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General introduction

This manuscript is the result of my work as a PhD student in the Gulliver laboratory,
at ESPCI Paris, under the supervision of Mathilde Reyssat and Olivier Dauchot. It is
structured of two main parts, composed of respectively three and four chapters.

Part I[] [Theoretical and experimental contektpresents the general, theoretical and
experimental contexts. Its purposes are both to place our work in a broader history,
and to provide the general tools used throughout this work.

Chapter (1)], [Swimming, a biological and physical challerjgegives an original
introduction on swimming droplets by emphasizing how similar soft matter systems
can get to living systems. In particular, the ability to self induce motion has most
likely be critical in the early life development, and is the particularity of our swimming
droplets system. Moving at micro-scales requires a di erent physics than the one we
are used to, at our macroscopic scale. This is why, micro-swimmers have developed
speci ¢ strategies to induce motion. A better understanding of these strategies is one
of the motivation of the eld of microswimmers.

Chapter (2)] , [General theory is a pedagogical introduction to the hydrodynamics of
spherical micro-swimmers. It was intended to answer the fundamental questions of
what is swimming at microscales?And what might in uence the swimming motion?
The potential answers to this second question - the geometry and con nement, other
swimmers, and an external force - have been the starting point and the motivation of
the present work.

Chapter (3)] , [Pure water swimming dropleispresents the experimental model system
that is being studied. Using micro uidic, we create, put into various environments
and observe a model swimmer: a pure water swimming droplet in an outer oil-micelle
solution. Past work on these pure water swimming droplets is presented, as well as
the experimental tools that we use recurrently in the following chapters. We use this
opportunity to provide details about our experimental methods, as well as several tips
for successful experiments.

Part II ] [Experimental and theoretical workpresents my original work. We place our
study in the framework of swimming in a realistic environment where external factors
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- such as the presence of con nement, of other swimmers, or of an external force {
may in uence the swimming properties. In each chapter, we conduct experimental
realizations to answer an existing question or to explore new problems, and we
propose theoretical approaches in order to better capture the physics laying behind
the observed phenomena. Each chapter can be read independently from the others.

In chapter (4) |, [Swimming in 20 we rst study the e ect of one or two walls on the
swimming droplet. The presence of one wall breaks the natural axisymmetry of the
ow eld around the droplet. We investigate this e ect using confocal PIV in three
dimensions, and propose a simpli ed analytical formulation taking into account the
presence of the wall; and the e ect of buoyancy. This model is able to account for
the far eld hydrodynamics of the droplet close to a wall that diers from the one
generated by a droplet far from walls. This chapter has been the object of a published
article [1].

In chapter (5) |, [Swimming in 10, we look at more con ned geometries using glass
capillary micro uidics. The velocity of the droplet is observed to decrease with
increasing con nement; but, surprisingly, it saturates at a non-zero value for droplets
bigger than the channel height: even very long droplets swim. In more complex
geometries, such as stretched capillaries, the droplet elongates while swimming; and,
amazingly, may undergo successive spontaneous splitting events for high enough
con nement. To understand these phenomena, we use a theoretical approach inspired
from the Bretherton model|2] (for the study of long bubbles in tubes), including the

e ect of the activity of our droplet. A paper presenting the results and analysis of this
chapter is in preparation.

In chapter (6) ], [Swimming together in 1) we investigate the collective dynamics
of self-propelled droplets, con ned in a one-dimensional micro uidic channel. The
experimentally observed dynamics exhibits a rich phenomenology: neighbouring
droplets align and form large trains of droplets moving in the same direction. A
careful examination of the interactions between two "colliding" droplets demonstrates
that alignment takes place as a result of the interplay between velocity uctuations
and the absence of Galilean invariance. Taking these observations as the basis for a
minimalistic 1D model of active particles and combining analytical arguments and
numerical evidence, we show that the system exhibits a transition to collective motion
for a large range of values of the control parameters. A paper presenting these results
will soon be submitted.

