e 2d(X1, Xn)
Ld(x2, X1) H(x2)
ME (X1, ..., Xn) =
%d(xn—lyxn)
%d(xm Xl) e %d(xna Xn—l) H (Xn)

This rst lemma generalizes the example of Fgeo to other sets with conditions of the type
\[TTIWe nd in the proof that a control (f in the lemma) on the height is paramount in the
\ [™part to have a closed set.
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Lemma 3.4.7. For every n,p CN5IF a continuous function from M, (R) to R+ and F [
Mn+p(R) a closed set,

1 1
1, ...,xn, [H, =

E
A= d,H,v) CXPEBGh+1, s Xnep CEeMP (x4, x0))s
é ME+p(X1,...,Xn+p) I:E E

is a closed set of (XS,d,gup).

In less formal and more legible terms,

.....

is a closed set of (XS,d_gnp) if h(X1,...,Xn) is a continuous function of (H(Xi))i<i<n and
of (d(Xi, Xj))1<i<j<n and g(Xg, ..., Xn+p) is @ continuous function of (H(X;j))i<i<n+p and of
(d(Xi, Xj))1<i<j<n-+p-

Remark 3.4.8. As an example, we can apply the lemma to Fge, from Equation (3.4.14)
to prove that it is closed. Since H is 1-Lipschitz, d(xi,X3) = %d(xl,xz) CJH(X3)| <
|H(x2)| + 3d(X1, X2), SO

1 1
[xi, x> [LH, =]

=
Fgeo = éd,H,V) [CXP° 13 I:E|H(X1)|+%d(X1,X2)’

(X1,X3) = d(X3, X2) = 2d(x1, X2)

With this new expression, we can apply Lemma , with F((aij)1=ij<2) = |a11]+3a12
and the closed set of M3(R):
1 1 1
F= (@ij)=ijss [(M3(R)@13 =az3 = 5812

Equivalently, we can see it as

with h(xy, x2) = |[H(X1)| + %d(xl,xz) and

g0t x5 = o ) - id(xl,xZ)E« e x9) - Sd0x, o

Proof. We have [CI_A, so A is non-empty. Take (EK,dy, Hy, Vi) a sequence of elements
of A converging for d gyp to some S-compact measured labelled space (E,d,H,v). Let
us prove that E [A. If E is empty, then we have E [—A. We suppose that E is
non-q,t_n]pty in the remaining of the proof.DChoose X1,...Xn [H, € > 0, and set hg =
max [H(X1), ..., |[HXn)|, F(M2(X1, ..., Xn)) . Since f is continuous, there exists a radius
0 (D0, €) such that for every M M (R),

L] 1 C1 ]
M = M2 (X1, oo, Xn)loo <8 (M) — F(M2(X1, ... X)) < € (3.4.16)
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Now, take k CN3uch that d gnp(EK, E) < de~Mo~¢, Since %ﬂ e Ndh = e~ ~¢ e can
choose h = hg+¢ such that dgnp(EX, En) < 8. Thus, there exists (Z,dz) M, ¢ [130(Ep, Z),
@k [ISo(EK, Z) such that

1 1
dn Cdp ok < HJ(ER), [ x HI(En) <.

Since Xy, ...,Xn [Hp, there exists x¥,...,xk [CHK such that for every 1 < i < n we have

dz (e (XX), 0(xi)) CIH(XK) — H(x;)] < 8. This yields, for L<i<j <n:

Edk(XE‘,X}‘) - ;d(xi,x,-)Ec Edz«pk(xik), P — 502 (0(x0), (p(xj))E
< 202 (@0, 00) + 382 (@0, 90))
<3.
It follows that [[MZ, (X, ..., XK) = ME(X4, ..., Xn)lle < 8, S0, according to (3.4.16), we have
FIME, (X5, ... X)) < F(ME(Xy, ..., Xn)) +E<hg + €< h.

i k i k k K
Since EX LA, there exists Xpiq, -, Xpap EEf(MEk(XEY"'Xh)) [CEf such that

MZPOK, ... Xiap) CEL
We can choose Xn+1(€), ..., Xn+p(€) [E such that for n <i < n+p we have

dz (@x (<}, 9(xi(e))) CTHK(X) — H(xi(e))| <3 <e.

IMZEPOXE, oo XRp) = METP(X1, oo X, X1 (E), oovy Xnp (€)oo < 8 < €.

Since M P (XY, ..., XK.p) CF, the distance between MZ P (X1, ..., Xn, Xn+1(€), ... Xn+p(€)) and
F is less than €.

Since € was arbitrary, there exists a sequence (xn+1(%), ...,xn+p(%))k misuch that for
every k ENS'Xn+1(), - Xn+p() CBqunc, x)+2 Fho+2 and the distance between

Mg P(X1, ..., Xn, Xn+1(£), - Xn+p(£)) and F is less than £. The space Eng+1 is compact, so
we can choose a sub-sequence of (xn+1(%), xn+p(%))k [N CONVerging to some Xp+1, ..., Xn+p-

By continuity of H and MZ™P, the distance between M{"P(xy, ..., Xn+p) and F is 0, so

arbitrary, we have E [CAl and A is closed by sequential characterization. O
Lemma 3.4.9. For every n [NI"and F [CM,(R) a closed set,
A= {(E,d H,v) XB|X],...xn CB,ME(Xq,...,xn) CET}

is a closed set of (XS,d,cup).
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In less formal and more legible terms,
{(E,d,H,v) XP|Xq, ..., xn [H,g(Xq,...,Xn) = 0}

is a closed set of (X5, dLgnp) if g(X1, ..., Xn+p) is a continuous function of (H (Xi))1<i<n+p and
(d(Xi, Xj))1<i<j<n-+p-

Proof. This is a special case of Lemma [3.4.7] for p = 0. O

Remark 3.4.10. This second lemma generalizes the example of Fs—points from Equation
(3.4.13)) to other sets with conditions of the type \ [_1We can apply Lemma 3.4.9[to F4—points
to prove that it is closed, using the closed set of M3(R):

F ={((aij)i<ij<s (M3(R)|a12 +az4 < (a13+azs) [(d14+a23)}.
Equivalently, we can see it as
Fgeo = {(E,d,H,v) [CXP|4, ..., xn [H,g(X1, .., Xn+p) = 0}

with

9(X1, X2, X3, Xs) = I%I(Xl, X2) + d(X3, X4) — [(d(X1, X3) + d(X2,Xs)) [{d(X1,Xs) + d(X2, X3))] LT]

This last lemma lets us consider the set of all spaces with at least one point in some
compact range.

Lemma 3.4.11. For every compact set K [R] h [Rl,,
A={(E,d H,v) CXF|XI[H H(X) (K}
is a closed set of (XS,d,gnp).

Proof. Take (E,d,H,v) in the closure of A. Set hy = max|K]|. For € > 0, there ex-
ists (EJdYHYvVY [CA such that dgup(E,EY < ee_ho; There exists h = hg such that
deup(En, Ef) < e. It follows that we can nd (Z,dz) M, ¢ [180(En, Z), ¢° [IH0(Ef, Z)
such that

dyt 0 % HI(En), [0 HTED <.

Since EYCA and K [[3ho, hg] I3, h], there exists x" CH such that H{xy K. Thus,
we can nd x Bk such that dz (@(x), 9XxY) CJH (x) — H{xD| < &. We automatically have
[H(X)] =< hg + €, s0 X [Eh,+¢. This means that for every € > 0, we can nd some X [Eh ¢
such that the distance between H(x) and K is less than &.

Take (k) mia sequence of points in Epy+1 such that for every k [N~the distance
between H(Xxk) and K is less than % Since Ep,+1 is compact, there exists a sub-sequence
(Xk )k mri-converging to some point x [CH. By continuity of H and closure of K, H(xX) K.

We deduce that E Al O
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3.4.4 Some measurable maps on (XS, d_gnp)

In this subsection we will prove the continuity or measurability of simple functions of interest.
The rst of those is the projection of the measure (E,d, H,v) B Hv, de ned on XS. To study
its continuity, we equip the space of Borel measures on R with the local-Prohorov distance
Ld (-
dip(p, p = . 1 CAdB(L—np - K L—hpy - 1Y e "dh. (3.4.17)

Lemma 3.4.12. (E,d,H,v) B Hv is 1-Lipschitz from (XS,d gnp) to the space of Borel
measures on R equipped with the local Prohorov distance.

Proof. Consider (E,d, H,v), (EFd7HE VY CXP, vy and v the restrictions of v and vtto Ej,
and ES. We have
g, 1 -
dionp(E.EY= 1Nt a0 x Hlwn), [o% M) e dn

aal

] ]
> 1 Cdp(Hvh, HYD) e Ndh.
0

The last term is exactly dyp(H(v), H{vY). O
The next lemma will help us in many measurability questions.

Lemma 3.4.13. Let (X, dx) be a separable metric space, (Z, dz) a metric space, both equipped
with their Borel - eld, Y a space equipped with some o- eld and f a function from X <Y to
Z. If T is continuous in the rst variable and measurable in the second, then f is measurable.
If (X,dx) = (R,dR), then if f is right-continuous in the rst variable and measurable in the
second, then f is measurable.

Proof. The result is obvious if X is at most countable. Since X is separable, there exists a
dense sequence (Xn)n - Set XP= {Xn}n i Since XFis countable, the restriction of f to
XBx Y is measurable. For every n CN5'x X, take @n(X) = min{k [CN9dix (x,xk) < 1}.
The application X B X, (x) is measurable, so f, @ (X,y) B f(Xq,x),Y) is measurable. We
have dx (X, Xg,x)) = % by de nition and f is continuous in X, so f, converges point-wise to
T, and T is measurable as limit of measurable functions.

We proceed similarly for the right-continuous case with @n(X) = 'E%E-' We have that
On(X) I Xasn - oo a%f is right-continuoquﬁo T is the point-wise limit of the measurable

sequence of functions (X,y) B f(@n(X),y)) . m
n

Lemma 3.4.14. The functions

L1 L1
h,(E,d,H,V)% (E!d!H!lHSh'V) and h,(E,d,H,V)% (E1d1H11H>h'V)1

from (R x XS,dr Cddgnp) to (X5, d ghp), are measurable with regard to the o- eld B(R) 1
B(X5).

Proof. To get the result, we prove that f(h,-) is measurable as the limit of measurable
functions over XS x R. We de ne for every S-compact labelled space (E,d, H,v) and real
number € > 0:

fe(h,E) = (E,d,H, A¢h - V)
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where for every X [CH, A¢n(X) = O I:%Ih + & — H(x)) 11 To study the continuity in
E throughout Step 1 and 2, we use (E, d,H,v) and (E5d9H5vY two S-compact measured
labelled spaces. Note that f. and Slice commute, and that for every h R, h¥= 0 we have

Slicenc(fe(h, E)) = fe(h, Eno.

Step 1: for any h [R, h”= 0, we bound dgnp(fe(h, End), fe(h, Ef)). For h” [R.,
(Z,dz) M, ¢ [IS0(Eng Z), " CISo(EfL Z), consider

A = du(fo < HIER), [0 HIED) © Ap = dp([p x HI(1g,o ). [07 H(ler v9).

Since we did not change the metric spaces the Hausdor distance stays the same between
fe(h, E) and f¢(h, EY, so to bound the distance we only have to bound the Prohorov part:

A5 = dp([9 % H]Aeh - V), [07% HIAen - V).

If Enoor EfLis empty, then deup(fe(Eng h), Fe(ESL h)) = denp(Eng ERD (O if they are both
empty, oo if exactly one is empty). If both are non-empty we set for every h™ [0, h'¥:

Frm= [¢ % H](Ent) and  Fyb= [0™x HH(ERh).

We have for every Borel set B [J@ > H](En):

] Cl
[0 < H](Aeh V) (B)
O

= [¢ % HIV(B n Fruer)dt
= [e"™xHPYA(B n Frie)®P)dt + Ap

1 1
= [ HN(BA 0 Fried + [07% HIV(Fihetenn N\ Fried) dt+20p
0 3 (3.4.18)

L1 C]
= [ HYAen v BA) +Ap+  HYY(h +et,h+ et + Ap])dt
0

< [0 hen - VIIB2P) + Ap + EPHB(, h + & + Ap))
1 15 —1
= [0 (Aen - VII(BA®) + 1+EH@Q[h,h+8+APD Dp.

For the rst equality, we used the Fubini Theorem and the de nition of A¢ . We use the same
method to obtain the rst term after the second equality, while the second term is obtained
with the Fubini Theorem alone. The last inequality is obtained as follows: o HY{(h+¢t, h+
gt + Ap])dt is the integral of [H%J(dh™dt on the domain

1
O=st=<1

D h+et<hf<h+et+ Ap.
The system is equivalent to

h<=hfC<h+e+Ap

D ortfEheae cpog phfh,
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We de ne a new domain

h<=hTU<h+e+ANp
hLlh

DY M
h=le <t <

and note that D [DF It follows that
1

(I
. HYY(h + et,h + et + Ap])dt = I4_3][H VY dhSdt
= [H Y5(dhSdt
verse TR p gl p— A
€ €

1
[HYY@hY

h
= %[HW%,MHAPF

From (3.4.18) and by symmetry of E and E" we have
1 1 -
Ap < 1+E[HV+HW [h,h+e+Ap] Dp.

Recall that the Hausdor distance isn’t a ected by f.. Taking the in mum on Z, @, @5 we
have for every hP= 0 that:

darp (Fe(h, End, Fe(h, EmD)
]
< 1+ %[Hv +HYT [, h+e+denp(Ens ERD)]  donp(Enn ERD). (3.4.19)

Step 2: prove that f; is continuous in E. Take (E, d,H,v) a S-compact measured labelled
space and (E", dn, Hn, vn)n w2 sequence of S-compact measured labelled spaces converging
to E. Noting

An(h) = derp(Ens ERD,

we have, using Equation (3.4.19)

dighp(fe(h, E), fa(thE:i))

= (1 Cdgnp(fe(h, End), fe(h, EfD)) e "dh"
N - m o
< 1 I:Il+g(Hv+ann) [h,h+¢&+An(hY] An(hY e Ndh-
0
We know from the convergence of (E")n i that Ay 25 0 50 Ace(h = sup,, erddn(hY is
nite for almost every h™ Since the function (E,d, H,v) O Hv is continuous, the function
(E,d,H,v) B Hv(F) is upper semi-continuous for every compact interval F [CR] that is
lim sup(Hnvn(F)) < HV(F). When An(hY = 0, Aw(hY is nite and we have

] L] 1. L] 1
limsup(Hv + Hpvp) [h,h + € + An(hY] < limsup(Hv + Hpvp) [h, h + £ + Ao (hY]
n-

n-oo

1
< 2Hv [h,h+ &+ Ax(hY] < oo.
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This give that for every hsuch that An(hY - 0,

. L1 g C]
limsup An(hY 1+ Z(Hv + Hyvn) (h,h + ¢+ A (hD)

n- oo €

] e 1 (.
< TimsupAn(hY 1+gllmsup(Hv+ann) (h,h +¢&+ Ay (hY)
n-NH

n - oo
=0.
By dominated convergence, limsup d, gup(f:(h, E), f:(h, E™)) converges to 0 and f¢ is con-
tinuous in E.

Step 3: prove that f¢ is measurable. Since f¢ is continuous in E and R is separable, it
is enough, with Lemma [3.4.13 to prove that f¢ is continuous in h. Take (E,d,H,v) a S-
compact measured labelled space. Take h < hPtwo real numbers. Since f¢(h, E) and f.(h5E)
are supported by the same labelled metric space (E,d, H), we have

dienp(Fe(h, E), fe(hTE)) < dp(Aep - V, Ae v V).

1
Since Ag -V < AgnrV, We have dp(Agh -V, Agh2 V) < (Ag nt—Ag,n)[HV](dh). By monotonic
convergence, we have

lim dLGHp(fg(h, E), fs(hEle)) =0
htht
r|]I£fr]1 dLGHp(fg(h, E)1 fs(htvl E)) =0.

We deduce that h 3 f¢(h, E) is continuous on R. Thus, f¢ is measurable on R x X5,
Step 4: express T and g as limits of measurable functions. We use the same method as in
Step 3 to prove that for every (h, E),
f(h,E) = n“”cl,fi(h' E).

To get g, consider the function o : (E,d,H,v) B (E,d,—H,v). The function o clearly is a
isometric involution of XS, so is measurable, and we have by the same method as in Step 3
that 1 1 1

g(h,E) = nIiﬁrrgo(E, d,H, 1H2h+% ‘V)=o0 nIergof(—h - ﬁ,cx(E))

As limits of measurable functions, f and g are measurable. O



Chapter 4

The space of height-labelled trees

4.1 Height-labelled trees

4.1.1 De nition

Let (E,d) be a metric space. For x,y [H, let C(X,y) be the set of all continuous maps f
from [0, 1] to E such that f(0) = x, f(1) =y. We say that (E, d) is arc-connected if for all
x,y [H, C(X,y) is non-empty. We say (E, d) is a length space if it is arc-connected and for
every X,y [H, d(X,y) = inf¢ g yy L(F), where

— 1
L(F) = sup d(F(Xi—1), F(Xi)).
0=x0<>?1<...<xn=1 i=1
We say (E,d) is a geodesic space if it is a length-space and for every x,y [CH, d(X,y) =
min¢ rcgyyy L(F). In this case, for x,y [H, we call geodesic between x and y the image of
any path ¥ [CIx,y) such that L(f) = d(x,y). We say (E,d) is acyclic if for all x,y [H,
there does not exist f,g [CI[X,y) such that ([0, 1]) n g([0,1]) = {X,y}.

We call tree any acyclic length space. We recall the so-called four-points condition. A
connected metric space (T,d) is a tree if and only if for every four points X1, X2, X3, X4 [Tl
the following holds

d(X1, X2) + d(X3, X4) < max(d(xg, X3) + d(X2, Xa), (X1, X4) + d(X2, X3)).

Trees have been extensively studied and we will only shortly point out some of the properties
of a tree (T, d):

Between two points X,y of T there is always a unique geodesic which we note X,y .

If F [Tlis connected then (F,d) is a tree and F is called a sub-tree of (T,d). In
particular, F is geodesic and for every x,y [Fl, x,y L[FIl

For x [CTland F a closed sub-tree of (T, d), we can and will de ne p(X, F) the projection
of x on F as the unique point in F such that d(x, p(x)) = d(x,F). For every y [Fl it
satis es d(x,y) = d(x, p(x, F)) +d(p(x, F),y).

65
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Figure 4.1: A tree.

As usual, we call leaf every point x [Tlsuch that T \ {x} is connected. We note Skel(T)
and call skeleton of T the complementary of the set of the leaves. We call branching point
every point x [Tlsuch that T \ {x} has at least three connected components. For any tree
T, we call length measure the measure A over the skeleton of T such that for any geodesic

a,b,A(Xy)=d(xYy).

In this chapter, we introduce the height-labelled trees which are a particular class of
labelled measured spaces along with a bijective coding of the tree (T, d, H, 0) using the height
and a partial order (T,H, [L0). Additionally, we prove the measurability of some functions
of interest.

De nition 4.1.1. We call height-labelled tree any quadruple (T,d, H,v) where (T,d) is a
tree, H a map from T to R such that for every X, x5 [T,

d =H +H —2 min_ H 4.1.1
(%, xY (€9) x5 , g&m ) (4.1.1)
and v is a - nite measure such that
Leh RER
vV X I:EI%LI(XM =h <o forall h CR. (4.1.2)

We shall see in Lemma[d.1.3/that H is always 1-Lipschitz, making any complete separable
height-labelled tree (T,d, H,v) a measured labelled space. We set T the space of S-compact
height-labelled trees, up to label- and measure-preserving isometry.

Remark 4.1.2. For every non-empty tree (T, d) there are an in nite number of ways to label
it. For example, pick a point  [Tlas the root of T and A [R], then set H(X) = A + d(w, X).
This makes (T, d, H) a height-labelled tree.

To prove this last statement, take x, X" [CTland y the projection of the root w on x,x",
we have H(y) = min , .o H and

H(X) = A+ d(w,x) = A+ d(w,y) +d(y,x) = H(y) +d(y, x).

It follows that d(x,y) = H(x) — H(y). Similarly, we have d(x5y) = H(x5Y — H(y). Since
y [, x”, we have

d(x, ) = d(x,y) +d(y, x) = H(x) + H(x) = 2H(y) = H(x) + H(x) =2 min H.
X, X
This concludes the remark.

Lemma 4.1.3. Every complete separable height-labelled tree is a measured labelled space.



4.1. HEIGHT-LABELLED TREES 67

Figure 4.2: A height-labelled tree.

Proof. Take complete separable (T,d, H,v) a height-labelled tree. Given the de nition of a
height-labelled tree, we only have to prove that H is 1-Lipschitz. For x,y [T, we have

d(x,y) = H(X) + H(y) —2 an; H=H(X)+H(y) —2(H(x) CH(Y)) = [HX) —H(y)I.
O

Lemma 4.1.4. If (T'j,d, H, 0) is a height-labelled tree, then the completion (T, d, H, 0) (where
H is extended by continuity) of T Uis still a height-labelled tree.

Proof. The space (T,d, H, 0) is the completion of the height-labelled tree (T5d, H, 0), so it still
satis es the four-points-condition, it is still connected and the extension of His 1-Lipschitz.
In particular, (T,d,H,0) is a tree.

To prove that (T,d,H,0) is a height-labelled tree, we need to check that holds.
Take x,y [T], there exists (Xn)nmrand (Yn)n m-two sequences of T Pconverging to x and y
respectively. Let us prove that d(x,y) = H(X) + H(y) —2inf ., H. For € >0, take n CN™
such that d(x, Xn) < € and d(y,yn) < £. We have

X,y LA xXn CXAn,yn LMY .
It follows that

inf H = ( inf H) CQlinf H) CQinf H)
9% n.yn Yny

X,Xn Xn,

= (H(xn) —€) E(inn; H) L (yn) —€)

= inf H—e.
Xn,Yn

Since (X,y) and (Xn,Yn) play symmetric roles here, we have proven that (x,y) B inf ., H
is continuous. We deduce that

d(x,y) = lim d(xn,yn)
= nIim HXn) +H(yn) —2 inf H
_, 00 X

n,yYn

= H(x) + H(y) — 2 inf H.
X,y

This ends the proof of the lemma. O
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4.1.2 Coded trees

The aim of this part is to give another characterization of a height-labelled tree, using a
partial order function rather than a distance. The main result of this section is Proposition
[4.1.14, which states that under su cient assumptions, a partially ordered set with a label
function can be equipped with a distance making it a height-labelled tree.

Lemma 4.1.5. For (T,d, H,v) a height-labelled tree and X, x5 [T, the minimum of H over
x, X5 is reached at a single point ¢ and, for every y X, x", H(y) = H(c) + d(c, y).

Proof. The geodesic x, X is compact and H is continuous, so we can consider ¢ %, x"
such that H(c) = min 4 xo H. Since H is 1-Lipschitz, we have

H(x)—H(c) <d(x,c) and H(XY—H(c)<d(c,xY, (4.1.3)
and since c is on the geodesic,
d(x, ¢) + d(c,xJ = d(x, x5 = H(x) + H(xJ — 2H (c)

by de nition of a height-labelled tree. From that last line, we deduce that the inequalities in
Equation (4.1.3) are equalities, and we have:

H(x)—H(c) =d(x,c) and H(XY—H(c)=d(c,xY.

Since the length d(x,c) of the segment X,c is equal to the di erence H(xX) — H(c), there
is exactly one 1-Lipschitz map f from Xx,c to R such that H(x) = f(x) and H(c) = f(c).
The function ¥ : y B H(c) + d(c,y) is 1-Lipschitz and satis es f(c) = H(c) and f(X) =
H(c)+d(c,x) = H(x), so H = f. We have the same result on ¢, x", so H(y) = H(c)+d(c,y)
for every y [, x". From the last formula, we see that c is the unique point of X,y where
H reaches its minimum. m

De nition 4.1.6. For (T, d, H,Vv) a height-labelled tree, we call most recent common ancestor
(MRCA) of x and y the unique point x LyI[_,y such that H(X [y) = min ,, H.

For every x,y [Tl we have d(x,y) = H(x) + H(y) — 2H (x [O).

Recall that an order is a relation [fHat is re exive ([X]x [X], transitive ([X]y,z,(x [
y andy [Z)] X T Z)and anti-symmetric (IX]y, (X Ly bndy [ X} [ xXFy). We say that
a set E is totally ordered for [Ciflfor every x,y [CH, x and y are comparable, that is x [y1
ory [x1 If E isn’t totally ordered, we say that [Cisla partial order. Note that even for a
partial order [—over a set E, we can use the notions of minimum and maximum when they
apply, the exact formulation being: x is the maximum (resp minimum) of E if x [CH and for
every y [H, y [xXresp x [y). The minimum is of particular signi cance in a tree since it
represents the root of the tree.

From now on, we write X [y hen d(x,y) = H(y)—H(x), and x [y ivhen we have x [y1
and x B y. The condition d(x,y) = H(y) — H(x) is equivalent to H(x [y) = H(x), which
is in turn equivalent to x = x [ylby uniqueness of the minimum in De nition [4.1.6] We say
in this case that x is an ancestor of y or that y descends from x. We call [tHe genealogical
order on (T,d, H), and we will consider it is canonical.
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Lemma 4.1.7. Let (T,d, H,v) be a height-labelled tree. Its genealogical order [Cislan order
relation over T.

Proof. We must prove that [islre exive, transitive and anti-symmetric. The re exivity is
obvious. Take any three points x,y,z LTl If x [yl zthen H(z)—H(X) = d(x,y)+d(y,z) =
d(x,z) and since H is 1-Lipschitz we have H(z) — H(x) = d(X,z). This means that x [Z]
which yields the transitivity. If x [CyldCxdthen d(x,y) = H(X) — H(y) = —d(y,X), so X =y
and L[islanti-symmetric. O

Lemma 4.1.8. For h [CH(T) the range of H and x [Tl such that h < H(x) there exists a
unique x"” [T such that H(xY = h and x" Cx1

Proof. For x [T, h < H(x), take y [CTlsuch that H(y) = h. Using Lemma there is a
pointc [,y such that H(c) = min ,, H and for every X" X,y , H(x") = H(c)+d(c, x1.
Since H is continuous X, c , there exists x” [X,c such that H(xY = h. We have

H) —HXY = H(c) +d(c, x) — H(c) — d(c, x5 = d(x, c) — d(x5c) = d(x, xY,

so x"is an ancestor of x with height h. To prove the uniqueness, consider x™another ancestor
of x at height h, we have d(x5'x5 = 2h —2min yom H. Now, we use the fact that x5x™ [
xOx [, x™ to see that

min H = min H=h
xExM xEx XIxT

so d(x5xT = 0 and x"= x™ O

Remark 4.1.9. Combining Lemma [4.1.5| and Lemma [4.1.8) we nd another equivalent de -
nition of x [yl With the uniqueness in Lemma [4.1.8 and the transitivity of [ e see that
{z M)z xX]Jz [y} is totally ordered for [Cand that x [ylcan also be characterized as the
maximum of {z [T]|z [Cx]Jz [y}.

