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Physique en Île-de-France
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General introduction

This manuscript is the result of my work as a PhD student in the Gulliver laboratory,
at ESPCI Paris, under the supervision of Mathilde Reyssat and Olivier Dauchot. It is
structured of two main parts, composed of respectively three and four chapters.

Part I , Theoretical and experimental context, presents the general, theoretical and
experimental contexts. Its purposes are both to place our work in a broader history,
and to provide the general tools used throughout this work.

Chapter (1) , Swimming, a biological and physical challenge, gives an original
introduction on swimming droplets by emphasizing how similar soft matter systems
can get to living systems. In particular, the ability to self induce motion has most
likely be critical in the early life development, and is the particularity of our swimming
droplets system. Moving at micro-scales requires a di�erent physics than the one we
are used to, at our macroscopic scale. This is why, micro-swimmers have developed
speci�c strategies to induce motion. A better understanding of these strategies is one
of the motivation of the �eld of microswimmers.

Chapter (2) , General theory, is a pedagogical introduction to the hydrodynamics of
spherical micro-swimmers. It was intended to answer the fundamental questions of
what is swimming at microscales?And what might in
uence the swimming motion?
The potential answers to this second question - the geometry and con�nement, other
swimmers, and an external force - have been the starting point and the motivation of
the present work.

Chapter (3) , Pure water swimming droplets, presents the experimental model system
that is being studied. Using micro
uidic, we create, put into various environments
and observe a model swimmer: a pure water swimming droplet in an outer oil-micelle
solution. Past work on these pure water swimming droplets is presented, as well as
the experimental tools that we use recurrently in the following chapters. We use this
opportunity to provide details about our experimental methods, as well as several tips
for successful experiments.

Part II , Experimental and theoretical work, presents my original work. We place our
study in the framework of swimming in a realistic environment where external factors
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- such as the presence of con�nement, of other swimmers, or of an external force {
may in
uence the swimming properties. In each chapter, we conduct experimental
realizations to answer an existing question or to explore new problems, and we
propose theoretical approaches in order to better capture the physics laying behind
the observed phenomena. Each chapter can be read independently from the others.

In chapter (4) , Swimming in 2D, we �rst study the e�ect of one or two walls on the
swimming droplet. The presence of one wall breaks the natural axisymmetry of the

ow �eld around the droplet. We investigate this e�ect using confocal PIV in three
dimensions, and propose a simpli�ed analytical formulation taking into account the
presence of the wall; and the e�ect of buoyancy. This model is able to account for
the far �eld hydrodynamics of the droplet close to a wall that di�ers from the one
generated by a droplet far from walls. This chapter has been the object of a published
article [1].

In chapter (5) , Swimming in 1D, we look at more con�ned geometries using glass
capillary micro
uidics. The velocity of the droplet is observed to decrease with
increasing con�nement; but, surprisingly, it saturates at a non-zero value for droplets
bigger than the channel height: even very long droplets swim. In more complex
geometries, such as stretched capillaries, the droplet elongates while swimming; and,
amazingly, may undergo successive spontaneous splitting events for high enough
con�nement. To understand these phenomena, we use a theoretical approach inspired
from the Bretherton model[2] (for the study of long bubbles in tubes), including the
e�ect of the activity of our droplet. A paper presenting the results and analysis of this
chapter is in preparation.

In chapter (6) , Swimming together in 1D, we investigate the collective dynamics
of self-propelled droplets, con�ned in a one-dimensional micro
uidic channel. The
experimentally observed dynamics exhibits a rich phenomenology: neighbouring
droplets align and form large trains of droplets moving in the same direction. A
careful examination of the interactions between two "colliding" droplets demonstrates
that alignment takes place as a result of the interplay between velocity 
uctuations
and the absence of Galilean invariance. Taking these observations as the basis for a
minimalistic 1D model of active particles and combining analytical arguments and
numerical evidence, we show that the system exhibits a transition to collective motion
for a large range of values of the control parameters. A paper presenting these results
will soon be submitted.

In chapter (7) , Ongoing work: swimming under gravity, we present an ongoing
work: the e�ect of gravity on the swimming. In 2D, by observing swimming droplets
on an inclined plane, we show that gravity strongly orients the droplets motion, and
that under strong gravity, the droplets velocity is more than the simple addition of
the sedimentation and active velocity in the absence of gravity. Droplets con�ned in
1D capillaries exhibit a similar behaviour, but are also able to swim against gravity.
Surprisingly, long droplets in 1D do not seem to feel gravity.

Writing this manuscript has proven to be extremely ful�lling as it pointed out missing
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arguments in the understanding of the explored topics, and gave me the time to analyse
in much more depth the physics behind the observed phenomena. I hope the reader
will enjoy, as much as I did, the discovery of the amazing behaviour of these swimming
droplets.
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Chapter 1
Swimming, a biological and physical
challenge

1.1 From physico-chemistry to complex living-like
behaviour

1.1.1 How to characterize life

One may simply be amazed in front of the diversity and complexity of life. Yet, and
maybe even more bewildering, living systems all share common hallmarks [3]: com-
partmentalization, growth and division, information processing, energy transduction
and adaptability (i.e. mobility).

The compartmentalization is the separation between the biological components
(chemical milieu and reactions, genetic material...) and the environment. This
separation has the double purpose of protecting the inside of the compartment against
the environment, and spatially concentrate the biological components. For cells, this
compartmentalization is achieved by a lipid bilayer membrane, semi permeable and
functional to allow communication between the environment and the cell. Notably,
this functionalization allows the cells to create chemical gradients, and to function out
of equilibrium.

The growth and division are the fundamental ingredients of self-replication. It
requires the ability to grow (taking in "food" from the environment), to deform its
boundary, but also eventually to manage spatial organization. For living cells, it
is achieved thanks to the complex dynamics of the cell cytoskeleton. Note that in
the vision of a prebiotic system, in the absence of compartmentalization, this self
replication process could be achieved by a collective autocatalytic sets, where an
ensemble of molecules can reproduce each other [4, 5].

The information processing is the ability to generate, vehiculate, translate and
store information, at the intracellular level as well as at the extracellular level. In
cells it is achieved in multiple ways, including the genetic information processing
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Figure 1.1: Figure 1 from [3], the hallmarks of life: a summary of the �ve
characteristics required for systems to live and thrive. In the last decade, developments
in bioanalogous and bio-mimetic bottom-up technologies have emulated aspects of each
hallmark to inform us about the functional mechanisms behind each process, and about
the opportunities to construct integrated arti�cial cell platforms.

(using DNA and RNA), the membrane activity management (using ions channel)
and extracellular communication (using multi-scale signals from small molecules to
vesicles). One of the keys for a complex information processing is the presence of
a feedback system, which allows two ways communication (sending an information,
receiving an answer, which triggers a reaction)

The energy transduction is the harnessing of the energy necessary for the system
activity. The energy is taken from the external environment (light, chemical compo-
nent...); thus the living system is out of equilibrium. The principal cellular energy
currencies are ATP and NADH, and also FADH2 and GTP.

The adaptability is the capacity of the living system to adapt to the environment.
It plays a crucial role in the competitiveness between di�erent species (exploring
environment, sensing the best food spot, protecting against threat). A simple form
of adaptability is the motility. Cells developed several strategies in order to generate
motion, such as the use of cilia or a bacterial 
agellar rotor [6]. One of the stakes of
motility is to go toward regions with "food", and thus motility is often combined with
signal sensing.

All these characteristics of the living world can be found in simpler non-living chemical
or physico-chemical systems [7], although not all together. This ascertainment moti-
vated the scienti�c world to design proto-cells (physico-chemical systems that would
mimic the early stage of life) or arti�cial cells (arti�cially made systems reproducing
all above characteristics) using bottom-up strategies [8, 9, 10]: starting from a very
simple system such as only a compartment (droplet - shell), or a chemical reaction
(polymerization), and complexifying it progressively (adding physico-chemical compo-
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nents, chemical reaction...), to obtain a system with multiple characteristics capable of
mimicking life. For such a purpose, micro
uidics [11] has demonstrated to be a very
pertinent tool. It allows the highly controlled production and manipulation of 
uid
and micro
uidics objects (droplet, shells...) with scales comparable to the one of the
living world.

1.1.2 A droplet to mimic life

Droplets are particularly simple, yet very rich systems [7, 12]: they constitute an inner

uid separated from an outer 
uid (environment) by an interface (compartmentaliza-
tion), eventually stabilized by a surfactant (potential source of activity). Even if it is
unlikely that the �rst lifeforms are derived directly from droplets (vesicles are more
likely candidates [13]), all life-like characteristics can be mimicked using droplets:

1. A droplet is trivially compartmentalized.

2. Droplets may grow through droplet fusion (by Ostwald ripening or by externally
triggered fusion [14], using geometry or an external �eld), but also through more
"feeding-like" process [15], such as phase separation or the absorption of ma-
terial from the environment. Both are possible if the �nal state of the system
is energetically favorable (if the molecular interactions win against the entropy
gain of mixing). Droplets division can also be externally driven, by geometry or
by an external �eld [14], or comes from a spontaneous instability, that can be
chemically driven [16, 17] (generally by the production of surfactant) or hydrody-
namically driven [18]. To summarize schematically the spontaneous growth and
division process, one can remember that the systemf droplet+foodg needs to be
less stable than the systemf grown dropletg, itself less stable than the system
f two dropletsg.

3. Information processing in droplets can be implemented by adding DNA and RNA
molecules inside the droplet, but for more bottom-up perspectives, it can be
achieved through complex chemical reactions, involving catalytic and autocat-
alytic loops, to get computing capacities [19].

4. The energy transduction comes with the implementation of activity in the droplet
(growth, deformation division, motility, chemical reactions, etc). The activity
exists for out of equilibrium systems. Thus throughout the activity cycles, there
is a global loss in the system "energy". For the activity to continue, the system
needs to be maintained out of equilibrium by an external input of energy (the
"fuel"). The robust transduction of fuel (chemical component - light - heat ...)
to activity is probably the most intuitive characteristic of life.

5. Motility might seem to require a very complex machinery, and indeed cells and
micro-organisms have developed amazing mechanisms to propel themselves [20].
However, a simple isotropic droplet may also produce motion, through, for in-
stance, an instability mechanism coupling its surface properties (self-induced non-
isotropic surface tension) and hydrodynamics (Marangoni 
ow). This mechanism
is also very sensible to the composition of the environment; sensing chemical gra-
dients, it can lead to directed motion toward regions of high food concentration.
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The present work focus on this last characteristic of life: the motility, at scales compa-
rable to the ones of the living world.

1.2 Swimming at the microscale

As we go down in scale, the surface phenomena start to win over the volume phenomena.
If at our macroscopic scale, we are dominated by inertia and gravity, it's a di�erent
story at the microscopic scale, where viscosity and interfacial forces play a much more
important role. This has consequences, in particular in the choice of transport in the
living world: microorganisms, including cells, need to develop strategies speci�c to
their scale to produce motion. The understanding of such strategies is crucial at the
fundamental level to apprehend the behaviour of biological micro-swimmers, but also
to achieve arti�cial locomotion in a surrounding 
uid at the micron-scale, in order to
perform a multitude of tasks in technical and medical applications (transport, mixing,
etc), which has become a central goal of nanosciences.

1.2.1 Scallop theorem

For micro-organisms, or objects of the micro-metric scale (a, the typical size of the
object, is typically from 10 � m to 500 � m), the inertial e�ects are small compared
to the viscous e�ects. This is quanti�ed by the Reynolds number Re =�Ua

� , � is the
density of the environment,U is the characteristic velocity of the outer 
ow, and�
is the viscosity of the outer 
uid. In the microscopic word (smalla, generally small
U, viscous 
uid), Re � 1. Then the equation that describes the hydrodynamics for
an incompressible Newtonian 
uid with uniform properties (� and � constant), in the
absence of body force, is the Stokes equation (which comes from the simpli�cation of
the Navier{Stokes equation when Re! 0):

�
@u
@t

= �r p + � � u; (1.1)

(1.2)

and the mass conservation, for an incompressible 
uid:

@�
@t

+ r � � u = 0: (1.3)

(1.4)

u being the 
ow �eld.

One property of the Stokes equation is that it has no time dependency (instantane-
ity). Note that the system may still have a time dependency through the boundary
conditions. An immediate consequence is that this equation is invariant through time
reversion. This a�ects the swimming of microorganisms [21]: no net motion can emerge
from reciprocal motion (time reversible sequence motion). This property is called the
scallop theorem (illustration in Fig. 1.2): a scallop swims by taking in water quickly,
and then releasing it slowly. At the macroscale, thanks to inertia this cycle leads to
net motion (the scallop advances a lot by taking in water, and moves back a little
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Figure 1.2: Scallop theorem: Simple illustration of the scallop theorem through
the swimming cycle of a scallop at high Reynolds number (left), which leads to a net
displacement, and at low Reynolds number (right), which leads to no net displacement.

when releasing it). At the microscale however, independently of the velocity of the two
actions, they both lead to the same displacement, the cycle leads to no net motion.

Therefore, to produce motion at microscales, microorganisms developed non-reversible
motion strategies.

1.2.2 Di�erent strategies for di�erent swimmers

One amazing point is the diversity of possible methods to go beyond the scallop the-
orem. A lot of them have been summarized in [20]. We can pinpoint a few categories
of swimmers:

� Some use an external part, such as a 
agella [22, 23], with non-reversible motion to
mechanically act on the outer 
uid. Examples include the rotation of bacteria's
helical 
agellar bundle [24], or the actuated motion of a sperm 
agellum [25].
To mimic such complex and coordinated motion is possible, as illustrated, for
instance, by magnetically-powered microswimmers [23, 26], but requires highly
speci�c design of actuated multi-component systems. Two illustration of such
swimmers are shown in Fig. 1.3(a) and (b).

� Some change their surface properties, mechanically, like for the synchronized
beating of cilia on ciliated protozoa [27, 28], or chemically by inducing phoretic
and/or Marangoni 
ows [29] at the swimmer interface. Two illustrations of such
swimmers are shown in Fig. 1.3(c) and (d):

� Some use volume properties, for instance through jet like propulsion, by ejecting
small bubbles of gas [30]. An example of such a swimmer is shown in Fig. 1.3(e):

The study of microswimmers, and the design of arti�cial swimmers is a very active �eld,
at the interface of hydrodynamics, physico-chemical engineering and soft matter [35].
Several theoretical models have been developed in order to understand the swimming
of the di�erent swimmers. Among them the Purcell swimmer model [21], describing
the swimming of a two arms swimmer by non time-reversible beating; the three-bead
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Figure 1.3: Examples of biological and arti�cial microswimmers: (a) Image
from [31], imaging of Fluorescent Flagellar Filaments of E. Coli bacteria. (b) Image
from [23], beating pattern of the motion of a magnetic 
exible �lament attached to a red
blood cell. (c) Image from [32], imaging of a Paramecia while swimming. Cilia waves
appear in pro�le views (arrowheads). (d) Image from [33], time series of snapshots
demonstrating the approach, contact and detachment of a Janus particle at a wall.
(e) Image from [34], catalytic nanojet engines: optical sequence of the motion of the
nanojet engine (insert: SEM image of the smallest man-made jet engine consisting of
600 nm diameter and about 5� m length)

swimmer [36], similar to the �rst one, but that swims by non time-reversible contraction
of his arms; and the squirmer model [37, 38], describing the 
ow �eld around spherical
swimmer imposing a slip velocity or a stress jump at their interface. The squirmer
model, a thorough exposition and description of which is given in chapter (2), in
section (2.2.1); will be largely used in the present work.

1.2.3 Con�nement, external constrain, collective e�ects

The theoretical approach generally considers, at �rst, one swimmer alone in an in�nite
medium. However, be it in a biological environment or in a micro
uidic device, there
are many cases where the microswimmer evolves (1) close to boundaries [39], (2) in
presence of other swimmers, and (3) even under other physical constrains, such as a
force (gravity), or an external 
ow �eld.

1. Several observations reveal the critical importance of con�nement on the swim-
mer's dynamics. Microswimmers are often attracted by the boundaries [40, 41,
42], which can then be used to capture [43, 33], or steer the swimmer mo-
tion [44, 45, 46]. The presence of a boundary has been observed to in
uence, not
only the motion of a single particle [47, 48, 49], but also the collective behaviour
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and phase transitions of swarms [50, 51, 52, 53]. Ultimately, the interactions with
boundaries can be used to harvest energy from the population of swimmers [54].

2. Interactions between swimmers coupled to their motility may lead to some amaz-
ing collective e�ect [55]. Colonies of bacteria explore their environment by swarm-
ing [56], and polar order may emerge from these dense phases [57]. Dense active
suspension of Escherichia coli bacteria are observed to exhibit convection pat-
terns [58]. Active particles, such as light-activated colloidal surfers, assemble
into living crystals [59]. Such complexity emerges from the various e�ects at
play: the swimmers geometry (through steric interactions), the hydrodynamics
(that a�ects the 
ow �eld far from the swimmer) or the physico-chemistry (as
some chemically active swimmers leave a chemical trail behind them); and often
these e�ects are coupled.

3. In the biological world, many microorganisms are observed to undergo gravi-
taxis [60, 61, 62, 63, 64] - a response in motility to a gravitational �eld. This
behaviour �ght against sedimentation, and its interest is most likely the pos-
sibility to explore a widest part of the environment. On another hand, under
sedimentation, some swimming particles are observed to partially align, oriented
against the gravitational �eld [65, 66, 67]. Such phenomena re
ect the e�ect of
gravity not only on the swimming, but also on the activity of the swimmer.

We place the current work in the framework of swimming in a realistic and complex
environment, in the case where external factors - such as the presence of con�nement,
of an external force, or of other swimmers { may in
uence the swimming properties.
In the following of this Part I, we present the basic theoretical tools necessary to
understand the swimming of a spherical swimmer (chapter 2), and then we present the
experimental model swimmer, that we use for all experiments: a pure water swimming
droplet (chapter 3).
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Chapter 2
General theory

Introduction

Context

In this chapter, we present the general theoretical framework of a spherical microswim-
mer and introduce the theoretical tools that we shall use in the following chapters.

What we call a microswimmer (or for simplicity a swimmer) in the following is an object
able to self-propel at a micrometric scale in a surrounding 
uid by interacting
with this surrounding 
uid :

- The self-propulsion implies that the swimmer is able to collect energy from its
environment, and convert it into motion. This swimmer is out of equilibrium.

- The micrometric scale means that the hydrodynamics follows the Stokes equa-
tion (as introduced section (1.2)).

- The interaction with the surrounding 
uid happens through the boundary
conditions at the interface of the swimmer.

In this introduction, we de�ne our notations and the mathematical tools that are used
in the following. We present in section (2.1) the solution of the Stokes equation for
an axisymmetric 
ow around a spherical object. We then introduce in section (2.2)
the boundary conditions imposed by a swimmer. Finally, in section (2.3), we discuss
the e�ects of breaking the axisymmetry of the system - by changing the boundary
conditions, imposing an external force or adding boundaries such as walls.

Object of study and Notations

We consider two kinds of objects. (i)A spherical solid particle of radius a,
undeformable, impermeable, and that absorbs all stresses. This particle goes at a
velocity U in an external 
uid of viscosity � , imposing a slip velocity at its interfacevs,
and generating an outer 
owu. (ii) A spherical droplet of radius a, undeformable,
impermeable, and that absorbs radial stress. This droplet, constituted of an inner
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uid of viscosity � i goes at a velocityU in an outer 
uid of viscosity � , imposing a
slip velocity vs and a tangential stress jump� s at its interface, and generating an
inner 
ow u i and an outer 
ow u. Note that the solid particle i is simply a droplet ii
in the limit � i ! 1 . A priori, the direction of motion ex - which is the direction of
U - and the swimming directione - which is the direction imposed by the boundary
conditions - may not be the same (for instance, because of an external force, or the
geometry). We introduce here some notations used throughout this manuscript. Note
in particular that, per convention, experimentally measured velocities and 
ow �elds
are notedV and v, while they are notedU and u in analytic expressions.

Figure 2.1: Notations: Object of study

Object of study :
a the droplet radius,
U or V the velocity of the object,
ex the direction of motion,
F the external force,
vs the slip velocity at the interface,
� s the stress jump at the interface,
e the swimming direction (direction
imposed by the boundary conditions).

hydrodynamics :
u or v the 
ow �eld of the outer 
uid,
� the viscosity of the outer 
uid,
p the pressure in the outer 
uid,
��� the stress tensor in the outer 
uid,
u i the 
ow �eld of the inner 
uid,
� i the viscosity of the inner 
uid,
pi the pressure in the inner 
uid,
��� i the stress tensor in the inner 
uid,

Figure 2.2: Notation - hydrodynamics

Figure 2.3: Notations: Physico-
chemistry

Physico-chemistry :
c the concentration �eld of solute,
V the interaction potential between the
solute and the interface,
� the interfacial layer thickness,
A the activity,
K the phoretic constant,
M the Marangoni constant,
M the motility,

 the surface tension of the interface,
� c the surface excess of the solute.
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Mathematical tools

Basis and coordinates

Depending on the considered geometry, we use di�erent basis and coordinates.

The Cartesian basis (e x , ey, ez) and coordinates ( x,y,z) - Fig. 2.4(a): e x is
de�ned as the direction of motion (the direction axis of the swimmere, imposed by the
boundary conditions, might not be aligned with this direction of motion). In presence
of a wall, if the direction of motion is parallel to the wall, we de�neez as the direction
perpendicular to the wall, andh as the distance between the wall and the center of the
droplet.

The spherical basis (e r , e� , e' ) and coordinates ( r ,� ,' ) - Fig. 2.4(b): it is the
most natural coordinate system to describe an axisymmetric 
ow around a spherical
object. r is the distance to the center of the object.� is the angle with the direction of
the swimmer ex . ' is the revolution angle. If the 
ow is axisymmetric, then nothing
depends on' . We also introduce the notation� = cos� . We call the axisymmetric
coordinates (r ,� ).

The cylindrical basis (e � , e�̂ , ez) and coordinates ( � ,�̂ ,z) - Fig. 2.4(c): The
presence of a wall breaks the natural axisymmetry of a swimming spherical object.
But it does not break the planar symmetry with regard to the planey = 0 (the plane
perpendicular to the wall, containing the direction of motion of the droplet). In the case
of an object swimming parallel to a wall, it is natural to use the cylindrical coordinates
to describe the 
ow �eld, where � and �̂ are the polar coordinates in any observation
plane parallel to the wall, and the origin ofz is taken at the center of the object. We
also introduce the notation� = cos �̂ . We call the polar coordinates (� ,�̂ ).

Figure 2.4: Basis and coordinates: (a) Cartesian basis (ex , ey, ez) and coordinates
(x,y,z). (b) Isotropic spherical basis (er , e� ) and coordinates (r ,� ), the planes (M )
for which ' is a constant are called the median planes. (c) Cylindrical basis (e� , e�̂ ,
ez) and coordinates (� ,�̂ ,z), the planes (O) for which z is a constant are called the
observation planes.
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Change of basis: Between the Cartesian basis and the spherical basis:

er = sin ' cos� ex + sin ' sin� ey + cos' ez; x = r cos�; (2.1)

e' = cos' cos� ex + cos' sin� ey � sin' ez; y = r sin� cos'; (2.2)

e� = � sin� ex + cos� ey; z = r sin� sin': (2.3)

Between the Cartesian basis and the cylindrical basis:

e� = cos �̂ ex + sin �̂ ey; x = � cos�̂; (2.4)

e�̂ = � sin �̂ ex + cos �̂ ey; y = � sin �̂: (2.5)

Between the cylindrical basis and the spherical basis:

r er = � e� + zez; r 2 = � 2 + z2; (2.6)

sin� e� = sin �̂ e�̂ +
� �

r
� 1

�
cos�̂ er +

�z
r 2

cos�̂ ez; r cos� = � cos�̂: (2.7)

Operators

Axisymmetric spherical coordinates:

r 2 = (
@2

@r2
+

(1 � � 2)
r 2

@2

@�2
) (2.8)

Useful relations:

r � (r ) = � ; (2.9)

r � (r^ ) = 0 ; (2.10)

r ^ (r ) = 0; (2.11)

r ^ (r^ ) = r (r� ) � � : (2.12)

Legendre polynomials

The Legendre polynomials [68]Ln (� ) � L0
n (� ) and the associated Legendre polynomials

of mth kind, Lm
n (� ) are families of orthogonal polynomials that form a basis of the

azimuthal symmetries . They are respectively de�ned as:

Ln (� ) =
1

2nn!
dn

d� n
(( � 2 � 1)n ); (2.13)

Lm
n (� ) = ( � 1)m (1 � � 2)

m
2

dm

d� m
Ln (� ): (2.14)

They are solutions of the equations:
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d
d�

�
(1 � � 2)

dLn (� )
d�

�
+ n(n + 1) Ln (� ) = 0 ; (2.15)

d
d�

�
(1 � � 2)

dLm
n (� )
d�

�
+

�
n(n + 1) �

m2

(1 � � 2)

�
Lm

n (� ) = 0 : (2.16)

The Legendre polynomials of the same kind are orthogonal with each other:

Z 1

� 1
Lm

n (� )Lm
n0(� )d� =

2(n + m)!
(2n + 1)( n � m)!

� n;n 0; (2.17)

and in particular

Z 1

� 1
L1

n (� )L1
n0(� )d� =

2n(n + 1)
(2n + 1)

� n;n 0; (2.18)

Z 1

� 1
Ln (� )Ln0(� )d� =

2
(2n + 1)

� n;n 0: (2.19)

We explicit a few useful Legendre polynomials, and associated Legendre polynomials
of the �rst kind:

L0(� ) = 1 ; L1
0(� ) = 0 ; (2.20)

L1(� ) = �; L 1
1 = �

p
1 � � 2; (2.21)

L2(� ) =
1
2

(3� 2 � 1); L1
2(� ) = � 3�

p
1 � � 2: (2.22)

The Legendre and associated Legendre polynomials are of great interest for the descrip-
tion of isotropic functions in space: all isotropic functions in space can be decomposed
into the Legendre polynomials basis (or into any associated Legendre polynomial basis),
Ln (� = cos� ), � being the angle with the direction of axisymmetry in the spherical co-
ordinates. Similarly, all functions with a symmetry axis in a plane can be decomposed
into the Legendre polynomials basis (or into any associated Legendre polynomial basis),
Ln (� = cos �̂ ), �̂ being the angle with the symmetry axis in the cylindrical coordinates.

2.1 Axisymmetric 
ow �eld around a spherical ob-
ject

2.1.1 The problem studied

In this section we present the problem of an hydrodynamics 
ow �eld around an
axisymmetrici , undeformableii spherical object, without external force applied on the

uid iii , nor external 
ux iv . This object interacts with the external 
uid through the
boundary conditions at its interface.
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i. The 
ow �eld around the object can be considered axisymmetric if such is the
problem. This means that the object must have axisymmetric boundary condi-
tions, whose directione is aligned with all other directions of the problem (di-
rection of an external force exerted on the object, symmetry of the geometry...).
As a consequence, it is also aligned with the direction of motionex = e.

ii. The object is undeformable, if it remains spherical at all times. In that case, the
radial velocity must be zero at the boundaryur (r = a) = 0, and the radial stress
is absorbed at the interface (free boundary condition for� rr ).

iii. We consider that no external force is applied on the 
uid (typically the gravity
is neglected), Note that there can still be an external force applied on the object
(for instance gravity, if the object does not have the same density as the outer

uid, but it could also be a magnetic force, if the object is magnetic, etc...). Even
if, in this second case, the force is applied on the object, it can have an impact
on the 
uid through the boundary conditions.

iv. No external 
ow means that the 
ow �eld tends to zero far from the object
u ( r ! + 1 ) ! 0.

The object of study can be a solid spherical particle going at a velocityUex , impos-
ing an azimuthal isotropic slip velocity vs(r = 1; � ) at its interface. The equations
describing the steady motion of such a system are then the Stokes equation and the
mass-conservation equation for the outer 
uid, and the boundary conditions. In the
lab frame:

� � u = r p; (2.23)

r � u = 0; (2.24)

u(r = a) � U = vse� : (2.25)

The object of study can also be a spherical droplet, imposing an azimuthal velocity
jump vs and an azimuthal stress jump� s through its interface. The equations describ-
ing the steady motion of such a system are then the Stokes equation and the mass
conservation equation for the outer 
uid and for the inner 
uid, and the boundary
conditions. In the lab frame:

� � u = r p; (2.26)

r � u = 0; (2.27)

� � u i = r pi ; (2.28)

r � u i = 0; (2.29)

u(r = a) � u i (r = a) = vse� ; (2.30)

�
@u�
@r

�
�
�
r = a

� � i @ui�
@r

�
�
�
r = a

= � s: (2.31)

Having supposed the interface of our object undeformable, the radial velocity is simply
related to the object velocity,

ur (r = a) = ui
r (r = a) = U�: (2.32)
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Finally, in the steady regime, the sum of the forces applied on the object cancels. If
the object feels an external forceF (e.g. buoyancy), and if the outer 
uid exerts a

viscous forceFo! i on the object, thenF = � Fo! i . With Fi ! o =
R

S

�
� p� + � rr � �

� r�

p
1 � � 2

�

r = a
dS:

F =
Z

S

�
� p� + � rr � � � r�

p
1 � � 2

�

r = a
dS: (2.33)

If there is no external force exerted on the object, then
R

S

�
� p� + � rr � � � r�

p
1 � � 2

�

r = a
dS = 0.

In the following, we start by solving the stokes equation in spherical coordinates for an
axisymmetric problem, then we apply the boundary conditions. In a second time, we
present a few examples of characteristic 
ow �elds under various conditions.

2.1.2 Solution to the Stokes equation in spherical coordinates
for an axisymmetric problem

The inner and outer hydrodynamics 
ow �elds are described by the Stokes and the
mass-conservation equations:

� � u = r p; (2.34)

r � u = 0: (2.35)

For an axisymmetric 
ow, we use the spherical coordinates, (Fig. 2.4(b)):r , the dis-
tance from the center of the object, is made dimensionless using the object radiusa;
� is the angle with the direction of axisymmetry, which is also the swimming direction
e = ex ; and � is the revolution angle on which nothing depends in the axisymmetric
case. Finally,u' = 0 by symmetry. Then u = ur (r; � )er + u� (r; � )e� , where the de-
pendence in� = cos� re
ects the parity in � included in the axisymmetric hypothesis.
Physically, the 
ow �eld is the same in any plane containing the direction of axisym-
metry e, called median planes. For this axisymmetric 
ow �eld, we can de�ne the
stream-function  such that u = r ^ ( e); then u directly ful�lls equation (2.35). In
spherical coordinates:

ur (r; � ) =
� 1
r 2

@ (r; � )
@�

; (2.36)

u� (r; � ) =
1

r
p

1 � � 2

@ (r; � )
@r

: (2.37)

Physically, the stream-function describes the stream lines - the trajectory that would
takes a tracer in the 
uid - in a steady 
ow (more precisely, a stream-line corresponds
to an iso- ). Mathematically, we use it to solve the Stokes equation in spherical
coordinates, by injecting it in the Stokes equation (2.34). We get1:

r 4 (r; � ) = 0 ; (2.38)
1All operators and their useful properties are given in this chapter introduction, equations (2.8)

to (2.12) in spherical coordinates.
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with:

r 4 =
� @2

@r2
+

1 � � 2

r 2

@2

@�2

� 2
: (2.39)

One can look for solutions of the particular form:

 (r; � ) =
1

r m
(1 � � 2)L0

n (� ); (2.40)

using the Legendre polynomialsLn (� ). The Legendre polynomials2 form a system of
complete and orthogonal polynomials, which, when applied to� = cos� , describe the
planar azimuthal symmetries3. For instance,L0(� ) = 1 describes the monopolar sym-
metry (isotropic), L1(� ) = � the dipolar symmetry,L2(� ) = 1

2(3� 2� 1) the quadrupolar
symmetry, and so on. Using the property that:

d
d�

�
(1 � � 2)

@Ln (� )
@�

�
+ n(n + 1) Ln (� ) = 0 ; (2.41)

equation (2.38) gives:

�
m(m � 1) � n(n + 1)

��
(m � 2)(m � 3) � n(n + 1)

�
= 0; (2.42)

the solutions of which arem = n + 3, m = n + 1, m = � n + 2 or m = � n.

Using the fact that the Stokes equation is linear, we have the additivity property of its
solutions, and its general solution [69] can be written as:

 (r; � ) =
1X

n=1

2n + 1
2n(n + 1)

� � n

r n
�

~� n

r n� 2
+ � n r n+1 � ~� n r n+3

�
(1 � � 2)L0

n (� ) (2.43)

Where the coe�cient � n , ~� n , � n , ~� n are de�ned as such by convention, and have the
dimension of a velocity. Back to the velocity and pressure, using equations (2.36)
and (2.37), one �nds:

ur (r; � ) =
1X

n=1

(2n + 1)
2

� � n

r n+2
�

~� n

r n
+ � n r n� 1 � ~� n r n+1

�
Ln (� ); (2.44)

u� (r; � ) =
1X

n=1

2n + 1
2n(n + 1)

�
�

n� n

r n+2
+

(n � 2)~� n

r n
+ ( n + 1) � n r n� 1 � (n + 3) ~� n r n+1

�
L1

n (� );

(2.45)

p(r; � ) = � �
1X

n=1

(2n + 1)
� (2n � 1)

(n + 1)
~� n

1
r n+1

+
(2n + 3)

n
~� n

�
r nLn (� ): (2.46)

Where L1
n (� ) =

p
1 � � 2 @Ln (� )

@� are called the associate Legendre polynomials of the
�rst kind, and also form an orthogonal basis of the azimuthal symmetries, with di�erent
orientations.

2There is more information about the Legendre polynomials, the associated Legendre polynomials,
and their useful properties in this chapter introduction, equations (2.13) to (2.22).

3Here the planes in question are the median planes that contain the direction of axisymmetrye.
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In summary: the general solution to the Stokes equation in spherical coordinates
can be written as:

ur (r; � ) =
1X

n=1

� r
n (r )Ln (� ); (2.47)

u� (r; � ) =
1X

n=1

� �
n (r )L1

n (� ): (2.48)

The radial dependence of the amplitude of the nth azimuthal symmetry of respectively
the radial velocity and the tangential velocity -� r

n (r ) and � �
n (r ) - are given by projecting

the 
ow �eld onto the n th Legendre and associated Legendre polynomials:

� r
n (r ) =

2n + 1
2

Z 1

� 1
ur (r; � )Ln (� )d�; (2.49)

=
2n + 1

2

� � n

r n+2
�

~� n

r n
+ � n r n� 1 � ~� n r n+1

�
; (2.50)

� �
n (r ) =

2n + 1
2n(n + 1)

Z 1

� 1
u� (r; � )L1

n (� )d�; (2.51)

=
2n + 1

2n(n + 1)

�
�

n� n

r n+2
+

(n � 2)~� n

r n
+ ( n + 1) � n r n� 1 � (n + 3) ~� n r n+1

�
: (2.52)

Fig. 2.5 gives simple physical 
ow �elds in the median plane of the object, to illustrate
the symmetry of these 
ow �elds.

2.1.3 Boundary conditions

A physical 
ow �eld cannot diverge, and has boundary conditions at the interface with
the swimmer. In the lab frame the outer 
ow: u �!

r ! + 1
0 (in the case of no external


ux), and the inner 
ow: u i �!
r ! 0

�nite value. Then non diverging inner and outer 
ow

�elds can be re-written as:
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Figure 2.5: Illustration of physical 
ow �elds around a physical object: (a)
dipolar 
ow �eld with a coe�cients � 1 = 1 and ~� 1 = 0 (no external forces). (b)
Quadrupolar 
ow �eld with coe�cients � 2 = ~� 2 = � 1. (c) Flow �eld around a
squirmer, composed of a hydrodynamics dipole with coe�cients� 1 = 1 and ~� 1 = 0
and a hydrodynamics quadrupole, with coe�cients� 2 = ~� 2 = � 0:5 (pusher). Di�erent
visualizations of the 
ow �eld are given. (1) Vector �eld of the velocities around the
object with the streamlines (red). (2) Mapping of the radial component of the velocity
ur , the color-scale being the amplitude. The insert corresponds to the evolution of the
amplitude of ur with r , � r (r ). (3) Mapping of the azimuthal component of the velocity
u� , the color-scale being the amplitude. The insert corresponds to the evolution of the
amplitude of u� with r , � � (r ).
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ur =
1X

n=1

(2n + 1)
2

� � n

r n+2
�

~� n

r n

�
Ln (� ); (2.53)

u� =
1X

n=1

2n + 1
2n(n + 1)

�
�

n� n

r n+2
+

(n � 2)~� n

r n

�
L1

n (� ); (2.54)

p = �
�
a

1X

n=1

(2n + 1)(2 n � 1)
(n + 1)

~� n

r n+1
Ln (� ); (2.55)

ui
r =

1X

n=1

(2n + 1)
2

�
� n r n� 1 � ~� n r n+1

�
Ln (� ); (2.56)

ui
� =

1X

n=1

2n + 1
2n(n + 1)

�
(n + 1) � n r n� 1 � (n + 3) ~� n r n+1

�
L1

n (� ); (2.57)

pi =
� i

a

1X

n=1

(2n + 1)(2 n + 3)
n

~� n r nLn (� ): (2.58)

To close the problem of the Stokes equations, one �nally needs the right set of boundary
conditions, which are the relation of continuity through the interface between the inner
and outer 
uid, as presented above. We consider an undeformable, normal stress free
and impermeable interface (there is no radial 
ow at the interface). At the interface,
we consider that there is an azimuthal velocity jump, and in the case of a liquid-liquid
interface, a stress jump.
For a solid particle:

ur (r = 1; � ) = UL1(� ); (2.59)

u� (r = 1; � ) = UL1
1(� ) + vs(� ): (2.60)

For a droplet:

ur (r = 1; � ) = ui
r (r = 1; � ) = UL1(� ); (2.61)

u� (r = 1; � ) � ui
� (r = 1; � ) = vs(� ); (2.62)

� r� (r = 1; � ) � � r� (r = 1; � ) = � s(� ): (2.63)

We also have to add the force balance - the force being aligned with the swimmer
direction as we are looking at axisymmetric 
ow �eld,F = F e:

F =
Z

S

�
� p� + � rr � � � r�

p
1 � � 2

�

r =1
dS; (2.64)

with in spherical coordinates:

� rr (r; � ) = 2
�
a

@ur
@r

; (2.65)

� r� (r; � ) =
�
a

�
r

@
@r

(
u�

r
) �

p
1 � � 2

r
@ur
@�

�
: (2.66)
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If applied on the expression of the radial and orthoradial velocities of the outer (and
inner) 
uids (equation (2.53), (2.54) and (2.55)), we obtain:

� rr (r; � ) = �
�
a

1X

n=1

(2n + 1)
� (n + 2) � n

r n+3
�

n~� n

r n+1

�
Ln (� ); (2.67)

� i
rr (r; � ) =

� i

a

1X

n=1

(2n + 1)
�

� n (n � 1)r n� 2 � (n + 1) ~� n r n
�

Ln (� ); (2.68)

� r� (r; � ) =
�
a

1X

n=1

(2n + 1)
� (n + 2)

(n + 1)
� n

r n+3
�

(n � 1)
n

~� n

r n+1

�
L1

n (� ); (2.69)

� i
r� (r; � ) =

� i

a

1X

n=1

(2n + 1)
� (n � 1)

n
� n r n� 2 �

(n + 2)
n + 1

~� n r n
�

L1
n (� ) (2.70)

The integral over the surface of all Legendre and associated Legendre polynomials of
order other thann = 1 is zero. Then after simpli�cation, one �nds for the force balance:

F = 6��a ~� 1: (2.71)

From this equation, we �nd that the coe�cient ~� 1 is directly linked with the amplitude
of the external force. If there is no external force, then ~� 1 = 0.

2.1.4 Example of 
ow �elds around spherical objects

In the following we decline various problems with di�erent boundary conditions (active
versus passive, solid particle versus droplet, external force versus no external force),
to go toward presenting the most general case of an active droplet under an external
force.

Projecting onto the Legendre and associated Legendre polynomials of the �rst kind
physically consists in taking the nth moment over the surface of the object. We note
this moment h�in = 1

2

R1
� 1 �L1

n (� )d� . It also corresponds to the projection onto the nth

order symmetry of the 
ow. For the associated Legendre polynomial of ordern = 1, it
corresponds to the average over the surfaceh�i.

2.1.4.1 Passive particle under an external force

A passive particle has no slip velocity at its interface:u(r = 1) = U . Projecting this
boundary condition, one �nds:

� 1 � ~� 1 =
2
3

U; (2.72)

� � 1 � ~� 1 =
4
3

U; (2.73)

and
� n = ~� n = 0: (2.74)

The external force imposes ~� 1 = F
6��a . This leads to the relation:

U = �
F

6��a
; (2.75)

� 1 =
F

18��a
: (2.76)
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The force balance at the particle interface gives that� F is simply the force exerted by
the outer 
ow on the particle, also called the drag force: equation (2.75) is simply the
usual expression of the drag force exerted on a particle moving at a certain velocityU.
Equation (2.76) then tells us that the 
ow �eld created by such moving particle has a
dipolar symmetry (� 1 and ~� 1 are the coe�cients of the dipolar symmetry of the 
ow
�eld). The 
ow �eld around a passive particle dragged by an external force is given in
Fig. 2.6(a).

2.1.4.2 Active solid particle in the absence of external force

We consider a solid spherical particle in the absence of external force (~� 1 = 0), then
projecting the boundary conditions (2.59) and (2.60) on the Legendre and associated
Legendre polynomials, using their orthogonal property, equations (2.18) and (2.19), we
get:

� 1 =
2U
3

; (2.77)

� n> 1 � ~� n> 1 = 0; (2.78)

� � 1 =
4
3

U + 2hvsi ; (2.79)

� n� n> 1 + ( n � 2)~� n> 1 = 2hvsi n> 1; (2.80)

and obtain:

U = �h vsi ; (2.81)

� 1 = �
2
3

hvsi ; (2.82)

� n> 1 = ~� n> 1 = �h vsi n> 1: (2.83)

From these results, one can infer that the swimming (U 6= 0) exclusively comes from
hvsi , which is the dipolar symmetry of the boundary condition at the interface. In other
words, to produce a net motion, a solid particle must impose asymmetric boundary
conditions between its "front" and its "back". Then higher order symmetries of these
boundary conditionshvsi n> 1 produce a 
ow �eld of the same symmetry (the� n and ~� n

coe�cient are associated with the nth order symmetries of the 
ow �eld), but it does
not contribute to the net motion of the particle. An example of an active solid particle
in the absence of external 
ow is given in Fig. 2.6(b).

2.1.4.3 Active droplet in the absence of external force: the Lamb formula

The exact same reasoning can be done for the droplet in the absence of external force
by projecting the boundary conditions at the interface of the droplet (2.61), (2.62)
and (2.63). One then �nds relations between the coe�cient� n , ~� n , � n and ~� n , the
moments of the slip velocity,hvsi n and of the stress jump,h� si n , and the velocity of
the droplet U. After simpli�cation, one obtains:

U =
ah� si � 3� i hvsi

2� + 3� i
: (2.84)
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This equation is called the Lamb formula [70]. We have also:

� 1 =
2ah� si � 6� i hvsi

6� + 9� i
; (2.85)

� 1 =
5ah� si + 6( � � � i )hvsi

6� + 9� i
; (2.86)

~� 1 =
ah� si + 2 � hvsi

2� + 3� i
: (2.87)

And for higher order symmetries:

� n> 1 = ~� n> 1 =
ah� si n � (2n + 1) � i hvsi n

(2n + 1)( � + � i )
; (2.88)

� n> 1 = ~� n> 1 =
ah� si n + (2 n + 1) � hvsi n

(2n + 1)( � + � i )
: (2.89)

Once again, we observe that the nth symmetry of the boundary conditions (hvsi n and
h� si n ) gives rise to a 
ow �eld of the same symmetry (� n , ~� n , � n and ~� n are the
coe�cient of the n th -polar symmetry of the 
ow �eld). Only the dipolar symmetry of
the boundary conditions gives rise to motion, through the Lamb formula.

2.1.4.4 Active solid particle aligned with an external force

Now we consider the case of an active solid particle aligned with an external force
(this means that the direction of the swimmer imposed by the boundary conditions,e
is aligned with the direction of the force). Projecting the boundary conditions (2.59)
and (2.60) with an external force (~� 1 6= 0), one �nds:

U = �h vsi �
F

6��a
; (2.90)

� 1 =
F

18��a
�

2
3

hvsi : (2.91)

We can note that the coe�cients � n> 1 and ~� n> 1 are not modi�ed by the presence of an
external force, and that adding a ~� 1 for the outer 
ow only changes the projection of the
boundary conditions on the �rst order Legendre and associated Legendre polynomials.
Equation (2.90) shows that the velocity of the solid particle comes from its activity,
hvsi , and the external forceF . For �xed boundary conditions (which is not necessarily
the case, as will be discussed in section (2.2)), adding a force accelerates or slows
down an active particle according to a simple additivity law of the velocities. One can
compute the forceFa needed to stop the active particle, such thatU = 0:

Fa = � 6��a hvsi : (2.92)

In the following we callFa, the active force, although it is not strictly speaking a force
propelling an object, but it is the force needed to stop an active object. The amplitude
of the dipolar symmetry of the 
ow �eld is also a contribution of both the activity and
the external force. All higher symmetries of the 
ow �eld are not disturbed by the
presence of the external force. Note that even tough the particle is immobile, there is
still a 
ow �eld around the particle.

The e�ects of an external force on the 
ow �eld around an active solid particle are
shown in Fig. 2.6(c), (d), (e) and (f) for di�erent amplitudes of the external force.
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Figure 2.6: E�ect of an external force on the 
ow �eld: (a) passive object under
a force - h� si = 0 and ~� 1 = 1 (thus � 1 = 1

3 , and U = � 1). (b) Squirmer under no
force - h� si = � 3

2 and ~� 1 = 0 (thus � 1 = 1, and U = 1:5). (c) Squirmer going in the
same direction than an external force -h� si = � 3

2 and ~� 1 = � 0:5 (thus � 1 = 5
6 , and

U = 2). (d) Squirmer going in the opposite direction of an external force -h� si = � 3
2

and ~� 1 = 0:5 (thus � 1 = 7
6 , and U = 1). (e) Squirmer stopped by an external force -

h� si = � 3
2 and ~� 1 = 3

2 (thus � 1 = 3
2 , and U = 0). (f) Squirmer returned by an external

force -h� si = � 3
2 and ~� 1 = 2 (thus � 1 = 5

3 , and U = � 0:5). The velocity �eld is given
by the blue arrows, the streamlines are in red and the velocity of the droplet is given
by the black arrow.

37



CHAPTER 2. GENERAL THEORY

2.1.4.5 Active droplet aligned with an external force

A similar reasoning can be done for the active droplet aligned with an external force.
Projecting the boundary conditions (2.61), (2.62) and (2.63), one obtains:

U =
ah� si � 3� i hvsi

2� + 3� i
�

F
6�a

3(� + � i )
� (2� + 3� i )

; (2.93)

� 1 =
2
3

ah� si � 3� i hvsi
2� + 3� i

�
F

6�a
� i

� (2� + 3� i )
; (2.94)

� 1 =
5ah� si + 6( � � � i )hvsi

2� + 3� i
�

F
6�a

� + 2� i

� (2� + 3� i )
; (2.95)

~� 1 =
ah� si + 2 � hvsi

2� + 3� i
+

F
6�a

1
2� + 3� i

: (2.96)

The velocity and all the hydrodynamics constants associated with the dipolar symme-
tries of the inner and outer 
ow �elds have two parts, one that is due to the activity
of the droplet, and the other that is due to the external force. These are the most
general relations for an active droplet aligned with an external force; and all previous
results can be derived from this one. One could also consider other problems such as a
passive droplet driven by an external force by simply takingvs = 0 and � s = 0. In the
particular case where the inner 
uid is less viscous than the outer 
uid (� i � � ), we
retrieve a well-known resultF = � 4��aU (for the rise of spherical bubble for instance).
In the general case, the force that one needs to apply to stop the droplet is:

Fa = 2��a
ah� si � 3� i hvsi

� + � i
: (2.97)

2.1.5 Description of the 
ow �eld in term of singularities

A 
ow �eld can be reinterpreted in term of mathematical objects called singularities.
Let's �rst consider the case of the point force singularity (a punctual force exerted on
the 
uid). The 
ow �eld around this point force F = F e (usually called the Stokeslet)
is described by the Stokes equation:

� � û � r p = � F� r =0 ; (2.98)

r � û = 0: (2.99)

Its solution in spherical coordinates is4:

û =
F

8��a

� e
r

+
(e � er )er

r

�
: (2.100)

In the following, and in order to alleviate later formalism, we de�ne the 
ow �eld u f

produced by a point force, and make it dimensionless dividinĝu by � F
6��a :

uf
r = �

3
2

1
r

L1(� ); uf
� =

3
4

1
r

L1
1(� ): (2.101)

One then notices that the 
ow �eld generated by this point force has the same
azimuthal symmetry and radial amplitude than the one that is associated with the

4With r still being dimensionless
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coe�cient ~� 1 for the 
ow �eld around a spherical object. Remember that this ~� 1 is also
directly linked to an external force applied on the object. Thus, the hydrodynamics

ow �eld generated by a point force, and the 
ow �eld generated by a spherical object
under an external force are the same, away from the object.

Because of the linearity of the Stokes equation, derivatives - taken in the axisymmetric
direction5 e - of this point force are also solutions to the Stokes equation. We de�ne this
way a family of solution called the Stokes singularities (force dipole, force quadrupole,
and so on):

u fn (r ) = �r
�
u f (n� 1)(r )

�
� e: (2.102)

Their associated dimensionless 
ow �eld is then:

uf; (n� 1)
r = �

(2n + 1)
2

1
r n

Ln (� ); (2.103)

uf; (n� 1)
� =

2n + 1
2n(n + 1)

(n � 2)
r n

L1
n (� ): (2.104)

Example of these singularities and their associated 
ow �elds are illustrated in
Fig. 2.7(1). Note that the terms associated with the ~� n coe�cients of our problem
create the same 
ow �eld as a (n-1)th order force singularity (force (n-1)th -pole), with
a radial dependency of1

r n .

Similarly, we look at a point source singularity (a punctual source of 
uid). The 
ow
�eld around this point source Q is described by the Stokes equation:

� � u � r p = 0; (2.105)

r � u = Q� r =0 : (2.106)

Its solution in spherical coordinates is:

û =
Q

4�a 2

er

r 2
: (2.107)

In the same way than before, we de�ne the 
ow �eldus produced by a point source,
and make it dimensionless dividinĝu by Q

2�a 2 :

us
r =

1
2r 2

; us
� = 0: (2.108)

Note that the point source singularity corresponds to a creation of 
ux - which does
not happen in our physical problem. This explain why there is no "point source" term
in equations (2.53) and (2.54). Still, its derivative in the swimmer direction are also
solutions to the Stokes equation. We de�ne this way a family of solutions called the
potential singularities (source dipole, source quadrupole, and so on):

usn(r ) = �r
�
us(n� 1)(r )

�
� e: (2.109)

5Although the derivative of the point force taken in any direction are solutions, only the singularities
obtained by derivation in the swimmer direction e produce an axisymmetric 
ow.
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Figure 2.7: Representation and 
ow �eld generated by a few singularities:
(1) Singularities from the family of the Stokes singularities, a point force that produces
a 
ow �eld of dipolar symmetry (b), and a force dipole that produces a 
ow �eld of
quadrupolar symmetry (c). No Stokes singularity produces a 
ow �eld of monopolar
symmetry. (2) Singularities from the family of the potential singularities, a point source
that produces a 
ow �eld of monopolar (isotropic) symmetry (a), a source dipole that
produces a 
ow �eld of dipolar symmetry (b), and a source quadrupole that produces a

ow �eld of quadrupolar symmetry (c). In insert are represented the streamlines (red),
and the radial dependencies of the amplitudes of the singularities� r and � � .
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Their associated 
ow �eld is then:

us;n
r =

(2n + 1)
2

1
r n+2

Ln (� ); (2.110)

us;n
� = �

2n + 1
2n(n + 1)

n
r n+2

L1
n (� ): (2.111)

Example of these singularities and their associated 
ow �elds are illustrated in
Fig. 2.7(2). Note that the terms associated with the� n of our problem create the
same 
ow �eld as a nth order source singularity (source nth -pole), with a radial depen-
dency of 1

r n +2 .

Back to a physical object: The azimuthal symmetry and radial dependency of
the force nth -pole are the same than the one associated with the ~� n+1 coe�cient of
the 
ow �eld around a spherical object. Similarly, the azimuthal symmetry and radial
dependency of the source nth pole are the same than the one associated with the� n

coe�cient of the 
ow �eld around a spherical object. Then, one can describe the 
ow
�eld around a spherical object (equation (2.53) and (2.54)) in term of the dimensionless

ow �elds generated by singularities (remember that� n and ~� n have the dimension of
a velocity, and that us;n and uf;n are dimensionless):

u =
1X

n=1

� nus;n + ~� nu f; (n� 1) (2.112)

2.2 Boundary conditions - how to make a swim-
mer?

Physical swimmers impose boundary conditions at their interface through various
means such as physical actuation [38], local increases of temperature [71] or emis-
sion of a chemical [72]... It is then necessary to understand how these interactions with
the outer 
uid lead to a slip velocity or/and a stress jump, and thus to a net motion.
In this section, we describe di�erent strategies used by swimmers.