In chapter (7)], [Ongoing work: swimming under gravify we present an ongoing
work: the e ect of gravity on the swimming. In 2D, by observing swimming droplets
on an inclined plane, we show that gravity strongly orients the droplets motion, and
that under strong gravity, the droplets velocity is more than the simple addition of
the sedimentation and active velocity in the absence of gravity. Droplets con ned in
1D capillaries exhibit a similar behaviour, but are also able to swim against gravity.
Surprisingly, long droplets in 1D do not seem to feel gravity.

Writing this manuscript has proven to be extremely ful lling as it pointed out missing
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arguments in the understanding of the explored topics, and gave me the time to analyse
in much more depth the physics behind the observed phenomena. | hope the reader
will enjoy, as much as | did, the discovery of the amazing behaviour of these swimming
droplets.
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Chapter 1

Swimming, a biological and physical
challenge

1.1 From physico-chemistry to complex living-like
behaviour

1.1.1 How to characterize life

One may simply be amazed in front of the diversity and complexity of life. Yet, and
maybe even more bewildering, living systems all share common hallmarks [3]: com-
partmentalization, growth and division, information processing, energy transduction
and adaptability (i.e. mobility).

The compartmentalization is the separation between the biological components
(chemical milieu and reactions, genetic material...) and the environment. This
separation has the double purpose of protecting the inside of the compartment against
the environment, and spatially concentrate the biological components. For cells, this
compartmentalization is achieved by a lipid bilayer membrane, semi permeable and
functional to allow communication between the environment and the cell. Notably,
this functionalization allows the cells to create chemical gradients, and to function out
of equilibrium.

The growth and division are the fundamental ingredients of self-replication. It
requires the ability to grow (taking in "food" from the environment), to deform its
boundary, but also eventually to manage spatial organization. For living cells, it
is achieved thanks to the complex dynamics of the cell cytoskeleton. Note that in
the vision of a prebiotic system, in the absence of compartmentalization, this self
replication process could be achieved by a collective autocatalytic sets, where an
ensemble of molecules can reproduce each other]4, 5].

The information processing is the ability to generate, vehiculate, translate and
store information, at the intracellular level as well as at the extracellular level. In
cells it is achieved in multiple ways, including the genetic information processing
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CHAPTER 1. SWIMMING, A BIOLOGICAL AND PHYSICAL CHALLENGE

Figure 1.1: Figure 1 from [3],] the hallmarks of life: a summary of the ve
characteristics required for systems to live and thrive. In the last decade, developments
in bioanalogous and bio-mimetic bottom-up technologies have emulated aspects of each
hallmark to inform us about the functional mechanisms behind each process, and about
the opportunities to construct integrated arti cial cell platforms.

(using DNA and RNA), the membrane activity management (using ions channel)
and extracellular communication (using multi-scale signals from small molecules to
vesicles). One of the keys for a complex information processing is the presence of
a feedback system, which allows two ways communication (sending an information,
receiving an answer, which triggers a reaction)

The energy transduction is the harnessing of the energy necessary for the system
activity. The energy is taken from the external environment (light, chemical compo-
nent...); thus the living system is out of equilibrium. The principal cellular energy
currencies are ATP and NADH, and also FADH2 and GTP.

The adaptability is the capacity of the living system to adapt to the environment.
It plays a crucial role in the competitiveness between di erent species (exploring
environment, sensing the best food spot, protecting against threat). A simple form
of adaptability is the motility. Cells developed several strategies in order to generate
motion, such as the use of cilia or a bacterial agellar rotoii [6]. One of the stakes of
motility is to go toward regions with "food", and thus motility is often combined with
signal sensing.