Remark 4.1.10. In a height-labelled tree, only one brancrﬂ can go to —oo. Indeed, suppose
that a height-labelled tree (T, d, H,v) satis es inff H = —oo. For x [T], Lemma [4.1.8] tells
us that H induces a bijection from the set A(x) = {y Ty [x} to (—oo,H(X)]. We know
from Remark [4.1.9 that A(x) is totally ordered for [ sb by de nition of [_H is an isometry
from A(X) to (—oo, H(X)], and A(X) is a branch going to —oo.

Let us prove that it is the only one. Suppose that AXx) is another in nite branch starting
from x, we prove that it does not go to —oo. Since A(x) and AXx) are two distinct geodesics
starting from x, and since T is acyclic, then A(x) n A{x) = x,x" for some x" [TI. Since
A(X) is the set of all ancestors of x, we have for every y CAYx) that x [yl [CA(x). Since
Al{x) is connected, we have x [y1 X,y [AH{x), so x Ly CAX) n Ax) = x,x". It
follows that

inf H = inf (mnH)= inf H(X = min H =H(x > —oo,
LU ) ylﬂx)(x,y ) L AN x ) min, (x

1
For the rst equality, we use the fact that A{X) = | gy XY . It follows that A¥x) has a
lower bound. This implies that A(x) is the unique branch going to —oo.

YHere, a branch is an isometrical embedding ¢ from [0, a] to the tree such that ¢(0) = x and @(a) is a leaf,
or an isometric embedding from R+ to the tree such that @(0) = x, where X is a point xed in advance.
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De nition 4.1.11. Let T be a set, H a map from T to R and [—ah order on T. We say
that (T, H, Db a coded tree if the following conditions are satis ed:

1. the direct image H(T) is connected,
2. H is strictly increasing for 1

3. for every x [T and h [CHI(T) with h < H(X), there exists a unique y [xIwith
H(y) = h,

4. for every x,y L[ Tlthe set of all common ancestors {z [ Tl|z Xz [y} has a maximum,
denoted by x [yl

Proposition [4.1.14] ensures that any coded tree, equipped with the right distance, is a
height-labelled tree. Condition 2 could be derived from 3, but we keep it to avoid an unnec-
essary lemma. Condition 3 emulates the result from Lemma for height-labelled trees,
while condition 4 ensures that we can de ne a tree distance, as proven in Proposition [4.1.14]
Remark tells us that the de nition of x [Cylfor height-labelled trees agrees with the
notation given in Condition 4. Note that (x ) [zZ1s the maximum of the common ancestors
of X,y, z. This characterization means that [Cid commutative and associative.

Remark 4.1.12. If three points x,y,z [Tl of a coded tree (T,H, D satisfy y [xJand z [x1
then y and z are comparable for [ 1

Indeed, suppose H(z) < H(y) and, by Condition 3, consider z” Cydwith H(zY = H(2).
By transitivity, we have z5 [Cx] We deduce that zP= z by uniqueness in Condition 3, so

z Lyl

Lemma 4.1.13. If (T,d,H,v) is a height-labelled tree and [—ifk genealogical order, then
(T,H, Db a coded tree.

Proof. We prove all the conditions from De nition [4.1.11]
Condition 1: we have that H is continuous and (T, d) is geodesic.
Condition 2: by de nition, x [y’hnd x 8 y implie H(y)—H(X) = d(x,y) > 0 for x,y [Tl
Condition 3 is exactly Lemma [4.1.8]
Condition 4 is proved by Remark [4.1.9 since the maximum in the condition is exactly

x [yl O
For every coded tree (T, H, ), We note ®(T,H, D= (T,d, H,0), with:

d(x,y) = HX) + H(y) —2H(x ). (4.1.9)

Proposition 4.1.14. For any coded tree (T,H, O 1&(T,H, D—F (T,d,H,0) is a height-
labelled tree, and the genealogical order of (T,d,H,0) is 1

The transformation @, is a bijection from coded trees to height-labelled trees with null
measure.

Proof. Step 1: let us prove the four-points condition. Consider four points X, X2, X3, X4 [T1
and suppose that forevery i 8 j [{1,2,3,4}, H(Xj [X;)) = H(x1 XJ). It follows from Remark
4.1.12| that x; [X3 [xJ X3}, so we have x; [X3 = (X1 [X}) C(t; [X3) = (X2 [X}) 3.
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Since x; and x;, play similar roles, we have x, [X3 = (x; [X3}) X3 = x; [X3. Similarly, we
have x; [X} = X, [x1. This yields

d(X1, X3) + d(X2, X4) = H(X1) + H(X3) —2H(x1 [X3) + H(x2) + H(X4) —2H (X2 [x1)
= H(X1) + H(X4) —2H (X1 1) + H(X2) + H(x3) — 2H (X2 [X3).
That is
d(X1, X3) + d(X2, Xa) = d(X1, Xs) + d(X2, X3). (4.1.5)

Moreover, X1 [ X3 and x; X3 are comparable for [Csd we can take the minimum min(x; [
X3, X1 [X3) = x1 [X3 [X] X3 [x3. Since H is increasing and x; [X} = x, [X], we have

d(xa, X2) +d(X3, Xa) =H(x1) + H(X2) — 2H (X1 [X3) + H(x3) + H(Xs) — 2H (x5 [X})
=H(X1) + H(x2) — 2H(max(x1 [x3,x1 [X1))
+ H(X3) + H(xs4) —2H(min(x1 [x3,x1 [X1))
=H(x1) + H(X3) —2H(x; [xX3) + H(x2) + H(X4) —2H (x; [x1)
=d(Xx1, X3) + d(X2, Xa)

=d(X1, Xa) + d(X2, X3).
(4.1.6)
We used Equation for the last two equalities.
Set a; = d(X1,X2) + d(X3,X4), a2 = d(X1, X3) + d(X2,X4) and az = d(Xy1, Xs) + d(X2, X3).

Equations (4.1.5) and (4.1.6) imply that a; < a, = ag, so

1

Fad < max(az, a3)

% < max(asz, ai)
3 < max(a, az).

With those three inequality, we have proven the four points condition for (T, d).

)

)

Step 2: let us prove that d is a distance. The function d is non-negative since H is
increasing. If d(x,y) = 0 then H(x) = H(y) = H(x ). We have x [yl [xdand H(x) =
H (x [y}, so by uniqueness in condition 3 we have x [yl= x. We nd similarly x [yl y, so
X =vy. We have proven that d is positive-de nite. The triangular inequality of d is implied
by the four-points condition: d(z,z) +d(X,y) < d(x,z) +d(z,y). We have proven that d is a
distance.

Step 3: let us prove that (T, d) is a tree. Given Steps 1-2, we just need to prove that T is
connected. We note that for x [y,Jwe have d(x,y) = H(y) — H(x). Using conditions 1 and
3 we nd that in that case

X,y ={z [Tx CZIv}

is a geodesic since for every y,y” X, x5, d(y,yY = |[H(y) — H(yY|. For every two points
x, X7 T], we use condition 4 and see that

x, X7 = x,x [xt & Cxt'x"

is a geodesic between x and x”so (T,d) is connected. It satis es the four points condition
so (T,d) is a tree. We see that min , ,o H = H(x [x¥ so by (4.1.1) and the de nition of d,
(T,d, H,0) is a height-labelled tree.
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Step 4: We prove [Cislthe canonical order of (T,d, H,0) and that @ is bijective. Let us

rst prove that [islthe canonical order of (T,d, H,0). We have already seen that if x [yl

then d(x,y) = H(y) — H(X). Conversely, if d(x,y) = H(y) — H(X) then H(x [y¥) = H(X) so
X = x [yland x [yl

Since we can express (T, H, D as a function of ®(T,H, ), We deduce that ® is injective.

To prove that @ is bijective, take (T, d, H, 0) a height-labelled tree [if$ canonical order.
By Lemma 4.1.13, (T,H, D% a coded tree. By De nition 4.1.6] we have d(x,y) = H(X) +
H(y) — 2H(x [y). Using Remark and the construction of ®, we have ®©(T,H, D F
(T,d,H,0).

We have proven [islthe canonical order of (T, d, H,0) and that @ is bijective.
With the conclusions of Steps 3 and 4, we have proven our proposition. O

4.1.3 Induced topology on T

We prove Theorem [4.1.15, stating that the space of all S-compact height-labelled trees T
equipped with the distance d gnp is Polish.

Theorem 4.1.15. The space (T, d_gnp) is Polish.

Proof. Since (XS, d_gnp) is Polish, it is enough to prove that T is closed in (XS, d gnp). A
S-compact measured labelled space (T,d,H,v) is a tree if and only if (T,d) is a geodesic
space satisfying the four-points condition. It is a height-labelled tree if for every x,y [T,
dx,y) =H(Q() +H(y) —2min ,, H.

The set Fs—points Of all S-compact measured labelled space satisfying the four-points
condition, de ned in (3.4.13), is closed in (X5, d_grp) as seen in Remark[3.4.10] The set Fgeo
of geodesic spaces is closed, by Remark [3.4.8] For the last condition, we want to prove that
the set of trees (T, d) equipped with a 1-Lipschitz map H : T — R that satisfy the condition

d,x, CI1 d(X1,X2) = H(X1) + H(X2) — 2 IT_len H(X3) (4.1.7)

is closed in (XS, d_gnHp). To this end, we will nd equivalent formulations of Condition (4.1.7)
so that we can apply Lemma [3.4.7]

Note that for x3 [ Kki,x, , we have d(x1,X3) + d(X3,X2) = d(X1,%X2). Since H is 1-
Lipschitz, this implies H(X1) + H(X2) — 2H (X3) < d(X1, X3) +d(X3, X2) = d(Xz, X2). It follows
that

d(X1,X2) = H(X1) + H(x2) =2 min  H(X3)
x3 [Xh X2

LB [ 3, %2, H(Xxy) + H(x2) = 2H(x3) = d(X1, X2).
We can reformulate as
X1, x2 [T1 [X3 3k, X2, d(X1, X2) = H(x1) + H(X2) — 2H(Xs3)

xd,x; [T1 X3 CTLd(Xg,X3) + d(X3, X2) = d(x1,X2) = H(X1) + H(x2) — 2H (X3).
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which is equivalent to

1
H(x3) = 3(H(x1) + H(x2) — d(x1, X2)),

i, xp LT Bd LT d(x1, X3) + d(X3, X2) = d(X1, X2) = H(X1) + H(x2) — 2H(X3).

It follows that the set of trees satisfying (4.1.7) is F4—points N Fgeo N FH, With

[xq [Tl x4 CSli (M) L]
’XZ ICG 1 _ ,

Fu= (T,d,H,v) CXP 12 (H (x1)+H (x2)—d(x1,%2))|

= ) (X1, X3) + d(X3, X2) = d(X1, X2) = H(x1) + H(x2) — 2H (x3)

and Fy is closed thanks to Lemma[3.4.7] The set Fyy of S-compact measured labelled spaces

satisfying (4.1.7) is closed in (X5, d gHp).

We have T = Fs—points N Fgeo N Fr, S0 T is closed in (X5, dLghp). 0O

Remark 4.1.16. By de nition, H(T) is an interval for every height-labelled tree (T, d, H,v).
We deduce from Lemma [3.4.5| that dgnp and digHp induce the same topology on the space
of non-empty compact trees, and that this set is open in (T,d_gnp) as the trace on T of the
open set X&K \ {[F In particular, this means that for T a compact tree, € > 0, there exists
0 > 0 such that

for every compact height-labelled tree T if dgup(T, TY < & then dignp(T,TY < &;

for every S-compact height-labelled tree T if d_ gnp(T, TH < & then T is compact and
denp(T, TH <e.

Note that for (T,d,H,v) Tl T is compact if and only if H(T) is compact.

De nition 4.1.17. For every h [CR, we de ne Ty the set of trees (T,d,H,v) [ such
that mint H = h. We de ne T_. the set of trees (T,d,H,v) [T such that T = [adr
infT H = —oco.

We can rewrite
T-co ={(T,d,H,v) [TIB3 [T X3 [Ty xyy)+2, HX2) = H(x1) — 1}
and
Th ={(T,d,H,v) COE3d CTH(x;) = h} n {(T,d,H,v) COXICTH(X) = h}.

With this expression of T—., we can use Lemma [3.4.7) to see that T_o. is closed. The set
T is the intersection of two sets. The rst set is closed by Lemma and the second by
Lemma [3.4.17] so Ty, is closed for every h.

4.2 Some measurable maps over T

We will study in this section some measurable maps of interest de ned over T.
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4.2.1 Number of balls in a level

For (T,d, H,v) a height-labelled tree, h CH(T), the set H~1({h}), that we call level h of T,
is ultra-metric when equipped with d. This implies that for every € > 0, the closed balls of
diameter 2¢ form a partition of H=1({h}).

De nition 4.2.1. For h < h® R, (T,d,H,Vv) a height-labelled tree, we call nh{T)
N [{do} the number of closed balls of diameter 2(h™— h) at level hPof T. In the case where
T has no point at level h then we consider that n™h'(T) = 0.

We set
D ={(T,h,hYy COxR?h<h

the domain of de nition of the function (T,h,hH O nh'hE(T). Notice D is an open set.

Remark 4.2.2. Note that for "Y' CH(T) and every ball B [CHI"(hY of radius 2(h™— h), the
MRCA of B (that is the maximal element of {z [Tl|z [X] [x]1[B}) exists in T, and its
height is above h. If BY CHI"1(hY is another ball of radius 2(h"-h), then for x (B, x" B
H (x X3 is strictly below h. It follows that when h CH(T), nPh'(T) is the number of points
at height h that are ancestors of at least one point at height h*

Lemma 4.2.3. A height-labelled tree (T,d, H,v) is S-compact if and only if it is complete
and @k b [R, n®(T) < oo.

Proof. Step 1. [Suppose that T is S-compact. For every Cauchy sequence (Xn)n mpI:DND
the sequence (JH (Xn)|)n s Cauchy also as H is 1-Lipschitz. It follows that (|H (Xn)|)n o=
is bounded from above by some h [CR., so (Xn)nmiiS actually a Cauchy sequence in Th,
which is compact, so (Xn)n mi=converges. As (Xn)n eEWas arbitrary, T is complete.

For every h"[R, Tinp is compact and d is ultra-metric over Typ, so for every h < hYthe
closed balls of diameter 2(h“— h) form a partition of Ty of cardinal nhth(T). Since Tpiy
is ultra-metric, the closed balls are open sets. Thus, they form a minimal coveringﬂ of Tjhg
with open sets. Since T,y is compact, the minimal covering is nite. We have proved that

nhh(T) is nite.

Step 2: [—Suppose that T is complete and [@k b, n®?(T) < co. Take hg CRL, (Xn)n xi
a sequence of points of T,,,. We want to prove that (Xn)n mwihas a converging sub-sequence.
The sequence (H(Xn))n mer—has its terms in the compact space [—hg, hg], so we can nd an

extraction ¢ such that (H(Xyn)))n oxrconverges to some he [[3ho, ho].
If hoo = inft H, then we have

d(Xg(ny: Xo(n+p)) = H(Xen)) + HXgn+p)) = 2H Xy ExXb(n+p))
=<H (X(p(n)) +H (ch(n+p)) — 2heo

n - oo

This proves that (Xyny)nmeiis @ Cauchy sequence, so it converges.
If hoo = inft H, then for every h < h®CH(T)n[inft H, heo), we can setyy, ..., Ynhh Ty [Tl
the ancestors at height h of level h) Take ng [CNI=3uch that for all n = ng, [H(Xpmn)) —heo| =

2A covering is minimal if its only sub-covering is itself.
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heo —h" We have H(Xym)) = h” CH(T), s0 X¢my has an ancestor at height h5 and by
de nition of n™P(T) there is an index i such that 1 < i < n™"(T) and yi [X§qn) If Xp(ny
has the same ancestor y; for some n“= ng, we have y; [CXdny CXbny so

d(Xp(ny» Xon3) = HXpeny) + HXpng) = 2H i) < 2(heo + (hoo — ) — 2h < 4(ho — h).

We have proven that the set {Xy)}n s covered by at most no + nhth(T) balls of diameter
4(he —h). Since (hoo —h) can be arbitrarily small, and no + nh'hE(T) is nite, we have proven
that {X¢n)}n meiis precompact. Since T is complete, the closure of {Xyn)}n s compact
and there exists a converging sub-sequence. Since Ty, is closed, the closure of {Xyn)}n s
a subset of Tp,.

We have proven that (Xn)nmwi-has a converging sub-sequence in Tp,. Since (Xn)n mvi-was
an arbitrary sequence of Tp,, we have proven that Ty, is compact. Since hy was arbitrary, T
is S-compact. O

Lemma 4.2.4. Themap (T,h,hH 3 nhth(T) is measurable on D when T and R are equipped
with their Borel o- elds.

Proof. Step 1: we prove that Do = {(T,h,hJ CO|n""{T) = 0} is open. We have

Do ={(T,h, hY CTx R2|h < hYn"(T) = 0}
»fh<ht

X1CTLH(x) & hY

—1
((T,d,H,v),h,hY COx<R

The space T is S-compact, so the image H(T) n [—r,r] is compact for every r [R4. It
follows that H(T) is always a closed set of R, so (xJ [T,H(x) & hY is equivalent to
(infx H (X) — hY{ > 0). From this, we deduce that
C1 C1
= 5 , Fpmzthgq ==
Dy = ,d,H,v),h,h) [CTIxR <qg, p-<h-<qg;
& XICTTH () Lpte =

—
= UPY"x (—oo, q) x (pTqY,
gq<p'<qHQ

where 1

1
uPe’= (T,d,H,v) I:EEIXH:D, H(x) £185q7
The set [pq is compact so the complement of UP s closed by Lemma|3.4.11] This means
that UP™ s open, so Dg is an open set as the reunion of open sets.

Step 2: we prove that D§'= {(T,h,hy CD|mint H = h%} is measurable. Notice that
nPh{T) = 1 on D§. We can write:

C1C 1 1
Dg'= VAN x (—e0,q) x (g™ ),
n [(N'Hf<qHQ



76 CHAPTER 4. THE SPACE OF HEIGHT-LABELLED TREES

with
) =q"
B XICTIH(X) = g
vVah = (T d H,v
( ) OCTlgP< H(y) < ¢+ 1

Use Lemma and Lemma [3.4.11] to get that V9" is closed. This implies that D' is
measurable.

Step 2: we prove that the auxiliary map

f:(T,h,hY B 1 Csup (M) (4.2.1)
hEht

is measurable on D. For every (T,d,H,v) [T, k = 2, h < hZ CR we have """ (T) = k if
and only if there exists Xy, ..., Xk [T1such that H(x;) = ... = H(xx) = h"and

min__d(xi, xj) > 2(h™— h).

l<i<j=n
It follows that

Ui ={((T,d. H,v), h, hY Co|mf> hInhh(T) = k}

% h < ht

> h7 x, ..., x« [T}

— 2 k

= G Y ETXR ) == A =
[TEi<j < n,d(xi,X;) > 2(h"™=h)

[

We have:
1 1

=l e S
_ 2 IXi,...,xk Dj,
T é’d’ H.v).h. ) COxR Mini<i<k H(x;) > h" %
[Tk i<j=n,dXXj)>H()+H(Xj)—2h

In this equality, the inclusion ([D—i obvious. We now prove the inclusion ()1 Take
((T,d, H,v),h,hY in the right-hand set and X1, ...,Xx [T such that minj<j<x H(x;) > h"
and [Tk i <j < n,d(Xi, xj) > H(xi) + H(Xj) — 2h, we can take h™= min;<j<x H(X;) > h"
and vy, ..., Yk the ancestors of Xy, ...,Xx at height h™ For every 1 =i < j = n, we have
d(xi, Xj) > H(xi) + H(xj) — 2h, so H(xi [X]) < h. Since H(xi [X]) < h < hU< h=
H(yi) = H(yj), we have yij [y} = X; X}, so we have H(yi [yj) < h. It follows that
d(yi,yj) = 2(h™= H(yi [3)) > 2(h"™= h). We have found h"™> htyy, ...,yx [T such that
H(y1) = ... = H(yx) = h™and ki <j < n,d(yi,yj) > 2(h"™=h), so ((T,d,H,v),h,hY is
in the left-hand set. This proves the inclusion ( [),-30 the equality holds.
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We can reformulate the last expression for Uy:

L1 L1
(plg CQ,
p<h<hb<g,
U = ((T,d,H,v),h,h) COx R*O, ..., xx [T}
mini<i<k H(Xi) >,

MEi<]j=ndXx;)>HX)+H(X)—2p

1 1 [1
= uUP% > “(h,hY |:RF%<h<hD<q,
p<qL[Q

where we set
1 1

o | i, ..., xx 11 == |
upt = d,H,v) mini<i<k H(Xi) >q,
k é [(TEi<j<n,d(XxXj) > HX)+H(X;) —2p I

Now, let us look at the complement of U
1 1
= 1, ..., xx [T =
T\UD = éd, H,v) mini<i<x H(Xi) < q or
TEi<j=<ndxx)=<H)+HEg) —2p =

It is closed by Lemma , S0 U,'(“’hmis open. We have proven that the map f : (T,h,hj 3
1 Cs0ppmpon™ (T) is measurable on D.

Step 3: conclusion. Set
Dgo =D\ Do.

The set Dgo is the set of all triplets (T,h,h3 such that nh(T) > 0. Not that this is
equivalent to hY CH(T). It is a Borel set since Dy is a Borel subset of D (Step 1). Note
that for every S-compact T, the map h™O0 nhth(T) iS non-increasing, piece-wise constant
and left-continuous on H(T) n (h, o0). It follows that if """ (T) & 0, then h® CH(T) and
one of two cases arises.

If h < mint H, then hP3 nMh'(T) = 1 for every h® CH(T) and 0 everywhere else.
By de nition of f, we have 1 < f(T,h, h < sup,m, N""N"(T) = 1 for every h™> h, so
nP{T) = 1 = limpopof (T, h, kD,

If hY> h > mint H, then, since the map hP0 nh'hE(T) iS non-increasing, piece-wise
constant and left-continuous on H(T) n (h, oo), there is a non-empty interval [h" h5
on which nM(T) is constant equal to NN (T). Since the map h®3 nMh(T) is non-
increasing, we have (T, h, ) = nP"(T) = 1 on ["™hY, so n""h"= limymnof (T, h, hS.

It follows that (T,h,h§ B nMh(T) is the point-wise limit of the sequence

1 1 1 1 [T

(T,h,hY B 1p_,(T,h,hY - F T,h, =h+ (1 — >)h" .
n n n [N

With Step 2 and since Dgg is a Borel set, each term is a measurable map, so the point-wise

limit (T, h,h3 B n"h{(T) is measurable on D. 0
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4.2.2 Trimming

In this subsection, we adapt the e-trimming from real trees to our height-labelled trees. The
e-trimming is a powerful tool for approximation and will play an extensive role in the following
sections.

For (T,d,H,v) [Tland € > 0, de ne for every x,y LTk

d®(x,y) = max(|H(x) = H(y)l. d(x,y) — 2¢).

We will prove in Lemmaf4.2.6| that d® is a pseudo-distance, so we can de ne T¢ as the quotient
of T by the equivalence relation d®(x,y) =0 and p: T - T¢& the canonical projection. Note
that by de nition of d¥, H is constant on each equivalence class, so H is still de ned on the
quotient T¢ and H(p(x)) = H(x) for all x [Tl

De nition 4.2.5. For (T,d,H,v) CTand € > 0, we de ne Trimg(T) = (T%,d& H,pv) the
e-trimming of T.

See Figure [4.3|for an instance of T and Trimg(T).

H

Figure 4.3: Example of an e-trimming. The left-hand tree represents T, the right-hand
one T&. The general shape is preserved, as the height of the root. The branching points
are elevated by €, as shown by the dotted lines. The branches shorter than € disappear.
Represented in gray are the projections of some chosen points.

Lemma 4.2.6. Trimg(T) is a well-de ned height-labelled tree of T.

Proof. Let us prove that d¢ satis es the triangle inequality. Take x, x5x™ [Tl and suppose
without loss of generality that x [xP XTI We then have x [xP= x [xFx¥ =arxi”

and

d®(x, x = max(JH(x) — HxY|, H(X) + H(xT — 2H (x X1 — 2¢)
< max(JH(x) — H(xT|, H(x) + H(xT — 2H (x CxIj — 2¢)
< max(JH(x) — HXY], H) + H(XY — 2H (x X — 2¢) + [H (XY — H(xD]
< d®(x, x5 + de (x5 x.
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Thus, the function d® is symmetric, non-negative and satis es the triangle inequality, so T#
is well-de ned and dé is a distance over T&. The function H is well de ned and 1-Lipschitz
on TE,

For v,y CTF we note y~ =y when dé(y,yY = H(y) —H(yY. To prove that 13 a order,
the re exivity and anti-symmetry are straightforward, so let us check the transitivity. Since
H is 1-Lipschitz for dg, so, for x [y 2z [TF, we have

de(x,2) = H(z) —H() = H(2) —H(y) + H(y) —H(X) = de(z,y) + de(y, X) = de(Xx, 2)
so de(X,z) = H(z) — H(X), and we have x [*Z.

Set [fhe canonical order of T. Let us prove that (T, H, [%)dis a coded tree. Recall
Conditions 1-4 in De nition [4.1.1T] The proof of 1. and 2. are directly included.

1. The image H(T¥) is connected as H(T#) = H(T).

2. H is strictly increasing by de nition for 1

3. For every y [CTF and h [CH(T#) such that h < H(y), there exists a unique y"~ [Tl
such that y“ [y and H(yY = h.

4. For y,y" TF, there exists a point y (Ey = max{y™ CTF|y™ =3, y™ =31}, We shall
also check that for y, y® CTE:

d®(y,y) = H(y) + H(yJ — 2H(y =31Y. (4.2.2)

Proof of 3.: takey [TF, h CH(T?&) = H(T) such that h < H(y). Choose x an antecedent
of y by p and let us nd yY Take x"[T1the only point such that H(x3 = h and x"~ X1 Set
y5= p(x. Since d(x, x5 = H(x) — H(xJ we have d¢(x,x5 = H(x) —H(XJ = H(X) — h, so
yHU W,

Now, for the uniqueness, take y™ ¥ such that H(y™ = h and x™ pri({y™), and let
us prove that y™= y The point xTsatis es H(x™ = H(yD = h and d&(x, xT = dé(y,yH =
H(x)—h. We have H(xJ = H(xY and d(x, x5 = d&¢(x, x5 = d(x, x5, so x X’ xITxT= x"
This implies x [xX'= x [XPx’= x"x{"and we have

dx®xY = HXY + H (XY — 2H (x™ x5
=HXY+HX) —HX) + HXY —2Hx"x)
=d(x"x) — (H(x) — h)
< d¥(x™'x) + 2& — (H(x) — h) = 2¢.
We conclude that d&(y™yY = d¥(x™x = 0 so y"is the only ancestor of y at height h.

