, By pleasure drawn from discovery of new truth, the scientist is part poet, and by pleasure drawn from new ways to express old truths, the poet is part scientist, 2013.

C. I. Abreu, J. Friedman, V. L. Woltz, and J. Gore, Mortality causes universal changes in microbial community composition, 2019.

, Nature Communications, vol.10, issue.1, pp.1-9

A. Aktipis, Principles of cooperation across systems: from human sharing to multicellularity and cancer, Evolutionary Applications, vol.9, issue.1, pp.17-36, 2016.

J. Ameisen, Dans la lumière et les ombres Texte imprimé Darwin et le bouleversement du monde. Fayard/Seuil, 2008.

M. Ardré, D. Dufour, and P. B. Rainey, Causes and Biophysical Consequences of Cellulose Production by Pseudomonas fluorescens SBW25 at the Air-Liquid Interface, Journal of Bacteriology, vol.201, issue.18, pp.110-129, 2019.

F. I. Arias-sánchez, B. Vessman, and S. Mitri, Artificially selecting microbial communities: If we can breed dogs, why not microbiomes?, PLOS Biology, vol.17, issue.8, p.3000356, 2019.

A. , Traité de la génération des animaux d'Aristote, 1887.

R. Axelrod and W. D. Hamilton, The evolution of cooperation, Science, vol.211, issue.4489, pp.1390-1396, 1981.

E. Bantinaki, R. Kassen, C. G. Knight, Z. Robinson, A. J. Spiers et al., Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. III. Mutational Origins of Wrinkly Spreader Diversity, Genetics, vol.176, issue.1, pp.441-453, 2007.

L. Baraban, F. Bertholle, M. L. Salverda, N. Bremond, P. Panizza et al., Millifluidic droplet analyser for microbiology, vol.11, pp.4057-4062, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00647595

D. A. Baum and K. Vetsigian, An Experimental Framework for Generating Evolvable Chemical Systems in the Laboratory, Origins of Life and Evolution of Biospheres, vol.47, issue.4, pp.481-497, 2017.

A. J. Black, P. Bourrat, and P. B. Rainey, Ecological scaffolding and the evolution of individuality: the transition from cells to multicellular life. bioRxiv, p.656660, 2019.

A. Blokhuis, D. Lacoste, P. Nghe, and L. Peliti, Selection Dynamics in Transient Compartmentalization, Physical Review Letters, vol.120, issue.15, p.158101, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02371255

L. Boitard, D. Cottinet, N. Bremond, J. Baudry, and J. Bibette, Growing microbes in millifluidic droplets, Engineering in Life Sciences, vol.15, issue.3, pp.318-326, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01230000

J. T. Bonner, Evolutionary strategies and developmental constraints in the cellular slime molds, The American Naturalist, vol.119, issue.4, pp.530-552, 1982.

J. T. Bonner, The origins of multicellularity, Integrative Biology: Issues, News, and Reviews, vol.1, issue.1, pp.27-36, 1998.

J. T. Bonner, Life Cycles: Reflections of an Evolutionary Biologist, 2015.

P. Bourrat, Evolutionary Transitions in Heritability and Individuality. bioRxiv, p.192443, 2017.

G. L. Buffon, De la manière d'étudier et de traiter l'histoire naturelle, 1829.

G. L. Buffon, Histoire des animaux, Barbou frères, 1882.

G. L. Buffon, Oeuvres complètes de Buffon, 1884.

L. W. Buss, Somatic cell parasitism and the evolution of somatic tissue compatibility, Proceedings of the National Academy of Sciences, vol.79, issue.17, pp.5337-5341, 1982.