All these characteristics of the living world can be found in simpler non-living chemical
or physico-chemical systems [7], although not all together. This ascertainment moti-
vated the scienti ¢ world to design proto-cells (physico-chemical systems that would
mimic the early stage of life) or arti cial cells (arti cially made systems reproducing
all above characteristics) using bottom-up strategies|[8] 9,110]: starting from a very
simple system such as only a compartment (droplet - shell), or a chemical reaction
(polymerization), and complexifying it progressively (adding physico-chemical compo-
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1.1. FROM PHYSICO-CHEMISTRY TO COMPLEX LIVING-LIKE BEHAVIOUR

nents, chemical reaction...), to obtain a system with multiple characteristics capable of
mimicking life. For such a purpose, micro uidics[[11] has demonstrated to be a very
pertinent tool. It allows the highly controlled production and manipulation of uid
and micro uidics objects (droplet, shells...) with scales comparable to the one of the
living world.

1.1.2 A droplet to mimic life

Droplets are particularly simple, yet very rich systemg [7, 12]: they constitute an inner
uid separated from an outer uid (environment) by an interface (compartmentaliza-
tion), eventually stabilized by a surfactant (potential source of activity). Even if it is
unlikely that the rst lifeforms are derived directly from droplets (vesicles are more
likely candidates [13]), all life-like characteristics can be mimicked using droplets:

1. A droplet is trivially compartmentalized.

2. Droplets may grow through droplet fusion (by Ostwald ripening or by externally
triggered fusion [[14], using geometry or an external eld), but also through more
"feeding-like" process([15], such as phase separation or the absorption of ma-
terial from the environment. Both are possible if the nal state of the system
is energetically favorable (if the molecular interactions win against the entropy
gain of mixing). Droplets division can also be externally driven, by geometry or
by an external eld [14], or comes from a spontaneous instability, that can be
chemically driven |16/ 17] (generally by the production of surfactant) or hydrody-
namically driven [18]. To summarize schematically the spontaneous growth and
division process, one can remember that the systefidroplet+foodg needs to be
less stable than the systeni grown droplety, itself less stable than the system
ftwo dropletsg.

3. Information processing in droplets can be implemented by adding DNA and RNA
molecules inside the droplet, but for more bottom-up perspectives, it can be
achieved through complex chemical reactions, involving catalytic and autocat-
alytic loops, to get computing capacities [19].

4. The energy transduction comes with the implementation of activity in the droplet
(growth, deformation division, motility, chemical reactions, etc). The activity
exists for out of equilibrium systems. Thus throughout the activity cycles, there
is a global loss in the system "energy”. For the activity to continue, the system
needs to be maintained out of equilibrium by an external input of energy (the
"fuel"). The robust transduction of fuel (chemical component - light - heat ...)
to activity is probably the most intuitive characteristic of life.

5. Motility might seem to require a very complex machinery, and indeed cells and
micro-organisms have developed amazing mechanisms to propel themselves [20].
However, a simple isotropic droplet may also produce motion, through, for in-
stance, an instability mechanism coupling its surface properties (self-induced non-
isotropic surface tension) and hydrodynamics (Marangoni ow). This mechanism
is also very sensible to the composition of the environment; sensing chemical gra-
dients, it can lead to directed motion toward regions of high food concentration.
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CHAPTER 1. SWIMMING, A BIOLOGICAL AND PHYSICAL CHALLENGE

The present work focus on this last characteristic of life: the motility, at scales compa-
rable to the ones of the living world.

1.2 Swimming at the microscale

As we go down in scale, the surface phenomena start to win over the volume phenomena.
If at our macroscopic scale, we are dominated by inertia and gravity, it's a di erent
story at the microscopic scale, where viscosity and interfacial forces play a much more
important role. This has consequences, in particular in the choice of transport in the
living world: microorganisms, including cells, need to develop strategies specic to
their scale to produce motion. The understanding of such strategies is crucial at the
fundamental level to apprehend the behaviour of biological micro-swimmers, but also
to achieve arti cial locomotion in a surrounding uid at the micron-scale, in order to
perform a multitude of tasks in technical and medical applications (transport, mixing,
etc), which has become a central goal of hanosciences.