2.2.1 The squirmer model - Fixed boundary conditions

A �rst approach is to consider a swimmer that prescribes directly a �xed boundary
condition (for instance through physical actuation). In this case, the slip velocity and
the stress jump are�xed and not modi�ed by an external force, nor the geometry,
nor a chemical gradient... Typically, one �xes the slip velocity. This is the so-called
squirmer model [37, 38].

Using the result of section (2.1.4.2), for an active solid particle moving in the absence of
external force, the complete hydrodynamics 
ow �eld of a squirmer moving at velocity
U is:

ur =
U
r 3

L1(� ) +
1X

n=2

(2n + 1)
2

hvsi n

�
�

1
r n+2

+
1
r n

�
Ln (� ); (2.113)

u� =
U

2r 3
L1

1(� ) +
1X

n=2

2n + 1
2n(n + 1)

hvsi n

� n
r n+2

�
(n � 2)

r n

�
L1

n (� ): (2.114)
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The most commonly used squirmer model consists in taking into account only the
three �rst terms: the swimming term (source dipole) 
ow of dipolar symmetry),
the term that decays the slowest at long range (force dipole) 
ow of quadrupolar
symmetry), and the source term with the same symmetry (source quadrupole) 
ow
of quadrupolar symmetry) to ful�ll the impermeability condition:

ur =
U
r 3

� +
5
2

� 2

� 1
r 4

�
1
r 2

�
L2(� ); (2.115)

u� = �
U

2r 3

p
1 � � 2 �

5
6

� 2

r 4
L2

1(� ): (2.116)

This simpli�ed squirmer model describes the swimming and the 
ow �eld generated at
long distance. The 
ow �eld at long range has the symmetry of a quadrupole, which
allows to infer the long range interacting behaviour of the swimmer depending on the
sign of � 2. This is the so called pusher (� 2 < 0) / puller ( � 2 > 0) behaviour. The
Fig. 2.8 proceeds to a recap of these interactions: A pusher at long range (a) attracts

uid on its side and repels it on its back and front. This behaviour results in speci�c
long range interactions (b): two pushers meeting face to face will repel each-other,
while two pushers arriving side by side will attract each other. Hence the pushers tend
to align with each others in raw. In the contrary, a puller at long range (c) attracts

uid on its front and back and repels it on its side and front. This behaviour results in
speci�c long range interactions (d): two pullers meeting face to face will attract each
other, while two pullers arriving side by side will repel each other. Hence the pullers
tend to align with each-others in columns.

2.2.2 The phoretic particle - Slip velocity and stress jump

The Marangoni e�ect [73, 74] is the establishment of a 
ow at a 
uid-
uid interface:
a tangential gradient of "surface tension6" induces a stress jump across the interface.
Similarly, the phoretic e�ect [29] is the establishment of a 
ow across a 
uid-solid7

interface: a tangential gradient of "a chemical species8" induces a slip velocity across
the interface. These two e�ects have been shown to put into motion objects [77, 78]
- in agreement with section (2.1.4.2) and (2.1.4.3) that states that an active particle
can swim by imposing a slip velocity and/or a stress jump at its interface. One would
then want to understand the microscopic phenomenon at the interface that produces
these slip velocity and stress jump.

A realistic interface is a volume of a certain thickness� , called the interfacial layer,
where the inner and outer phase coexist and interact (the idea that an interface is
di�use, i.e. has a �nite thickness, goes back to Poisson (1831) and Gibbs [79]). In
this region, the normal and tangential velocities (ur and u� ) as well as the normal and
tangential stresses (� r and � � ) are continuous, and a�ected by the interactions between
the two phases. These interactions may be of various natures that have been devel-
oped in the paper by Anderson [29]. Among them, an electric �eld (the phenomenon is
then called electrophoresis), the temperature (thermophoresis), a chemical compound

6the surface tension [75] is de�ned as the energy needed to increases the surface of an interface. It
�nds its origin in the interactions between the inner and outer 
uid.

7Altough this e�ect is a priori also present for a 
uid-
uid interface [76], it is generally dominated
by the Marangoni e�ect, and thus is mainly considered for solid-liquid interfaces.

8More generally, a gradient of interaction between the inner and outer 
uid along the interface.
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Figure 2.8: Squirmers - 
ow �elds and interactions: (a,c,e) 
ow �elds of squirmers
that have the same dipolar contributions� 1 = 1, without external force ~� 1 = 0,
but with di�erent quadrupolar contributions. (a) Flow �eld generated by a pusher
(� 2 = ~� 2 = � 0:5 < 0), (c) 
ow �elds generated by a puller (� 2 = ~� 2 � 0:5 > 0) and (e)

ow �eld generated by a neutral squirmer (� 2 = ~� 2 = 0). (b,d) Corresponding long
range interactions when two pushers (b) or two pullers (d) arrive face to face or side by
side. The colors stand for the resulting interaction: green if the two squirmers attract
each other and brown if they repel each other.
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(di�usio-phoresis), the surfactant (Marangoni e�ect)... If the thickness of this inter-
facial layer is small compared to the object size (� � a), it is possible to separate
the scales of the problem: �rst solving the problem in the interfacial layer getting the
velocity and stress pro�les through the boundary, and second solving the problem at
the object scale, considering a boundary of zero thickness through which there is a
velocity and a stress jump. Here we look inside an interfacial layer at the microscopic
origin of these slip velocityvs and stress jump� s in the particular case that we are
interested in - the presence of a chemical solute.

The interfacial layer:

Figure 2.9: Flow �eld induced by a concentration gradient in the interfacial
layer: (a) at the interface between a solid and a liquid and (b) at the interface be-
tween two liquids. The concentration gradient (in blue) induces a 
ow (in red), in the
interfacial layer of typical thickness� .

We consider an interfacial layer of thickness� , where two non-miscible phases9, the
outer phase (viscosity� , velocity u, pressurep) and the inner phase (viscosity� i ,
velocity u i , pressurepi ) are separated by a virtual surface along the axisex and ez, at
y = 0 (see Fig. 2.9). If f i ! o is the force exerted by the interface on the outer phase,
then the Stokes equation in the outer phase is:

� � u � r p + f i ! o = 0 (2.117)

9Note that this is already a simpli�ed vision of an interfacial layer which should be strictly speaking
a region of continuous viscosity where all species coexist [80]. We use this simpli�ed vision as we are
only interested in the interaction of one solute in the outer phase with the inner phase, and this specie
is considered to be the only one that induces gradients on the interface.
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We are interested in the case of a force produced by a gradient of solute dissolved at a
concentrationc(x; y), interacting with the interface with a potential V(y) that depends
only on the distance from the interface.V(y) tends to zero at the outer edge of the inter-
facial region. In this con�guration, the interface exerts a forcef i ! o = � c(x; y) dV(y)

dy ey

on the external 
uid. Furthermore, the geometry of the problem allows to consider
a laminar 
ow u = ux (x; y)ex parallel to the interface. The Stokes equation (2.34)
re-writes as:

�
@2ux (x; y)

@y2
�

@p(x; y)
@x

= 0; (2.118)

@p(x; y)
@y

+ c(x; y)
dV(y)

dy
= 0: (2.119)

Through a realistic interface between two phases, the velocity and stress are contin-
uous. Here we consider either an undeformable liquid-liquid interface (absorption of
the normal stress) either an undeformable and no slip solid-liquid interface (absorption
of the normal and tangential stresses). The boundary conditions at an undeformable
liquid-liquid interface are then:

ux (y = 0) = ui
x (y = 0) ; (2.120)

�
� @ux

@y

�

y=0
= � i

� @uix
@y

�

y=0
: (2.121)

For the particular case of a solid-liquid interface (� i ! + 1 ), only the �rst one (2.120)
is considered.

At the outer edge of the interfacial region, we impose a solute concentrationc1 (x).
The "in�nity" is then a few times the typical decaying distance of V. Assuming local
equilibrium, we consider that the concentration follows the Boltzmann distribution:
c = c1 (x) exp� V ( y )

kT . Then, integrating over y equation (2.119), we get the pressure
�eld:

p(x; y) � p1 = kTc1 (x)(1 � exp� V ( y )
kT ): (2.122)

After one integration, the equation (2.118) gives the stress� 1 , and after two integra-
tions, the velocity u1 :

� 1 = �
@vx
@y

�
�
�
1

= � (y = 0) + kT
dc1

dx

Z 1

0
(1 � exp� V ( y )

kT )dy; (2.123)

u1 = ux (y = 0) �
kT
�

dc1

dx

Z 1

0
y(1 � exp� V ( y )

kT )dy: (2.124)

Finally, we de�ne the slip velocity as the di�erence between the velocity of the inner
phase at the interface, and the velocity of the outer phase at the outer edge of the
interfacial layer, and respectively for the stress jump (Fig. 2.9(b)):

� s = � K
dc1

dx
; K = kT

Z 1

0
(exp� V ( y )

kT � 1)dy; (2.125)

vs = M
dc1

dx
; M =

kT
�

Z 1

0
y(exp� V ( y )

kT � 1)dy: (2.126)
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Where K is called the Marangoni coe�cient, andM is called the phoretic coe�cient.
In the case of a solid interface, we simply have a zero-velocity condition at the wall,
and thus a slip velocity at � (Fig. 2.9(a)):

vs = M
dc1

dx
: (2.127)

The important point to notice is that both � s and vs are proportional to the concen-
tration gradient dc1

dx .

M and K depend onV:

� If V < 0, then c(x; y = 0) > c1 : the solute accumulates at the interface: it cor-
responds to an attractive interaction between the solute and the interface. Then
(exp� V ( y )

kT � 1) > 0: K and M are positive. The 
ow induced by the concentration
gradient goes toward high concentration area.

� If V > 0, then c(x; y = 0) < c1 : the solute depletes at the interface: it cor-
responds to a repulsive interaction between the solute and the interface. Then
(exp� V ( y )

kT � 1) < 0: K and M are negative. The 
ow induced by the concentration
gradient goes toward low concentration area.

For instance, if V is a Heaviside step function that is equal toV0 up to a distance�
from the interface, and is zero after, then

K = �kT �; (2.128)

M = �
kT � 2

2�
; (2.129)

where � = (exp � V0
kT � 1) is a constant representing the interaction sign and strength,

and would be equal to -1 for a repulsive hard sphere steric interaction (V0 ! + 1 ).

Now, how does this relate to the surface tension? The surface tension is de�ned as
the energy that costs the interfacial layer per unit surface. With the Gibbs adsorption
equation, the interfacial tension
 is de�ned as:

d
 = � � cdac = � � ckT
dc1

c1
; (2.130)

whereac = kT ln c is the activity of the solute, and � c is the surface excess of the solute
de�ned as the di�erence between the actual solute concentration in the interface and
the solute concentration if there was no interface [81]: �c = c1

R1
0 (exp� V ( y )

kT � 1)dy.
Then:

d

dx

= �
dc1

dx
kT

Z 1

0
(exp� V ( y )

kT � 1)dy:

Leading for an expression of the stress jump:� s = � d

dx , or more generally� s = �r k


which is the expression generally used for the relation of continuity of the tangential
stress at an interface when
 varies along this interface (Marangoni e�ect).
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Motion of a solid particle in a concentration gradient:
Back to the object scale, we can use the expression of the slip velocity and the
stress jump at the interface, equations (2.126) and (2.125) injected in the Lamb equa-
tion (2.84), to get the expression of the droplet's velocity that rises from such velocity
slip and stress jump. The velocity of the droplet can then be expressed as a function
of the concentration gradient:

U = �
aK + 3� i M

2� + 3� i
hr kci ; (2.131)

and we can de�ne the motility:

M =
aK + 3� i M

2� + 3� i
= �kT �

a + 3� � i
�

4� + 6� i
(2.132)

such that

U = �Mhr kci : (2.133)

For a simple step function potential (equations (2.128) and (2.129)), M and K have
the same sign, that depends directly on the sign of the interactive potential:

� If the solute is attracted by the interface (V0 < 0), then M is positive. The
velocity of the droplet U goes against the gradient ofc: the droplet swims toward
low concentration area.

� If the solute is repelled by the interface (V0 > 0), then M is negative. The
velocity of the droplet U goes with the gradient ofc: the droplet swims toward
high concentration area.

Equation (2.131) highlights that the velocity of a droplet indeed results from both the
Marangoni e�ect (stress jump� s), and the phoretic e�ect (slip velocity vs). However,
as usually the size of the interfacial layer is very small compared to the droplet size
(� � a), and when the viscosity of the inner 
uid is not too high compared to the
viscosity of the outer 
uid, then the phoretic contribution is small compared to the
Marangoni e�ect contribution. Still, the two e�ects rise from the same microscopic
phenomena: the gradient of concentration of a solute that interacts with the interface.
Then the case of a droplet moving in a concentration gradient, and the case of a solid
particle moving in a concentration gradient are conceptually the same: the induced
velocity is proportional to the average of the azimuthal gradient of concentrationhr kci ,
the only di�erence being the value of the motility M .

2.2.3 The autophoretic particle - how to self-induce a concen-
tration gradient

Section (2.2.2) shows that a gradient of concentration induces a slip velocity and a stress
jump at an interface, and that the dipolar symmetry of this concentration gradient
generates a net motion for a spherical particle (or spherical droplet). More generally,
swimming requires a breaking of symmetry either of activity (asymmetric production
of solute), or motility (asymmetric interaction with the solute) [82], or a spontaneous
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breaking of symmetry [83]. The �rst two cases arise from an asymmetry in the surface
property of the particle (geometrical breaking of symmetry, section (2.2.3.1)), which
can be achieved by the design of the swimmer. The third case comes from an instability
in the problem (spontaneous breaking of symmetry, section (2.2.3.2)).

In the case of the di�usio-phoretic particle, the solute concentration �eld around the
particle depends on the rate at which it is produced at the interface (called activity,
A, with dimension [L]� 2[T]� 1), its advection by the outer 
ow (through the motility,
M , with dimension [L]5[T]� 1), and its di�usion (with a di�usion coe�cient, D, with
dimension [L]2[T]� 1). We can now de�ne a characteristic velocityU� = AM

D with the
parameters of the problem, and the Peclet number Pe =U

� a
D = aAM

D 2 that compares
the relative in
uence of the advection to the di�usion. Then the solute concentration
follows the dimensionless advection-di�usion equation with the boundary conditions
(c, u, x and t are made dimensionless using respectivelyAa

D , U� , a and a
U � , but the

notation are kept the same for simplicity purpose):

Pe(
@c
@t

+ u:r c) = � c; (2.134)

@c
@r

�
�
�
r =1

= � 1: (2.135)

If the Peclet number is small, equation (2.134) becomes the linear di�usion equation:

� c = 0: (2.136)

The Stokes equation and the di�usion equation being linear, they cannot lead to an
instability. When the Peclet number is small, the only way to self-induce a gradient
of solute is a geometrical breaking of symmetry. However, when the Peclet number
is high, the Stokes equation and the advection-di�usion are coupled, and, the latter
being non-linear, it might lead to an instability, and thus a spontaneous breaking of
symmetry.

2.2.3.1 Pe � 1: geometrical breaking of symmetry

The geometrical breaking of symmetry might be achieved by designing a spherical
object with asymmetric surface properties: a Janus particle (for instance [84, 85]).
There are many di�erent kinds of Janus particles, spherical particles, rod particles,
or even Janus droplets. The underlying common principle is that half of the particle
changes locally the interaction between the interface and the outer 
uid, while the
other half remains neutral (or eventually changes it, but in a di�erent way) so that
there is, in �ne, a gradient of interaction between the two halves.

In the case of a di�usioporetic Janus particle [72], the Janus particle produces solute
only on one side which induces a concentration gradient, hence a slip velocity, and
thus a net motion. The complete calculation for the hydrodynamics 
ow �eld has been
done in [86], and won't be further detailed here. We are just going to underline a few
important properties that will help the reader understands the swimming behaviour of
such phoretic particles.

Janus particle and trail: The Janus particle modi�es its environment: it leaves
behind a trail of solute. The Janus particle may then interact with the solute gradient
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in its own trail. Such a phenomena is called auto-chemotaxie. Note that di�usion
might make this trail disappear with time.

Janus particles and the Squirmer model: For Janus particles, the slip velocity
is not �xed but depends on the concentration �eld around the swimmer, which can be
modi�ed by external factors such as the geometry (presence of a wall), or an external

ow. In particular, the concentration might depend on time (formation of a trail behind
the droplet) and/or the position (approach to a wall). As a result (i) there is little
chance that the 
ow �eld remains axisymmetric, and (ii) even if it does, the coe�cients
� n (x; t) and ~� n (x; t) de�ned in equation (2.53) and (2.54) are not constant. In principle,
real autophoretic Janus particles are already more complex than the Squirmer model.

If the Janus reaches a stationary regime, then it is possible to compute constant coe�-
cients� n and ~� n and to use the properties of the squirmer model for the Janus particles.
Note however that the description of the interactions using the squirmer model neglects
in essence the mutual in
uence of the particles and the solute concentration �eld.

2.2.3.2 Pe � 1 - spontaneous symmetry breaking

We consider here anisotropic object that emits a solute. For small Pe, the equations
are linear and the unique solution is that of an isotropic concentration �eld leading to
no motion. For high Pe, the system follows the two sets of equations, the Stokes equa-
tion (2.34) and (2.35) for the 
ow �eld and the advection-di�usion equation (2.134)
for the concentration �eld, which is non-linear and coupled to the Stokes equation
through the advection termu:r c.

A motionless object emitting a solute that di�uses isotropically around the droplet is
still solution of these equations. However, because of the non-linearity of the equations,
this solution might be unstable, and the system may undergo a spontaneous symmetry
breaking, producing a gradient of solute and thus a net motion of the object.

S�ebastien Michelin et al. studied the stability of the trivial isotropic solution for a
solid particle [83], and for a droplet [87] and the existence of other solutions. He
showed that, if the motility M is positive, then the trivial solution u = 0 is unstable
for Pe > Pec ' 5, and the problem has a stable solution, where the object reaches
a steady velocity U, that depends on the Peclet number. The bifurcation diagram
that was computed in the case of a droplet is shown in Fig. 2.10(a). When the Peclet
number is high enough, it has been shown thatUU � decreases very slowly and is of the
order of 0:1. The Fig. 2.10(b) recapitulates the physical phenomenon that leads to the
net motion of the particle:

1. If the di�usion of the solute is fast compared to the advection (Pe< Pec), then
the concentration �eld homogenizes itself before any advection happens. The
particle remains immobile.

2. If the di�usion of the solute is slow enough (Pe> Pec), the instability takes place,
a gradient of concentration is established at the droplet interface, leading to a
phoretic and Marangoni 
ow: a slip velocity and a tangential stress develop at
the interface, and the droplet responds to the concentration gradient by moving.
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(a)

(b)

Figure 2.10: Figures taken from [87], and supplementary: (a) Evolution with Pe of
the non-dimensional droplet velocity U

U � (black continuous line). The non-dimensional
relative concentration is also shown for selected Pe, showing the symmetry breaking
in the solute distribution associated with self-propulsion, despite the isotropy of the
solute 
ux at the droplet boundary. (b) Swimming mechanism behind the spontaneous
autophoretic and Marangoni-driven motion of an isotropic droplet.
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(a) If the presence of the solute decreases the interaction between the inner
and outer 
uid ( i.e. for a droplet, decreases the surface tension,M < 0),
the particle moves toward high concentration region, meaning where it was
before the perturbation. The particle remains at its equilibrium position:
the equilibrium is stable. The particle does not acquire persistent motion.

(b) On the contrary, if the presence of the solute increases the interaction be-
tween the inner and outer 
uid (M > 0), the particle moves toward low
concentration region, meaning away from where it was before the perturba-
tion. The particle goes further from its equilibrium position: the equilibrium
is unstable. The particle starts swimming.

In the exact same way than for the Janus particles, the 
ow �eld generated by the
isotropic self-propelled particle - solid or droplet - depends on the concentration �eld,
and thus on the geometry, on external constrains, or on external concentration gradients
such as the trail of the particle. Only in a stationary state the 
ow �eld might be
considered as �xed, and it is then possible to compare the 
ow �eld with the squirmer
model. For instance, the computation conducted in [87] in a stationary state far from
any wall, showed that the amplitude of the quadrupolar symmetry is negative (� 2 < 0):
this means that the particle behaves like a pusher at long distance. However, the
calculation is only valid as long as the particle does not interact with anything.

Furthermore, in the present case, in the presence of a wall, of an external force, or
of another swimmer, the concentration �eld will be a�ected not only because of the
modi�cation of the boundary conditions for the concentration �eld, but also because of
the advection by the modi�ed 
ow �eld (which in turn depends on the concentration
�eld...).

In particular, in the presence of an external force, using the equation (2.97), one �nds
that the relation between the droplet velocity, the concentration �eld and the external
force is:

U = �
K + 3� i M
2� + 3� i

hr kc(r = a; U)i �
1

2�a
� + � i

� (2� + 3� i )
F; (2.137)

where the concentration �eldc strongly depends on the velocity of the dropletU. To
stop such a droplet, one needs to apply a forceFa = � 2�a� K +3 � i M

� + � i
hr kc(r = a; U)i .

However, because when it is applied the droplet slow down, the force needed to stop
the droplet changes, and more precisely decreases. Then to stop a droplet, one needs
to apply a force that progressively decreases, until it reaches zero and the droplet is
immobile. Note that this equilibrium state F = 0 and U = 0 is unstable, as seen
before, thus the droplet is likely to undergo an instability and start swimming again
in a random direction. In practice, it is not possible to permanently stop this kind of
swimmer by applying an external force, as the state reached is unstable.
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2.3 Breaking axisymmetry

2.3.1 Non axisymmetric swimmer

The axisymmetry of the problem can be broken for two reasons:

1. The swimmer is intrinsically non axisymmetric - For instance the geometry of
the swimmer is not axisymmetric (not a sphere nor an ellipsoid) or the boundary
conditions at the swimmer interface are not axisymmetric.

2. External factors break the axisymmerty - for instance if there is a force non-
aligned with the swimmer direction, or a boundary such as a wall.

Note that if the boundary condition (or the shape) depends on the external 
ow �eld,
then the second case might lead to the �rst case: an external source of asymmetry can
break the swimmer axisymmetry.

Some non-axisymmetric problems have been investigated in the literature. For
instance [88, 89] studied ciliary propulsion (a swimming mechanism consisting in
generating surface waves along the swimmer interface). The shape of the swimmer
is then time dependent, but almost spherical, and the non-axisymmetry is treated
using a spherical envelope approach, which consists in adding small perturbation of
the interface shape to the axisymmetric problem. Another example is the case of
a spherical swimmer with non-axisymmertic boundary conditions [90], far from any
boundary: the solution can then be expressed using a combination of the Legendre
polynomial of any kind of� , and a dependence in the revolution angle� : r le� im� L l

m (� ).

Along the present work, we are going to meet two forms of external breaking of axisym-
metry: (i) the problem of an external force not aligned with the swimming direction.
This is treated in the following in the format of a short exercise, much like was done
in section (2.1.4), and will be used in chapters (4) and (7) and (ii) the presence of a
wall which is the main focus of the chapter (4), and will be brie
y introduced here.

2.3.2 External force not aligned with the swimmer direction

If the swimmer is not aligned with the external force, then the axisymmetry of the
problem is broken. The 
ow �eld u obeys the Stokes equation (2.34) and (2.35),
with the boundary conditions at the swimmer interface (2.61), (2.62) and (2.63) for a
droplet, and (2.59) and (2.60) for a solid particle. All equations, and relations between
the di�erent variables being linear, and provided that the boundary conditions at the
droplet interface are not altered by the presence of the external force (for a squirmer
for instance) it is possible to separate the problem in two di�erent ones by de�ning
u = uk + u? , uk being the solution of the problem of an active object aligned with
an external forceFk, and u? being the solution of the problem of a passive object
under a forceF? . Fk is the projection of the force on the swimmer direction, andF?

is the projection on the normal to the swimmer directione? with F = Fke+ F? e? . In
this case,u is indeed solution to the Stokes equations, and follows the right boundary
conditions.
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Then, using the solutions of these two problems, equation (2.75) and (2.90), one �nds,
for a passive particle under an external forceF? in the direction e? :

F? = � 6��aU ? ; (2.138)

� ?
1 =

F?

18��a
: (2.139)

And for an active particle aligned with an external force in the directione:

� k
1 =

Fk

18��a
�

2
3

hvsi ; (2.140)

Uk = �h vsi �
Fk

6��a
(2.141)

with all higher order � n> 1 and ~� n> 1 still undisturbed by the presence of the external
force, and given by equation (2.83).

Then the total 
ow �eld is the sum of an axisymmetric 
ow �eld in the swimmer
direction, and a dipolar 
ow �eld perpendicular to the swimmer direction (dipolar 
ow
�eld that can be described in term of a point force singularity and a responsive source
dipole singularity), that tends to zero at the interface. The velocity of the solid particle
is the sum of the previous ones:

U = Uke + U? e? (2.142)

= �h vsi e �
F

6��a
(2.143)

A similar calculation can be done for the swimming droplet, still assuming that the
boundary conditions are �xed. The 
ow �eld is then similarly the superposition of an
axisymmetric 
ow �eld, and a perpendicular dipolar 
ow, that tends to zero at the
droplet interface. The velocity is:

U =
ah� si � 3� i hvsi

2� + 3� i
e �

F
6�a

3(� + � i )
� (2� + 3� i )

(2.144)

In both cases, because of this perpendicular dipolar 
ow �eld caused by the external
force, the 
ow �eld is non-axisymmetric.

2.3.3 Microswimmers in real environments

Be it in a biological environment or in a micro
uidic device, there are many cases
where the microswimmers does not evolve in a 3D in�nite and unbounded medium [39].
Several observations indeed reveal the critical importance of con�nement on the swim-
mer's dynamics. Some microswimmers are attracted by the boundaries [40, 41, 42],
which can then be used to capture [43, 33], or steer the swimmer motion [44, 45, 46].
The presence of a boundary has been observed to in
uence not only the motion of a
single particle [47, 48, 49] but also the collective behaviour and phase transitions of
swarms [50, 51, 52, 53]. Ultimately, the interactions with boundaries can be used to

53



CHAPTER 2. GENERAL THEORY

harvest energy from the population of swimmers [54]. Obtaining a reliable description
of the interaction of a swimmer with a wall is thus of signi�cant importance. It is also
a �rst step towards a better understanding of the interactions among swimmers and
thereby the emergence of collective behaviour [55, 91].

2.3.3.1 The method of images: A Squirmer close to a wall

The method of images [92] has been used to look at a simpli�ed problem of a squirmer
close to a wall. The presence of a no-slip in�nite plane wall imposes a vanishing 
ow
velocity u = 0 at the wall. One way out to compute an approximation of the 
ow
�eld generated by an object close to such a wall consists in taking the "mirror image"
through the wall of the hydrodynamics 
ow �eld produced by the object far from walls
such that the sum of the two 
ow �eld is zero at the wall.

A squirmer - whose boundary conditions are �xed - can be described as a linear com-
bination of fundamental solutions to the Stokes equations, the singularities (see sec-
tion (2.1.5)). Then the image of each of these singularities can be computed to construct
the mirror image of the object, and then the 
ow �eld of the object close to a wall.
Such a strategy has been applied recently to the case of an axisymmetric swimmer [93].
The hydrodynamics image system di�ers from the simple mirror image of the original
object, as this is the case in other �elds such as di�usion or electrostatics, where the
�eld satis�es Laplace's equation. Although the problem of the wall is treated exactly
(no slip wall), the boundary conditions at the object interface are not exactly ful�lled,
because of the image object 
ow �eld. [93] focused on characterizing the accuracy of the
far-�eld approximation, and showed that this simpli�ed description can be very useful,
and quantitatively predictive, for describing the behaviour of a selection of swimmers
close to a wall.

More speci�cally, the lower order singularities - the point force and point source - have
been computed [38] using Fourier transform, to ful�ll the no slip condition at the wall.

The geometry of the problem is illustrated in Fig. 2.11. We use a set of axes centered
on the sphere's center.ez is a unit vector along the vertical axis andh is the distance
between the center of the swimmer and the wall. Image singularities are thus positioned
at a point X = � hez below the wall, and we noter the position of the observation
point (where the 
ow is evaluated) with respect to the sphere's center andR = r +2hez

the position of the same point with respect to the position of the image system. For
each singularity, which leads to a velocity �eldu i

10 in unbounded 
ow, we denote by
u �

i the corresponding 
ow �eld near a wall (i.e. including both the original singularity
and the e�ect of its image system). The singularities and their images are illustrated
in Fig. 2.11.

The image of a point source computed by [38] is a sink, plus a symmetric force dipole
perpendicular to the wall and a source dipole perpendicular to the wall. The corre-

10 i stands for the singularity - s is for a point source, sd for a source dipole, f for a point force, fd
for a force dipole, and so on)
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Figure 2.11: Flow �elds in presence of a no slip wall: Flow �eld produced by
singularities (at z = 0) and their images (placed atz = � 2h through a no slip wall
(black line, at z = � 5), in a median plane perpendicular to the wallf ex ; ezg. (a) A
point source and its images, a point source, a force dipole and a source dipole. (b) A
point force parallel to the wall and its images, a point force, a force dipole and a source
dipole. (c) A point force perpendicular to the wall and its images, a point force, a force
dipole and a source dipole.

sponding 
ow �eld is:

u �
s(r ) =

Original source
z}|{

r
r 3

+

Image source
z}|{
R
R3

�

force dipole
z }| {

2
�

R
R3

�
3R(R � ez)2

R5

�
+

source dipole
z }| {

2h
�

ez

R3
�

3(R � ez)R
R5

�
:

(2.145)

Similarly, the image of a point force computed by [38] is a point force of opposite
direction, an asymmetric force dipole and a source dipole parallel to the wall, and the
corresponding 
ow �eld is:

u �
f (r ) =

Original force
z }| {
e
r

+
(e � r )r

r 3
�

Image force
z }| {
e
R

�
(e � R)R

R3
+

source dipole
z }| {
2h2e
R3

�
6h2(e � R)R

R5

+

force dipole
z }| {
2h(e � R)ez

R3
+

6h(R � ez)(e � R)R
R5

�
2h(ez � R)e

R3
: (2.146)

Then, the higher order singularities are obtained by taking the successive gradients of
these 
ow �eld (with a similar reasoning than in section (2.1.5):

u �
fn (r ) = �r

�
u �

f (n� 1)(r )
�

� ez; (2.147)

u �
sn(r ) = �r

�
u �

s(n� 1)(r )
�

� ez; (2.148)

the gradient being taken in the same direction than the singularity (for instance if we
consider an axisymmetric swimmer, it is taken in the swimming direction).

The 
ow �eld in the presence of the wall then simply reads:

u � =
1X

n=1

� �
nu �

f; (n� 1) + ~� �
nu �

s;n (2.149)

The complete expression of the 
ow �eld generated by a force dipole, a source dipole
and a source quadrupole for any angle with the wall and at any distance are given
in [93].
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2.3.3.2 E�ect of a no-slip wall on the activity

For swimmers driven by mechanical surface distortions, it is reasonable to assume
that hydrodynamics mechanisms are the dominant contributor to the motion. If the
mechanical surface distortions at the origin of self-propulsion are not modi�ed by the
proximity of the wall, a squirmer description could be used with a prescribed and
unaltered slip velocity. Even in this simpli�ed context, solving for the exact 
ow
around a squirmer in the presence of a wall is in general not possible. Currently, the
only exact solution is that of the 
ow �eld resulting from the motion of an axisymmetric
squirmer approaching a wall, along the wall normal direction [94].

Things becomes even more complicated, when the object is not a squirmer - i. e. when
the boundary conditions themselves can be modi�ed by the presence of the wall. Con-
sidering for instance the case of phoretic or Marangoni swimmers, the self-generated
external �eld, responsible for the swimming motion, is likely to be distorted by the
presence of the wall, which alters the di�usion of the physico-chemical �eld. This was
�rst illustrated in [95], before it was indeed demonstrated that in the presence of bound-
aries the behaviour of chemically active colloids is qualitatively di�erent, even in the
far �eld, from the one that could have been expected for �xed boundary conditions [96].

At low Peclet number, the hydrodynamics problem and the concentration problem
can be treated separately, �rst solving the concentration �eld close to a wall that gives
boundary conditions at the object interface, second solving the hydrodynamics problem
in presence of a wall using these boundary conditions. Focusing on the near-wall
motion, general analytical solutions for the concentration �eld, velocity and rotation
of the locomotor, as a function of distance and orientation of the active cap with the
surface, were obtained in the form of in�nite series expansions [97]. These solutions
were then used to compute general trajectories and categorize the swimming regimes.
Yet, for such expansions, the correspondence between each term (i.e. angular mode) to
a precise set of hydrodynamics singularities of increasing order is lost, in stark contrast
with the classical decomposition of the 
ow �eld generated by a spherical swimmer in
unbounded 
ow [90].

At high Peclet number, the 
ow �eld and the concentration �eld are non-linearly
coupled. The concentration �eld is modi�ed by the presence of the walland advected
by the 
ow �eld, and the 
ow �eld boundary conditions depends on the wall and the
concentration �eld at its interface. Considering the 
ow �eld around such a swimmer
is part of the present work, and will be addressed in chapter (4).

Key messages

Here is a condensed summary of the key notions explored in this chapter.

In the case of an unbounded axisymetric problem, the 
ow �eld around a spherical
object is the superposition of contributions of an in�nite number of azimutal symmetries
(monopolar, dipolar, quadrupolar symmetries, and so on). The amplitudes of theses
symmetries are determined by the boundary conditions of the same symmetries at the
object interface. Only the dipolar symmetry of the hydrodynamic 
ow �eld, and thus
the dipolar symmetry of the boundary conditions (asymmetry front-back) leads to a
net motion of the spherical object.
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The boundary conditions at the interface of a spherical, undeformable object, in the
most general case of a droplet, are a slip velocity and a stress jump of the 
ow �eld
across the interface (equation (2.61), (2.62) and (2.63)), and the balance of force for the
droplet (equations (2.33)). The velocity of the droplet is then given by a combination
of the average of the slip velocity and of the stress jump over the droplet interface, and
of the external force, through the lamb formula (equation (2.84)).

The most commonly used model for swimmer is the squirmer model, whose boundary
conditions are �xed. This model is also often limited to two hydrodynamic symmetries:
the dipolar symmetry, responsible for the swimming, and the quadrupolar symmetry,
decaying the slowest at long range.

The slip velocity and stress jump may comes from physical actuation (for instance
through the use of 
agella), or from a physico-chemical origin, through the interaction
between the inner and outer 
uid at the microscopic scale. This interaction take place in
an interfactial layer of �nite thickness, in which, for instance, a concentration gradient
of a solute in the outer 
uid interacting with the inner 
uid puts 
uid into motion
(Marangoni and phoretic e�ects).

A swimmer is an object that self induces these boundary conditions to produce a net
motion. The swimmer then needs to break the isotropy around itself (the swimmer
needs to impose a front-back asymmetry). This breaking of isotropy may be geometrical
- which is the case for Janus particles, or might come from a spontaneous symmetry
breaking resulting from an instability - which is the case for swimming droplets. Note
that in this last case, the boundary conditions are coupled to the hydrodynamics.

An external breaking of the axisymmetry, because of a wall for instance, or the presence
of an external force not aligned with the swimmer direction, modi�es the 
ow �eld. In
the case of a swimming droplet, because of the coupling between the hydrodynamics
and the boundary conditions, an external breaking of axisymmetry is likely to modify
the boundary conditions of the swimmer itself.
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Chapter 3
Pure water swimming droplets

Historical context

In opposition with Brownian motion, a gradient may generate directed swimming -
swimming with a certain persistence length. Spontaneous swimming - meaning swim-
ming not induced by an external gradient - needs the swimmer to interact with his
environment and change it locally. As droplets are isotropic objects, local gradients
must arise from a spontaneous breaking of symmetry around the droplet. Historically,
the �rst self-propelled droplets were sessile droplets chemically reacting with a sur-
face [98, 99, 100, 101, 102, 103, 104], locally changing the wetting angle (and thus the
interfacial forces) between the droplet and the surface (an example is given in Fig. 3.1(a)
and (b)). In these cases, the surface tension between the surface and the droplet being
higher after the chemical reaction, areas already visited by the droplet become repul-
sive. One should also mention other swimming mechanism using an external source of
energy - for instance UV-light inducing a isomerization of the interface [105], or a laser
beam locally heating the droplet [71] - which produces an internal convection inside
the droplet. By continuity, this internal convection induces external convection, which
leads to a net motion of the droplet. The �rst self-propelled swimming droplet [106]
(moving through the bulk with an inner source of energy) was observed for an oil in wa-
ter droplet producing giant vesicles at its interface (in Fig. 3.1(c) and (d)). The vesicles
were formed at the droplet's interface through a reaction between a surfactant in the
water phase, and a reactive in the oil phase. Several other kinds of swimming droplets
of oil in water [107, 108, 109, 110, 51] or water in oil [111, 112, 87] have been developed
since then, the common underlying principle being a "reaction1" at the interface that
increases locally the "surface tension2", which induces a phoretic and Marangoni 
ow
that drives the droplet away from its previous position (see section (2.2.3)).

One system worth mentioning, as it was the �rst water in oil self propelled swimming
droplet, is the system developed by Thutupalli et al (in Fig. 3.1(e) and (f)) [111]: a

1By "reaction" we mean chemical reaction but also physical transformation such as the solubiliza-
tion of a compound from one phase to another, or transfer of one compound (from the surface to the
bulk for instance)

2By "surface tension", we mean the enlarged de�nition of the surface tension as seen in section 2.2.2,
which is the energy that costs the �nite boundary between the droplet and the bulk. This energy is
the result of the interactions of all components in this boundary layer, including - but not exhaustively
- the two phases, the surfactant and the solutes.
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Figure 3.1: Illustration of some historical swimming droplets. (a) and (b),
�gures from [100]: (a) side view of a moving drop on a substrate. (b) Schematic
illustration of the surface energy change induced by adsorption of an n-alkylamine onto
a CO2H surface, which produces the swimming. (c) and (d), �gures from [106]: (c)
Phase-contrast microscopic images on self-propelled motion of an oil emulsion droplet
(site P) with a trail of giant vesicles (site Q). (d) Illustration of the schematic dynamics
behind the propelling of (c): the production of giant vesicles induces convection inside
the droplet. (e) and (f), �gures from [111]: (e) path of a single self-propelled water
droplet. (f) Schematic representation of the swimming mechanism of (e): bromination
increases the tension of the droplet surface. The convective 
ow pattern is accompanied
by a gradient in the bromination density. The corresponding Marangoni stress propels
the droplet.
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B-Z droplet3 is made in an oil phase of squalane with a surfactant, the mono-olein
(rac-glycerol-1-mono-oleate). One of the byproduct of the BZ reaction is the bromine
which reacts at the interface between the water and oil phases with the mono-olein.
This reaction produces a brominated mono-olein which is a weaker surfactant than the
mono-olein. Then the droplet produces isotropically a "solute" that increases locally
the surface tension between the droplet and the bulk. As seen in section (2.2.3), such
a system is unstable for a high enough Peclet number, and thus the droplet starts to
swim. During his PhD, Ziane Izri [114] studied this system of swimming B-Z droplets,
and for comparison a similar system of pure water droplets in oil plus mono-olein, with
the intention of making passive droplets. To his surprise, this second kind of droplets
was also swimming, even in the absence of chemical reaction. He provided the �rst
description of this system, and proposed a swimming mechanism [87]. This system of
swimming pure water droplet in an oil+surfactant solution is what we are going to
describe and characterize in this chapter, as it is the central object of study of the
present work.

3.1 Pure water swimming droplet

The system we study is constituted of pure water droplet of typical radiusa = 50 � 100
� m, in a solution of 25mM mono-olein in oil4.

3.1.1 Swimming mechanism

3.1.1.1 The origin of the swimming motion

Such droplets are observed to swim at a typical velocity ofV = 20� m/s for around
two hours (see typical trajectory, velocity and radius in Fig. 3.2(a), (b) and (c). While
investigating the origin of the droplets motion, Ziane Izri [114] made several measure-
ments and observations:

� The radius of the droplets decreases with time (Fig. 3.2(c)) at a typical rate of
5 nm/s. After several hours, in system with a few droplets in oil, the droplets
disappear completely, while in system with a lot of droplets in oil, the droplets
stop moving.

� There is no swimming if the oil solution of squalane + mono-olein have been
saturated with water beforehand.

� The velocity of the droplets depends on the surfactant (mono-olein) concentra-
tion : below the critical micellar concentration (CMC): the droplets do not swim.
Above the CMC, the velocity increases with the mono-olein concentration.

� Dynamic light scattering experiments were performed to measure the evolution
of the typical micelle size in a solution of 221mM mono-olein in tetradecane, in

3A B-Z droplet is an aqueous phase droplet inside which a Belouzov-Zhabotinsky reaction [113]
takes place.

4The droplets have been observed to swim in many di�erent oils, and Ziane Izri study focused on
two di�erent oils, squalane and tetradecane. In the present work, we use mainly squalane oil.
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Figure 3.2: Figures from [87] Pure water droplet motion: (a) trajectories of � 50
water droplets in the observation room (diameter 1 cm) �lled with Sq{25 mM MO,
recorded during 500 s. The droplet trajectory is color coded with the time preceding
its present location. (b) Velocity and (c) diameter versus time for a selection of eight
trajectories. Insets: Linear-log plot for a selection of 35 trajectory parts.

contact with water5. The radius of the micelles has been found to increase with
time, from � = 3nm to a typical size � = 10nm.

These observations provide the following arguments : (i) water is sent "somewhere" in
the oil solution and this process is linked to the motion, (ii) being above the CMC is
necessary for the swimming to occur, (iii) objects of the order of the nm are growing
in the oil phase. This allowed to make the hypothesis that water from the droplet is
sent inside the micelles in the bulk, forming swollen micelles - or nano-droplets - of
typical size 10 nm. The exact mechanism of how the water is sent in the micelles is
not known. Stephan Herminghaus [115] proposed two mechanisms:

� The micellear pathway : The micelles swell at the interface of the droplet pump-
ing water and surfactant directly at the droplet interface (see Fig. 3.3(a)). In
this case, the depletion 
ux of water is directly linked to the empty micelles con-
centration at the interface. The boundary layer, in which the transfer occurs is
typically the layer of surfactant plus the size of a micelle.

� The molecular pathway : Water is partially soluble in the oil phase, thus the
droplet slowly dissolves with time. The surfactant in the bulk (free surfactants or

5More precisely oil sample were taken from a water in oil emulsion at 0.5% volume fraction of
water, kept into rotation.
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surfactant in micelles) absorbs the solubilized water to form the swollen micelles
(see Fig. 3.3(b)). In this case, the depletion 
ux of water is linked to the solubility
equilibrium of the water between the droplet and the bulk phase, this equilibrium
being a�ected by the concentration of surfactant that consumes water in the bulk.
The boundary layer, in which the transfer of water occurs, is typically the distance
at which the water concentration in the oil phase tends to zero - which is also
the distance at which there is still empty micelles.

Figure 3.3: The two imagined pathways for the formation of micelles: (a)
micellar pathway, the empty micelles take water directly from the interface and swell.
(b) Molecular pathway, water from the droplet solubilizes in the oil. Empty micelles
swell when meeting solubilized water.

These are two model mechanisms of the transfer of water from the droplet to the
micelles in the bulk, which explain the apparition of swollen micelles. Although
the size of the boundary layer is expected to be di�erent, at the outer edge of this
boundary layer, we may simply consider that there is an exchange of water between
the droplet and the micelles in solution. These two mechanisms are quite similar in
this aspect. However, the dynamic of these two transfer mechanisms are di�erent,
leading to di�erent dependency of the 
ux of water: in the case of the micellar
pathway, the 
ux depends on the concentration of empty micelles at the interface,
while in the case of the molecular pathway, the 
ux depends on the equilibrium of the
solubility of the water in oil.

Motility can rise from a gradient of interaction between the droplet and the bulk. In
the boundary layer, the component potentially interacting with the interface are the
solubilized water and the surfactant in four di�erent states: at the interface, free in
the bulk, in empty micelles or in swollen micelles. In reality all these components
participate to the interaction between the bulk and the interface, leading at the level
of the hydrodynamics to both a phoretic and Marangoni e�ects (see section (2.2.2)).
In his study, S. Hermingaus considered a pure Marangoni e�ect (a stress jump at the
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interface) coming from the concentration of surfactant at the interface6. More generally,
one should consider the interaction of all compounds inside the boundary layer, which
give rise to an interaction that depends on all compounds concentrations. As there is
conservation of the water and surfactant, all concentrations ultimately depend on the
concentration of swollen micelles produced. One can then have a simpli�ed vision of
the boundary layer as an area where swollen micelles are produced and interact with
the interface (this interaction then includes the depletion of surfactant at the interface,
the consumption of empty micelles, free surfactant and solubilized water, and the direct
interaction between the interface and the swollen micelles). This simpli�ed vision of
the physico-chemistry in the boundary layer is schematized in Fig. 3.3.

3.1.1.2 Mechanism robustness

The robustness of this swimming mechanism has been tested by changing the di�erent
components of the system:

Oil phase: the droplets are observed to swim in squalane, decane and tetradecane.
The swimming behaviour di�ers depending on the oil, for instance the droplets swim
quicker in tetradecane than in squalane. This has been intensively studied in Ziane
Izri's thesis [114].

Aqueous phase: the droplets are observed to swim whether the inner phase is pure
water, acid or basic water (with pH between 3 and 12), salted water (even at a salt
concentration above the salt solubility), a solution of water + ethanol [116] and even
glycerol. One interesting point to notice is that the presence of salt increases the
osmotic pressure inside the droplet, and thus slows down the 
ux of water from inside
to outside: in 2D, the droplet goes slower, and also swims longer. In 1D channel,
however, the presence of salt is observed to accelerate the droplet. This e�ect is not
well understood, but might come from a repulsive e�ect between the channel and the
salt, which increases the lubrication layer between the droplet and the channel, and
thus decreases the viscous dissipation.

Surfactant: A few di�erent surfactants have been tried, the only one which works
is the mono-olein. The reason for that could be that the mono-olein has an especially
high solubility in oil, or that the shape of the mono-olein (presence of a double bond)
makes the equilibrium size of micelles particularly large, favoring their swelling.

We decided to choose this unique experimental system during this work: a water droplet
(pure water or a solution of 15% wt NaCl in water depending on the experiments) in
a solution of 25mM mono-olein in Squalane.

6He also showed that in this case, only the molecular pathway for the creation of swollen micelles
could possibly give rise to a net motion of the droplet.
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3.1.2 Swimming behaviour

3.1.2.1 Characteristic and dimensionless numbers

Physico-chemical properties:

We brie
y present the two main chemical compounds used in our system: the squalane
- the oil constituting the outer phase - and the mono-olein, the surfactant solubilized
in the oil phase.

Squalane: 2,6,10,15,19,23-Hexamethyltetracosane,
density dsqualane (T = 298K ) = 0 :810,
viscosity � = 36 mPa.s [117],
water solubility s = 3:710� 6 mg/mL (ALOGPS).

Figure 3.4: Linear representation of the squalane molecule

Mono-oelein: 1-Oleoyl-rac-glycerol,
CMC in Squalane:CMC ' 3 mmol/L.

Figure 3.5: Linear representation of the mono-olein molecule

Interfacial tensions:
between Squalane and water:
 ow = 46 mN/m,
between Squalane + mono-olein (above CMC) and water:
 omw = 1.7 mN/m.

The system:

We typically study the swimming behaviour of a water droplet of radiusa = 50 � 100
� m, eventually with salt at a concentration ofcNaCl = 15%wt, in a solution of cMO = 25
mM > CMC . The droplet shrinks with time (it sends water into empty micelles), and
the evolution of its radius can be evaluated as� = da

dt = 4:5 � 10� 2 � m/s. The typical
swollen micelle radius has been measured to be� = 10 nm. The droplet's typical
velocity in 2D is V = 50 � m/s.
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Swimming mechanism:

According to the section 2.2.3, the swimming of our droplets comes from a competition
between the advection and the di�usion of the solute. From this problem emerges a
dimensionless velocityU� = AM

D , whereA, M and D are de�ned as follow [87].

� The activity, A is the surface emission rate of the swollen micelles (number of
swollen micelles produced at the droplet interface per unit of surface and per
unit of time). It can be linked to the evolution of the droplet size� through the
conservation of volume of water from the droplet to the micelles:A = 4�a 2 �

4
3 �� 3

1
4�a 2 =

3
4�

�
� 3 . Given all parameters,A ' 104 swollen micelles/� m2.s.

� The motility de�ned by the equation 2.132 describes how much the droplet moves

as a response to a gradient of solute:M = �kT �
a+3 � � i

�

4� +6 � i
. In the case of a water

droplet in oil, � i � � , and thus the phoretic contribution on the motility can be
neglected compared to the Marangoni one:M = kT ��a

4� . As a �rst approximation
for the numerical application, we consider only the sterical interaction between
the swollen micelles and the droplet:�� = � , then M = 2:5 � 10� 2 � m5/s.

� The di�usion of the swollen micelles of radius� in the oil of viscosity � writes as
D = kT

6��� . This can be evaluated asD = 5 � 10� 1 � m2/s.

Then U� = 9
4

a���
� 2 = 4:5 � 102� m/s.

Dimensionless numbers:

A certain number of dimensionless numbers allows us to describe our system, and
compare the relative e�ects of the di�erent phenomena at play on the outer 
uid
(inertia, viscosity), on the solute concentration (advection, di�usion), or on the object
shape (interfacial tension, gravity).

Outer 
uid - the Reynold number Re:
the Stokes equation describes a 
ow �eld for which the e�ect of inertia are negligible
compared to the viscous e�ect. This is quanti�ed by the Reynold number:

Re =
�U � a

�
(3.1)

= 10� 6 � 1: (3.2)

Thus we are indeed in the micro
uidic realm, where a 
uid is described by the Stokes
equation.

Solute concentration - the Peclet number Pe:
for the instability to occur, a gradient of concentration needs to exist, which can only
happen if the di�usion of swollen micelles (which tends to homogenize the concentration
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�eld) is not too fast compared to the advection. This is quanti�ed by the Peclet number
Pe which compare convection e�ects to di�usive ones:

Pe =
U� a
D

(3.3)

=
aAM

D 2
(3.4)

= 105 � 1: (3.5)

Some numerical application:
we saw in section (2.2.2) that the critical Peclet number for the instability to occur
was Pec = 5. Then Pe � Pec, we are indeed in the regime where the droplet swims.
For very large Peclet, using the same numerical method than in [83], for the same
system but for high Peclet, one can �nd that V

U � saturates toward a constant value
V
U � ! 0:1. Then the typical velocity of our system should beV = 45 � m/s, which is
of the same order as the measured velocities. Note thatV = 0:1 U� = 0:2��

� 2 a� / �a .
Measuring experimentally [87] the dependency of the velocity with the droplet radius
and shrinking rate, Ziane Izri et al. check this relation, Fig. 3.6. Note that the slope of
these curves gives an experimental measurement of��

� 2 . Here we measure the slop for
the three systems used by Z. Izri:

- System of pure water droplets in a squalane+mono-olein solution:� 2

�� = 20 nm.

- System of pure water droplets in a tetradecane+mono-olein solution:�
2

�� = 50
nm.

- System of salted water droplets in a squalane+mono-olein solution:� 2

�� = 3 nm.

We see here that the composition of the two phases has an in
uence on the charac-
teristics of the interfacial layer � , the strength, and � , the scope of the interactions
between the two phases (eventually also the size of the micelles� ). In particular, the
presence of salt in the water phase (which we can suppose does not modify the size of
the micelles in the oil phase) increases�� (decreasing the ratio� 2

�� ), which is surprising.

Object shape - the capillary length:
one more hypothesis we make is that our droplet is spherical, although they are not
density matched with the surrounding 
uid (� � = 0:2�103 kg/m 3). This approximation
is only correct if the interfacial forces, that tend to minimize the droplet surface, and
thus keep it spherical, dominate gravity. This is quanti�ed by the capillary lengthlc:

lc =
r



� �g

(3.6)

In our problem, 
 = 1 mm which is much larger than the droplet sizea ' 100 � m.
The droplets are thus spherical.
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Figure 3.6: �gure from [87] Comparison of three di�erent systems. (a) Decay of the
relative droplet radius versus time for three droplets under di�erent conditions: water
in Sq-MO (blue squares), water in Td-MO (green diamonds), water-26 wt%NaCl in
Sq-MO (red circles). Inset: Velocity versus time for the same three droplets. (b)
Parametric plot of the velocity versusa� for droplets under the same three di�erent
sets of conditions; each point represents a di�erent droplet during a di�erent period of
time corresponding to a straight part of its trajectory.

3.1.2.2 Some interesting behaviours

At this point in order to have a more concrete understanding of the behaviour of our
swimming droplets, we invite the reader to watch a video of our system:

[Swimming droplets]7

This video was made by the YouTube channel "The Lutetium Project", intended for
the general public and with the purpose of being both educative and entertaining.

Trajectory

Note �rst that the water phase is denser than all tested oils. Thus the water droplets
fall on the bottom wall and swim along this wall.

The behaviour (persistence length, velocity, curvature) of the droplets strongly depends
on the system, for instance on the size of the droplets and their composition (pure water
vs salted water), but also on the nature of the bottom wall. This will be discussed in
chapter (4).