L. W. Buss, The evolution of individuality, 1987.

N. Champagnat, R. Ferrière, and S. Méléard, Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models, Theoretical Population Biology, vol.69, issue.3, pp.297-321, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00164784

D. Cottinet, Diversité phénotypique et adaptation chez Escherichia Coli etudiéees en millifluidique digitale, 2013.

D. Cottinet, F. Condamine, N. Bremond, A. D. Griffiths, P. B. Rainey et al., Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution, PLOS ONE, vol.11, issue.4, p.152395, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01400779

C. Darwin, The origin of species, John Murray, 1872.

C. Darwin, The variation of animals and plants under domestication, John Murray, 1968.

R. Dawkins, The selfish gene, 1976.

M. D. Day, D. Beck, and J. A. Foster, Microbial Communities as Experimental Units, BioScience, vol.61, issue.5, pp.398-406, 2011.

S. De-monte and P. B. Rainey, Nascent multicellular life and the emergence of individuality, Journal of Biosciences, vol.39, issue.2, pp.237-248, 2014.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society. Series B (Methodological), vol.39, issue.1, pp.1-38, 1977.

D. Diderot and J. L. Alembert, Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, vol.14, pp.edi- tors, 1751.

U. Dieckmann and R. Law, The dynamical theory of coevolution: a derivation from stochastic ecological processes, Journal of Mathematical Biology, vol.34, issue.5, pp.579-612, 1996.

M. Doebeli, Adaptive Diversification, 2011.

M. Doebeli, Y. Ispolatov, and B. Simon, Point of View: Towards a mechanistic foundation of evolutionary theory, vol.6, p.23804, 2017.

G. Doulcier, Dropsignal -Millifluidic droplet trains analysis. Zenodo, p.1164108, 2019.

J. Dupin, Cultures multi-parallélisées en millifluidique digitale : diversité et sélection artificielle, 2018.

C. Duret, Histoire admirable des plantes et des herbes esmerveillables & miraculeuses en nature, 1605.

C. Dutta and A. Pan, Horizontal gene transfer and bacterial diversity, Journal of Biosciences, vol.27, issue.1, pp.27-33, 2002.

B. Efron, Bayes' Theorem in the 21st Century, Science, vol.340, issue.6137, pp.1177-1178, 2013.

J. C. Fay and C. Wu, Hitchhiking Under Positive Darwinian Selection, Genetics, vol.155, issue.3, pp.1405-1413, 2000.

E. J. Feil, Linkage, Selection, and the Clonal Complex, Bacterial Population Genetics in Infectious Disease, pp.19-35, 2010.

R. Ferriere and R. E. Michod, The Evolution of Cooperation in Spatially Heterogeneous Populations, The American Naturalist, vol.147, issue.5, pp.692-717, 1996.

M. Fishelson, N. Dovgolevsky, and D. Geiger, Maximum Likelihood Haplotyping for General Pedigrees, Human Heredity, vol.59, issue.1, pp.41-60, 2005.

R. A. Fisher, The genetical theory of natural selection, 1930.

B. D. Fontenelle, Lettre sur la question de l'existence des couleurs et sur les animaux considérés comme des machines, Fontenelle / textes choisis et commentés par Émile Faguet, 1912.

M. Foucault, Les mots et les choses. Gallimard, 1966.

F. Galton, 1871). I. Experiments in Pangenesis, by breeding from rabbits of a pure variety, into whose circulation blood taken from other varieties had previously been largely transfused, Proceedings of the Royal Society of London, vol.19, pp.393-410

F. Galton, Natural inheritance. Macmillan and Company, 1894.

S. Gandon, V. A. Jansen, and M. V. Baalen, Host Life History and the Evolution of Parasite Virulence, Evolution, vol.55, issue.5, pp.1056-1062, 2001.

T. Garcia, G. Doulcier, M. , and S. D. , The evolution of adhesiveness as a social adaptation. eLife, p.8595, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01312791

S. Geritz, M. Gyllenberg, F. Jacobs, and K. Parvinen, Invasion dynamics and attractor inheritance, Journal of Mathematical Biology, vol.44, issue.6, pp.548-560, 2002.

S. A. Geritz, E. Kisdi, G. Meszéna, and J. A. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, vol.12, issue.1, pp.35-57, 1998.

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of computational physics, vol.22, issue.4, pp.403-434, 1976.