1.2.1 Scallop theorem

For micro-organisms, or objects of the micro-metric scale,(the typical size of the
object, is typically from 10 m to 500 m), the inertial e ects are small compared
to the viscous e ects. This is quanti ed by the Reynolds number Re =22 s the
density of the environment, U is the characteristic velocity of the outer ow, and

is the viscosity of the outer uid. In the microscopic word (smalla, generally small
U, viscous uid), Re 1. Then the equation that describes the hydrodynamics for
an incompressible Newtonian uid with uniform properties ( and constant), in the
absence of body force, is the Stokes equation (which comes from the simpli cation of

the Navier{Stokes equation when Ré¢ 0):

@u_
@t

r p+ u; (1.2)
(1.2)

and the mass conservation, for an incompressible uid:

Q@

@t+ r u=0: (1.3)

(1.4)

u being the ow eld.

One property of the Stokes equation is that it has no time dependency (instantane-
ity). Note that the system may still have a time dependency through the boundary
conditions. An immediate consequence is that this equation is invariant through time
reversion. This a ects the swimming of microorganism$ [21]: no net motion can emerge
from reciprocal motion (time reversible sequence motion). This property is called the
scallop theorem (illustration in Fig.[1.2): a scallop swims by taking in water quickly,
and then releasing it slowly. At the macroscale, thanks to inertia this cycle leads to
net motion (the scallop advances a lot by taking in water, and moves back a little
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1.2. SWIMMING AT THE MICROSCALE

Figure 1.2: Scallop theorem: Simple illustration of the scallop theorem through
the swimming cycle of a scallop at high Reynolds number (left), which leads to a net
displacement, and at low Reynolds number (right), which leads to no net displacement.

when releasing it). At the microscale however, independently of the velocity of the two
actions, they both lead to the same displacement, the cycle leads to no net motion.

Therefore, to produce motion at microscales, microorganisms developed non-reversible
motion strategies.

1.2.2 Dierent strategies for di erent swimmers

One amazing point is the diversity of possible methods to go beyond the scallop the-
orem. A lot of them have been summarized in[20]. We can pinpoint a few categories
of swimmers:

Some use an external part, such as a agella|22,23], with non-reversible motion to
mechanically act on the outer uid. Examples include the rotation of bacteria's
helical agellar bundle [24], or the actuated motion of a sperm agellum[25].
To mimic such complex and coordinated motion is possible, as illustrated, for
instance, by magnetically-powered microswimmers [23,126], but requires highly
speci ¢ design of actuated multi-component systems. Two illustration of such
swimmers are shown in Fig. 1]3(a) and (b).

Some change their surface properties, mechanically, like for the synchronized
beating of cilia on ciliated protozoal[27, 28], or chemically by inducing phoretic
and/or Marangoni ows [29] at the swimmer interface. Two illustrations of such
swimmers are shown in Fig. 1|3(c) and (d):

Some use volume properties, for instance through jet like propulsion, by ejecting
small bubbles of gas [30]. An example of such a swimmer is shown in 1.3(e):

The study of microswimmers, and the design of arti cial swimmers is a very active eld,
at the interface of hydrodynamics, physico-chemical engineering and soft matter][35].
Several theoretical models have been developed in order to understand the swimming
of the di erent swimmers. Among them the Purcell swimmer model [21], describing
the swimming of a two arms swimmer by non time-reversible beating; the three-bead
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Figure 1.3: Examples of biological and arti cial microswimmers: (&) Image
from [31], imaging of Fluorescent Flagellar Filaments of E. Coli bacteria. (b) Image
from [23], beating pattern of the motion of a magnetic exible lament attached to a red
blood cell. (c) Image from[[32], imaging of a Paramecia while swimming. Cilia waves
appear in pro le views (arrowheads). (d) Image from( ]33], time series of snapshots
demonstrating the approach, contact and detachment of a Janus particle at a wall.
(e) Image from [34], catalytic nanojet engines: optical sequence of the motion of the
nanojet engine (insert: SEM image of the smallest man-made jet engine consisting of
600 nm diameter and about 5 m length)

swimmer [36], similar to the rst one, but that swims by non time-reversible contraction
of his arms; and the squirmer model [37,"38], describing the ow eld around spherical
swimmer imposing a slip velocity or a stress jump at their interface. The squirmer
model, a thorough exposition and description of which is given in chaptef|(2), in
section [2.2.1); will be largely used in the present work.