Interactions

7https://www.youtube.com/watch?v=2T C694BOGw
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When a droplet meets a vertical wall, it reorients and starts swimming along this wall.
This lasts for a while until the droplet eventually leaves the wall. When two droplets
come onto contact, their behaviours depend on the orientation of the two swimmers: if
they arrive perpendicular to each other (side by side), they align and swim together for
a while. If they arrive parallel to each other (face to face), they repeal each other. This
kind of behaviour is characteristic of pushers in the squirmer model (section (2.2.1)).

Cargo

It is possible to add something in the droplets (Fig. 3.7), such as colloids, salt crystal
(when the salt concentration is above its solubility), but also biological entity (as our
system is fully biocompatible) such as bacteria colonies, and to use the droplets as
cargo to transport things at the microscopic scale.

Figure 3.7: Figure from [87] Swimming droplets as micro
uidic carriers. Transport of
salt crystals (top left), Dami cells [118] (top right), and colloids (bottom).

3.2 Making a swimming droplet

3.2.1 Preparation of the solutions

The continuous phase (outer phase) is a solution of 25 mM mono-olein in Squalane (or
eventually if precised, tetradecane), prepared as follow:

(i) A glass vial is weighted with its cap.
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(ii) On a precise balance, we weigh the mono-olein (Sigma Aldrich, 1-Oleoyl-rac-
glycerol, M7765-1G). The aim is 0.0446 g of mono-olein for 5 mL of �nal solution.

(iii) We carefully rinse with squalane the tip of a 5 mL micropipette. Then we add 5
mL of Squalane (Sigma Aldrich, Squalane 96%, 234311-500G) to the vial.

(iv) The vial is closed, lightly shaken, and placed 5 min in a 70oC oven, which help
with the solubilization of the mono-olein. If all mono-olein hasn't been solubilized
after 5 min, one can shake vigorously the solution, and place it in the oven for 5
min more.

(v) After cooling, the vial is weighted to compute the exact amount of squalane
added, and to deduce the exact concentration of mono-olein.

(vi) The solution is stored in a syringe from which all air is expelled. Such solution
can be kept up to one month in an environment of more than 25oC 8 (for instance
an oven, is the room temperature is too low).

The discrete phase (the droplet) is made from milli-Q water, eventually when precised
adding salt (Sigma Aldrich, Sodium Chloride, S7653-1KG). To make a solution of 100
mL of 15% wt NaCl in water, we weight 15 g of salt in a 100 mL glass vial, and complete
with water so that the whole solution weight 100 mg.

3.2.2 One droplet: Femtojet

In the chapters (4), (5) and (7), we study the behaviour of isolated droplets. One of the
drawbacks of micro
uidic devices is that it is di�cult to make only one droplet at a time.
For this, we need another setup which uses an injection needle �lled with the water
solution, and linked to a pressure controller apparatus, the Femtojet (Eppendorf's
electronic micro-injectors FemtojetR
 4i with a built-in compressor)

3.2.2.1 Femtojet: Making one droplet ...

The steps necessary to make a water droplet are described in the following, and the
setup is illustrated in Fig. 3.8(a) and (b):

(i) The injection needle (1) is made from a 1 mm inner diameter glass cylindrical cap-
illary, using a Needle Pipette Pullers (KopfR
 Model 720 Needle Pipette Pullers),
and opened using a micro-forge (NARISHIGE MF-900 micro-forge) so that the
tip of the needle has an inner diameter of approximatively 10� m. It is then �lled
with the water solution using a microloader (Eppendorf's MicroloaderT M ).

(ii) The injection needle connected to the Femtojet (3) through an air tube (2).
The Femtojet allows to impose a small pressure9 (down to 5 hPa above the

8The mono-olein crystallize below 25oC . The crystallization disappears if the solution is placed in
the 70oC oven for 5 min, but without knowing the e�ect of such process on the solution, we prefer to
avoid this situation.

9The Femtojet allows to impose a continuous pressure, but also an injection pressure and injection
time if one wants to impose a pulse of pressure, but we do not use these two parameters.
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Figure 3.8: Making an isolated droplet with the femtojet: (a) image of the
femtojet (3) linked with the water �lled needle (1) by an air tube (2). (b) Sketch of the
same femtojet: by controlling the pressure in the air tube, unique water droplet can be
made directly in the observation chamber, and observed through the macroscope. (c)
Time sequence of the creation of a water droplet: (i)t = 0 s, the needle is immersed
in the oil. (ii) t = 3 s, the pressure is turned on, a droplet starts forming at the tip of
the needle, until it reaches a suitable size att = 12 s (iii). (iv) t = 13 s the pressure is
cut and the needle removed simultaneously: the droplet detaches from the needle. (v)
t = 15 s the droplet falls at the bottom of the observation chamber.

ambient pressure) at one end of the injection needle. The injection needle is
�xed on a three-axis manipulator (NARISHIGE U-3C, three-dimensional coarse
manipulator), and introduced in the oil solution.

(iii) The oil phase enters the injection needle by capillarity. Using the Femtojet,
the pressure at the other end of the injection needle is increased to balance the
capillarity until the oil-water interface reaches the tip of the injection needle.
Then the pressure is increased a little more to form the droplet: the droplet
swells slowly enough that it is possible to control its size by eyes, by increasing
or decreasing the pressure. Once it reaches the desired size, the pressure is set
back to zero, and simultaneously, a little kick is given to the needle to detach the
droplet. A time sequence of a droplet production is given in Fig. 3.8(c).

3.2.2.2 ... In all kind of chambers

One advantage of this droplet making setup is that one can use a wide variety of
observation chambers, in di�erent materials (NOA, PDMS, glass, silanized glass),
and in di�erent geometries (chamber, capillary, complex micro
uidic device)... The
di�erent observation chambers used through this work are described below.
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Figure 3.9: Di�erent types of observation chambers: Observation chambers used
to study isolated droplets. (a) to (d): 2D chambers. (a) Glass chamber (blue) delimited
by double face tape walls (pink). (b) Silanized (red hatching) glass chamber (blue)
delimited by double face tape walls (pink). (c) PDMS chamber (light blue) between
two glass slides. (d) NOA chamber (light green) between two glass slides. (e) to (i): 1D
chambers. (e) Square glass capillary. (f) Silanized (red hatching) square glass capillary.
(g) Silanized (red hatching) cylindrical capillary. (h) Silanized (red hatching) stretched
cylindrical capillary. (i) Square constriction in NOA.

2D chambers: they are constituted of one bottom wall and circular side walls of
various natures. The chamber is completely �lled with the oil solution, and closed
with a glass coverslip after injection of the water droplet.

Fig. 3.9(a) - Glass chamber: the bottom wall is a glass slide. The side wall
are made using either double face tape (Fimolux, Gudy 800 double face tape cut
using a cutting plotter), or PDMS.

Fig. 3.9(b) - Silanized glass chamber: the bottom wall is a silanized glass
slide. The di�erent silanization processes are described below. The side walls are
like for bare glass, double side tape or PDMS.

Fig. 3.9(c) -PDMS chamber: the PDMS chamber is made using Sylgard PDMS
(Dow, SYLGARDTM 184 Silicone Elastomer Kit). The bottom wall is made of
a 
at piece of PDMS, put on a glass slide. Side walls of a certain heighth are
obtained by making a circular hole in another PDM piece.

Fig. 3.9(d) - NOA chamber: the NOA chamber is made using NOA81 (Norland
Products Inc., Norland Optical Adhesives 81), a liquid adhesive that is cured
using a UV lamp. The shape of the chamber is obtained by molding the NOA
on a reverse circular PDMS stamp [119].

1D chambers: they are elongated structure, such as capillaries or channels. They
are �lled with the oil solution, then a droplet is made by inserting the injection needle
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inside the capillary or the channel. The two ends of the device are left opened to the
air.

Fig. 3.9(e) - Square glass capillary: we use square glass capillaries
(Hollow Square Capillaries manufactured in Borosilicate Glass, VitroCom's
VitrotubesTM ) of length 5 cm, and of four di�erent inner dimensions: 2h = 400
� m (Product ID 8240), 2h = 200 � m (Product ID 8320), 2h = 100 � m (Product
ID 8510) and 2h = 80 � m (Product ID 8508).

Fig. 3.9(f) - Silanized square glass capillary: the square glass capillaries 2h =
200 � m described before are silanized using the silanization method described
below.

Fig. 3.9(g) - Silanized cylindrical glass capillary silanized: we use cylin-
drical glass capillaries (Hollow Round Capillaries manufactured in Borosilicate
glass, VitroCom's VitrotubesTM ) of length 10 cm, and of two di�erent inner di-
mensions: 2h = 200 � m (Product ID CV2033) and 2h = 100 � m (Product ID
CV1017). The silanization method is described below.

Fig. 3.9(h) - Silanized stretched cylindrical glass capillary: the 2h = 200
� m cylindrical capillary described before may be stretched (the method is de-
scribed in details in section (5)).

Fig. 3.9(i) - Square NOA constriction: a square NOA section is designed
by pouring and curing NOA on a PDMS mold. The PDMS mold is obtained
using the same method than for making a micro
uidic device, described in sec-
tion (3.2.3).

PDMS and NOA are naturally hydrophobic materials. The glass however, is hy-
drophilic. If the droplet does not move for a long time (for instance if it has "poisoned"
itself) it is observed to stick to glass. In order to prevent the sticking, the surface of
glass can be silanized.

Liquid phase silanization: All manipulations are done under a fume hood, and we
take special care to not introduce water in the system (water neutralize the silane and
leave white marks on the glass). We used a home-made method developed by Dae Seok
Kim during his Post-Doc at the Gulliver laboratory.

(i) Cleaning the chamber with successively pure ethanol, acetone, water and pure
ethanol.

(ii) The chamber is soaked 5 min in a solution of 4 mL hexane (sigma aldritch,
296090, hexane), 1 mL chloroform (sigma aldritch 288306, chloroform), and 20
� L OTS (sigma aldritch 376213, Trimethoxy(octadecyl)silane).

(iii) The chamber is left under the fume hood to dry for 5 min.

(iv) The chamber is soaked 2 min in 5 mL chloroform.

(v) The chamber is dried with a air gun.
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(vi) The chamber is dried on a hot plate (in a glass recipient) 2 min at 120oC , and
6 h at 200oC .

(vii) Right before use, the chamber is washed with pure ethanol.

3.2.3 Many droplets: micro
uidics

In the chapter (6), we look at collective e�ects of droplet in 1D. The advantage of using
a micro
uidic device to make droplets is that it is possible to make many droplets of
controlled and mono-disperse size in little time. The setup and method for making
swimming droplets in a micro
uidic device have been developed successively by Ziane
Izri and Marjolein N. van der Linden. This section describes the necessary steps with
some useful tips to design the micro
uidic device and produce swimming water droplets.

3.2.3.1 Conception: choice of the micro
uidic device

Note that we are trying here to make water in oil droplets, while the most usual system
in micro
uidics is oil in water droplets. There is several ways of making droplets using
micro
uidics device [120]. The process �nally chosen was the step emulsi�cation pro-
cess [121] for its simplicity and robustness. This process is schematized in Fig. 3.10(I).
In this method, the oil and the water are pushed through a quasi 2D channel (of height
h = 10� m, small compared to its thicknessL = 200� m) with certain 
ow rates, Qo and
Qw through the inlets (a) and (b). A three phases laminar 
ow oil-water-oil is formed
through a quasi 2D T-junction (A.), and is then pushed into a quasi 2D microchannel
that leads to a step change in height (B.). Monodisperse drops are produced at this
location and transported through a square channel to the observation chamber (C.). A
trash outlet (d) and a oil dilution inlet (c) are added to be able to control what enter
the observation chamber, and to decrease the droplet density if necessary. The size of
the droplets is controlled by the channel height and the 
ow rates. The �nal chip have
three inlets (water inlet (a), oil inlet (b) and dilution inlet (c)), whose 
ow rates are
all controlled separately, and two outlets (trash outlet (d) and observation outlet (e)).
All inlet and outlet can be opened and closed through external valves.

3.2.3.2 Fabrication: from a mask to a working chip

To reduce as much as possible the response time of the device to external 
ow, the
material to make the micro
uidic chip was chosen to be NOA81 [119] (Norland Optical
Adhesive), which has a higher elastic modulus than PDMS (typically 1 GPa, versus 1
MPa for PDMS), and thus is less deformable under pressure.

A mask is �rst drawn using the software c
 Adob Illustrator (shown in Fig. 3.10(I)).
A positive mold of the device is made on a silicone wafer covered with positive
photo-resist SU8 using a soft lithography process [122]. A PDMS negative stamp is
made from the mold and silanized [123], and a second positive PDMS stamp is made
from the �rst one. This second stamp will be used for making several NOA chips. A
sketch of a side view of the �nal device is shown in Fig. 3.10(II).

The method for making the NOA device is as follow:
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Figure 3.10:Micro
uidic device: I. Device for making droplet: (a) oil inlet, (b) wa-
ter inlet, (c) dilution inlet, (d) trash outlet, (e) observation outlet. (A.) 2D T-junction
(inlet Sketch of the 
ows), (B.) step in height (inlet, 3D view), (C.) Observation cham-
ber. II. Side view of the micro
uidic chip: (1) pierced glass slide, (2) NOA circuit,
(3) glass coverslip, (4) glass slide, (5) micro
uidic connection, (6) tubing.III. Flow
circuit, with the same notation as I. More precision on the functioning of this device
is given in the text. Qo, Qw and Qdil are respectively the 
ow rates of oil, water and
dilution oil.
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(i) A microscope slide (1) is pierced using a CO2 laser cutter, making holes that will
be the inlet and outlet of the chip.

(ii) The NOA (2) is poured10 on the PDMS stamp11. Then the stamp is applied on
the pierced glass slide12, and the holes are aligned with the chip. A �rst quick UV
exposure is done so that the NOA starts reticulation, while the surface remains
active. The stamp is removed, and hole are pierced through the NOA, aligned
with the glass holes.

(iii) A glass cover slip (3) is placed on top, and a second long UV exposure is done
to complete the reticulation. To reinforce the chip, it is possible to add a glass
slide (4) on top of the glass cover slip, attached through a thin layer of NOA.

(iv) The whole chip is cured on a hotplate for 1.5 h at 150oC . Then micro
uidic
connections13 (5) are glued on the pierced glass slide to connect the holes to the
tubing14 (6).

3.2.3.3 Utilization: making droplets

All inlet and outlets are connected to valves15. The whole circuit is schematized in
Fig. 3.10(III). The three inlets 
ow rates are controlled using independent syringe
pumps16, that imposes 
ow rates (a) Qo for the oil inlet, (b) Qw for the water inlet
and (c) Qdim for the dilution inlet. The two outlets (d) and (e) are linked to a trash
recipient. The typical parameters were found using trials and errors:Qw = 1000 � L/h,
Qo = 300 � L/h and Qdil = 300 ! 1000� L/h. Glass syringes of 1 mL are used to store
the liquids.

We describe in the following the method established to make swimming droplets:

(i) Removing bubbles: The external circuit: tubing + valves + connections is washed
carefully with ethanol to remove bubbles. The NOA ship is then connected to
the external circuit, with all inlets and outlets closed by the valves, except for
the trash outlet.

(ii) Turning on the 
ux: The water inlet is opened, and the water 
ux turned on17.
Then the oil inlet is opened, and the oil 
ux is gradually increased until the water
jet destabilizes and droplets are formed. It is then adjusted to control the droplet
size. The dilution 
ux is �nally adjusted to obtain the wanted dilution.

10It might be helpful to heat the NOA a few minutes at 50 oC C to decrease it viscosity and facilitate
the impregnation.

11Be careful to avoid bubbles, a glass pipette might help.
12Covering the bottom face of the pierced glass slide helps preventing excess NOA through the holes.
13IDEX Health & Science, NanoPort Assembly Headless, 10-32 Coned, for 1/16" OD (N-333).
14IDEX Health & Science, FEP Tubing 1/16" OD x .030" ID (1520L), with a connection, : One-

Piece Fingertight 10-32 Coned, for 1/16" OD (F120). We use rigid tubing in order to reduce as much
as possible the response time of the device.

15IDEX Health & Science, 4-Way Flow Valve PEEK (V-100T).
16Harvard Apparatus, Standard Infusion Only Pump 11 Elite Syringe Pumps (70-4500)
17Once a channel has been in contact with the oil phase, it is very di�cult to wash. Thus one

should be extremely careful that the oil phase never enters the water channel: the water 
ux should
be always switched on �rst, and switched o� last.
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(iii) To the observation chamber: Once the right droplet size and dilution have been
achieved, the trash outlet is closed and the observation outlet opened so that
the droplets are led to the observation chamber. When the needed droplets have
�lled the observation chamber, the observation outlet is closed, the trash outlet
is opened, and all 
ow are stopped (gradually, the water 
ow the last one), and
inlets and outlets closed except for the trash outlet in order to relax residual
pressure in the circuit.

3.3 Observation tools

3.3.1 Observation of a droplet

To observe the droplet behaviour, we want to track the droplets over distance equal to
several times their size, which is typically over distances as large as 1 cm.

3.3.1.1 Large observation area: macroscope

To observe such large area, we use a AZ100 Nikon macroscope, equipped with x1 air
objective. The camera is a black and white camera Dalsa Falcon II, with a resolution
of 4096 x 3072 pixels, at an acquisition frequencyf acq = 1 Hz. The macroscope has
a continuous zoom between x1 and x8, and thus has a variable resolution, which is
measured before each experiment by using a calibration slide. Typically, to visualize
a chamber of 1 cm in diameter, we use the x3 zoom, which gives a resolution of 0.3
pix/ � m.

3.3.1.2 Tracking

The acquisition can last up to two hours, at a frequency of 1Hz, obtaining up to 7200 8-
bit images, namely almost 400 Go of data. We thus want to make the image analysis as
e�cient as possible to get the interesting data (droplets trajectories, velocity, shape...)
as fast as possible. The image processing is done using MatlabR
 following three basic
steps: the background subtraction, the droplet detection and the droplet tracking. For
each of these steps, di�erent strategies can be used depending on the system (resolution
of the droplets, number of droplets...), which we present below:

� Background subtraction :

{ Small moving object in �xed background (most used method): the back-
ground is obtained by averaging the images over time (not necessarily all
images, it might be a sample). The background is then subtracted to each
image and the image inverted, so that the object of interest, the droplet, is
white. This step is illustrated in Fig. 3.11a and b.

{ Small �xed object or mobile background: the background is obtained by
taking a Gaussian �lter of an image. This is especially useful to correct
illumination gradient in the image.
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Figure 3.11: Illustration of the complete tracking process (the axis are in pixels). (a)
Initial image. (b) Image after subtraction of the background, and windows computed
from the previous droplet position, in which the droplet is expected to be. (c) Zoom
on the windows computed from the previous droplet position after treatment and bi-
narization, and detection of the droplet. (d) Computed trajectory of the droplet.
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{ Big object: When the object is big (of the order of one half of the image),
then we usually don't compute a background, as the main signal is already
the object.

� Droplet detection :

{ Large circular objects (a > 20 pixels): the function "im�ndcircles" of Mat-
lab detects all circular objects of a certain radius range in an image using
the circular Hough transform. Advantages of this method is that it can
discriminate two adjacent circular objects, and can be used on grayscale
images. A drawback of this method is that it is time consuming (the actual
time depends on the radius range). The precision of this method is typi-
cally a few pixels. This method is preferentially used when there is a lot of
droplets.

{ All objects for binary images: the function "bwconncomp" of Matlab �nds
connected components in a binary image. Advantages of this method is that
it can detect any object shape, and is quick compared to "im�ndicicles". A
drawback is that it can't discriminate between two adjacent objects. We
show an example of the result of this method in Fig. 3.11(C).

The droplets are detected in each image, but in case there is more than one
droplet, we need to be able to recognize the same droplet between successive
time steps.

� Droplet tracking :

{ One possibility to track the droplet would be to brutally compute the average
distance between the droplets in one image to the following one for theN !
possible combinations of droplets. This method is very costly in time, and
thus an alternative method was chosen.

{ Typically, a droplet of radius a = 100 � m swims at a velocityV = 50 � m/s,
thus between two images, the droplet moves no further than half of its
radius. Exploiting this slow swimming of these droplets, we de�ne a moving
windows (of size typically 5 times the droplet radius) around the position
of the droplet in the previous image, and look for the position of this same
droplet in this window. The two advantages of this method are that the
droplet detection is done only on a small window, and the tracking is done
automatically, at the same time as detection, thus reducing signi�cantly the
processing time. This is illustrated in Fig. 3.11(C) and (D).

Choosing between these processes the one that suits the image the most, one obtains
the trajectories and the radius of the droplets over time, and can compute some other
variables such as the velocityV, the persistence length, the variation of the radius
over time � , etc...

Post processing: some tracking mistakes, or some experimental perturbations (such
as the presence of dirt, or poisoning of the droplet) can occur throughout an experiment.
For each experiment, a post processing step is used to check the quality, and if needed,
to select the "good time" at which the tracking is correct and the droplet behaviour
not perturbed by unwanted factors.
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3.3.2 Observation of the 
ow �eld around the droplet

To visualize a 
ow, one method is to seed small particles in the outer liquid. This
requires a smaller observation area, but a higher resolution, and the possibility to
visualize in multiples planes to have a 3D resolution, which is why we use a confocal
microscope section. To extract an actual 
ow �eld from these particles, we use a
technique called micro-PIV.

3.3.2.1 Choice of a tracer:

A good tracer is small enough to not disturb the 
ow (ideally smaller than 1� m), but
big enough to be visualized. We want to visualize the 
ow of oil, and thus we need a
tracer that can be suspended (meaning they can be dispersed, they don't agglomerate
and they don't sediment) in oil, which is unusual as most colloids are made to be
suspended in water (in particular they have the same density as water). All these
constrains made us spend some time �nding the best possible tracer.

1. Sandra's shell: a �rst option was to use specially designed polymeric shell (see
�gure 3.12) of typically 10 � m of diameter. They were created by Marie-Alice
Guedeau-Boudeville and Sandra Lerouge at the Mati�ere et Syst�emes Complexes
Laboratory of Paris Diderot University. These shells are made of successive layers
of polymers. They are transparent, index matched with water, dyed with red

uorescence, and porous. That porosity allows them to be density matched with
any liquid they are in, so that they don't sediment.

Figure 3.12: Image of the polymeric shells designed by Sandra Lerouge under the con-
focal microscope, X40 objective, the illumination is done by a laser beam of wavelength
543 nm.

Method:

(i) Sandra's suspension of shells in THF are stored in the fridge, in a quartz
tube.

(ii) Prepare the oil solution of 25 mM mono-olein in Squalane.

(iii) Desiccate a few seconds the shell suspension in THF.
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(iv) Under fume hood: In a centrifuge tube in quartz, put 80�L of Sandra's
suspension of shells in THF and 60� L of the oil solution.

(v) Desiccate a few minutes the solution of THF, oil and shells in the quartz
tube closed with para�lm.

(vi) Let the THF evaporate one night by letting the tube open under the fume
hood.

(vii) Under microscope, if you observe that the shells are still forming agglomer-
ate, desiccate once more a few minutes.

(viii) Always desiccate a few minutes right before experiment so that the shells
are well dispersed.

Precautions:

� As long as there is THF in the solution, be sure to operate under a fume
hood, or to close hermetically the vials with para�lm.

� The shells are fragile. Do not heat them, or desiccate them for too long.

The shells don't sediment. Once well dispersed, they still aggregate a little. There
is a few limitations to the use of these shells. First, they are long and di�cult to
make, so our stock are limited. Second, they are a little too big to be considered
compared to what we would like.

2. Small colloids : another way to avoid sedimentation is to use very small particles
so that the sedimentation will be slow enough to be neglected during the exper-
iment time. We used 0:6 � m red 
uorescent colloids tracers (Fluoro-MaxT M , 0.6
� m Red Fluorescent Polymer Microspheres, Thermo-scienti�c). Their density is
the same as water, so they are slowly sedimenting.

method:

(i) Prepare the oil solution of 25 mM mono-olein in Squalane.

(ii) Put 2 drops of the aqueous colloid suspension in a 1 mL centrifuge tube.
Complete with ethanol.

(iii) Centrifuge 5 min at 5000 rcf (Relative Centrifugal Force). Take out the top
liquid, and re�ll with ethanol. Desiccate the tube to disperse the colloids.
Repeat this sequence three times.

(iv) Take out the top liquid. Put the tube open for 15 min in a 40oC C oven to
evaporate all the ethanol.

(v) Add the oil solution in the tube.

(vi) Before each experiment, desiccate the suspension of colloids in oil for 15 min
so that the colloids are well dispersed.

(vii) It is possible to reuse the suspended colloids if the oil is too old by centrifug-
ing the tube, take out the old oil and re�ll with some new oil.

These colloids sediment, but the sedimentation is negligible for experiments
shorter than 15 min.
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Because colloidal beads are much simpler to handle and use, and because they are
smaller, we mainly use them for the PIV in all the following. The seeding is set as
around 2:5 10� 3 colloids/� m 3, which corresponds in an illumination plane to little
more than one colloid per� m 2, or one colloid per two pixels.

3.3.2.2 Acquisition

We want to look at the 
ow �eld around a droplet of typically 100 � m in radius, while
resolving 
uorescent particles of around half a micron. For this purpose, we use a
confocal microscope with a x10 air objective, which gives a �eld of view of typically
500 � m, and a resolution of 0.65� m/pix. This resolution is not enough to actually
visualize the tracer (the tracer size is one quarter of a pixel), but it is su�cient to
visualize pattern in the tracer concentration. The images are acquired with a CCD
camera (Andor Zyla 5.5). The acquisition frequency for the 
ow �eld visualization is
10 frames/s and the exposure time is 50 ms. The microscope can be used with white
light, or with a laser beam at 540 nm, which is the absorption wavelength of the tracers.

3.3.2.3 Computing the 
ow �eld

Figure 3.13: (a) Reversed image (for better eyes visualization) of the tracers (in black)
around a droplet (in white). (b) Typical 
ow �eld computed using "PIV lab".

The tracers placed in the outer 
uid allow to visualize the 
ow �eld. To quantify
it, we use the The Particle Image Velocimetry (PIV) method to compute the local

ow �eld 18. The principle is to use cross correlation between successive images to
follow the evolution of patterns in a certain window size (the pattern being in our
case the tracers). We use the "PIV lab" [124] an open source Matlab code. After

18The chapter II of the thesis [124] can be used as a basis to understand the PIV process. A review
on the experimental realization of micro-PIV can be found in [125]
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pre-processing the images with a Wiener �lter (window size of 3 x 3 pixels), we use
two successive paths of integration using correlation areas of �rst 50 x 50 pixels and
then 25 x 25 pixels, with a sliding step of 50% of the correlation area. Doing so we
obtain the velocity componentsVx (x; y; z; t) and Vy(x; y; z; t) with a spatial resolution
of 8 � m (around 8% of the droplet radius) for each pair of successive images.

Let us end with stating some limitations of the experimental method. In planes other
than the median plane, the quality of the imaging is altered when the incoming light
goes through the droplet. As a result, the PIV cannot be performed inside the vertical
cylinder tangent to the droplet in the median plane. Also, for distances larger than
�ve droplet radii, the signal to noise ratio is too small to extract reliable velocity �elds.
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Part II

Experimental and theoretical work
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Chapter 4
Swimming in 2D

Motivation

The second section of this chapter is mainly a published article [1], which has both
an experimental and a theoretical approaches. Before presenting the results from the
paper, in section (4.2), we start by a detailed section on the experimental approach,
in section (4.1).

Be it in a biological environment or in a micro
uidic device, in many cases, microswim-
mers do not evolve in a 3D in�nite and unbounded medium [39], and several obser-
vations indeed reveal the critical importance of con�nement on the swimmer's dy-
namics. Several microswimmers are attracted by the boundaries [40, 41, 42], which
can then be used to capture [43, 33], or steer the swimmer motion [44, 45, 46]. The
presence of a boundary has been observed to in
uence not only the motion of a sin-
gle particle [47, 48, 49] but also the collective behaviour and phase transitions of
swarms [50, 51, 52, 53]. Ultimately, the interactions with boundaries can be used
to harvest energy from a population of swimmers [54]. Obtaining a reliable description
of the interactions of a swimmer with a wall is thus of signi�cant importance. It is also
a �rst step towards a better understanding of the interactions among swimmers and
thereby the emergence of collective behaviour [55, 91]

For swimmers driven by mechanical surface distortions, it is reasonable to assume that
hydrodynamic mechanisms are the dominant contributor to the motion. If the me-
chanical surface distortions at the origin of self-propulsion are not modi�ed by the
proximity of the wall, a squirmer description can be used with a prescribed and unal-
tered slip velocity. Even in this simpli�ed context, solving for the exact 
ow around
a squirmer in the presence of a wall is in general not possible. Currently, the only
exact solution is that of the 
ow �eld resulting from the motion of an axisymmetric
squirmer approaching a wall, along the wall normal direction [94]. One way out con-
sists of describing the squirmer as a linear combination of fundamental solutions to
the Stokes equations and using the methods of images [92] to compute the 
ow �eld
in the presence of a wall. Such a strategy has been applied recently to the case of an
axisymmetric swimmer [93]. Focusing on characterizing the accuracy of the far-�eld
approximation, the authors show that this simpli�ed description can be very useful,
and quantitatively predictive, for describing the behaviour of a selection of swimmers
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close to a wall. Such an approach will be used is this chapter, in section (4.2.3).

Considering now the case of phoretic or Marangoni swimmers, the self-generated exter-
nal �eld, responsible for the swimming motion, is likely to be distorted by the presence
of the wall, which alters the di�usion of the physico-chemical �eld. This was �rst illus-
trated in [95], before it was indeed demonstrated that in the presence of boundaries the
behaviour of chemically active colloids is qualitatively di�erent, even in the far �eld,
from the one exhibited by the corresponding \e�ective squirmer" [96]. Focusing on the
near-wall motion, general analytical solutions for the concentration �eld, velocity and
rotation of the swimmer, as a function of distance and orientation of the active cap
with the surface, were obtained in the form of in�nite series expansions [97]. These
solutions were then used to compute general trajectories and categorize the swimming
regimes. Yet, for such expansions, the correspondence between each term (i.e. angular
mode) to a precise set of hydrodynamic singularities of increasing order is lost, in stark
contrast with the classical decomposition of the 
ow �eld generated by a spherical
swimmer in unbounded 
ow [90].

Experimental studies of the e�ect of con�nement on phoretic swimmers concentrate
on the kinetics of the particle trajectories and very little is known about the actual

ow �eld. On some occasions, it has been measured in the median plane of the swim-
mer [126, 111, 52, 127], and used for qualitative discussion. Yet, a precise and quan-
titative description of this 
ow �eld is critical, in particular to understand the role
of hydrodynamic coupling between swimmers in setting their collective dynamics. To
our knowledge, the three-dimensional 
ow �eld around a phoretic swimmer remained
to be fully characterized experimentally, one obvious reason being that most phoretic
swimmers are micron-sized particles, for which such an analysis would require truly
high-resolution measurements.

In such a context, we �rst look in section (4.1) at the kinetics of our droplets trajec-
tories, looking at how the presence and the nature of a wall a�ect their behaviour.
In a second time, in section (4.2) we take advantage of the large size of the droplet
{ typically 100 � m in radius { to perform PIV measurements in 3D, using confocal
microscopy, of the hydrodynamics 
ow around the swimmer.

4.1 Kinetics in presence of a wall

A �rst step in understanding the e�ect of a wall on a swimmer is simply to look at the
kinetics of the swimmer close to a wall. For this we design circular chamber of typical
diameter 1 cm. A chamber is typically constituted of a bottom wall, a circular side
wall and a top wall. The whole chamber is �lled with the oil solution so that there
is no liquid-air interface. We use three di�erent chambers, varying the nature of the
bottom wall (section (3.2.2.2)). (1) A glass bottom wall is made by using a glass slide.
(2) A silanized glass bottom wall is made by using a silanized glass slide. For these
two chambers, the side walls are made in tape. (3) A NOA bottom wall is made by
using a NOA chamber, the side wall are also in NOA. All chambers are closed by a
glass cover-slip. The half-height of the chamber ish = 150 � m. All chambers have an
entry channel on the side, large enough so that we can insert the water �lled needle
(section (3.2.2)) and produce the droplet directly inside the chamber. One experiment
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consists in making one pure water droplet of a certain radiusa in the chamber �lled
with a solution of 25 mM monoolein in squalane.

The water being denser than the surrounding oil medium, the droplet naturally swims
at the bottom wall of a micro-
uidic chamber. The swimming droplets basically have a
2D motion. Very small droplets (a < 50 � m) may exhibit "3D" motion by "bouncing"
out of plane, but remain in the vicinity of the bottom wall. We do not study this e�ect.
The capillary length of our system being 1 mm, our droplet, whose maximum radius
is a = 300 � m can always be considered spherical (except if some external geometrical
constrain prevent them of being so, for instance in the case where they are larger than
the chamber height).

The chamber is observed through the macroscope (section 3.3.1.1)), and the image
acquisition is made at a typical frequency of 1 fps. We use image analysis tools (sec-
tion 3.3.1.2)) to track the droplets. We get the evolution of droplet position and size
with time.

4.1.1 Typical swimming behaviour

This is a very descriptive section of the behaviours of one droplet swimming alone in
the chamber.

The droplet starts swimming upon production. When it attains a constant velocity,
we considered that it reached its steady state (this may take a few hundred seconds).
A typical experiment is presented in Fig. 4.1.

The droplet normally swims straight ((1) and (3) in Fig. 4.1), with a persistence
length (the length over which correlations in the direction of the swimmer are lost)
that strongly depends on its size (qualitatively, the larger the droplet, the lower the
persistent length). Several events may happen during an experiment, which comes
to disturb this steady state: meeting the chamber's wall ((2) and (7) in Fig. 4.1);
meeting its trail, and thus a region with swollen micelles, which is repulsive ((5) and
(6) in Fig. 4.1); or a sudden turn in the trajectory ((4) in Fig. 4.1), which is not due to
any visible cause. All these events have an impact on the droplet velocity: the droplet
generally slows down and/or changes direction. After the event, the velocity relaxes
once again toward its steady velocity. Note that the droplet radius is as expected
observed to decrease with time.

We now focus on the interaction between the droplet and the chamber side walls, in
Fig. 4.2. When the droplet collides with a wall, we observe two di�erent behaviours:
the �rst one is when the droplet aligns with the wall ((2), (3) and (6) in Fig. 4.2), and
starts swimming along it with a certain velocity lower than when swimming far from
the walls. This lasts for a while (the time spent at the wall varies a lot from one case
to the other), until the droplet leaves the wall, generally abruptly (sudden change in
the droplet direction). Most of the time, there is no obvious reason for the leaving of
the droplet. The second behaviour is when the droplet simply bounces on the wall
((4) and (5) in Fig. 4.2). We do not observe any clear reason (such as the meeting
angle, or the meeting velocity) that would discriminate one case from the other. The
e�ect of the side wall will be slightly more studied in the section (4.2.4), by looking at
the 
ow �eld around the droplet using PIV tools.
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Figure 4.1: Kinetics of a droplet swimming alone: trajectory of a droplet (a = 60
� m, silanized glass bottom wall) swimming straight (1) and (3), but being disturbed
by multiple events: collision with a wall (2) and (7), sudden turns (4), or self-avoiding
its trail (5) and (6).

Figure 4.2: E�ect of the bouncing on the chamber side walls on the kinetics:
trajectory of a droplet (a = 60 � m, NOA bottom wall) with multiple interactions with
the wall. The trajectory starts at (1). When meeting the wall, the droplet either aligns
with the wall and follows it (2), (3) and (6), or simply bounces on it (4) and (5).

Figure 4.3: E�ect of the self-poisoning of a droplet on the kinetics: trajectory
of a droplet (a = 75 � m, glass bottom wall) which becomes trapped in its trail.
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The e�ect of the trail of the droplet on the droplet behaviour is also non-trivial. While
swimming, the droplet �lls empty micelles from its environment, leaving behind a trail
of swollen micelles. This trail is a region of high swollen micelles concentration, and
thus is repulsive for the droplet (if one remembers the swimming mechanism of the
droplet, the droplet goes away from high swollen micelles concentration region). The
swollen micelles still di�use with time, so the trail disappears, or at least weakens after
a certain amount of time. In the experiments, the droplet are observed to avoid their
own trail most of the time, but are still able to cross it when the trail is old enough,
as it can be observed in Fig. 4.1 and in Fig. 4.2. The droplets may also end up in a
situation where they cannot avoid their own fresh trail, such as the case in Fig. 4.3.
They are then trapped in a region surrounded by swollen micelles. We observe that
after being trapped, the droplet velocity drops considerably, but is not zero: the
droplet continues to explore its environment inside the trap. The droplet continues
to produce swollen micelles, which di�use while empty micelles also di�use close to
the droplet: the concentration �eld inside the trap changes in an unpredictable way,
which explains the disordered motion of the droplet. At some point, the droplet �nds
a breach in its trap, and is able to go out.

In the following, we are exclusively interested in the steady state of the droplet: when
they swim at a constant velocity, with a straight trajectory, far from walls and from
their own trail.

4.1.2 E�ect of the nature of the bottom wall on the kinetics

We make several experiments of one droplet in a chamber made with either a glass, a
silanized glass or a NOA1 bottom wall. The droplet radius varies betweena = 10 � m
and a = 180 � m (which is a little larger than the chamber half-height, thus the droplet
touches both the bottom and top walls, and is not spherical anymore). A �rst direct
observation on the kinetics is that for a silanized glass bottom wall, the trajectories are
always very straight (persistence length of more than the chamber width), and thus
only the collision with the walls, or meeting its own trail makes the droplet changes
direction. For bare glass bottom wall, the persistence length is smaller, and strongly
depends on the droplet size: the bigger the droplet is, the "wavier" is its trajectory.
Finally, for NOA bottom wall, the trajectory is "wavy" even for small droplets; and
big droplets have erratic motion. We have not quanti�ed this e�ect.

For each experiment, we measure the average of the velocityhV i and the mean square
error for when the droplet is in a steady state (in the absence of dynamic events such
as meeting wall or poisoning). The results are given in Fig. 4.4(a). Note that because
of their erratic motion the big droplets on a NOA wall do not attain a steady velocity2.

We make several observations:

1The NOA bottom wall was tested because previous experiments were done in micro
uidics cham-
ber made of NOA.

2The erratic motion of big droplets may be due to secondary instabilities, which is currently studied
in the team of Masatoshi Ichikawa from the Laboratory of Dissipative and Biological Physics of Kyoto
university.
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Figure 4.4: Characteristics of the steady state, for di�erent natures of bottom
walls: red upward triangles stand for a glass bottom wall, blue downward triangles
stand for a silanized glass bottom wall and green diamond for a NOA bottom wall.
(a) Dependency of the steady velocity of the droplethV i on their size a. The red
line represents the slop of the curve for small radius. The dashed line represents the
half-height of the chamber.(b) Dependency of the steady shrinking rate of the droplet
� on their size a. (c) Dependency of the steady velocity of the droplethV i on the
product a�

� For small droplets (a < 50 � m), the droplet velocity increases with the droplet
size, in a similar way for all bottom walls. Remember that the swimming mech-
anism predicts that the velocity of the droplet should be proportional toa, as-
suming that the surface 
ux of swollen micelles is a constant, thus this result is
expected.

� For medium droplets (50< a < 100� m), the droplet velocity still increases with
the droplet size, but also depends on the nature of the bottom glass: the droplet
is faster on silanized glass, which is hydrophobic, than on bare glass which is
hydrophilic. This shows that the nature of the bottom wall has an in
uence on
the velocity.

� For large droplets (a > 100 � m), the velocity starts to decrease when the radius
increases. This happens when the droplet size is almost the size of the chamber.
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This shows that the con�nement has an in
uence on the velocity.

The e�ect of the con�nement is not surprising: when con�ned, the droplet has less
space to advect the outer 
uid. Less trivial is the dependence on the nature of the
bottom wall: the droplet is non-wetting, there is always a lubrication layer between the
droplet and the bottom wall, thus there is no direct contact between the droplet and
the wall. We can think of two possible e�ects to explain this in
uence. The �rst one
is the in
uence of the slip velocity at the wall interface, which has been studied [128]
in the case of catalytic colloidal swimmers near a wall. Surface slip depends on liquid
surface interaction (between the outer 
uid, the oil phase, and the bottom wall in our
case). The 
uid-surface interactions relate to the wetting properties of the liquid on
the surface [129]. However, if qualitatively, our oil solution is observed to wet more
glass than NOA, we do not observe a signi�cant di�erence between glass and silanized
glass.

The second possible e�ect is the in
uence of the thickness of the lubrication layer
between the droplet and the wall, which may depend on the kind of surface. Indeed,
these surfaces di�er from their roughness, their charge... Which can a�ect their
interaction with a droplet.

We also measured in Fig. 4.4(b) the evolution of the shrinking rate� = da
dt for di�erent

droplet sizes. On a glass bottom wall, and on a NOA bottom wall,� does not depend
signi�cantly on the droplet size, and we measure� G = � 2:8 � 10� 3 � 2 � 10� 3� m/s and
� NOA = � 3:9� 10� 3 � 2� 10� 3� m/s. Surprisingly, these values are smaller than the ones
measured in [87] which were of the order of�10� 2. On silanized glass, the shrinking rate
� is faster, but also depends on the droplet size: the smallest the droplet, the fastest
it shrinks.

In a similar way than in [87], we also plot the dependence ofhV i with �a , and we
indeed observe the linear scaling of the droplet velocity with�a , which is consistent
with the swimming mechanism.

This �rst experimental section was about describing the kinetics of our droplet which,
because of the density contrast, is swimming on a bottom wall. We presented typical
behaviours of a droplet through an experiment, and we highlighted how the droplet size,
the nature of the bottom wall and the con�nement all played a role in two characteristic
values of the droplet steady state, its steady velocityV and its shrinking rate � . In
a second time, we now want to investigate another aspect of the in
uence of a wall,
namely how it a�ects the swimming mechanism itself through the study of the 
ow
�eld.
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4.2 Visualization of the 
ow �eld around the
droplet

The study on the e�ect of a wall on the 
ow �eld has been the object of a paper [1],
and its contents are exposed in this section.

Here, we take advantage of our large swimming water droplets - typically 100� m in
radius - to present �rst-of-a-kind experimental measurements of the 
ow �eld around
a swimming water droplet, using confocal PIV in three dimensions (Fig. 4.5).

Figure 4.5: Experimental 
ow �eld around a water droplet swimming close
and parallel to the bottom wall of a micro
uidic chamber: Left: 3D recon-
struction from the PIV analysis in planes parallel to the wall (blue plane). Right: Top
view of the streamlines of the 
ow �eld. The color code indicates the height of the
planes. Only a few planes are presented for clarity.

This section is organized as follow: in subsection (4.2.1), we expose in details the ex-
perimental realization and describing the PIV methods and data processing techniques.
Subsection (4.2.2) synthesizes our main experimental �ndings regarding the 
ow �eld
around a swimming droplet performing steady motion close and parallel to a wall. In
section (4.2.3) the experimental 
ow �eld is then compared with that of an axisymmet-
ric squirmer performing a steady motion parallel to the wall, as obtained following the
methodology introduced in [93]. Finally, we also present in section (4.2.4) and discuss
the experimental 
ow �eld obtained when the droplet is con�ned between two paral-
lel walls separated by typically one droplet diameter, a situation of interest in many
micro-
uidic devices, for which an analytical treatment remains an open question.
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4.2.1 Setting

4.2.1.1 Experimental system

The experimental system consists of 15 %wt NaCl in water droplets, with radiusa ' 50
� m, swimming in a solution of 25 mM mono-oleine in squalane. The droplets are
produced using ac
 Femtojet apparatus by injecting a single droplet of controlled size
in a circular NOA chamber of diameter 1 cm (the design of such chamber is described
in section (3.2.2.2)). In the so-called one-wall geometry, the chamber has height 2h & 5
mm � a and is closed by a glass coverslip. In this geometry, the droplet swims at the
bottom of the chamber, far from the top free surface since the water phase is denser
than the oil phase (dSq = 0:8). In the so-called two-wall geometry, the chamber has
height 2h ' a and is closed on its top by a NOA coated glass cover slip. In this
geometry, the droplet swims con�ned between two walls.

The droplet starts swimming immediately and reaches steady motion after a few min-
utes, with a constant velocity V0 ' 20 � m/s, following a trajectory with a typical
persistence length of a few droplet diameters. The droplet motion parallel to the wall
is tracked in the frame of the laboratory, where (x; y) denote the coordinates parallel
to the bottom wall and z the normal coordinate. The origin of thez-axis is located at
the center of the droplet. In the following, the droplet radiusa=2 and velocity V0 are
used as characteristic length and velocity, so thatzwall = � 1 denotes the position of
the bottom wall.

4.2.1.2 Methods: PIV measurement and Data representation

The 
ow �eld around the droplet is then measured using PIV, such as described in
section (3.3.2). The acquisition frequency is 10 frames/s and the exposure time is 50
ms. The spatial resolution parallel to the wall is 0:65 � m/pixel.

For each experiment, 50 images of the droplet and the surrounding 
ow �eld are
acquired at eachz. The PIV analysis, performed using the PIVlab [124] code on
c
 Matlab in each z-plane, provides us with the velocity �eld in cartesian coordinates

attached to the lab frame at each time step. Doing so we obtain the velocity compo-
nents Vx (x; y; z; t) and Vy(x; y; z; t) with a spatial resolution of 8 � m (around 8% of
the droplet radius) for each pair of successive images. Note that we don't have access
to the z component of the velocity. In principle, this component could be deduced
using mass conservation, but the method is highly sensitive to experimental noise
and we here choose to restrict ourselves to the analysis of the velocity components
parallel to the bottom wall. We focus exclusively on trajectories (i) where the
droplet is far from the lateral boundaries of the observation chamber and (ii) dur-
ing time windows corresponding to steady motion of the droplet along linear trajectory.

The 
ow �elds are dominated by a dipolar symmetry, which is used to extract the
position of the droplet center and the direction of its instantaneous displacement and
an estimate of it speedV0. We then apply a translation and a rotation to superim-
pose all successive 
ow �elds at eachz and obtain their temporal averagevx (x; y; z)
and vy(x; y; z), thereby reducing the experimental noise. These velocities are made
dimensionless using the droplet velocityV0.

We are now in position to describe quantitatively the reconstructed 
ow �eld in the

95



CHAPTER 4. SWIMMING IN 2D

one-wall geometry as illustrated on Fig. 4.5. The �rst step is to adopt a suitable
system of coordinates. While spherical coordinates centered on the droplet are natural
to describe an axisymmetric swimmer in an unbounded domain, the presence of the
wall here calls for a description using cylindrical coordinates (� ,� ,z)3 with the z-axis
orthogonal to the wall and� = 0 the swimming direction (as described in section (2)).
Recalling that we use the droplet radius as the unit length,� = 1 describes a cylinder
around the droplet, tangent to the median plane (z = 0). Additionally, for a steady and
linear motion, the 
ow �eld conserves a planar symmetry with respect to the vertical
plane � = 0. Exploiting this parity symmetry, the radial and azimuthal components of
the dimensionless velocity �eld in each plane are decomposed onto the basis of Legendre
polynomials:

v� (�; �; z ) =
X

n=0

� n
� (�; z )Ln (� ) (4.1)

v� (�; �; z ) =
X

n=1

� n
� (�; z )L1

n (� ); (4.2)

where� = cos� . Note that the 
ow �eld is measured in the lab reference frame and the
velocities are zero far from the droplet.Ln (� ) (resp. L1

n (� ) = �
p

1 � � 2L0
n (� )) are the

Legendre polynomials (resp. associated Legendre polynomials of the �rst kind), de�ned
in section (2). These Legendre polynomials form an orthogonal basis of hydrodynamic
azimuthal symmetries with � n

i (�; z ) the dimensionless amplitude of thenth -multipolar
symmetry for the radial (i = � ) and azimuthal (i = � ) components, which are obtained
by the following projections:

� n
� (�; z ) =

2n + 1
2

Z 1

� 1
v� (�; �; z )Ln (� )d�; (4.3)

� n
� (�; z ) =

2n + 1
2n(n + 1)

Z 1

� 1
v� (�; �; z )L1

n (� )d�: (4.4)

For eachz, � n
�;� (�; z ) describes the radial dependency of thenth azimuthal symmetry of

the velocity u�;� . These amplitudes form the output of our experimental measurements
and are represented on Fig. 4.6, respectively Fig. 4.11, in the case of a droplet swimming
above one wall, respectively between two walls.

4.2.2 Swimming close to a wall

We consider here the one-wall geometry with the water droplet performing a steady
linear motion at the bottom of the chamber, parallel to the wall. Our experimental
results are summarized on Fig. 4.6.

Let us �rst concentrate on the 
ow �eld in the median plane (z = 0). The top panel of
Fig. 4.6 displays color coded maps of the radial and azimuthal components of the 
ow
�eld, together with its decomposition onto the three �rst hydrodynamic multipolar
symmetries (monopolar, dipolar, quadrupolar) and the reconstruction of the 
ow �eld
from only these three �rst symmetries. One observes that the reconstructed 
ow �eld

3In order to alleviate the formalism, we call in this section � and � = cos � what we de�ned before
as �̂ and � = cos �̂ , the polar angle in any plane parallel to the wall.
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Figure 4.6: Experimental 
ow �eld in the one-wall geometry: caption in the
next page.
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Caption from Fig. 4.6: Top: u� and u� in the median plane (z = 0). The complete
experimental 
ow �eld (A) is shown as well as its monopolar symmetry (B), its dipolar
symmetry (C) and its quadrupolar symmetry (D). The 
ow reconstruction from the
�rst three symmetries (i.e. the sum of the contributions in B, C and D) is also shown
(E). Middle: u� (top) and u� (bottom) for z = � 0; 6, z = � 0; 3, z = 0; z = 0; 3 ;
z = 0; 6 (same color code as above). Bottom: Amplitudes� n

� (�; z ) and � n
� (�; z ), of the

�rst three modes (n = 0; 1; 2) as a function of the radial coordinate� for di�erent z.

is very similar to the original one. In the following, we shall therefore restrict our
analysis to the �rst three modes (n = 0; 1; 2). Second, and most remarkably, the radial
component of the 
ow �eld exhibits a strong monopolar symmetry, which actually
dominates at long range. In the median planez = 0, the cylindrical and spherical
coordinates description of the 
ow �eld are strictly equivalent, and it is well known
that the 
ow �eld around an axisymmetric swimmer in an unbounded medium includes
no monopolar symmetry contribution: our observations therefore provide a strong
indication of the in
uence of the wall on the 
ow �eld.

The in
uence of the wall is further characterized by considering the 
ow �eld compo-
nents in di�erent planes parallel to the wall (see the middle panel of Fig. 4.6). The 
ow
�eld appears strongly asymmetric with respect to the median plane, as could already
be noticed from Fig. 4.5. This is particularly true for the radial componentu� , which
has a nearly dipolar symmetry close to the wall and a nearly quadrupolar one when
approaching the top of the droplet. The azimuthal componentu� conserves the same
dipolar symmetry across the droplet height, but one still notices a faster decrease of
the 
ow intensity away from the droplet in planes closer to the wall. The complete
quantitative description of the 
ow �eld is �nally provided on the bottom panel of
Fig. 4.6, where the amplitudes of the �rst three azimuthal modes are displayed as a
function of the radial distance to the droplet� and the distance to the wallz.

4.2.3 Comparison with a squirmer model

Capturing theoretically the complex 
ow �elds reported experimentally is highly non-
trivial. A possible strategy would consist in solving exactly, up to numerical trunca-
tions, for the hydrodynamics and concentration �elds around the droplet in the presence
of the wall [97]. This however requires the knowledge of the boundary conditions at the
boundary of the swimming body. For a Janus colloid, with an active cap of a prescribed
geometry, it is already a strong hypothesis to assume that the phoretic slip velocity is
not altered by the wall-modi�ed concentration �eld. In the present case, we recall that
the phoretic slip velocity and Marangoni stresses both result from a linear instability.
In other words, in the bifurcated non-linear solution describing the swimming motion,
they are functions of both the concentration and hydrodynamic �elds. The interaction
with the wall thus becomes a highly nonlinear problem, which cannot be solved easily
following this strategy.

In the absence of exact treatment, it is still desirable to know how far a simpli�ed model
may account for the experimental description. With this goal in mind, we propose here
an alternate and approximate model as an axisymmetric squirmer moving parallel to
the wall, and computing the associated 
ow �eld using the method of images [93],
as introduced in section (2.3.3.1). We stress that this description is simpli�ed in the
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sense that (i) it overlooks the dynamics of the concentration �eld and its impact on
the hydrodynamic boundary condition at the swimmer's surface; (ii) it is a far-�eld
approximation and therefore overlooks that the droplet radius and distance to the wall
are comparable. Whether it would be able to capture the complex structure of the 
ow
�eld reported experimentally is therefore far from obviousa priori .

In the following, we �rst give in subsection (4.2.3.1) for reference the 
ow �eld gener-
ated by a squirmer far from wall, in our particular system of cylindrical coordinates,
and we see that the 
ow �eld is as expected strongly a�ected by the presence of a
wall. We shall see in the subsection (4.2.3.2) that taking into account the presence
of the wall by using the method of image to compute the 
ow �eld is in fact able to
describe surprisingly well the quadrupolar and dipolar symmetries but fails to explain
the emergence of a strong monopolar symmetry for the components of the 
ow �eld
parallel to the wall, which is discussed in subsection (4.2.3.3).