D. T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, The Journal of Chemical Physics, vol.115, issue.4, pp.1716-1733, 2001.

P. Godfrey-smith, Darwinian Populations and Natural Selection, 2009.

C. Goodnight and L. Stevens, Experimental Studies of Group Selection: What Do They Tell Us about Group Selection in Nature?, The American Naturalist, vol.150, issue.S1, pp.59-79, 1997.

C. J. Goodnight, Experimental studies of community evolution I: The response to selection at the community level, Evolution, vol.44, issue.6, pp.1614-1624, 1990.

C. J. Goodnight, Experimental studies of community evolution II: The ecological basis of the response to community selection, 1990.

, Evolution, vol.44, issue.6, pp.1625-1636

C. J. Goodnight, Heritability at the ecosystem level, Proceedings of the National Academy of Sciences, vol.97, pp.9365-9366, 2000.

D. Grey, V. Hutson, and E. Szathmáry, A re-exam ination of the stochastic corrector model, Proc. R. Soc. Lond. B, vol.262, pp.29-35, 1363.

J. Griesemer, The Units of Evolutionary Transition. Selection, vol.1, pp.67-80, 2001.

J. Griesemer, What is "epi" about epigenetics?, vol.981, pp.97-110, 2002.

R. K. Grosberg and R. R. Strathmann, The Evolution of Multicellularity: A Minor Major Transition?, Evolution, and Systematics, vol.38, issue.1, pp.621-654, 2007.

W. D. Hamilton, The genetical evolution of social behaviour, II. Journal of theoretical biology, vol.7, issue.1, pp.17-52, 1964.

K. Hammerschmidt, C. J. Rose, B. Kerr, and P. B. Rainey, Life cycles, fitness decoupling and the evolution of multicellularity, Nature, vol.515, issue.7525, pp.75-79, 2014.

E. R. Hanschen, T. N. Marriage, P. J. Ferris, T. Hamaji, A. Toyoda et al., The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity, 2016.

, Nature Communications, vol.7, issue.1, pp.1-10

G. Hardin, The Tragedy of the Commons, Science, vol.162, issue.3859, pp.1243-1248, 1968.

P. Y. Hesters, W. M. Muir, and J. V. Craig, Group Selection for Adaptation to Multiple-Hen Cages: Humoral Immune Response, Poultry Science, vol.75, issue.11, pp.1315-1320, 1996.

M. E. Hochberg, D. J. Rankin, and M. Taborsky, The coevolution of cooperation and dispersal in social groups and its implications for the emergence of multicellularity, 2008.
URL : https://hal.archives-ouvertes.fr/halsde-00475839

, BMC Evolutionary Biology, vol.8, issue.1, p.238

S. P. Hubbell, The Unified Neutral Theory of Biodiversity and Biogeography, 2001.

T. Ikegami and K. Hashimoto, Dynamical Systems Approach to Higher-level Heritability, Journal of Biological Physics, vol.28, issue.4, pp.799-804, 2002.

F. Jacob, La logique du vivant: une histoire de l'hérédité, 1970.

F. Jacob, Evolution and tinkering. Science, vol.196, issue.4295, pp.1161-1166, 1977.

A. Jacquard, Heritability: One Word, Three Concepts, Biometrics, vol.39, issue.2, pp.465-477, 1983.

C. R. Johnson and M. C. Boerlijst, Selection at the level of the community: the importance of spatial structure, Trends in Ecology & Evolution, vol.17, issue.2, pp.83-90, 2002.

I. G. Johnston and N. S. Jones, Closedform stochastic solutions for non-equilibrium dynamics and inheritance of cellular components over many cell divisions, Proc. R. Soc, 2015.

, A, vol.471, 2180.

S. B. Joseph, R. Swanstrom, A. D. Kashuba, and M. S. Cohen, Bottlenecks in HIV-1 transmission: insights from the study of founder viruses, Nature reviews, 2015.