1.2.3 Con nement, external constrain, collective e ects

The theoretical approach generally considers, at rst, one swimmer alone in an in nite
medium. However, be it in a biological environment or in a micro uidic device, there
are many cases where the microswimmer evolves (1) close to boundaries [39], (2) in
presence of other swimmers, and (3) even under other physical constrains, such as a
force (gravity), or an external ow eld.

1. Several observations reveal the critical importance of con nement on the swim-
mer's dynamics. Microswimmers are often attracted by the boundaries [40,] 41,
427], which can then be used to capture [43,733], or steer the swimmer mo-
tion [44,145,[46]. The presence of a boundary has been observed to in uence, not
only the motion of a single particle([47, 48, 49], but also the collective behaviour
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1.2. SWIMMING AT THE MICROSCALE

and phase transitions of swarms$ 50, 51,152,153]. Ultimately, the interactions with
boundaries can be used to harvest energy from the population of swimmeérs [54].

2. Interactions between swimmers coupled to their motility may lead to some amaz-
ing collective e ect [55]. Colonies of bacteria explore their environment by swarm-
ing [56], and polar order may emerge from these dense phases [57]. Dense active
suspension of Escherichia coli bacteria are observed to exhibit convection pat-
terns [58]. Active particles, such as light-activated colloidal surfers, assemble
into living crystals [59]. Such complexity emerges from the various e ects at
play: the swimmers geometry (through steric interactions), the hydrodynamics
(that a ects the ow eld far from the swimmer) or the physico-chemistry (as
some chemically active swimmers leave a chemical trail behind them); and often
these e ects are coupled.

3. In the biological world, many microorganisms are observed to undergo gravi-
taxis [60, 61, 62/ 63, 64] - a response in motility to a gravitational eld. This
behaviour ght against sedimentation, and its interest is most likely the pos-
sibility to explore a widest part of the environment. On another hand, under
sedimentation, some swimming particles are observed to partially align, oriented
against the gravitational eld [65,[66,/67]. Such phenomena re ect the e ect of
gravity not only on the swimming, but also on the activity of the swimmer.

We place the current work in the framework of swimming in a realistic and complex
environment, in the case where external factors - such as the presence of con nement,
of an external force, or of other swimmers { may in uence the swimming properties.
In the following of this Part [[] we present the basic theoretical tools necessary to
understand the swimming of a spherical swimmer (chaptgt 2), and then we present the
experimental model swimmer, that we use for all experiments: a pure water swimming
droplet (chapter[3).
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Chapter

General theory

Introduction

Context

In this chapter, we present the general theoretical framework of a spherical microswim-
mer and introduce the theoretical tools that we shall use in the following chapters.

What we call a microswimmer (or for simplicity a swimmer) in the following is an object
able to self-propel at a micrometric scale in a surrounding uid by interacting
with this surrounding uid

- The self-propulsion implies that the swimmer is able to collect energy from its
environment, and convert it into motion. This swimmer is out of equilibrium.

- The micrometric scale means that the hydrodynamics follows the Stokes equa-
tion (as introduced section [(1.R)).

- The interaction with the surrounding uid happens through the boundary
conditions at the interface of the swimmer.