Proof of 4. Figure should help to visualize the following proof. Take y,y" [T, If
dé(y,yY = |H(y) — H(yY] then y and y are comparable so min(y,yY is the MRCA that is

max{z [T¢|z 3,z =33 If not, then dé(y,yY > |H(y) — H(yY|. Use Figure [4.4 for
reference. Take x, X" [CT1 respective antecedents of y and y"by p. Since

d*(x, x5 = d*(y,y) = [Hy) = HYH = [H) = H),
we have d(x, xJ — 2& = d¥(x, xJ > |H(x) — H(xY]. Consider h = H(x X + €, we have
H() +H&Y = 2min(H(X), H(XY) = [H(x) — HY)|
< d(x,xJ —2¢
=H() +H(X) —2(H(x [} +¢),
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so h = H(x X§ + £ < min(H (x), H(xY). Take x™ xdand x™ [xTthe two points of x,x"
such that H(x™ = H(x™ = h. Note that xX™[xP= x x¥ We have dx@x™ = H(xD +
H (™M —2H x"Pxi = 2(h—H (x X)) = 2¢ so d¥(x™@'x™ = 0. We set yT= p(xT = p(x™.
We want to prove that y™ =31, y™ =yi”and that if z CTF satis es z [Ey and z [ then
we have z =™

We have

d®(y,y") = max(JH(x) = H(xH, d(x,xJ —&) = H(x) = H(x) = H(y) - H(y".

So we deduce that y™ 2y and similarly y™ =y
Let z CTF be such that z [Eyand z (57 We have:

d*(y,y) = d*(y,2) + d°(z,y") = H(y) + H(Y") = 2H(2).
This implies that H(z) < H(yD. According to 3., there exists zJ [CTI¥ such that z" Ey™
and H(ZY = H(z). Thus, we have z" [y’ 23, z 23 and H(zY = H(z). This implies
that zP= z. Thus z Ly and so y™= max{y™ [TF|z ¥,z 2y}, that is by convention
yT=y 9" We also have that holds as:

dé(y,yY = d(x, x5y — 2¢
= d(x, xT + d(xTxP = + dx™xTP 1 + d(xx™ — 2¢
= d(x, x3 + d(x™xY
=H(X) —HE") +HXY = HxD
=H(y) + H(Y) — 2H(y =¥Y.

N y
N% a
m
X y h
N sj
X @: XEI]] —— H(X @

H

Figure 4.4: Position of x,x5x™x™y yHand y™on a simple example. The left-hand tree
represents T, the right-hand one T€. The dashed arrows represent pe. x™and x™have the
same image y™

We have proven Conditions 1-4, so (T, H, [E)1s a coded tree. Using Proposition 4.1.14
with (4.2.2), we see that Trimg(T) is a height-labelled tree with its genealogical order =]
Since d® < d, p is continuous, so for every h R, Slicen(T¢) is the continuous image of the
compact Slicen(T), hence Slicen(T#) is compact. It follows that Trim¢(T) is S-compact. For
every h [CRL., pv(Slicen(T¥#)) = v(Slicen(T)) < oo; We get that Trimg(T) [Tl O

The next lemma assert that Trimg(T) is an approximation of T.
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Lemma 4.2.7. Let T [ and € > 0. We have:
dLGHP(Ta TrlmE(T)) <E.

Proof. Consider the Borel subset of T x<T#&: A = {(x, p(X))}x 3 The projection p is surjective
by de nition of T€, so A is a correspondence. Note that, since p preserves H, the restriction
An = {(X,p(X))}xrTy is a correspondence between Ty = Slicen(T) and TS = Slicen(T¥®).
Recall Conditions (3.4.1) to (3.4.4) to be a e-correspondence between T, and Tg, and let us
check them for Ay, using the properties of p.

Condition (3.4.1). We have for every (x,y), (X5yY AL |d(x,xJ — dé(y,yY| < 2¢.

Condition (3.4.2). We have for every (Xx,y) CAL: H(X) = H(y).

Condition (3.4.3). We have v(B) < pv(p(B)) for every Borel set B [T}.

Condition (3.4.4).We have pv(BY = v(p~1(BY) for every Borel set BY [T§.

We get that Ay is a e-correspondence. So Proposition gives that dgnp(Th, TE) <€
for every h Rl so dy gHp(T, Trime(T)) < €. O

Lemma 4.2.8. The map T B Trimg(T) de ned on T is 1-Lipschitz, hence measurable.

Proof. Consider (T,d,H,v), (THd9HEVY 11 h CRL,, Ty = Slicen(T) and T= Slicen(TH.
Set (U, 3, H, 1) = Trimg(T) and (US8FHE Y = Trime(TY, Un = Slicen(U), U= Slicen(U5.
We note p and p“the projections T 3 U and TY3 UY By Proposition [3.4.1, we can
choose A a np-correspondence between Tn and T with ng > dgpp(Th, T/). We set AP =
{(p(X), PxY)}xxyrms Let us prove that A is a no-correspondence between Un and U
By construction of A and A Ais a correspondence satisfying Condition (3.4.2) 3.4.3) and
with € replaced by no. So we only have to prove Condition (3.4.1). Take (u,u", (v,v5 1
Aland (x,xY, (y,yJ A some respective antecedents by p and p" Using the fact that A is

a 0p-correspondence, we have

18(u, v) — 8 u V|
= | max([H(x) — H(y)|, d(x, y) — 2g) — max(|H{xy — Hy"], d{x"y" — 2¢)|
< max (x) = H)| — IHY — HYYHIHd(x, y) — 2¢) — (d4€xTy" — 2¢)|
< max BH0 — HIE) + 1HE) — My y) — ity
< 2[]0.

We used Condition (3.4.2) and condition (3.4.1) for A in the last equality. We have proven
that Allis a no-correspondence. Using Proposition we see that dgpp(Un, UD) < no. Since

No > dgup(Th, TS) was arbitrary, we have dgpp(Un, Ury) < drp(Th, TS). By De nition[3.1.12
we see that dgnp (U, UY < d gup(T,TY, so T B T&is 1-Lipschitz on (T, d_gup). O

De nition 4.2.9. We call discrete tree any tree T [Tlsatisfying the following conditions:
(i) For every h [CR], T has only nitely many points at height h;
(ii) For every compact interval I, T has only a nitely many leaves with heights in I.

Any slice of a discrete tree T only contains nitely many branching points. For any leaf
x LTI, take y(x) the closest branching point in T, we call B(X) = X,y the external branch
of x.
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Lemma 4.2.10. For every T [Tl € >0, Trimg(T) is a discrete tree.

Proof. The number of points at any height h R in Trim¢(T) is simply n"~&h(T) which is
nite by Lemma[4.2.3]since T is S-compact.

Take E the set of all leaves of Trim¢(T) except, if infr H > —oo the unique leaf at height
infr H (which is usually called the root of T). For every x £y [CH, we can take x5y" [Tl
some antecedents of x and y by p, the canonical projection from T to Trimg(T). Since X and
y are leaves, they are distinct maximal elements for [£, %o they are not comparable for [E1]
By de nition of [ this means that d&(x,y) > |H(x) — H(y)|, so d&(x,y) = d(x5yJ — 2e >
[H(X5 —H(yY]. It follows that d(x5 'y > 2¢. Let h > 0. Take E"a set of elements of T such
that p is one-to-one from EPto E. Since infyoy ey cd(X5yY = 2¢ and Ty, is compact, E-
has only a nite number of elements in Ty,. Since p is a height-preserving one-to-one map
between EMand E, Trim¢(T) only has a nite number of leaves with height in [—h, h]. O

4.2.3 Stump

We de ne the stump below h of a height-labelled tree (T, d, H, v) as the sub-tree Stump,(T) =
{x CTH(X) < h}. Stump,(T) is equipped with the restriction of d, H and v to Stump,(T).
The function Stump can easily be extended to measured labelled spaces. Note that Stump
commutes with Slice and Trim.

Lemma 4.2.11. The map (T,h) B Stump,(T) is measurable on (T % R).

Proof. We write Sp(T) = Stump,(T) for simplicity.

Step 1. we prove tﬁt for everyIJ_n.] R, the map T B Sux(T) is measurable. Recall
the measurable map f h,(T,d,H,v) = (T,d,H,1q<h - v) from Lemma and write
fn(T) = f(h, T). Note that Sp(T) = Sh(f(h,T)). Recall that T is closed in (X%,d gHp)
according to Theorem Since T B f,(T) is measurable, we only need to prove that Sy,
is measurable on the direct image

fn(T) = {(T.d,H,v) LTHv((h, e0)) = 0}.

Since the application p B p((h, +o00)) []0, +oo] de ned on the set of Borel measures (i.e.
measures which are nite on compact sets) on R is measurable, we deduce using Lemma
3.4.12| and Theorem |4.1.15| that fi,(T) is a Borel subset of T. We will prove that D=

{(T,d,H,v) CTSK(T) = [His a Borel set, then we will prove that on D, = f,(T) \ DhE,]the
map T B Sx(T) is 2-Lipschitz in T.

Step 1.1: we prove that DHs a Borel set. We have D= {(T,d,H,v) COJXJH(x) [
(h, )}. Set

F={(T,dH,v) CTXJH(x) [JA,00)} and U ={(T,d,H,v) CTIX]JH(X) & h},
so that we have D\-=F nU. The set F is closed in T by Lemma and since T is closed
in X3, while

T\U ={(T,d,H,v) (T IX]H(X) = h}

is closed in T by Lemma [3.4.11, This makes ththe intersection of a closed set and an open
set, thus a Borel subset of T.
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Step 1.2: we prove that on Dy, the map T B Su(T) is 2-Lipschitz in T. Take h [1
R, (T,d,H,v), (THdYHSVY two S-compact height-labelled trees of Dy, i.e. such that
Hv((h, o)) = HWX(h,)) = 0 and SK(T) & [E Sn(TY. For r [R., take (Z,dz) a
separable metric space, ¢ [130(T,,Z), " [150(T5Z). Note

An = du(fo x HI(TY), [o"< H(T) and  Ap = dp([o x HI(Lr, - v), [0™x HY(1rp- v5).

We are looking at upper bounds for

Af = dy([9 x HI(SKh(Tr)), [9™= H(Sh(T))
A5 = dp([9 * H](1s, 7,y - V), [07% HI(1s, r - V).

We obviously have AE = Ap. Let us prove that when Ay < oo,

L YN
[p > HI(Sh(Tr)) I HY(Sn(Tr) "
Recall Remark 3.2.1] (A). For any x [CSh(T,), there exists y [T}’such that

dz (e(x), o'{y)) CH (x) — H{y)| < An.

If y CSH(T/) then we are done. If not, we have h < H'y). Since Sp(TH & [dnfrcH < h,
so we can take y~the ancestor of y in T at height h. Since x [Sh(T,), and y CIFA Sy(TH,
we have —r < H(x) <= h < H{y) < r. Since H(y"J = h, we have y~ [CSL(T,). Let us check
that yis close to x. We have

dz (0(x), '{y")) = dz(e(x), 9Cy)) + d'Cy,y)
<A +Hy)—h
<Ay +HYy) —H®X)
< 2/\Hq

and [H¥yY —HX)| = h—H(x) < HYy) — H(X) < Ay. We have proven that

[0 x HI(Sh(Tr)) 0™ HI(SH(T) 2.

Since T and T hold symmetric roles, we have Af < 2A.
Taking the in mum in Z, @, @5 we have for every r Rl that

derp(Sh(Tr), Sh(T)) < 2dgup(Tr, T.,

50 di grp(Sh(T), Sh(TY) < 2d gup(T,TY, so T B Sp(T) is 2-Lipschitz on Dy,. This implies
that Sp1p,, is measurable. Then notice that

Sh(T) =Sh o Tr(T) = Sh(fh(T))lfh(T)ED]w + D:I:h(T)EDi.II

We deduce that S, = (Splp,) ° fn + IIbhij T and thus Sy, is measurable for every h.

Step 2: we prove that for every T [Tl the map h B Sp(T) is right-continuous on R. Take
(T,d,H,v) a S-compact height-labelled tree and h [CR. If T is empty, then S is constant.
Suppose T not empty.
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Case 1. Assume Sy(T) is empty. This implies that h < mint H. Since h B Sp(T) is
constant on (—oo, mint H), we get that S, (T) is right-continuous at h.

Case 2. Assume that Sy(T) is not empty. We will prove intermediary result, then make
a second disjunction between sub-cases 2.1 and 2.2 to prove the right-hand continuity on
R4, then on R. For every h> h we can use the inclusion Sp(T) CSh(T) as a particular
embedding to give an upper bound for d gyp (Sh(T), Sh«(T)). For r R, note

An(r) = du([ld < H](Snh(Tr)), [1d < H](Sh«(Tr)))

and
Ap(r) =dp([ld x H](1y<n, jHi=<r - V), [1d X H](1p<pijHi<r - V))-

For every r, we have Sp(T;) CSAA(T,).
Let us prove that when |h| < r we have

Ap(r) =h™—h and Ap(r) < Hv((h,hY). (4.2.3)

We rst prove that Sp(T,) C(3n(T,))" M. Recalling Remark (A), take x CSh(Ty).
If X [9n(T,), we are done. If not, we have H(x) [(h,h. Since Sh(T) is non-empty
by hypothesis, we can take xJthe ancestor of x at height h. Since —r < h < r, we have
XU Sh(Ty) and d(x, x5 = H(x) — H(xXY < hU—h. Since Sp(T) CSh«(T), we have proven
that An(r) < h™=h. Since 1g, (1,)v < Ls, ¢rrV, We have with Lemma that

Dp(r) < V(ShdTr)) = v(Sn(Tr)) = H((h,hT n [=r, r]) < Hv((h, h).

We have proven Equation (4.2.3)).

Case 2.1: if h = 0 and since Sy(T) is non-empty, then for r [Q, h], we have

Tr = Sn(Tr) = Sp(Ty),

s0 An(r) = Ap(r) = 0. For r > h, Equation (4.2.3) holds. By De nitions[3.1.9/and (3.1.12]
this gives

Ld ]
digHp(Sh(T), Spd(T)) < 1 Ay COp) e "dr

L L1 1
< Oe "dr+ [h —hY CAv((h,hY) e "dr
h

2 |
< [h=hY CAv(h hHe™"
— 0,
hth

so, with the eventual addition of Case 1, h B Su(T) is right-continuous on R.

Case 2.2: we treat the last case h < 0. We shall only consider that h™ [(h,0). For
r [0, —hY, we have Sh(T,) = Sh(T,) = CFor r C[3Fh5—h) we know nothing as Ay may
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be in nite. For r = —h, Equation (4.2.3) holds. By De nitions|3.1.9and [3.1.12} this gives

Ld —
dierP(Sh(T), Sh(T)) = . 1 LAy [Ap) e "dr
(= (=
<0+ 1 e "dr+  (lh—h"Y Av((h,hF))e "dr
—h —h
=e""— " + (jh — hf CAvV((h, hF))e™"
htHh

This concludes Step 2, as we have proven that h B Sy (T) is right-continuous on R.

Using Lemma [3.4.13], the measurability in T and right-continuity in h imply the measur-
ability of (T,h) B Sh(T). O
4.2.4 Measurability of the ancestral process

In this section, we give a parametrization of some trees which will be used in the next chapter.
We de ne the vertical deformation of a tree, and give its action on the parametrization.

De nition 4.2.12. For (T,d,H,v) a height-labelled tree such that v(T) is nite and T a
non-decreasing continuous function from R to R, we call vertical deformation of T by f the
4-uple (THdYHEVY, where

HT=f-H,

d{x,y) = H{x) + H{y) — 2H"{x [},

T Wis the quotient of T by the relation d¥:,-) =0,
T5is the completion of T ™for dY

p(x) is the natural projection of T into T5
vi=pov,

H5is the 1-Lipschitz extension of H™over T*

Remark 4.2.13. The hypothesis v(T) < oo is only used when T is bounded, to prevent the
accumulation of an in nite measure at nite height for v&) We could alternatively suppose
that T is surjective on R. Similarly, the completion step in the de nition of T”comes into
play when f is bounded, and allows T “to be S-compact (this is proven in Lemma [4.2.14).

Lemma 4.2.14. The vertical deformation (T5d7HYp < v) of a S-compact tree (T,d, H, V),
with v(T) nite, by a non-decreasing continuous function f is still a S-compact height-labelled
tree.

Proof. Step 1: we prove that (T™d, H50) is a height-labelled tree. Set [Cthe relation such
xPEyP e d¥xbyH = HYyY — H¥xD. With Proposition [4.1.14], we just have to prove that
T™= (p(T),HY [Y3s a coded tree. Let us prove the four conditions in De nition [4.1.11] and
that [Zid an order.
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Condition 1: f is continuous, so HXT™ = f o H(T) is an interval.

Condition 2: if x” [Ey"and x” & yY then HYy) — H{x) = d"¥x5yY > 0, so H is
increasing.

We now prove that the relation [Ei3 an order on TY The re exivity is obvious since
d¥x x5y = H¥x) — HY¥xY = 0; Condition 2 implies the anti-symmetry; and for x" [Zyi’and
yU 571 we use the fact that His 1-Lipschitz for d”to prove that

HYzY — HYXY < d¥zxY
< d{z"y5 + dyxH
=HYzY - HYY + HYH —HYXD
= H'{z" — H{XY,

and deduce that z" [2xt] so [Cid transitive. We have proven that [Zid an order on T™

Condition 3: take x” CTI™and h® CHXTY such that hP< H¥xY and let us prove that
there exists y~ [ExX7such that H{yY = h” Choose x [T, h CH(T) such that p(x) = x"
and f(h) = hY If h®= H{xY then the result is obvious. If hP< H%xD, then h < H(x), so
there exists y [xIsuch that H(y) = h. Set y"= p(y), we have HXyY = h" Sincey =y [X]
we have d{x5yY = H¥xH + HXyY — 2HYp(y X)) = H{XY — HYyY, so y" 27 We
have proven the existence. Now, suppose that there exists y}, y5' [2xFwith HY{yD) = HY(y5).
Take x,y1,y> [Tl some respective antecedents of x5 yf’and y5'by p. x [34 and x [y are
ancestors of x, so they are comparable by Remark [4.1.12] Suppose without loss of generality
that x [yd Cxdyd. This means that x [y is a common ancestor of y; and y, and thus
H(x ) < H(y: [3d). We have

dyr.yz) = d'{y1,y2)
= Hy1) + H'(y2) —2H(y: 053)
< Hy1) + Hy2) — 2H'y; [X)
= H'{yz) + d{x,y1) — H{X)
= H{y;) — H{x + d'{x"yp)
= H'(yz) — H'(x) + H'(x) — H'{yp)

:0’

where for the rst and fourth equality, we used the fact that p preserves d”and HY the fth
equality comes from the fact that y’ [ExI) We have proven Condition 3.

Condition 4: let us prove that for every x5 y" [CTI the set of all points z" [CTI™such that
z9 (8% and z"” [By”has a maximal element. With Condition 2, if we nd zPmaximizing
H{zY, zis automatically maximal. Take X,y antecedents of x5 y=for p. For any zsuch that
zP (B and zP 5yl we have HYXY — 2H(zD + HYyD = d%x5zY + dYz5yY = d{x5yY =
HY{xY — 2HYx 39 + HYyY, so HXzY = HYx 7). It follows that taking z"= p(x )
provides a maximal element.

We have proven that (T™HY 33 a coded tree, so with Proposition (TTdYHT0)
is a height-labelled tree.

Step 2: We prove that (THdYHEVY is an S-compact height-labelled tree. The space
(THdYHY0) is the completion of (T ™dY HY0) which is a height-labelled tree, so it is a height-
labelled tree by Lemmalf4.1.4] We also have vi{TH = v{TT = v(T) < oo, so (THdYHEVY is
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a height-labelled tree. To prove that (TFdYHEVY is S-compact, we will use Lemma [4.2.3
Take hf'< hY [Rland 0 < & < 1(h5—hD). Suppose that n"t">(T" = k for some integer k > 1.
Since HY(TY is the closure of the interval HT) and h{'< hf’+ & < h5'— & < h}) there exists
h1(g) < ho(e) [CH(T) such that f(h1(g)) = hf+¢ and f(hy(g)) = h5—¢. By de nition, there
exists x{, ..., xi¢ CTFsuch that for every i & j, H'(x;) = h3'and d'(x}; xj) > 2(h5'— hp). Take
€ > 0. Since T™= p(T) is dense in TY there exists X1, ..., X, [T1 such that for every i & j,
|[HXX;)—h5] < € and d¥xi, Xj) > 2(h5—hD). Since d'{xi, xj) = H{xi)+HYx;) —2H {xi [Xj)),
we have

101 |
H{xi ) = 5 Hx) + Hxg) —dtxi xj) <hZ+e—(hy—h]) =hi+e

It follows that for every i 8 j, HXx;) > h5—¢ and HXx; [Xj) < h{'+ €. Recalling the choice
of hy(€), ho(€) and since f is non-decreasing, we deduce that for every i 8 J, H(X;) > ha(g)
and H(xi [X}) < hy(g). This means that n"®:h2(&)(T) = k.

We have proven that for for every k > 1, nhthz(TH = k Caf®h2©(T) = k, so we
have noh>(T)M< 1 (A @:"2E)(T). Since T is S-compact, so with Lemma [4.2.3 we get that
nhi®:h26)(T) is nite. We have proven that n"thz(T5 is nite with arbitrary hy < h,. Since
T His complete, we know from Lemma that T is S-compact. O

Now, we give a construction similar to the ancestral processes de ned in [8], that is a
tree with all the leaves at the same height, a measure concentrated on the leaves and a
characterization of the tree by the coalescence times.

Set Rﬁ‘?the set of non-increasing sequences of non-negative real numbers converging to 0,
and R% ER]i%'the set of non-increasing sequences of non-negative real numbers containing
only a nite number of positive terms. We set

D = {(un)n 00, NI j, Ui S 3.

The spaces RY 5 and Rﬂ%'are equipped with the norm ||-|| Of uniform convergence, for which
%0 is dense in Rﬁ%f The space D equipped with the topology of the pointwise convergence,
for which it is a Borel set of the Polish space [0, 1]NE.]

De nition 4.2.15. For h R, ((n)n mpﬂfand (Up)n o3, we de ne E = (0,1) x
(—oo, h], and for (x,y), (x5yY [CH, H(x,y) =,
d((x,y), Ty =y +y = 2(y ¥ dinf  (h—2n)),
X<=Uup<X

with the convention that inf [ +co. Let v be the 1-dimensional Lebesgue measure on (0, 1) x
{h} and T the quotient of E by the relation d(-,-) = 0. We call T(h, (¢n)n mm2(Un)n ep)) the
space (THdYHEVY, where (THdY is the completion of (T,d), H the 1-Lipschitz extension
of H to T, and vthe projection of v onto the quotient.

Lemma 4.2.16. Let h [R, (Zn)nmeCRY o, and (Un)n e D. The space T(h, (¢n)n s
(Un)n ) is well-de ned, and is a S-compact tree.

Proof. In the proof, we use the notations from De nition [4.2.15] Let us de ne the relation
[ shich that for every (x,y)(x5yY [CH = (0,1) x (—oo, h] we have

(x,y) CAy) LYY =y < yDEXI@SinnLX =)
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U (uz —u1) (1—u3)
. v l N\ /
H
. (uz,h—@3)
(uz2,h—202)
(ur,h—2)
to _°°J to _OOJ

Figure 4.5: Example of the construction.

Step 1. We will prove that d(-, -) = 0 is an equivalence relation, and that [Cislan order on
the quotient of E by d(-,-) = 0. The relation [islre exive. Let us prove that it is transitive.
Suppose (xTyT X7y [C(AH,y). We need to consider the order of the abscissas, there are
three cases to consider, depending on which abscissa is in the middle. Since the demonstration
is the same in each case, we only do the case x™< x"< x. In this case, we have x™< x and

y BT (=) =y LT (h=&)) BC IRt (h= )
2y Lt (=)
=y

where we used the de nition of (x5yJ [C(H,y) for the rst inequality and (x@yTd CXHYyH
for the second. We have proven that (xJ'y™j [(d,y), so [isltransitive. Finally, let us prove

that (x5yY (A, y) and (x,y) CA®TyY if and only if d((x,y), (x5y)) = 0. Suppose without
loss of generality that x < x" We see easily that

1 1
(Xlz,lyq A4, y) - yDS y Chfy<y,<x(h — ¢n))
(X, y) mqu y= qu[hfxsun<xt(h - Zn))
—y=y's inf (h—2)

X=SUn <X
1 . 1
- y+y=2y yPrd inf (h—2,)) =0
X=Uunp<x

] ]
= d (), x5y =o.

Since [isltransitive and re exive, we have proven that d(:,-) = 0 is an equivalence relation,
so the quotient T of E by this relation is well-de ned. This means that [islde ned without
ambiguity and is anti-symmetric on T, so [islan order on T.

. . O O _
In particular, note that if d (X,y), (x5y) =0, theny =y so H is also de ned on T.
This means that (T, d, H) is well-de ned.
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Step 2. Let us prove that (T, H, D)3 a coded tree, by checking the four conditions from
De nition £.1.111

Condition 1: the direct image H(T) is equal to (—oo, h] by choice of E, so it is an interval.

Condition 2: by de nition of [ The map H : (X,y) B vy is strictly increasing.

Condition 3: we work on E. Take (Xo,Yo) [CH, hg [(Fo0, Y], so that the point (Xo, ho)
satis es (Xg, hg) [(do,Yyo) and H(Xg, hg) = hg. Let us prove that for every (X,y) such that
(X,y) o, Yo) and H(X,y) = hg, we have d((X,y), (Xo, hg)) = 0. Suppose that Xy < X (the
demonstration is the same for X < Xp), we have

y=yo LQ inf_ (h—¢n))
Xo=Un<X
by de nition of It follows that, by de nition of d,

L] . ]
d((Xo, ho), (X,¥)) =ho+y —2 hg mEQDS'ﬂ:<X(h = n))
=ho +y —2(ho [¥).

Since we have y = H(X,y) = hp, the last line gives that d((xg, ho), (X,y)) = 0. Since p
(the projection from E to T) is surjective onto T, we have proven that p(Xo, ho) is the only
ancestor of p(Xo, yo) at height hg, so (T, d, H) satis es Condition 3.