, Microbiology, vol.13, issue.7, pp.414-425

T. J. Kawecki, R. E. Lenski, D. Ebert, B. Hollis, I. Olivieri et al., Experimental evolution, Trends in ecology & evolution, vol.27, issue.10, pp.547-560, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00162893

B. Kerr, C. Neuhauser, B. J. Bohannan, and A. M. Dean, Local migration promotes competitive restraint in a host-pathogen 'tragedy of the commons, vol.442, pp.75-78, 2006.

M. Kimura, The neutral theory of molecular evolution, 1983.

D. L. Kirk, Volvox: A Search for the Molecular and Genetic Origins of Multicellularity and Cellular Differentiation (Developmental and, Cell Biology Series, 1997.

D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques, 2009.

S. E. Kotil and K. Vetsigian, Emergence of evolutionarily stable communities through eco-evolutionary tunnelling, Nature Ecology & Evolution, vol.2, issue.10, pp.1644-1653, 2018.

T. S. Kuhn, The structure of scientific revolutions, 1970.

J. Lamarck, , 1809.

A. Lambert, The allelic partition for coalescent point processes, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00424926

A. Lambert and T. Stadler, Birth-death models and coalescent point processes: The shape and probability of reconstructed phylogenies, Theoretical Population Biology, vol.90, pp.113-128, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00936070

A. D. Lavoisier, Oeuvres de Lavoisier, vol.2, 1862.

J. Legay, L'expérience et le modèle. Editions Quae, 1997.

B. R. Levin, Periodic Selection, Infectious Gene Exchange and the Genetic Structure of E. Coli Populations, Genetics, vol.99, issue.1, pp.1-23, 1981.

R. Levins and R. C. Lewontin, The dialectical biologist, 1985.

R. C. Lewontin, The Units of Selection, Annual Review of Ecology and Systematics, vol.1, pp.1-18, 1970.

E. Libby and W. C. Ratcliff, Ratcheting the evolution of multicellularity, Science, vol.346, issue.6208, pp.426-427, 2014.

P. A. Lind, A. D. Farr, and P. B. Rainey, Evolutionary convergence in experimental Pseudomonas populations, The ISME Journal, vol.11, issue.3, pp.589-600, 2017.

C. V. Linné, Systema Naturae. Haak, 1735.

S. E. Luria and M. Delbrück, Mutations of bacteria from virus sensitivity to virus resistance, Genetics, vol.28, issue.6, p.491, 1943.

R. H. Macarthur and E. O. Wilson, Theory of Island Biogeography, vol.1, 1967.

L. Margulis, Origin of eukaryotic cells: evidence and research implications for a theory of the origin and evolution of microbial, plant, and animal cells on the precambrian earth, 1970.

W. Martin and M. Müller, The hydrogen hypothesis for the first eukaryote, Nature, vol.392, issue.6671, pp.37-41, 1998.

W. Martin and M. J. Russell, On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.358, pp.59-85, 1429.

P. M. Maupertuis, Essai sur la formation des corps organisés, 1754.

P. M. Maupertuis, Lettre XIV -Sur la génération des animaux, Bruyset, Lyon, vol.2, 1756.

M. Smith and J. , How to Model Evolution, The Latest on the Best: Essays on Evolution and Optimality, pp.119-131, 1987.

M. Smith, J. Brookfield, and J. F. , Models of Evolution, 1983.

, Proceedings of the Royal Society of London B: Biological Sciences, vol.219, pp.315-325, 1216.

M. Smith, J. Feil, E. J. Smith, and N. H. , Population structure and evolutionary dynamics of pathogenic bacteria, Bioessays, vol.22, issue.12, pp.1115-1122, 2000.

M. Smith, J. Price, and G. R. , The Logic of Animal Conflict, Nature, vol.246, issue.5427, pp.15-18, 1973.

M. Smith, J. Smith, N. H. O'rourke, M. Spratt, and B. G. , How clonal are bacteria?, Proceedings of the National Academy of Sciences, vol.90, issue.10, pp.4384-4388, 1993.