In this introduction, we de ne our notations and the mathematical tools that are used
in the following. We present in section[(2]1) the solution of the Stokes equation for
an axisymmetric ow around a spherical object. We then introduce in sectior] (2.2)
the boundary conditions imposed by a swimmer. Finally, in sectiorj (2.3), we discuss
the e ects of breaking the axisymmetry of the system - by changing the boundary
conditions, imposing an external force or adding boundaries such as walls.

Object of study and Notations

We consider two kinds of objects. (i)A spherical solid particle  of radius a,
undeformable, impermeable, and that absorbs all stresses. This particle goes at a
velocity U in an external uid of viscosity , imposing a slip velocity at its interfacevs,

and generating an outer owu. (ii) A spherical droplet of radius a, undeformable,
impermeable, and that absorbs radial stress. This droplet, constituted of an inner

23



CHAPTER 2. GENERAL THEORY

uid of viscosity ; goes at a velocityU in an outer uid of viscosity , imposing a
slip velocity vs and a tangential stress jump ¢ at its interface, and generating an
inner ow u; and an outer ow u. Note that the solid particle i is simply a droplet ii
inthe limit ; '1 . A priori, the direction of motion e, - which is the direction of

U - and the swimming directione - which is the direction imposed by the boundary
conditions - may not be the same (for instance, because of an external force, or the
geometry). We introduce here some notations used throughout this manuscript. Note
in particular that, per convention, experimentally measured velocities and ow elds
are notedV and v, while they are notedU and u in analytic expressions.

Object of study
a the droplet radius,
U or V the velocity of the object,
ex the direction of motion,
F the external force,
Vs the slip velocity at the interface,
s the stress jump at the interface,
e the swimming direction (direction

imposed by the boundary conditions).
Figure 2.1: Notations: Object of study

hydrodynamics :
u or v the ow eld of the outer uid,
the viscosity of the outer uid,
p the pressure in the outer uid,
the stress tensor in the outer uid,
u; the ow eld of the inner uid,
i the viscosity of the inner uid,
pi the pressure in the inner uid,

i the str nsor in the inner ui . : .
| the stress tensor in the inner- uid, Figure 2.2: Notation - hydrodynamics

Physico-chemistry
c the concentration eld of solute,
V the interaction potential between the
solute and the interface,
the interfacial layer thickness,
A the activity,
K the phoretic constant,
M the Marangoni constant,

M the motility,
Figure 2.3: Notations:  Physico- the surface tension of the interface,
chemistry ¢ the surface excess of the solute.
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Mathematical tools
Basis and coordinates

Depending on the considered geometry, we use di erent basis and coordinates.

The Cartesian basis (e «, ey, €;) and coordinates ( X,y,z) - Fig. ): e 4 Iis
de ned as the direction of motion (the direction axis of the swimmee, imposed by the
boundary conditions, might not be aligned with this direction of motion). In presence
of a wall, if the direction of motion is parallel to the wall, we de nee, as the direction
perpendicular to the wall, andh as the distance between the wall and the center of the
droplet.

The spherical basis (e , e , e ) and coordinates ( r, ,' ) - Fig. 2.4(p): itisthe
most natural coordinate system to describe an axisymmetric ow around a spherical
object. r is the distance to the center of the object. is the angle with the direction of
the swimmere,. ' is the revolution angle. If the ow is axisymmetric, then nothing
depends on' . We also introduce the notation = cos . We call the axisymmetric
coordinates ¢, ).

The cylindrical basis (e , es, ;) and coordinates ( ,A,z) - Fig. ): The
presence of a wall breaks the natural axisymmetry of a swimming spherical object.
But it does not break the planar symmetry with regard to the planey = 0 (the plane
perpendicular to the wall, containing the direction of motion of the droplet). In the case
of an object swimming parallel to a wall, it is natural to use the cylindrical coordinates
to describe the ow eld, where and " are the polar coordinates in any observation
plane parallel to the wall, and the origin ofz is taken at the center of the object. We
also introduce the notation =cos”. We call the polar coordinates (,").