Condition 4: once again we work on E. Take (x,y), (x5y) [CH. From Step 1 and the
proof of Condition 3, we see that (xX™yT is an ancestor of (x,y) at height y™if and only if
it is equivalent to (x,y" and yP<y. It follows that (xX™y% is a common ancestor of (X, )
and (x5yY if and only if d((x, yD, x@yT) = 0, d((x5yD, xTyT) = 0 and yT'< y [yT This
means that there exists a common ancestor of (x,y) and (x7yY at height y™if and only if
d((x, yT, x5y®) = 0 and y™< y Cy¥ Supposing without loss of generality that x < x5 we
have

Ay, 6y ) = 0 = y ey o 2 YIS int (h-2) =0
= yPs (_int_(h— )

X=Unp<X

(4.2.4)

1 ] .
It follows that X,y [yl Cifify<y,<x(h — Zn) Is the MRCA of (x,y) and (x3y%. Noticed
that:

40 Y), Y9 =y +y-2'y Ty dinf_ (h—2n)

X=Unp<X

=H((x,y)) + H(x,5y)) —2H((x,y) CRTYY).

Thus (4.1.4) holds. We have proven that (T, d, H) is a coded tree, so with Proposition (4.1.14,
(T,d,H,0) is a height-labelled tree.

Step 3 : Using Lemma [4.2.3] we prove that (T5dYHE VY is S-compact height-labelled
tree. Thanks to Lemma4.1.4] (T5dHY0) is a complete height-labelled tree, and vtis nite,
so, with Lemma [4.2.3] we only have to prove that n"+"2(T%j < oo for every hy < h, CRL For
every h; < h, < h we have n""(TH < n":h2(TH, so it is enough to prove it for h, & h. We
have HXTY = H(T) = (—o0, h], so, if hy > h, we have n""2(T§ = 0 < co. We can suppose
h, < h without loss of generality.
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Set n(h,) the number of integers n CN™$uch that h — ¢, < h,. Since lim, ¢, = 0, n(h,)
is nite, and Equivalence implies that T has exactly n(hz) + 1 points (z1, ..., Zn(h,)+1)
at height h,. In E, every point (x,y) with y < h, satis es (x,y) [(X, hy). This means
that {z [T|H(z) < hy} is covered by the sets {z [T|z [z} for 1 <1 < n(hy) +1. For
every i, H is an bijective isometry from {z [Tl|lz [z} to (—oo, hy], which is complete, so
{z CT| Lk CZ} is a closed set of TY It follows that {x CTIH(x) < hy} is a closed subset
of T so all the points of T\ T are at height at least h,. In particular, the points at height
hy in THare all in T, so they are all ancestors of {z1, ..., Zn(h,)}- BY Condition 3, there are at
most n(hy) + 1 points at height hy. Since n":"2(TY is the number of ancestors at height h;
of the points at level h,. We get n":"2(TH < n(h,) + 1 < co. Since the restriction h, £ h
was done without loss of generality, we have proven that for all hy < h, < h, nhh2(T < oo,
so (THdYHEVY is a S-compact height-labelled tree. O

Lemma 4.2.17. Let (h, ((n)nmve(Un)nmy R X< Rﬁ%}x D and T a continuoE non-
decreasing map from R to R. Set (T,d,H,v) = t(h, ((h)nmx(Un)n e Then f(h) —
T(h — ¢n))n mrelongs to RE’%' and the vertical deformation of (T,d,H,v) by T is equal to
the only non-Opoterm of

Crownpcx (F(h), (F(h) — F(h = &n))n oo (Un)n oery
where hP= lim_ _o, f(r).

Proof. It su ces to carefully consider the height of the leaves (they are all at height f(h))
and of the branching points (they were at height (h — &,)nmin T, so they are at height

(F(h = &))nmin TH. O

Lemma 4.2.18. The function (h, (¢n)nm(Un)n e B T(h, (Cn)n oo (Un)n o from R X<
RYo'> D to T is measurable.

Proof. Step 1. we prove that for every (Zn)nmpEEQC'and (Un)h v D, the map h 3
T(h, (¢n)n e (Un)n ey 1S continuous. Take h [CR, (T,d,H,v) = t(h, ({n)n mm(Un)n ey
and (Ox)k @ sequence of real numbers converging to 0 such that sup, x| < 1. Note
that replacing h by h + 3, only introduce a shift in H, such that we have the simple relation
T(h + ¥, ((n)nmus(Un)nmer = (T,d,H + 8, Vv), where H + d represents the map x B
H(X) + d¢. We shall now prove that (T,d,H + &, Vv) converges to (T,d,H,v) when & goes
to 0.

For all k CNISlet us set EX = Slicejnjk+1(T,d, H,v) and GK = Slicejy—s, +k+1(T,d, H +
3k, V). We have —(Jh| +k+1) <h =maxr H < |h|+k + 1, so EX is non-empty and we have
EK = {x CTJH(x) = —(Jh| + k + 1)}. Since k =1, we have

~(Ih| = 8 + k +1) < —(|h| + k) < h + & = max(H + &) < |h| + k < |h| = & +k +1.

This implies that GX is non-empty and that
GK = {x [CTIH(X) + 8 = —(|h| — 8 + k + 1)} = {x CTIH(x) = —(|h| + k + 1)}
This means that GK is just the shift in height of EX, so

derp(EX, G¥) < |8 20

— 0o
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The sets EX and G* are both compact, and we have min(|h| +k+1, |h| =8k +k+ 1) = |h| +k,
so Slicejn+k(T,d, H,v) CEF C(W,d,H,v) and Slice+«(T,d,H + &,v) CGF C(W,d,H +
O, V). The sequence (Jh| + K)x rn=goes to oo, so, by Lemma [3.4.2]

diehp((T,d, H + &, V), (T,d, H,v)) — 0.

We have proven that the sequence of trees (tT(h+9dn, ((n)n mvi(Un)n )k crirtonverges to the

tree T(h, ({n)n mus(Un)n oeee for digpp. The choice h and (8 )k =31, 1]N:'was arbitrary,
so h B 1(h, (h)nmoi(Un)n o) IS continuous by sequential characterization.

Step 2: we prove that ({n)n o2 T(h, (Cn)n mes(Un)n e is 1-Lipschitz, that is:
1 1
dierp T(N, (@n)n e (Un)n e T, D0 e (Un)n ey =< sup (20 — 4. (4.2.5)

Set & = sup, iiln — ¢5]. Take E = [0, 1] x (—oo, h], equipped with ve the 1-dimensional
Lebesgue measure on [0,1] x {h} [CEl We note (T,d,H,v) [T{h, ((n)nme(Un)n ey the
quotient of E by the pseudo-distance

d(0y), 0GY)) =y +y = 2(y TV dinf h =),
and (THdYHIVY T, () o> (Un)n o) the quotient of E by the pseudo-distance
d{(x,y), (<yY) =y +y™=2(y C¥F_dinf  h—2p).
X<Unp<X

Let us call p the projection of E to the quotient T, and p“the projection of E to the quotient
T Note that T(h, ({n)n met(Un)n mp ) iS the completion of (T, d, H, v) and that p is surjective
from E to T. We set A = {(p(X,Y), p(X, Y)}oxy) (ET

Take r [Rl, and let us prove that A induces a d-correspondence between Slice((T) and
Slice,(TY. For every (x,y) [CH, we have H(p(x,y)) = H{pXx,y)), so p(x,y) CSlice,(T) =
pix,y) [Slice,(TY. Since p and p“are surjective, A induces a correspondence between
Slicer(T) and Slice(TY. Recall Conditions (3.4.1)-(3.4.4) to be a 3-correspondence, and
let us prove that they are satis ed by A. Take (x,y), (x5yY [H, and let us compute the
distortion of A. We have

d(p(x, y), p(x5y ) — dp'x, ), p Xy
Eg+ y"=2(y y¥ Cdinf h— G = Y +y 2y CY¥Cdinf h— D'

=2ty Ly dint h— ) — (v L it h— )
<2 swp 2= ( sup_ g0

X<=up<xHD X<=up<xHD
<2 sup |¢n—C5 =28
X<=up<xH

This implies that A satis es Condition (3.4.1) with € replaced by 3. For (x,y) [H, we have
H(p(x,y)) = HYp(x,Y)), so A satis es Condition (3.4.2). Finally, for B [T1a Borel set, we
de ne BM= {pXx,y), p(x,y) (B} =p~= p~1(B). We have

v(B) = ve(p~1(B)) < ve(p*(BY) = vi(BY.
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This proves Condition (3.4.3). Since T and T Uplay symmetric roles here, we have Condition
as well. We have proven that A induces a d-correspondence between Slice,(T) and
Slice, (T for every r [RL.

The spaces T™ = 1(h, ({n)nmi(Un)nmer) and T = t(h, ((Dn m(Un)n o) are the
respective completions of T and TY Set APthe closure of A in T™x T and let us prove
that Alis a d-correspondence. For every x CTIT there exists a sequence (Xn)n ri-Of elements
of T converging to x. Since A is a correspondence, there exists a sequence (X5)n miof
elements of Tsuch that (xn,x5) [CA. By de nition of A, we have H{xL) = H(xp), so
limy H(x5) = H(X). Since T™js S-compact, it follows that (X5)n m-has an adherence value
xPCTI™ By choice of x5 we have immediately HXxY = H(x) and (x,x3Y A" Since T ™and
T™have symmetric roles, we have proven that AYis an height-preserving correspondence.
Since T™\ T is v-negligible and T™\ T5is vinegligible, ADstill satis es Conditions (3.4.1)-
(3.4.4). For every r [R., since Alis an height preserving §-correspondence, it induces a
3-correspondence between Slice,(T™ and Slice,(T ™). With Proposition [3.4.1], we have

danp(Slicer (T, Slice (TTH) < 3.

By de nition of d_gnp, this yields

dieup(TETH <.

Since T™and T ™are the completions of T and T5 we have T™= t(h, (Zn)n rt5(Un)n o) @and
T™=1(h, Dn e Un)n s Since 8 = [[(€n)n e (€Dn muilleo, We have proven that the
application (¢n)nmr 3 T(h, ((n)n o(Un)n o) is 1-Lipschitz.

Step 3: we prove that if ({n)n EISIFER&,oa (Un)n B T(h, (¢n)n v (Un)n ooy i continu-
ous from D with the pointwise convergence topology to T. Take € > 0 and ng [CNI"3uch that

for every n > no, {n = 0. Set § = 5t @ mini<i<j=n [Ui — uj]), and take (UY)n oD
such that maxn<n, |un — U5] < 8. We set

T =1(h, ({n)n - (Un)n ey
TD:T(h’ (Cn)n mﬂ‘(uﬁ)nmﬁl

and p (resp. pY the projection from (0,1) < (—oo,h] to T (resp. TDH. Note that since
(€n)n i CRY 4, the projections p(E) and pXE) are complete discrete trees. This implies that
T = p(E) and TP= pXE). Consider o the permutation such that Ugr) < Ug2) < .- < Ug(no)-
Since & < 5 Mini<i<j<n [Ui — Uj|, we have ug,y < Ug,y < ... < Ug,, as well. Set

L1 0 L1

= y ;

[OEKi<n, %
Ug(iy < X = Ug(i+1)» %

0 Oe 0
Ug(iy < X™= Ug(i+1)

Ac = g,y),(ﬂy%mﬂ#

where E = (0,1) x (—oo,h], and we set by convention Ug) = uE(O) = 0 and Ug(ny+1) =
uE(nOH) = 1. Now, consider A = {p(x,y), p"(x"yJ}xy)raz. and let us prove that A is a &-
correspondence. Since for every i, Ug(y < Uggi+1) and uE(i) < UE(i+1)' Ag is a correspondence.
By surjectivity of p and p5 A is a correspondence as well. Now, we nd a simpler expression of
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d and d“ For (z1,zD), (z2,z5) A, there exists ((X1, Y1), (X YD), ((X2,¥2), (X5, ¥5)) A such

that (z1,27) = (p(x1,y1), XL YD) CA and (22,25) = (p(x2, ¥2), p'(%5,y5)). By de nition
of Ag, there exists i1, i; between 0 and ng such that for j [LL, 2}, Ugg;) < Xj < Ug(ij+1)-
Suppose X1 < X», we have

d(z1,22) =y1+y2 —2(y: yd [ ni% h —2n))

X1=URp<<X2
=yi+y2—2(ys Ld LA min - h={e)) LA inf - h—={n))
<i<ng n>ng
X1=Ug(jy<X2 X1=Un<X2
=y1+y2—2(y: [vd E(%Tilgiz h = Cs(iy))-

For the last equality, we used the fact that for n > ng, h — ¢, = h = y;, and the fact that
since for j L1, 2}, Uggi;) < Xj < Ug(i;+1), We have Uggy < X;j if and only if i < ij. Note that
the distance depends only on (i1,y1) and (i2, y2), so we have

d(z1,22) =y1+y2 —2(y1 Oyd CCOImin h — giy))

i1<i<i,

as soon as i1 < Ip. Similarly, we have, supposing that i; < i, that:

d{z1,22) = yr+yz — 201 Ty LOmin h = G(p)-
By de nition of Ag, we have y; = y[’and y, = y5 so we have proven that d(z:, z,) = d'(z[} z)
and H(z;) = HY(zD). This means that A induces a height-preserving isometry between T and
T and satis es Conditions (3.4.1) and (3.4.2).

We set, for all 0 < i < ng, Bj = {h} < (Ug(iy, Ug(i+n)] and B{’= {h} x (uE(i),uE(Hl)].
For every 0 < i < no, V(Bi) = Ug(i+1) — Uoiy and V(B{} = Ug(i.1y — Uggiy- According to our
previous calculation, p is constant on each B; and p-on each Bl] and the B; form a partition
of Supp(v). Take B [T1 Since all the mass is at height h and A preserves the height, we can
neglect the pﬁpf B situated strictly under height h. Since p is constant on the Bj, p~1(B) is
of the form 5 -Bi for I some subset of {9, no}. Set B'= {" 1| (@A[R, (z,zY CA}.
By de nition of A, it means that BP= p{ ; -BD. It follows that

1
v(B) = v(Bi)

i

= (Ug(i+1) — Ua(i))
i

< (Uggir1) — Uggy + 20)
i

=  v(Bj)+2(ng+1)d
i [

=v(BY +¢.

We have proven Condition (3.4.3) for A. By symmetry of the roles for T and T we have

Condition (3.4.4) as well, so A is a e-correspondence. Since A preserves the labels, A induces
a e-correspondence between Slice,(T) and Slice,(TY for every r [CR+. Using Proposition
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we have dgnp(Slicer(T), Slicer(TY) < ¢ for every r R4, so by De nition [3.1.12] we
have d_gnp(T,TY < €. Since € was arbitrary in RHand (uf), i-was arbitrary in a ball
of center (Un)niand radius & > 0, we have proven that if ({n)nmr' RS o, the map

Un)nmr B T(h, (¢n)n o (Un)n i) is continuous.

Conclusion: Since T(h, ((n)n m(Un)n mer)y is 1-Lipschitz in (¢n)n moand limg i€, = 0,
the map (Up)n =2 T(O, (Gn)n o2 (Un)n oepy is the uniform limit of

(Un)n e B T(h, (Lnsngln)n moi(Un)n o)

when ng goes to co. With the result of Step 3, (Un)n a2 T(h, ((n)n me(Un)n oy is the
uniform limit of continuous functions, hence is continuous.

The map t(h, ({n)n mes(Un)n e is continuous in (Up)n me=and 1-Lipschitz in (¢n)n e
over its domain, so it is continuous in (({n)n v (Un)n e The map

L1 5
h, n)nm(Un)nmer B T(h, (Ca)n oo (Un)n o)

is continuous in its two variables h and (({n)nm2(Un)n ey and R is separable, so, using
Lemma [3.4.13| the map T is measurable from R x Rﬁ%’x D to (T,dLgHpP)- O

4.3 Crown of a tree

4.3.1 Unordered forest Topology

The aim of this subsection is to de ne and study unordered forests of height-labelled trees.
The main result of this chapter is Theorem [4.3.13] giving a Itration (Sp)n10f (T,dLcHp)
adapted to growth process (for example in the case of Galton-Watson and Levy trees), and
a Itration (C_p)nhnof (T,dgHp) adapted to coalescent processes (for example in the case
of Kingman’s or A-coalescent).

For every h R, we set On = ({h}, dgny, h,0) [T, where dgyy is the only distance over
the singleton {h}. We consider 'T'C the set of all sequences (Tn, dn, Hn, Vn)n =0f S-compact
height-labelled trees such that lim, d_gqp(Th, 0n) = 0 for some h and for all n CNI=but
possibly one, mint,, Hy = h and if there is a ng such that minTno Hn, E h then T, = Cdr

mint, Hn, > h. We de ne, for (Tr)n o (T30 e Tk,

dBrp (Tr)n oes(Tr)n e = . gkﬁs%LGHP(Tm To(n): (4.3.1)

where S(NHis the set of all permutations of N~ The function d’Gpp IS Non-negative and
satis es the triangular inequality, so it is a pseudo-distance over Tc. We de ne T¢ the
guotient of Tc by the equivalence relation d°Gup((Tn)n o (T Dn o) = 0, and call crowns
the equivalence classes. Note that (Tc, d3yp) is separable, but not complete. The space Tc
is Polish though, since the distance

((T)n oA (Te)n ) B diGp ((Tn)n oot (T )n et} CJH — T,

where 0y, and Onoare the respective limits of (Tn)n e-and (TnE)n mriinduces the same topology
and makes T¢ complete.
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Remark 4.3.1. We give an intuition of the equivalence relation on Tc. Take two sequences
(Tr)nmwrand (Tn m—elements of Tc. We have d e ((Tn)n mes(T,Dn ey = 0 if and only
if (Tn)nmerand (Tn me-have the same limit 0, and the terms di erent from 0y, are the same
in both sequences. For example, for (Tn)n mi—and O = limy, Ty, the following sequences:

(On, T1, T2, T3, Ta, Ts, ...,
(On, T1,0n, T2,0n, T3, ...),
(Toy)n - for @ a permutation of N5

are all in the equivalence class of (Tn)n o= But adding or removing any term from (Tn)n e
di erent from O, would change the equivalence class.

An element of T¢ can always be represented as the class of a sequence (Tn, dn, Hn, Vi) n o
such that (supt,, Hn)n owtis @ non-increasing sequence of elements converging to some h LRI
To ease of notation, we will abusively confuse the classes of T¢ with the representents in Te.
If the terms of (Tn)nm-and (T)n Tk are all compact trees, then we can de ne

oo — : O
dShp (Tn)n (T i)n ) = " [IST;\I l__}lnSUp derp(Tn: Togmy)-
Note that, like d°5yp, the function dg}, is a pseudo-distance, and that dgj,, has the same
zeros as d e thanks to Remark It follows that dZ},p de nes the same quotient as
d’Ghp, SO d&yp is a distance on the set of all crowns containing only compact terms.
For h R r > |h| and (Tn)n e Tk with limp, T, = 0, we de ne

Slicer ((Tn)n mer)r = (Slicer (Tn))n o=

Lemma 4.3.2. For h (R, r > |h| and (Tp)n meC Ik with limp T, = 0, we have

Slicer ((Tn)n ey [Tk

Proof. Let (Tn,dn, Hn, Va)nme=be an element of T¢. Take n [CN~Such that mint, Hy [
[=r, r]. It follows immediately that Slice.(T,,) contains the root of T, so Slice,(Tn) is non-
empty and mingjice,(t,,) Hn = mint,, Hp. Since mint, Hy CI3r, r], we have Hp(Th) n[—r, 1] =
Hn(Tn) n (—oo,r]. It follows that

Slicer(Tn) = {xX CTh|HA(X) = r}.

For every X,y [Slicer(Tn), we have max yy Hn = Hn(X) CHKh(y) =<r1,s0 X,y [Slicer(Tn).
We have proven that if miny, Hy [[3r,r], then Slice,(T) is a tree and Mingjice, () Hn =
minT,, Hn.

If mint,, Hy > r or if T, = Cihen Slice,(T,) = [

From these two results, we see that for every n [CN$uch that mint, Hh = h 3, r],
Slicer(Tn) is a tree and Mingjice, (t,) Hn = mint,, Hy = h. If miny Hy > h or T, = [ hich
happens for at most one index, then we either have mingjice, (t,,) Hn = mint, Hy > h or
Slicer(Tn) = [@nd in the former case Slice,(Ty) is a tree with mingjice, (1,,) Hn > h.

We deduce that Slicer((Tn)n s in Te. O

To help prove convergences, we adapt Lemma [3.4.3to T¢ and prove the following result.
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Lemma 4.3.3. Let (Tn,dn, Hn, Vn)nmerand ((TX, dX, HX, v n ek oo be elements of Tc.
Take h R (resp hy [CR) such that lim, T, = 0y (resp. limp Tr',‘ = Op, ) and (re)k mva
sequence of positive real numbers such that limy ry = oo and for every k [CNISr > |h| CJhk|.
If

d&p (Slicer, ((Tn)n ey Slicer, ((TX)n mer)) == 0, (4.3.2)

then, we have:
dECC’%HP((Tn)nEISIF‘(Trlf)nENI)]k——(;O 0.

—

Proof. Take € [(0, 1) and h the real number such that lim, T, = 0. The tree Oy, is compact,
so according to Remark [4.1.16] there exists € (D, 1) such that for every compact height-
labelled tree T,

€
danp(T,0n) < €” Cdibnp(T,0n) < > (4.3.3)
and €™ [{0, 1) such that for every S-compact height-labelled tree T,

O
dLarp (T, 0n) < €™ [(TTis compact and dapp(T, ) < 2). (4.3.4)
2

By de nition of dg3p and dgHp, there exists a sequence of permutations of N (01 )k
such that for every Kk,

sup dehp(Slicer, (Tn), Slicer, (Ta )
o . . ed
< d&}p(Slicer, ((Tn)n oo Slicer, (Th)amn) + 5 (435)

Take ng [CN"Such that for every n = no, digrp(Tn,0n) < ™51 Thanks to Equation
(4.3.4), we have

SD

From the [didection of Lemma[3.4.3] we have that for every n < no,
Nim diarp (T, (. Tn) = 0. (4.3.7)

Combining (4.3.7) line with limry = oo and (4.3.2), we can take ko such that for every
k = kg, we have

1 K
EEI< no, digrp(Tn, Tg, (n) <€

> |h| +¢"
%HP(Slicerk((Tn)n i)y Slicer, (TF)n ) < EZD'

Let us prove that for k = ko, dgnp((Th)n i (TX)n ) < €. By choice of ko, we already
have dLGHp(Tn,TC',‘k(n)) < ¢ for n < ng. For n = ng, we have by choice of ox and (4.3.5) that

sup dGHP(SIicerk (Tn), Slicel‘k (T(i;k(n)))

Nn=ng
O

< 24, p(Slicer, ((Tn)n o) Slicer, (TX)n ) < % (4.3.8)
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From Equation (4.3.6]), we have dgnp(Th, 0n) < %D so the label function of Ty, takes its values

in[h— %D h+ %E] Since ri > |h|+&and the labels of a tree always span an interval, it follows
that T, = Slice, (Tn). Using (4.3.8), we nd that the label function of Slice, (TX )) takes

ok(n

its values in [h — e h + €, so Slicerk(Tc',‘k(n)) = T(';k(n). This gives, using (4.3.5) again, that:

dGHP(Tcl,(k(n), On) = dghp(Th, Tclfk(n)) +dgnp(Th, 0n) < €7

With Equation (4.3.3), we have d._GHp(T(';k(n),Oh) < §- By de nition of ng, we also have

digHp(Th, On) < £, so dLGHp(T(‘;k(n),Tn) <
We have for k = ko:

AP (Tn)n i (T )n eep < SUP digHp (Tgy (), Tn) < €.
n N
We conclude the proof as € is arbitrary. O

4.3.2 Crown of a tree

For (T,d,H,v) a S-compact height-labelled tree, h [CH(T), we de ne the elements of the
skeleton at level h
Ih(T) = {x CSkel(T)|H(x) = h} (4.3.9)

and the collection Cry(T) of sub-trees of T above level h as
Cra(T) = (CM(T))i )
with for i CIH(T), CN(T) CTlde ned by:
C'(T) = ({x CTIx Cifd, H, Lpysn - V). (4.3.10)

For h®> h, recall n"""'(T) of De nition [4.2.1} and note with remark that n"""{T) is
the number of indices i [CI}(T) such that C;(T) reaches height h" Lemmatells us that
nPh{T) is nite. If C;(T) doesn’t reach h then H(C;(T)) CIALhY. By de nition, it follows
that for such an index i, its total measure is less than Hv((h, hY), so

darp(Ci(T), 0n) < (W™= h) CAV((h,hF) =2 0.

This means that 1,(T) is at most countable, and that if 1,(T) is in nite then, thanks to

Lemma[3.4.5
limderp(Ci,(T),0n) =0 and  limdicrp(Ci,(T),0n) =0

for every enumeration (in)n mi-of the elements of 1,(T). This allows us to de ne an object
in 'T'c similar to Cr:
L1
h)n [N if T = [dr supy H <h;
%,Oh, ) if mint H > h;
%il(T), ey Cin(T),0p, ...) if In(T) = {iy, ..., in} with distinct iy, ..., in;
in (T)n o if 1n(T) = {in}n owrwith distinct (in)n o

Crownp(T) =
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Note that with this de nition, Crownn(T) belongs to Tc since the sequences converge to Op.
We shall denote by Crownn(T) its equivalence class in T¢ whose de nition does not depend
on the choice of the enumeration of 1,,(T). So the map Crown is de ned on R < T and takes
values in T¢.

As T is S-compact, then with Lemma , all the (nh'hE(T))h@h are nite, so we can
order (Cih(T))i rrgr) In some order of non-increasing height, and it will converge to Op.

Our aim for the rest of this section is to prove, after a series of technical lemmas, that the
function (h,T) B Crownp(T) is measurable from (R < T,dr % d gHp) to (Tc,d, Spyp). See
Proposition We set Dg the set of all (h, T) CRIx T such that Crownp(T)E(0n)n i
Looking at the de nition of Crown, this is equivalent to \there exists x [T such that
H(x) > h"

Lemma 4.3.4. The set Dg is open in R < T.

Proof. Take (h,(T,d,H,v)) [D=. By de nition of Dg and Crowny, there exists x [l
such that H(x) > h. Take any element (h5(THdYHEvY) R x T that satis es |h"— h| <
%(H(x) —h) and

] 1
duone(T, T < 2 T CEH() —h) @ el

. 1 B (. .
Since 3 1 L(H(xX) —h) <1 there exists r > |H(x)| such that
dorp (Slicey (T), Slicer (T5) < Z(HG) — h)

by de nition of d_gnp. Note that x is in Slice,(T). By Proposition [3.4.1, there exists a
$(H(x) — h)-correspondence A between Slice(T) and Slice,(T5. Take x" CSlice (T such
that (x,x5 CA. We have

HYY — h"= H(x) — |[H¥xY — H(x)| = h — |h"=h|
> H(x)—h—2%(H(x)—h)
=0.