4.2.3.1 Axisymmetric squirmer in an unbounded 
uid

In order to fully appreciate the e�ect of the wall, one shall compare these pro�les
with those of a model swimmer in an unbounded medium. The 
ow �eld around an
axisymmetric swimmer can be computed exactly, solving the Stokes equation [38, 37],
for any given slip velocityus at the interface (a more detailed description is given in
section (2.1)). However, in agreement with our experimental observations, we limit
our description to the terms with azimuthal symmetries up to the quadrupolar order.
Recalling that a swimmer is force-free (no external force), and source-free (no net 
ux
production at the interface), the swimmer is modeled by a Stokes dipole, responsible for
the leading order in 1=r of the 
ow �eld u fd (r ) � 1=r2, a source dipoleusd(r ) � 1=r3

resulting from the �nite size of the swimmer and a source quadrupole, that ensures
the absence of normal 
ux at the interfaceusq(r ) � 1=r4. This set of singularities
corresponds e�ectively to the �rst two modes of the commonly-used squirmer model,
which, in an unbounded geometry, generates the 
ow �eld:

u(r ) = � usd(r ) + � usq(r ) + � u fd (r ); (4.5)

where the dimensionless coe�cients� = 1
2 ; � = � 3� are set by the boundary condition

u(r = 1) = e + us, with e the unit vector pointing in the direction of the swimming
motion. The expressions of the singularitiesusd(r ); usq(r ) and u fd (r ) are obtained from
the gradients of the point sourceus(r ) and point force u f (r ) singularities:

us(r ) =
r
r 3

; (4.6)

u f (r ) =
�

e
r

+
(e � r )r

r 3

�
; (4.7)

usd(r ) = � [r us] � e =
�

3(r � e)r
r 5

�
e
r 3

�
; (4.8)

usq(r ) = � [r usd] � e = 3
�

5(r � e)2r
r 7

�
r
r 5

�
2(r � e)e

r 5

�
; (4.9)

u fd (r ) = � [r u f ] � e = �
�

r
r 3

�
3(r � e)2r

r 5

�
: (4.10)
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We then write the singularities in the cylindrical system of coordinates (�; �; z ), using
e = � e� �

p
1 � � 2e� , r = � e� + zez and r � e = �� :

usd;� (�; � ) =
�

3� 2

r 5
�

1
r 3

�
L1(� ); usd;� (�; � ) = �

1
r 3

L1
1(� );

(4.11)

usq;� (�; � ) =
�

10� 3

r 7
�

4�
r 5

�
L2(� ) + 5

�
� 3

r 7
�

�
r 5

�
L0(� ); usq;� (�; � ) = �

2�
r 5

L1
2(� );

(4.12)

ufd;� (�; � ) =
2� 3

r 5
L2(� ) �

�
�
r 3

�
� 3

r 5

�
L0(� ); ufd;� (�; � ) = 0 : (4.13)

Note that in the median plane, in which the cylindrical and the more usual spherical
coordinateS are identical, (z = 0 and r = � ), the source quadrupole and the Stokes
dipole contribute only to the quadrupolar symmetry of the 
ow. This is not the case
out of the median plane (z 6= 0), where they also generate a monopolar symmetry
in the radial velocity componentu� (�; � ). This is only re
ecting the choice of coor-
dinate system as the three-dimensional 
ow �eld is inherently the purely dipolar and
quadrupolar axi-symmetric squirmer 
ow �eld.

Finally, we obtain the amplitude of the monopolar, dipolar and quadrupolar symme-
tries, projecting onto the Legendre polynomials, Eq. (4.3) and (4.4):

� 0
� (� ) = 5 �

�
� 3

r 7
�

�
r 5

�
� �

�
�
r 3

�
� 3

r 5

�
; (4.14)

� 1
� (� ) = �

�
3� 2

r 5
�

1
r 3

�
; (4.15)

� 2
� (� ) = �

�
10� 3

r 7
�

4�
r 5

�
+

2�� 3

r 5
; (4.16)

� 1
� (� ) = �

�
r 3

; (4.17)

� 2
� (� ) = �

2��
r 5

: (4.18)

Fig. 4.7 displays the radial dependency of these amplitudes in di�erent z-planes (color
code). The black curves correspond to the median plane (z = 0).

A number of peculiar features in the radial dependence of the amplitudes should be
noted when comparing the experimental amplitude pro�les, Fig. 4.6, with the ones
obtained for the model axisymmetric squirmer in an unbounded geometry (i.e. without
taking into account the in
uence of the wall) as shown on Fig. 4.7. While for the
unbounded squirmer, the amplitude� 0

� always presents a minimum, we observe in the
experimental data that this minimum turns into a maximum when moving towards the
upper hemisphere of the droplet. Similarly, the experimental amplitude� 1

� displays a
negative minimum in the upper part of the droplet, where the squirmer model only
presents a positive maximum; experimentally,� 1

� further presents a minimum in the
upper part of the droplet while this quantity is monotonously increasing in the squirmer
case. Finally, regarding the quadrupolar symmetry, the experimental measurements
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Figure 4.7: Flow �eld created by a squirmer in the unbounded case : amplitude
of the monopolar (left), dipolar (middle) and quadrupolar (right) symmetries of the
velocities u� (top) and u� (bottom), as given by Eqs. (4.14){(4.18). The z-planes are
color coded according to the legend on the right; same color code as in the main text.
The z > 0 and z < 0 pro�les superimpose. The coe�cients� = 1

2 and � = � 1
3 � are

given by the boundary condition at the interface of the droplet.� is free and arbitrarily
set to � = 0:3.

for � 2
� appear essentially similar to that of the unbounded squirmer, but� 2

� presents
a systematic negative minimum for allz in the droplet case, while it is monotonically
decreasing and positive in the case of the unbounded squirmer. Altogether, one sees
that the 
ow �eld around the droplet is, as expected, strongly a�ected by the presence
of the wall, and is therefore poorly accounted for by an unbounded squirmer model.
It is also by far more complex than the naive intuition one could develop from an
observation limited to the median plane.

4.2.3.2 Axisymmetric squirmer on a wall

The squirmer model considered is that introduced in the previous subsection. The
presence of a no-slip in�nite plane wall imposes a vanishing 
ow velocityu = 0 at
the wall. The methods of images followed here consists of introducing singularities at
the mirror position of the swimmer with respect to the wall, such that the 
ow �eld,
obtained from the superposition of the original and image singularities, satis�es the no
slip condition at the wall exactly.

The appropriate singularities have been identi�ed for a source monopole, a source
dipole or a point force in the classical work of Blake and Chwang [130]. Spagnolie and
Lauga [93] recently computed the image systems of higher order singularities including
the Stokes dipole. The image 
ow �eld for the source quadrupole has been obtained
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Figure 4.8: Model 
ow �eld in the one-wall geometry: Top: u� and u� in the me-
dian plane, computed from the �rst singularities and their image systems, Eq. (4.19),
using the value of� , � and � obtained from the experimental data. A: Monopolar
symmetry generated by the original Stokes dipole and the original source quadrupole.
B: Dipolar symmetry generated by the source dipole C: Quadrupolar symmetry gen-
erated by the Stokes dipole and the source quadrupole D: Total 
ow �eld generated
by the �rst singularities: sum of A, B and C. The color-scale codes for the amplitude
of the velocity. Bottom: Corresponding amplitudes� n

� (�; z ) and � n
� (�; z ), of the �rst

three modes (n = 0; 1; 2) as a function of the radial coordinate� for di�erent z.
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similarly by S�ebastien Michelin as part of this work. The general method consists
again of using the fact that derivatives of the source or force singularities produce other
higher-order singularity solutions of the Stokes equations: deriving the known images
of lowest order singularities, one obtains the images of the higher order singularities of
interest u �

sd(r ); u �
sq(r ) and u �

fd (r ). The 
ow �eld in the presence of the wall then simply
reads:

u � (r ) = � u �
sd(r ) + � u �

sq(r ) + � u �
fd (r ): (4.19)

Note that these solutions of the Stokes equations do not satisfy the boundary conditions
at the interface of the droplet, so that� , � and � are now unknown. We then want to
compute the vectorial expressions of the so-obtained 
ow �elds. We still use a set of
axes centered on the sphere's center.ez is a unit vector along the vertical axis andh is
the distance between the center of the swimmer and the wall. Image singularities are
thus positioned at a pointX = � hez below the wall, and we noter the position of the
observation point (where the 
ow is evaluated) with respect to the sphere's center and
R = r + 2hez the position of the same point with respect to the position of the image
system. For each singularity, which leads to a velocity �eldu i in unbounded 
ow, we
denote byu �

i the corresponding 
ow �eld near a wall (i.e. including both the original
singularity and the e�ect of its image system). This 
ow �eld is obtained for a point
source or point force as [130]:

u �
s(r ) =

Original source
z}|{

r
r 3

+

Image source
z}|{
R
R3

�

stressletz }| {

2
�

R
R3

�
3R(R � ez)2

R5

�
+

source dipole
z }| {

2h
�

ez

R3
�

3(R � ez)R
R5

�
;

(4.20)

u �
f (r ) =

Original stokeslet
z }| {
e
r

+
(e � r )r

r 3
�

Image Stokeslet
z }| {
e
R

�
(e � R)R

R3
+

source dipole
z }| {
2h2e
R3

�
6h2(e � R)R

R5

+

stressletz }| {
2h(e � R)ez

R3
+

6h(R � ez)(e � R)R
R5

�
2h(ez � R)e

R3
: (4.21)

In our model, the singularities used in Eq. (4.19) are all parallel to the wall. The

ow �eld generated by higher order singularities is thus obtained by taking successive
gradients of the 
ow �eld generated by a point force or point source singularity. As
an example, the 
ow �eld u �

sd, generated by the source dipole singularityusd in the
presence of a no-slip wall, is obtained by taking the gradient of the 
ow �eldu �

s,
generated by a source monopole singularity and project it one. The method applies
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iteratively to obtain the 
ow �elds generated by higher-order singularities:

u �
sd(r ) = � [r u �

s] � e

= �
e
r 3

+
3(e � r )r

r 5
+

e
R3

�
3(e � R)R

R5
� 6(R � ez)(R � ez � h)

�
e

R5
�

5(R � e)R
R7

�

+
6h(R � e)ez

R5
; (4.22)

u �
sq(r ) = � [r u �

sd] � e

=
15(r � e)2r

r 7
�

3r
r 5

�
6(r � e)e

r 5
�

15(R � e)2R
R7

+
3R
R5

+
6(R � e)e

R5

+ 30h(R � ez � h)(R � ez)
�

7(R � e)2R
R9

�
2(R � e)e

R7
�

R
R7

�
�

6hez

R5
+

30h(R � e)2ez

R7
;

(4.23)

u �
fd (r ) = �

�
r u �

f

�
� e

= �
r
r 3

+
3(e � r )2r

r 5
+

R
R3

�
3(e � R)2R

R5
�

6h(R � ez � h)R
R5

�
12h(R � ez � h)(e � R)e

R5

+
30h(e � R)2(R � ez � h)R

R7
�

2hez

R3
+

6h(R � e)2ez

R5
: (4.24)

These velocity �elds are then projected along the axes of the cylindrical coordinate
systems, using thatR = (2 h + z)ez + � e� , R � e = r � e = �� and R � ez = 2h + z:

u�
sd;� (�; � ) =

�
�

1
r 3

+
1

R3
� 3� 2

�
1

R5
�

1
r 5

�
� 6(h + z)(2h + z)

�
1

R5
�

5� 2

R7

��
L1(� );

(4.25)

u�
sd;� (�; � ) =

�
�

1
r 3

+
1

R3
�

6(2h + z)(h + z)
R5

�
L1

1(� ); (4.26)

and

u�
sq;� (�; � ) =

�
10� 3

r 7
�

4�
r 5

�
10� 3
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4�
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Finally, we obtain the amplitudes by projection onto the Legendre polynomials:
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In order to compare quantitatively the experimental 
ow �elds and the predictions of
the above squirmer model, the coe�cients�; � and � are extracted from the experi-
mental data as follows. The dipolar symmetry of the 
ow �eld arises from the source
dipole only, while the monopolar and quadrupolar symmetries of the 
ow �eld result
from both the Stokes dipole and source quadrupole:� is thus obtained by minimiz-
ing



k(� � 1

� )2k + k(� � 1
� )2k

�
, wherehk� � ki denotes the average over the experimental

realizations of theL2-norm of the di�erence between the amplitudes� (�; z ) measured
experimentally and computed analytically. Similarly� and � are obtained by minimiz-
ing



k(� � 2

� )2k + k(� � 2
� )2k

�
. We thereby obtain � = 0:35, � = � 0:08 and � = 0:34.

This method is quite robust as for repeating the experiment for di�erent droplets of
radius of 60 and 70� m, we obtain very similar values with interval � 0:05. The 
ow
�elds and pro�les are displayed on Fig. 4.8.

A remarkable feature is that the images of the �rst order singularities do induce a
monopolar symmetry even in the median plane. This monopolar symmetry is however
much weaker than in the experimental case, and does not contribute signi�cantly to the
reconstructed 
ow �eld at odd with the experimental observation. A closer look at the
amplitude pro�les on Fig. 4.8 (bottom) also reveals that the monopolar symmetry does
not have the proper dependence inz: the monopolar symmetry of the experimental

ow is strongest in the median plane, while it is found in this model to be largest above
the droplet.

In contrast, the dipolar and quadrupolar symmetries to the experimentally-measured

ow (Fig. 4.6) are surprisingly well described by this simple model (Fig. 4.8), especially
for the latter. The asymmetry of the 
ow with respect to the median plane is properly
captured, and the radial dependence of the amplitudes are also well described. This
is particularly well illustrated by the non-trivial dependence onz of the amplitude
and position of the maximum of� 2

� (�; z ) and of the minimum in � 2
� (�; z ) (Fig. 4.9).

As far as the quadrupolar symmetry is concerned, the model predictions, together
with the extraction of the parameters� and � from the experimental data, perfectly
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Figure 4.9: Comparison between the characteristics of the experimental
(dots) and theoretical (straight lines) velocities in the one-wall geometry:
Evolution with z of the amplitude at � = 1 (blue), of the extremum (red) and of the
extremum's position (green) of the monopolar symmetry (left), the dipolar symme-
try (middle) and the quadrupolar symmetry (right) of the velocities u� (top) and u�

(bottom).

describes the experimental 
ow �eld. More speci�cally � 2
� has a local maximum,

the position of which, varies in a non-trivial way with z, which is well captured by
the model. Similarly, the amplitude and position of the local minimum of� 2

� are
well reproduced. The amplitudes of the dipolar symmetry are also well captured,
despite some exceptions. The magnitude of the azimuthal amplitude� 1

� is slightly
underestimated by the model. Also, experimentally,� 1

� presents a local minimum that
becomes negative close to� = 1 and for z > 0:7, while the model predicts a negative
value at � = 1 for z > 1, but no local minimum. Finally, � 1

� presents a local maximum
close to� = 1 in experiments, that is not predicted by the theory.

In summary, the axisymmetric squirmer model presented above predicts very well the
behaviour of the quadrupolar symmetry of the experimental 
ow �eld, captures the
amplitude of the dipolar symmetry but not the details of the amplitude pro�les very
close to the droplet, and fails to describe the monopolar symmetry observed experimen-
tally. Given the oversimpli�ed nature of the model, it is already amazing that so many
key features of the real 
ow are captured. For instance the fact that the amplitude
pro�les very close to � = 1 are not so well captured can easily be understood given
that the method of images does not guarantee the boundary conditions at the swimmer
interface. The main limitation of the present description lies in its failure to describe
properly the monopolar symmetry of the 
ow observed in the experiments. This is
all the more problematic since this contribution to the 
ow �eld is also observed to
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dominate at long range and therefore is expected to control the interactions with other
swimmers: when this monopolar symmetry is present, it dominates the Stokes dipole
signature of the droplet, thereby rendering the common description of microswimmers
in terms of pusher/ puller inadequate.

4.2.3.3 Origin of the monopolar symmetry of the 
ow

It should �rst be stressed that the monopolar symmetry of the 
ow cannot be explained
by including higher order terms of the multipole expansion describing axisymmetric
swimmers: although such terms do indeed contribute to a monopolar symmetry of the

ow when expressed in cylindrical coordinates, their radial dependence decreases faster
and faster with � and is therefore unable to explain a dominant monopolar symmetry
at large distance. One must therefore look for the origin of the monopolar symmetry
of the 
ow in low-order singularities. The point source singularity is the most natural
candidate, especially given that the swimming mechanism of the droplet involves a
water 
ux through the swelling of the micelles in the oil phase. This 
ux is however of
microscopic nature and much too weak to account for a signi�cant hydrodynamic 
ow.

To make further progress, one should realize that the slip velocity at the swimmer
boundary is unlikely to remain axisymmetric with respect to the direction of motion,
as implicitly assumed in the squirmer description presented above. This can be under-
stood easily in the case of phoretic swimmers, as the concentration gradients at the
surface (and resulting slip velocity) are likely altered by the presence of the wall. In
the present case, where the swimming mechanism results from the non-linear advective
coupling of the concentration and hydrodynamic �elds, one expects an even stronger
e�ect of the wall.

Figure 4.10: The monopolar symmetry: Amplitude of the monopolar symmetry
of the 
ow �eld measured experimental (left), and computed in the case of a non-
axisymmetric squirmer close to a wall, for which phoretic 
ows develop perpendicular
to the wall, while the swimmer is held by gravity (right).

The full description of the coupled hydrodynamics and concentration �elds, when swim-
ming close to a wall is beyond the scope of the present work. Yet, as a �rst step in this
direction, we may include a �rst correction to the axisymmetric assumption resulting
from an increase of the concentration near the wall, simply because of con�nement
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between the wall and droplet surface [131]. This in turn generates vertical concentra-
tion gradients along the surface of the droplet, promoting its motion away from the
wall [132]. The droplet being denser than the surrounding 
uid, it is held vertically in
place by buoyancy e�ects, and acts as a phoretic pump in the direction orthogonal to
the wall. In this case it is no longer force-free, and a vertical point force should therefore
be added. The key point to notice here is that this singularity gives rise to a 
ow with
a dipolar symmetry in the direction orthogonal to the wall but displays a monopolar
symmetry if observed in planesparallel to the swimming direction. We also notice that
the amplitude pro�les of the monopolar symmetry are non-monotonous. This suggests
that more than one singularity should be considered. We thus also include the source
dipole perpendicular to the wall.

The 
ow �elds produced by the vertical point force and source dipole in the presence of
the wall are again computed using the methods of images. They write in vector form:
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and in cylindrical coordinates:
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The symmetry of these contribution of these two singularities is purely monopolar in
this cylindrical base. If we note� the coe�cients of the perpendicular point force, and�
the amplitude of the perpendicular source dipole, then the amplitude of the monopolar
symmetry to the 
ow �eld, taking into account all previous singularities close to a wall
is:
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The contribution of these two singularities in planes parallel to the wall has a purely
monopolar symmetry, so that they only contribute to the amplitude� 0

� (�; � ), with-
out altering the higher-order angular amplitudes. The amplitude of the monopolar
symmetry � 0

� (�; � ) now depends on four coe�cients: �; �; � and � the magnitudes of
the parallel source quadrupole,u �

sq, the parallel stokes dipoleu �
fd , the perpendicular

point force u �
pf; ? and the perpendicular source dipoleu �

sd;? , respectively. � and � have
already been determined from the experimental data using the higher order singular-
ities, and thus equal to the values computed in the previous subsection.� and � are
obtained by minimizing



k(� � 0

� )2k
�
. The resulting amplitude pro�les are provided on

Fig. 4.10, together with the experimental pro�les. Including the contribution of the
vertical singularities resulting from con�nement of the concentration �eld is observed
to capture very well the key trends observed experimentally.

4.2.4 E�ect of two walls on the 
ow �eld

We �nally consider the two-wall geometry with the water droplet performing a steady
linear motion between a top and a bottom walls separated by typically one droplet
diameter. In this case one cannot use the method of images as it would result in an in-
�nite set of images with respect to the two walls. Such a method is only tractable when
looking at the 
ow �eld far from the droplet in the horizontal direction [133, 52, 91]. In
this double-con�nement geometry, there is therefore little hope to derive analytical ex-
pressions for the 
ow �eld close to the droplet even within very simple approximations.
Yet, as we shall see below, it remains of interest to discuss the qualitative di�erence
with the case of one wall con�nement, from the purely experimental point of view.

The experimental results are summarized on Fig. 4.11, in the same way as for the one
wall geometry. We �rst note (top panel) that, here also, the 
ow �eld reconstructed
from the decomposition on the �rst three hydrodynamic multipoles conveys all the
experimental signal. As in the one-wall case, the radial component of the 
ow �eld
presents a monopolar symmetry. However, this monopolar symmetry is here small com-
pared to the one-wall case, and does not dominate at long range. A natural explanation
is that the e�ect of the vertical force singularity, which dominates at large distance in
the one-wall case, is exponentially screened in the far-�eld in double con�nement [133].
The contribution to the 
ow �eld are thus mainly dipolar and quadrupolar symmetries.

The in
uence of the wall is further characterized by considering the 
ow �eld symme-
tries, observed at di�erent distances from the wall (see the middle panel of Fig. 4.11).
The main observation is that the 
ow �eld is strongly asymmetric with respect to the
median plane (asymmetry inz), despite the approximate top-down symmetry of the
problem. This asymmetry is however not found on all modes. This is best observed on
the amplitude pro�les displayed on the bottom panel. In the case of the radial com-
ponent, the dipolar and quadrupolar symmetries are dominant in the median plane,
while on the contrary the monopolar symmetry dominates close to the walls. This
monopolar symmetry is positive at the bottom wall and negative at the top wall. It
is thus the main contributor to the 
ow �eld asymmetry. The azimuthal component,
dominated by a dipolar symmetry, does not present such an asymmetry inz. There
is an asymmetry carried by the azimuthal quadrupolar symmetry, but the latter being
very weak, it does not a�ect qualitatively the 
ow �eld. Altogether the monopolar
symmetry is by itself responsible for the observed asymmetry of the 
ow �eld. Since
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Figure 4.11: Experimental 
ow �eld in the two-walls geometry: Caption next
page.
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Caption of Fig. 4.11 Top: u� and u� in the median plane. A. Experimental 
ow �eld.
B. Monopolar symmetry i.e projection ontoL0. C. Dipolar symmetry, i.e. projection
onto L1 and L1

1. D. Quadrupolar symmetry, i.e. projection ontoL2 and L1
2. E.

Reconstruction from only the three �rst symmetries, i.e. sum of B, C and D. Middle:
u� (top) and u� (bottom) for z = � 0:6, z = � 0:3, z = 0; z = 0:3 ; z = 0:6 (same color
code as above). Bottom: Amplitudes� n

� (�; z ) and � n
� (�; z ), of the �rst three modes

(n = 0; 1; 2) as a function of the radial coordinate� for di�erent z.

we never observe the reverse solution with a positive, respectively negative, monopolar
symmetry at the bottom, respectively top, wall, we conclude that the symmetry is not
spontaneously broken but induced by the gravity and the density mismatch between
the water droplet and the surrounding oil phase.

Summary

In summary, in this chapter, we presented the kinetics of droplets swimming close
to a wall, and highlited how the droplet size, the nature of the bottom wall and the
con�nement all played a role in two characteristics value of the droplet steady state,
its steady velocity V and its shrinking rate � .

Then, we presented �rst-of-a-kind measurements of the 3D 
ow �eld produced by a
swimming water droplet using PIV method and confocal microscopy in two di�erent
con�gurations, namely that of a droplet swimming parallel and close to a single con�n-
ing boundary (bottom wall), and that of a doubly-con�ned droplet swimming between
and close to two parallel walls. In the one wall case, a simpli�ed description of the
swimming droplet was proposed as the superposition of (i) the few �rst axisymmetric
viscous and potential singularities (and their image system), accounting for the swim-
ming motion along the wall and (ii) a vertical point force and source dipole (and their
image system), accounting for the pumping 
ow resulting from the top-down asym-
metric modi�cation of the chemical environment of the droplet by the con�ning wall.
This model was observed to provide a very good description of the 
ow �eld around
the droplet, with the swimming-induced singularities (i.e. parallel to the wall) able to
reproduce accurately the quadrupolar and dipolar symmetries of the 
ow �eld, while
the normal singularities associated with the pumping 
ow was further able to capture
the monopolar symmetry signature of the 
ow �eld generated by the droplet. Adding
this second contribution was shown to be critical to e�ectively capture the dominant

ow �eld far from the droplet, which drives its interactions with its neighbors and
environment.

The surprisingly good quality of this description is rooted in the possibility of super-
imposing the singularities parallel to and orthogonal to the wall, which in turn comes
from the linearity of the Stokes equation. This is only valid in the steady state, where
the slip velocity at the interface of the swimmer are, by de�nition, constant. If one were
to solve the dynamics of the swimmer, say when approaching the wall with some angle,
then the slip velocity at the interface of the swimmer would couple to the hydrody-
namics through the concentration �eld, making the problem truly non-linear. Solving
for the swimmer trajectory using a quasi-static approximation is a promising route for
future work.
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Another interesting perspective would be to consider interactions between two con-
�ned swimming droplets. One infers from the present results that the long distance
interaction between two droplets swimming at the wall is dominated by the monopolar
symmetry, which is attractive. When the interacting droplets get closer, the quadrupo-
lar symmetry eventually dominates so that, at short enough distance, one recovers the
usual pusher/puller quali�cation and resulting dynamics.

Finally, in the case of con�nement between two walls, we observe an asymmetry with
respect to the median plane, and again a monopolar symmetry, which indicates that
the gravity cannot be neglected, as one could have thought at �rst sight. The con�ne-
ment, in this case, imposes that the 
ows pumped by the swimmer must be evacuated
laterally, inducing a recirculation at the scale of the droplet.
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Chapter 5
Swimming in 1D

Motivation

The main possible application of pure water swimming droplets is their use in
micro
uidic channels as active components able to independently perform work
(transport, local 
ux, mixing...). More generally, it might be very interesting to
use micro-swimmers in micro-channels, as the con�nement is a way to steer their
motion [134]. Yet, very few studies [45] have been done in order to understand the
e�ect of such con�nement on the swimmer, while some theoretical work on weakly
con�ned squirmers in tube [135, 136], showing in particular that pushers, pullers and
neutral swimmers behave very di�erently.

In a 1D micro
uidic devices, a droplet is essentially able to swim in one dimension,
con�ned by the walls of the micro
uidic channels. However, it is not obvious that such
droplets are able to swim when they are highly con�ned. Indeed, in order to swim,
the droplets need to advect the external 
uid through the space between the wall of
the channel and their interface. For droplet smaller than the channel height (a < h ),
Fig. 5.1-top, one may imagine that this space is still enough to allow the droplet to
swim, but as the droplet size gets closer to the channel height, or even larger (then the
droplet deforms and takes an elongated shape), Fig. 5.1-bottom, it is not obvious that
the droplet is still able to swim. This may also depend on the shape of the channel: if
the channel has a square section (Fig. 5.1-left), then the corners of the channel provide
some space for the advection of the 
uid; however if the channel has a circular section,
Fig. 5.1-right, then the only space left for the outer 
uid to pass is the lubrication layer
between the droplet interface and the channel wall.

In this chapter, we present �rst-of-a-kind investigations on and characterizations of
the swimming behaviour of droplets weakly to strongly con�ned in 1D channels, using
square (section 5.1) and cylindrical (section 5.2) glass capillaries. Then we play with
some more exotic geometries, such as stretched cylindrical capillaries (section 5.3),
or square channels with some sharp constriction - i.e. a jump in the channel width
(section 5.4). Finally, we introduce a theoretical framework in order to understand the
observed experimental phenomena.
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Figure 5.1: Typical section view of droplets in capillary: top : droplet smaller
than the capillary height. Bottom : droplet equal to or larger than the capillary height.
Left : Section of square capillaries.Right : Section of cylindrical capillaries.

Experimental realization

1D geometries

We are going to use four di�erent 1D geometries:

Square capillaries: we use square glass capillaries of length 5 cm, and of four dif-
ferent inner dimensions: 2h = 400 � m, 2h = 200 � m, 2h = 100 � m and 2h = 80 � m. h
is de�ned as half the inner dimension of the capillary, and will be compared toa, the
radius of the droplet for spherical droplets, and the half-length for elongated droplets.
The capillaries are either used native, or silanized beforehand, using the silanization
protocol described in section (3.2.2.2).

Cylindrical capillaries: we use cylindrical glass capillaries of length 10 cm, and
of two di�erent inner dimensions: 2h = 200 � m and 2h = 100 � m. The cylindrical
capillaries are systematically silanized1 using the protocol described in section (3.2.2.2).

A special care should be taken for the visualization through cylindrical capillaries.
Because of their shape, the light is di�racted through the capillary, and the �nal image
is deformed. To address this problem, one usually immerses non planar interfaces into
a liquid with the same refractive index as glass (rglass = 1:52), to make the glass iso-
index liquid interface optically invisible. In our case, we should be careful not to let the
iso-index liquid enter inside the capillary, which is open at both ends. In particular, we
had to be careful (i) to put the capillary in the iso-index liquid from the top, letting
both ends out of the iso-index liquid, and (ii) not to let the iso-index liquid reaches
one end of the capillary by capillarity (which would happen for instance if the capillary

1In not-silanized cylindrical capillaries, the droplets stick to the wall, which does not necessarily
prevents them from "swimming" - some wetting droplets have been observed to move - but would
drastically changes the physics at play.
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was simply put on a glass slide, creating a small space between the capillary and the
slice through which the iso-index liquid can advance by capillarity). The device used is

Figure 5.2: Device for imaging through cylindrical capillaries: (1) Front view
and (2) side view of the device used to immerse a cylindrical capillary in glycerol. The
cylindrical capillary (a) �lled with the oil solution is placed inside a cavity �lled with
glycerol, constituted of a bottom glass slide (b) and a top glass coverslip (c) spaced by
two square capillaries (d) glued to the glass slide using NOA epoxy glue (f). To avoid
that the glycerol enters the cylindrical capillary, it is elevated using a small PDMS
piece (e): then the two ends of the capillary hang in the air.

shown in Fig. 5.2: the two ends of the capillary hang in the air. The iso-index liquid we
chose is glycerol (rglycerol = 1:47): although its index does not match perfectly the one
of glass, it was observed to be good enough for visualization, and it has the advantage
of being water soluble, thus easily washable, and not expensive.

Stretched cylindrical capillaries: at some point, we wanted to try making droplets
in conical capillaries, in order to have anincreasing con�nement. The simplest and
most e�cient method 2 we found out was to use a lighter: holding the capillary on one
side, and adding a small weight (a glass slide) on the other side, we approach very
slowly the vertical capillary with the lighter until it starts to elongate. This is a really
handcrafted method, but it gives exactly the wanted result: ah = 100 � m capillary
stretched on around 1 cm, with the smallest radius being of the order of 10� m. The
silanization of these stretched capillaries is done after the elongation (in order to not
"elongate the surface properties").

Square channels with a sharp constriction: we cannot easily design a sharp
constriction using glass capillaries, thus we design these constrictions in PDMS using
a soft lithography process, with a mask such as the one sketched in Fig. 5.4. An inner
channel is linked to an outer channel through a sharp change of width (the typical
length transition is 20 � m << h in ). The inlet channel has a square section with

2To pull a capillary of 1 mm outer diameter, one usually uses a Needle Pipette Pullers (KopfR


Model 720), which allows to make very well controlled needle of controlled length and diameter.
However, these apparatuses are calibrated for 1 mm capillary, and we had a very hard time obtaining
a long and large elongation with our 200� m inner diameter capillaries.
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Figure 5.3: Design of the set up dedicated to the stretching of cylindrical
capillary: (1) set up: the capillary (a) is attached at each end to two glass slides (b)
and (c) with sticky pastes (d). One glass slide (b) is attached to a holder (e), while the
other (c) is left hanging to act as a small weight. A lighter (f) is approached to locally
heat the capillary, and removed as soon as the capillary starts stretching. (2) Images
of a stretched cylindrical capillaries of initial radiush, and minimum radius hmin .

win = hin = 100 � m, and the outlet channel has a rectangular one, with the same
height as the inlet channel, but a di�erent width wout . Several channels are made with
di�erent wout , from 10 � m to 200 � m, per step of 10� m. Before use, the channels
are �lled with the oil solution, and apart from the inlet and outlet, covered by a glass
coverslip. The water �lled needle used to make the droplet is inserted through the left
opened inlet.

Conducting an experiment

Except where indicated otherwise, all following acquisitions are performed under the
macroscope (section 3.3.1.1). The droplets are made one at a time, using the femtojet
apparatus (section 3.2.2). The discrete phase (water with 15% wt NaCl) �lled needle
is inserted inside one end of the capillary (or one end of the channel), as illustrated
in Fig. 5.5, and one droplet is produced. When the droplet attains the desired size,
a small kick is given through the needle. The droplet detaches and starts swimming.
Statistically, the droplet swims away from the needle (the presence of the needle, or
the way the droplet is produced breaks the front-back symmetry of the droplet). From
time to time, the droplet swims towards the air interface, then bounces on it, swims

116



5.1. SQUARE CAPILLARY

Figure 5.4: Typical mask for designing square channel with a sharp constric-
tion : The resulting inlet channel has a square section withwin = hin = 100 � m, and
the outlet channel has a rectangular one, with the same height as the inlet channel,
but a di�erent width wout .

back slowly on its trail, and eventually passes the point where it was formed and starts
swimming normally.

Figure 5.5: Insertion of a needle in a capillary: (1) the needle �lled with the water
phase is placed in front of the capillary, (2) and then inserted so that the tip is typically
200 � m away from the air interface. (3) the pressure is risen at the other end of the
needle, and a droplet starts forming. (4) When the droplet attains the desired size,
the pressure is cut and the needle simultaneously drawn quickly out of the capillary so
that the droplet detaches.

5.1 Square capillary

Micro
uidic channels usually have a square like section. We �rst study the behaviour
and swimming velocity of a swimming droplet in square glass capillaries, then we look
at the 
ow �eld around the droplets, and we �nally focus on the interaction between
two droplets in this geometry.

5.1.1 Swimming behaviour

5.1.1.1 Typical trajectories

We made several experiments of one unique water droplet with 15% NaCl in square
capillaries of height 2h �lled with a solution of 25 mM mono-olein in squalane. We vary
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Figure 5.6: Images of droplets swimming in a square capillaries of half-height
h = 100 � m: (a) droplet smaller than the capillary height a

h ' 1
2 . (b) droplet of the

size of the capillary a
h ' 1. (c) droplet longer than the capillary height L

2h ' 7.

(1) the droplet size, from small round droplets of radiusa = 30 � m (Fig. 5.6(a)), passing
by droplets having exactly the size of the channela = h (Fig. 5.6(b)), to elongated
ones of length3 much longer than the capillary heightL = 1700 � m (Fig. 5.6(c)), and
(2) the capillary height h (de�ned as half the inner dimension of the capillary),h =
40, 50 100 or 200� m. We saw in the previous section that the hydrophobicity of the
walls may have an in
uence on the swimming, so we also useh = 100 � m silanized
capillaries for comparison. All these droplets are observed to swim, even the longest
ones. Typical trajectories are provided in Fig. 5.7, together with the corresponding
velocities in the capillary direction, and the size of the droplet as a function of time
(for spherical droplets, the sizeL = 2a is the diameter, and for long droplet,L is the
droplets length). The droplet has the size of the capillary whena = h. The droplets
take an elongated shape whena > h . Very small droplets (a < h

3 , not shown here)
behave almost like in 3D: they have a random direction and are able to turn back in the
channel. Droplet smaller than the capillary height but bigger than the previous ones
( a

3 < a < h ) are observed to oscillate between the two sides of the capillary with a net
motion in one direction of the capillary, and a velocity that decreases before colliding
with a wall, and increases after that, and thus varying a lot with time. Droplets of the
same size or larger than the capillary height (L > 2h) are observed to swim straight,
with a constant velocity. Note that the size of the droplets does not change signi�cantly
on the experiment timescale.

5.1.1.2 Velocity of the droplets

For each experiment, we measure the average velocity over the trajectory in the direc-
tion of the capillary, V , and we plot it as a function of the length of the dropletL,
rescaled by the capillary height 2h, which we call the con�nement L

2h . A con�nement
L
2h = 1 corresponds to a spherical droplet of the size of the capillary. For small droplets,
we measure only the maximum velocity during the oscillations, which corresponds to
the time when the droplet is the furthest from the wall. The results are displayed on
Fig. 5.8.

3The length of the droplet L can also be de�ned for spherical droplets, it is then equal to 2a.
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5.1. SQUARE CAPILLARY

Figure 5.7: Typical behaviour of droplets of di�erent sizes in a 100� m square capillary.
Top: Trajectories of the droplets. Middle: Velocity in the direction of the capillary
versus time. Bottom: Length of the droplet versus time. One color corresponds to
one droplet: orange for a round droplet of radiusa = 70 � m < h , bright red for a
round droplet of radius a = 100 � m = h and dark red for an elongated droplet of
length a = 150 � m > h .

Figure 5.8: Velocity of droplets,V , swimming in square capillaries as a function on the
con�nement L

2h , for di�erent capillary heights h. The error bars represent the standard
deviation to the average value in time of the velocity during an experiment - limited
for the small droplets to the maximum velocity during the oscillations.
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We observe that the data collapse on one curve: the velocity depends only on the
con�nement L

2h . Furthermore, the silanization of theh = 100 � m capillaries do not
a�ect the velocity. The velocity strongly decreases with the con�nement forLh > 2
(round droplet). We distinguish three behaviours, depending on the con�nement:

(i) L
2h < 1: small droplets have a 2D (or even 3D) motion. For not too small droplets,
this motion is persistent in the direction of the capillaryx, and oscillates between
the two walls in the perpendicular directiony, with an almost periodic behaviour.
Similarly, the velocity oscillates between a smaller value at the wall (not neces-
sarily zero), and a maximum value between the two walls. The velocity that the
droplet reaches between the two walls is most likely not its active velocity that it
would reach in a steady regime, but a compromise between how much the droplet
can tend toward this active velocity before starting to feel the other wall. This
explains the large disparity in the velocity observed for small con�nement (see
below for more detailed description).

(ii) 1 < L
2h < 2: The droplet has a straight trajectory in one persistent direction.

The velocity decreases a lot with the increasing con�nement. ForL > 2h, the
droplet is not spherical anymore, and takes an elongated shape.

(iii) 2 < L
2h : The droplet has a straight trajectory in one persistent direction. Even

very long droplets swim. The velocity of the droplet has a constant valueVlim = 5
� m/s which does not depend on the con�nement anymore. Because the square
capillary geometry is not a very easy geometry to deal with analytically (no axi-
symmetry...), we then investigate this phenomenon in more details in the next
section, using cylindrical capillaries.

5.1.1.3 Discussion on the small droplets a
h < 1

The behaviour of small droplets in a tube is far from trivial. While physico-chemical
interactions tend to move droplets away from walls, purely hydrodynamic interactions
for pushers in 3D lead to an alignment with wall. In more con�ned geometries such
as a tube, it has been shown [120, 137] that a pusher would oscillate in the tube,
but eventually becomes trapped to the wall, and reaches a stationary state where the
pusher has a circular motion along the tube wall, without any net motion in the tube
direction. Recall here that the description in terms of pusher is anyhow not correct
as stressed in chapter (4). These two e�ects oppose each other. Experimentally, we
observe that droplets smaller than the capillary height oscillate between the two side
walls of the square capillary. In the absence of more complete theoretical framework,
we are interested in what the experimental observations can teach us on the system.

Here we study succinctly the experimental behaviour of small swimming droplets in
square capillaries. A deeper analysis has been put on hold for now4.

Fig. 5.9 shows the trajectory of the small droplets for the two largest capillary sizes (top:
h = 100 � m, bottom: h = 200 � m), in which it is easier to decrease the con�nement.

4A collaboration is in project to further explore the problem, with the LiPhy Grenoble laboratory
to simulate small droplets in a con�ning 2D or 3D channels, and with the Laboratory of Dissipative
and Biological Physics of Kyoto University to conduct complementary experiments.
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5.1. SQUARE CAPILLARY

Figure 5.9: Oscillation of the center of mass of small droplets in square capillaries of
h = 100 � m (top), and h = 200 � m (bottom), for di�erent con�nements (blue=low
con�nement ; red=strong con�nement). We observe a period which depends on the
con�nement.

Figure 5.10:Rescaled variable over two periods: Evolution of di�erent quantities
for several droplets (color) as a function of the time rescaled on the periodT, for two
periods of oscillation. (a) thex coordinate (position in the direction of the capillary
axis) rescaled by the wavelengthxT . (b) the velocity in the direction of the capillary
Vx rescaled by the characteristic velocityhVx i . (c) the y coordinate (position in the
direction perpendicular to the capillary axis) rescaled by the orthogonal distance cov-
ered 4(h � a). (d) the velocity in the direction perpendicular to the capillary axisVy

rescaled by the characteristic velocityhVy i .
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Trajectories of droplets of di�erent sizes have di�erent colors (red:a = h, dark blue:
a � h). The droplets are observed to oscillate periodically between the two side walls
(typically between � h+ a and h� a), and on a typical wavelengthxT (a; h), for a typical
period T, with a velocity V (t) = Vxex + Vyey (ex being the direction of the capillary).
No swimming in z (direction of the gravity) is observed. The shape of the trajectory
is not trivial. At the wall, (maximum and minimum of y), there is a discontinuity of
the velocity, which stands for a rapid change in orientation of the droplet. The typical
velocities, period and length are linked through trivial relations:

hVx i =
xT

T
; (5.1)

hVy i =
4(h � a)

T
: (5.2)

We can then rescale the quantitiest with the period T, x with the wavelength xT , y
with the height 4(h� a) (the droplet makes two round trips during one period),Vx with
the typical velocity hVx i , and Vy with the typical velocity hVy i . We then observe their
typical behaviour for di�erent con�nement over two periods, in Fig. 5.10. The rescaled
quantities have very similar behaviour. At the beginning of one cycle (maximum of
y), the droplet is at the wall. The velocity in the direction of the capillary Vx is
minimum, while the perpendicular velocityVy is zero: the droplet is almost immobile.
Then the droplet velocity increases rapidly while the droplet starts swimming in the
capillary direction, parallel to the wall (high Vx , low jVy j). The droplet slowly drifts
away from the wall (y decreases),Vx reaches a maximum and starts decreasing while
jVy j increases (not in a very regular fashion). Both velocities tend toward a constant
value in the middle of the capillary. Then when the droplets get closer to the other
wall, both Vx and jVy j drop rapidly, Vx to a small value andjVy j to zero at the second
wall, this corresponds to half a cycle. The exact same behaviour starts again, in the
same direction forx and in the opposite direction fory, toward the initial wall.

Figure 5.11:Period and wavelength of the oscillations of small droplets: Left
- Evolution of the wavelength of oscillationxT with increasing con�nement a

h . The
wavelength is averaged on all observed periods. Right - Evolution of the period of
oscillationT with increasing con�nement a

h . The period time is averaged on all observed
periods. The errors bars are the standard deviations.

The droplet never reaches a steady state between the two walls. It strongly depends
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on how much the droplet has the time to relax before reaching the other wall. But
this relaxation time is likely to be strongly dependent on the con�nement, making
di�cult further analysis in the absence of analytic or numeric support. Therefore,
we limit ourselves at characterizing the oscillation per the two quantitiesT and xT , in
Fig. 5.11, that are direct estimation of the average velocities, through the relations (5.1)
and (5.2).

5.1.2 Flow �eld in 1D

We also did PIV around droplets in 1D capillary. In the absence of theoretical frame-
work, the results are very descriptive. We present and describe succinctly the typical

ow �eld around droplets in square channels.

PIV in square glass capillaries?

In square glass capillaries, the tracers are observed to agglomerate at the back of the
droplet. The formation of such agglomerates is visible in Fig. 5.12-top. The presence

Figure 5.12: Formation of agglomerate of colloids in square capillaries: top -
formation of agglomerate of colloids in square glass capillaries: the agglomerate forms
at the back of the droplet, and detaches at some point, leaving a trail of tracer agglom-
erates behind the droplet. Bottom - formation of a wire like agglomerate of colloids in
a square NOA micro
uidic channel.

of these large agglomerates makes it di�cult to perform reliable PIV. We don't know
the origin of this behaviour. However, switching to NOA micro
uidic square channels
weakens this e�ect. More precisely, in NOA channel, the droplet leaves behind a wire
like agglomerate of colloids which doesn't disturb the PIV as much, which is visible in
Fig. 5.12-bottom.

PIV in square NOA micro
uidic channel
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We use the same PIV method than the one described in chapter (4), with the same
acquisition parameters, experimental conditions, and post-processing treatment, but
in square NOA micro
uidic channels of height 200� m (h = 100 � m). We make
droplets of di�erent sizes, and we present here the measurements for two droplets of
size L

2h = 0:9 (spherical droplet), in Fig. 5.13, andL
2h =1.2 (slightly elongated droplet),

in Fig. 5.14.

What about small droplets? We have not been able yet to obtain clean reliable
PIV around a small droplet bouncing in a NOA channel such as described in the
previous section for glass capillaries. The reason is mainly that because the small
droplets are not in a steady state, it is much more di�cult to average the 
ow �eld
around the droplet.

Medium droplet: Droplets of typically the size of the channel have a steady motion,
and thus it is possible to investigate the 
ow around the droplet in di�erent planes
in z, (Fig. 5.13). There is a lot of information in these 
ow �elds, and we don't have
yet any theoretical or analytical framework to compare these results to, so we restrict
ourselves at making some clear relevant descriptive statements.

� The outer 
uid is advected around the droplet in thex direction in the corners
of the square channel, mainly out of the median plane, close to the side wall in
the plane above the droplet: Fig. 5.13,zh = � 0:88, vx is negative (blue) in the
corners above the droplet.

� The far �eld is dominated by a 
ow pushed away from the droplet in the top
plane, and pulled toward the droplet in the bottom plane, both in the front
and at the back of the droplet. This is a strong indication of a re-circulation
of the 
ow in z, which is thus not symmetric with respect to the middle plane.
For droplets of the size or smaller than the capillary height, this re-circulation
is always observed to have the same direction (this bias might be due to the
buoyancy of the droplet).

� The droplet perturbs the outer 
uid on a typical distance of a few time its radius.

Large droplet: droplets longer than the capillary height also have a steady motion,
which allows us to do some PIV around them, in di�erent planes inz, in Fig. 5.14.
Once again, we try to extract a few clear statements:

� Much like for the medium size droplet, the outer 
uid is mostly advected around
the droplet close to the top wall, while there is much less 
ow in the median
plane of the droplet. This advection does not happen only in the corners, but
also in the lubrication layer separating the droplet from the top wall.

� The far �eld behaviour of the 
ow �eld is similar to the one for the spherical
droplet, although inverted: the outer 
uid is pulled toward the droplet in the top
plane, and pushed away from the droplet in the bottom plane.

� In the median plane, we observe lateral convection of the outer 
uid in the plane,
in front and behind the droplet.
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Figure 5.13:PIV in a square capillary - L = 2h: Componentsvx and vy of the 
ow
�eld in the plane (ex ,ey), at di�erent heights in the capillary. z=h = 0:88 corresponds
to a plane above the droplet, close to the top wall (z/h=1).z=h = � 0:02 corresponds
to the median plane. z=h = � 0:81 corresponds to a plane below the droplet, close to
the bottom wall (z/h=-1). The color-scale corresponds to the amplitude of the velocity
rescaled by the velocity of the droplet (red for positive, blue for negative and white for
zero). The arrows highlight the direction ofvx .

Figure 5.14:PIV in a square capillary - L > 2h: Componentsvx and vy of the 
ow
�eld in the plane (ex ,ey), at di�erent heights in the capillary. z=h = 0:98 corresponds
to a plane above the droplet, close to the top wall (z/h=1).z=h = � 0:14 corresponds
to the median plane. z=h = � 0:98 corresponds to a plane below the droplet, close to
the bottom wall (z/h=-1). The color-scale corresponds to the amplitude of the velocity
rescaled by the velocity of the droplet (red for positive, blue for negative and white for
zero). The arrows highlight the direction ofvx .
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Even though these results are still very descriptive, simple conclusions can still be made
from the previous considerations, especially for the case of the droplets of typically the
capillary size, which will be of use in chapter 6: the droplets in 1D disturb the outer 
ow
�eld on a distance of typically a few diameters, with repulsive long range behaviour.
The droplets move in a direction which is opposite to the one of the 
uid which bypass
them by the corners of the channel.

5.2 Cylindrical capillaries

Micro
uidic channels have generally a square-like section, which explains why we have
started our experiments by using square capillaries. However, from a theoretical point
of view, it is much easier to handle cylindrical capillaries, because of their cylindrical
symmetry. Thus we switched to cylindrical glass capillaries to try to understand
qualitatively and quantitatively the behaviour of the droplets observed in the previous
section (hoping to observe the same kind of behaviour). In cylindrical capillaries, the
droplets are much more eager to stick to the glass walls. To prevent this, we silanized
our capillaries. The observation of cylindrical capillaries is made as explained in the
experimental realization section. The experiments in this section have been conducted
with Saori Suda, a PhD student from the Laboratory of Dissipative and Biological
Physics of Kyoto University, during an internship at the Gulliver laboratory.

In this section, we �rst describe the formation of droplets in cylindrical capillaries; then
we characterize the shape of the droplets, which is non-trivial. Finally, we study the
swimming behaviour of the droplets.

5.2.1 Droplet formation

Unlike in the square capillary case, we were not able to produce droplets much longer
than L

2h > 5. Indeed, upon formation, long droplets have a tendency to destabilize
and divide into two parts (rarely three), and the division occurs at half the droplet
length, producing two droplets of equivalent size swimming in opposite directions. The
likelihood of such events increases with the droplet length, and the longest droplet we
could achieve has lengthL = 13h. An example of such a division is given in Fig. 5.15
for a droplet of length L

2h = 3:5. Note that passive droplets in such conditions are
stable - in the sense that they don't spontaneously divide (they are also likely to stick
to the glass).

As passive droplets don't spontaneously divide, this e�ect is not likely to be due to
a simple Rayleigh Plateau instability [138, 139]. We therefore suspect the activity
of the droplet to play a role. In particular, we observe that while breaking, the two
sides of the droplet go toward opposite directions, just like if the two sides were trying
to swim independently of each other. In the lubrication layer this means that the
outer 
uid is pulled from one cap to the center of the dropletL2 , where the outer 
uid
accumulate, pinching the droplet and creating a "neck", a region of minimum radius
of the cylindrical droplet. The Marangoni and phoretic e�ects give rise to 
ows that
go toward maximum surface tension area, thus toward maximum concentration of
swollen micelles area. Then the previous observation - the outer 
ow goes toward the

126



5.2. CYLINDRICAL CAPILLARIES

Figure 5.15: Evolution in time of a long droplet of L
2h = 3:5 in a h = 50 � m cylindrical

capillary which destabilizes right after its production: the droplet spontaneously divide
into two droplets that start swimming in opposite directions. Time frame is 1 s.

middle of the lubrication layer - would mean that there is a maximum of concentration
of swollen micelles in the middle of the lubrication layer. The breaking of the droplet
would then be a consequence of the formation of the neck due to the accumulation
of the outer 
uid in the middle of the lubrication layer. This phenomenon might
be stochastic (happening from time to time at the droplet formation because of
inhomogeneities in the concentration �eld) or systematic (always happening for long
droplets, as the result of a quanti�able physical phenomenon). This will be studied in
further details in section (5.3).

We made several experiments of one unique water droplet with 15% NaCl in a silanized
cylindrical glass capillary of heighth �lled with solution of 25 mM mono-olein in
squalane. We vary (1) the droplet size, from small round droplets, (Fig. 5.16(a)),
passing by droplets having the exact same size as the capillary, to elongated droplets,
(Fig. 5.16(c)) of length much longer than the capillary heightL = 13h, and (2) the
capillary height h = 50 or 100 � m. We observe that all droplets are swimming, with
a very similar behaviour than in a square capillary. One striking di�erence is that
the shape of long droplets is not trivial: in a square capillary, we observe straight
cylindrical elongated droplets ended by two spherical caps; in a cylindrical capillary,
we observe that the distance between the wall and the droplet interface varies along
the wall (the elongated part is not a straight cylinder), the radius of the droplet
changes along its length, reaching a minimum at the back of the droplet, that we call
the neck.

In the following, we �rst investigate the shape of the droplets, before studying their
swimming behaviour.

5.2.2 Non-trivial shape

The shape of the long droplet will prove to be a crucial information for understanding
the physics of the phenomenon. The shape can be understood in terms of local curva-
ture of the droplet. The long droplets take non-trivial shapes: a layer of lubrication is
observed between the droplet and the wall, and its thickness is not constant along the
droplet, with a local maximum toward the back of the droplet. From the droplet point
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Figure 5.16: Images of droplets swimming in a cylindrical capillaries of radius
h = 100 � m: (a) droplet smaller than the capillary height a

h ' 1
2 . (b) droplet slightly

longer than the size of the capillary L
2h ' 1:3. (c) droplet longer than the capillary

height L
2h ' 3:5.

of view, this corresponds to a minimum local radius leading to locally curved area, the
neck. This shape does not change with time, which make us think that this is the result
of an equilibrium. The surface of the droplet is characterized by two curvatures, the
radial curvature (in the plane perpendicular to the observation plane) and the lateral
curvature � (in the observation plane). We focus in the following on the lateral curva-
ture. For simplicity, we call curvature the lateral curvature � . To compute the local
curvature, we average the shape of one droplet over time, using the polar coordinates
in the referential of the droplet centroid (the polar coordinates are better at conserving
"circular" shape after averaging). From this averaged shape, back to the coordinates
x and y, we get the local curvature using the formula:

� (� ) =
� x(� )�(� y(� )) � � y(� )�(� x(� ))

(� x(� )2 + � y(� )2)
3
2

; (5.3)

� being the di�erence between two successive points of the shape. The result of the
shape detection and the local curvature depending on the angle are given Fig. 5.17
for droplets with di�erent lengths. Note that � x, � y, �(� x) and �(� y) are �ltered
using a low pass �lter before computing� .