M. Smith, J. Szathmary, and E. , , 1995.

, The Major Transitions in Evolution

M. Smith, J. Szathmáry, and E. , The Origin of Chromosomes I. Selection for Linkage, Journal of Theoretical Biology, vol.164, issue.4, pp.437-446, 1993.

E. Mayr, Darwin et la pensée moderne de l'évolution, 1991.

M. J. Mcdonald, S. M. Gehrig, P. L. Meintjes, X. Zhang, and P. B. Rainey, , 2009.

, Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. IV. Genetic Constraints Guide Evolutionary Trajectories in a Parallel Adaptive Radiation, Genetics, vol.183, issue.3, pp.1041-1053

G. Mendel, Versuche iiber Pfianzen-Hybriden. Verhandlungen des Naturforschenden Vereins in Brunn 4, 1866.

R. E. Michod, Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality, 2000.

R. E. Michod, Evolution of individuality during the transition from unicellular to multicellular life, Proceedings of the National Academy of Sciences, vol.104, issue.1, pp.8613-8618, 2007.

R. E. Michod and D. Roze, Cooperation and conflict in the evolution of multicellularity, Heredity, vol.86, issue.1, pp.1-7, 2001.

J. Monod, Le hasard et la nécessité: essai sur la philosophie naturelle de la biologie moderne, 1970.

T. H. Morgan, The Mechanism of Mendelian heredity, H. Holt and company, 1915.

C. J. Needham, J. R. Bradford, A. J. Bulpitt, and D. R. Westhead, A Primer on Learning in Bayesian Networks for Computational Biology, PLOS Computational Biology, vol.3, issue.8, p.129, 2007.

M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life, 2014.

M. A. Nowak and R. M. May, Superinfection and the evolution of parasite virulence, Proceedings of the Royal Society of London. Series B: Biological Sciences, vol.255, pp.81-89, 1342.

G. Nuel, A. Lefebvre, and O. Bouaziz, Computing Individual Risks Based on Family History in Genetic Disease in the Presence of Competing Risks, Computational and Mathematical Methods in Medicine, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01560832

S. Okasha, Evolution and the levels of selection, vol.16, 2006.

S. Okasha, Emergence, hierarchy and top-down causation in evolutionary biology, Interface Focus, vol.2, issue.1, pp.49-54, 2012.

K. Panke-buisse, A. C. Poole, J. K. Goodrich, R. E. Ley, and J. Kao-kniffin, Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal, vol.9, pp.980-989, 2015.

A. Paré, Des Monstres et Prodiges, Les oeuvres d'Ambroise Paré. Prost, Lyon, 1641.

A. Penn, Modelling artificial ecosystem selection: A preliminary investigation, European Conference on Artificial Life, pp.659-666, 2003.

A. Penn and I. Harvey, The Role of Non-Genetic Change in the Heritability, Variation, and Response to Selection of Artificially Selected Ecosystems, Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Artificial Life, vol.9, p.352, 2004.

L. Popovic, Asymptotic genealogy of a critical branching process, The Annals of Applied Probability, vol.14, issue.4, pp.2120-2148, 2004.

L. Potvin-trottier, S. Luro, and J. Paulsson, Microfluidics and single-cell microscopy to study stochastic processes in bacteria, Current opinion in microbiology, vol.43, pp.186-192, 2018.

D. C. Queller, Cooperators since life began, 1997.

P. B. Rainey and B. Kerr, Cheats as first propagules: A new hypothesis for the evolution of individuality during the transition from single cells to multicellularity, 2010.

, BioEssays, vol.32, issue.10, pp.872-880

P. B. Rainey and K. Rainey, Evolution of cooperation and conflict in experimental bacterial populations, Nature, vol.425, issue.6953, pp.72-74, 2003.

P. B. Rainey, P. Remigi, A. D. Farr, and P. A. Lind, Darwin was right: where now for experimental evolution?, Current Opinion in Genetics & Development, vol.47, pp.102-109, 2017.

P. B. Rainey and M. Travisano, Adaptive radiation in a heterogeneous environment, Nature, vol.394, issue.6688, pp.69-72, 1998.