We have H(x% > h” By de nition of Crown, (hi, T¥) [D=. Since h”and T Pwere arbitrary
in a small ball, we have proven that Dz is open. O

Lemma 4.3.5. Let (h,(T,d,H,v)),(hF(TTdYHIVY) Dg, r R+, "' R and & > 0
be such that h™> h [ht) 0 < § < h™— hPand r > |h| CJAY CJA". Set T, = Slice (T),
TH=Slice,(TY. If A T3 x T is a 8-correspondence between T, and T,”such that for every
x93, (v,y) A,

1 1
Hx) CHY)=hCHX D) =h - H{"yl) = h",
then

d&hp (Slicer (Crown(T)), Slicer (Crownp(TH))
< 2(h™- (h CAY) + Hv([h Cht- 5, h™+ 23]). (4.3.11)
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Proof. Note that Slice,(Crowny(T, d, H,v)) = Slice,(Crown,(T,d, H, 11, - v)) and that
[H (Lstice, (ty - V)I((h Ciaf= 8, h™+ 25]) = Hv([h Cht- 5, h™+ 25]).

In the Inequality (4.3.11), if we replace (T, d, H,v) and (T5d,"HvY by (T,d, H, 11, -v) and
(THd,"HY 11 v, we do not change the left-hand term, and we replace the right-hand term
by a smaller (or equal) upger bound. This means that proving the lemma with the additional
assumption [Hv E@@ (—oo,—r) [ o) =0issu cient to prove the lemma. Thus, we
assume [Hv CHYY (—oo, —r) [{H, o0) = 0 in the rest of the proof.

Step 1: we handle all the non-empty terms of Slice,(Crownn(T)) reaching level h™(if
any). Take n CNland Cy, ..., C,, the terms of Slice,(Crownn(T)) reaching at least level h™ If
n =0, that is if supr H < h™ there are none and we can directly go to Step 2. In the rest
of Step 1, suppose that n > 0, that is supr, H = h™ Take x [T} with H(x) = h™ and the
index i such that x [C}. Take x” [T} 'such that (x,x5 [CA. Since A is a §-correspondence,
HYXxY = H(x) — & = h™—§ > hYso there exists a sub-tree CZ,0f Crown(T5 such that
xPCC. Take (y,yH CAwith H(y) = h™ we nd that yUis in the same sub-tree as x"if and
only H¥x"y = h which is equivalent by hypothesis to H(x [¥) = h, that is if and only
if Xx and y are in the same sub-tree C;. Thus, we nd that Ci%is de ned independently from
the choice of (x,x") and that for 1 <i,j = n, Ci = Cj = CiZ= Cj& Therefore, we shall keep
the same index i and write Clinstead of C%

Now, we try to build a correspondence between C; and CI Consider

Ai = {(x,x) CAIX [T HX) = h Cx CTIHX) < h < {x"COH (XY < hT 5},

Let us prove that A; is a correspondence between C; and CF. For x [, it is straight-
forward to see that there is x” @ such that (x,x [CA;. Reciprocally for x” T,
if H{xY < h™+ & then x"is in correspondence with elements of C; thanks to the sec-
ond term of A;j. If H{xY = h™+ §, then there exists x [T, such that (x,x3 [A, and
H(x) = HY{x) — 8 =h™so x [T} by de nition of C and thus (x,xY is in the rst term of
Ai. So A is a correspondence between C; and CF. We compute the distortion of A;. We nd
that

sup  |H) — HYXY| < max(d, h™= h, h™+ 35 — hY) < & + ™= (h [hf) < 2(h™ (h CRY).

(X,x

Take (x, x5, (y,y) A&, we have three cases to check. If H(x) = h™and H(y) = h™then
x, x5, (y,yY and we have |d(x,y) — d¥x5yY| < 25. If H(x) < h™and H(y) < h™ then
the distortion is at most

Jd(x,y) — dxy| < Diam {x CTHIH(X) < h™ TDiam {x"COHTXY < h4-53
< 2(h"™+ & — (h Chl)),

since the diameter of a tree is at most twice its height. In the last case, suppose H(y) < h’'<
H(x). We have h < H(x [¥) < H(y) < h™ so

d(x,y) = H(x) + H(y) —2H(x 1))
LIH (X) — H(y), H(xX) + H(y) — 2h]
C(H (X) — hH () + h™= 2h).
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Similarly, we have h"< H{x"yh) < HY{yH < h™+ g, so

d'(x5y) = H(x) + H'(y") — 2H(x" )
CTH (x) — H'(y"), H'(x) + H'(y") — 2h1]
CH (Y — h™= 35, H¢XY + h™+ 5 — 2hY.

From those two intervals and the fact that |H(x) — H(xY| < &, we deduce that
|d(x, Y) d¢xyl
< (H(x) +h™=2h) = (H¥xY —h Q :aHQXS +h™§ —2hy — (HX) — hY

< [HX)—HY¥Y| + & +2h™—2h d+2h™2h
< 28 + 2h™=2(h CHY).

In the three cases the distortion is less than 2(5 + h™™— (h ChY)) < 4(h™ (h ChAf).

Finally, let us control the measures. Set v; the measure of C; and viDthe measure of Ci[.]
For any Borel set Bo [T] Ag CTIx TH we note (Bg)Ao = {x" CTIIx1C By, (x,xJ Ao}
Take B [CC] a measurable set, B> = B n H1([hW o)), B« = B n H™1((—o0, ). Using
the fact that A is a d-correspondence, we have:

Vi(B) < Vi{(B=2)A) + 8 +Vi(B<) = Vi{(B=)AT) + & + Hyi(lh, h').

For any Borel BS' CTH we note (BPA = {x CT|X¥CBY (x,xJ CA} and (BPA = {x [
Ci| XY B, (x,xY CA;}. Take BY [C['a measurable set, BY = B"n (HY~1([h™+ 3, 0)),
BZ = B (HY%((—o0, h'"™+ 3)). Using the fact that A is a 3-correspondence, we have:

Vi(BY = vi((BE)A) + 5+ vi(BL) = vi(BD)A) + 8 + HY(hTh™+3)).
We nd that Ai is a 6i-correspondence with
i = max 2(h“ﬂ (h Eﬁﬁ) = - 4(h™= (h CAY),d + Hvi(h,hDT), s + HY{[hT h ™ 5))
= max 2(h”ﬂ (h £AY), 5 + Hvi([h, hD),s + HYH[hS hT+ 5))|:I

Since A is a dj-correspondence, we get with Proposition that dgpp(Ci, 05 < 0i. We
set 1 1
3"=max 2(h™- (h Cad),s + Hv(h, hD),d + HYK[hTh T+ 3)) .

We shall use later on that since h™= h [ht we have
|h —hY < h Cht- h Cht< h™ h Chf< §72. (4.3.12)
Notice that 5~depends neither on i nor on n. It follows that

max dGHp(C.,Cg < max §;

<<n I:I
< max  max 2(h”ﬂ (h CAY), 5 + Hvi([h, h'D), 5 + HYH[hT h™+ 5))

<"
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Step 2: we prove the result when there exists an term Bg of Crown,(T) or of Crown,o(T5
such that Slice,(Bg) = L[For convenience, assume that Bo = (Tn,dn, Hn,vn) is a term of
Crownp(T). By Lemma4.3.2] Slice,(Crownn(T)) [Tk, so Slicer(Tn) is the only empty term.
Since there can’t be empty terms in Crown(T) by de nition, and terms of Crown(T) rooted
at height h have at least a point at height h [[3r, r], we have mint, Hy, > h. A second look
at the de nition of Crown,(T) immediately tells us that T, =T.

We have T, = Slice,(Tn) = L[Jdand dgup(Tr, T) < 8 < h— hP< oo, so TZ= By
hypothesis, Crownp (T YE(0n)n 50 T Hhas at least a point at height > hY Since hP 3, r]
and T;”’= LT Fdoes not have a point at height hY Since H(T Y is an interval containing a point
above h™> htbut none at height h we have minycH™> hY so Crown,«(TY = (T50nh50n5...)
and we have

d&p (Slicer (Crownp (T)), Slicer (Crownn(TY)) = dp (G0, - - ), (G0 .. .))
= |h—hY
<"

Step 3: control of the short sub-trees. Suppose that there are non trivial elements in
Slicer(Crownn(T)) or Slicer(Crown,«(T5). Recall Cy,...,Cn,Cp...,C5 from Step 1. Set
(Cii>n and (05i>n the rest of the sub-trees. None of the sub-trees (Ci)i=n reache h™while
none of the sub-trees (CHi>n reache h+ 3. For i > n, we take A; = C; x CI} A; is a
correspondence between C; and C{satisfying

sup [H(X) — HYxY| <3 + h"™= (h Caf) < 5"
(XY A3

Its distortion is less than
Diam(C;) [Diam(C{) < 2(h"™ 5 — (h [h}) < 25"
We have that for every measurable sets B [Cj, B CC}
[v(B) — vi{BY| < max %ci),v%cﬁm
<max Hv([h, hD), HYY[hThT+ 5)
< 8"

We deduce that A; is a §-correspondence. We have proven that for i [N 'dgnp(Ci, CP) < 8"
)
d&yp (Slicer (Crown(T)), Slicer (Crown,(TY)) < sup dgnp(Ci, C) < &
i [N

Step 4: conclusion. We only need to prove "< 2(h™- (h [hY) +Hv ([h CEA-3), ™ 25]).
Recall that we have either [h ChAh™+ 8] C[3r, r] or [h CAY h™+ 3] n [—r, r] = [CRecall the
assumption that [Hv CHYY((—oco, —r) [{H, o0)) = 0, and

1 1
3%= max 2(h™ (h ChY), 5 + Hv(h, hD),5 + HYYhThTH 5)) .
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If [h CAYh™+ 8] n [—r, r] = [xhen § +Hv([h, D) = 5§+ HYK[hTh ™ §)) = 6 < hLhP<
h'— h Al so "= 2(h™ (h Ch) and we are done.
Now, suppose [h Cht h™+ 3] T3, r]. Since A is a 3-correspondence between T, and T
we have |[H(x) — H{xY| < 5 for all (x,x5 A, so
|
PCHYXY Cpyn ™ 5)}'% 4 CTH(x) CJA- 8, h™+ 23]},
Since A is a d-correspondence between T, and TF, we have, with the last inclusion:
(|
HYYhYh™+ 8)) = vﬂ'?xD CTHHYXY A h ™+ 8)}
1
=v {XPCIHYY Cptn™ 5)}% +3
1 1
v {x COHx) A" 5 h™+ 23]} +3
= Hv([h"= 8, h™+ 25]) + &.
As d9< h— h h¥ this means that

3"< max(2(h™= (h Ch¥)), 25 + Hv([h CEH- 3), h™+ 25]))
< 2(h"™= (h CHY) + Hv(h Cht- 5, h™+ 23]).
This ends the proof of the lemma. O

The next lemma uses Lemma to give a su cient (very technical) criterion for the
dgnup-convergence of the crown of a sequence of trees.

Lemma 4.3.6. Take (h,(T,d,H,v)) [CDs with Hv({h}) = 0, (TX, dx, Hx, V¥)k na se-
quence of elements of T, (hk m (N mtwo sequences of real numbers converging to h
and satisfying hE]> h EEE (ri)k @ sequence of positive real numbers with limit oo, (dx)k i
a sequence of positive real numbers with 8 < h™—h{. If for every k [Nl there exists a 8-
correspondence AK between Slicer, (T) and Slicer, (T*) such that for every (x, x5, (y,y5 &K,

1 1
H(x) CHY)=hP L HX @) =h « H(x"y = h (4.3.13)

then
d&Hp (Crownn(T), Crown,o(TX)) =0

Proof. Recall that by Lemma[4.3.4, Dg is open in R < T. As limy 8 = 0, we see by Lemma

[B3.4.3 that
Jim digup(TX, T) =0.

Since limg h!=h and (h, T) D, there exists ko such that for every k = ko, (hi) T*) M.
By hypothesis, limy |hi] = limy |hf = |n|, so

sup [hi] CJA < eo.
k [N'H

Since limy ry = oo, there exists kj'= ko such that for every k = kg,

re > |h| Cslp |hiH CAE = || O OB
KNI
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Using Lemma [4.3.5] we have for every k = kg’ that
d&tip(Slicer, (Crownn(T)), Slicer, (Crown,(T*)))
= 2(hiZ~ (h ThE) + Hv(lh T~ 8, hif+ 28]) — Hv({h}) = 0.

Using Lemma [4.3.3 we have d\gp(Crown,(T), Crown, oT k) T 0. O

The next three lemmas apply Lemma [4.3.6] to obtain some form of continuity for the
application (h,T) B Crowny(T) in three speci ¢ settings.

Lemma 4.3.7. For every (h,T) [Og such that Hv({h}) = 0, we have:

dGHp (Crownn(T), Crowny,, 1 (Trim 1 (T))) —- 0.

Proof. Take (h,(T,d,H,v)) [CDs. Set, for k CN5(TK, di, H,v) = Trim%(T) (see Def-
inition , p the projection from T to Tk and A: = {(x,p2 ()} the canonical
correspondence. According to the proof of Lemma [£.2.7, for all r = 0 the restriction
of A% to Slice (T) x Slicer(Trim%(T)) provides a %-correspondence between Slice,(T) and
Slicer (Trim (T)). For every k CNS'set hi!=h + ¢, hi= h{!+ 2¢ and 8 = . Thus, Ay is
a dg-correspondence.

Consider (x, x5, (y,yJ CA with H(x) = hPand H(y) = h{ Let us prove that x and y
are in the same sub-tree of Crown,(T) if and only if x“and y"are in the same sub-tree of
Crownn (Trim 1 (T)). We have xH= p(x) and yH= p1(y), so

2H(x"Cyf = H(xJ + H(yJ — de(xTy)
= H(x) + H(y) — max(|H(x) — H(y)|, d(x,y) — 2%)
= min(H(X) + H(y) — [H(X) = HY)I, HX) + H(y) —d(x,y) + 2%)

=2min(H(x) CH(Y), H(x ) + %),

where, at the second line, we used De nition [4.2.5 If x and y are in the same sub-tree of
Crowny(T) then H(x [¥) = h, so we have

H("yl = min(H(x) CH(y), H(x ) + %) = min(h>h + %) = hy

so xMand y"are in the same sub-tree of Crown;,(TK).
If x and y are not in the same sub-tree, then H(x [y} < h, so we have

HOTYY = min(H () T, HEX [+ ) < HX C -+ <h+ | =hp

so x"and y™are not in the same sub-tree of CrownhE(T K). This means that Condition (4.3.13)
holds.

We have h < h/<hZ-y_ o hand 0 <8 =i <h=h{. Let (rq)x mvi-be any sequence
of positive real numbers converging to in nity. (h,T) D=, so we can apply Lemma |4.3.6
with parameters (Ty)k i+ (Trim%(T))kmphEz h+1, hZ=h+2 and & = £. This gives
the result. O
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Lemma 4.3.8. Take (h,(T,d,H,v)) O such that Hv({h}) = 0, we have

dSrip (Crownn(T), Crownpi(T)) — 0.

Proof. Take (hQ)x mvra non-decreasing sequence of real numbers in (—oo, h) converging to h.
The set A = {(X, X)}x rmis a 6-correspondence between T, = Slice,(T) and T, for every r =0
and 3 > 0. Let us nd a sequence (hJk rnrr=k, such that hili, h and for every x,y [T],

1 1
H(x) CHY)=hP CHX @) =h « H(x ) =hl .

Finding such a sequence will immediately solve our problem, by taking oy = %(h,”f]— h),
re = k +max(|h], |[nT+ 8]), and by applying Lemma [4.3.6]

Take h™> h. The application h®3 n"-""(T) is left-continuous on (—oo, h™ and has
integer values, so there exists hj(h™ < h such that the map h”3 n"""(T) is constant on
[h5(hD), h]. From this and the convergence of (hi)k rWe can de ne knmithe smallest positive
integer such that for every k = kg nhen (T) = nhh™(T).

For K = Kp+1, set Ex = {n CNY%h [K),: < k} and nx = max(Ex). The sequence
(Nk)k=ky,., IS well-de ned since Ey is bounded and non-empty (it contains 1). By de nition
of kh+%, we see that k B {n CN'th Ek]+% < Kk} is non-decreasing, and that limy ng = oo.
For k = kn+1 set hi’= h + 1. We have hi! < h < hif’and nhichi(T) = n"h(T). So the
de nition of kym= k“i < k Is consistent with the rst part of the proof.

Set 8k = 3(hiZ=h) and r¢ = k + max(|hi], |nT+ 3¢]). The set A = {(x, X)}« [Sicey, (T) IS
a dk-correspondence between Slicer, (T) and itself. Let us prove that for all x,y [T} with
H(x) CH(Y) = hPwe have

Hx D) =h - H(x ) = h. (4.3.14)

If there are no points in T, above level hY then (4.3.14) is true. If there are points in
Slice,(T) above level hi’but no point in T at level hy; then mint H > hi’= h = h{} so
is true in this case as well. In the remaining case, T has at least one point at level
hE].] Reasoning on the ancestors of x and y at level h,”f](which might be equal), we can suppose
without loss of generality that H(x) = H(y) = hZ The distance d is ultra-metric on level
hEﬂand the sub-trees for Crownn(T) (resp Crownhkm(T)) are the equivalence classes of the
relation Ry, : d(x,y) < 2(h™-h) (resp. Rpo:d(x,y) < 2(hi-hp)). Since hi!< h we naturally
have xRny [XHycy. It follows that the partition induced by Ry is ner than the partition
induced by R The partition induced by Ry, consists of nh’hﬁuiT) equivalence classes, and

the partition induced by Rpp consists of nhE’hE]iT) equivalence classes. By choice of h they
have the same number of classes, and one is ner, so the relations are equal. We have

Hx ) =h « H(x [@y) = h
Since (h, T) [Os, we get by Lemma [4.3.6| that:

kIim d’gup (Crownp(T), Crownp(T)) = 0.
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The sequence (h)x wi-was arbitrary, so we have the continuous limit by sequential charac-
terization:
Ilgp] d’gup (Crowny(T), Crowny(T)) = 0.

O]

Lemma 4.3.9. Let (h,(T,d,H,v)) [Og be such that Hv({h}) = 0. If T has no branching
point at height h, then the map (h5T5 B Crown,(TY, taking its values in (Tc,d&yp), is
continuous at the point (h,(T,d,H,v)) [CRIxT.

Proof. Take (h@kmpa sequence of real numbers converging to h, (T¥, dy, Hk, Vi)k rni8 Se-
guence of S-compact height-labelled trees converging to T for d gup. Thanks to Lemma
3.4.3| and Proposition |3.4.1] there exists (ry)x merand (Ox)k motwo sequences of positive
real numbers such that lim ry = oo, limd¢ = 0 and for every k [N 'there exists Ax a
dk-correspondence between Slicer, (T) and Slicerk(Tk). We shall nd an integer ky and a
sequence (hDk k=K, such that for every k CN5h{’> (hi] Ch) + &, limy hi= h and for
every (Xv Xg! (y’ yg k1
H(x) CH(Y) = h’ CEI(x 0 = h « H(x"0E) = hy).

Then, we shall use Lemma[4.3.6] to end the proof.

Take h™> h. Set Knm= {x CTJH(x) = h™. Since T is S-compact, K,mis compact. We
set §(h™ = %infx,ygqmw(x,y) — 2(h™= h)| if Kymis non empty, else take (™ = |h™— h|.
Let us prove that we still have 0 < 3(h™ < h™-=h. It is true by de nition when Kpmis empty
so we only prove the case Kymis non-empty. Take x [Kym and we see that by de nition,
§(hH < 3|d(x,x) — 2(h™— h)| = |h™—h|. A continuous map on a non-empty compact set
reaches its minimum, so there exists Xo, yo [Klpmsuch that 8(h™§ = 3|d(xo, yo) — 2(h™ h)|.
We have

30 = 51400, yo) — 2(n" )
= 2IH(0) + H(yo) — 2H(xo [3) — 2(n" )
= %|2hm— 2H (xo [d) — 2h™+ 2h|

= |h = H(xo Lyg)l.

Since T has no branching points at height h, H(xo [34d) £ h and (h™ > 0. This means that
whether Knmis empty or not, 0 < 3(hY < h™—h. From the convergence of (hQ)x w—and
Ok i for all h™> h, we can de ne knmthe smallest positive integer such that for every
k = knmy 8(h™ > 23, + [hi— h.

For K = Kp+1, set Ex = {n CNY%h [K),: < k} and nx = max(Ex). The sequence
(Nk)k=ky,., IS well-de ned since Ey is bounded and non-empty (it contains 1). By de nition
of kh+1 we see that k B {n [Nth Ek]+1 < k} is non-decreasing, and that limy ng = oo.

For k = kn+1 set hi’= h+ L. By construction Knm= k. Thus, we have 3(h > 25+ |hE+-h|
for all ==k as khm]— kh+ 1 < k. So taking = K gives:

3(hy > 28 + |h— h|
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and, as §(h"Y < h™=h, we have h'= h +3(hJ > h + |h/— h| + 28 = (h ChY) + 3.
Let us prove that for (X, Xy), (v, Yyx) Ak, we have

1 [1]
H(x) CHY)=hP CHX @) =h = H(x ) = hy .

If T doesn’t reach above the level h that is if supy H < h{Z there is nothing to do. If it
does, let us take (X, Xk), (¥, Yx) Ak such that H(X) CH(y) = hE].] We have :

[(Hk( Y — hi) — (H(x 03 — h)|
1
< S12Hk(u T3) = 2H (x Ty + |y = h
1
= 510k (X i) = Hi(Xi) = H i) = (A, y) =HE) = HE)I + lhi’= h
1
= 5 (Idk (X, yi) = d,Y)I + [Hi (i) = HOJL + [H i) = HY)D + I’ = h|
< 2 (@Bc+ 5+ ) + Ihg— i
= 28 + [h = h|
<8(hJ,
where for the third inequality, we used the fact that (x, xx), (y,yx) [CAx and that Ay is a

dk-correspondence.
Let us prove that 3(hJ) < |H(x ) — h|. If H(x 3 = hthen we have

[H(x O30 — h| = hZ—h = §(hJ.

If H(x [3) < hZ set x"and y"the respective ancestors of x and y at level hZ We have
H (") = H(x [y) and x5y~ [Kipgy and thus [H(x [y} — h| = |[H(x"Cy — h| = 8(hj by
de nition of 8(h. Applying this to the upper bound on |(Hk(xx [3d) —hi) — (H (x BJI—h)|,
we nd
0o D) — ) — (Hx 09) — ) o 8 < IH (x £3) .

For every a,b R, |b—a| < |a| implies that a and b have the same sign, so Hx(Xx [yd) — hE
and H(x 3y — h have the same sign. We have proven that

1 1]
HXx) CHY)=hZ CHX @) =h « He(xe ) =h .

(h,T) [Dg, so by Lemma we get

Jim d&Hp (Crown, (TX), Crownn(T)) = 0.

The sequences (hEbk me-and (T K)y oe-were arbitrary, so we have the continuity of Crown
at (h, T) by sequential characterization. O

De nition 4.3.10. For B [(RIx T, h [R, T O and (Th)nmi—a sequence of elements of
T, we note 1
Onr)n i if (h,T) LB

Honmr (e aa= e if (1) CBL
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Note that (h, T) B (0n)n s @ 1-Lipschitz application from Rx< T to T¢, so for any map
T from RxT to T¢, and Borel set B, the application (h, T) B 1y 1yerf(h, T) is measurable if
and only if f is measurable on B. Recall that Crown(T) is an unordered sequence of elements
of T. Recall the measurable map g de ned on RxT by g(h,(T,d,H,v)) =(T,d,H,14>h V)
from Lemma [3.4.14 which will be useful in the proof of the next Proposition.

Proposition 4.3.11. The map (h,T) B Crownu(T) de ned on (R x T,dr > d_gnp) taking
values in (Tc,dGup) is measurable.

Proof. Step 1: we prove that f; : (h,T) B 11y - Crowns(T) is measurable, for D; the
measurable (we will prove it in a moment) set of all (h,(T,d,H,v)) [Dgs such that T has
no branching point at height h. By de nition, the terms of Crowny(T) do not have positive
measure at their root, so we have Crownn(T) = Crownn(g(h, T)). Since the measure of g(h, T)
has no mass at height h, we can apply Lemma[4.3.9/to nd that for (h, T) D1, Crown is
continuous at (h,g(h, T)). It follows that on D1, Crown is measurable as the composition of
a measurable function by a continuous function. Let us prove that D; is a Borel set. We
have

(RxT)\D;
=D- %h,p,d,l—w)) [RIx T|d, %2 CTIH(x1) CH(X2) > h,H(x; [x3) = h}
=D= Fe,
e QY

where D= = (R > T) \ Dg and
1 E 1
_ _ x4, x, LTl
Fe= (h(T.d H V) LR T Yo h+e Hx) = h+e Hx [33) = h

Let us prove that for ¢ CQY the set Fe is a closed set. Take (hy, (T, di, Hy, Vi)) a sequence
of elements of F¢ converging to some (h, T) [CRIx T. By hypothesis, we can nd a sequence
(Xk, Yi)k mersuch that xi, y CTK, Hi () = hic + €, Hie(yi) = hy + € and Hi(xi TR) = hy.
For every k CNSinfre He < H(xk [34) = hy, so we can take x;’ and y’ the respective
ancestors of xx and yi at height h +&. Since T is the limit of (TX)x by Lemma
and Proposition [3.4.1), there exists two sequence (ry)k m! (Ok )k mei=Of positive integers such
that limgre = oo and lim & = 0 and for every k [CN"5ome Ay is a &, correspondence
between Slicer, (T) and Slicer, (T K. Since (hy)k oi-converges, r = |hy + €| for k above some
ko. For k = ko, we choose xyi [Tl such that (x5 xp), (ybyL) CAk. By choice, we have
H(xJ, H(yd [k +&— 8, hx +€+8]. Since (8)k m-converges to 0, (XYk=k, and (YJk=k,
are bounded in H. As T is S-compact, up to considering a sub-sequence, we can assume that
(XY k=K, converges to some (x,y) [CTIx T. By continuity, we have

H() = H(y) = lim H(q) = lim H(yJ =h+e
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and

d(x,y) = lim d(xiyid)
= lim di(xi, Vi)
= lim Hic(xc) + Hi(vid) — 2H (xi 7D
= lim 2(h + €) — 2hi

= 2¢.

It follows that H(x [y) = 5(H(X) + H(y) —d(X,y)) = h. Since H(x) [CH(y) = h + ¢, we
deduce that ('E) [CEL. We have proven that F; is closed, and Dg is open by Lemma{4.3.4,
so D; = Ds SEQEFC is a Borel set. This implies that 1 is measurable.