� Small droplets - L
2h < 1 - Fig. 5.17(a): the droplets are mostly spherical (a

slight 
attening is observed on the side). Their curvature is a constant:� = 1
a .

� Medium droplets - L
2h & 1 - Fig. 5.17(b): the droplets start deforming: they

elongate a little through the side which is 
attened (lower� ), without becoming
completely 
at ( � > 0). The spherical cap at the front has a radius a little lower
than the one at the back: � (� = 0) = 0 :022 � m � 1 (which correspond to 1

� = 45
� m), while � (� = � ) = 0 :020 � m � 1 (which correspond to 1

� = 50 � m).

� Larger droplets - L
2h ' 2 - Fig. 5.17(c): the droplets become elongated. The

curvature along the elongated part decreases, and goes to zero (which means the
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Figure 5.17: Image of droplets (top), measure of their shape (middle) and of the
local curvature (bottom) for droplets of di�erent sizes in ah = 100 � m capillary: (a)
L
2h = 0:7, (b) L

2h = 1:2, (c) L
2h = 2, (d) L

2h = 3:5. The colors correspond to the angles,
light blue for the front cap and bright red for the back cap.

Figure 5.18: Evolution of the neck with the con�nement: (a) evolution of the
neck radiusrneck with the con�nement L=2h. (b) Evolution of the neck length Lneck

with the con�nement L=2h. The linear �ts (black line) are made on the measurements
in the h = 50 � m capillary.
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shape is cylindrical). There is still a small di�erence in curvature between the
front and the back caps.

� Very long droplets - L
2h > 3 - Fig. 5.17(d): the droplets elongate even more

through a long cylindrical part of curvature � = 0. This elongated shape is
deformed at the back of the droplet, and the lubrication layer thickness has a
maximum value just before the spherical caps, which corresponds to an area of
negative curvature. In this case, we do not measure signi�cant di�erence between
the radius of the front and back spherical caps. The elongated part of the droplet
corresponds to the almost zero curvature part of the curve, while front and back
spherical caps correspond to the large curvature part of the curves (around� = 0
and � = � ). We always observe the presence of a local negative minimum of the
curvature (local maximum of the lubrication layer thickness) at the back of the
droplet, right before the back spherical cap. This minimum corresponds to a
minimum in the droplet width, which we call the neck.

The particularities of the shapes described above are the di�erence of curvature between
the front and back caps, for droplets ofL2h ' 2, and the presence of the neck for long
droplets. If we focus on this second phenomenon, we can measure the position and
the radius of the neck for droplets of di�erent lengths in capillaries of di�erent heights.
The neck is at a positionLn from the front of the droplet, and ln from the back of the
droplet: L = ln + Ln

The position of the neck collapse on a curve which is roughly a line of equationL neck
2h =

0:81L
2h � 0:43 (linear �t on the data for h = 50 � m, which are better de�ned). When the

neck �rst appears (L
2h & 2), the neck forms at the middle of the droplet. Then for longer

droplet, the neck is always situated at the back of the dropletL neck
2h > 0:5 L

2h . The radius
of the neck decreases very slowly with increasing length. Forh = 50 � m capillaries, the
neck is less pronounced, and its radius harder to measure. Also, the radius decreases
roughly linearly with increasing con�nement, with the equation r neck

h = � 0:02L
h + 0:96.

5.2.3 Swimming behaviour

5.2.3.1 Typical trajectories

Just like in the square capillaries case, we look at the trajectory of the droplets in
cylindrical capillaries, Fig. 5.19. This behaviour is very similar to what is observed in
square capillaries: small droplets oscillate, although in a less regular fashion than in a
square capillary, while medium and large droplets swim straight at a constant velocity.

5.2.3.2 Velocity of the droplets

For each experiment, we measure the average over the trajectory of the velocity in
the direction of the capillary hV i , and we plot it as a function of the length of the
droplet L, rescaled by the capillary height 2h (the con�nement). For small droplets,
we measure only the maximum velocity during the oscillation, which corresponds to
the time when the droplet is the furthest from the wall, as we did for the droplets in
square channels. The results are shown in Fig. 5.20.
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Figure 5.19:Typical behaviour of droplets of di�erent sizes in a 50 � m cylin-
drical capillary. Top: Trajectory of the droplets. Middle: Velocity in the direction
of the capillary versus time. Bottom: Length of the droplet versus time. One color
corresponds to one droplet: orange for a round droplet of radiusa = h = 40 � m, bright
red for a round droplet of radiusa = 50 � m = h and dark red for an elongated droplet
of half-length a = 100 � m > h .

Figure 5.20: Velocity of dropletsV in cylindrical capillaries depending on the con�ne-
ment L

2h , for di�erent capillary diameters h. The error bars represent the standard
deviation of the average value in time of the velocity during an experiment.
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We observe that again, the data collapse on one single curve. The velocity of the
droplets depends only on the con�nementLh . The velocity decreases strongly with
the con�nement, even for small droplets. We observe two di�erent behaviours - the
transition from the "fast 
uctuating" to the "slow regular" motion that was observed
in section (5.1) is now abrupt and the intermediate regime 1< l

2h < 2 has disappeared
in favor of the "slow regular" one.

(i) L
2h < 1: the droplet has a 3D motion. If the droplet is not too small, this motion
is persistent in the direction of the capillaryx, oscillate in the cylinder in the
perpendicular directionsy and z (the motion in z correspond to the droplet
going out of the focus plane)- the behaviour is not periodic. The velocity varies
a lot during these oscillations. The main di�erence between the behaviour of the
small droplets in square and cylindrical capillaries is the dimension: in square
capillaries, the droplets remain in one plane - the bottom plane of the capillary,
and oscillate between the two sides wall on this plane5. In cylindrical capillaries
however, the bottom is not plane, and thus when the droplet moves in they
direction, con�ned to the bottom by the gravity, it also moves inz. In this case,
the gravity has a strong in
uence on the oscillation of the droplet, adding some
complexity to the case of square capillary.

(ii) L
2h > 1: The droplet has a straight trajectory in one persistent direction. Even
very long droplets swim. The velocity of the droplet converges toward a constant
value Vlim = 2:5 � m/s that does not depend on the con�nement anymore. This
behaviour is very similar to the one observed in the square capillaries, except for
the value ofVlim which is smaller in the cylindrical capillary case.

5.3 Stretched cylindrical capillaries

The experiments in this section have been conducted with Saori Suda, a PhD student
from the Laboratory of Dissipative and Biological Physics of Kyoto University, during
an internship at the Gulliver laboratory.

We saw in the previous section that long droplets were not stable upon production,
and that this instability was not simply due to an instability of the surface (such as
Rayleigh-Plateau), but is likely to be driven by 
ow �elds in the lubri�cation layer in-
duced by non-trivial concentration gradient of swollen micelles. This instability might
be linked to the production process, which perturbs the droplet - this is likely the case
discussed in the previous section, as medium size droplets were observed to sometime
destabilize at production, and sometimes remain stable and swim - but it could
also be intrinsically linked to the droplet length - as no matter how careful we were
when producing the droplet, we were not able to produce long stable droplets (L

h > 13).

5For really small droplet, L
h < 1

6 , as mentioned before, the droplets is not con�ned to the bottom
wall by gravity, and a 3D behaviour is observed
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5.3.1 Swimming behaviour

Then one may wonder what would happen if we were able to progressively increase
the length of a droplet while it is swimming, by varying the height of the capillary.
Would we be able to produce stable long droplets, or would the droplet destabilize and
spontaneously divide? In order to address this question, we use stretched cylindrical
glass capillary, whose geometry is described in Fig. 5.21.

Figure 5.21: Sketch of a stretched capillary.

We made several experiments of one unique water droplet with 15% NaCl in a stretched
silanized cylindrical glass capillary of initial half-heighth = 100 � m �lled with a
solution of 25 mM mono-olein in squalane.

We vary (1) the droplet initial length, from round droplets of radius a = 100� m, to
long droplets of a few times the capillary height, and (2) the capillary shape, that we
characterize mainly by two parameters:hmin the minimum radius of the capillary and
gh the gradient of radius to go from the initial radius to hmin (gh < 0), then back
to the initial radius ( gh > 0). jgh j is typically between 0 and 0.05, andhmin varies
from h = 100 � m (straight capillary) to h = 10 � m. We observe that all droplets are
swimming, and that there are two di�erent kinds of behaviours.

1. "Short" droplets passing through "large" constrictions are observed to simply
elongate and then shrink along the radius gradient with the volume conservation,
and little perturbation. Such a behaviour is illustrated in Fig. 5.22-left.

2. "Long" droplets passing in "narrow" constrictions are observed to destabilize at
their back (at the neck position), and spontaneously divide, eventually several
times, until they pass through the constriction. The "daughter droplets" formed
do not swim, and their size at formation decreases with the capillary height at
the place of the division. Such behaviour is illustrated in Fig. 5.22-right.

In the absence of division, the velocity of the center of mass of the droplet is almost
constant 6 and equal to the one measured for elongated droplets in straight cylindrical
capillary (section (5.2.3.2)): V ' 3� m/s. Long droplets are observed to have a neck,
and when a division occurs, it is always observed at the neck. However, the presence
of a neck does not systematically lead to division. For di�erent experiments, with
capillaries of di�erent hmin and droplets of di�erent initial length, the droplets are
observed to undergo various numbers of division, from none (simple elongation), or
only one division, to up to thirteen successive divisions. After passing the smallest
capillary radius, the droplet continues swimming, without further division.

6The slight variation of velocity can be associated with the tension force exerted on the droplet
because of the di�erence of curvature of the front and back meniscus - in a convergent tube the droplet
is slowed down, while in a divergent tube its accelerated.
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(I) (II)

Figure 5.22:behaviour of droplets passing through stretched capillaries: both
capillaries have a gradientgh ' 0:02. I - Passing: the droplet successively elongates
and shrinks along the capillary radius. II - Division: the droplet undergoes sponta-
neous divisions. It divides at its tail, forming smaller non-swimming droplets ("daugh-
ter droplets") whose length decreases with the capillary radius. (a) Snapshot of the
droplets in time. Evolution of (b) the capillary radius h, (c) the dimensionless droplet
length L

2h , (d) the velocity of the center of massV, (e) the dimensionless neck radius
r n
h and (f) the dimensionless neck positionlnh .

5.3.2 Study of the elongation

We focus on one experiment without division, and look in Fig. 5.23 at the in
uence
of the con�nement on the velocity and shape of the droplet. rescaling all length by
the radius of the capillaryh, which has a trivial in
uence; we observe that the radius
and position of the neck depend on the length of the droplet. This result might be
surprising, as it indicates that there is another length-scale thanh that has an in
u-
ence on the droplet shape. This phenomenon will be investigated in further details in
section (5.5).

We also observe that while the shape of the droplet changes with increasing con�nement
(converging tube), this change is reversible when decreasing the con�nement (diverging
tube); the droplet goes back to its initial shape. This means that the phenomenon that
in this regime determine the shape of the droplet is quasi-static.

5.3.3 Study of the division

Focus on one division event
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Figure 5.23: Evolution of the droplet characteristic during an elongation (blue), and
for many droplets of various length in straight cylindrical capillaries of radiush = 50
� m: (a) the velocity, (b) the dimensionless neck radius and (c) the dimensionless neck
position, depending on the con�nement.

We �rst focus on only one division event (the �rst one for a droplet), and we look at
the evolution of the shape of the droplet during this division, in Fig. 5.24.

We start the observation from 100 s before the division. While the capillary radius
does not change much during this time, (fromh = 57 � m to h = 53 � m), the shape
of the droplet varies a lot: its length varies fromL = 1000 � m to L = 1110 � m, and
the neck deepens. The variation ofL is trivially linked to the radius of the capillary
and the neck radius through the volume conservation of the droplet. In Fig. 5.24(c),
we plot the evolution of this neck radius with time. We observe two regimes, from
t = � 200 s tot = � 20 s, the neck radius decreases slowly in time. Fromt = � 20 s to
t = 0, the neck radius decreases quickly with time, until it reaches a minimum value,
at which it divides (or more precisely, the time needed to go from this minimum value
to zero is less than 1 s, therefore is not observed). We callr d

n the neck radius at the
transition between the two regimes (r d

n is extracted roughly by hand where the slop of
the curves starts increasing).

In search of a rule for division:

Why, or in which con�guration the droplet divides, is not trivial. We measure for all
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Figure 5.24:Example of the behaviour of a droplet from 100 s before division:
during this time, the radius of the capillary does not vary a loth = 55 � 2 � m, and
the length varies fromL = 1000 � m to L = 1110 � m. (a) Evolution of the droplet
shape with time (colors). (b) Zoom on the neck. (c) Evolution of the neck radiusrn

with time. t = 0 s is the time of division. r d
n is the neck radius from which the division

accelerates.

Figure 5.25: Quantities at which the droplet divides, for all experiments: (a)
evolution of the mother length with the capillary height. (b) Evolution of the daughter
size with con�nement. (c) Evolution of the neck size at division as a function of the
con�nement. The colors stand for the experiment: the same color is used for the
di�erent divisions of the same droplet.
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experiments and divisions di�erent quantities at the division time: the size of the cap-
illary at division hd, the mother lengthLm , the daughter lengthLd and the neck radius
at division r d

n . All these quantities are shown in Fig. 5.25. In Fig. 5.25(a), we observe
that the con�nement at division L m

hd
varies a lot for the di�erent experiments, and even

for the di�erent divisions of the same droplet. This means that the con�nement is not
the key parameter of the problem (at least not directly). There must be another length
scale in the problem. The Fig. 5.25(b) shows the evolution of the daughter lengthLd

rescaled byhd with the con�nement. All data collapse on a single line: this means
that although the con�nement does not control the division, it imposes the distance at
which the droplet breaks (the position of the neck). Finally, the Fig. 5.25c shows the
evolution of r d

n rescaled byhd with the con�nement: all data collapse on a constant
line of value approximately r d

n
hd

= 0:8. This is a strong indication that r d
n

hd
is a critical

value below which the droplet starts dividing. Note that the temporal resolution of our
experiments is strongly limiting a thorough investigation of the dynamics of the neck.
Further experiments using fast camera are in progress.

From the previous observations, we can de�ne two successive behaviour of our droplets.
The �rst one is the one described in sections (5.2) and (5.3.2): when swimming in
cylindrical capillary, an elongated droplet gets a non-trivial shape with a minimum
lateral curvature which de�nes the neck. This shape is stable, and it is possible to vary
continuously the con�nement of the droplet to measure the quasi-static evolution of
the shape. However, when the neck size goes below a critical value, as described in the
current section, a dynamical non-reversible regime happens, leading to the division of
the droplet. In the theoretical section 5.5.1, we introduce theoretical tools in order to
understand these two phenomena.

5.4 Square constriction

The way we designed our stretched cylindrical capillaries prevented us to explore a
large variety of constriction shape - the height gradient were always smallgh � 1. To
have an idea of what would happen for the other limit,gh � 1, we also investigate the
behaviour of droplets in sharp constriction: a simple design square NOA channel with
a width jump in the y direction, as described in section (5). The half-width before the
constriction is win = 100 � m, and the half-width after the constriction is wout � win .
The height remains the same. The geometry and the notation of this constriction are
illustrated in Fig. 5.26.

Conceptually, if wout = win , there is no constriction, and the droplet should simply
pass. At the oppositewout = 0, there is a wall in front of the droplet, and the droplet
should stop, and eventually bounce on the wall and turn back. We are interested in
what happens between these two extreme situations. Does the droplet pass through?
Does it deform? Does it stop at the constriction? Does it bounce back?

Most experiments of this section were conducted by Hong Po, a student from ESPCI
Paris during an internship at the Gulliver laboratory under my supervision.
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Figure 5.26:Sketch of the geometry and notations for a rectangular constric-
tion: The square constriction in constituted of an inner square channel of half-height
and half-width h = win , and of an outer channel of the same height, but of smaller
half-width wout 6 win . The droplet has typically the size of the inner channela = win ,
and initially swims toward the outer channel.

5.4.1 Passing or stopping

In a �rst time, we made many droplets of typically the inner channel sizeL ' 2a '
2w = 200 � m. We vary only the second channel size betweenwout = 5 � m and
wout = 100 � m.

We observe that either the droplet is stopped at the constriction, or it passes through
by deforming itself (very rarely, the droplet bounces on the constriction, and turns
back). In both case, the shape of the droplets (in Fig. 5.28), is not trivial. More
precisely:

� The droplet passing while deforming - Fig. 5.28(a) - goes from a spherical shape
in the inner channel, to an elongated shape in the outer channel, passing by a
composite shape at the constriction.

� The droplet blocked on the constriction initially has a spherical shape, and de-
forms at the constriction. Surprisingly, the �nal state reached by the droplet is
not spherical, the front cap of the droplet remains stuck in the constriction. This
behaviour is unlike the one observed for passive droplets [140], which, driven by
the di�erence of pressure imposed by the di�erence of curvature (Laplace law),
are driven out of the narrowest channel (and reach a spherical shape).

We measure the curvature at the front� f , and at the back � b of the droplets, as well
as the velocities at the frontVf and backVb of the droplet. We look at their dynamical
behaviour for three di�erent cases: a �rst droplet passing through a very large con-
striction for reference, in Fig. 5.29(1), a second passing through a narrow constriction,
in Fig. 5.29(2), and a last one stopping at a narrow constriction, in Fig. 5.29(3):

1. Droplet passing through a constriction - large outer channel,
Fig. 5.29(1): when the droplet arrives at the constriction, its velocity (a) drops
a little, without stopping. The curvature (b) almost doesn't change, from the in-
verse of the inner channel half-width 1

win
= 0:01 � m � 1 to the inverse of the outer

channel half-width 1
wout

= 0:0105� m � 1. The passage through the constriction
is almost instantaneous.
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Figure 5.27: Image of droplets at a constriction: (a) droplet passing through a
constriction of wout = 50 � m and (b) droplet stopped at a constriction ofwout = 40
� m.

Figure 5.28: Shape of droplets at constriction: (a) shape of a droplet passing
through a constriction wout = 45 � m. (b) shape of a droplet stopped at a constriction
wout = 40 � m. The color-scale stands for the time (dark blue = right before reaching
the constriction, bright red = long time after �rst reaching the constriction).

139



CHAPTER 5. SWIMMING IN 1D

Figure 5.29: behaviour of droplets at a rectangular constriction: The inner
channel is square with a half-widthwin =100 � m, and the outer channel rectangular with
a �xed half-height h = 100 � m, and half-width: (1) wout

win
= 0:95, droplet passing through

a large constriction. (2)wout
win

= 0:45, droplet passing through a narrow constriction. (1)
wout
win

= 0:4, droplet stopping at a narrow constriction.t = 0 correspond to the time at
which the droplet front �rst attains the constriction, and is highlighted by a horizontal
black dashed line. We give (a) the velocity of the front of the droplet (in red) and
of the back of the droplet (blue) with time, and (b) of curvature at the front of the
droplet (in red) and at its back (blue) with time. We also gives 1

wout
(black horizontal

dashed line).
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2. Droplet passing through a constriction - narrow outer channel,
Fig. 5.29(2): in this case, when the droplet arrives at the constriction, its
velocity (a) drops rapidly to zero, and the droplet stops moving. However the
droplet does not stop being active: the front cap enters the outer channel, and
starts deforming. Its curvature (b - blue) increases, from the inverse of the in-
ner channel half-width 1

win
= 0:01 � m � 1 to the inverse of the outer channel

half-width 1
wout

= 0:022 � m � 1. Then the droplet starts penetrating the outer
channel by elongating (the velocity (a) of the front cap (blue) starts increasing).
The spherical volume still in the inner channel decreases rapidly, and thus the
curvature of the back cap (red) increases, until the droplet completely passes into
the outer channel. In the outer channel, the droplet reaches a steady state with
a constant velocityVout , and a �xed shape.

3. Droplet stopped at a constriction, Fig. 5.29(3): when the droplet arrives
at the constriction, its velocity (a) drops rapidly to zero, and the droplet stops
moving. Once again, the droplet does not stop being active: the cap stuck in
the small channel starts deforming, and the curvature (b) of the front cap (blue)
increases, much like in the previous case. Unlike the previous case however, the
curvature will never reaches the inverse of the outer channel half-width1

wout
=

0:025 � m � 1: after attaining a maximum � f ront = 0:021 � m � 1, the curvature
decreases and stabilize at a lower value� f ront = 0:017 � m � 1. The droplet does
not evolve anymore, and remains stuck at the constriction for the remaining of
the experiment.

The two droplets (2) and (3) that respectively passes through and stops at narrow
channels have very similar behaviours when they arrive at the constriction: their
velocity goes to zero, and the cap entering the channel starts deforming (increasing its
curvature). The di�erence between them is that the droplet (2) continues deforming
and engages in the outer channel, while the droplet (3) does not increase its radius of
curvature high enough to reach the inverse of the outer channel width, thus cannot
engage in the outer channel, and �nally somewhat stops trying and reaches steady
state while half stuck in the outer channel. We can imagine two reasons as for why
the droplet (3) does not pass through the constriction: the �rst being that the droplet
cannot deform itself enough to pass - it cannot attain a low enough curvature to enter
the second channel (geometrical reason), and the second being that while stopping for
too long at the constriction, the droplet poisons itself, saturating all micelles around
(dynamical reason).

In order to further investigate this phenomena, we measure for all experiments, the
velocity in the �nal state of the droplet Vout (which is non/zero when the droplet passes,
and zero if the droplet is stuck at the constriction), and the time of passagetpass de�ned
as the di�erence between the time at which the droplet meets the constriction for the
�rst time, and the time at which the droplet reaches its maximum curvature (which
correspond to the last attempt to enter the outer channel). The geometrical constrain
imposed by the constriction is quanti�ed by the radius the cap needed to reach to enter
the outer channelwout , and the ratio of the initial radius of the droplet a. In Fig. 5.30,
we plot the passing time as a function of the geometrical constrain for passing (orange)
and stopped (blue) droplets.
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Figure 5.30: Time of passagetpass for di�erent geometrical constrain wout =a: the
droplets passing through the constrictions are in orange, whereas the ones stopped
at the constriction are in blue.

If the problem was purely dynamic (poisoning), then we would expect that the longer
the droplet spends at the constriction, the less likely it is to pass in the end. For a given
geometry (for instancewout

a = 0:5, we observe the opposite behaviour. We can conclude
that poisoning is not at the origin of the stopping of some droplets. On the contrary, if
the problem was purely geometric, then we would expect that the narrower the outer
channel is, the less likely the droplets are to pass. This is roughly what is observed,
although there isn't a clear critical value wout

a to separate the two domains. Actually,
the two domains separation seems to be a function of bothtpass (whose in
uence is
then something else than poisoning), andwout

a .

5.4.2 Discussion

For droplets stopped at the constriction, we made two observations: (i) unlike passive
droplets, the droplet remains partially stuck in the outer channel, keeping a stable non
spherical shape, and (ii) the poisoning of the droplets doesn't seems to happen (or
at least to play a critical role on the droplet behaviour) on the time scales observed.
These two observations make us think that although they are not swimming, droplets
stuck at constriction remain active,i.e. they still induce a 
ux around themselves.

From a hydrodynamics perspective, two phenomenon are at play: the swimming of the
droplet, which - because of the initial conditions - imposes a 
ux toward the constriction
- and the passive geometrically driven 
ux which comes from the di�erence of curvature
between the front and the back of the droplet. If there was no activity, then the
di�erence in Laplace pressure should drive the droplet in the large channel, while if
the activity was dominant, the droplet should be able to pass. Then, the passing
or stopping of droplets is ruled by the balance between the activity and the Laplace
pressure di�erence (which might itself be a�ected by activity). Note that whether this
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stopped state is a steady state or a transient state toward another state (complete
passing or withdrawal) is not clear, further investigations are in progress in order to
answer this question.

5.5 Theoretical approach for an elongated droplet

This whole theoretical section is the result of fruitful discussions between Saori Suda,
and professor Masatoshi Ichikawa from the Laboratory of Dissipative and Biological
Physics of Kyoto university, and Vincent Bertin, Mathilde Reyssat, Olivier Dauchot,
and me, at the Gulliver laboratory.

5.5.1 Elongated droplet in a straight capillary

Section (5.2) highlighted two important observations on the swimming of droplets in
cylindrical channels:

� When the droplet is bigger than the channel height, its velocity does not depend
on the droplet length L, nor on the capillary heighth.

� In cylindrical capillaries, the lubri�cation layer around the droplet is of micron
size, and has a non-trivial thickness that varies along the droplet, reaching a local
minimum at the back of the droplet which de�nes the neck.

In order to capture the physics behind these observations, we develop a theoretical ap-
proach to understand the swimming of active droplets in a cylindrical tube. This prob-
lem intricates two phenomena: (i) the activity, consequence of the physico-chemical
interactions between the inner and outer phases (production of micelles, concentration
gradient...) and (ii) the lubrication, which considers the hydrodynamic of a moving
thin liquid �lm. These two concepts are linked through the physical quantities in our
system: the concentration �eld c of the swollen micelles (source of activity), the ve-
locity �eld v around the droplet, and the thicknesse of the liquid �lm between the
droplet and the tube (which characterize the shape of the droplet).

5.5.1.1 Lubrication problem: the Bretherton approach

The lubrication layer problem (sections (5.5.1.1)) has been studied by Vincent Bertin,
from the Gulliver laboratory in the framework of an inter-PhD collaboration.

The lubrication phenomenon of self propelling long droplet (of viscosity smaller than
the external 
uid) in a tube is similar to an existing problem in the literature, the so
called Bretherton problem [2], which considers the motion of an elongated bubble in a
tube, pushed by an external gradient of pressure. The main di�erence is the driving
mecanism behind the motion of the droplet/bubble. Using a similar approach than
the one used by Bretherton (that we �rst brie
y describe), we propose a theoretical
description of our system by including the activity of the swimming droplet.
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Figure 5.31: The Bretherton approach consist in separating the bubble in �ve regions,
two spherical caps (red dashed lines), at the front and rear, one lubrication �lm of con-
stant thickness (blue dashed line), and two dynamical meniscus (violet dashed lines),
that connect the two caps and the lubrication �lm.

The classical Bretherton problem

The Bretherton problem considers a bubble (a 
uid whose viscosity is small compared
to the outer 
uid), in a cylindrical tube �lled with an outer 
uid. The outer 
uid is
driven by an external pressure gradient; and the bubble moves at a velocityU pushed
by the outer 
uid. A lubrication �lm forms between the droplet and the wall of the
tube.

The theoretical approach consists in separating the bubble in �ve regions (illustrated
in Fig. 5.31), two spherical caps, at the front and rear, one lubrication �lm of constant
thickness, and two dynamical meniscus, that connect the two caps and the lubrication
�lm. In the following, we will assume a full separation of length scales, namely that (i)
the thickness of the lubrication �lm e is small compared to the length of the dynamical
meniscus, and the length of the dropletL, which allows the use of the lubrication
approximation in the dynamical meniscus and in the lubrication �lm; that (ii) e is
small compared to the half height of the capillaryh, which allows to approximate the
lubrication layer as planar and that (iii) h is small compared toL: which allows to
neglect what happens at the other end of the droplet.

The �ve regions are treated independently, then the curvature of the interface between
the inner and outer liquid is matched asymptotically between the di�erent regions.

The caps: in the front and tail menisci, the mechanism governing the shape of the
droplet is the surface, or energy minimization. In the case of a bubble in a tube, these
caps are typically supposed to be spherical with a curvature1h .

The lubrication �lm is supposed as a �rst approximation to have a constant thickness
e0, and thus a zero curvature. For a passive bubble, the velocity in the lubrication �lm
at the interface with the droplet is equal to the velocity of the droplet, and we consider
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a plug 
ow:
v(y) = U; (5.4)

which yields to a 
ux of liquid in the lubrication �lm ' = Ue0.

The dynamical meniscus: based on the asymptotic matching [141], the dynamical
meniscus corresponds to section of the droplet over which the curvature evolves from
� 1

h to 0. We introduce a typical length` to quantify the size of the matching region.
In this region, there is a curvature gradient that then induces a pressure gradient,
which itself leads to a 
ow in the �lm.

In the dynamical meniscus, we assume the lubrication approximation7. Here, the
thickness of liquid e(x) is not constant leading to pressure gradient. The governing
equations in the 
uid are then:

�@2
y v = @xp; (5.5)

0 = @yp; (5.6)

and the boundary conditions are the same than in the lubrication layer. The normal
stress balance in the lubrication approximation yields to

p(x) = � 
@2
x e(x); (5.7)

Considering that their is no shear stress at the interfac, we can solve this problem and
�nd a 
ow

v(x; y) = �

@3

x e(x)
2�

�
y2 � 2ye

�
+ U: (5.8)

The problem is stationary and then the 
ux of liquid is uniform which means that

' =
Z e

0
dyv(x; y) =


e 3@3
x e

3�
+ Ue (5.9)

where ' is the 
ux in the lubrication �lm introduced before. Then the governing
equation of the interfacee(x) is


e 3e000

3�
+ Ue= Ue0 (5.10)

where prime is the derivative with respect tox. We introduce ` = e0

�



3�U

� 1=3

as the

typical length scale of matching region and use dimensionless variables such that

E(X ) =
e(x)
e0

; (5.11)

X =
x
`

(5.12)

7This approximation describes the 
ow of 
uids in a geometry in which one dimension is signi�-
cantly smaller than the others, heree � `. Then the Stokes equations are expanded in the parameter
e
` , and only the leading-order equations are considered. The underlying hypothesis are that the
velocity is almost uni-directional, and that the orthoradial velocity gradients are strong.
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Figure 5.32: Shape of the front dynamical meniscus (right) and rear dynamical menis-
cus (left) of a passive droplet pushed by a pressure gradient in a tube, solution of the
equation 5.13 computed numerically using a Runge-Kutta algorithm of order 4.

and the governing equation becomes

E 000=
1 � E

E 3
(5.13)

For the front dynamic meniscus, the matching conditions are:

E(X ! �1 ) = 1 ; (5.14)

E 00(X ! 1 ) = cste; (5.15)

the constant being given by the matching, while for the rear dynamic meniscus, the
matching conditions are:

E(X ! �1 ) = cste; (5.16)

E(X ! + 1 ) = 1 : (5.17)

If one solves the equation 5.13, with each set of boundary conditions, one then �nds two
shapes for the front and rear dynamical meniscus. Vincent Bertin computed numeri-
cally these shape using a Runge-Kutta algorithm of order 4, and the result is given in
Fig. 5.32 (these are the same shapes than the ones that were computed in the original
article of Bretehrton).

Toward the caps (toward +1 for the front meniscus, and toward�1 for the rear
meniscus), the thickness increases and diverges with a constant curvature. For the
front meniscus, the matching then consists in matching the curvature given by this
model to the one in the cap region:

lim
x!�1

e00(x) =
e0

`2
lim

X !�1
E 00(X ) =

1
h

: (5.18)

The quantity lim X !�1 E 00(X ) is a numerical pre-factor. Then:

e0

h
�

�
3�U




� 2=3

(5.19)

The front meniscus thickness decreases monotonically towarde0. The rear meniscus,
however, presents a non-monotonic variation of the thickness, a local minimum, much
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like what was observed in our experiment for the long active droplets. This shape of
the rear (in particular what we de�ned as the size of the neckrn , and its position Ld

in the experiments) is �xed by the thickness of the lubrication �lm, e0, which itself
scales only with the half-height of the capillaryh, and the velocity of the bubbleU:
this means that for a �xed U, and a �xed size of capillary, the shape is �xed. This is
unlike what was observed in the experiments; for instance in Fig. 5.18, the neck deepen
for longer droplet.

The active Bretherton problem

In the case of the swimming droplets, there is no external pressure gradient, the 
ux
is local and come from the gradient of swollen micelles at the interface between the
droplet and the outer oil8. We use the same approach as Brethreton, the droplet being
divided in �ve regions.

The caps: we observe experimentally, that the curvature is constant, indicating
that the menisci are simply spherical caps. We thus consider that within a good
approximation, the activity does not a�ect the shape of the menisci. In the following,
we consider spherical caps of curvature1h (which is typically what is observed
experimentally).

The lubrication �lm: we don't have access experimentally to a precise measurement
of the lubrication layer thickness. In contrast with in the Bretherton case, we cannot
make the hypothesis that it is constant. This will be of great importance, as will
be seen in the following. Note that the concentration �eld of swollen micelles is not
constant in this region. On the contrary, in the present system the origin of all 
ows
are gradients in the concentration �eld of swollen micelles at the interface. There is a
velocity jump vs (phoretic e�ect) and a stress jump� s (Marangoni e�ect) across the
interface. In 3D for our system, the Marangoni e�ect is dominant (see (2). Thus as a
�rst approximation, we neglect the phoretic e�ect. Furthermore, the inner 
uid being
less viscous than the outer 
uid, most dissipation happens in the outer 
uid, and we
consider that � i � � s = � (that is to say we neglect the viscous stress exerted by the
water on the oil). Then we have:

�
@v
@y

jy=0 = � s: (5.20)

Adding the no-slip condition at the wall, the 
ow is then given by

v(y) =
� sy
�

; (5.21)

which yields to a 
ux of liquid ' = � s e2
0

2� . Note that in the previous computation, � s

is not necessarily constant along the interface, however, as the 
ux is conserved, this
would means that the thickness of the �lme0 varies along the interface; this will be
discussed later.

8This problem is similar to a problem considered before [142], of the thermocapillary migration of
long bubbles in cylindrical capillary tubes.
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The dynamical meniscus: once again, the gradient of curvature of the thickness of
liquid e(x) is not constant, leading to pressure gradients. The hydrodynamics equations
are as before:

�@2
y v = @xp; (5.22)

0 = @yp; (5.23)

For the boundary conditions, we consider the no-slip condition at the wall,i.e. v(y =
0) = 0 and stress balance at the interface. The normal stress balance in the lubrication
approximation yields to

p(x) = � 
@2
x e(x); (5.24)

and the tangential stress is assumed to be the same as in the lubrication �lm, which is
the main di�erence with the classical case of Bretherton:

�@yvjy= e = � s: (5.25)

We can solve this problem and �nd a 
ow

v(x; y) =
@xp
2�

�
y2 � 2ye

�
+

� sy
�

(5.26)

The problem is stationary and then the 
ux of liquid is uniform which means

' =
Z e

0
dyv(x; y) = �

e3@xp
3�

+
� se2

2�
(5.27)

Then the governing equation of the interfacee(x) is


e 3e000

3�
+

� se2

2�
=

� se2
0

2�
(5.28)

We introduce ~̀= e0

�
2


3� s e0

� 1=3

as the typical length scale of matching region and use

dimensionless variables such that

E(X ) =
e(x)
e0

; X =
x
~̀ (5.29)

and the governing equation becomes

E 000=
1 � E 2

E 3
: (5.30)

Note here the di�erence with the standard Bretherton equation, for which the numer-
ator of the right term is 1 � E, instead of the quadratic dependence inE found here.
For the front dynamic meniscus, the matching conditions are still:

E(X ! �1 ) = 1 ; (5.31)

E(X ! 1 ) = cste: (5.32)

an for the rear dynamic meniscus:

E(X ! 1 ) = cste; (5.33)

E(X ! �1 ) = 1 : (5.34)
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Figure 5.33: Shape of the front dynamical meniscus (right) and rear dynamical menis-
cus (left) of an active droplet (red dashed line) in a tube, solution of the equation 5.30
computed numerically using a Runge-Kutta algorithm of order 4, and for comparison
the shape a passive droplet (blue continuous line).

Vincent Bertin solved this equation numerically using a Runge-Kutta algorithm of order
4. A typical solution is given in Fig. 5.33. We observe that the thickness increases as
X ! �1 . Again, the shape of the front meniscus can be matched with the curvature
of the cap at +1 .

lim
x!�1

e00(x) =
e0

~̀2
lim

X !�1
E 00(X ) =

1
h

: (5.35)

The quantity lim X !�1 E 00(X ) is again a numerical pre-factor (di�erent from the classic
Bretherton case, and found to be equal to 1:8). The important thing is that the
thickness scales as:

e0

h
�

�
� se0




� 2=3

(5.36)

Interestingly, this result is identical to the classical Bretherton scaling law. If we
don't use � s as a variable but the typical velocity in the �lm U as � s = �U

e0
, we �nd:

e0
h �

�
�U



� 2=3

, which is exactly the equation 5.19, therefore not altered by the fact

that the precise thickness pro�le within the matching region is indeed di�erent from
the classical case.

The shape of the rear still depends on the lubrication �lm thicknesse0; however, this
time this thickness depend on the active stress� s, which is still unknown at this point.

5.5.1.2 Concentration �eld

If the active stress was �xed (for instance for a squirmer), then the shape of the
swimmer would also be �xed. In the case of our swimming droplet however, the active
stress depends on the local concentration gradient of swollen micelles along the droplet
interface9:

� s = K
@c
@x

�
�
�
y= e0

: (5.37)

9The di�erence in sign with equation (2.125) comes from the orientation of thex axis.
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This concentration �eld is governed by three phenomena: the emission of swollen
micelles at the interface with a rate that we consider constantj 0; their di�usion in
the lubrication layer and their advection with the 
ux of velocity v. Assuming steady
state, the concentration is governed by the advection-di�usion equation:

v � r c = D� c; (5.38)

with for the boundary solutions, a constant 
ux at the liquid-liquid interface (y = e0),

� D@ycjy= e0 = j 0: (5.39)

A �rst naive approach would consist in taking the thickness of the lubrication �lm to
be constant. The following analytical calculations and numerical computations have
been done by Vincent Bertin.

Analytical results for a plug 
ow

We �rst assume the 
ow �eld to be uniform (plug 
ow) 10. We also neglect the di�usion
of concentration alog the interface.

The equation (5.38) becomes then the di�usion equation,

@c
@x

=
D
v

@2c
@y2

; (5.40)

wherex is analogous to time andD
v is the analogous di�usion coe�cient. We rescale

the concentration �eld by a typical value C0, x by the lubrication thickness e0 and
the Peclet number de�ned as Pe =ve0

D , X = x
e0P e and we invert and rescale they axis

Y = 1� y
e0

such that Y=0 corresponds to the liquid-liquid interface, and Y=1 corresponds
to the wall. The equation can then be written as:

Pe@X C = @2
Y C: (5.41)

The di�usion equation [143, 144] is known to have some self-similar solution with the
variable x=

p
Dt . Similarly, we can look for self-similar solutions of the second kind

with a di�usive pro�le as Y �
p

X :

C(X; Y ) = AX � f (
Y

X �
): (5.42)

ChoosingC0 = j 0e0
AD , the boundary condition at the liquid-liquid interface is thenf 0(Y =

0) = � 1. For simplicity for the analytical solution, we also chose as a boundary
condition f (Y ! 1 ) = 0, which means that the concentration vanishes far from the
interface, this hypothesis neglects the in
uence of the wall on the concentration �eld.

We then inject this self similar solution in the equation (5.41). We �nd

�f (u) � �uf 0(u) = X 1� 2� f 00(u); (5.43)

10This last assumption is very strong as it does not ful�l the boundary conditions at the wall
v(y = 0) = 0

150



5.5. THEORETICAL APPROACH FOR AN ELONGATED DROPLET

which exhibits solution when� = 1=2 and for all alpha. The value the scaling parameter
� must be determined with the boundary conditions. The equation then becomes

�f (u) �
u
2

f 0(u) = f 00(u): (5.44)

In a lot of di�usion processes [145], the solute is at thermodynamic equilibrium at
the boundary, resulting in a boundary conditionC(X; Y = 0) = c0, which imposes a
scaling parameter� = 0.

In the active droplet problem, we assume that it is the 
ux of swollen micelles at the
interface that is �xed:

@Y CjY =0 = �
e0j 0

DC0
(5.45)

= J0: (5.46)

Which gives
AX � � 1=2f 0(0) = J0 (5.47)

Then, the scaling parameter in accordance with this boundary condition is� = 1=2.
We notice that a positive scalingc(x; y = 0) � x1=2 make sense because micelles are
constantly ejected from the interface and therefore accumulates with the advection
toward the back of the droplet. The self similar function follows the equation

f 00(u) =
� uf 0(u) + f (u)

2
; (5.48)

whose general solutions are of the form

u ! K 1u � K 2

� p
� u
2

erf
�

u
2

�
+ exp

�
�

u2

4

��
; (5.49)

and the particular solution for f 0(0) = � 1 and f (1 ) = 0 is

f (u) =
2

p
�

exp
�

�
u2

4

�
+ u

�
erf(

u
2

) � 1
�

: (5.50)

In dimensional unit, this leads to

c(x; y) =
2j 0

D

r
xe0

�

�
exp(�

y2v
4Dx

) �
y
2

r
�v
xD

�
1 � erf(

y
p

4Dx=v
)
��

: (5.51)

Thus, the concentration di�uses vertically asy �
p

x, and with an increasing mass
p

x
in x.

Numerical results for a shear 
ow

The computation of the same problem as before, but with a shear 
ow (the velocity
is then space dependentv(y)) has been done numerically. Without further details on
the numerical procedure, we simply give in Fig. 5.34 the concentration �eld obtained
by using a Runge Kutta algorithm of order 4 (RK4) for a plug 
ow (for reference),
and for a shear 
ow. For the plug 
ow in the panel (a), we recover the typical �eld
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Figure 5.34: Concentration �elds of solute solving numerically Eq.the shear 
ow prob-
lem on the right and the plug 
ow problem on the left (panel (a) et (b)). The 
ux
of micelle is �xed at the oil-water interfaceY = 0. The bottom panels shows the dif-
ference of the numerical solution with the corresponding self-similar solution derived
from teh plug 
ow problem with vanishing concentration atY ! 1 .

of a boundary layer that grows asy �
p

Dx=v. This numerical solution is compared
with the self-similar solution derived analytically in panel (c). We �nd a very good
agreement between the two solutions. A very small deviation is observed in the top
right corner because of the presence of the wall. There is also a small di�erence observed
in the bottom left corner, that is due to the fact that the initial concentration �eld
is not exactly the self similar one. Still, the numerical converges toward the universal
self-similar attractor [146] derived in the previous section in Eq.5.51 atx � 1.

The results in shear 
ow, in Fig. 5.34 (c) and (d) are very similar, although the solute
di�uses slightly more in this case as the advection is less important asY ! 1. In
particular, the concentration pro�le at the water-oil interface increases as the square
root of the distance,i.e. c(x; y = 0) �

p
x, due to the accumulation of micelles.

Limit of this approach

From the previous computation comes out that the gradient of concentration at the
liquid-liquid interface is not constant:

r kc �
1

p
x

: (5.52)

Then the stress jump across the interface is not a constant along the droplet:

� s �
1

p
x

; (5.53)

Because of the conservation of the 
ux,' / e0� s, this imposes that the thickness of
the �lm also varies along the droplet:

e0(x) �
p

x; (5.54)
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which means thate0(x) increases while going toward the back of the droplet.

One of the building hypothesis of this model was that the thickness of the lubrication
�lm was constant, therefore this model is not self-consistent: the thickness of the
lubrication must vary along the droplet.

Finding the solutions of the di�usion equation in a �lm of varying thickness, limited
by a wall on one side, and an interface that generates a constant 
ux of concentration
on the other side is still an ongoing project conducted by Vincent Bertin.

We can still discuss about the implications of such solutions. Unlike in the classical
Bretherton case, where the lubrication �lm thickness is constant; if the thickness of
the �lm varies along the droplet, then the asymptotic matching of the shape of the
dynamical menisci at the front and the rear will be done for di�erent thickness. More
precisely, at the front dynamical meniscus the thicknesse0;f ront is �xed by the velocity
of the droplet; but at the rear dynamical meniscus the thicknesse0;rear depends on
(increases with) the lengthL of the droplet, thus with the asymptotic matching, the
shape of the rear meniscus depends on the length of the droplet, in particular the size
and the position of the neck. This is what is observed experimentally in Fig. 5.3.2.

The next (on going) step is to build the complete theoretical model for the lubrica-
tion �eld, to get the exact shape of the droplet, and eventually compare it with the
experimental data).

5.5.2 Division phenomenon

The last section gave �rst insights on the behaviour of elongated droplets in straight
cylindrical capillaries. Here we discuss the origin of the division phenomena in stretched
capillaries. Obviously, the spatial dependence ofe0(x) must now play a crucial role.

5.5.2.1 First step: micelles saturation

As the swollen micelles are emitted at a constant 
ux at the interface, and are
simultaneously advected downstream, the concentration of swollen micelles increases
along the droplet length. However, the quantity of empty micelles in the oil solution
is �nite (it depends on the initial concentration of surfactant). Then in stretched
capillaries, as the length increases, the concentration at the back of the droplet should
attain a maximum swollen micelles concentrationc� by saturating all present empty
micelles with water. On another hand, the 
ux in the lubrication layer is driven
by a Marangoni 
ow, and thus by the gradient of concentration: the outer 
uid
is attracted by region of high swollen micelles concentration. Then if one region
attains a maximum concentration, all outer 
uxes are driven toward this region. This
accumulation of 
uid produces a thickening of the lubrication layer, but also bring
in empty micelles and dilute the swollen micelles. This phenomenon could be the
origin of an instability deepening the neck, which would eventually lead to its breaking.

We assume for simplicity that the capillary thicknessh is constant (the variation of
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radius in the timescale of a division is small compared to the droplet length increase
and the lubrication layer thickness increase), and that the fraction of swollen micelles
increases linearly from the head of the droplet towards its tail (starting from zero at
the start of the lubrication layer, we neglect what happens in the front cap). The
concentration at the back of the droplet should then scale as:

c(x) =
A

ve0
L: (5.55)

In this vision, the division length, which is the size of the mother droplet,Lm should
scale as� s e2

0c�

�A . Using the conservation of volume in the lubrication �lm,hU = e0v =
e2

0 � s

� , this rewrites as:
Lm

2h
=

Uc�

2A
: (5.56)

Numerical application: the initial concentration of empty micelles in the oil solution
is c� = ( csurfactant � CMC )=100, if we consider that the micelles are constituted of
typically 100 surfactant molecules.csurfactant = 25 mM, CMC = 5 mM, thus c� = 1023

m� 3. Then using the typical measured velocityV = 2 � 10� 6 m, one �nd Lm = 1 mm,
i.e. a con�nement L m

2h = 10.

This numerical result is of the same order than the mother length measured exper-
imentally (we typically measure L m

h between 10 and 20. However, as mentioned in
the experimental section, this typical con�nement do not really collapse onto a single
constant curve. This observation made us inclined to think that another phenomenon
is then at play.

5.5.2.2 Second step: instability

Although active droplets are observed to have a steady shape with a neck at the back
of the droplet, it is likely that this shape will become unstable if the neck become too
thin, through for instance a Rayleigh-Plateau instability [75]. A complete calculation
of the Rayleigh-Plateau instability in the case of an active droplet con�ned by wall
is ongoing by Masatoshi Ichikawa from the Laboratory of Dissipative and Biological
Physics of Kyoto university. We can still have a very simple geometric and passive
approach to get the idea of what is going on.

Let's consider a passive droplet (the surface tension
 is constant), in a viscous 
uid
(the 
ows outside the droplet are considered small compared to the 
ow inside the
droplet), with the shape of an in�nite straight cylinder with a radius h (region I),
except in a region that we call the neck (region II), where the radius decreases to
a minimum rn (the geometry and notations are presented in Fig. 5.35(a)). In both
regions, the Laplace law applies, and we have a relation between the pressure inside
P I

i and P II
i and outside the dropletP I

o and P II
o , and the local radius of curvature. In

the region I, the cylinder is straight, the tangential curvature is zero and the azimuthal
curvature is 1

h . In the region II, the tangential curvature is � 1
R , and the azimuthal

curvature is 1
r n

. Then the Laplace law in the two regions gives:

P I
i � P I

o =


h

;

P II
i � P II

o = �


R

+


rn

:
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Figure 5.35: Simple geometric approach of the stability of a neck: (a) a long
droplet with a mostly cylindrical shape of curvature 1

h (region I), except in a region
where the thickness varies (region II), called the neck, of radial curvature1r n

, and of
azimuthal curvature1

R . P I
i and P I

o are respectively the inner and outer pressure in
region I, and P II

i and P II
o are respectively the inner and outer pressure in region II.

(b) Sketch of the neck geometry: the neck deforms the droplet on a typical lengthh,
and on a typical thicknessR � h + rn .

If we consider that the pressure in the outside 
uid is constant:P I
o = P II

o , then inside
the droplet:

� Pi = P II
i � P I

i = 
 (
1
R

+
1
rn

�
1
h

): (5.57)

A 
ux v develops in response to the pressure gradient (through the Stokes equation).
The direction of the 
ow depends on the sign of �Pi : if � Pi < 0 the 
ux goes from
the region I to the region II: the neck thickens: there is no rupture. If �Pi > 0 the

ux goes from the region II to the region I: the neck thins out and the droplet divides.

In order to compute the conditions on the neck for the division to occurs, we need to
establish a simple model for the shape of the neck. We suppose that the deformation
due to the local thinning happens on a typical lengthh. The Fig. 5.35(a) then shows
the simpli�ed geometry of the neck. ThenR can be expressed as a function ofh and
rn :

R =
2h2 � 2rnh + r 2

n

2(h � rn )
: (5.58)

� Pi thus becomes:

� Pi = 
 (h � rn )
r 2

n � 4rnh + 2h2

rnh(r 2
n � 2rnh + 2h2)

: (5.59)

Trivially, when rn = h, � Pi = 0: the droplet is a straight capillary, and the inner
pressure is homogeneous. The second part of the expression of �Pi (the fraction)
has two zero, one forr c

n > h , which is not a physical case studied here, and one
for r c

n = 0:42h. Between rn = h and rn = r c
n , � Pi is negative: the 
ow induced

stabilizes the droplet. However, whenrn < r c
n , � Pi becomes positive: the 
ow induced

destabilizes the droplet, and a division occurs.r c
n is then a critical value of the neck

under which the droplet spontaneously divides.
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Obviously, we stress that this model is way too simpli�ed11 to account for any
numerical results in our experiment. In particular, we completely neglected the
con�nement by the wall in the outer 
ow, that might invalidate our hypothesis
� Po = 0, but we also neglected the activity, which because of its e�ect on the
boundary condition modi�es the classical Laplace law used for passive and quasi-static
problems. Still, this approach illustrates simply in term of pressure gradient and local
curvature, that there might exist a critical neck radius,r c

n under which the shape of
the droplet becomes unstable and spontaneously break.

Experimentally, in Fig. 5.25(c), we do observe that the spontaneous breaking of the
droplet always starts at a �xed value of rn (around r c

n = 0:8h), independently of all
other factors. This is a strong indication that the division itself of the droplet is an
instability phenomena, akin to the usual Rayleigh Plateau instability, but that only
occurs when the droplets have reached a certain shape, namely presents a thin enough
neck.

5.5.3 Discussion

The combination of the experimental observations and theoretical considerations
conducted in the previous sections allows us to present a very likely scenario for the
complex behaviour of swimming droplets con�ned in cylindrical capillaries.

Long swimming droplets in cylindrical capillaries swim at a constant and �xed veloc-
ity, independent of the geometry. This velocity is a result of the coupling between the
hydrodynamics of the outer 
uid in the lubrication 
uid, and the advection-di�usion
of swollen micelles along the droplet interface. Naive theoretical considerations of the
concentration pro�le inside the lubrication layer reveals that swollen micelles accumu-
late at the rear of the droplet, inducing a variation in the lubrication layer thickness.
This has an in
uence on the shape of the rear of the droplet, that then depends on the
droplet's length, which is what is observed experimentally (its radius is measured to
decrease when the con�nement increases). Using stretched capillary, we then observe
swimming droplets whose con�nement increases continuously. When the neck attains a
certain thickness, the droplets spontaneously divide, and eventually, the droplets may
undergo successive divisions as the con�nement continues to increase. The instability
leading to this division division phenomenon needs to be further studied.

Conclusion

In this chapter, we thoroughly investigated the behaviour of highly con�ned swimmer,
in simple and exotic geometries, and we propose some theoretical tools to better ap-
prehend the physical phenomenon beneath our observation. One of the most striking
result of this chapter is yet one of the simplest observation: droplets are able to swim
even when strongly con�ned, advecting the outer 
uid in a thin lubrication layer be-
tween their interface and the wall. In this lubrication layer, the outer 
uid may attain

11It is actually too simple to even account for passive problems, for instance the Rayleigh-Plateau
approach also take into account the stability of perturbation waves.
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velocities of the order of 100� m/s, on a thickness of a few microns, to be able to
displace the droplet at a velocity of 3� m/s. The only founds limitation of swimming
under con�nement is the spontaneous division of droplets observed under continuous
increase of the con�nement, in stretched capillaries. This spontaneous division is a
combination of the activity of the droplet which leads to the deepening of a neck at
the rear of the droplet, and of the geometry that constrains the shape of the droplet,
and leads to an instability at the origin of the division. This phenomenon is the second
most attractive result of this chapter. Indeed, as exposed in chapter (1), the ability
to divide is one of the hallmarks of living system: our swimming droplets share yet
another particularity of the living systems.
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Chapter 6
Swimming together in 1D

Motivation

Brief introduction to phase transition at equilibrium

A complete and pedagogical introduction to phase transition in 1D is given in [147].
We restrict ourselves here to simple arguments and discussions that will highlight the
particularity of our current system.