Figure 2.4: Basis and coordinates: (a) Cartesian basis €, ey, e,) and coordinates
(x,y,z). (b) Isotropic spherical basis €;, e ) and coordinates (, ), the planes M )
for which ' is a constant are called the median planes. (c) Cylindrical basig ( e,
e,) and coordinates (,",z), the planes ©) for which z is a constant are called the
observation planes.
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Change of basis: Between the Cartesian basis and the spherical basis:

€ =sin' cos e +sin' sin e, +cos' e,; X = I COS; (2.1)
€& =C0S' COoS e +cos' sin e, sin' e, y = rsin cos; (2.2)
€ = sin e +CoS ey; zZ=rsin sin" (2.3)

Between the Cartesian basis and the cylindrical basis:

e =cos e +sin "ey; Xx= cos” (2.4)
e~= sin"e +cos”ey; y= sin" (2.5)

Between the cylindrical basis and the spherical basis:

re, = e + ze,; r2= 2+ 7% (2.6)
. . z
sin e =sin "er+ -1 cos’e, + = cos’e,; rcos = cos: (2.7)
Operators

Axisymmetric spherical coordinates:

r —(@+ > @) (2.8)
Useful relations:
ro(r)= (2.9)
r (rm )=0; (2.10)
r~ (r)=0; (2.11)
r~ (™ )=r(r) : (2.12)

Legendre polynomials

The Legendre polynomials[6d],( ) L9( )andthe associated Legendre polynomials
of m" kind, L™( ) are families of orthogonal polynomials that form a basis of the
azimuthal symmetries . They are respectively de ned as:

1 d

La( )= (2 1)), (213)
LrO=C e 9% S0 (2.14)

They are solutions of the equations:
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Ta %Y vnprni)=o; (2.15)
d dLm( ) m
N 1 2 g + n(n+1) )] L™( )=0: (2.16)

The Legendre polynomials of the same kind are orthogonal with each other:

Z
! 2(n + m)!

anm( )ano( )d = (2n+1)(n m)! n;n 0 (2.17)
and in particular
z
LOwOd = 20 219)
Z,
1|-n( Jno( )d = m n:nO: (2.19)

We explicit a few useful Legendre polynomials, and associated Legendre polynomials
of the rst kind:

Lo( )=1; Lé( )=0; (2.20)
Li( )= ; Li= 1 % (2.21)
Lo )= 5@ % 1) ()= 3°1T 2 22

The Legendre and associated Legendre polynomials are of great interest for the descrip-
tion of isotropic functions in space: all isotropic functions in space can be decomposed
into the Legendre polynomials basis (or into any associated Legendre polynomial basis),
L.( =cos ), being the angle with the direction of axisymmetry in the spherical co-
ordinates. Similarly, all functions with a symmetry axis in a plane can be decomposed
into the Legendre polynomials basis (or into any associated Legendre polynomial basis),
L,( =cos A) " being the angle with the symmetry axis in the cylindrical coordinates.

2.1 Axisymmetric ow eld around a spherical ob-
ject

2.1.1 The problem studied

In this section we present the problem of an hydrodynamics ow eld around an
axisymmetric, undeformablé spherical object, without external force applied on the
uid ™, nor external uxV. This object interacts with the external uid through the
boundary conditions at its interface.

27



CHAPTER 2. GENERAL THEORY

i. The ow eld around the object can be considered axisymmetric if such is the
problem. This means that the object must have axisymmetric boundary condi-
tions, whose directione is aligned with all other directions of the problem (di-
rection of an external force exerted on the object, symmetry of the geometry...).
As a consequence, it is also aligned with the direction of motias = e.

il. The object is undeformable, if it remains spherical at all times. In that case, the
radial velocity must be zero at the boundaryu, (r = a) = 0, and the radial stress
is absorbed at the interface (free boundary condition for,, ).

iii. We consider that no external force is applied on the uid (typically the gravity
is neglected), Note that there can still be an external force applied on the object
(for instance gravity, if the object does not have the same density as the outer
uid, but it could also be a magnetic force, if the object is magnetic, etc...). Even
if, in this second case, the force is applied on the object, it can have an impact
on the uid through the boundary conditions.

iv. No external ow means that the ow eld tends to zero far from the object
u(r!? +1)! 0.