Step 2: we prove that f; : (0, T) B 1 1ym - Crowny(T) is measurable, for D, the
measurable (we will prove it in a moment) set of all (h,(T,d,H,v)) [COg such that T is a
discrete tree, see De nition[4.2.91 We prove rst that D, is a Borel set. Take (T,d,H,v) [Tl
For every r (R, we set E/(T) the set of leaves with height in [—r, r] and points at height
r. Set T, = Slicer(T). Let us prove that for every x [T}, there exists y [CH(T) such that
x [yl Take x [T}, the set {y [T}|x [y} is a closed set. Since T, is compact, there exists
yo [T with x [yd such that H(yo) = maxH({y [Tk|x [y}). This means that yg is
maximal for [Cinl{y CT}{x [y}, so yp is maximal in T, and yo CHE(T).

By de nition, T is a discrete tree if and only if for every r CRl., E((T) is nite. Note that
if 0<rF<rand E,(T)is nite then E,«T) is nite, so T is a discrete tree if and only if for
every r CNIS'E((T) is nite. Note that for LB, (T) is the set of all maximal points of T,. For
every Xi, ..., Xn, We can take yi,...,yn CHE(T) such that for all i, X; [yl If n < #(E((T)),
taking ys, ..., yn distinct elements in E(T) provides a family of non-comparable elements since
they are maximal. If n > #(E(T)), there necessarily exists i 8 j such that x; Cyil=y; [Xjl.
By Remark[4.1.12} x; [l or xj [l This means that E.(T) is nite if and only if for every
r CNISthere exists n [CNI=$uch that

Xi,...Xn [T}, OEi,j<n, (0 8j and x; [Xj).

This means that we have

1
D2 Dgﬂ@ (TdHV)I:£EDS|J<n(|,§JandX| IEI)

r (N-A [N(H

WS
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and
£ -
rmﬂmp(TdHV) IIISlJ<n(|’§Jandx.IEI) -
x1,...,xn 1 ==
= d,H,v) max(|H(x1)|,...,|H(xn)|) sr [1
rmﬂmﬁé [TEi<j < n,d(Xi,Xj) = |HXi) = H(X;)| E
xq,...xn 11 =
d,H,v) max(|H (x1)|, ..., [HXxp)]) <r 1
rmﬂmﬁé Ik i<j=ndXiXj)=[HX)—HX)I
- I:rn,
r (N(HA [NCH
where
1 1
xq,...xn 11 =
Frn= d,H,v) dki<j=n,
1 (IHO)] = 1 or dixi,x5) = [H(q) — HOg)l) F
The condition max(|H (x1)], ---, [H(Xn)|) < r is not equivalent to max(|H (x1)|, ..., [H(Xn)|) <

r, but the third equality holds anyway thanks to the intersection over r CNI~'The set Fy, is
closed thanks to Lemma [3.4.9]and Dg is an open set by Lemma[4.3.4 so D, is a Borel set.

Let us prove that f, is measurable. Recall from the beginning of Step 1 that Crownn(T) =
Crownp(g(h, T)) and the measure of g(h, T) has no mass at height h. With Lemma4.3.8, we
see that for every hand T,

Crownnh(g(h,T)) = n'L”lo Crownh_%(g(h,T)).

For (h,T) L[ID,, T is discrete, so, T only has a nite number of leaves with height in
[h—1,h+1], as well as a nite number of points at height h + 1. It follows that T only has
a nite number of branching points with heights in [h — 1, h]. The tree g(h, T) has the same
branching points as T, so for all but a nite number of h® CJd — 1, h], g(h, T) doesn’t have a
branching point at height h" Recall that (h7T) is in the set Dg if and only if there exists
x [T such that H(x) > hY Since (h, T) Dz, we have (hSg(h, T)) [Dg for all h"< h, so

(hYg(h, T)) O for all but a nite number of h“ [CJA — 1, h). It follows that
1] 1 111

1 - Crownp(T) =1 < lim 1, 1 - Crown,_1(g(h,T))
(h.T) D} h (h,T) D} N -t gty m h
[°71 (I:FI 9T o1 "

=lnmym - limf1 h=—,g(hT)
1 1 [TT1
This proves that f, is the point-wise limit of (h,T)B f; h— % g(h,T) on Ds.
nl ﬂp
Since D, is a Borel set and f; is measurable, we have proven that f, is measurable on R < T.

Step 3: Conclusion. Recall 1, 1y gy (Tn)n ey from De nition[4.3.10, From Lemmam,
Trim. is measurable. Since f, and g are measurable and Dg is a Borel set, it is enough to

proventhat 1 o1
Crownn(T) = lim 1n7ymow - f2 h+ -, Trim. (g(T))
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If (h,T) I'Dg, the result is trivial since for every (Tn)nm LT, 1h 1y - (Tn)n owris
constant equal to (On)n == Crownn(T). Now, assume that (h,T) [CDe. According to

Lemma [4.3.7, we have
Crownp(T) = Crownp(g(h, T)) = nIirrgo Crown, , 1 (Trim1(g(h, T))).

Since Dg is open, and (h + %,Trim%(T)) converges to (h, T) [Os, we can choose ng such
that for every n = ng, (h+ % Trim%(T)) [Os. Thanks to Lemma4.2.10 Trim%(g(h,T)) is
a discrete tree, so, for every n = ng, we have (h + 1,Trim%(T)) [DO,. We deduce that, in
the metric space (Tc, d gup):

Crowny(T) = nlingo Crown, , 1 (Trimz(g(h, T)))
I n n 1

n=ng
. 1 .
= lim fa(h+ —, Trim4 (g(h, T))).
We have proven that for every (h,T) CRIx T,
1 o1
Crownp(T) = nIirr(]o lhtyme - f2 h+ ﬁ,Trim;(T)

The map Crown is the point-wise limit of a sequence of measurable functions, so Crown is
measurable. ]

We recall that B(E) denote the Borel o- eld of a metric space E.

De nition 4.3.12. For every T-valued random variable T, we call (Stumpy(T))n =1 the
growth process associated with T, and (Crown_n(T))n = the coalescent process associated
with T.

We also de ne the Itrations S = (Sh)hma= (Stump;l(B(T)))h and C = (Coph =
(Crown—{,(B(Tc))h s

Theorem 4.3.13. The families S and C are lItrations on (T,B(T)). The growth process is
adapted for S, and the coalescent process is adapted for C.

Proof. By Lemma 4.2.11} T B Stump,(T) is measurable for every h [R, so the family
(Sh)nh = consists of a-sub-algebra of B(T). For h < hY)] T [T, we have Stump,(T) =
Stumpy, (Stump,«(T)), so Sy [Sho This proves that (Sp)nriis a Itration.

By Proposition , T B Crowny(T) is measurable for every h [CR, so the family
(Ch)n =y consists of o-sub-algebra of B(T). For h"< h, T [T, we have Crown(T) =
Crownh(Crownnw(T)), so C, CC}z and we have proven that (Ch)nrais the time-reversal of
a lItration. O

For T a random variable on T, the process (Stumpy,(T))n gzcorresponds to the growth
process adapted to (Sp)nsy If T is a Levy tree for example, the growth process is Markov
for (Sh)nra

For T a random variable on T, the process (Crownn(T))ngycorresponds to a coales-
cence process adapted to (Ch)nhz If T is a Kingman or A-coalescent tree for example, the
coalescence process is Markov for (Cn)h =3
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4.4 Mixing and exchangeability

The aim of this section is to de ne relations between the stump and the crown of a tree.
The rst step is to build a random tree from the stump of a tree and the crown of another.
For measurability reasons, we will mainly consider the law of this random tree, rather than
the random tree itself. The procedure is to take a height-labelled tree T = (T,d,H,v)
decorated with an additional probability measure p on T whose support is concentrated on
some level, say h CH(T) of T (that is, p is a probability measure and p(H~1({h})) = 1))
and another height-labelled tree TP= (THdYHE VY with at least a point at height h. We
give an enumeration (Tn = (Tn, dn, Hn, Vn))n oxi-of the crown Crown (which is in nite
by de nition). Note that for every n NS mint, Hy, = h and | iHnvn is a Borel
measure. We take an sequence (Xn)nm—0f independent random variables on T distributed
as p, and graft each T,, on Stump,(T) at X,. We mixing of T%onto T according to p the
probability distribution on T of the resulting random tree, and note it Pty see Theorem
Then, we will de ne notions that are of use in the next chapter. We say that a
random decorated height-labelled tree (T,d, H,v,p) is exchangeable at level h R with
respect to p if a.s. h CH(T), p is a probability measure over T concentrated at level h, and
the probability measure Pt 7 is equal to the distribution of T. When p is atomless, this
property is designed to be an adaptation of the discrete exchangeability of arrays, found for
example in de Finetti’s representation theorem. We will de ne properly the mixing operation,
prove all relevant measurability results to nally assert that the concept of exchangeability
is properly de ned, see De nition [4.4.8

We shall de ne decorated height-labelled trees in the next remark.

Remark 4.4.1. Let n [N’ We can generalize De nition to n-measured metric la-
belled spaces (E, dg, HEe, (v‘E)lsiSn), where v‘E are non-negative measures on B(E) such that
vL (Slicen(E, d, H)) is nite for all h Rl and i [{1,...,n}. Then, the distance dgnp given
in De nition @ is generalized by extending the Prohorov distance dé,z’d) from De nition
between two measures v and P on a metric space (Z,d) by the distance between two
family of n measures (v')1<i<n and (u')1<i<n on (Z,d) by:

iV (VDasisn, (W1=izn) = max d" V' ). (4.4.1)

The generalization of local Gromov Hausdor Prohorov distance di_gnp from De nition[3.1.17]
between S-compact measured labelled metric spaces to S-compact n-measured labelled metric
spaces is immediate, and the extensions of Proposition [3.1.13/and Theorem [3.3.1] are straight-
forward. We keep the same notation d gnp for the corresponding local Gromov Hausdor
Prohorov distance. Then, following De nition we say that (T,d,H, (v))1<i<n), Where
(T,d) is a tree, H is a map from T to R such that (4.1.1) holds and v' are o- nite measure
satisfying . We de ne TI as the set of S-compact n-height-labelled trees with the cor-
responding local Gromov Hausdor Prohorov distance. An immediate extension of Theorem
gives that (T, d_ gnp) is Polish. Notice that T = T. The results on the measur-
ability of the various functions de ned on T from the two rst chapters can be extended to
the analogue functions de ned on TIM.

We could go further in this generalization by considering a space E with a countable
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family of measures (E, dg, He, (vt )i ) and replacing the distance in by

A D@m= 27 (1 L P! u). (4.42)
i (N

With evident notations, we would get that (T[*°!, d, gnp) is Polish.

Recall T¢ de ned in Section Recall that a Borel measure is a measure de ned on
the Borel o- eld and nite on every compact set.

De nition 4.4.2. We de ne TE°"® the set of all (T, dn, Hn, Vn)n mi=C Tk such that

L1 . . L1 L1 [
the measure |, ytHnVn is @ Borel measure over R, i.e. such that | gifHnvn] [k, K] <
oo for every k N5’

L Ll
nmertinvn ({h}) =0,
for all n CN’mint, Hp = h,
where h is the height of 0, = limp Tp,.

For (T,d, H,v) an element of an equivalence class belonging to T, h CH(T), (Xn)n i
a sequence of points in T at height h and (Tp, dn, Hn, Vin)n oe=an element of an equivalence
class belonging to T(Egore' such that, for every n = mint,, Hyh = h, we de ne the T-valued
map

X%I, (xn)nmp(Tn)nmpD: (THdYHEVY (4.4.3)

where T dYHand v-are de ned as follows. We shall check in Lemma[4.4.3| that X is indeed
T-valued. For convenience, we suppose without loss of generality that the (Xn)n mo—are the
respective roots of (Tn)nmrand that the sets T and (Tn \ {Xn})n oxi-are disjoint. Set
1
TP=T L[ T,
n [N'H

and d"the only symmetric real-valued function de ned on T T Hsuch that

I:Ix,y) if X,y 1]
— n(X’Y) if X, Y I:D'h
dixy) = (%, Xn) + d(Y, Xn) if x CTh,y [T

n(X, Xn) + d(Xn, Xn) + dni(y, Xn)  if X CTh,y CThon 8 n®

We set HYto be H on T and, for all n, H,, on T,,. There are nogon icts in this de nition,
since Hn(Xn) = mint, Hy = h = H(X,). We de ne vP=v +  grvn. By hypothesis, H"
is a Borel measure. This concludes the de nition of X.

Lemma 4.4.3. For (T,d, H,v) an element of an equivalence class belonging to T, h CH(T),
(Xn)n vi=a sequence of points in T at height h and (Tn, dn, Hn, Vn)n eman element of an
equivalence class belonging to TEorel such that for every n [CN5int, H, = h, the tuple
X T, (Xn)n i (Tn)n o IS @ S-compact tree.
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Proof. In the whole proof, we keep the notations from (4.4.3). Let us rst prove that
(THdYHY is a height-labelled tree. For each property of an height-labelled tree, there are
many cases to consider, with pretty much the same demonstration. Since they are rather
straightforward, we only prove one case for each property.

The function d"is symmetric and positive-de nite. Let us prove the triangular inequality
d¥x,z) < d'{x,y) + dy, z) in the case x [Th, y CThoand z CTlfor n £ n” We have

d'(x,y) +d<y, z) = (dn(X, Xn) + d(Xn, XnD) + dn(XnTY)) + (dncly, Xnd) + d(Xn52))
= dn(X, Xn) + d(Xn, XpD) + d(Xn52)
= dn(X, Xn) + d(Xn, )
= d'x, z).

The rst inequality comes from the positivity of d,g and the second from the triangular
inequality for d; the two equalities come from the de nition of d” The other cases make
similar uses of those two properties. This proves that d"is a distance.

Let us prove that T Yis acyclic and geodesic. We prove the uniqueness of the injective path
between x and y and the existence of the geodesic in the special case x [T}, and y [Tl By
de nition of d7 any injective path from x to y must contain a single instance of x,,. For every
nUE n, the path can’t meet T,o\{xn} because its boundary in T “consists in a single point at
most. It follows that the injective path must be the concatenation of an injective path from
X to Xpn and an injective path from X, toy. Those are unique in T, and T respectively. Thus,
there is at most one single injective path from x to y. Since d{x,y) = d'{x, xn) + d'(xn, ),

X,Xn [3n,y is a geodesic from x to y. This means that T is a tree.
Now, we prove that T is a height-labelled tree, that is for every x,y LTI,

d{x,y) = H'(x) + H¢y) —2 min H%z). (4.4.4)
z[ Xy

We only consider the case x [CTh and y [Tl Since X, is the root of T, we have H(Xxn) =
h = Hn(Xn), so

HYx) + HYy) — Zan_ﬂ_ziqny HYz) = Hn(x) + H(y) — 2(Z l%lg Hn(2) ';'&L”,y H(2))
] [ C1 i 1
= Hy(XX)—h + h+H(y)—2(h hmin H(2))
z[Xhy
= dn(X, Xn) + d(Xn,Y)
since

h+H(y)—2(h %ny H(2)) = H(xn) + H(Y)—Zzl_mxi‘ny H(z) = d(xn,y).

We therefore obtain that holds in this case. The other cases being similar, we deduce
that T Uis a height-labelled tree.

Let us prove that T is S-compact. Take r (Rl and (yi)k rni 8 sequence of points of T
such that |HXy,)| < r for n CNY If (yi)k mi-has an in nite number of points in T or Tp,
(for some n [CNDY! then (yx)kmnihas an adherence point by S-compacity. If not, without
loss of generality, we can assume that y, I for all k [N~ Then, we de ne a sequence
(N ke y setting Nk = n where y, CTh \ {Xn}. The sequence (Xn, )k mis bounded in
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the S-compact space T since H(xn) = h. So we can take x an adherence point of (Xn, )k i
We have d'yx,Xn,) = HXyx) —h < supr,, Hn, — h for k large enough. By assumption,
limg ng = co and limp, d gHp(Th, 0n) = 0, so limg supr,,, Hn, —h =0. It follows that x is an
adherence point for (yi)k mi By the Bolzano-Weierstrass characterization, T is S-compact.
Since HY is Borel over R and [—r, r] is compact, we deduce that vUis nite on Slice, (T for
every r = 0. Thus, vHis a Borel measure. O

For (Z,d) a metric space, (Xn)n s (Yn)n L ZN ', 'we de ne
1
dBw ((Xn)n et (Yn)n e = sup = CdXn, Yn). (4.4.5)
n (NN

The function d&,, is a distance metrizing the point-wise convergence for the sequences in Z.
We write dpyw When there is no ambiguity on Z.

Recall d_p the local-Prohorov distance on the space of Borel measures on R de ned by
(3.4.17) in Section In the following technical lemma, we prove that X is continuous (in
some speci ed sense).

Lemma 4.4.4. Take (Z,d) a metric space, H a 1-Lipschitz map on Z, E a closed set of Z
and p a Borel measure on E such that (E,d,H, n) CTand (Xn)n =@ sequence of elements
of E such that the sequence (H (Xn))nmiis constant equal to some h CH(E). For k [NY’
take (FX). iclosed sets of Z and pK a Borel measure on FX such that (FK,d,H, p%) T,
and (xK)n @ sequence of elements of FK such that the sequence (H (xK))n s constant
equal to some hy CH(FX). Take (Tn,dn, Hn, Vn)n i@ Sequence oflniniempty trees such
that mint, Hn = h, Havn({h}) = 0, limphd gup(Th,0n) = 0 and =1 Hnvn is a Borel
measure on R. For k [CNtake (TX,dk, HK, vK), @ sequence of pon=pmpty trees such
that miny« HX = h, HEVE({he}) = 0, limn digrp(TK, On,) = 0 and = HXV5 is a Borel
measure on R.
Assume that:

dpw (%) n et (Xn ) oy —— O (4.4.6)
=) -
sup digHp Tn, Tn T 0,
] K L 1]
dep Hpvn,  Hove = 0, (4.4.7)
n=1 n=1 -

and there exists a sequence (ry)k r=0f positive real numbers such that limy _ o rx = +oo and

L . - " 5]
dy Slicer, (F), Slicer, (E) [dd ljni<r, M LjHj<r, -1 —— O.

— 0o

Then we have

T, . [ ]
diorp X FX Od0nms(TXn i X B, (o) kAT s — 0,

—

Proof. Lemma[3.4.2)is a key ingredient of the proof.

Step 1. We prove the following conditions: for every € [L(0,1) and r > |h|+¢, there exists
No, kg CNI=8uch that
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1. [KE ko, [he — h| <&,
2. [KE=kg,rx=r,
L. . 1
3. [KE= ko, dy Slicer, (F¥), Slicer, (E) <k,
L1 K 1
4. K= ko, dp LjH<r, - K LHjr "M <E,
5. [KE= ko, SUPn i diaHp(Te, Tn) < e,
6. K= Ko, MaXi<n=n, d(XX, Xn) <&,
7. [ no, Hn(Tn) CIALh + €],
8. [MI> ng,k = ko, HK(TX) IRk, hy + €],

1
n>no Vn(Tn) <&,

1
10. K= Ko, non VR(TH) <&

©

Note that under the hypothesis of the lemma, limy hy = h, by continuity of H and the
convergence of (XX)x rtowards x;. This gives 1 for ko large enough. Note that when ng is
given, Conditions 2 t?ﬁl{e straightforward b){%othesis, so we rst focus on Conditions 7
to 10. The measure | —qHnvn is Borel and .-y Havn({h}) = 0, so there exists & (0, 5)
such that 1 e

Hnvn([h,h +20]) < 5 (4.4.8)

n=>0

With Remark [4.1.16| there exists 8> 0 such that for T [T]
dicnp(T, 0n) < 8= L(Tlis compact and dgpp(T,0n) < d).

Take ng CN™3uch that for n > ng, d gup(Th, 0n) < %E! This condition will imply 7 and 9.
Thanks to (4.4.7), we can take k; [TNI=8uch that for k = ki,
) 1 L 1]

HEVK,  Hpvp < 3N+ (4.4.9)

nVn:
n=1 n=1

dip

and sup,, irdLchp(TX, Tn) < %E! The rst condition will imply 10, the second will imply 8.

Note that we have sup,~p, dLgrp(TX, 0n) < 3%and sup,,=n, dLerp(Tn, On) < 8% By choice
of 3 this implies that for n > ng we have dgnp(Tn, On) < & as well as dGHp(TrI](,Oh) = ¢ for
k = ki. Since dgyp(Th,0n) < 0, we deduce that Hn(TR) + 0] and thus 7 holds. Since
dehp(TK,0n) < 3, we deduce that HK(TX) CJAl— &, h + 3] [hy, +o0). Use that & [(0,£/2)
to get that 8 for k = k;.

We also have:
L1 L1 1 €
Vn(Th) = Hnvn([h,h +3]) < Hnvn([h,h + 23]) = - < ¢,
n>ng n>ng n=>ng 2

where we used that dgyp(Th, 0n) < & implies H,(Tn) LIhl h + 3] for the rst inequality and
the de nition of & for the last. This gives 9.
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Using the de nition of d p, see (3.4.17), and the Markov inequality, we deduce from
(4.4.9) that for k =k, there exists r= |h| + & such that:

L1 L1
1

dp L—riry- Hn%vr'ﬁ,l[_rgrk:]- Hovn <. (4.4.10)

n=>0 n>0

This implies that for every k = kj:

v%(T,‘f) < H;v"([h —8,h+3))

n n'n

n>ng n=>n
< HEvk([h —38,h+3])

= nVvVn
n=1

L1
< Hnvn(h—25,h + 23]) + 3

L1
= Hnvn(lh,h +25]) +0

IA
(Y]
(Y]

Il
m

where we used HK(T() [CTH— 8, h+4] for the rst inequality, and the de nition of
dp for the third inequality, that -, Hnvn has its support on [h, oo) for the rst equality,
and the de nition of 3, see (4.4.8), for the last inequality. This gives 10.

By hypothesis, we can nd ko = k; satisfying Conditions 1 to 6 for our chosen ng. This
concludes Step 1.

Step 2: We de ne some metric spaces that will be of use in the rest of the proof. For
convenience, we can suppose without loss of generality that (Xn)n iy (xﬁ)n,k mare the
respective roots of (Tn)n e (T/)nkm and that the sets Z, (TX\ {XKPnkmrand (Tn \
{XnPnmiare disjoint. The following construction is the same as the construction of X in

(4.4.3). Set

I:hjl I:hq It ) E— EEER
zP=z 1 =z [ (TN O (TAN{XKD
n
nI:ISIPI kEISIF' n [NOH! k [IN'H

and d™the only symmetric function on ZP< Z5such that

L] .
g{x, y) if X,y 4
j’f‘m(x,y) if X,y LTh,
d(X!y) = (van) + dquxn) If X D]’hy D]‘I,
(X,y) if x,y CTE,
R(x,xK) +dy, x&) if x CTK,y LTK.

Note that d”is a distance on Z7 For x [, (resp. TX), we extend H to be H(x) =
H (xn) + d¥x, xn) (resp. H(x) = H(xK) + d'{x, xK)). Note that since x,, is the root of Ty,
we have Hp(X) = hn + dn(X, Xn) = H(xn) + d'{x, xn) = H(x), so H and H, coincide on Tp,.
Similarly, H and HX coincide on TX. The function H is 1-Lipschitz on Z5 by extension and
de nition of d"
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For every k = kg and every n [CN%we know that dLGHp(Tr',‘,Tn) < nioe_r. Since € < 1,
£ <1, so there exists®| rk = r such that

€

darp(Slice  (TF), Slice,x(Tn)) < - (4.4.11)
0
We set
[ L1 Dq 1
Gy = Slice, (F¥) L Slice,(TX) and Gy = G{' [ (4.4.12)
n=1 n>np
] (. i
= Slicer, (E) L1 Slicex(Tn) and Ex = =l Th . (4.4.13)
n=1 n=>ng

1 1 .
We de ne v€ = pf+ vk and v = u+ | gwVn. By hypothesis, v and v are both
Borel measures. Set:

K _ |:|k K K [ _ ] ]
T =X F5 Xp)nmi(Ty)nm and T =X E, Xn)n et (Tn)n mw (4.4.14)

Step 3: We prove that for k = kg, Ex and Gy are compact sets such that

Slice (TX) LGk CI¥ and Slice,(T) CE} CT) (4.4.15)

as well as
dGHp(Gk, Ek) < Te.
_ ’ e T = o
Take k = ko. Since we can de ne T* to be equal to Fx 1 T 5) equipped with d5 H

and vi. We naturally have, as rx = r and r'r‘, =r, that:
Slice (T) LGk CT¥.

Note that |hy| < |h|+& < r, so XX Gy for every n. Let us prove that Gy is closed in TX. Take
x CTK\Gy. If x CEK, then we have that x [FEI¥\Slice,, (F¥). Since H is 1-Lipschitz, the ball
of center x with radius |[H(x) —r| > 0 is a subset of F*\Slice,, (F¥) CT¥\Gy. If x CTK for
some n NI then we have that x CTf \ Slice,« (TX) for some n < n. Since H is 1-Lipschitz,
the ball of center x with radius |H(x) — 5| > 0 is a subset of T\ Slice,(TX) CT¥\Gk. We
have proven that Gy is closed in Tk,

Now, we prove that Gy is compact. We have

supH = ry Csbp (supHp) Cbup rK < C(hy| +¢) [inax rk < oo,

n>np Tk 1=n=ng =Nn=ng

3We can extract r¥ for each n with the Markov inequality because we have a control on
1

k L] ; [ H I:ls € —r
sup digre(Th, Tn) = sup 1 Cd&np(Slices(Tr), Slices(Tn)) e “ds = —e™ 7,
n [N n R, No

. 1 L] . n ors 1 O
while a control on . sup,, 1 Ld&ne(Slices(Tr), Slices(Tn)) e Sds would allow us to extract a common r.
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By Lemma TK is S-compact. Since Gy is closed in TK and H is bounded on Gy, Gy is
compact.
We similarly prove that Ey is compact and that

Slicer(T) CEL [T

Recall the de nition of G/ and E_ given in (4.4.12) and (4.4.13). Now, we prove that
dGHP(Gk’GEb < ¢ and dGHp(Ek, EkE) < &. We have dGHp(Gk,G = dH(Gk'GEb m(lgk .
Vi, Lo Vk)- Since Gy Gk, we have

dn(Gk, Gy) = sup d'{x, Gy)
x [Gk
< sup sup di{x, x¥)
n>n0x|-_-|:§
sup sup H(x) — H(xX).

n>ng x D;g

As H(x) — H(XX) = HX(x) — hy and HX(TX) CJhk, hy + €], we have
> ng, XICTK, HX) —HXX) <hc +e—hc =¢,
which gives the inequality dy(Gk, G) <.
By Equation (3.1.2), we have
dp(la - Vi, 1gD" Vk) = Vi (Gk \G) < ﬁlﬂf) <&

Nn>nNg

It follows that dgrp(Gk, Gi) < €. Similarly, we nd that denp(Ex, ED) <¢.