In an equilibrium thermodynamic description, phase transitions take place when there
is a non-analytic change in the free energyF of the system, in the thermodynamic limit.
This statement can be understood simply with the following example: let us consider
a system that has two possible states I (for instance global alignment), and II (for
instance disordered state), whose free energies vary as a function of a parameter (for
instance a "temperature"T): FI (T) and FII (T). At a temperature T, the system goes
in the state of lower free energy. In Fig. 6.1 are represented two di�erent possibilities
for the relative free energy: (a) if one free energy is always smaller than the other, then
the system always keep the same state - there is no phase transition; (b) if for a certain
critical �nite value of T the two free energies cross each other, then the stable state of
the system changes - there is a phase transition.

Now to a 1D system: let us consider a 1D Ising model, a network ofL spin, of value
� 1, in a 1D periodic lattice (Fig. 6.2(a)). If all spin are aligned, then there is a global
alignment in the system. Otherwise, the system is considered disordered. The spins
have short range interactions, and the energy cost of two misaligned neighbor spin
is called j , while the energy cost of two aligned neighbor spins is zero. If we callN
the number of boundaries between domains of aligned spin in the system, a state of
the system ofN boundaries has an energyE = Nj , and L !

N !(L � N )! realization, thus

an entropy S = kT log L !
N !(L � N )! . The system might undergoes any macroscopic state

between the two extremes "only one domain" (N = 0), and "all spin misaligned"
(N = L): the system hasL + 1 possible state, of free energyF = E � TS. For
a given temperature di�erent than zero, we trace in Fig. 6.2(b) the typical curves
for E, S and F . F has a �nite non zero local minimum for a certainN . Thus the
stable state of the system is a system with a certain number of di�erent domains, the
system is disordered. This result is valid for all temperature expect forT = 0 which
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Figure 6.1: Two states system and phase transition: (a) one free energy is always
smaller than the other. (b) the two free energies cross each other atTc. The free energy
of the �rst state is represented in red. The free energy of the second state is represented
in blue. The sable state (the lowest in free energy) is represented in continuous line,
while the other state is represented in dashed line.

is not attainable physically. This system is always disordered, thus there is no phase
transition in this 1D system (and this result can be generalized to other model than the
Ising model, with the conditions that the interaction are short range, and the system
is homogeneous). This approach is called the Landau-Peierls argument, and predicts
that no equilibrium phase transition is possible for 1D homogeneous1 and short range
interactions systems.

Figure 6.2: 1D Ising system: (a) 1D Ising system of L spins on a periodic lattice,
with spin � 1 and N domains (blue and red). (b) System with short range interactions:
free energyF (red) resulting from the energyE and the entropy S of the system, at a
non zero temperature.F presents a local minimum atN = Ns. (c) System with long
range interactions: free energyf (red) resulting from the energyE and the entropy S
of the system, at a non zero temperature. The minimum ofF is for N = 0.

As precised before, a way to overcome the no phase transition rule in 1D is to intro-
duce long range interactions in the system, for instance decaying as a power law with
distance. This long range interaction increases the cost of boundary, and thus increases
E. One may then notice that for aS(N; T ) �xed, if E(N ) increases fast enough, then
the local minimum of F might disappear for temperature low enough, but non zero.
This is illustrated in Fig. 6.2(c). Then the lowest energy of the system is forN = 0:

1By homogeneous, we mean equally spaced
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all spin are aligned, at a non zero small temperature. The system undergoes a phase
transition from global alignment at smallT to disorder at high T.

What should be kept in mind from this very brief and simple introduction to the phase
transition in 1D system at thermodynamical equilibrium is that such system does not
usually present phase transition.

Context

The above discussion is valid only in 1D and at equilibrium. Active system, such
as our swimming droplets2, are out of equilibrium. Phases transitions and collective
behaviours in systems of active particles have motivated a signi�cant amount of ex-
perimental [39] and theoretical works, combining both hydrodynamics and statistical
approaches [42, 148]. Several phenomena peculiar to the activity have been observed,
notably the emergence of collective behaviours [149, 150], or the motility induced phase
separation [151] (commonly called MIPS). Most of these studies have been conducted
in 2D.

Even in the absence of activity, the behaviour of 1D system is expected to be di�er-
ent than 2D systems. In particular, in 1D, the interactions between particles play a
predominant role. Still, it has been demonstrated that phase transition could occur
in an active 1D system [152], and a few models of active particle in 1D have been
developed, taking into account either volume-exclusion [153] or alignment [154], but
never combining both.

In order to design a 1D system of active particles, one possibility is to con�ne them
(with walls for instance). One experimental challenge is then that the con�nement may
hinder the activity of the particles, especially in the case where the activity comes from
an interaction with the external medium. From a theoretical perspective di�culties
also arise from the con�nement, as correlation emerges because of the geometrical
constrains (in particular, the fact that the particles cannot bypass each-other [155]).

We saw in the previous chapter (5) that swimming droplets conserved their activity
even when highly con�ned, which make them a good candidate to explore the collective
behaviour of active particle in 1D. In the following, we present in section (6.1), what
is, to the best of our knowledge, the �rst experimental realization of a 1D system of
active particles. We observe the emergence of a rich variety of behaviours, which we try
to understand in section (6.2) by building a model based on the simple experimental
observation of the binary collisions between two droplets.

6.1 Experimental realization

6.1.1 Materials and Methods

6.1.1.1 Set up and observation

To produce and observe a lot of monodisperse droplets, we use a NOA micro
uidic
device composed of two parts, a �rst part to produce the droplets, and a second part

2For reminder, the thermodynamically stable state of our system is when all micelles in solution
are saturated with water. Then, eventual remaining water droplet are not moving.
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for observation. The �rst part for the production of droplets has been described in
section 3.2.3. It allows to make droplets of typically the channel size (a = 100 � m), at
various density (we de�ne the linear densityd of droplets as the fraction of the number
of droplets N on the maximum number of droplets that could enter a portion of a
channel of lengthL, without being deformed: d = Na

L ). We typically make densities
betweend = 0:1 to d = 0:8 (from 50 to 400 droplets). The size of the droplets being the
size of the channel section, the motion of the droplet is essentially 1D. The observation
chamber is a 1D square channel of lengthL = 10 cm and section 200� m per 200� m,
folded in the shape of a "snake" (see in Fig. 6.3) to be contained in the 1cm per 1cm
visualization area. Note that the device is thus not strictly 1D: the droplets need to
"turn" to pass through the curved part of the channel that link two straight lines. This
might have an in
uence on the droplet swimming. The discrete phase is a solution of
15% wt NaCl in water. As explained before, the salt helps the swimming of the droplet
in 1D. The continuous phase is a solution of 25 mM mono-olein in oil. We tried two
di�erent oils, tetradecane and squalane. The droplets are driven inside the snake with

Figure 6.3: Snake observation device: 1D channel, the droplets enter from the top
left, and exit at the bottom right. The droplets typically have the size of the channel
width, thus the motion of the droplets is basically 1D.

an external 
ux, and then this external 
ux is cut. The residual 
uxes are left to
equilibrate for a few minutes, and then the outlet is closed and the inlet is linked to the
trash. After around one minute, the droplets start swimming in a "random" direction.
The observation is done using the macroscope (details section (3.3.1.1)), images are
recorded at a frequency of one frame per second, for typically 1 to 2 hours. The pixel
size is typically 3� m.

The experiments in squalane have been conducted by Yang Liu during an internship
in the Gulliver lab prior to my arrival. The experiments in tetradecane, and the data
analysis have been started during my internship at Gulliver, and continued during my
PhD.

6.1.1.2 Data analysis

In order to get quantitative results from the experiments, a �rst step to extract the
data is needed. During the internship of Yang Liu, some programs had been made,
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which I completed and improved. There are four main steps to go from the images of
the droplets to their positions and velocities:

Detection of the droplets: The rough detection of the droplets is made by mor-
phological segmentation on the image. Then a sharp detection is made by using the
matlab function for detecting circle, "im�ndcircles", which uses a circular Hough trans-
form. This function is very slow. This explains the need for the �rst detection, which
reduces considerably the computation time. The total time of this function depends on
the density of the droplets in the experiment, and varies from one hour to one night.
At the end of this �rst step, we get the planar coordinates and the radius of each
droplet (with the precision of one pixel,� 3� m, which is 3% of the droplets radius).
This function may miss some droplets, or count twice the same droplet. These errors
will be corrected later.

Computation of the curvi-linear abscissa: The droplets are evolving in a snake,
and the relevant parameter is the curvi-linear abscissa along the snake. This is com-
puted by �rst �tting a snake shape with the 2D positions of the droplets at all times,
and then projecting the positions of the droplets on the snake. The computation time
of this step depends on the density of droplets and of the resolution of the snake, and
varies from ten minutes to a few hours. At the end of this second step, we get the
curvi-linear abscissa and the radius of each droplet.

Determination of the trajectory of a droplet: At this point, we have the abscissa
of each droplet at each time, but not yet the trajectory of each droplet at all time. We
consider that the droplet cannot pass each other (this has indeed never been observed in
the experiments). Then through the experiment, the droplets order remains the same.
We order the droplets in three steps: �rst we correct droplets that have been detected
twice (when the distance between two droplets is smaller than a droplet diameter), then
we select the droplets that remain in the snake from the beginning to the end of the
experiment (we remove the one that goes in and out of the snake), and �nally we look
for missing droplets (when the droplet goes at a velocity of more than one diameter
per second, its typical velocity being 0.1 diameter per second). This step takes a few
minutes. At the end of this third step, we get the trajectories of all droplets.

Smoothing of the data: A simple �nal step is used to smooth the data. The
positions are smoothed by a low band �lter. The velocity is computed by an iterative
average �lter on the time derivative of the position. At the end of this �nal step, we
get the smoothed abscissa, the velocities, and the radius of the droplet.

6.1.1.3 The residual 
ow

After cutting all 
uxes, we observe that there is a strong global velocity at the start
of the experiments. This residual 
ow is due to the relaxation of all the micro
uidic
circuits (tubing, NOA), after the high 
ow imposed for the droplets production. Al-
though the device was designed to minimize this residual 
ow (use of NOA instead of
PDMS, use of rigid tubing...) it is still present, not negligible, and last for a long time
(30 min). Then, to compute the active velocity of the droplets (their velocity relative
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to this residual 
ow), we need to compute the residual 
ow. Assuming that the pres-
ence of an external 
ow does not a�ect the active velocity of the droplet, we have in
our system a fraction of n particle going upward (toward the upper right exit) with an
active velocity +V0, and (1-n) going downward (toward the lower left exit), with an
active velocity � V0. The number of droplets going up or down is random (n 6= 0:5), so
taking the average velocity of all droplets at one time wouldn't give us the velocity of
the outer 
ow Vf :

hvi = Vf + (2 n � 1)V0: (6.1)

However, using the average velocity of the droplet going right (respectively left):

hvr i = Vf + V0; (6.2)

hvl i = Vf � V0; (6.3)

one �nds:

Vf =
hvr i + hvl i

2
(6.4)

The residual 
ow Vf is computed this way, and subtracted to all individual velocities
V. The position of the dropletsS relative to this residual 
ow is computed from the
integral of the new velocities also notedV, and used from now on.

Discussion on the e�ect of an external 
ow: we considered above that the ve-
locity of the external 
ow can be simply added to the inner velocity of the droplets.
However, the droplets swim by interacting with the solute, and have a certain concen-
tration pro�le around them. The presence of an external 
ow may change this pro�le
(for instance wash away the solute from the droplet),so that the the velocity of the
droplets may depend on the residual 
ow. More dramatically, this dependency is likely
to be not symmetric, so that in presence of a 
ow, the active velocity of the droplets
going to the right is not simply the opposite of the droplets going to the left, leading
to a systematic error on the residual 
ow computed before. In particular, one should
be careful about three things: �rst the residual 
ow is sometimes observed to change
sign with time, before relaxing to zero. Second "catastrophe" events happen from time
to time (abrupt 
uctuation of the external 
ow), where the residual 
ow is punctually
disturbed by what we think is an external event (vibration, closing door...), which are
di�cult to avoid in such long experiments. Third, the initial conditions might be bi-
ased by the residual 
ow, which may favor one direction compared to the other. All
these considerations must be kept in mind for the coming analysis.

6.1.1.4 The in
uence of the oil

The experiments are conducted at several droplet densities, for two di�erent oils,
squalane and tetradecane. First results can be extracted from direct observation.

In squalane:
The experiments in squalane have been realized by Yang Liu, when he was a student
at ESPCI Paris, during an internship at the Gulliver laboratory prior to my arrival. At
the beginning of the experiment, the droplets start swimming in "random3" directions.

3The droplets being brought in the snake channel by an outer 
ow, it is likely that the initial
conditions around the droplets are not symmetric, and thus the initial velocities might be biased.
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They are observed to swim straight, until they meet one another, events that we
call collisions. This collision event describes the meeting and interaction between two
droplets when they are close enough to feel (hydrodynamically or chemically) each
other. The two droplets do not necessarily touch each other. The collision event is
described in more details in the following. After the collision, the droplet may turn
back (most of the time), or persist in its initial direction (from time to time), and start
swimming straight again, until the next collision. The droplets continue swimming for
one to two hours, although the velocity is observed to decrease slowly with time.

In Tetradecane:
Experiments were also done in tetradecane. The droplets are observed to swim slower
and for shorter time than in squalane. Their motion is not regular; it alternates
between swimming for a few dozen of minutes, and not moving for the same order of
time. After stopping, their direction of swimming may change. The interaction with
the wall seems to be more present than in squalane, as droplets a little smaller than
the channel width stick to one side of the channel. This is not observed in squalane.
Furthermore, the droplets seem to stick to the wall and to stick together at long times.

In the following, we thus concentrate on the study of the 1D swimming in squalane,
for which the droplets swim more regularly.

6.1.1.5 Evolution of the droplet size

Figure 6.4: Radius of the droplets after tracking, for an experiment at intermediate
density d = 0:2. The radius abscissa is rescaled by the average radius at timet = 0 s.

Fig. 6.4 shows the evolution of the radii, rescaled by the average radius at timet = 0
s, for all droplets in a typical experiment. The size of the droplets is observed to be
quite mono-disperse (variation of� 2%). The droplet size decreases with time, very
slowly (less than 3% in one hour). Essentially, we can consider the size of the droplets
to be the same for all the droplets, and constant in time.
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6.1.1.6 Typical phenomenology at various densities

Fig. 6.5 shows the spatio-temporal diagram, the velocity histogram and the computed
residual 
ow for typical experiments with various numbers of droplets.

Figure 6.5: Typical experiments for various densities. From top to bottom: (a)d =
0:05, (b) d = 0:25, (c) d = 0:35, (d) d = 0:4. Right : spatio-temporal diagram of the
droplets positions; the color codes for is the direction of the droplet (red toward the
top, blue toward the bottom). Middle : histograms of the droplet velocities, the color
codes for is the time (blue=beginning, red=end). Left : Velocity of the subtracted
residual 
ow (green), of the average of the "positive" active velocity (red) and of the
"negative" active velocity (blue).

Focusing on the velocity histograms in Fig. 6.5(b), one observes at a certain time (one
color) the presence of two peaks of probability, one for positive velocity and one for
negative one. These are the active velocity of the droplet going right (positive), or left
(negative). The amplitudes of these pics vary with time: the number of droplets going
right or left is not conserved. The positions of these peaks do not vary a lot with time,
except for very dense experiments (for instance in Fig. 6.5(d)). Note that even though
the velocities are centered around the active velocities, they have large 
uctuations.

With our de�nition of the residual 
ow, equation (6.4), the positive and negative active
velocities should be symmetrical after subtraction of this residual 
ow: this is indeed
observed in the histogram, the two peaks are centered around zero. Fig. 6.5(c) shows
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the evolution in time of these active velocities, as well as the computed residual 
ow.
At the beginning of the experiment, the residual 
ow is large compared to the active
velocities. Then it decreases (in general monotonically) to zero with timescales, which
vary from one realization to another. Its value remains of the same order than the
active velocities for long time (2000 s). The active velocities decreases rapidly at the
start of the experiment, and tend toward a constant after some time (2000 s), except
for the experiment at high density. For high density experiments, the active velocities
are observed to decrease through the experiment. This could be due to two reasons: a
global reduction of the droplets activity (decrease in size or saturation of the micelles),
or a local behaviour due to the "regime" they are in. This will be discussed more
precisely later on, but we consider the second option to be more likely.

Finally, looking at the spatio-temporal diagram in Fig. 6.5(c), one observes a rich
variety of behaviours: binary collisions between droplets, where the droplets exchange
direction, but also at the scale of the experiment, emergence of dense structures, where
the droplets are aligned, which we shall call trains. These trains interact with single
droplets, but also with other trains. We now focus on these collective behaviours in
the next section.

6.1.2 Experimental observations: a rich variety of behaviours

Our system is composed of active droplets swimming in a 1D channel, that can "meet"
other droplets through what we call a collision. At the scale of the system, collective
behaviours, such as trains are observed. As was presented in this chapter introduction,
the emergence of a collective behaviour is surprising. Are these regimes stable organized
phase? What mechanism lies behind the formation of the train structure? We shall try
in this section to understand from experimental observations how these aligned regimes
come to be, and, in particular, if the understanding of the binary collisions between
droplets can explain these collective behaviours. We progressively increase the density
of our system to observe phenomena of increasing complexity.

6.1.2.1 Droplet swimming alone

For low density, a droplet that does not collide with another droplet can be considered
to swim alone. Trajectories and velocities of such droplets are given in Fig. 6.6. The
droplets are observed to swim in one persistent direction (there is no tumbling), with
a velocity that 
uctuates with time. The absolute value of the droplet velocity is in
average aroundV0 = 5 � m/s - this value varies from one experiment to the other, but
remain of this order of magnitude. In this diluted experiment, we do not observe a
global slowing down of the droplets.

This velocity is lower than the one observed in 2D, where it has been measured to be
aroundV 2D

0 = 5� 20� m/s (section (5)), but also lower from the ones measured in 1D for
one droplet experiments, where it has been measured to be aroundV 2D

0 = 10 � 50� m/s
(section (4)). This di�erence might come from the fastest �lling of the micelles in the
con�ned environment when the density of droplets is high.
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Figure 6.6: behaviour of diluted droplets without collisions: Velocities V of
droplets swimming in the same direction rescaled by the droplet diameter 2a in a
diluted experiment. Insert: corresponding curvilinear abscissa of the dropletS rescaled
by the droplet diameter 2a.

6.1.2.2 Very dilute experiment d = 0:06 - binary collision

For very dilute experiments, such as the one presented in Fig. 6.5(a), the droplets swim
alone most of the time in one given direction, and from time to time, collide with other
droplets. Several of these collision events are represented in Fig. 6.7. A collision takes
a certain time (typically 200 s), and is composed of (i) a deceleration time, from the
moment the droplets start to feel each other, until they reach a minimum distance
(note that both the "feeling" distance and the "minimum distance" might be larger
than a droplet diameter: the two droplets might not touch each other at all through
the collision); (ii) a response time, which is the consequence of the collision, and lasts
until the droplets relax toward a "swimming alone" behaviour. This response time is
not well-de�ned yet, but its understanding will be of importance for the following.

Let us call n1 the droplet going upward before the collision (in continuous line) with a
velocity V1 > 0 and n2 the droplet going downward before the collision (dashed line),
with a velocity V2 < 0, and V 0

1 and V 0
2 their respective velocity after the collision.

Then the consequences of the collision can be (i)n1 and n2 exchange direction,V 0
1 < 0

and V 0
2 > 0 (ex: Fig. 6.7(a) and Fig. 6.7(b)) ; (ii) n1 persists in its direction, andn2

changes direction,V 0
1 > 0 and V 0

2 > 0 (ex: Fig. 6.7(c) and Fig. 6.7(e)); (iii) n2 persists
in its direction, and n1 changes direction,V 0

1 < 0 and V 0
2 < 0 (ex: Fig. 6.7(d)). The

�rst behaviour is the most common, while the second and third ones, that lead to an
alignment of the droplets, are less frequent at low dilution.

Looking more precisely at collisions between droplets that exchange direction in
Fig. 6.7-top, we observe that the velocity of the center of mass (in black) is constant,
but the droplets lose velocity (kinetic energy) after collision. Generally, these collisions
are well described by an inelastic collision law with conservation of the momentum,
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Figure 6.7: All kinds of collision observed in diluted experiments: the droplet
going upward before the collision is in continuous line; the droplet going downward
before the collision is in dashed line. The color codes for the velocity sign, red is
positive (going upward) and blue negative (going downward). The center of mass is in
black. Left : collisions between droplets that exchange direction. (a) The velocity of
the center of mass is zero; symmetric inelastic collision. (b) The velocity of the center of
mass is constant but non-zero; asymmetric inelastic collision.Right : Collision between
droplets that leads to alignment. (c) and (d) The velocity of the centers of mass are
constant, but non-zero: asymmetric inelastic collision that leads to an alignment. (e)
The velocity of the center of mass is non-constant, a droplet persists in its direction
with almost unchanging velocity: persistent droplet collision.
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and non-conservation of the kinetic energy (these law are presented in more details in
section (6.2.1). If one now looks at the collisions Fig. 6.7(c) and Fig. 6.7(d), which
lead to alignment, one may notice that these collisions can be described using the same
inelastic collision rules, with conservation of the momentum, but loss of velocity after
collision. The di�erence is that before the collision, one droplet goes much faster than
the other, and thus although the velocities are exchanged in the referential of the center
of mass, they remain of the same sign after the collision. Note that although the colli-
sions (a), (b) (c) and (d) would look the same in the referential of the center of mass
of the two incoming droplets, the large velocities di�erence in the referential of the lab
leads to alignment in the case of the collisions (c) and (d). Hence the 
uctuations of
velocities play a key role in the possibility (or impossibility) of alignment events.

Finally, there is another kind of collision, illustrated in Fig. 6.7(e): the velocity of
the center of mass is not constant and even changes sign, and, more surprising, the
two droplets align with the slower one, which is the opposite of the more intuitive
behaviour of the inelastic collision presented before. These persistent droplet collisions
are observed throughout all experiments.

To summarize, we have two kinds of collisions:

1. Inelastic collisions, with conservation of the momentum and non-conservation of
the kinetic energy. Such collisions may lead to alignment with the fastest droplet
if the velocities are di�erent enough.

2. Persistent droplet collisions, where one droplet persists in its direction with al-
most constant velocity. This droplet might be slower than the other, resulting in
an alignment with the slowest droplet.

Note that the large variety of collision behaviours (alignment, exchange of velocity...)
is possible thanks to the 
uctuation of velocities in our system.

6.1.2.3 Dilute experiment d = 0:1=0:2 - Propagation of collisions

In one "rare" experiment, all droplets go in the same direction, except for one. The
spatio-temporal diagram of the droplet positions is given in Fig. 6.8(a).

One can observe through this experiment the propagation of one collision. Although
each droplet displacement is not much, the collision propagates through the whole
system. The propagation velocity decreases with time. There are two possible in-
terpretations to this slowing down: it may come either from the decreasing of global
active velocity with time (because the droplet size decreases, or because the micelles in
solution saturate), or it could come from the collision itself (the velocity of the droplet
is not conserved after collision). To answer this question, one may notice that the
velocity of a droplet swimming alone has not been observed to decrease signi�cantly
with time (Fig. 6.6), and also, one remember that during an inelastic collision event,
we indeed observe a loss of velocity after the collision.

Fig. 6.9 shows the successive collision events throughout the collision wave. At each
collision eventi , a droplet going upwardni

1 (continuous line) before the collision meets
a droplet going downwardni

2 (dashed line) before the collision. For all collisions, except
for the last one, the droplets exchange velocities. After the collision,ni

2 goes upward,

170



6.1. EXPERIMENTAL REALIZATION

Figure 6.8: Collision wave: (a) Spatio-temporal diagram of a very dilute experiment
d = 0:1, where all droplets except one go in the same direction att = 0. The droplet
going upward are colored in red, while the droplets going downward are colored in blue.
(b) Zoom on the propagation of the collision (c) Zoom on the �rst absorption event.

Figure 6.9: Successive collisions through the collision wave: (a) Position, (b)
Velocity: for each collision, the droplet going upward before the collision is in continu-
ous line; the droplet going downward before the collision is in dashed line. The droplet
that goes downward before the collision (dashed line, blue), exchange velocity and goes
upward after the collision (dashed line, red), becomes the droplet going upward for the
next collision (continuous line, red), exchange velocity and goes downward again af-
ter the second collision (continuous line, blue). The color is the velocity sign, red is
positive and blue negative. The center of mass is in black
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and becomes theni +1
1 droplet for the next collision. As observed before, the velocity

of the droplet going upward before collision (red continuous line) - decreases after each
collision. The velocity of the droplet going downward before collision (blue dashed
line) is relatively constant. The velocity of the center of mass before collision (black
line) decreases through the collision wave. This collision wave ends with a persistent
droplet collision: the droplet going upward persists in its direction. This alignment
event is followed by other alignment events, forming a regime of aligned droplets going
upward: a train. This "alignment event" is what we consider to be necessary for the
nucleation of the train regime.

Now let's look at another experiment, a little denserd = 0:2, and with more random
initial conditions (Fig. 6.10(a)).

Initially, there are mostly collisions, during which the droplets exchange direction,
leading to a regime that we call "quasi-elastic" regime (Fig. 6.10(b)). At some point,
some alignment event occurs (Fig. 6.10(c)), leading to the nucleation of trains: a dense
aligned regime emerges. These trains are absorbent, (Fig. 6.10(d)): they are likely to
absorb incoming droplet and grow.

In these dilute experiments, there are only a few collisions, and thus the investigation
of their long term consequences is limited. However, one can keep in mind a few
observations:

1. A collision between two droplets:

(a) lasts a certain time

(b) does not conserve the kinetic energy

(c) may lead to alignment

2. Collisions propagate through the system. As consequences:

(a) the initial conditions have a strong in
uence on the system behaviour: the
system has a long-lasting memory (remember that there is no tumbling,
hence the dynamics is deterministic);

(b) although the droplets do not browse long distance, information does.

3. Alignment in the system leads to the formation of dense aligned groups of
droplets: the trains.

6.1.2.4 Denser experiment d > 0:2 - Train behaviour

For denser experiment, the trains are observed to form very quickly, to grow by ab-
sorbing droplets, and to interact with other trains (Fig. 6.11(a)). If one focuses on the
behaviour of only oneN droplets long train colliding with another droplet, the grow-
ing process can be described as follow: the dropletn = 0 arrives face to face with the
f N g-train, it collides with the �rst droplet of the train n = 1. The two droplets turn
around, losing some velocity. The �rst dropletn = 1 is now oriented against the train,
and collide with the second droplet of the trainn = 2. Once again, they exchange
velocity while losing some. This means that at each successive collision during the
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Figure 6.10: (a) Spatio-temporal diagram of a dilute experimentd = 0:2, with random
initial conditions. The droplet going upward are colored in red, while the droplets
going downward are colored in blue. (b) Elastic regime: mostly collision events with
exchange of direction. (c) Alignment event (black star). (d) Nucleation of trains (black
triangle).

Figure 6.11: (a) Spatio-temporal diagram of a dense experimentd = 0:6. The droplet
going upward are colored in red, while the droplets going downward are colored in blue.
(b) Train absorbing droplets and growing. (c) Two trains crossing each other.
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transmission of the initial "impulsion4" of the droplet n = 0 colliding with the train,
this impulsion loses velocity, until at some point it disappears: then + 1 droplet in the
train does not turn back while colliding with the n droplet: the impulsion has been
completely absorbed by the train. and the system one droplet + af N g-train becomes
the systemf N + 1g-train: it gained alignment. This behaviour is intrinsically linked
with the non-elasticity of the collisions.

In the absence of absorption or interaction with another train, a train is still observed
to increase in volume (Fig. 6.12): the distance between droplets increases because

Figure 6.12: (a) Abscissa (b) distance between droplets and (c) velocity of droplets in a
train without absorption nor interaction with other train, in the experiment presented
in Fig. 6.11(a)

the droplet at the head of the train are faster than the one at the tail of the train.
The active velocity of the droplet is measured to be aroundV = 0:02 diam/s. "Free"
droplets go at this active velocity, while droplets in trains go slower. When a droplet
leaves a train, it becomes a free droplet and accelerates toward its free active speed.
If we look at the velocity of the droplet through the experiment, Fig. 6.13, we indeed
observe the droplets to go slower inside the trains (black), and to regain velocity
outside of trains (red and blue), in the quasi-elastic regime.

We can also observe the collision between two trains, Fig. 6.11(c). This is a really
complex event: the two trains exchange some droplets, but are also observed to cross

4Obviously, our system is over-damped and out of equilibrium, thus there is strictly speaking no
"conservation" or "transmission of impulsion" - we simply use these terms for an e�ective description
of what happens in the system.
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Figure 6.13: Formation of cloggs: spatio-temporal diagram of the position of the
droplet, with a colormap proportional to the velocity: the free droplets goes fast (red
for the droplets going up and blue for the droplets going down). During a collision
between two trains, the droplets are almost immobile (black).

each other, not fusing to form only one train. This train collision lasts some time
(several thousands of seconds). Furthermore, during the collision between the two
trains, the droplets are almost immobile (dark blue), forming what we call a clogg.

To summarize the train behaviour:

- A train is a dense group of droplets going in the same direction.

- The nucleation of the trains happens through alignment during a binary collision
between two droplets.

- The trains are absorbent: they grow by absorbing the droplets they meet.

- Droplets in trains are slower than when swimming alone.

- A train without interaction tends to expand, and the droplet inside accelerate
progressively leading to the formation of a diluted aligned regime.

- When two trains meet each other, they form a clogg. The droplets inside the
cloggs are almost immobile. The trains can leave the clogg.

6.1.3 Discussion - physical origin of the behaviours

Our previous observations show that the swimming droplet may have many di�erent
behaviours, that depend on its history and its environment: (i) if the droplet is alone,
it can either be in its stationary state (going at its active velocityV0), or relaxing
toward this stationary state, if previous event changed its velocity; (ii) if there are two
droplets, they either enter an inelastic collision, or a persistent droplet collision; (iii)
if the droplet is in a dense phase, it is either in a train (dense aligned droplets going
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at slow velocity), or in a clogg (dense droplets almost immobile). In this section, we
want to understand the physical origin of these behaviours.

6.1.3.1 The relaxation toward activity

When just made, a swimming droplet has a zero velocity. Through the instability
described in section (2.2.3), it starts swimming in a random direction, and reaches
its stable state with a steady active velocityV0. If at some point, because of some
perturbation, the velocity of the droplet changes, then it will relax once again toward
its active velocity. This is what is observed for instance when a droplet leaves a train,
where because of the environment its velocity was slower than its active velocity: the
droplet accelerates until it reaches once again its active velocity. Similarly, this is what
should be observed after a collision: the collision slows down the droplets, putting them
out of their steady state dynamics. They then relax back to their free-swimming speed.
Such relaxation after an inelastic collision is showed in Fig. 6.14. This relaxation is

Figure 6.14: A collision between two droplets followed by a long time without collision:
the droplets velocities relax toward their steady active velocity. This relaxation is
interrupted by another collision.

very slow, and is not a direct consequence of the collision. Therefore we di�erentiate
two time scales in our system, the collision time, which is the time the droplet takes
to exchange their velocity, of the order of 200 s, and the relaxation time, which is the
characteristic time at which the droplet reaches its steady velocity, of the order of 1000
s. Because the relaxation takes so long, it is very rare to see the droplets reaching their
steady velocity before entering in another collision: the droplets are constantly out of
their steady state, relaxing toward their active velocity, while being slowed down by
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the collisions. This relaxation toward equilibrium plays a very important role when
considering collisions that lead to alignment. Indeed, in such case, after the collision,
the droplets have the same direction, and therefore relax toward active velocities of
the same sign. This means that while the velocity of the center of mass is conserved
through an inelastic collision, it is not during the relaxation time. Phrased di�erently,
the system gains momentum after the collision. We believe that this e�ect plays a very
important role in the formation of the train regimes.

6.1.3.2 Origin of the collision behaviour

Collision with exchange of direction
Let's look �rst at the most common collision: the inelastic collision that does not
lead to alignment. The trajectory and the velocity during a typical collision, and the
notation we are going to use are given in Fig. 6.15(a) and (b). Before the collision, the

Figure 6.15: Characterization of well-de�ned collisions for an experiment of
density d = 0:1: (a) Trajectories of two colliding droplets,dc is the minimum distance
between the droplets, which de�nes the time of collision. (b) Velocities of the same
two droplets: dVin is the relative velocity of the droplets before the collision;dVout is
the relative velocity of the droplets after the collision. tc is the total collision time,
de�ned as the time from when the droplets start feeling each other, to the time they
stop feeling each other. (c)dVout vs dVin for all well de�ned collisions, and linear �t
(black line). (d) dc vs dVin , and linear �t (black line). (e) tc vs dVin , and linear �t
(black line).
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droplets n1 and n2 swim toward each other at a velocity which vary slightly around
their average velocitiesV1;in and V2;in which may not be the same. At a certain time
t in (time at which they start feeling each other), the velocities of the two droplets start
to decrease. This happens when the droplets are at a distancedin . This distance varies
from one droplet diameter to a few droplet diameters. If the entrance velocities of
the two droplets are di�erent, the velocity of the center of mass is non-zero. In the
referential of the center of mass, the velocities decrease symmetrically toward zero. In
the referential of the lab, this means that one of the velocities might change sign before
the other. The time at collision and the distance at collisiondc are de�ned when the
distance between the two droplets is minimum. Note that with this de�nition, the
relative velocity of the droplets is zero at the collision. After turning back, the droplets
speeds increase until they reach new steady velocitiesV1;out and V2;out . The time at
which the drops stop feeling each other is calledtout , and this happens at a distance
dout . Even after this time, the velocity is not observed to be constant, but to increase
slowly (relaxation time). The total collision time is de�ned astc = tout � t in .

One may then inquire on the e�ect of the initial velocity V1;in and V2;in on the collision
behaviour. As the velocity of the center of mass is constant, the important parameter
to characterize these collisions is the relative velocity,dVin = V1;in � V2;in

2 . These e�ects
are presented in Fig. 6.15(c), (d) and (e). A few observations can be made:

- dVout , the relative velocity after collision increases withdVin the relative velocity
before the collision, but is always lower;

- dc, the distance at collision decreases with the relative velocity before the collision,
but is often larger than 2a, which is the minimum distance at which the droplet
can be (when they touch each other). This means that the collision happens at
a �nite non-zero distance, of typically two diameters between the two droplets.

- The duration of a collisiontc decreases with the relative velocity before the col-
lision.

The droplets start to interact far from each other, and often collide without touching.
The interaction of these droplets can only be made through a modi�cation of the
swollen micelles concentration �eld. This concentration �eld can be disturbed by
the swollen micelles emitted by the other droplet, or the hydrodynamics 
ow �eld
produced by the other droplet. Actually, as in our system the hydrodynamics and
chemistry are coupled, it is likely to be the two at the same time. The mecha-
nisms at play are very complex, and we are not able to solve them exactly. We
may however discuss on the basis of the previous measurement: the droplets are
colliding at a certain distance dc, of typically two droplets diameter. In front of
the droplet, micelles are emitted, which di�use with a di�usion coe�cient D, and
are advected at the typical velocity Vin . A characteristic distance on which the
micelles are transported in front of the droplet emerges from these two parameters:
dmicelles = D

Vin
' 100 nm. This distance alone is too small to explain how the

droplets feel each other from so far. This consideration makes us think that the inter-
actions between droplet during inelastic collision are dominated by the hydrodynamics.
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6.2 Development of a simple model

We have described in details the phenomenology observed in the dense phase. What we
would like to understand now is if these dense phases are caused directly by the activity
and the binary interactions of these droplets. For that, we are going to introduce a
numerical model for these droplets, using only this activity and these binary interaction
as ingredients, and see if they are su�cient to observe the same collective behaviour
than the one observed experimentally: the trains and the cloggs.

6.2.1 The model ingredients

We want to implement two key ingredients in our system: the activity of the droplet
(and thus the relaxation toward activity), and the binary collisions, which behave as
inelastic collisions. We consider particles of �nite radiusa, at a global densityd, with
an active velocity � V0, moving on a periodic 1D axis (continuous or discrete), oriented
by the vector ex .

Binary collision

As in our experiment the collision time is smaller than the relaxation time, we suppose
an "instantaneous" inelastic collision as a �rst approximation. For the general case of
an inelastic collision between two particlesn1 and n2 of di�erent massesm1 and m2, at
di�erent velocity V1 and V2; the velocity of the center of massU, and the di�erential
velocity dU are de�ned by:

U =
m1V1 + m2V2

m1 + m2
; (6.5)

dU = V1 � V2: (6.6)

Then the velocities rewrite as:

V1 = U +
m2

m1 + m2
dU; (6.7)

V2 = U �
m1

m1 + m2
dU: (6.8)

We consider inelastic collisions that conserve momentum, but not the kinetic energy.
These rules can be translated as:

U0 = U;

dU0 = �dU;

where � is the restitution coe�cient. Under such rules, the velocity of the particle
after collision are;

V 0
1 =

1
m1 + m2

�
�m 2(V2 � V1) + m1V1 + m2V2

�
; (6.9)

V 0
2 =

1
m1 + m2

�
�m 1(V1 � V2) + m2V2 + m1V1

�
: (6.10)
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As a �rst approximation in the model, we consider that all particles have the same
mass, which amounts to neglect the persistent particle collisions. Then the above
expression rewrite as:

V 0
1 =

1
2

�
(1 + � )V2 + (1 � � )V1

�
; (6.11)

V 0
2 =

1
2

�
(1 + � )V1 + (1 � � )V2

�
: (6.12)

For elastic collisions,� = 1, the particles simply exchange their velocity. For perfectly
inelastic collision,� = 0, the particles align on the velocity of the center of mass. An
inelastic collision between two particles that exchange direction is shown in Fig. 6.16(a),
and between two particles that come out with the same direction in Fig. 6.16(b). In

(a) (b)

Figure 6.16: (a) Model collision for an inelastic collision leading to an exchange in di-
rection (�dU > jUj). (b) Model collision for an inelastic collision between two particles
that come out with the same direction of motion (�dU < jUj).

these inelastic collisions, a simple rule tells us if the particle will exchange direction or
come out with the same direction: if�dU > jUj, then V 0

1 = U � �dU cannot have the
same sign thanV 0

2 = U + �dU . However if �dU < jUj, then V 0
1 and V 0

2 have the same
sign.

Relaxation toward activity

In the absence of any systematic experimental information on how the particles relax,
we choose our relaxation to be conceptually the simplest one: an exponential relax-
ation. This exponential relaxation occurs at a typical rate� = 1

� r
, � r being the typical

relaxation time.

One important point to notice is that there are actually two steady states in this
bi-directional system, corresponding to the two directions the particle can have (� ex )

6.2.2 Numerical implementation of the model

We tried two di�erent implementations of this model. In a �rst time, we used a contin-
uous coordinate (1D axis), but we encountered di�culties in dealing with dense region.
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We then switched to discrete coordinates (1D lattice). The analytic consideration has
been made for the continuous model. The continuous implementation of the model has
been taken over by Pierre Illien during a Post doc at the Gulliver laboratory, and we
will brie
y discuss the result at the end of this section.

6.2.2.1 Continuous model

We consider particles of �nite radiusa, at a global densityd, with an active velocity
� V0, and moving on a periodic 1D axis. These particles interact with inelastic collisions
of restitution coe�cient � , and when their velocity is not the active velocity, they relax
toward it at an exponential rate � = 1

� r
.

If at a time t0, a particle i at a position x i (t0) has a velocity Vi (t0), and a direction
si = � 1, then in the absence of collision, its velocity and position at timet are:

Vi (t) = Vi (t0)e� (t0 � t ) + si (t0)V0(1 � e� (t0 � t )); (6.13)

x i (t) = x i (t0) �
1
�

Vi (t0)(e� (t0 � t ) � 1) + si (t0)V0(t � t0) + si (t0)V0
1
�

(e� (t0 � t ) � 1)

(6.14)

Then we know the position of the particles at all times depending on the last time it
had a collision tn

c , and until the next collision occurs at a timetn+1
c . In the system

of N particles, it is then possible to compute the position of all particles at all times
from binary collision to binary collision, by computing after each binary collision the
next collision event (the one that will happen the soonest). Knowing that a collision
has happened at a timetn

c , we want to compute the next collision timetn+1
c . For each

pair i and i + 1 of particles, a collision event is such thatx i � x i +1 = 0, which gives an
equation in tn+1

c :

(si � si +1 )V0tn+1
c +

1
�

e�t n
c (Vi (tn

c ) � Vi +1 (tn
c )

+ ( si � si +1 )V0)e� �t n +1
c = x i +1 (tn

c ) � x i (tn
c ) + ( si � si +1 )V0(tn

c +
1
�

);

(6.15)

which is of the format + be� �t = c. This kind of equation is not solvable analytically,
but using the numerical Lambert W function, we can express the solution as

t =
c
a

+
1
�

W(
� b
a

�e
� c
a � ): (6.16)

This time of collision is computed for each pair of particles, and the minimum of all
these times is the time at which the next collision will happentn+1

c . Using this, we
can numerically compute the trajectory of all particles. However, a problem arises in
very dense region: if the particles are blocked in a con�guration where they are side by
side (for instance in a clogg), then they are in permanent collision, and we cannot deal
with this phenomenon with our simple implementation. For this reason, we decided to
switch to a discrete model, which is simpler to implement, and keep the key ingredients
that we are interested in.
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6.2.2.2 Discrete model

We consider a system of N particles at a densityd on a 1D periodic lattice of stepa,
which is also the size of our particles. These particles are active, with a steady velocity
V0 = 1, and a direction s = � 1, the sign being the direction of motion. These particles
collide with an inelastic coe�cient � , and relax toward activity with a rate � . The
implementation is as follows:

1. The particles are initially placed randomly on the lattice, with random direction
and a velocity V(t = 0) = � 1.

2. At each time step, all particles are considered in a random order, and attempt
to move to the next site with probability V in direction s.

(a) If the next step is free, the particle moves with a probabilityV , and the
velocity relaxes exponentially towardV0 with a rate � :

V(t + 1) = V(t) + �s (t)(V0 � V (t)) : (6.17)

(b) If the next step is occupied, the particle collides with the other particle with
the same inelastic behaviour than before. Its position doesn't change, but
its velocity evolves with the rule:

V1(t + 1) =
1 � �

2
V1(t) +

1 + �
2

V2(t): (6.18)

This discrete model is really simple, and should be viewed as a �rst approach at un-
derstanding the e�ect of our key ingredients - the inelastic collision and the relaxation
toward activity - on the behaviour of the system. This model is the one that we use
for all following results.

6.2.3 Simulation with parameter values close to the experi-
ments

The typical velocity in the experiment isV0 = 0:02 (diam/s� 1), and the density varies
betweend = 0:1 and d = 0:8. Experimentally, we can measure the inelastic coe�cient
for the di�erent experiments. Although it is relatively constant in the same experiment,
it varies from � = 0:2 to � = 0:8 from one experiment to anther. We also evaluate
roughly the relaxation time � r = 1000 s.

Discussion - Collision with alignment:

The inelastic collision that leads to alignment are not conceptually di�erent from the
inelastic collision where the droplet exchange direction. It is likely that they come from
the same physical mechanism, the only di�erence being the velocity of the droplet be-
fore collision. More interesting is the persistent droplet collision: during these collision,
one droplet is persistent, its velocity is almost constant, just like if it didn't feel the
other droplet. There are two possible explanations for that: (i) the droplet swims un-
der a high gradient of swollen micelles, then the addition of more swollen micelles by

182



6.2. DEVELOPMENT OF A SIMPLE MODEL

Figure 6.17: Persistent collision - mass ratio: mass ratio between two colliding
droplets as a function of the inverse ratio of velocities, for all well-de�ned collision of
an experiment atd = 0:1, and linear �t (black line).

the other droplet would not change much this gradient, thus not disturb the persistent
droplet. However in that case, the persistent droplet should go very fast, but they
are experimentally observed to be slower than other droplet. (ii) The channel behind
the persistent droplet is locally saturated in swollen micelles - preventing completely
the persistent droplet to turn back. This may happen in an area of the channel where
collisions have happened multiple times. This analysis is coherent with the fact that
the persistent droplet is slow (the channel being almost saturated, the droplet can only
generate a small gradient to swim); but also with the fact that persistent droplets often
appear after a lot of collisions - for instance at the end of a collision wave. To relate
these persistent droplets with the inelastic collision from before, one can conceptualize
these slow droplets with high swollen micelles concentration around them as particle
with "higher mass". Then these persistent droplets move with higher momentum and
kinetic energy than the other "normal" droplet: they are much harder to perturb, and
thus to be turned back. To check this hypothesis, we compute the "mass ratio" of
particles during a collision such that the momentum is conserved:

m1

m2
= �

V 0
2 � V2

V 0
1 � V1

: (6.19)

We can then check that during binary collision, relatively slower droplets indeed have
a relatively heavier "mass", in Fig. 6.17, and that droplets of similar velocity have the
same "mass" (ratio of order 1).

In the simulation we supposed the mass of the particles to be always the same, that is
we neglect the persistent like collisions.

Running the simulation for typical parameters,d = 0:2 � = 0:6 and � = 10� 3, we
typically obtain the spatio-temporal diagram presented in Fig. 6.18. Although the
behaviour from one numerical run to another may vary, on the typical time scale of
10000 s, we observe that:

- At short time scale, the particles collide with each other and exchange direction.
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Figure 6.18: Spatio-temporal diagrams for two simulations with parametersV0=2a =
0:02 s� 1, dt = 1 s, d = 0:2 � = 0:6 and � = 10� 3, which are parameters close to the
experimental ones.

- Alignment happens in the system, nucleating trains.

- Trains absorb particles and grow.

- Two trains can meet each other, forming a clogg, a region where the particle do
not move. The cloggs may evaporate.

These observations are very similar to the ones observed experimentally. In that sense,
these simulations con�rm that the collective behaviour of our swimming droplet may
rise from our simple considerations about the binary interactions and the activity that
have been implemented in our model. Note that over this time scale, the system does
not seem to have reached a steady state, trains are still forming and growing, and
other cloggs may appear when two trains collide. In other words, in the experiments,
we are always in a transient regime. This could be expected given the very long
relaxation time � r and the absence of noise to randomize the dynamics.

At this point, one may want to go a little further in the exploration of our model
behaviour by exploring the parameter space� , � and d (d, V0 and dt play an equivalent
role in our system), and try to catch the steady regime - if there is one, by running
longer experiments.

6.2.4 Exploration of the parameter space

6.2.4.1 Observation of di�erent regimes

For random initial conditions, we want to explore and characterize the behaviours of
the system for di�erent parameters� , � and d. To characterize what we are observing,
we introduce a few order parameters: the average velocity amplitudeVm , the magne-
tization (the average orientation)M and the participation ratio R(t) = hD i 2

g

hD 2 i g
, D being
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the distance between two neighbor particles, andh�ig the average over all particle at a
time t. Vm quanti�es how fast the particles go (ifVm = 0, all particles are not moving,
and if Vm = 1, all particles have their maximum velocity), M quantify how aligned
they are (if S = 0, there is as many particles going upward than downward, and if
jSj = 1, all particles go in the same direction), andR quanti�es how homogeneous
they are (if R = 1, all particles are at an equal distance from their neighbors, and if
R ! 0, all particles are at the same place in space).

All simulations presented here are made for a number of particlesN = 100, a number
of time step N t = 105, a density d = 0:1, a time stepdt = 1 and a velocity V0 = 0:1,
which gives a ratio 1

dV0dt = 100 (which is similar to the experimental conditions).

Starting with quasi-elastic collision (� close to one), we observe basically a regime of
binary, quasi-elastic collisions (see Fig. 6.19. In this regime, the particles loose almost
no velocity after collision, and retrieve it almost immediately. Therefore, the average
velocity is almost one. In such system, alignment is not observed; and the impulsion
is conserved. The magnetization is constant, and �xed by the initial condition. For
random initial direction, and for a large number of particles, this magnetization tends
to zero as 1p

Nd
. The participation ratio R is non-zero, as the distance between the

particles is homogeneous and does not vary much during the simulation.

Then if we decrease the restitution coe�cient (Fig. 6.20), a di�erent behaviour is
observed. At the beginning, the behaviour is the same than for the quasi-elastic
collision: the particles collide and exchange direction. Then we start to observe
collisions that lead to alignment. These alignments nucleate the formation of trains:
dense structures of aligned particles. These trains then interact with each other and
fuse together, forming larger trains. A train is a region with high density, if there are
only a few large trains in the system, it leaves large empty spaces between two trains,
a characteristic of that is the decrease of the participation ratio. The magnetization
tends to 1 (in absolute value) as one train �nally takes over the whole experiment,
until only one train remains: all the particles are aligned (M = � 1), and the whole
system becomes homogeneous (R ! constant). The train regime is thus a transient
one that leads to a stable regime: the homogeneous globally aligned state.

Looking at system where the global aligned state develop faster (lower� , which leads
to more 
uctuation in velocity), we can study more precisely its properties (Fig. 6.21).
When the particles are all aligned (M = 1), there is no more collision, and thus the
velocity has the time to relax towards the active velocityVm = 1, even when the
restitution coe�cient � is low. The density becomes �xed,R ! constant (no more
interaction between particles, but there might still be statistical 
uctuations).

Finally, throughout the low � experiment, but especially for very low relaxation time,
we observe the apparition of cloggs: regions of the lattice where the particles are
completely packed, and are blocked (Fig. 6.22). The participation ratioR then tends
to zero, as particles are very localized. Although the particles are immobilized in these
structures, they still have an orientation, and are constantly simultaneously trying to
relax and collide with their neighbor particles, being unable to escape. These structures
typically appear when two trains of comparable size collide. The two trains compete
with each other inside the clogg, for a long time. One can observe the front between
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Figure 6.19:Quasi-elastic regime: Simulation for the parameters� = 0:8, � = 0:01.
Left: Spatio-temporal diagram, the color stand for the sign of the velocity, red for
positive and blue for negative.Right: temporal evolution of the parametersVm , M
and R.

Figure 6.20: Transient regime of train formation: Simulation for the parameters
� = 0:4, � = 0:1. Same representation than in Fig. 6.19.
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Figure 6.21: Global alignment of the particles: Simulation for the parameters
� = 0:6, � = 0:001. Same representation than in Fig. 6.19.

Figure 6.22: Apparition of cloggs in the system: Simulation for the parameters
� = 0:2, � = 0:001. Same representation than in Fig. 6.19.
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the two trains with time, it seems to follow some stochastic evolution. At some point,
this front will reach one of the clogg end, then all the particles in the cloggs are aligned,
and are freed in a train structure, that slowly relaxes toward a �nal aligned regime.
Several cloggs can be observed at the same time.

6.2.4.2 Phase diagrams

The observed regimes in our system are: the quasi-elastic collision state, the train
state, the globally aligned state, and the clogg state. Using the previous parameter,
one can try to establish a "phase" diagram of these regimes, although whether these
regimes are truly stable phases or not has yet to be discussed.

Regime Vm M R
Quasi-elastic
collision
regime

Vm ! constant -
the constant being
a compromise be-
tween the loss in
velocity after colli-
sion, and the re-
gained velocity dur-
ing relaxation.

M ! 0 (it is actu-
ally of the order of

1p
N

- �xed by the
initial conditions.

R non zero - there
is no large varia-
tion of density in
the system.

Train regime
(transient)

Vm ! 1 but is
controlled by large
events - it decreases
fast during train fu-
sion, and increase
slowly inside trains,
thus is very experi-
ment dependent.

jM j increases
slowly - one train
win over all others.

R - is experiment
dependent.

Global align-
ment regime

Vm = 1 - all parti-
cles relaxed toward
the active velocity

M = 1 - all parti-
cles are aligned

R ! �nite value
- the spacing be-
tween particles
does not evolve.

Clogg regime
(transient)

Vm 6= 0, but small
- the particles are
blocked and con-
stantly collide with
each other.

M is small, but dy-
namic - a collision
front separate two
sizes of the clogg
that go in opposite
direction.

R is small - parti-
cles are condensed
in cloggs.

Table 6.1: Summary of the di�erent regimes and their characteristic parameters.

Table 6.1 summarize how the quantitiesVm , M and R behave in the di�erent phases.
Using these observations, we can plot these variables as function of� and � in
Fig. 6.23, for a dilution of d = 0:1.

Fig. 6.23(a) shows the value of the average velocity:Vm = 0 (blue) corresponds to the
clogg regime. Vm = 1 (red) corresponds to global alignment regime or quasi-elastic
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Figure 6.23:Phase diagram computed from the system variable: Top - average
velocity at the end of the experiment (Vm = 0 is blue and Vm = 1 is red). Middle -
Participation ratio at the end of the experiment (R = 0 is blue and R ! 1 is red).
Bottom - magnetization at the end of the experiment (M = 0 is blue and M = 1 is
red).
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regimes, intermediary colors may correspond to a transient regime that had not yet
reached a steady state (trains, intermediary cloggs), or to a quasi-elastic regimes
whose velocity is not one.
Fig. 6.23(b) Shows the value of the magnetization:M = 0 (blue) corresponds to
the not globally aligned regimes, like the cloggs and the quasi-elastic regime,M = 1
(red) corresponds to the global alignment regime, intermediary colors correspond to
transient regime such as not balanced clogg, or train regimes.
Fig. 6.23(c) shows the participation ratio: highR (blue) corresponds to very ho-
mogeneous regimes such as the quasi-elastic regime, intermediaryR (blue-green)
corresponds to a global alignment, lowR (light green) corresponds to locally dense
domains that leave a lot of empty space around it, such as cloggs or large trains.