The object of study can be a solid spherical particle going at a velocitye,, impos-
ing an azimuthal isotropic slip velocityvs(r = 1; ) at its interface. The equations
describing the steady motion of such a system are then the Stokes equation and the
mass-conservation equation for the outer uid, and the boundary conditions. In the
lab frame:

us=rp; (2.23)
r u=0; (2.24)
u(r=a U=vee: (2.25)

The object of study can also be a spherical droplet, imposing an azimuthal velocity
jump vs and an azimuthal stress jump ¢ through its interface. The equations describ-
ing the steady motion of such a system are then the Stokes equation and the mass
conservation equation for the outer uid and for the inner uid, and the boundary
conditions. In the lab frame:

u=rp; (2.26)

r u=0; (2.27)

u=rp; (2.28)

r u' =0; (2.29)

ur=a) u'(r=a)= vse; (2.30)
@u @u  _

@ . @ T (2.31)

Having supposed the interface of our object undeformable, the radial velocity is simply
related to the object velocity,

u(r=a=u((r=a=U: (2.32)



2.1. AXISYMMETRIC FLOW FIELD AROUND A SPHERICAL OBJECT

Finally, in the steady regime, the sum of the forces applied on the object cancels. If
the object feels an external forcd- (e.g. buoyancy), and if the &uter uid exerts a

viscous forceF ; on the object, thenF = Fq ;. With Fy o= P +

F = P+ 1 2 ds: (2.33)

|£ there is no_ external force exerted on the object, then
p 2
S p T o r 1 dsS=0.
r=a
In the following, we start by solving the stokes equation in spherical coordinates for an
axisymmetric problem, then we apply the boundary conditions. In a second time, we
present a few examples of characteristic ow elds under various conditions.

2.1.2 Solution to the Stokes equation in spherical coordinates
for an axisymmetric problem

The inner and outer hydrodynamics ow elds are described by the Stokes and the
mass-conservation equations:

u=rp; (2.34)
r u=0: (2.35)

For an axisymmetric ow, we use the spherical coordinates, (Fi§. 2.4(b)X, the dis-
tance from the center of the object, is made dimensionless using the object radajs

is the angle with the direction of axisymmetry, which is also the swimming direction
e = e; and is the revolution angle on which nothing depends in the axisymmetric
case. Finally,u. = 0 by symmetry. Then u = u,(r; )e + u (r; )e, where the de-
pendence in =cos re ects the parity in  included in the axisymmetric hypothesis.
Physically, the ow eld is the same in any plane containing the direction of axisym-
metry e, called median planes. For this axisymmetric ow eld, we can de ne the
stream-function such thatu = r~ ( e); then u directly ful lls equation (2.35). In
spherical coordinates:

ur(r; )= r—zl@(@r ); (2.36)
_ .1 o),
u(; )= PG (2.37)

Physically, the stream-function describes the stream lines - the trajectory that would
takes a tracer in the uid - in a steady ow (more precisely, a stream-line corresponds
to an iso- ). Mathematically, we use it to solve the Stokes equation in spherical
coordinates, by injecting it in the Stokes equation[(2.34). We d&t

r4(r )=0; (2.38)

LAll operators and their useful properties are given in this chapter introduction, equations )
to (R.12) in spherical coordinates.
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with: @ 1 °@ °
ré= —+-———— (2.39)
@t rz @?
One can look for solutions of the particular form:
. — 1 2y O .
(n )= @ AL (2.40)

using the Legendre polynomials,( ). The Legendre polynomia@ form a system of
complete and orthogonal 