Let us nd a 5e-correspondence between EkDand GE. By Conditions 2 and 3 from Step 1,
derp(Slicer, (FX), Slicer, (E)) < €

and, for n < ng, we have by (4.4.11) that dGHp(SIicerh(Tr‘f),Slicerh(Tn)) < n% By Propo-
sition [3.4.1} there exists for every n [ N4 £-correspondence A, between Slice,« (T/) and

Sllcerh Th). Set ] ]

A= (x,y) CSlice, (F¥) x Slicerk(E)Q(x,y) <t .

By 2-3 from Step 1, the fact that H is 1-Lipschitz and de nH%Pf dp, Alj_sI a e-correspondence
between Slicey, (FX) and Slice,, (E). The set A= A [] 1=n=n, An IS & correspondence
between Giand E[, let us prove that it is a 5e-correspondence.

Take (x,y), (x5yY CAY We can restrict ourselves to one of the following cases:

1. (x,y), x5yH A,
2. (x,y), x5y CA,,
3. (xy) CA, (x5y) AL,

4. (x,y) [B,, (xX5yY CA,gn & n”
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Let us bound A = [d(x,xY — d(y,yY| in each case. In Case 1, A < 2¢ because A is a &-
correspondence. In Case 2, A < Znio because A is a nio-correspondence. For Cases 3 and 4,
we rst prove that for every n < ng,

sup  [d(x, xK) — d(y, xn)| < 4. (4.4.16)
(x.y) LAh

Take y" CSlice,(Tn) such that (x5,y") [AL. We have, for every (x,y) [A, that
|d(x, x§) = d(y, xn)| < [d(x, X§) = d(y, Y| + [d(y, ¥ = d(y, Xn)|

<25 +d(yPxn)
No
€
=2+ H(y) —H(xn)
No
€ €
=2— + + —)—
_2nO (hk no) h
€
=3—+ —
_3n0 lhe — h|
< 4,

where we used the fact that A, is a nio—correspondence for the second inequality, that HXyY <
HxK) + n = hg + & for the third inequality and Condition 1 from Step 1 for the last
inequality. In Case 3, note that, since xK [Slice,(F¥), x, CSlice,(E) and d(xX,xn) < €, we
have (xX,xn) CA. Since d(x, x5 = d(x, xK) +d(xK, x3 and d(y,y = d(y, xn) + d(Xn,y" and
It follows that

A < |d(x, xK) — d(y, xn)| + [d(xTxK) — d(yxn)| < 2¢ + 4¢ = 6,

where, for the second inequality, we nd that the rst term corresponds to Case 1, and the
second to Equation (4.4.16). For Case 4, we have

A < |d(x, xK) — d(y, xn)| + [d(x5xK) — d(yTxn)| < 4e + 6 = 10¢,

using Equation (4.4.16) on the rst term and Case 3 on the second. We have proven Condition
(3.4.1)).
For every (x,y) CAY [HX) —H(y)|<¢ I% < 5¢, which proves Condition (3.4.2).

For B [Xland A [XIx Y, recall the notation BA = {y [YlI| XI[H s.t. (x,y) A}
for the of all elements in cor ndence with B fo Notice that the restriction of v¥
on FK 7% TXisequal to pk+ 1T vk and that u+ 1, vy <v. For B [ G} a Borel set,
we have

v¥(B) = k(B n F¥) + vE(B n T
n=1
o - | . e [
SUENFHA) +e+ (B TA) + =
n=1 0

. o ) g W @

< W(BAH + vh BA®Y +2¢
n=1

< V(BAT + 5,
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which proves Condition (3.4.3). Similarly, we prove Condition (3.4.4).
We have proven Conditions (3.4.1)-(3.4.4), so Alis a 5e-correspondence between G} and
EL Using Proposition [3.4.1, we have dgnp (G, EQ) < 5e. It follows that

deHp(Gk, Ex) < danp(Gk, Gi) + danp(Gi, Ex) + donp(Ex, Ex) <€+ 5e +& = Te.

This concludes Step 3.

Conclusion: We have proven in Steps 1-3 that for every € [(0, 1), r > |h| + &, there exists
Ko(r,€) [CNI8uch that for every k = ko(r, €), there exists two compact sets GK(r, ), EX(r, €)
such that

Slice (T¥) CGK(r, &) T,

Slice (T) CEK(r,e) CT1

and
dehp (GK(r, €), EX(r, ) < 7e.

From this, we deduce that there exists a sequence (ry, Ek)k2k0(|h|+1,%) in (|h|+1, +o0)x(0,1/2]

with limy r, = oo and limy ¢ = 0 such that for all k = kq(|h] + 1, %), we have k = Ko(rg, €k).
This means that for every k = ko(|h| + 1, %), there exists two compact sets GK(ry, ),
EX(r, &) such that

Slicer, (TX) CGK(r, &) TR, Slicer, (T) CEK(r,g) LT

and
denp(GX(rk, &), EX(rk, &) < &k

By Lemma [3.4.2 we have limy _ co digup(TK, T) = 0. This and (4.4.14) gives the result. [

Recall TI"! de ned in Remark For h R, we denote by 3, the Dirac-mass at h. Let
Tmix be the subset of T < T of all (T,p) = (T,d,H,v,p), TP= (THdYHIvY T =T such
that p is a probability measure satisfying Hp = 8, for some h [CH(T) (that is the support of
p is in H™1({h})), additionally satisfying h CHXTY. Since the map (T,p) 3 Hp from T
to M(R) is 1-Lipschitz by Lemma [3.4.12, this implies that the possible values for the rst
component in Tmix form a Borel subset A of T2 on which the map f : ((T,p), T 2 (h,TY is
continuous, so the map ¥ : ((T,p), TH O (h, TYis continuous from AxT to RxT. The set B of
all (h, TH CRIx T such that h CH(T) forms a closed set, so the domain Tmix = An f~1(B)
is closed in T2 x T. We have the following main result which informally states that for
((T,p), TH CThix and (Xn)n i@ sequence of independentﬂ—valued random variables with
distribution p, the probability E]stribution Prproon T qf__P( T, (Xn)n et Crownn (TY is well
de ned. The random tree X T, (Xn)nmr’Crowny (T corresponds to grafting at level h
according to the sampling distribution p the crown of T on the stump of T.

Theorem 4.4.5. Let ((T,p), TY CThix. The probability measure Pt proon T of
J
X T, (Xn)n mi1Th),

where X is de ned by (4.4.3), (T,p) is an element of the equivalence class of (T,p) in T&,
(Xn)n s a sequence of independent random variables on T with the same distribution § and
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T is an element in T¢ of the equivalence class of Crownp (T, is well de ned. Furthermore,
the probability measure Pt rodoes not dependent on choice of the element (f,ﬁ) in the
equivalence class of (T,p) nor on the choice of the element 14 in the equivalence class of
Crownp(T". So the probability measure Pty ois uniquely de ned for ((T,p), T CThix.

Proof. We have to prove that Pt ;7 ois a probability distribution on T, and that if the height-
labelled trees (T, p1) and (T2, p2) are in the same equivalence class of T 2 and if 1 and
12, eleﬁ?nts of Tc, are in the same equivalence class of Crownh(T§ then X T1, (XH)n mprh)
and X T2, (X2)n Dg,prh) have the same distribution, where (X!)nioare independent T;-
valued random variables with distribution p;, for i {1, 2}.

Recall the distance dpw metrizing the point-wise convergence for the sequences de ned

in (4.4.5). For given S-compact 2-height-labelled tree (T, ) and 1, [T, we deduce from
Lemmal4.4.4] (taking E = Fk =T and (T, dny Hn, Vi) = (TK, dX, HE ) L o= T, for
all k EISI]'?‘that the map from (T de) to T de ned hy:

(I
Xn)nmr 3 X T, (Xn), Tn

is continuous. Therefore, the probablllty measure Pt roon T is well de ned as the push-
forward of the probability measure vN on TN™

As (Tq,p1) and (To,p,) are in the same equivalence class of T [T, there exists a
buectlve isometric map ¢ from Ty onto T, which preserves the labels and the measures p;.
Write t} (T' = (T',d:,, H;,, r]))n mofor i {1, 2} Let € > 0, which will be chosen later.
Accordlng to the de nition of d2,p, as T} and T2 are in the same equivalence class
of Crown (T, there exists a permutatlon o C3(NY'such that:

)
:E‘SﬂdLGHP(Tr}! Tsmy) =€

Let (X})nmi-be independent T;-valued random variables with distribution p;. By construc-
tion, notice that (X2 = (p(Xc(n)))n mare independent To-valued random variables with

distribution p,. Thanks to Lemma_ (taking E = @(T1), IF:I Tz,_(Tn)nmp: (Tl)nmp
and (TS)n o+ (T2)n mi-for all k CNY! we deduce, since ,—; H!\v! does not depend on
i, that for any & > 0, taking € > 0 small enough, we have:

o =2 L]l 1 =1 e
dighp X T2, X{)n (T e X O(T1), (@CXA))n et (Tp)n i < 0.

1 ~
By construction of X see (4.4.3), we have that the trees X ©(T1), (O(XA))n (T2 )n

and XD&J{ (XHn o (T THn mﬂ:?'slre equal in T. Notice that the distribution of the random
tree X T2, (X2)n mp(Tz)nmp [%)es not depend on o €. ]S_,che 6 =>0is arbltra% we
deduce that the random trees X T2, (X2)n (T Z)n e and X T1, (X)) n ot (T n ot have
the same distribution. This means that the probability distribution P rodoes not depend
on the choice of the elements in the equivalence classes of T and of Crownp (T 5. O

y convention, we shall say that Pt 7 ois the probability distribution of the random tree
X T, (Xn)nmXCrownn (TY -, where (Xn)n niis @ sequence of independent T -valued random
variables with probability distribution p (it is assumed that Hp = &,). If (THdYHSvEpY O
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T and p"is a probability measure such that H'p”= 8ofor some h™ R, then we shall
consider the push-forward measure f of pZon (T,d,H,?) = X T, (Xn)n i Crownn(TH by
the canonical projection:

- O O
TES Crownp(TY = X T, (Xn)n metsCrownp (T (4.4.17)

If h©> h, it is easy to check that f is a probability measure on T such that ﬁﬁ = 0o Itis
now possible to iterate the grafting procedure.

Remark 4.4.6. Using a similar approach, forn =2, h; < ... < hy and (Tj, di, Hi, Vi, Pi)1<i=n
a sequence of T[? such that h; [CH;(T;) and H;i pi = &,, we de ne

Pty (5 T (4.4.18)

as the probability distribution on T of Tn, where (T1,P1), ..., (Tn, Pn) are de ned recursively
by: _ = . O _
Ti+1 = X Ti, Xp)n i Crowny, (Ti+1)  for 1<i<n,

with (X!)n mri-independent Ti-valued random variables with distribution Pi, and Pj+1 the

push-forward probability measure on Tiv1 Of pi+1 by the canonical projection (4.4.17)), but
for p1 which is taken to be equal to p;. We shall not give a more formal description of

PTGy oy T

In De nition and more generally in Chapter E], we will use the distribution Pt yo
with random trees T and T To assure that this is meaningful, we prove in Proposition [4.4.7
that the measure Pty ois a measurable map of ((T, p), TY CThix.

Proposition 4.4.7. The map ((T,p), TY B Prrois measurable from Tmix equipped with
the distance d gnp LddcHp (and the associated o- eld) to the set of probability measures over
T, equipped with the Prohorov distance.

Proof. We decompose the mixing operation as follows:

1 1
h, (such that Hp = 3y)

Stump,(T,d, H, v, p)
Crown, (THdYHEVY
Lih,eoy - [HYY,

(T,d,H,v,p), (THd7HEVY & HPrors (4419

where Im(9) R x Tl x Te x Mpgorel(R) is equipped with the distance dgr Cdl gup [
d,Bup Cdip (here, Mporel(R) is the set of all Borel measures over R). We will prove that ¢
is measurable, and that  is continuous on Im(@).

Let us prove that ¢ is measurable. We argue component by component. For the rst
component h, we rst recall that the application (T,d,H,v,p) B Hp is 1-Lipschitz, see
Lemma [3.4.12] (with T replaced by T[4). Since ((T,p), T CThix, Hp is a Dirac measure 5,
for some h [CR. The application 6, 2 h is continuous, so (T,d,H,v,p) B h is continuous,
hence measurable. This component is used as a measurable parameter for the next two
components. Since Crown and Stump are measurable, see Lemma [4.2.11] and Proposition
[4.3.11] the corresponding components are measurable as functions of T, T and h. For the
fourth, we use the continuity of (THdYHEVY 3 HY and the measurability in h of the map
(h,HYY B 1(neoy - [HVT, see Lemma[3.4.12] We have proven that ¢ is measurable.
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Now, we shall use the setting of Lemma[4.4.4]to prove the continuity of ¢ over (T x T2).

Step 1. We build a large separable space (Z,dz) equipped with a&_l-Lipschitz map H, in
which we hav?:t[he convergen%of Stumpy, (Tk) to Stump,(T). Bke (T,d,H,v,p),
(THdTHEVY [CThix. Take (Tk, dk, Hi, Vk, Pk), (T di HE v%mﬁa sequence of elemen
of Tmix such that the image by ¢ of its terms converges to ¢ (T,d,H,v,p), (THd9HEVY
By convergence of the second component of ¢, we have:

[ [
dLgHpP Stumphk(Tk, di, Hk, Yk, Pk), Stumph(T, d,H,v,p) k—-» 0.

— 0o

It follows from Lemmas and [3.4.5] that there exists a sequence (ri)k i L (R+)N" With
limy _ oo Fk = +o0 such that

1 1
dighp Slicer, (Stumpy, (Tk, dk, Hk, Vk, Pk)), Slicer, (Stump, (T, d, H, v, p)) - 0. (4.4.20)

We note dy the left-hand side of (4.4.20). Recall that, for (E, dg), (F, dr) two metric spaces,
D(E, F) is the set of all distances on E CElwhose restrictions are de on E and dg on F. By
Lemma 1.1.14, there exists, for every k [N"Isome d” CDI(Stumpy, (Tk), Stumpy,(T)) such
that

KICNS X,y CStumpy(T), diXx, y) = d(x,y) (this is true by de nition of D);
OICNS X,y CStumpy, (Ti), difx, y) = dk(x,y) (this is true by de nition of D);

KICNS X CSlicey, (Stumpy, (T)), GACSlicer, (Stumpy, (Ti)),
didx,y) CHH () — Hk@)] < 8 + 3

KICNS X CSlicey, (Stumpy, (Tk)), BOCSlicey, (Stumpy (T)),
dgx, y) CIH(y) — Hk ()| < & +

dp(llHlel’k Vi, 1|H|srk ’ V) IjH’(]-HSl’k ' pk! 1HSl’k ' p) = 6k + %

CI—1 [ 0 . .
We set Z = Stumpy,(T) L1y pgg-Stumpy, (Tx) and dz the symmetric function such that

—1
Edix.y) if X,y CStumpy,(T)
Al = by if x [Stumpy,(T),y [Stumpy, (Tk)
z [Stump(T) dID(JEX! Z) + dlu(ﬂdz! y) if X I:S:tl'“‘nphk (Tk), y ES:tumphdek'j.

The function dY is a distance over Z that satis es
1. XJy CStumpy(T),dz(x,y) = d(x,y);
2. KICNSX,y CStumpy,, (Ti), d2(X, ) = dk(X, Y);

3. KICNISX CSlicey, (Stumpy(T)), yJCSlicer, (Stumpy, (Tk)),
dZ(x,y) CIH(X) — Hk(Y)] < 8 + §;

4. KICNSX [Slicer, (Stumpy, (Tk)), Dy1CSlicer, (Stumpy,(T)),
dZ(x,y) CJH(y) — Hk(X)| < 8k + §;

Z,dY =
5. d$2 (i, v) Cdf"? (i, p) < i + L-
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We also de ne —1
Hay (x) = H(x) if x CStump,(T),
2T Hk(x) if x CStumpy, (Tk)

and the distance dz(x,y) = dZ(x,y) OBz (X)—Hz(y)|. Since H and (Hy)k or-are 1-Lipschitz,
we can replace d5 with dz in 1-2. The same can be done for 3-4. For 5, we can make the
change as well since d5 < dz. Furthermore, Hz is 1-Lipschitz on (Z, dz).

Step 2: We couple the measures and order the crowns. We have d,(jz’dZ)(pk, p) pd 0,

so by Skorokhod’s representation Theorem (see [12] p. 70), there exists a random sequence
(X mr=with marginals (pk)x mer=such that Xy converges a.s. to some random variable X
with law p. We note ((X{)k mron rvi-@ sequence of independent random variables distributed
as ((Xk)kmy and, for every n CNIS'X" the a.s. limit of (XP)k -when k — oo.

Take (T™,d™, H™,v™), ian enumeration of Crown,(TY. By hypothesis, we have
that Crownp, (T, converges to Crownn (TS for d,Rup. Thus, there exists enumerations
(T di, HE, v meeof Crowny, (T such that

sup digrp(T, T™) — 0.
n (NIH K- oo

Step 3: Conclusion. Since (Xn)nmrand (Xp)nwioare sequences of independent and
identically distributed random variables, the random trees

X(Stumpy,(T), (Xn)n mesCrownn (T ) and X(Stumpp, (Ti), (i e (T I e

are indeed distributed according to Pt roand PTk@TE respectively. The space (Z,dz) is
metric and Hz is 1-Lipschitz on Z; the subsets Stump,(T), Stumpy, (Tx) are S-compact.
Recall the de nition (4.4.5) of d,%w the distance metrizing the point-wise convergence for the
sequences in Z. We also have that:

dew ((X)n w3 (Xn)n et} = 0 a.s.,

—

1
sup digrp T, T® —- 0,

k - oo

] L | L1
d|_p HHVkEn, H'-mvm' = d|_p 1(hk,+00) 'VkD, 1(h,+oo) -VF——> 0,

— 0O
n=1 n=1

and there exists a sequence (ri)k meof positive real numbers such that limy _ o rx = +co0 and
L1 _ - g
dn Slicer, (Stumpy, (Tk)), Slicer, (Stumpy,(T)) Ldd ljy<r,  Vks LjHi<r, -V —= 0.

— co

By Lemma [4.4.4], we have that a.s.:

O 1
dierp X(Stumpy, (Ti), (X n oo (Ticn o X(StUmp (), (XM n AT ™) ey =0

—

From this coupling, we deduce the following convergence for the Prohorov distance on T:
T
dp(Pr pyrd Prpre) = 0.

This proves that the map @ is continuous over Im(g). Thus the map ¢ - @ de ned on
Tmix taking values in the set of probability measures over T by ¢ ((T,p),TY = Pt T OIS
measurable. O
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We end this section with a de nition which will be very useful in Chapter

De nition 4.4.8. Let h [R], and (T,d, H,v,p) be a Tt?-valued random tree with probability
distribution A such that a.s. Hp = 6,. We say that T (or the probability distribution A) is
exchangeable at level h with respect to p if Prv = A, that is if the mix of T onto itself with
respect to p has the same law as T.

Remark 4.4.9. Let ((T,p),TY [CTmix and h R be such that Hp = &,. Then, if T is a
T-valued random variable distributed as P75 then as Stumpy,(t) = Stump,(T), we can
see p as a probability measure on T, so that (t,p) is a T/?-valued random variable. By
construction, the random tree (T, p) is exchangeable at level h with respect to p.
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Chapter 5

An exchangeable random tree

In this chapter, we use the results of the previous chapter to build a family of random
trees endowed with a measure v, at every level h that are exchangeable with respect to
v at every level h (recall De nition [4.4.8] of exchangeability). This construction is based
on mixing vertical deformations of Kingman’s coalescent (which is brie y reintroduced in
Section [5.1). Intuitively, by the \cut and grafting at the same level" construction of the
ancestral recombination graph (ARG) process, the distributions of these trees should form a
whole family of reversible laws for this process.

We decided to present the results of this chapter which are the motivation of the two
previous chapters, even if, by lack of time, its redaction is yet not complete.

5.1 Kingman’s coalescent

The n-coalescent is the ancestral tree of n individuals in a large population with proper
height scaling (see [26]). It is the representation of a continuous-time Markov process (for
decreasing heights). The evolution of the process depends solely on the number k of clusters
at a given time: a coalescence will occur at rate k(k — 1)/2. When a coalescence occurs, two
clusters chosen uniformly at random merge and the process continues with the remaining
k — 1 clusters. This corresponds to the coalescence of each pair of clusters at rate 1. The
n-coalescent is obtained by starting the process with n clusters. If, for 1 < k < n, we call
hk the rst height at which there are only k clusters left, then the stump of the n-coalescent
below hy is a k-coalescent independent from the crown of the n-coalescent above hy. If we
choose k clusters from the n initial clusters and consider the sub-tree generated by those
clusters, we nd a tree with the same law as the k-coalescent. We de ne a measure on the
n-coalescent, by putting a mass % at each leaf.

Kingman'’s coalescent tree (T ¥,d, H,vK), introduced in [48], is the limit in distribution
with respect to the Gromov-Hausdor -Prohorov distance of the n-coalescent as n goes to
in nity. It contains the n-coalescent, in the sense that the sub-tree generated by n leaves
taken independently with distribution vX has the law of the n-coalescent.

We recall now the construction of the Kingman’s coalescent of [8] using our setting.
For this construction, recall the function T introduced in De nition | and its domain
RxRY ;%D. It is a measurable function (Lemmal4.2.18) from RxRY ;D to T. Let (Un)n !
be a sequence of independent random variables uniformly distributed on [0,1], (Xn)n i@

127
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sequence of independent exponential raani_\/ariables of parameter 1, so that (Xn)n me=and
(Un)nnvare independent. We set R, = 2, ﬁxk. Since Ry is a.s. nite, we can de ne
the random S-compact labelled tree

K Ky _ L 1]
(T ld!HlV )_T 01 (Rn)nEISI}_r‘(Un)nEISIF

In what follows, the labelled tree (T Kd, H,VK) will be called Kingman’s coalescent.

Recall that (see De nition [4.2.1), for h < h) n"N(T K) is the number of points of T X at
level h that have descendants at level hY In particular, by construction, if (T ¥,d, H,vK) is a
Kingman’s coalescent, for every € > 0, n™0(T K) is just the number of points at height —¢
in TK,

For h < h and T [Tl we set (Cir"hD(T))lgisnh,hQT) the family of trees of Crown,(T) that
reach height h"

Lemma 5.1.1. If (TK,d,H,vK) is a Kingman’s coalescent, then for € > 0,
1, - Egjlj
E [ vk c8TK) T3 1-eE
i=1

Proof. Let € > 0. Conditionally given T K, if we take two independent random points X,Y [
T K with distribution vK, we have

LI S | n*® ]
P(X,Y) <2¢ [TK) = P XY LG ®0(TKTK = % c; 0T K)Ii_LI

Without conditioning, this yields
1
n_S'Ol(—T—;‘)—' 1 |_2—_|
P(X,Y) <2¢) =E [ vk CcET K T
i=1
Since P(d(X,Y) < 2¢) is the probability that the ascendancy of two leaves taken at
random coalesce before €, we have also P(d(X,Y) <2¢) =1—e" &, O
A classical result given in [1I] states that a.s. ling)s -n~&9(TK) = 2. We need also to
control the expectation E[n~&°(T K)].

Lemma 5.1.2. If (T K d, H,vK) is a Kingman’s coalescent, then for € > 0, we have

1

—€,0 K
BTN = gy

Proof. For every i [CN51set TX(i) the subtree of TX generated by i leaves picked inde-
pendently at random with respect to vi. By de nition of Kingman’s coalescent, T X (i) is a
i-coalescent. Let us set N&(i) = n~&9(T K(i)) the number of points in T ¥(i) at height —¢.
Using Kolmogorov’s equation and Jensen’s inequality, we have the following inequality:

NEGNEG) — 1) EINEIENEGD] - 1)
2 - 2

d o epnr
EIN®()] = —E
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For all i CNIS(E[NE(i)])e>0 is bounded from above by (fi(€))e=0 Where F; is the solution
of the di erential equation fx) = —F(x)(f(x) — 1)/2 with initial condition f(0) = i. Solving

this equation gives
1
fi(e) = 4EI—]1;|—EI—§ — I

1— 1-1 exp =5 l—exp —3

Since for all £, n=2(T K) is the limit of the non-decreasing sequence (N&(i)); mt,7we have
1
€

El™0(T 9] = lim EN*()] = 7— exp —3

5.2 The aim

The laws we intend to build in this section are an extension of the law of the Brownian tree
conditioned on its local time given in [7]. In Aldous’ construction, for [(h) the local time of
a normalized Brownian excursion, [(h)dh is the density of leaves at height h, and ﬁdh the
rate of coalescence in the corresponding tree. To have a more general setting, we decorrelate
the two and take two distinct measures. In the remaining of the chapter, we will call m the
repartition of the mass at di erent heights, playing the role of [(h)dh, and p the measure in
charge of the coalescence, playing the role of —:<dh.
To describe informally the construction, let us start with two remarks.

If we apply a vertical deformation (see De nition 4.2.12)) to a Kingman'’s coalescent, we
obtain again a coalescent tree but with a di erent coalescence rate (which may depend
on the level h).

Take two independent versions (T ¥, d, H,vX), (T K7d7H Dv) of Kingman’s coalescent,
and h [CRL.. If we shift downwards T ¥ by replacing its height H with H:xB H(X)—h,
(T KD,dD,HD,vE) can be mixed at height —h onto (T ¥, d, H, vK) according to vk. The
corresponding distribution is the law of a random tree that can be described as follows:

{ At level 0, there are a countable number of leaves that perform a coalescent at
rate 1.

{ At level h, a countable number of leaves is added to the n=™0(T K% remaining
points of T K, this new collection of particles performs again a coalescent at rate 1.

The strategy to construct the looked after tree is rst to perform a downwards shift and a
vertical deformation on Kingman’s coalescents so that the trees start at di erent levels and
the coalescent rate is now given by W, and then perform recursively the mixing of the crown
of the tree on another Kingman’s coalescent along a countable dense sequence (hp)n mri—of
levels.

First, let us precise the assumptions we must set on m and p. Let | be a closed interval.
Let m be a positive Radon measure on R which satis es m(R\ 1) = 0, and p a positive
measure on R, satisfying the following conditions.
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Cl. For all a < b with b [(IJand a ¥TJ we have p([a,b)) = oo, and for all a [T}

dhe M) < oo,

—O0o

C2. For all a<b 1] p((a,b)) = 0, where by convention a < b [CIImeans a [I]b [Tland
a<h.

C3. For all a (R, p({a}) = oo or there exists b < a such that u([b, a)) < co.

We will see that Condition C2 ensures that the tree is locally compact. Notice that if
infl is nite, then p({inf 1}) = oo thanks to C1 and C3. For h [IJ we de ne the function
T, on (—oo, 0] by

fn(x) = sup{a 1) u([a, h)) > —x}.

We can see with Condition C1 that f, takes its values in I n (—oo, h]. The function is trivially
non-decreasing and Condition C2 ensures that f;, is continuous.