Using all the above consideration, one may draw a schematic "phase diagram" of the
di�erent regimes, in the two parameter spacef �; � g, Fig. 6.24, for a number of particles
N = 100, a number of time stepN t = 105, a velocity V0 = 1 and a density d = 0:01.

Figure 6.24: Schematic phase diagram: we observe three long lasting regime, the
quasi-elastic regime for high� , the globally aligned regime, for low� and high � , and
the cloggs, for low� and low � .

Interpretation:
When � is very small, the particles never have time to retrieve their velocity. As a
consequence, they will be slower in the dense region, where they collide a lot. Particles
spend more time in the dense area, making them even denser, until particles are
blocked, creating cloggs. This is the bottom area of the phase diagram. This clogg
phase could be interpreted in term of Motility Induced Phase Separation (MIPS) [151],
which is a widely studied phenomena in the �eld of active mater. The lower the�
parameter is, the longer the cloggs last, until we can no longer see them break. It is
di�cult to say if these cloggs are always a transient regime, or if they become a stable
phase at some low enough� .
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When there is disparity of velocity in the system, collision may lead to alignment,
creating trains. Such trains absorb other particles and grow, making dense aligned
structures that interact with each other. These trains are only transient regimes
however, and one train is always observed to win over the other, leading to a globally
aligned system. This is the upper left part of the diagram. In this region, transient
cloggs can also appear, always transient, but this contribute to decrease the average
velocity and magnetization of the system, which corresponds to the blue dot observed
in the Vm and M phase diagrams, in the middle of the globally aligned regime. This
regime forms a steady phase: as there is no noise, nothing in our system can undo the
alignment, and thus the aligned phase is stable.

Finally, when � is large, the collisions are quasi-elastic; particles collide without align-
ing. One could still discuss on the stability of such regime, indeed, the system is
stochastic, thus a local heterogeneity in the system could lead to aligning collisions.
As said before, nothing in the system can undo alignment, thus each aligning collision
increases e�ectively and de�nitively the whole system alignment. One can then wonder
if after waiting for a long enough time, the system will evolve into trains, then to a
globally aligned regime. This is de�nitively false for� = 1, as a system with only
elastic collision will never lead to alignment.

Discussion on the in
uence of the density : when the density decreases, it is more
di�cult to form cloggs: the clogg regime happens for lower� . The increased spacing
between particle makes it also easier for them to relax toward activity: aligning collision
in the system are more unlikely, and thus the transition between the globally aligned
and elastic regime will happen for lower� . The global shape of the phase diagram is
otherwise unaltered.

6.2.5 Some theoretical considerations

In our experimental system, as well as in our simulation system, we observe a variety
of transient phases and two "long-lasting" phases which are the quasi-elastic regimes
and the global alignment. The initial conditions being misaligned (random), the most
striking e�ect is the emergence of a globally aligned phase. From the implementation
of the simulation, we know that these behaviours emerge from very simple rules at
the scale of one active particle, and from binary collisions. One collision may lead to
alignment, for certain sets of velocities prior to collision, and parameter� (Fig. 6.16).
Yet this consideration does not explicit how the system reaches such a collision. We
are still lacking a set of rules, or at least a physical understanding that would help us
predict why one system would tend toward a global alignment state, or a quasi-elastic
state. In order to answer this question, we present in the following two simple analytic
approaches that highlight the physical phenomenon leading - or not - a system toward
alignment.

6.2.5.1 First approach: two particles system

A �rst approach consists in investigating the case of two particles,n1 initially starting
with a velocity V1 > 0 and n2 with a velocity V2 < 0, on a periodic lattice (Fig. 6.25).
The particles will collide with each other as long as they do not reach an aligned state.
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Figure 6.25:Two particles case: To par-
ticle moving at velocities v1 and v2 on a
periodic 1D network of size L.

U = j V1+ V2
2V0

j is the velocity of the center of mass made dimensionless by the active
velocity V0, and we de�ne dU the di�erence in velocities also dimensionless such as
dU = j V1 � V2

2V0
j. In the referential of the lab:

V1 = sV0(U + dU); (6.20)

V2 = sV0(U � dU); (6.21)

where s is the direction of the �rst particle, which changes after each collision. This
convention allows us to conveniently keepdU > 0.

The purpose of this section is to predict the behaviour of two particles at long time:
would they align or would they collide forever? We consider a continuous space and a
discrete time of stepdt.

In the absence of collision: as long as the particles are not aligned (n1 has a
direction s and n2 has a direction� s), at each time step:

V1(t + dt) = V1(t) + � (sV0 � V1(t)) ; (6.22)

V2(t + dt) = V2(t) + � (� sV0 � V2(t)) ; (6.23)

where � is as de�ned before, the relaxation rate toward activity. In the referential of
the center of mass, it gives:

dU(t + dt) = (1 � � )dU(t) + �; (6.24)

U(t + dt) = (1 � � )U(t): (6.25)

After n time iteration:

dU(t + ndt) � 1 = (1 � � )n (dU(t) � 1); (6.26)

U(t + ndt) = (1 � � )nU(t): (6.27)

The position of the particle with time is:

x1(t + ndt) = x1(t) + dtV0 �
nX

i =1

U(t + idt ) + sdU(t + idt ); (6.28)

x2(t + ndt) = x2(t) + dtV0 �
nX

i =1

U(t + idt ) � sdU(t + idt ): (6.29)

(6.30)
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If the periodic lattice has a sizeL, right after the collision the two particles are at a
distanceL from each other (note thatL is signed). Then we want to know the time
ncdt needed before the next collision, and their velocity at the time of collision:

L = s(x1(t + ncdt) � x1(t)) � s(x2(t + ncdt) � x2(t)) ; (6.31)

= 2dtV0

ncX

i =1

dU(t + idt ); (6.32)

= 2dtV0

ncX

i =1

(1 � � ) i (dU(t) � 1) + 1) ; (6.33)

= 2dtV0�
� 1 � (1 � � )nc

�
(dU(t) � 1) + nc

�
: (6.34)

This last equation is non trivial, but givesnc, the time between two collisions. We are
more interested in a recursive form indU of this equation. Using equation 6.26, we
get:

nc =
� L

2dtV0
+

1
�

(dU(t + ncdt) � dU(t))
�

; (6.35)

which injected in equation (6.26), gives an equation between the velocitydU(t) and
the velocity dU(t + ncdt), in the absence of collision:

dU(t + ncdt) � 1 = exp
h L

2dtV0
+

1
�

(dU(t + ncdt) � dU(t)) ln(1 � � )
i
(dU(t) � 1):

(6.36)

Rewritten cleverly, this gives:

ln(1 � � )
�

�
dU(t + ncdt) � 1

�
exp

�
�

ln(1 � � )
�

(dU(t + ncdt) � 1)
�

(6.37)

=
ln(1 � � )

�

�
dU(t) � 1

�
exp

�
�

ln(1 � � )
�

(dU(t) � 1 �
L�

2V0dt
)
�

(6.38)

Once again, this equation of the formx exp(x) = y have a numerical solution using the
Lambert W function: x = W(y). Then:

dU(t + ncdt) = 1

�
�

ln(1 � � )
W

n ln(1 � � )
�

(dU(t) � 1) exp
h

�
ln(1 � � )

�
(dU(t) � 1 �

L�
2V0dt

)
io

:

(6.39)

We �nally have an analytic recurrence equation fordU in the absence of collision:
dU(t + ncdt) = f (dU(t); L; � ). Note that this function f is an increasing function, but
also that f (x) > x (physically, in the absence of alignment, the two particles velocities
increase toward their active velocities, with di�erent sign, thusdU grows.)
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We use a similar reasoning forU:

U(t + ncdt) = (1 � � )nc U(t)

=
dU(t + ncdt) � 1

dU(t) � 1
U(t)

= �
U(t)

dU(t) � 1
�

ln(1 � � )

� W
n

� exp(
d ln(1 � � )

2dt
) �

ln(1 � � )
�

(dU(t) � 1) exp
h

�
ln(1 � � )

�
(dU(t) � 1)

io

Which is an equation of the formU(t + ncdt) = 1� f (dU(t );d;� )
1� dU(t ) U(t).

During a collision: After the �rst collision which occurs at t � , the two particles
exchange their velocity with inelasticity. In the referential of the center of mass:

U(t+ ) = U(t � ); (6.40)

dU(t+ ) = �dU (t � ): (6.41)

After many collisions: We de�ne two sequencesUk and dUk which stand for the
velocities right after the kth collision. The relations de�ning these sequences are:

Uk+1 =
1 � f (dUk ; d; � )

1 � dUk
Uk ;

dUk+1 = �f (dUk ; d; � ):

wheref is a numerical function that uses the Lambert W function, as de�ned before.
Plotting �f (x) with x between 0 and 1 for� = 0:8 and � = 0:01 in Fig. 6.26, we see
that this function can cross the identity function.

In this case, the sequencedU is convergent: in the absence of alignment, the di�erence
of velocity between the two particles right after a collision reaches a constant value after
a certain number of collisions. Plotting the same curve for di�erent� (Fig. 6.27(a)),
and di�erent � (Fig. 6.27(b)), we can make a few observations.

- If � = 1 (instantaneous relaxation), then the velocity of the particle right before
the collision is always� V0, and thus right after the collision, their velocity is
� �V 0. Uk = 0 and dUk = �V 0.

- If � = 0 and � 6= 1, there is no relaxation, the particles loose velocity after each
collision, and provided that there is no alignment after the �rst collision, the
velocity of the particles tends to zero.Uk ! 0 and dUk ! 0.

- If � 6= 1 and � = 0, the particles align after the �rst collision dU1 = 0 and
U1 = V0.

- If � 6= 1 and � = 1, the particles never loose any velocity. There is no alignment.
Both particles velocities go toward� V0, exchanging sign after each collision.
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Figure 6.26: function�f (x) (in blue) for � = 0:8, � = 10� 2 and L = 10. In black, the
identity function. In red the recurrence ofdU from dU0 to dU1 .

- If 0 < � < 1 and 0< � < 1: the particles loose velocity after each collision, and
eventually regain some of it by relaxing between two collisions. Providing there is
no alignment, this converges5 toward a certain dU1 which is the solution of the
equation f (x) = x, and can be computed numerically. These solutions depend
on � , � and L. Fig. 6.28 gives the evolution ofdU1 with � and � , for L = 10.

Interestingly, the curves of iso-value ofdU1 share some similarities with the boundary
separating the disordered from the globally aligned phase, in the phase diagram
computed previously (Fig. 6.23). We observe basically that the valuedU1 increases
with � and � . This statement is quite intuitive as if � is low, the particles loose a lot
of velocity after collision, and if� is low, it doesn't have time to recover much velocity
before the next collision.

If one now looks at the evolution of the sequenceUk , becausef (x) > x , 1� f (x)
1� x < 1,

thus the sequenceUk is decreasing after each collision. Actually, becausedU ! dU1

such that �f (dU1 ) = dU1 , Uk +1

Uk
! 1� 1

� dU1

1� dU1
< 1, thus the sequenceUk tend to zero.

Knowing the limit of dUk ! dU1 and Uk ! 0, we know, in the absence of alignment,
the �nal state of the system.

We have yet to discuss the conditions that lead to this "alignment" event that changes
the equations: as soon as there is alignment, both particles go in the same direction
and stop colliding. Provided that � 6= 0, both velocities then relax toward the active
velocity � V0, of the same sign. The prediction of this alignment event is the crucial
information we are lacking in order to be able to predict beforehand the �nal state of

5This statement is purely the product of an observation, we have not demonstrated that this
sequence converges for all� and � .
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Figure 6.27: (a) Evolution of the function�f (x) for di�erent values of � , at � = 0:01
and L = 10. (b) Evolution of the function �f (x) for di�erent values of � , for � = 0:8
and L = 10.

Figure 6.28: Value ofdUinf computed numerically as a function of the two parameters
� and � , for V0 = 1 and L = 10.

the system.

The alignment or non-alignment of particles can be translated in terms of the compari-
son between the velocity of the center of mass, and that of the di�erence of velocity, or
in term of their ratio. If we note Qk the sequence of the ratio ofUk and dUk : Qk = dUk

Uk

( Fig. 6.16 illustrates the following rules);

Non alignment , Uk < dUk , Qk > 1

Alignment , Uk > dUk , Qk < 1

Then two non-aligned particles are aligned by the collisionk if Qk < 1. The sequence
Qk does not have a simple recurrence law - it depends ondUk in a highly non trivial
way:

Qk+1 =
�f (dUk)(1 � dUk)
dUk(1 � f (dUk))

Qk (6.42)
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If we note g(x) = �f (x)(1 � x)
x(1� f (x)) , we can plot this function on the same graph asf (x)

(Fig. 6.29). The evolution ofdU after each collision follows the functionf (in blue).
Like before, for any initial condition ofdU0, we �nds that dU converges toward a �nite,
non-zero valuedU1 . Each iteration of dU is represented in red continuous lines. Then
to eachdU also correspond a value ofg(dU) = Qk +1

Qk
, represented in red dashed lines.

Then at each iteration, we know the value ofQk +1

Qk
.

Figure 6.29: function f(x) (in blue) and g(x) (in green) (a) for� = 0:8, � = 0:05 and
L = 10 (b) for � = 0:8, � = 0:01 and L = 10. In black, the identity function. In
red the recurrence ofdU from dU0 to dU1 . In (b) g(x) has value lower than one for
dU > dUc.

Knowing that Q0 > 1 (the particles are initially not aligned), we can pinpoint some
cases where the successive collisions cannot lead to alignment:

- if dU0 < dU1 : dUk is an increasing sequence, whileUk is a decreasing one: the
successive collisions cannot lead toUk > dUk .

- if g(x) > 1 for all x between 0 and 1; then the sequenceQk is increasing, and
being initially larger than unity, it cannot lead to a Qk < 1.

Then two necessary (but not su�cient) conditions to have alignment are thatdU0 >
dU1 and that g(x) goes smaller than unity. We calldUc the value of dU such as
g(dUc) = 1, when it exists between 0 and 1. We can compute numerically thisdUc as
a function of � and � (Fig. 6.30).

We observe that thisdUc exists (g(x) has value under one) for low� and low � .

Phrased di�erently, the existence of thisdUc means that for certaindU, the sequence
Uk decreases slower that the sequencedUk , thus there is a chance to attainUk > dUk .
However, this "chance" depends on the initial value of the two sequences. For a given
function g (� , � and L �xed), with dU0 > dUc, the function Qk +1

Qk
decreases untildUk =

dUc. Thus the lowestQk will be attained right after the kc collision, such asdUkc > dUc

and dUkc+1 < dUc. We de�ne Ac(dU0) =
Q kc

k=0
Qk +1

Qk
such that Qkc = Ac(dU0)Q0 (Note

graphically that this coe�cient depends on dU0, as the number of collision depends on
dU0, but is maximum for dU0 = 1). Then Ukc > dUkc (i.e. Qkc < 1) means for the
initial conditions that U0 > A c(dU0)dU0. It is not possible to always impose such rule.
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Figure 6.30: Value ofdUc computed numerically as a function of the two parameters
� and � . White color means that dUc does not exist between 0 and 1. In red is the
curve dUc = 0:5.

Indeed, we restricted our velocity to be smaller than the active velocity, this means
that U0 < 1 � dU0. Thus we can �nd U0 > A cdU0 only if Ac(dU0)dU0 < 1 � dU0,
that is if ( Ac(dU0) + 1) dU0 < 1. Observing a number of experiments, we observe that
the function (Ac(dU0) + 1) dU0 is an increasing function indU0, thus that its smallest
value is at dUc. Then the last, but not least, condition that allows the system to have
alignment, for at least some value ofU0 and dU0 is that (Ac(dUc) + 1) dUc < 1. Note
that as Ac(dUc) = 1, then the condition rewrites very simply asdUc < 0:5.

The critical curve that separate the two regimes "possible alignment", and "no align-
ment" is then dUc = 0:5, with g(dUc) = 1. After some arrangement, this gives us an
equation between� , � and L:

� = � 1 +
1

f (x = 1
2 ; �; L )

(6.43)

We can inverse thef function, to get a more explicit relation between� , � and L. We
get:

ln(1 � � )
� 1

�
�

� + 1
� � 1

L
V0� t

�
= � 2

� + 1
� � 1

ln
� 2�

� + 1

�
(6.44)

This curve is plotted in Fig. 6.31. dUc < 0:5 means that I can chosedU0 = 0:5 >
dUc, and �nd a U0 close enough but smaller thandU0, U0 = 0:5 � � such that U0 >
Ac(dU0)dU0. Rewritten as � < 0:5(1 � Ac(dU0)), we �nd that since Ac(dU0) < 1, this
is always possible. We can study the asymptotic behaviour of this relation:

- � ! 0: then ln(1� � )
�

1
� + L

V0 � t

�
= 2 ln(2 � ). We see graphically that ln(� ) �!

� ! 0
0,

which corresponds to� �!
� ! 0

1, and thus to ln(1� � ) �!
� ! 0

�1 . Then more precisely

� goes to 1 as:

� �!
� ! 0

1 � exp
� 2

1 + L
V0 � t

ln(2� )
�

: (6.45)
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Figure 6.31: Curve separating the two regimes alignment and non alignment depending
on the parameters� and � , and for di�erent L, for the two particles system.

- � ! 1: graphically ln(� ) �!
� ! 1

�1 , which means that � �!
� ! 1

0, and

ln(1 � � ) �!
� ! 1

� � . If we note � = 1 � � , then the equation (6.44) can be simpli�ed

as 1 + � 2� �
�

L
V0 � t = (2 � � ), thus:

� �!
� ! 1

V0� t
2L

(1 � � ): (6.46)

- L ! + 1 : then for � 6= 0, the equation (6.44) simpli�es as:

� �!
L !1

1 � exp
� 2V0� t

L
ln(

2�
� + 1

)
�

(6.47)

�!
L !1

0 (6.48)

Discussion
The above analysis gives us insight on what conditions lead to alignment: alignment
asks for a combination of the density,1L , the inelastic coe�cient � and the relaxation
� such that the system is "not too elastic", and "relax slowly enough" or on a "long
enough distance", as described by the critical curve equation (6.44). But that is
not enough - alignment can only happen for certain initial velocities (for instance,
if U0 = 0, the system will never reach alignment). Thus, the �nal behaviour of our
system has a strong dependency on the initial condition.

How is this relevant to the system with many particles? Fig. 6.32 shows the super-
position of the critical curve and the phase diagram obtained by measuring the �nal
magnetization in the simulation (the other phase diagram obtained usingVm and R
could have been also used). For� < 0:9, the critical curves greatly underestimate the
critical � at which alignment occurs. For our numerical system, alignment happens
for a wider range of� , at the expense of the quasi-elastic region. There is a simple
explanation for that. The main di�erence between the two particles system and the
many particle system is that in the two particles system, the distance between the two
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Figure 6.32: Comparison between the simulations and the two particles sys-
tem phase separation: Phase diagram obtain through the simulations by considering
the value of the magnetization and the critical curve computed from analytically solving
the two particles case (yellow).

particles after collisionL is �xed. In the many particle system, the particles change
their collision partner after each collision, and the distance also changes. We saw in
this section that the alignment rule depended onL: more 
uctuation in the distance
between particles then mean more opportunity for alignment events. This is partic-
ularly visible for � = 1 (log( � ) = 0): (1) in the two particles system, � = 1 means
that at collision, the particles may loose some velocity, but at the next time step, they
will instantaneously relax toward the active velocity. The two particles always meet
symmetrically, with velocities +V0 and � V0, thus alignment never happens. (2) In the
many particle system, alignment may still happen if the particles undergo successive
collisions, that is to say if the particles do not have the one necessary time step (in
our implementation of the model) to relax toward the active velocity. The fact that
the transition between the quasi-elastic and globally aligned regimes in the phase di-
agram is not � c ! 0 when � c ! 1 is thus intrinsically linked with the discrete time
implementation of our model.

Another phenomenon absent from the two particles model is of course the formation
of cloggs.

At this point, we should gather a few remarks:

- The behaviour of the system depends on the number of particles (more particles
seem to favor alignment).

- The behaviour of the system also depends on the observation time - some tran-
sient long lasting regime are at play in the system: the cloggs and the trains.

- Because of the absence of noise in the system, only alignment events may happen,
there is no source of misalignment.

Then stochastically, in an in�nite system with an in�nite number of combinations of
initial conditions, and if we wait long enough, we could always reach anL between
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two droplets small enough so that with the� and � parameters of the experiment,
a collision leads to alignment. This alignment may nucleate a train, which itself will
relax toward the globally aligned phase. One may then wonder about the stability
of the regime observed, in particular the stability of the quasi-elastic regime, where a
train nucleation could happen stochastically even after a long time, and leads to the
global alignment regime.

6.2.5.2 Second approach: Continuous model

During his Post-Doc at Gulliver, Pierre Illien worked on the development of the model
for more robust and long-lasting simulation, and considering continuous time. I will
summarize part of his work which is strongly related to what I have exposed. In his
work, the relaxation toward activity is then written:

Vi (t) = si V0+
�

V i
c � si V0

�
exp� 
 (t � tc;i ); (6.49)

where tc;i is the time of the last collision, andV i
c the velocity right after this last

collision. 
 is related to the coe�cient � that we use in the discrete model:
 = � ln(1 � � )
dt .

Then:

ln(� ) ! �1 , � ! 0 , 
 ! 0 , ln(
 ) ! �1 ; (6.50)

ln(� ) ! 0 , � ! 1 , 
 ! + 1 , ln(
 ) ! + 1 : (6.51)

He also studied more precisely the phase diagram of the particles collective behaviour,
in the plane (� ;
 ), and the phase diagram computed is shown in Fig. 6.33.

The main di�erence with our phase diagram is that for the limit between the two
regimes quasi-elastic and globally aligned regime (red and blue point)� c ! 0 when

 c ! 1 (� ! 1), which is expected as the behaviour in� c ! 1 of our discrete model
was intrinsically linked with the discretization of the relaxation toward activity.

Pierre Illien also computed analytically the transition curve for a growing train in the
continuous model. The growing train system is a system of an in�nite number of
particles, with special initial condition: one particle going in the directionex , in front
of "a lot" of particles going in the direction � ex , with an homogeneous density. Then
we expect successive collisions to happen in the system, in a similar way than what
happened for the experiment in Fig. 6.8. After each inelastic collision, the particle
looses some velocity, and regains it in some extent before the next collision. The
question to answer is then if the particle turns back at some point (global alignment),
or not. Solving this problem, Pierre found a critical curve
 c(� c) separating the cases
when the droplet �nally align, and when the droplets never align (represented with a
black continuous line in Fig. 6.33):

Growing train (continuous) :

L
V0

= � 2 ln
� 2�

1 + �

�
�

1 � �
1 + �

;

Two droplets(discret) :

L
V0

= � 2 ln
� 2�

1 + �

�
�

1 � �
1 + �

� 
dt
1 � exp(� 
dt )

�
:
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Figure 6.33: Phase diagram computed by Pierre Illien in the plane (� ;
 ), representing
sets of parameters that allow the formation of `trains' (going to the ordered state after
an arrested cluster state (� ), or continuously (� ) or not (N). Simulations performed
with N = 100 particles on a lattice of L = 1000 sites. The solid line represents the
critical value of the relaxation rate that allows an in�nite train to grow by one unit.

The two relations are very similar, with a supplementary factor in the case of the
discrete system that depends on the time stepdt:

�

dt

1� exp(� 
dt )

�
�!
dt! 0

1.

Pierre's continuous model and the previous discrete model give similar results. Pierre's
model being faster and more robust, it allows to explore the parameter space for longer
experiments, and for more droplets. Pierre studied the evolution of the transition
curve between the quasi-elastic and global alignment phase with the observation time:
the longer the experiment, the more the curve shift toward large� (global alignment
happens for larger� ). However, this shifting seems to saturate for time long enough,
which suggests that a quasi-inelastic stable phase does exist. Note that� = 1 and
� = 1 are still limit at which there might not be alignment in the system. These
results and considerations are still under discussion.

6.2.5.3 Short discussion on the Clogg regime

The clogg is a regime where all particles condense in a small spatial region, and are
blocked with a zero apparent velocity (they do have a inner velocity, the probability of
moving is non zero, but they are blocked by the presence of other particles).

Inside a clogg, two regions going in two opposite directions face each other. The
boundary between the two regions is dynamic and move inside the clogg. At some
point, the boundary reaches one end of the clogg: all particle become aligned, and the
clogg explode into a unique train. Although they can last a very long time, cloggs are
transient regimes.
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The clogg regime might remind of the MIPS behaviour: the motility in a clogg being
reduced (the particle are blocked), particles accumulate in the clogg region, leading to
a density mismatch between the cloggs (all sites are occupied), and the "bulk" (outside
the cloggs, the density is smaller, or could even be zero if all particles are in cloggs).
We still stress that the clogg regime is di�erent than the MIPS behaviour in the sense
that (i) although particles can condensate from the bulk to the clogg (as soon as they
collide with the clogg), the opposite is not true, the particles do not leave the clogg
(except for the �nal transition to a train). There is therefore, unlike in MIPS, no phase
coexistence: and (ii) the dense phase in MIPS reaches a stable state, while cloggs in
our model are transient.

Conclusion

In this chapter, we studied the collective behaviour of swimming droplets in a 1D
geometry. We observed a rich variety of behaviours, from the binary interaction be-
tween droplets to the formation of collective structures such as trains (dense regions of
aligned droplets) or cloggs (regions in which droplets are so densely packed that they
are blocked). We showed that the interaction between two droplets is well described
by an e�ective inelastic collision. Furthermore, we observed that the activity of the
droplets makes their velocities always relax toward an active velocity, although this
relaxation time is long compared to the collision time.

We then implemented in section (6.2) a very simple numerical model taking into ac-
count these two ingredients, the inelastic collision (quanti�ed by a restitution parameter
� ) and the relaxation toward activity (quanti�ed by a relaxation rate � ), to see if they
could explain the observed collective behaviours. Using parameters close to the ones
we measure experimentally, we retrieved phenomena similar to the ones observed ex-
perimentally: the formation of trains and of cloggs. Investigating further this model
by looking at times longer than the experimental ones, we determined that both trains
and cloggs are transient states, and that, at long times, the system has only two states,
the globally aligned state and the disordered quasi-elastic state, depending on the two
parameters� and � .

We want to pinpoint three important features of the model:

1. The absence of noise: no noise was implemented in our system, which make
it purely deterministic.

2. The e�ect of the observation time: the transient state in our system (trains
and clogg) might last a really long time. The train state lasts longer as� gets
closer to the critical value that separate the global alignment state to the quasi
elastic state. The clogg state lasts longer as� gets smaller.

3. The e�ect of a �nite number of particles: a �nite number of particle implies
a �nite number of initial conditions - it is then unlikely that "special" initial
conditions happens - the presence of an already formed train at the start of the
experiment for instance. If the number of particles - and so the initial conditions -
was in�nite, then all combination of initial conditions could be found somewhere
in the system.
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The di�erence between the two observed �nal states of our system is the alignment
between particles. On one hand, the nucleation of trains seems to be the crucial event
for reaching the globally aligned state. On the other hand, in the absence of noise,
there is no source of misalignment in our system. One may then ponder on the stability
of the quasi-elastic state.

For systems with a �nite number of particles, initial conditions plays a crucial role:
independently of the parameters� and � there is always at least two peculiar sets of
initial conditions, one that leads to the global alignment state (for instance all droplet
are initially aligned), and another that leads to the quasi elastic state (for instance
all particles are placed at the same distance, and are given alternatively the velocities
� V0). Such initial conditions remain rare on a high enough number of realization, and
Pierre Illien's study lead to think that for long observation time, there indeed exists
a region in the parameter space� and � where the quasi-elastic state is stable. Our
numerical system then present a phase transition between the globally-aligned state,
and the quasi-elastic state.

However, for a system with an in�nite number of particles, it is very likely that for
all parameter � and � , except for � = 1, some local initial conditions leads to the
formation of a train. If a train absorbs other particles and grows, it will propagate into
the whole system, which will then reach a globally aligned state. But Pierre Illien's
study (section (6.2.5.2)) demonstrated that all trains do not grow. The �nal system
could then be a globally aligned state, with trains of �nite and globally constant size.
The system with an in�nite number of particles is complex, and the eventual existence
of a phase transition is still under discussion.
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Chapter 7
Ongoing work: swimming under gravity

Motivation

In the biological world, many microorganisms are observed to undergo gravitaxis [156,
62, 157, 64, 61, 60, 158, 63] - a response in motility to a gravitational �eld. This be-
haviour �ghts against sedimentation, and its interest is most likely the possibility to
explore a widest part of the environment. Yet how these microorganisms feel the grav-
itational �eld is not fully understood. Several possible origins have been pinpointed:
physiological mechanisms [62, 157, 159]; bottom heaviness [64, 61] (inhomogeneity in
the swimmer density) or fore-aft asymmetry [160, 161, 158, 63, 162].

Some experimental and theoretical studies [163, 164, 65, 165] suggest that the activ-
ity alone might be enough to �ght against gravity to some extent, by increasing the
sedimentation length. This e�ect can be understood as an increase of the e�ective
temperature of the active particles due to the activity [163, 65]. But if activity has an
in
uence on sedimentation, it doesn't mean that the swimmer "feels" the gravity �eld.
The gravity e�ect might be only a passive one (additivity of the e�ects of activity and
gravity). It is the case for instance for squirmers, as discussed in chapter 2, section 7:
the 
ow �eld of a squirmer under a gravitational �eld is simply the superposition of the

ow �eld of the swimmer in absence of gravity, and the 
ow �eld of a passive particle
under gravity.

Yet, the behaviour of many experimental swimmers cannot be explained by such a
model. Under sedimentation, some phoretic particles are observed to partially align,
oriented against the gravitational �eld [65, 66, 67]. A more subtle e�ect is when
the gravity con�ne the swimmer close to a bottom or top interface, then interesting
phenomena happens, that cannot be explained by the presence of the wall alone [50,
51, 166, 1]. This has been partially addressed in chapter 4.

This means that in several cases, the gravity has an e�ect on the activity of the swim-
mer itself. For auto-phoretic swimmers, just like in the case of the presence of a
wall, this e�ect is non-trivial: the gravity modi�es the 
ow �eld; which modi�es the
solute concentration; which modi�es the activity of the swimmer. A �rst theoretical
approach, conducted by S�ebastien Michelin gave some insight on the behaviour of auto-
phoretic swimmers under an external �eld. This preliminary work motivated parallel
experimental studies.
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The present chapter exposes the preliminary experimental work that has been done in
such a context. We study the swimming behaviour of water droplets on an inclined
plane (2D) and in square and cylindrical capillaries (1D). Although this work is still
quite exploratory, it provides us with some interesting insight on the non-trivial e�ect
of gravity on phoretic swimmers in general, and on swimming droplets in particular.

7.1 Gravity in 2D

7.1.1 Experimental realization

We study the behaviour of swimming and passive droplets (for comparison) in an
inclined NOA arena (section 3.2.2.2) under the macroscope (section 3.3.1.1). The
discrete phase is made of a solution of water with 15% wt NaCl. For swimming
droplet, the continuous phase is made of a solution of 25 mM mono-olein in squalane.
For passive droplet, the continuous phase is made of a solution of 4 mM mono-olein
in squalane. The arena (schematized in Fig. 7.1) is inclined using a rotation platform,
with an angle � with the horizontal, measured precisely using a dual-axis digital angle
protractor (TLL-90s, Jingyan R
 ). The macroscope remains �xed, thus the chamber
is not parallel to the focal plane, limiting the angle� to values at which the droplet
imaging is still acceptable (roughly� = 45o). For each experiment, one droplet is made
in the middle of the chamber, then is observed to swim at various angle from� = 0o to
� = 45o for typically 200 s per angle. The whole experiment is limited to 1 h, so that
the droplet radius might be considered constant. The tilting direction is alternated
between each angle, to keep the droplet in the middle of the chamber,ex is always
taken in the direction of the projection of gravity on the chamber plane. The gravity
force exerted on the droplet along the chamber plane is thenFg = 4�

3 a3�g sin� ex . For

Figure 7.1: Tilted NOA chamber: The chamber is tilted with an angle� from the
horizontal. x is the direction of the projection of the gravity in the chamber plane.y
is the orthogonal coordinates in the chamber plane.

all experiments, the droplet radius (20� m < a < 150� m) is small compared to the
arena height (5 mm), and the droplets are always far from the side walls, so that the
droplets "see" only the bottom wall. ex is de�ned as the direction of the tilting; and
ey the normal direction such that f ex , eyg is the plane parallel to the bottom wall,
in which the droplet swims (2D motion). We use matlab and image processing tools
(described in section (3.3.1.2)) in order to extract the trajectoryf x(t),y(t)g of the
droplet. From this trajectory, we compute the velocityV (t).
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Fig. 7.2 presents typical trajectories of (a) and (b) active, and (c) passive droplets,
at di�erent angles, for droplets of typical sizea = 100 � m. Fig. 7.3 shows a scatter
plot of the velocities of the corresponding experiments. Passive droplets have an
expected behaviour: they do not move at� = 0 o, and fall straight in the direction
of gravity when � > 0o. Their velocity increases with increasing angle. For active
droplets, two kinds of behaviours are observed. Most often the droplets swim straight
Fig. 7.2(a), but sometimes they exhibit curly trajectories Fig. 7.2(b). In both cases,
there is a net displacement in the direction of gravity, and the velocity in the direction
of gravity Vx increases with increasing angle, in an equivalent manner for the two
behaviours. Unlike the passive case, there is also a non-zero normal contribution to
the velocity, Vy. This contribution decreases with time for� > 0: the droplet aligns
progressively with gravity, but also with increasing angle. The droplets with curly
trajectories explore more the velocity space than the droplets with straight trajectories.

In the following, we are �rst going to characterize the behaviour of the passive droplets,
before comparing it with the behaviour of the active ones.

7.1.2 Passive droplets

In 3D, far from any wall, a passive droplet falling in a viscous liquid because of an
external forceFg = 4�

3 a3�g sin� goes at a velocity (see section (2.1.4.5)):

V =
2a2�g

3
sin�

(� + � i )
� (2� + 3� i )

(7.1)

'
a2�g
3�

sin� (7.2)

In the presence of a wall, this relation is modi�ed. Let's consider as a �rst approxima-
tion that in the presence of a wall, we can still write:

V = � passa2 sin� (7.3)

� 3D = �g
3� = 0:015 � m � 1 s� 1 is the slope of this curve for passive droplets in 3D. We

can plot the velocity of the passive droplets as a function ofa2 sin� . All the data
collapse on a single line of director� pass = 0:005 � m � 1 s� 1 < � 3D . The falling of the
droplet compared with the 3D case is indeed slowed down by the presence of the wall.
In Fig. 7.4, the passive droplets velocities as a function ofa2 sin� are represented by
grey cross and the black continuous line is the linear �t.

7.1.3 Active droplets

7.1.3.1 Dynamic

For each angle, the droplet is initially swimmingagainst gravity (this initial condition
is due to our experimental protocol, during which we alternate the angles). We
observe that the droplet quickly turns round to follow the gravity direction (within
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Figure 7.2: Trajectories of droplets of radius a = 100 � m on an inclined plane:
(a) a droplets swimming straight (b) a swimming droplet oscillating (c) a passive
droplet.

Figure 7.3: Scatter plot of the velocities of droplets of radius a = 100 � m on an
inclined plane: (a) a droplet swimming straight (b) a swimming droplet oscillating
(c) a passive droplet.
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the few seconds before the acquisition starts), and that the higher� , the quickest this
relaxation is. This transient should provide very useful information on the dynamic
of the droplet swimming under gravity; and will constitute one of the main leads for
future work.

Similarly, the curly behaviour of some droplets has not been yet studied. It is
not without reminiscing the trajectory of the swimming of liquid crystal swimming
droplets [51], whose curly trajectory is attributed to the coupling between the nematic
director �eld and the convective 
ow, which leads to an instability in the swimming
mechanism (due to a symmetry breaking). Similarly, the curling trajectory of our
water droplet in presence of gravity could be due to an instability.

In the following, we are �rst interested in the droplet swimming steadily: with a
constant velocity (in amplitude and direction).

7.1.3.2 Steady state

The average velocity of droplets in the direction of gravityVx is represented in Fig. 7.4
as a function ofa2 sin� , in order to compare with the velocity of the passive droplets.
We observe that the velocity of active droplets in presence of gravity is always higher

Figure 7.4: Velocity component parallel to gravityVx averaged on a steady state tra-
jectory, for swimming droplets of di�erent sizesa (color) and at di�erent angles, as a
function of a2 sin� . The velocity of passive droplets is added in grey, and the black
line stands for the linear regression of all passive droplets. The dashed straight line
corresponds to the expected asymptotic swimming velocity in the presence of gravity,
according to the law of velocity addition.

209



CHAPTER 7. ONGOING WORK: SWIMMING UNDER GRAVITY

than the velocity of passive ones. The droplets are swimmingtoward gravity. We
also observe that the velocity of active droplets grows further away from the velocity
of the passive ones as the angle increases. This is unlike what would happen if the
velocity of active droplets under gravity was simply the sum of their passive velocity
and their active velocity in absence of gravity (in black dashed line in the Fig. 7.4).
This observation means that the presence of gravity indeed modi�es the activity of
the swimmer.

These experiments of droplets swimming on a tilted plane are still in their infancy; and
these are only preliminary results. More experiments are planned in the future. We
can still compare them to the simplest modeling which is the case of a squirmer under
gravity.

We consider a model swimmer whose activity is not modi�ed by the presence of gravity
(i.e a squirmer). As seen in section 2.3.2, the velocity of such swimmer under gravity is
simply the composition of the active velocity in the absence of force, and the velocity
of the equivalent passive particle under gravity:

V = Va + Vg (7.4)

=
ah� si � 3� i hvsi

2� + 3� i
�

2a2�g sin�
3

(� + � i )
� (2� + 3� i )

(7.5)

= Va(� = 0) + Vg: (7.6)

For a phoretic swimmer, we can still write the active velocity in presence of gravity as
a composition of a passive e�ect, due to the gravity, and an active e�ect, due to the
concentration �eld, but this concentration �eld is modi�ed by the presence of gravity
(section (2.2.3.2)):

V = Va + Vg (7.7)

= �
K + 3� i M
2� + 3� i

hr kc(r = a; g)i �
2a2�g sin�

3
(� + � i )

� (2� + 3� i )
(7.8)

6= Va(� = 0) + Vg: (7.9)

We observe that for small angles, the velocity of the droplets follows the additivity
of an active and a passive velocities (within the noise); but for higher angles, the
velocity of the swimming droplets becomes much higher. This observation con�rms
the fact that our swimmer is not a squirmer and that the presence of gravity indeed
modi�es the activity of the swimmer. The theoretical study of the e�ect of gravity on
the whole hydrodynamics and concentration �elds is currently conducted by S�ebastien
Michelin from the LadHyX, in the D�epartement de M�ecanique, Ecole Polytechnique.
Although not trivial if one takes into consideration the e�ect of gravity on the whole
hydrodynamics �eld and concentration �eld, one can have a simpli�ed and intuitive
visualization of how the gravity can a�ect the swimming droplet, Fig. 7.5. The gravity
�eld enhances the spontaneous gradient. A swimming droplet in the absence of gravity
(a), through an instability mechanism, develops a certain concentration �eld of swollen
micelles around itself (see (3)). This concentration �eld is "thinner" in front of the
droplet and thicker at its back, generating a gradient of concentration that makes the
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Figure 7.5: Simpli�ed visualization of the e�ect of gravity on a swimming
droplet: (a) in absence of gravity, a concentration �eld of swollen micelles (pale red)
develop around the droplet, inducing a gradientr c1 between the front and the back
of the droplet. (b) In presence of a forceF in the same direction than the swimming,
the droplet accelerates, and the concentration �eld and the induced gradientr c2 are
modi�ed. (c) In presence of a force� F in the opposite direction than the swimming,
the droplet slows down, and the concentration �eld and the induced gradientr c3 are
modi�ed.

droplet swim. If we add a gravity force in the swimming direction (b), the droplet
accelerates, and thus is shifted in its concentration �eld: the concentration �eld be-
comes even thinner in front of the droplet and even thicker at its back. The gradient
between the front of the back increases, and so does the active velocity. If we add a
gravity force in the direction opposed to swimming (c), the droplet slows down, and
thus is shifted in its concentration �eld: it becomes thicker in front of the droplet and
thinner at its back. The gradient between the front of the back decreases, and so does
the active velocity.

7.2 Gravity in 1D

In 2D, we know the direction of gravity, and we observe in which direction the droplet
is swimming. However, we do not have any information on the actual direction of the
swimmer (the one that comes from the boundary conditions). To avoid this issue, one
possibility is to impose the swimmer direction, for instance by geometrical means: in
a tilted capillary, a droplet of the size or bigger than the capillary height is strongly
steered in the capillary direction and thus can only swim with or against the gravity.
Hence in this section, in a similar way than in 2D, we explore the e�ect of gravity on
a droplet in 1D channels.

7.2.1 Experimental realization

Developing the experimental set-up and running experiments have been done by
Victor Maquart, a 3rd year student (M2) at ESPCI Paris, during an internship at the
Gulliver laboratory under my supervision.
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We use 200� m inner diameter cylindrical capillaries (h = 100 � m), which are silanized
beforehand using the same method as in chapter (5). The capillary is �rst �lled with
the continuous phase. In order to observe a droplet in such a capillary under gravity,

Figure 7.6: Droplet in a tilted capillary - Set up: (a) photo and (b) sketch of the
device used to immerse the cylindrical capillary in glycerol; (c) photo and (d) sketch of
the set up used to tilt the device, and observe the capillary through the macroscope.
(d) image of a droplet in a cylindrical capillary obtained through the macroscope. The
di�erent components are (1) a rectangular glass slide (2) a square glass coverslip (3)
a square capillary (4) a 3D printed holder (5) the cylindrical capillary (6) the whole
device (7) a rotation arm (8) a mirror (9) a light source and (10) the macroscope
objective.

the capillary must be immersed in glycerol (iso-index with glass), but the whole device
should be easy to tilt, up to � = 90o (once again � is the angle made with the
horizontal plane). To achieve this, a slightly di�erent device than the one developed
in section (5) has been designed, and is illustrated in Fig. 7.6(a) and (b). The glycerol
is trapped between a rectangular glass slide (1) and a square glass coverslip (2) spaced
with a square capillary (3) of outer height 330� m, which is the size of our cylindrical
capillary outer diameter. A holder (4), which is simply a succession of pillar spaced
500� m apart designed with a 3D printer (Ultimaker 3 Extended), is �xed on the other
side of the glass slide. The cylindrical capillary (5) is inserted in the glycerol, and held
by the holder. Both ends of the cylindrical capillary hang in the air, to prevent the
glycerol to enter. The visualization of the capillary is made through the glass coverslip.
With this simple design, the whole device can be tilted easily.

Then the device is �xed to a rotation platform, Fig. 7.6(c) and (d): to avoid the problem
of focusing on a tilted plane, that we had with the chamber in the previous section,
the whole device (6) is �xed in a plane perpendicular to the one of the macroscope (7),
and rotated in this plane, and a lamp (8) and a mirror (9) are added so that the light
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comes from the lamp, pass through the capillary, re
ect on the mirror and goes in the
macroscope's objective (10). That way we can tilt the capillary in the focal plane, and
keep the droplet focused independently of the angle. This trick uses the fact that we
can image through the side of the capillary, which is not possible for a chamber.

A typical image of a droplet in a tilted cylindrical capillary is shown in Fig. 7.6(e).� ,
the angle with the horizontal is taken positive when the droplet is swimmingagainst
the gravity, and negative when the droplet is swimmingwith the gravity. Although the
imaging after re
ection in the mirror is not excellent (this could be improved by using
a higher quality mirror), this is su�cient to track the droplet accurately.

An experiment is conducted as follows: the droplet is made at one end of the capillary
(in the exact same way as in section (5), while the capillary is horizontal (� = 0, no
gravity). A �rst acquisition is made for typically 200 s. Then successive acquisitions
are made for the same droplet, but changing the angle� . Using Matlab R
 and image
analysis tools (described in section (3.3.1.2), we compute the trajectory, and then the
velocity of the droplet over time.

This is done for many di�erent droplets. In a �rst time, we make spherical droplets of
typically the size of the capillary 0:8 < a

h < 1, then we look at a few longer droplets,
up to L

2h = 2:4. We also make passive droplets - although we are limited in their
size: passive droplets longer than the capillary height stick to the wall. Note that we
consider that the droplet direction does not change during one experiment, which is
con�rmed experimentally (in particular, the droplet doesn't turn back to swim on its
trail).

7.2.2 Result

Typical trajectories and velocities for a droplet of sizea = 100 � m going with the
gravity ( � < 0), are given in Fig. 7.7. We observe that the droplet feels the gravity,
and accelerate as the tilting angle increases.

We then look at a series of droplets of typically the capillary size: 80� m < a < 105� m.
We compute the average velocity of the droplets over the trajectory, and we compare
it with the one of passive droplets of similar size. The result are shown in Fig. 7.8

A �rst direct observation is that active droplets go faster than passive ones. A second
observation is that the in
uence of gravity remains small, unlike in 2D: the velocity of
passive droplet falling under gravity is small compared to the velocity of swimming
droplet without gravity (no more than one half). In presence of gravity, droplets
swimming downward go faster than active droplets without gravity, while droplet
swimming upward go slower, but gravity never overcome the swimming: swimming
droplets are able to ascend a vertical capillary.

With in mind the purpose of studying droplets on which the gravity force would be
greater, we made droplets longer than the capillary height 1< a

h < 2:5, a being in the
case of elongated droplet the half-length. We represent in Fig. 7.9 the average velocity
over the trajectory of spherical and long droplet as a function of sin(� ).

The blue triangle stands for spherical droplets, whose behaviour was just discussed.
We observe two surprising behaviours: �rst, droplets slightly larger than the capillary
height (a =105 � m, blue diamond) going against gravityacceleratewhen the gravity in-
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Figure 7.7: Trajectories and velocities of a droplet swimming with gravity:
(a) Trajectories and (b) velocities of a droplet of sizea = 100 � m at di�erent angles
(color code) from� = 0 (dark blue) to � = � 90o (red). The droplet swims in the
direction of gravity. (c) Average velocity over the trajectory for the di�erent angles.
The error bars represent the standard deviation over the trajectory.

creases while their equivalent going with the gravity behave just like spherical droplets.
Second, droplets larger than that (a > 120 � m, from light blue to red diamond) do
not seem to feel gravity: their velocity is always aroundV = 2:5 � m with or against
gravity, which is the value of velocity in absence of gravity found for long droplets in
a cylindrical capillary, and measured in chapter (5).

7.2.3 Discussion

Unlike in the 2D case, the velocity of passive particles do not collapse on a single curve
linear in a2 sin(� ). In order to study the role of gravity on the activity of the droplets,
for droplets of typically the capillary size, we subtracted the velocity of equivalent
passive droplets (same size, same angle) to the velocity of active droplets under gravity.
The result is shown in Fig. 7.10. Roughly, this active velocity does not depend much
on sin(� ). With a lot of twist (maybe too much at this stage of the experiments) in the
data, one observes a non monotonous e�ect of the gravity on the active velocity when
the droplet is goingwith the gravity: at intermediate angles, the gravity decreases the
active velocity. This result is counter-intuitive if we compare it with the interpretation
of what happened in 2D. At higher angles, the tendency reverses, and the gravity
increases the active velocity when the droplet goes with the gravity, which is more like
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Figure 7.8: Average velocity of spherical droplets in 1D under gravity: Average
velocity over the trajectory of spherical active (triangle) and passive (circle) droplets
as a function of sin(� ) for droplet of di�erent size (color-scale).

Figure 7.9: Average velocity of spherical and long active droplets in 1D under
gravity: Average velocity over the trajectory of spherical (trianglea < 1) and long
(diamond, a > 1) active droplets as a function of sin(� ) for droplet of di�erent size
(color-scale).
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Figure 7.10: Average velocity of spherical droplets in 1D under gravity: Av-
erage velocity over the trajectory of spherical active (triangle) and passive (circle)
droplets as a function of sin(� ) for droplet of di�erent size (color-scale).

what is observed in 2D. These tendencies have to be con�rmed with more experiments.

Conclusion

This chapter presented ongoing work on the e�ect of gravity on swimming, by looking
at swimming droplets on tilted planes or in tilted capillaries. In 2D, gravity strongly
orients the swimming of the droplet. First measures of the droplets velocity under
gravity show that at large gravity (large tilting angle), the velocity is not the simple
additivity of the e�ect of activity and gravity, at odd with the prediction for a squirmer.
The presence of gravity increases the active velocity of the swimmer, by enhancing the
spontaneous gradient of swollen micelles concentration around the droplet. The next
step of this study is to make more experiments in order to quantify the e�ect of gravity
on the activity, and eventually to compare it with theoretical predictions, on which
S�ebastien Michelin is working.

In 1D, �rst measurements of the velocity of droplets in silanized cylindrical capillaries
show promising results. The droplets are observed to swim against gravity, even for
angles up to 90o. Looking more closely at the in
uence of gravity on the active velocity
itself, by subtracting the measured velocity of an equivalent passive droplet, one may
discuss on the subtle non-monotonous evolution of the velocity. More experiments
are required to capture more precisely the phenomenon. Finally, and surprisingly, the
gravity does not have any visible e�ect on the swimming of long droplets, that swim
downward and upward at the same velocity than the one measured in absence of gravity

This work is still at the stage of purely experimental observations of the droplet swim-
ming behaviour. We still lack the tools to interpret what is going one. Finding such
tools is left for future prospect.
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General Conclusion

Intermediate conclusions and discussions have been made along this manuscript, for
each experimental chapter. In this �nal conclusion, we intend to bring together and
synthesize a few major results.

This work, which is essentially fundamental in nature, explores experimentally
through a model swimmer the in
uence that external factors can have on the
behaviour of microswimmers. The pure water swimming droplet swims using a self
induced concentration gradient of swollen micelles. We observed them in several
situations: in presence of a wall, in chapter (4), con�ned in 1D, in chapter (5), with
many other droplets in 1D, in chapter (6), and �nally under gravity, in chapter (7)
(which is still an ongoing work). These external factors in
uence the hydrodynamics
around the droplet, but, through the coupling between the hydrodynamics and
the swollen micelles concentration, they also modify the swimmer itself. We saw
in chapter (4) that a wall changes the long range behaviour of the swimmer. In
chapter (5), the high con�nement trivially modi�es the shape of the swimmer, which
does not prevent it from swimming, and even allows for complex phenomena such
as spontaneous divisions to happen. Finally in chapter (6), we saw that collective
behaviours, such as trains or cloggs, can emerge from the droplets interactions. In
all cases, what could have been thought as simple constrains that would impede the
swimming, leads to a richer and more complex phenomenology. Beyond the simple
understanding of our peculiar system, these studies give insight on various phenom-
ena at the interface of hydrodynamics, physico-chemical engineering and active matter.

Most of the time, a water swimming droplet behaves "as expected": it swims in a
regular way, shrinks slowly, and eventually interacts with another droplet. Sometimes,
its behaviour is unexpected. This work presented and analyzed some surprising
behaviour of these water droplets (for instance division and strong shape deformation
under con�nement, in chapter (5)). During this PhD, we met with other situations in
which the droplet acted in a strange way. We did not further study these situations,
but we present some of the most stunning ones brie
y, in Fig. 7.11. (a) Throughout our
experiments, we used only closed chambers (with no air interface). In one experiment,
we forgot to do so, and all the water droplets started to "disappear". Taking a
closer look at one droplet(Fig. 7.11(a)), we observed that the droplet was shrinking
(most likely the water is evaporating), leaving behind a small black agglomerate of a
few microns (most likely a surfactant agglomerate). (b) To look through cylindrical
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capillaries, we immerse the capillary into glycerol, and we are very careful that no
glycerol enters the oil phase. It still happened a few times, and we then observed a
glycerol droplet that, to our surprise, was swimming. Even more amazing, one glycerol
droplet met a long water droplet (Fig. 7.11(b)). After meeting, the two droplets stuck
together, and the refractive index of the glycerol droplet started to change, until it
reached the same refractive index than the water droplet, while the volume of the
glycerol droplet was increasing (most likely, the glycerol droplet was "drinking" water
from the water droplet). After a while, the swelling of the glycerol droplet stopped,
and the two droplets started swimming, still stuck together. (c) During an experiment,
the room temperature is kept above 25oC , to prevent the crystallization of the
mono-olein. Sometimes, crystallization still happens (Fig. 7.11(c)). When a swimming
droplet sees a mono-olein crystal (almost transparent in the picture), it swims toward
it, and "eats" it. After eating a few mono-olein crystals, the droplet stops swimming.
(d) Under some conditions (we believe that the droplets need to be made very closely
from each other, and before they start swimming), swimming droplets assemble
into a "crystal", and swim together without breaking this assembly (Fig. 7.11(d)).
Their swimming then consists in turning around each other, in what we call a
waltz. This phenomenon is currently being studied in the team of professor Masatoshi
Ichikawa from the Laboratory of Dissipative and Biological Physics of Kyoto university.