Recall u is a positive measure on R satisfying C1-3. Let h Il Informally, we de ne
the probability distribution King}; on T as the law of the vertical deformation of Kingman’s
coalescent (T K d, H,vK) by the function f,, with, if inf f, is nite, a semi-in nite branch
(—oo,inf f,] added at the root of the vertical deformation of the Kingman’s coalescent.

More formally, by de nition, we have TX =1 0, (Rn)nmt;(Un)n i) Since i is contin-
uous, we nd by Lemma t the vertical deformation of T ¥ by i, js-given by T 5 the

only non-Opoterm of Crownno T Tr(0), (Fh(0) — Fr(—Rn)n s (Un)n e with hP= inf f,,.

Note that the operation of taking the only non-Opcterm in an element of X8 is 1-Lipschitz
from its domain (the closed set of all elements of X% with at most 1 term 8 0np to
SS. Since T is measurable, the vertical deformation T "is a T-valued random variable. If
hU= —oco, we set T = TY Otherwise, we de ne T as the mixing of T Ponto the tree
T = ((—oo, h@, dr,1d,0,p = 619 (an half-line tree with a Dirac mass at its top). Notice the
distribution Pt 7 ois conditionally on T Ha Dirac mass, thus T is well de ned as a measur-
able deterministic function of TX. The distribution of the T-valued random variable T is
denoted Kingf. A random tree with law Kingf can be interpreted as the coalescent tree with
coalescent rate g and an in nite number of leaves at height h.

Our aim is to build, for I an interval of R and p a measure over | satisfying Conditions
C1-3 and for every Borel measure m of R with support in I, a random S-compact tree
(Ty,d,H,vy) and a family (vy)n o—of measures on T, satisfying the following conditions.

e The map h B vy, is measurable on 1. (5.2.1)

. IZh__lE%P(th =dy) = 1. (5.2.2)

ev; = vpm(dh). (5.2.3)
I

e [M1CT) (Stumpy(Ty), (vhidhizn) and (Crownp(Ty), (Vhdnh=h) are independent.  (5.2.4)
e For every h [CI] T; is exchangeable with respect to vy,. (5.2.5)
e [M1[T] the random set {x [T]| Oy1TI H(y) = h,x [y} follows the law of

N . . (5.2.6)
King;, when equipped with d, H and vy,.
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The next two sections are devoted to the proofs or conjectures related to this aim. In
Section (5.3, we build the metric tree (T;,d,H), see Lemma |4.2.3, so that it is S-compact.
Then in Section [5.4 we give ideas for the proof of the existence and properties of the family

(Vh)h

5.3 Construction of the tree T,

Let E = {hy <--- <hp} CLILet (T, d;, Hi, vn;)1<i<n be n independent random weighted
trees of respective distributions Kingﬁi for 1 =i =< n. Recall the de nition of the probability
measure Pr .. ;1 T, See Equation in Remark and the measurability of the
mixing operation in Proposition Let Te be a random tree distributed according to
PTh1 o, A, T To keep track of the measures vy, in fE, we can either modify the proof
of Theorem [4.4.5 and consider the restriction of those measures to the crowns which are
grafted and denote by ¥y, the corresponding probability measure on Te, or use the intrinsic
de nition of the uniform probability measure vK on the leaves for the Kingman’s coalescent
at level 0 as the limit of the uniform probability measures on the ( nite) ancestors living
at time —e when € goes down to zero and transpose this intrinsic construction through the
vertical deformation and the downward shift.

Lemma 5.3.1. For every 1 <i <n, we set

Th, = {x CTE| Oyis.t. x Cydand H(y) = h;}. (5.3.1)

that we endow with the distance, and height induced by those on Te, and measure Un;- Then,
for all 1 <i=<n, Tp, has distribution King, .

Proof. By de nition, T~hl @ Th, which is distributed according to Kingﬁl.
Again, by de nition, Stumpy,(Tg) has distribution P, g 1, and Ty, is the tree gen-
1

erated by the leaves of Stumpy,,(Tg) at level hp. Let (TK,d,H,vK) and (T KHgOHOuKY
be two independent Kingman’s coalescents and let h > 0. If we set for every X I:I]KD,
H%x) = H%x) — h and (T XPdTHDYKY = (T KIGOHDYKY (e, we shift downwards
the tree T KDby height h), then we can de ne a tree T which has distribution P; KTy o7 K-
Conditionally given n="(T K), Stump_,,(T ) is a n™"O(T K)-coalescent independent of T K™
hence the tree
{x CT| yI[Ts.t. x Cyknd H(y) = 0}

is again a Kingman’s coalescent. Applying this property with the vertical deformations
implies that, if p([hy, h2)) < oo, then 'th has distribution Kingﬁz. If u([hy, h)) = oo, then
below the level hy, Ty, is just a simple line and the result is obvious.

An easy induction then gives the result for every i < n. O

For all nite set E, this construction provides a random tree Te and a family of mea-
sures (Un)n rezsuch that the family (Th, dn, H, Vn)nexde ned by (5.3.1) satisfy the following
conditions.

C4 For all h [H, Ty, has distribution King}'.
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C5 For all hy [, the family (Crownp,(Th), ¥n)h tEsh=h, and the family (Th, %)n tEsh<ho
are independent.

The tree (Te, d, H, (Vy)hre) can be recovered from the family (Th)nre1by setting

- —1
—Te= T (5.3.2)

h [(E1
— Xy CTE,x [oydf and only if : [R1ICH, x CTh,y CTh, X Gl
— Xy [Tk, d(x,y) = H(X) + H(y) = 2H(x [¥).
In (T~h)hEE| H is the same function for all the elements, which means that H(x) does not
depend on the choice of any particular tree containing X.

Remark 5.3.2. As a consequence of C5 and (5.3.2), for all h CHI, the crown of Tg above h is
independent from its stump below h.

Remark 5.3.3. By construction, the tree Tg is exchangeable (see De nition [4.4.8) at all the
levels h [CEl with respect to the measure U}, see Remark [4.4.9]

Remark 5.3.4. Take E CEF CEP [CLithree nite sets, and consider Tg, Teoand Tem For
h CH™ de ne

TEY = {x [Tko) k.t x CyBnd H(y) = h}.
similarly, de ne (T, ), ey We set

R R R

hEV h E1 h (=1

We have T857 £ T and (T8, Te) £ (T, TLEY). Note that (TEE?, T2o) provides a
coupling of Te and Tenin which &) T

Lemma 5.3.5. If a random tree (T,d,H,v) has distribution Kingﬁ for some h [1l and
some measure W satisfying C1-3, then, almost surely, the identity is the only height- and
measure-preserving isometry from T to T.

Proof. From the de nition of Kingﬁ, the support of v is a.s. equal to the set F of all the
leaves of T: F = {x CTI|H(X) = h}. For n CN5’set R,, the relation on F such that for all
X,y [H, xRpy if and only if h —H(x [y} < % Note that Ry, is an equivalence relation.
Set F, = {y CT|H(y) = h— %}, Fn is a.s. nite and the equivalence classes of Ry, are
({x CH|x = y})yrea- The repartition of the masses between the di erent classes has the
same law as the masses of the sub-trees above level —u([—%, 0)) in Kingman’s coalescent, so
we have a.s. that for any two classes C,CYof R, v(C) & v(CY and v(C) > 0 as well as
v(CH >o.

Now, we work conditionally on T , assuming that for every n CNIS'F, is nite and for every
C, Ct distinct classes of Ry, we have v(C) 8 v(CH and v(C) > 0 as well as v(CYH > 0. Set ¢
an height- and measure-preserving isometry from T to T such that gv =v and H - ¢ = H.
Since d(X,y) = H(X)+H(y)—2H (x 3] we actually have that xR,y if and only if d(x,y) < %
so @ preserves Rn. We have the following equivalences:

AT, (x CH = @(x) CE) since ¢ preserves H,
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XJ]y [CH, (XRny = @(X)Rh@(y)) since @ preserves Ry,
MICNSC [CFE] C is a class of Ry, if and only if ¢(C) is a class of Rp.

For n [CN5'take C a class of R,. As @(C) is a class of R, and v(¢(C)) = v(C), we
have under our assumptions that ¢(C) = C. This means that for all x CFLn CN™e have
XRno(X), i.e. d(X, p(X)) = % It follows that for every x CEl, ¢(X) = X.

Now, take y [T1, we can choose a leaf x such that y [x1 We have

d(@(x), 9(¥)) = H(e(x)) + H(e(y)) — 2H(e(x) Laly))
=H(X) +H(y) —2H(x Laly))

as @ preserves H and @(x) = x. As @ is an isometry, we also have

d(e(x), @(y)) = d(x,y) = H(X) = H(y)

and therefore, H(y) = H(x Cafy)), which implies that y [@{y) by uniqueness of the ancestor
of x at some xed level. As H(y) = H(o(y)), we eventually get y = @(y). O

For E [CI'h nite set and r R, we de ne
Or(E) = max{d (R |xIJ=r Cinf I, (r Csdp 1) — 93, E n (X, x+ ) = [}l

In the case where I n [—r,r] = [ve note 3.(E) = 0. Note that .(E) is always de ned, as
the set in the right-hand is actually a closed interval containing 0 and bounded from above
by 2r. The quantity d,(E) measures the biggest gap without elements of E in | n [—r,r].
Note that for (hn)n =2 sequence of elements of I n[—r, r] and E, = {hi}hi<i<n, the sequence
(Or(En))n mei=converges to 0 if and only if (hp)n s dense in | n [—r, r].

. (| ) [
Lemma 5.3.6. For E CEF [Ikwo nite setsand r CRL. n —E [JZinfl,+oco) . Recall

Teoand 'I':E(Eq [Tgofrom Remark [5.3.4. We a.s. have
dGH(SIicer(fE(Eq), Slicer (TeD) < & (E).

Proof. We have T¢5) [Tk so the case Slice,(Te) = Cib trivial as Slicer (T¢5)) = [as

well, so the distance dGH(SIicer(féEq),Slicer(sz)) is 0. In the rest of the proof, consider
X IZSIicer(T~Ez). If there is at least one element of E in [—r, H(X)], then take h the biggest
possible. We have H(x) [JFr,r]nl, so 0 < H(x)—h < 4,(E) by de nition of the latter.
Take y the ancestor of x at height h, we have y I:"L“]E(Eq and d(x,y) = H(xX) — h = 4,(E).

If there are no elements of E in [-r,H(X)], then —r I H, so —r [(too,infl]. By
de nition of 6,(E), we have H(X) —inf I =< 6,(E). By de nition of Te and Teq they share the
only point y at height inf I, which is the common ancestor of all the tree. By de nition of 3, (E)
and since there are no elements of E below H(x), we have d(x,y) = H(X) —inf I < 4.(E).

since TXE) [Tg- we have proven that dgpi(Slice, (TEE ), Slice, (Te0) < 5, (E). O

Let E [Ilbe a countable dense set in I and p a measure satisfying conditions C1-3.
Our objective is to build a T-valued random variable Teg for which we conjecture that the
sub-trees Ty satis es C4-5 for all h [CH, where

Th = {x CTE| Ok.t. x Cylnd H(y) = h}. (5.3.3)
Recall X°S from De nition [3.1.2] as the set of all elements of X5 with null measure.
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Lemma 5.3.7. For any dense sequence (hn)nme=in 1, the law of f{hl ,,,,, hn} €Juipped with the
null measure converges to the law of a random tree T, for the Prokhorov distance over X°S.
Moreover, the limit is independent from the choice of the dense sequence.

Remark 5.3.8. Legitimated by this lemma, we shall denote by T, any T-valued random vari-
able distributed as the limit where E is any countable dense subset of 1.

Proof. We start with a special case. Let E [CEIP [CIbe two countable dense sets in I. Let
(hi)i e an enumeration of the elements of E and (h%I ican enumeration of the elements
of EY Set En = {hi}o<i<n, Ef = {hi}o<i<n and for all n [CN"g(n) = min{k CNYHE, [
E}. We want to build a random sequence alternating between TEn and TED Proving the
convergence of this hybrid sequence will prove that its two subsequences converge and have
the same limit. The proof of the convergence consists in the construction and the study of
a particular coupling of those laws. For every m [CN5!consider the tree fEE(m)’ and for

0<k=m,de ne

(E (Eq,(m))

Tl =Tg, o and T =75

as in Remark (5.3.4L We obtain a family (T (m), (m)) such that the subsequences of the
odd-numbered terms and even-numbered terms are non-decreasing for the inclusion. It is
clear that the distribution of that family is consistent from m to m + 1 i.e.

(fn(m), 1<n<2m) 4 ('Fr](m+1), l=n<=2m).

Since XS is Polish, we can use Kolmogorov extension theorem, so there exists a standard
probability space (Q, P) and a sequence (T ™), r-of random variables w 3 T,' [Tlsuch that

for every m CNSY(T ™)1<neom = (FX™)1<nzom.
Take n CN~r [(3E, C(#infl,+o0). For all k = n, we have E, [EL, so by Lemma
5.3.6l and Remark [5.3.4 we have

dorp (Slice (F2L), Slice, (F21)) £ dgyyp (Slice, (Fr- "), Slice (T Fa00)y)

d dGHp(sncer(TE(fk)), Sllcer(TEk))
< &r(En) a.s.

Similarly for k = @(n) we have E, CE[) so a.s.
danp (Slicer (T 21, Slice (T %)) < 3,(En).
We have @(n) = #(E(p(n)) = #(En) = n, so for every i = 2¢(n),
derp(Slicer (T 2", Slice (T 1)) < 8,(En).
This implies that a.s. for every i, j = 2¢(n),
daup(Slicer (T 1), Slicer(T1)) < 25,(En).

Since E is dense, we have
nlingo O0r(En) =0
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for all r C3E [[Finfl,+o0). Note that if I has a nite lower bound, [—infl,+o0) B []
doesn’t have an upper bound. If I has no lower bound, neither does E since it is dense in I, so
sup(—E) = oo. In both cases, we can take (ry)x o=@ increasing sequence of elements of —E [
[—infl,+oc0). We can deduce that a.s. for every k [N the sequence (Sllcerk(T "n iis
Cauchy in (X%K, deyp). When this is true, then by Lemman (Slicey, (T "))n mr-converges

in (X®, d_ghp) to a random measured labelled space Ty. Since T and X are closed in X5, T

is a random tree with null measure. The a.s. convergence of (T ™) vi-to T in this coupling
implies the convergence of their laws for the Prokhorov distance.

The sequence (f”)nmpconverges in law to T, so its subsequences converge as well. We
have proven the lemma in the special case E [CEF Note that this covers the case E = EV
with two di erent enumerations. For enumerations of E and E™dense countable subsets in
the general case, we can use the special case by going through E™= E [CEIX This concludes
the lemma. O

At this stage, we have the following conjecture.

Conjecture 5.3.9. Let p be a measure satisfying conditions C1-3 and let E be a countable
subset of 1. The trees de ned by (5.3.3) for all h [H satisfy C4-5.

The idea of the proof of this conjecture is to consider a non-decreasing (for the inclusion)
sequence of representatives of ('IT”)n i take the completion of its limit. It will be distributed
as Ty. Since the trees de ned by (5.3.3) (with T (™ instead of T, for some large n) satisfy
C4-5, it is reasonable to conjecture that the trees de ned by for all h [CH satisfy
C4-5. However, one has to check that the completion of the limit a.s. does not change the
de nition of T, when one replaces T (™ by T¢ in (5.3.3).

5.4 Construction of the measures (Vh)hm

Let E be a dense subset of | and (h;)i m—an enumeration of E. The tree T ™ introduced in
the previous Section is naturally endowed with a family (Vn,,1 <i<n). If we x k CNY’
and consider the tree (T ™, (¥i,,, 1 < i < k)) as an element of T which is still a Polish space,
similar arguments as in the previous Section gives a limiting tree endowed with k measures
(T1, (vn;, L =1 =< Kk)). We could make rigorous the construction of (T, (Va)n =) using the last
part of the Remark n and considering it as a TI*l-valued random variable. We shall not
provide of proof of this fact, but simply conjecture its existence. In particular, this implies
that vy, is a probability measure and that Hvy, = 3y, for all h CH. Since T ™ is exchangeable
at every level hj, 1 < i < k with respect to vy, respectively by Remark [5.3.3for all n = k, we
also conjecture the same holds for T,.

Conjecture 5.4.1. Let p be a measure satisfying conditions C1-3 and let E = {h;|i CNI'} be
a countable dense subset of 1. The Tl*l-valued random variable (T, (vn)nre) is well de ned
as the limit in distribution of (T ™, (¥y,,,...,¥,,,0,0,...) as n goes to in nity. Furthermore,
(T1, (vh)h ey is exchangeable at level h with respect to vy, for all h [CH.

The next step would then be to extend this family by constructing additional measures
(va)hon Ty and proving that the law of (Ty, (vh)n ) does not depend on the choice of E.
We did not perform this program. However, we state, as a rst step toward this goal, in the
next lemmas some regularity property for the measures vy,.
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Recall De nition[3.1.3]of the Prohorov distance dp (v, v between two probability measures
v,vHover a metric space (F,d). For any € > 0, we set n¢(F) the minimal cardinality of a
partition of F using only Borel sets of diameters smaller than €:

— —
= [(Bi,...B) CBF)*, EJ

ne(F) = min [, 1diam (B;) <,
: =N XICH (M<i=< kx CB

Lemma 5.4.2. Let (F,v) be a compact metric probability space, (Xn)n xi-@n i.i.d. sequence
of F-valued random Iifilori'?bles with distribution v and (cn)n =@ Sequence of non-negative real
numbers such that 2, cn =1, then

1 1

Ci—— O Fy £,
P dp  cCndx,,v >¢ sniz) ch,

n

Proof. Let By, ..., Bn,(r) be ne(F) Borel sets of diametelLiLrnost € forming a partition of F

and B = 0(By, ..., Bn(r)). For convenience, note vo = |, cndx,,. We note, for any Borel set
A
LF] 1
B(A) = Bi.
1<i=ne(F)
BinAZ L[]

For all A, we have that B(A) [ B. We have the following inclusions A [BIA) [CAf. This
immediately yields

sup (Vn(A) — V(A®)) < sup (vn(B(A)) = V(B(A))) = sup [vnh —V](B).
A A B [BI
Consider the probability measures v and v, restricted to B. We have

' —
sup [vn = V] (B) = 5 oo = VI(BS)I.
B [BI

1<i=ne(F)

Now, we recall an application of the Cauchy-Schwartz inequality to the comparison of the
norms [ dand [lz0in dimension ng(F):

1 11
(F) 2 :
(@, ..., an(r)) CRM™Y, lai| = LagdF) -
1<i<ne(F) 1<i=ne(F)
Using this, we have

1
. 1 1 1 1 ) |2:|
sup (n(A) =V(A)) =5 Ivn =VI(B)I = 5 LaglF) ([vn —VI(Bi))" —

1<i=ng(F) 1<i=ng(F)
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1 -
Using Lemma [3.1.5] (recall that v and v, = |, Cndx,, are probability measures) and the
previous mequalltles, we get

— 1
P(dp (vn,Vv) =€) =P sup(vn(A) —V(A®)) >¢
(| 1
— 42
<P (= VB > e

1Si£n|g_(—_I) -

S R R =
1
=) Vara@)
1l<i=ng(F)
= ne(F) VBYL-vB)) &
4e? 1<i<ng(F) n

< Ne(F) I——z—l

4g2

1l<i=ng(F)

n

where we used the Markov inequal ty for the second inequality, that E ([vn, — v](B;j)) = 0 for
the second equality and that v(B ) = 1 for the last inequality. O

Recall notations from the beglnnlng of Section [4.3.2 - For E I:IZI nite or countable,

h, h" CB with h < hY recall (CM(T))i g,y from and ( , and n"M(T}) from
De nition [4.2.11 We set

M (T, 1=i=n"MT)} = {Chm), § ), HECT)) >hF

Let T ¥ be a random tree distributed as Kingman’s coalescent. The random number nh'hE(T|)
has the same law as n~HI"N).0(T Ky by de nition of Ty, Conjecture and Lemma [5.3.1]
as well as by de nition of the probability distribution Kinghl and condition C2. We now give
some regularity on the measure (vn, h CH). Notice the next Lemma is in fact stated for the
random tree T (™ for n large enough so that h and h"belongs to {hj|1 < i < n}, and it holds
for Ty if Conjecture holds.

Lemma 5.4.3. For h, h®[H such that h < h"} we have:

P(dp(Vh,vh) > €+ ht— h) < — p—(—[-h| hg) anE
482 1=exp —3u(h =5, )

Proof. Let h < hY From Lemma[5.3.1] we can assume that E = {h h3. Consider (Th, Tho)
two independent random trees with respective distributions Klngh and Klnghu and Tg the
corresponding mixed tree. For every X [Tk such that H(x) = h, we denote by pnh(X) the
unique ancestor of x at height h. We have d(X, pn(X)) = H(X) — h which implies

dp(Vh PrvRd) < ht=h.
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Using the triangular inequality for dp, we obtain
P(dp(VhgVh) > € + ht=h) < P(dp(vh, phvho) > €).

So we have to prove that

P(dp(Vh, PhVho) > €) < —1 b, h%) i
462 1—exp —sp((h—5,h))

From the exchangeability at level h of the tree Te with respect to v, the support of
(phvhD) consists in NN {(Tg) points. Conditionally given nMh(Tg) and Th, these points
e Eﬁpendenbﬁth distribution v, and are also mdependent from the family A(Tg) =

vho G0 (Te) . Denote F = {x I:[\;|H(x) = h}. Using Lemma [5.4.2, we
have for alle=0

1<i=nh.h{Tg)

ne(F) "I (e O

P(de (vh, prvnd) > &lTh, Tn) < = 5 " (Te)

i=1

and so

nh: h%f 2@ l:l
P(dp (v, prv) > &) < E E;ﬁ | M (Fe) gEl

We recall that ng(F) is the smallest number of Borel sets of diameter Iess than € parti-
tioning F. We have ng(F) = n"~2"(Tg), which has the same law as n~H{"=2:M.0(T K) where
%K |v_l|<) is distributeq-pg;a Kingman'’s coalescent. The family A(TE) has the same law as

K ~—H(hhD),0,+ Kk
vt G (T™") L=in—Hn D 0T Ky’ Since A(TE) is a function of the crown of Ty, it

is independent from n"~2:"(Tg) = n"~2"(T,,). We deduce that:

P(dp(Vh, PhvhD) = €) —

1
] [] n-Hdhh 0O
< LE nue-smorky g H Lo oK o iy T

4g2 i=1

1 1
Using Lemmal5.1.2, we have E n~H"=2MOoT Ky <

we have

Using Lemma/|5.1.1}

1—exp(— zu([h Eh))’

L1

1
n # P ) ]
E E VK cr u([h,h5), O(T K) EQE 1 — g~ RN < u(fh, h@)

i=1

Combining the two inequality gives:

P(dp(Vhg phvhD =€) < — Hﬂh, h%) e
48 1=exp —3u(h—5.h)
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Then, we believe that this regularity result is a corner stone to extend by continuity the
family of probability measure (vn)nheato a family (vi)n —with for a.e. h that Hv, = 9y, see
Properties and (5.2.2). Then Property can be seen as a de nition of v;. We
now explain how to prove Property (5.2.4).

Conjecture 5.4.4. Let p be a measure satisfying conditions C1-3. Then, for all h 1]

Sh = (Stumpy(T1), (Vhdhtt@eo,n) and  Cp = (Crown(h, Ty), (Va)nriga,eo))
are independent.

Idea of the proof. If h [CH, then the result is stated in Remark for TM for large n,
and we conjecture it holds at the limit for T;. Take h CIN\E. For every h"[CH n (—oo, h),
we can express Cp as a measurable function of Ch so Cy, is independent from Spg so Cy, is
independent from (Sh)ntigeo,ny. Since Stumpy(Ty) is the Local-Gromov-Hausdor limit of
Stump,,«(Ty) when h” [CH n (—oo, h] goes to h™ and vy, is conjectured to be a measurable
function of (Va)hrEn (—oco,h), SO We can express Sy, as a measurable function of (Shoncreh(—eo,h)
which is independent from Cy.. O

Because of the Conjectures and|5.4.1} Properties (5.2.5) and (5.2.6)) hold if h belongs
to the dense subset E. Then using Lemma 5.3.8:, one can always consider E [{h} instead of
E and deduce that Properties (5.2.5) and (5.2.6) hold.
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Resume

Dans cette these, nous developpons un nouvel espace pour I'etude des espaces metriques
labelles et mesures, dans I'optique de decrire des arbres genealogiques dont la racine est
in niment ancienne. Dans ces arbres, le temps est represente par une fonction label qui est
1-Lipschitz. On appelle espace metrique labelle S-compact et mesure tout espace metrique
E equipe d’une mesure v et d’une fonction-label 1-Lipschitz de E dans R, avec la condition
supplementaire que chaque tranche (I’ensemble des points de E dont le label appartient a un
compact de R) doit tre compact et avoir mesure nie. On note XS I’ensemble des espaces
metriques labelles mesures S-compacts, consideres a isometries pres. Sur XS, on de nit une
distance de type Gromov d, gqp qui compare les tranches. Il s’ensuit une etude de I'espace
(XS, dgHp), dont on montre qu’il est polonais.

De cette etude, on deduit les proprietes de I’ensemble T des elements de XS qui sont des
arbres continus dont les labels decroissent a vitesse 1 quand on se deplace vers la \racine"
(qui peut etre in niment loin). Chaque valeur possible de la fonction label represente une
generation de I'arbre genealogique. On montre que (T, d_gnp) est aussi polonais. On de nit
ensuite quelques operations mesurables sur T, dont le recollement aleatoire d’une forét sur
un arbre.

On utilise en n cette derniere operation pour construire un arbre aleatoire qui est un bon
candidat pour generaliser I’arbre brownien conditionne par son temps local (construction due
a Aldous).

Abstract

In this thesis, we develop a new space for the study of measured labelled metric spaces,
ultimately designed to represent genealogical trees with a root at generation —co. The time
in the genealogical tree is represented by a 1-Lipschitz label function. We de ne the notion of
S-compact measured labelled metric space, that is a metric space E equipped with a measure
v and a 1-Lipschitz label function from E to R, with the additional condition that each slice
(the set of points with labels in a compact of R) must be compact and have nite measure.
On the space XS of measured labelled metric spaces (up to isometry), we de ne a distance
dLeup by comparing the slices and study the resulting metric space, which we nd to be
Polish.

We proceed with the study of the subset T [X? of all elements of XS that are real tree
in which the label function decreases at rate 1 when we go toward the \root" (which can
be in nitely far). Each possible value of the label function corresponds to a generation in
the genealogical tree. We prove that (T,d gnp) is Polish as well. We de ne a number of
measurable operation on T, including a way to randomly graft a forest on a tree.

We use this operation to build a particular random tree generalizing Aldous’ Brownian
motion conditioned on its local time.
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