A �nal remark: the system studied in the current work is quite simple, composed of
water, oil and surfactant. Amazingly, it presents many of the hallmarks of life de-
tailed in chapter (1), namely compartmentalization (a droplet), division (under high
con�nement), energy transduction (that empowers the activity by thermodynamic re-
laxation), and motility, which is the very reason for which this system was studied. All
these behaviours are achieved in the absence of chemical reaction, using only physical
and physico-chemical phenomena. Without the intention of building an actual probi-
otic system, we want the reader remember how startling it is, that the living world and
the physico-chemical world can be so closely related.
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Figure 7.11: Strange behaviour of our pure water swimming droplets: (a)
disappearance of a droplet close to an air interface. (b) Meeting of a glycerol droplet
(light grey, left) and a long water droplet (darker grey, right). The refractive index of
the glycerol droplet progressively changes as the glycerol droplet swell. (c) A water
droplet eating a crystal of mono-olein. (d) A waltzing crystal of three water droplets.
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R�esum�e en Fran�cais

7.3 Introduction g�en�erale

Ce document est un court r�esum�e en fran�cais de mon travail de th�ese "Swimming water
droplets in complex environments, Con�nement, gravity and collective e�ects.", et en
pr�esente les principaux r�esultats. Il est construit de la même mani�ere que le manuscrit
de th�ese, en deux parties constitu�ees respectivement de trois et quatre chapitres. La
premi�ere partie se veut p�edagogique et pr�esente les bases th�eoriques et exp�erimentale
de ce travail. La deuxi�eme partie rassemble les r�esultats obtenus tout au long de la
th�ese sur les axes de recherche suivants: la nage en 2D, la nage en 1D, les e�ets collectifs
en 1D et la nage sous gravit�e.

7.4 Contextes experimental et th�eorique

Ces chapitres introductifs ont pour but de pr�esenter les enjeux de ce travail, mais aussi
le syst�eme �etudi�e et les m�ecanismes physiques principaux qui vont nous int�eresser.

7.4.1 Nager, un enjeux biologique et physique

Les syst�emes vivants pr�esentent un certain nombre de points communs, qui sont
jug�es être les ingr�edients indispensables �a la vie: la compartimentation, grandir et se
diviser, traiter des informations, transformer de l'�energie et pouvoir s'adapter (bouger).

Un des enjeux de la cr�eation de cellules arti�cielles est de regrouper tous ces ingr�edients
dans un seul syst�eme. L'une des techniques utilis�ee est la technique "de bas en haut",
qui consiste �a partir de syst�emes physiques ou chimiques simples et �a les complexi�er.
En particulier, des syst�emes de gouttes, trivialement compartiment�ees, ont �et�e utilis�es
pour reproduire chacune des caract�eristiques cit�ees plus haut, bien que jamais toutes
en même temps.

Le syst�eme auquel nous nous int�eressons dans ce travail est une goutte active, qui va
puiser de l'�energie dans son environnement pour produire des 
ux �a son interface et
se propulser. Ce syst�eme pr�esente donc trois des caract�eristiques du vivant (compar-
timentation, transformation d'�energie et adaptation), ce qui font d'elles un syst�eme
mod�ele simple particuli�erement int�eressant pour �etudier certaines caract�eristiques des
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Figure 7.12: Figure 1 de [3], les signatures du vivant: un r�esum�e des cinq car-
act�eristiques requises pour qu'un syst�eme vive.

micro-organismes, et en particulier, ce sur quoi nous allons nous concentrer, la motilit�e.

7.4.2 Th�eorie g�en�erale

Nous introduisons tout d'abord les notions th�eoriques n�ecessaires �a la compr�ehension
du ph�enom�ene de nage. Pour se d�eplacer, le micro-nageur d�eplace le 
uide ext�erieur.
Le probl�eme hydrodynamique est r�egi par l'�equation de Stokes. Dans le cas d'un
probl�eme axisym�etrique loin de tout bord, la r�esolution du probl�eme hydrodynamique
autour d'un objet sph�erique montre que le champ de vitesse est la superposition d'une
in�nit�e de sym�etries azimutales (monopole, dipole, quadripole, etc). L'amplitude de
ces sym�etries est d�etermin�ee par les conditions aux limites �a l'interface entre l'objet
et le 
uide ext�erieur. Seule la sym�etrie dipolaire (sym�etrie avant-arri�ere) conduit �a un
d�eplacement net de l'objet.

Les conditions aux limites �a l'interface de l'objet, dans le cas d'une goutte, sont une
vitesse de glissement, un saut de contrainte, ainsi que le bilan des forces sur la goutte.
La vitesse de la goutte est alors la combinaison de la moyenne des vitesses de glissements
et des sauts de contraintes �a l'interface, et d'une �eventuelle force ext�erieur, le tout donn�e
par la formule dite de Lamb.

Le mod�ele le plus commun�ement utilis�e pour des nageurs est le mod�ele du squirmer,
dont les conditions aux limites sont �x�ees. Ce mod�ele limite aussi souvent la description
du champ hydrodynamique aux seules sym�etries dipolaire (responsable de la nage) et
quadripolaire (responsable des interactions �a longue port�ee).

Dans le cas d'un nageur physique, la vitesse de glissement et le saut de contrainte
peuvent avoir pour origine une action physique (ex: des 
agelles) ou une interaction
physico-chimique, �a l'�echelle de l'interface entre l'objet et le liquide ext�erieur. Cette
interaction a lieu dans une couche interfaciale d'�epaisseur �nie, mais petite par rap-
port �a l'objet, dans laquelle, par exemple, des gradients de concentration mettent en
mouvement le 
uide (e�ets phor�etiques ou Marangoni).
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Un nageur est un objet qui induit lui-même ces conditions aux limites pour produire
un mouvement. Le nageur doit alors briser la sym�etrie isotrope pour partir dans
une direction privil�egi�ee. Cette brisure de sym�etrie peut être g�eom�etrique (cas des
particules de Janus), ou r�esulter d'une instabilit�e (cas des gouttes nageuses). Il est
important de noter que dans ce dernier cas, les conditions aux limites sont coupl�ees �a
l'hydrodynamique.

Une in
uence ext�erieure peut aussi briser la sym�etrie (ex: un mur, la gravit�e...). Dans le
cas d'une goutte nageuse, �a cause du couplage entre l'hydrodynamique et les conditions
aux limites, cette in
uence a de grandes chances d'in
uer sur l'activit�e du nageur, et
donc de modi�er e�ectivement sa nage.

7.4.3 Goutte d'eau nageuses

7.4.3.1 Pr�esentation des gouttes d'eau pure nageuses

Le syst�eme �etudi�e a �et�e d�ecouvert durant la th�ese de Ziane Izri [87]. Il s'agit de
gouttes d'eau pure dans une solution de 25mM de mono-oleine (un tensioactif) dans
du squalane (une phase huile). Ces gouttes se mettent �a nager d�es leur production. La
Fig. 7.13 pr�esente le comportement typique de ces gouttes. La nage de ces gouttes est

Figure 7.13: Figures de [87] Nage de gouttes d'eau pure: (a) trajectoires d'une
cinquantaine de gouttes d'eau de rayon� 50 � m dans une chambre d'observation de 1
cm remplie d'une solution de 25mM de mono-oleine dans du squalane, d'une dur�ee de
500 s. Le code couleur repr�esente le temps. (b) Vitesse et (c) diam�etre des gouttes au
cours du temps pour une s�election de huit trajectoires. En insert: courbe lin�eaire-log
pour une s�election de 35 trajectoires.
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due �a trois ph�enom�enes:

(i) Une relaxation thermodynamique: dans la phase huile (squalane), le surfactant
(mono-oleine) est pr�esent en grande concentration, (� 5 CMC), et va former des
micelles. Le syst�eme goutte d'eau + micelles n'est pas �a l'�equilibre: un 
ux d'eau
s'�etablit spontan�ement entre la goutte et les micelles proches de l'interface, ce
qui produit des micelles gon
�ees en eau.

(ii) Des 
ux phor�etiques: ces micelles gon
�ees interagissent avec l'interface. Leur
gradients produisent des 
ux, principalement phor�etiques, et mettent le 
uide en
mouvement.

(iii) Une instabilit�e: le couplage entre les champs de concentration et
l'hydrodynamique donne lieu �a une instabilit�e qui met en mouvement la goutte.

En cons�equence, les gouttes nagent et se vident lentement (en quelques heures).

7.4.3.2 R�ealisation exp�erimentale

En fonction des besoins, nous utilisons deux m�ethodes de production des gouttes:

� Pour g�en�erer des gouttes uniques, nous utilisons un femtojet qui permet de former
par contrôle de pression une goutte �a l'embout d'une aiguille, directement dans
la chambre d'observation remplie de la phase d'huile.

� Pour g�en�erer de nombreuses gouttes, nous utilisons des circuits micro
uidiques.
La combinaison d'une jonction en T, et d'un saut de hauteur permet de cr�eer des
gouttes qui sont ensuite amen�ees dans la zone d'observation.

Nous disposons aussi de deux m�ethodes d'observations:

� Pour observer des zones larges (1 cm2), nous utilisons un macroscope en lumi�ere
blanche, ce qui nous permet d'observer les longues trajectoires des gouttes.

� Pour visualiser des champs de vitesse, nous utilisons la microscopie confocale en

uorescence, ce qui nous permet de suivre des traceurs dans un plan pr�ecis pr�es
de la goutte.

En�n, un des enjeux de ce travail est de regarder l'in
uence de la g�eom�etrie sur la nage
des gouttes, nous avons donc fabriqu�e des chambres d'observation tr�es vari�ees;

� en 2D: des grandes chambres de natures du mur du fond di��erentes (verre, verre
silaniz�e, PDMS, NOA).

� en 1D: dans des capillaires carr�es ou circulaires, ou encore des g�eom�etries plus
exotiques telles que des constrictions.
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7.5 Travaux exp�erimentaux et th�eoriques

Nous pr�esentons dans ces chapitres une s�election des exp�eriences men�ees au cours de
ce travail, ainsi que des outils th�eoriques permettant d'appr�ehender les ph�enom�enes
physiques en jeu.

7.5.1 Nage en 2D

Que ce soit dans un environnement naturel, ou dans un circuit micro
uidique, les micro-
nageurs �evoluent souvent dans des milieux born�es, constitu�es d'obstacles et de parois,
et de nombreuses observations ont montr�e l'importance critique de ce con�nement sur
la dynamique des nageurs.

Nos gouttes sont plus denses que le milieu environnant, et nagent donc naturellement
pr�es du mur du fond de la chambre. Nous nous int�eressons dans ce chapitre au com-
portement d'une goutte nageuse unique en chambre micro
uidique, en particulier �a
l'e�et du mur du fond et du con�nement.

7.5.1.1 Cin�etique en pr�esence d'un mur

Figure 7.14: �Etude de la nage stationnaire, pour di��erentes natures de mur de fond:
lame de verre (triangles droits rouges), lame de verre silaniz�ee (triangles inverses bleus),
couche de NOA (losanges verts). (a) Vitesse stationnaire en fonction du rayon des
gouttes a. La ligne rouge continue repr�esente la pente aux petits rayons. La ligne
verticale pointill�ee noir repr�esente la hauteur de la chambre. (b) vitesse de d�egon
ement
de la goutte � = da

dt en fonction de son rayon. (c) Vitesse de la goutte en fonction de
la quantit�e a� .
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Nous pla�cons une goutte d'eau unique dans une chambre de typiquement 1 cm de
rayon remplie de la solution huile+micelles. D�es qu'elle est form�ee, la goutte se met
�a nager, et atteint une vitesse constante apr�es quelques centaines de secondes. Un
certain nombre de ph�enom�enes peuvent venir perturber l'�etat stationnaire de la goutte;
en particulier (i) la rencontre avec la paroi de la chambre, la goutte ralentit alors et
rebondit ou s'aligne avec le mur, et (ii) la rencontre avec sa trace, qu'elle �evite - la
goutte remplissant les micelles sur son passage, elle laisse derri�ere elle une trace de
micelles gon
�ees, qui constitue une zone r�epulsive pour la goutte. La goutte peut aussi
s'auto-empoisonner: rester bloqu�ee par sa propre trace pendant plusieurs minutes.

En dehors ces �ev�enements, la goutte de taillea a un comportement stationnaire, et
nous mesurons dans ce r�egime la vitesse moyenne de la gouttehV i , et sa vitesse de
d�egon
ement � = da

dt , pour di��erentes natures de mur du fond. Les r�esultats sont
pr�esent�es Fig. 7.14. Nous faisons quelques observations: la vitesse des petites gouttes
(a < 50 � m) augmente avec leur taille, quelque soit le mur du fond, ce qui va dans le
même sens que la pr�ediction th�eorique pour des gouttes �evoluant en 3D loin de tout
mur. La vitesse des gouttes de tailles interm�ediaires (50< a < 100� m) augmente avec
leur taille, mais d�epend de la nature du mur du fond: la goutte est plus rapide lorsque
le fond est hydrophobe. Cela montre que ces gouttes interagissent avec le mur du fond.
La vitesse des grosses gouttes (a > 100 � m) diminue avec leur taille, cela montre que
le con�nement a un e�et sur le comportement des gouttes.

7.5.1.2 Visualisation du champ de vitesse autour de la goutte

Les r�esultats de cette partie ont �et�e l'objet d'un article [1]. Ici, nous pro�tons de
la taille relativement grosse de nos nageurs (� 100 � m), pour e�ectuer les premi�eres
mesures tri-dimensionnelles du champ de vitesse autour d'un micro-nageur.

Pour visualiser le champ de vitesse, nous ensemen�cons le 
uide ext�erieur de colloides

uorescents de taille 0:6 � m; puis nous visualisons leur d�eplacement dans un plan pr�ecis
parall�ele au mur du fond par imagerie confocale. La Fig. 7.15 montre la reconstitution
en 3D de ce champ de vitesse autour de la goutte. Une premi�ere observation est que
contrairement au cas 3D, le champ de vitesse n'est pas axisymmetrique: les champs
sont modi��es par la pr�esence du mur.

Repr�esentation des champs exp�erimentaux

Les champs de vitesse gardent dans chaque plan une sym�etrie axiale, et pr�esentent cer-
taines sym�etries azimutale. Nous avons donc choisi de d�ecomposer ce champ de vitesse
en ses sym�etries azimutales principales, la sym�etrie monopolaire, la sym�etrie dipolaire
et la sym�etrie quadripolaire. Le haut de la Fig. 7.16 montre cette d�ecomposition dans
le cas du plan m�edian de la goutte, ainsi que la somme des sym�etries principales, qui est
en e�et tr�es semblable au champ total (on peut se restreindre �a ces trois sym�etries pour
d�ecrire le champ de vitesse). Chacune de ces sym�etries est le produit d'une d�ependance
azimutale, appel�ee les polynômes de LegendreLn (cos� )1 et qui caract�erise la sym�etrie,
ainsi que d'une d�ependance radiale, que l'on appelle l'amplitude de la sym�etrie� n (�; z ).
Nous extrayons ces amplitudes dans chaque plan, et nous les repr�esentons en bas de la
Fig. 7.16.

1n est l'ordre de la sym�etrie, n=0 pour le monopole, n=1 pour le dipôle et n=2 pour le quadrupole
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Figure 7.15: Champ de vitesse exp�erimental autour d'une goutte nageant proche et
parall�ele au mur du fond. A gauche : reconstruction 3D de la PIV dans les plans
parall�eles au mur (plan bleu). A droite : Vue de haut des lignes de courant du champ
de vitesse. Les couleurs codent la distance du plan au mur; par souci de clart�e, seuls
certains plans sont repr�esent�es.

Ces amplitudes pr�esentent un certain nombre de particularit�es, des extr�emas locaux
qui �evoluent en fonction de � et de z, et vont caract�eriser enti�erement le champ de
vitesse. Comprendre l'origine de ces particularit�es va donc permettre de comprendre
ce qui contribue au champ de vitesse.

Comparaison avec le mod�ele du squirmer

Nous d�eveloppons dans un second temps un mod�ele th�eorique, dont le but est de
retrouver les caract�eristiques observ�ees exp�erimentalement.

Le mod�ele �etudi�e est celui du squirmer, qui loin de tout mur produit un champ de
vitesse qui est la somme d'une sym�etrie dipolaire et d'une sym�etrie quadripolaire.
Nous prenons en compte la pr�esence du mur en utilisant la m�ethode des images. Cette
m�ethode consiste �a calculer l'image du champ hydrodynamique de chaque sym�etrie �a
travers le mur, de telle sorte que la vitesse au mur soit nulle. Cette m�ethode est une
approximation, puisque les conditions aux limites �a l'interface du nageur ne sont alors
plus v�eri��ees. Il est int�eressant de noter que l'image d'une certaine sym�etrie peut
conduire �a des champs de vitesses aux sym�etries plus complexes. Nous calculons le
champ de vitesse th�eorique totale, puis le d�ecomposons de la même mani�ere que pour
le champ exp�erimental, en haut de la Fig. 7.17., puis nous extrayons leurs amplitude,
en bas de cette même �gure.

Les amplitudes ainsi obtenues pour les sym�etries dipolaire et quadripolaire se compor-
tent quantitativement comme celles mesur�ees exp�erimentalement. Il est int�eressant de
noter que ce mod�ele produit aussi une sym�etrie monopolaire qui n'existait pas �a priori
en l'absence de mur. Cependant cette l'amplitude du monopole est tr�es faible compar�e
�a l'amplitude exp�erimentale.

In
uence de la gravit�e
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Figure 7.16: Repr�esentation des champs exp�erimentaux:En haut : u� et u� dans le
plan m�edian (z = 0). Nous montrons le champ de vitesse complet (A) ainsi que sa
d�ecomposition en sym�etries azimutales: (B) la composante monopolaire, (C) la com-
posante dipolaire et (D) la composante quadipolaire, et en�n la somme des sym�etries
(B), (C) et (D) est montr�ee en (E). En bas: les amplitudes� � (�; z ) et � � (�; z ) pour
chacune des sym�etries azimutales, en fonction de la distance �a la goutte� , et pour
di��erents plans en z (code couleur).

Pour comprendre d'o�u vient le monopole exp�erimental, il faut se rappeler que les
champs de vitesses sont g�en�er�es par les gradients de concentration en micelle gon
�ee
�a l'interface de la goutte. Donc le mur va avoir un e�et non seulement sur les champs
de vitesses, ce qui a �et�e pris en compte pr�ec�edemment, mais aussi sur les champs
de concentrations. Qualitativement, la pr�esence du mur va cr�eer une accumulation
de micelles gon
�ees pr�es du mur, et donc un gradient vertical de concentration. Ce
gradient vertical devrait soulever la goutte. Cependant, notre goutte est pesante, et
donc maintenue pr�es du mur par la gravit�e. Ces deux e�ets vont se compenser �a
l'interface de la goutte: nous n'observons pas de mouvement verticale des gouttes, sauf
pour les tr�es petites gouttes. Par contre, ils vont cr�eer des 
ux autour de la goutte,
que l'on peut calculer, et le champ de vitesse ainsi g�en�er�e a une sym�etrie purement
monopolaire (dans les plans parall�eles au mur). La Fig. 7.18 compare l'amplitude du
monopole exp�erimental �a l'amplitude du monopole th�eorique, qui prend en compte les
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Figure 7.17: Repr�esentation des champs th�eoriques:En haut : u� et u� dans le plan
m�edian (z = 0). Nous montrons (A) la composante monopolaire, (B) la composante
dipolaire et (C) la composante quadipolaire, et en�n la somme des sym�etries (A), (B)
et (C) est montr�ee en (D). En bas: les amplitudes� � (�; z ) et � � (�; z ) pour chacune
des sym�etries azimutales, en fonction de la distance �a la goutte� , et pour di��erents
plans enz (code couleur).

e�ets d'un 
ux phor�etique vertical compens�e par la gravit�e. Ces amplitudes ont des
comportements tr�es similaires.

7.5.1.3 Conclusion

Nous avons pr�esent�e bri�evement la cin�etique de gouttes nageant pr�es d'un mur. Nous
avons aussi caract�eris�e le champ de vitesse g�en�er�e autour de ces gouttes, mettant en
�evidence l'in
uence du mur sur le champ de vitesse, ainsi qu'un e�et inattendu, la
conjugaison de l'e�et du mur sur le champ de concentration et de la gravit�e. Ces
derniers n'ont pas d'in
uence directe sur la trajectoire de la goutte, mais cr�eent un
monopole fort qui domine �a longue distance, et donc va être d�eterminant pour l'�etude
des interactions entre nageurs.
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Figure 7.18: Amplitude de la sym�etrie monopolaire:A gauche: amplitude de la com-
posante monopolaire du champ exp�erimental, et�a droite : amplitude de la composante
monopolaire du champ th�eorique autour d'un squirmer axisym�etrique pour lequel des

ux phor�etiques perpendiculaires au mur se d�eveloppent, tandis que le nageur est main-
tenu au mur par la gravit�e.

7.5.2 Nage en 1D

Les gouttes nageuses pourraient être utilis�ees en micro
uidique pour une multitude
de taches (transport, m�elange...). De plus, la g�eom�etrie 1D est un moyen de diriger
des gouttes nageuses. D'un autre cot�e, un trop grand con�nement risque de limiter la
place n�ecessaire �a l'induction de 
ux; et donc de rendre plus di�cile la nage. L'�etude
de nageur en g�eom�etrie 1D pr�esente donc un int�erêt certain.

Nous pr�esentons ici une s�erie d'�etudes exp�erimentales compl�et�ees de consid�erations
th�eoriques sur le comportement d'une goutte nageuse dans diverses g�eom�etries 1D.

7.5.2.1 Capillaire carr�e

Les canaux micro
uidiques ayant g�en�eralement une section carr�ee, nous nous
int�eressons tout d'abord au comportement de gouttes nageuses en capillaire carr�e.
Dans un capillaire carr�e de demi-hauteurh variant de 40 �a 200 � m, et rempli de la
solution huile+micelle, nous observons une goutte d'eau unique de tailleL variant en-
tre 0:1h (goutte sph�erique) et 16h (goutte allong�ee). Des images de telles gouttes sont
donn�ees Fig. 7.19(a). Toutes les gouttes ainsi produites nagent. Nous mesurons la
vitesse de nageV repr�esent�ee en fonction du con�nement que subi la goutteL

2h , dans
la Fig. 7.19(b).

Nous observons que les donn�ees forment une seule courbe (la vitesse ne d�epend que du
con�nement). Globalement, la vitesse diminue avec le con�nement. Nous distinguons
trois comportements en fonction du con�nement: (i) les petites gouttes (L2h < 1) ont
une trajectoire 2D, elles oscillent p�eriodiquement entre les deux parois du capillaire.
La vitesse des gouttes varie beaucoup pendant une p�eriode d'oscillation, ce qui
explique la disparit�e des vitesses lorsque le con�nement est faible. (ii) Les gouttes qui
ont typiquement la taille du capillaire (1 < L

2h < 2) ont une trajectoire droite dans
une direction �x�ee. La vitesse diminue beaucoup quand le con�nement augmente. La
goutte se d�eforme et s'allonge. (iii) Les longues gouttes (2 < L

2h ) ont une trajectoire
droite dans une direction �x�ee. Même les tr�es longues gouttes nagent. La vitesse des
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Figure 7.19: Sch�ema et images de gouttes de di��erentes tailles (a) en capillaire carr�e,
et (c) en capillaire circulaire, et images de gouttes de di��erentes longueurs. Vitesse
V de gouttes nageant (b) en capillaire carr�e et (d) en capillaire circulaire en fonction
du con�nement des gouttes L

2h , pour di��erentes demi-hauteurs de capillairesh. Les
bars d'erreur repr�esentent l'�ecart type �a la moyenne temporelle sur la dur�ee d'une
exp�erience.

gouttes converge vers une valeur �nieVlim � 5 � m/s lorsque le con�nement augmente.

Nous avons aussi r�ealis�e de la PIV pour visualiser le champ de vitesse autour des
gouttes. Sans entrer dans les d�etails, les principaux r�esultats sont que la goutte modi�e
le 
uide ext�erieur sur une distance typique de quelques diam�etres de goutte, avec un
comportement longue port�e r�epulsif.

7.5.2.2 Capillaire circulaire

D'un point de vue analytique, la g�eom�etrie circulaire est bien plus facile �a consid�erer.
Nous nous int�eressons maintenant �a de telles g�eom�etries. Dans un capillaire circulaire
silaniz�es de rayonh variant de 50 �a 100� m, et rempli de la solution huile+micelle, nous
observons une goutte d'eau unique de tailleL variant entre 0:1h (goutte sph�erique) et
12h (goutte allong�ee). Des images de telles gouttes sont donn�ees Fig. 7.19(c). Toutes
les gouttes ainsi produites nagent. Nous mesurons la vitesse de nageV repr�esent�ee en
fonction du con�nement que subi la goutte L

2h , dans la Fig. 7.19(d).

Le r�esultat est tr�es similaire �a celui observ�e en capillaire carr�e. Les donn�ees forment
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une seule courbe (la vitesse ne d�epend que du con�nement). Globalement, la vitesse
diminue avec le con�nement. Nous distinguons deux comportements en fonction du
con�nement: (i) les petites gouttes (L

2h < 1) ont une trajectoire 3D, elles oscillent sur
les parois du capillaire. La vitesse des goutte varie beaucoup pendant une p�eriode
d'oscillation, ce qui explique la disparit�e des vitesses lorsque le con�nement est faible.
(ii) Les longues gouttes (L2h > 1) ont une trajectoire droite dans une direction �x�ee.
Même les tr�es longues gouttes nagent. La vitesse des gouttes converge vers une valeur
�nie Vlim � 2:5 � m/s lorsque le con�nement augmente.

Les longues gouttes pr�esentent une forme particuli�ere, Fig. 7.20(c): contrairement �a
ce qui �etait observ�e dans les capillaires carr�es, le long de la goutte (except�ees les
extr�emit�es) n'a pas la forme d'un cylindre droit, mais est de courbure variable, et
en particulier on observe �a l'arri�ere de la goutte une zone de r�etr�ecissement local de
l'�epaisseur la goutte, que l'on appelle le cou.

Figure 7.20: Caract�erisation de la forme de gouttes en capillaires circulaires. (a), (b) et
(c) image et d�etection du contour de gouttes de di��erentes tailles L

2h = 0:5 (a), L
2h = 2

(b), L
2h = 6 (c). �Evolution (d) du rayon du cou rn et (e) de sa positionln avec le

con�nement pour les longues gouttes.

Nous mesurons l'�evolution de cette forme particuli�ere en fonction du con�nement; plus
particuli�erement, nous mesurons le rayon du courn (Fig. 7.19(d)), et sa position par
rapport �a l'arri�ere de la goutte ln (Fig. 7.19(e)). Nous observons en particulier que le
cou se creuse lorsque le con�nement augmente, et que sa position �evolue.

7.5.2.3 Capillaire �etir�e

Pour �etudier plus pr�ecis�ement l'�evolution de la forme des gouttes en fonction du con-
�nement, nous utilisons des capillaires �etir�es, dont le rayon varie continument entre
h = 50� m et une valeur minimumhmin (canal convergent), puis dehmin �a 50� m (canal
divergent).
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(I) (II)

Figure 7.21: Comportement de gouttes nageant dans des capillaires �etir�es:
les deux capillaires ont un gradientdh

dx = 0:02. I - �Elongation - la goutte s'allonge puis
r�etr�eci le long du capillaire. II - Division: La goutte se divise spontan�ement, elle se
divise au niveau du cou, ce qui forme derri�ere elle des gouttes "�lles" qui ne nagent
pas. (a) Images de la goutte au cours du temps.�Evolution (b) du rayon du capillaire,
(c) de la longueur de la goutte, (d) de la vitesse de la goutte, (e) du rayon du cou et
(f) de la position du cou en fonction de la position de la goutte dans le capillaire �etir�e.

En fonction de l'�etroitesse du capillaire, deux cas de �gure se pr�esentent. (i) Quand
le capillaire n'est pas trop �etroit (Fig. 7.21(I)), par conservation de volume, la goutte
s'allonge dans la partie convergente du canal, puis r�etr�eci dans la partie divergente.
(ii) Quand le capillaire est �etroit (Fig. 7.21(II)), la goutte commence �a s'allonger
dans la partie convergente, puis se divise spontan�ement au niveau du cou, laissant
derri�ere elle une goutte "�lle" qui ne nage pas, la goutte "m�ere" continue �a nager et �a
s'allonger, et peut subir plusieurs divisions successives; jusqu'�a ce qu'elle parvienne �a
la partie divergente, o�u elle r�etr�ecit.

�Etude d'une simple �elongation

Int�eressons nous plus pr�ecis�ement �a la forme de la goutte. En l'absence de division,
le cou de la goutte se creuse continument dans la partie convergente du canal, puis
s'�epaissit de nouveau dans la partie divergente (7.21(I,e)). Cela signi�e que la pr�esence
de ce cou est due �a un ph�enom�ene stable et r�eversible. Si l'on regarde plus pr�ecis�ement
l'�evolution de ce cou avec le con�nement, on s'aper�coit que l'�epaisseur du cou varie de
mani�ere non triviale avec le con�nement.
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Figure 7.22: L'approche de Bretherton consiste �a s�eparer la goutte en cinq zones, deux
calottes sph�eriques (pointill�es rouges), un �lm de lubri�cation (pointill�es bleus), et
deux m�enisques dynamiques (pointill�es violets).

Pour mieux comprendre les ph�enom�enes physiques en jeu, nous pouvons avancer
quelques consid�erations th�eoriques. Une approche classique de l'�etude de gouttes mo-
biles (historiquement pouss�ees par un gradient de pression) peu visqueuses en tube
circulaire est la m�ethode de Bretherton, illustr�ee Fig. 7.22.

La goutte est divis�ee en cinq zones, deux calottes sph�eriques, un �lm de lubri�ca-
tion d'�epaisseur constante, et deux m�enisques dynamiques qui raccordent les zones
pr�ec�edentes. La courbure de la goutte varie le long des m�enisques dynamiques, ce qui
g�en�ere des gradients de pression, et donc des 
ux. R�esoudre ces 
ux permet d'obtenir
l'�equation qui gouverne la forme des m�enisquesE 000= 1� E

E 3 . Apr�es r�esolution et ajuste-
ment asymptotique avec les h�emisph�eres et le �lm de lubri�cation, on trouve en par-
ticulier que le m�enisque arri�ere pr�esente une oscillation tr�es semblable �a ce que nous
avons appel�e le cou dans nos exp�eriences; mais contrairement aux exp�eriences, cette
forme ne d�epend pas du con�nement de la goutte.

Dans le cas des gouttes nageuses, la source de motilit�e n'est pas un gradient de pression
global, mais des gradients de concentrations locaux qui g�en�erent des 
ux phor�etiques.
Nous utilisons la même approche que Bretherton en prenant en compte l'activit�e de la
goutte. Les r�esultats obtenus pr�esentent deux di��erences majeurs avec le cas classique.

(i) L'�equation qui gouverne la forme des m�enisques dynamiques estE 000= 1� E 2

E 3 .
Apr�es r�esolution et ajustement asymptotique avec les h�emisph�eres et le �lm de
lubri�cation, on trouve que les formes des m�enisques sont di��erentes, mais quali-
tativement similaires au cas classique de Bretherton (le m�enisque arri�ere pr�esente
une oscillation).

(ii) A cause de l'advection-di�usion des micelles dans le �lm de lubri�cation, les
gradients de micelles diminuent le long de la goutte. Les champs de vitesse
vont donc diminuer le long de la goutte, provoquant, par conservation du 
ux,
un �epaississement du �lm de lubri�cation. Ce ph�enom�ene a pour cons�equence
que plus la goutte est longue, plus elle est �ne au niveau du m�enisque dy-
namique arri�ere, et donc plus le cou est prononc�e; c'est ce qui est observ�e
exp�erimentalement.
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�Etude de la division

La division de la goutte se fait toujours �a hauteur du cou, et est pr�ec�ed�ee par son
r�etr�ecissement rapide et irr�eversible (Fig. (7.21)(II,e)). Il est probable que si le cou
est trop prononc�e, la forme de la goutte devienne instable, et que donc la goutte entre
dans un r�egime dynamique d'amincissement du cou qui conduit �a la division.

7.5.2.4 Constriction carr�ee

Nous avons regard�e pr�ec�edemment des gouttes dans un capillaire dont le rayon variait
continument et lentement. Il est int�eressant de se demander ce qu'il se passerait si on
variait abruptement la taille du capillaire. Nous �etudions ici la nage de goutte dans
une constriction carr�ee, compos�ee d'un canal d'entr�ee de demi-hauteurwin = 50 � m,
et de canal de sortie de hauteur variablewout plus petite.

Figure 7.23: Images de gouttes �a une constriction: A gauche: goutte qui passe �a
travers une constrictionwout = 50 � m et (b) goutte stopp�ee �a une constrictionwout = 40
� m.

Figure 7.24:Forme de gouttes �a la constriction: (a) Forme d'une goutte passant �a
travers la constriction,wout = 45 � m. (b) Forme d'une goutte stopp�ee �a la constriction
wout = 40 � m. La couleur code le temps, bleu fonc�e = juste avant d'atteindre la
constriction; rouge vif = longtemps apr�es avoir atteint la constriction.

Nous observons globalement que lorsque le canal est assez grand (wout > 0:5win ),
les gouttes sont capables de se d�eformer pour passer dans le canal de sortie, comme
illustr�e Fig. 7.23, �a gauche. Lorsque le canal est trop petit cependant (wout < 0:5win ),
les gouttes sont stopp�ees �a la constriction, comme illustr�e Fig. 7.23, �a droite. Une
mesure pr�ecise de la forme de la goutte, Fig. 7.24, montre que même lorsque la goutte
n'est pas capable de passer (�a droite), elle reste active et se d�eforme �a l'entr�ee de la
constriction.
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7.5.2.5 Conclusion

Dans ce chapitre, nous avons observ�e le comportement de goutte nageuses dans des
g�eom�etries simples ou plus exotiques. L'un des r�esultats les plus �etonnants, pourtant
conceptuellement simple, est que les gouttes sont toujours capable de nager en 1D,
pour tous les con�nements consid�er�es. La seule "limitation" �a ce con�nement est le
ph�enom�ene de division spontan�ee lorsque les gouttes sont trop longues en capillaire cir-
culaire. Ce ph�enom�ene de division est en lui même particuli�erement attractif, puisque
la capacit�e �a se diviser fait partie des points communs des syst�emes vivants.

7.5.3 Nager ensemble en 1D

L'argument de Landau-Peierls pr�edit qu'il ne peut pas y avoir �a l'�equilibre de tran-
sition de phase pour les syst�emes passifs 1D, homog�enes et avec interaction courte
port�ee. Un moyen de contourner cet argument est de consid�erer des syst�emes hors
�equilibre. Exp�erimentalement, le moyen le plus simple d'�etudier un syst�eme actif 1D
est de con�ner les particules, la di�cult�e �etant que le con�nement risque alors de gêner
l'activit�e. D'un point de vue th�eorique, des di�cult�es surgissent aussi des contraintes
g�eom�etriques (les particules ne peuvent se d�epasser).

Nous avons vu pr�ec�edemment que nos gouttes nageuses continuaient d'être actives sous
con�nement, ce qui font d'elles de bons candidats pour explorer le comportement d'un
syst�eme actif 1D.

7.5.3.1 R�ealisation exp�erimentale

Exp�erimentalement, nous utilisons un circuit micro
uidique pour produire puis placer
avec un 
ux ext�erieur nos gouttes dans un serpentin dont la largeur fait typiquement
la taille de la goutte. Une fois les 
ux coup�es, les gouttes se mettent �a nager dans
une direction al�eatoire, et nous observons leur comportement. La Fig. 7.25 montre les
r�esultats de quelques exp�eriences typiques �a diverses densit�es de goutte, les diagrammes
spatio-temporelles (�a gauche), la distribution des vitesses (au milieu) et les vitesses
moyennes (�a droite).

En regardant le diagramme spatio-temporelle, nous observons une riche vari�et�e de
comportements; des collisions binaires entre les gouttes, pendant lesquelles les gouttes
changent de direction, mais aussi �a l'�echelle de l'exp�erience, l'�emergence de structures
denses dans lesquelles les gouttes sont align�ees, et que nous appellerons les "trains".
Ces trains interagissent avec les autres gouttes, mais aussi avec les autres trains. Nous
souhaitons savoir quelle est le ph�enom�ene �a l'origine de la cr�eation des trains. Un
dernier ph�enom�ene observ�e est la cr�eation de "bouchons" dans lesquels les gouttes sont
pratiquement immobiles, dans les zones tr�es denses, typiquement lorsque deux trains
se rencontrent.

Pour ce faire, nous nous int�eressons �a l'�ev�enement le plus simple ayant lieu dans notre
syst�eme: la collision binaire entre deux gouttes. La Fig. 7.26 r�epertorie les di��erents
types de collisions observ�ees dans notre syst�eme. Si nous mettons de cot�e les collisions
persistantes, qui sont rares, les autres collisions (a-d) peuvent toutes être d�ecrites par
des collisions in�elastiques, qui conservent la quantit�e de mouvement (vitesse du centre
de masse constant), mais perdent de l'�energie cin�etique apr�es la collision. Notablement,
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Figure 7.25: Exp�eriences typique pour diverses densit�es de goutte. De haut en bas:
(a) d = 0:05, (b) d = 0:25, (c) d = 0:35, (d) d = 0:4. A droite : diagramme spatio-
temporelle de la position des gouttes. La couleur code pour la direction des gouttes
(rouge vers le haut, bleu vers le bas).Au milieu : histogramme de la vitesse des
gouttes, la couleur code pour le temps (bleu=d�ebut, rouge=�n).A gauche : Moyenne
des vitesses "positives" (en rouge), "n�egatives" (en bleu), et 
ux r�esiduel (en vert).
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Figure 7.26: Toutes les sortes de collisions observ�ees en exp�eriences dilu�ees. La goutte
allant vers le haut avant la collision est en ligne continue, tandis que celle allant
alors vers le bas est en ligne pointill�ee. La couleur correspond �a l'orientation de la
goutte; rouge = vers le haut et bleu = vers le bas. Le centre de masse est en noir.A
gauche: collisions entre gouttes qui �echangent leurs directions, (a) collision in�elastique
sym�etrique (Ug = 0), (b) collision in�elastique asym�etrique (Ug 6= 0). A droite : colli-
sions entre gouttes qui s'alignent, (c) et (d) collision in�elastique asym�etrique conduisant
�a un alignement (Ug 6= 0), (e) collision persistante (Une goutte persiste dans sa direc-
tion avec une vitesse pratiquement inchang�ee).
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lorsque deux gouttes de vitesses tr�es di��erente se heurtent (c-d), la goutte la plus
rapide peut ne pas se retourner, et les deux gouttes repartent dans la même direction:
le syst�eme a gagn�e en alignement. Nous appelons� � 0:6 le coe�cient in�elastique
typique des gouttes.

D'autre part, les gouttes �etant actives, apr�es une perturbation de leur vitesse (typique-
ment apr�es une collision in�elastique au cours de laquelle la vitesse des gouttes d�ecroit
fortement), et en l'absence d'autres perturbations, la vitesse de la goutte va relaxer
vers sa vitesse active. Nous appelons� � 10� 3s� 1 le taux typique de relaxation des
gouttes.

7.5.3.2 D�eveloppement d'un mod�ele simple

Nous souhaiterions savoir si ces deux caract�eristiques �a l'�echelle de la goutte: la relax-
ation vers l'activit�e et la nature in�elastique de la collision, peuvent �a elles seules ex-
pliquer l'�emergence des ph�enom�enes �a l'�echelle de l'exp�erience observ�ee pr�ec�edemment
(trains, bouchons).

Figure 7.27: Diagramme spatio-temporel pour deux simulations de param�etres proches
des param�etres exp�erimentaux.

Pour cela, nous avons d�evelopp�e un mod�ele num�erique simple de particules actives en
1D, qui suivent les caract�eristiques pr�ec�edentes. Deux diagrammes spatio-temporels
typiques pour les mêmes param�etres� et � que l'exp�erience sont donn�es Fig. 7.27. Nous
observons l'�emergence de trains et de bouchons. Donc les deux seuls ingr�edients qui
caract�erisent l'activit�e de la goutte (la relaxation), et son interaction binaire avec une
autre goutte (la collision in�elastique) su�sent �a l'�etablissement de structures collectives
dans notre syst�eme.

Nous pouvons ensuite utiliser notre mod�ele num�erique pour explorer des temps plus
longs, et faire varier les param�etres� et � . Les r�egimes observ�es �a l'�echelle de
l'exp�erience ne sont en fait que des r�egimes transitoires, qui relaxent vers trois �etats
possibles en fonction des param�etres: lorsque les collisions sont peu in�elastiques (�
proche de 1), et que les gouttes regagnent rapidement leur vitesse active (� proche de
1), alors les gouttes sont en r�egime quasi-�elastique, et continuent �a se heurter. Lorsque
les collisions sont tr�es in�elastique (� proche de 0), les gouttes s'alignent globalement.
En�n si le taux de relaxation est trop petit, les gouttes perdent de leur vitesse �a chaque
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Figure 7.28: Diagramme de phase sch�ematique.

collision, et forment des bouchons de gouttes immobiles. Le diagramme des phases de
ces r�egimes en fonction des param�etres� et � est donn�e Fig. 7.28

7.5.3.3 Conclusion

Nous avons r�ealis�e un syst�eme exp�erimental de gouttes nageuses en 1D. Nous observons
l'�emergence de ph�enom�enes collectifs macroscopiques, telles que les trains ou les bou-
chons. Un mod�ele simple montre que de telles structures peuvent être expliqu�ees par
des observations �a l'�echelle des gouttes, la relaxation vers l'activit�e et l'in�elasticit�e des
collisions. En fonction de l'importance des ces deux ph�enom�enes, le syst�eme converge
vers un �etat globalement align�e, ou un �etat qui reste d�esordonn�e. Il y a donc dans
notre syst�eme une transition de phase.

7.5.4 En cours : Nage sous gravit�e

Cette derni�ere partie pr�esente un travail en cours, et pour lequel nous allons simplement
pr�esenter les enjeux et les r�esultats pr�eliminaires.

Dans le monde du vivant, de nombreux micro-organismes sont capable de gravitotaxie:
d'adapter leur motilit�e en pr�esence de gravit�e. La machinerie cellulaire n�ecessaire
�a cette adaptation n'est pas parfaitement comprise; certaines �etudes sugg�erent que
l'activit�e des micro-organismes pourrait �a elle seule être su�sante pour l'expliquer.

Dans notre syst�eme, le comportement de nos gouttes nageuses d�epend d'un couplage
entre le d�eplacement de la goutte, et la production d'un champ de concentration. Les
gouttes �etant pesantes, la gravit�e modi�e n�ecessairement le d�eplacement de la goutte;
et donc pourrait potentiellement avoir une in
uence sur le champ de concentration, et
donc sur l'activit�e. C'est ce que nous souhaiterions �etudier dans ce projet. Quelques
exp�eriences pr�eliminaires montrent des r�esultats prometteurs. Nous avons mesur�e la
vitesse de gouttes de di��erentes tailles sur des plans inclin�es, en faisant varier l'angle�
du plan, et donc la force de gravit�e ressentie par la goutte dans ce plan. Les r�esultats
sont pr�esent�es Fig. 7.29

Si la gravit�e n'a�ectait pas l'activit�e de la goutte, alors la vitesse de la goutte serait la
somme de deux contributions ind�ependantes: la vitesse activeVa(� = 0), qui ne d�epend
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Figure 7.29: Composante de la vitesse parall�ele �a la gravit�e de gouttes nageuses de
di��erentes tailles (cercles de couleurs), et de gouttes passives (croix grises), sur un
plan inclin�e avec un angle� variable. La ligne noire continue repr�esente la r�egression
lin�eaire de la vitesse des gouttes passives; et la ligne noire pointill�ee repr�esente la
vitesse attendue des gouttes nageuses en pr�esence de gravit�e, si la gravit�e n'avait pas
d'in
uence sur la nage.

pas de l'angle du plan; et la vitesse de chute,Vg / a2 sin� , qui est la même que pour
des gouttes passives de même taille. Des exp�eriences t�emoins, faites avec des gouttes
passives, sont repr�esent�ees par des croix grises: leur vitesse est bien proportionnelle �a
a2 sin� , et nous repr�esentons par une ligne continue la r�egression lin�eaire de la vitesse
des gouttes passives. Lorsque l'angle est nul; la vitesses des gouttes actives est la vitesse
de nage. Nous repr�esentons par un trait pointill�e la courbeV(� = 0) + Vg(� ). Si les
e�ets de la gravit�e et de l'activit�e ne sont pas coupl�es, alors la vitesse des gouttes actives
devrait suivre cette courbe. Nous observons que ce n'est pas le cas; en particulier aux
grands angles, la vitesse des gouttes actives est bien au dessus de la courbe pointill�ee;
cela montre que la gravit�e a bien un e�et sur l'activit�e de la goutte.

7.6 Conclusion g�en�erale

Ce travail, qui est essentiellement de nature fondamentale, explore exp�erimentalement
au travers d'un nageur mod�ele, l'in
uence de facteurs ext�erieurs sur le comportement
des micro-nageurs. La goutte d'eau nageuse se d�eplace en induisant elle même un
gradient de micelles gon
�ees �a son interface. Nous l'observons dans de nombreuses
situations: en pr�esence de murs, con�n�ee en 1D, avec de nombreuses autres gouttes
ou encore sous gravit�e. Ces facteurs ext�erieurs in
uencent le champ de vitesse au-
tour de la goutte, mais aussi, au travers du couplage entre l'hydrodynamique et les
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champs de concentration, modi�ent le nageur lui même. Chapitre 7.5.1, nous avons
vu que la pr�esence d'un mur changeait le comportement longue port�ee des gouttes.
Chapitre 7.5.2 a montr�e que le fort con�nement n'empêchait pas les gouttes de nager,
mais modi�e leurs formes ce qui m�ene �a des ph�enom�enes complexes tels que des divi-
sions spontan�ees. Chapitre 7.5.3, les interactions entre nageurs provoquent l'�emergence
d'e�ets collectifs tels que les trains ou les bouchons. Dans tous ces cas, ces contraintes
ext�erieures qui n'auraient pu avoir comme e�et que de gêner la nage, enrichissent
grandement la ph�enom�enologie du syst�eme. Au del�a de la simple compr�ehension de
toutes ces situations particuli�eres, ces �etudes donnent des cl�es de compr�ehension sur
de nombreux ph�enom�enes �a l'interface entre l'hydrodynamique, la physico-chimie et
l'�etude des syst�emes actifs.
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RÉSUMÉ

La vie est d'une extraordinaire diversité. Peut-être plus merveilleux encore, les syst �emes vivants partagent des caractéristiques com-
munes : la compartimentalisation, la croissance et la division, le traitement d'informations, la transduction d'énergie et la capacité �a
s'adapter. La capacité �a se mouvoir, en particulier, joue un rôle crucial dans la compétition entre esp�eces. La physique �a l'échelle mi-
crométrique étant différente de celle �a notre échelle macroscopique, les micro-nageurs ont des stratégies spéci�ques pour se d éplacer.
Comprendre ces stratégies est capital au niveau fondamental pour appréhender le comportement des micro-nageurs biologiques, mais
aussi pour développer des applications techniques et médicales, o �u des nageurs arti�ciels permettent d'effectuer de nombreuses t âches
(transport, mélange). Dans ce contexte, les micronageurs biologiques et arti�ciels ont été abondamment étudiés, et nous plaçons notre
étude dans le cadre d'un environnement réaliste, et donc complexe, o �u la nage est in�uenc ée par des facteurs extérieurs (la géométrie,
une force extérieure, d'autres nageurs). Tout au long de cette étude, nous utilisons la micro�uidique pour cr éer, mettre en situation
complexe et observer un nageur mod�ele : une goutte d'eau nageuse dans une solution d'huile et de micelles. Il a été montré que la
nage de la goutte est due au couplage non linéaire entre l'hydrodynamique et l'advection-diffusion de micelles remplies d'eau. Nous
étudions d'abord l'effet du con�nement en utilisant une technique de micro-PIV en 3D. La pr ésence d'un mur brise l'axisymétrie na-
turelle du probl �eme. Nous proposons une formulation analytique simpli� ée qui prend en compte la présence du mur et la densité de
la goutte. Ce mod�ele décrit l'hydrodynamique longue distance en présence d'un mur, qui diff �ere de celle en l'absence de mur. Nous
regardons ensuite des géométries plus con�n ées : des capillaires en verre. Nous observons que la vitesse des gouttes décro�̂t quand
le con�nement augmente, mais sature �a une valeur faible mais �nie quand la goutte devient plus longue que la hauteur du capillaire.
Dans des géométries plus complexes, telles que des capillaires étirés, nous observons un étonnant phénom�ene de divisions spontanées
successives de la goutte pour les grands con�nements. Nous montrons que ce cela vient d'une saturation en micelle gon� ée le long
de l'interface de la goutte. La présence d'une force extérieure a aussi une in�uence sur le comportement de la goutte. En 2D, nous
observons pour une goutte sur un plan incliné que la gravité oriente la dynamique et que pour une forte gravité, la vitesse de la goutte
est plus que la simple composition des vitesses due �a la gravité et �a l'activité. Nous confrontons ces résultats �a une étude théorique du
mécanisme d'instabilité en présence de gravité. En 1D, la goutte a un comportement similaire, mais nage aussi contre la gravité. Nous
�nissons en étudiant la dynamique collective des gouttes en canal 1D. Le syst �eme expérimental présente une phénoménologie riche :
des gouttes voisines s'alignent et forment de larges trains. Nous observons que l'interaction entre deux gouttes qui se � collisionnent
� est le résultat d'un effet combiné des �uctuations de vitesses et de l'absence d'invariance galil éenne. Nous construisons un mod�ele
simple de particules actives, et �a l'aide d'outils analytiques et numériques, nous montrons qu'il existe une transition vers une dynamique
collective. En conclusion, la goutte nageuse partage de nombreuses similarités avec les syst �emes vivants : la compartimentalisation
(une goutte), la division (quand elle est con�n ée), la transduction d'énergie (par relaxation thermodynamique), et la capacité �a s'adapter
�a son environnement (par la nage). Au-del �a de la simple étude de notre syst �eme particulier, ces études donnent de nombreuses clés
de compréhension sur des phénom�enes �a l'interface de l'hydrodynamique, de la physico-chimie et de la mati �ere active.

MOTS CLÉS

Mati �ere active, Goutte nageuse, Micro-�uidique, Dynamique de Stokes, Con�nement, S édimentation.

ABSTRACT

One may simply be amazed in front of the diversity and complexity of life. Yet, and maybe even more bewildering, living systems all
share common hallmarks: compartmentalization, growth and division, information processing, energy transduction and adaptability. In
particular, the mobility plays a crucial role in the competitiveness between different species. Physics at microscales is different from
the one we are used to at our macroscopic scale. This is why, micro-swimmers have developed speci�c strategies to induce motion.
The understanding of such strategies is crucial at the fundamental level to apprehend the behavior of biological micro-swimmer, but
also to achieve arti�cial locomotion in a surrounding �uid at the micron-scale, in order to perform a multitude of tasks in technical and
medical applications (transport, mixing), which has become a central goal of nanoscience. In this context, biological and arti�cial micro-
swimmers have been intensively studied, and we place our study in the framework of swimming in a realistic and complex environment,
in the case where external factors (con�nement, external force, other swimmers) may in�uence the swimming properties. In this work,
using micro�uidic, we create, put into complex situation and observe a model swimmer: a pure water swimming droplet in an outer
oil-micelle solution. It was shown that the droplet motion emerges from the nonlinear coupling of hydrodynamics and advection-diffusion
of micelles �lled with water. We �rst study the effect of con�nement on such geometries using confocal PIV in 3D. The presence of one
wall breaks the natural axisymmetry of the �ow �eld. We propose a simpli�ed analytical formulation taking into account the presence
of the wall and the effect of buoyancy. This model accounts for the far �eld hydrodynamic of the droplet close to a wall that differs from
the no-wall case. We then look at more con�ned geometries using glass capillary micro�uidic. The velocity of the droplet decreases
with increasing con�nement; but surprisingly; it saturates at a non-zero value for droplets bigger than the channel height: even very long
droplets swim. In more complex geometries, such as stretched capillaries; the droplet elongates while swimming, and amazingly, may
undergo successive spontaneous splitting events for high enough con�nement. We show that this behavior comes from a saturation
in the swollen micelles concentration along the droplet length. External force - such as gravity – also in�uence the droplet behavior.
In 2D, by observing a swimming droplet on an inclined plane, we show that gravity orients the droplet, and that under strong gravity,
the droplet's velocity is more than the simple additivity of the gravity and activity. This is discussed in the light of a theoretical study
of the instability mechanism under an external force. The droplet in 1D exhibit a similar behavior, but is also able to swim against
gravity. Finally, we investigate their collective dynamics in a 1D micro-�uidic channel. We observe experimentally a rich phenomenology:
neighboring droplets align and form large trains. Exanimating the interactions between two ”colliding” droplets shows that alignment rises
from the interplay between velocity �uctuations and the absence of Galilean invariance. Taking these observations as the basis for a
minimalistic 1D model of active particles and combining analytical and numerical arguments, we show that the system exhibits a transition
to collective motion. Altogether, the swimming droplet shares numerous similarities with living system: compartmentalization (a droplet),
division (under con�nement), energy transduction (by thermodynamic relaxation) and adaptability (through the swimming). Beyond
the simple understanding of our peculiar system, these studies give insight on various phenomena at the interface of hydrodynamics,
physico-chemical engineering and active matter.
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Swimming droplets, Active matter, Micro�uidics, Stokes dynamics, Con�nement, Sedimentation.
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