W. C. Ratcliff, R. F. Denison, M. Borrello, and M. Travisano, Experimental evolution of multicellularity, Proceedings of the National Academy of Sciences, vol.109, issue.5, pp.1595-1600, 2012.

J. Ray, Historia Plantarum. Clark, 1686.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, vol.507, issue.7491, pp.181-189, 2014.

E. Schrödinger, What is life?, 1944.

P. D. Sniegowski, P. J. Gerrish, T. Johnson, and A. Shaver, The evolution of mutation rates: separating causes from consequences, BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, vol.22, issue.12, pp.1057-1066, 2000.

P. D. Sniegowski, P. J. Gerrish, and R. E. Lenski, Evolution of high mutation rates in experimental populations of E. coli. Nature, vol.387, pp.703-705, 1997.

A. J. Spiers, S. G. Kahn, J. Bohannon, M. Travisano, and P. B. Rainey, Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. I. Genetic and Phenotypic Bases of Wrinkly Spreader Fitness, Genetics, vol.161, issue.1, pp.33-46, 2002.

S. C. Stearns, Trade-Offs in Life-History Evolution, Functional Ecology, vol.3, issue.3, pp.259-268, 1989.

B. Stecher, R. Robbiani, A. W. Walker, A. M. Westendorf, M. Barthel et al., Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota, PLOS Biol, vol.5, issue.10, p.244, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01518394

C. F. Stevens, Darwin and Huxley revisited: the origin of allometry, Journal of Biology, vol.8, issue.2, p.14, 2009.

J. E. Strassmann and D. C. Queller, Evolution of cooperation and control of cheating in a social microbe, Proceedings of the National Academy of Sciences, vol.108, pp.10855-10862, 2011.

W. Swenson, J. Arendt, and D. S. Wilson, Artificial selection of microbial ecosystems for 3-chloroaniline biodegradation, Environmental Microbiology, vol.2, issue.5, p.564, 2000.

W. Swenson, D. S. Wilson, E. , and R. , Artificial ecosystem selection. Proceedings of the National Academy of, Sciences, vol.97, issue.16, pp.9110-9114, 2000.

E. Szathmáry, M. Smith, and J. , The major evolutionary transitions, Nature, vol.374, issue.6519, pp.227-232, 1995.

N. Takeuchi and P. Hogeweg, Multilevel Selection in Models of Prebiotic Evolution II: A Direct Comparison of Compartmentalization and Spatial Self-Organization, PLOS Computational Biology, vol.5, issue.10, p.1000542, 2009.

N. Takeuchi and P. Hogeweg, Evolutionary dynamics of RNA-like replicator systems: A bioinformatic approach to the origin of life, Physics of Life Reviews, vol.9, issue.3, pp.219-263, 2012.

E. Toprak, A. Veres, S. Yildiz, J. M. Pedraza, R. Chait et al., Building a Morbidostat: An automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition, Nature protocols, vol.8, issue.3, pp.555-567, 2013.

S. Van-vliet and M. Doebeli, The role of multilevel selection in host microbiome evolution, Proceedings of the National Academy of Sciences, vol.116, pp.20591-20597, 2019.

J. Vaucanson, Le Mécanisme du flûteur automate, présenté à Messieurs de l'Académie royale des sciences, par M. Vaucanson, auteur de cette machine, avec la description d'un canard artificiel... imitant en diverses manières un canard vivant, inventé par le même, et aussi celle d'une autre figure, 1738.

R. L. Virchow, Cellular pathology as based upon physiological and pathological histology, J. B. Lippincott, 1863.

M. J. Wade, Adaptation in Metapopulations, 2016.

L. M. Wahl and P. J. Gerrish, The Probability That Beneficial Mutations Are Lost in Populations with Periodic Bottlenecks, Evolution, vol.55, issue.12, pp.2606-2610, 2001.

L. M. Wahl, P. J. Gerrish, and I. Saika-voivod, Evaluating the impact of population bottlenecks in experimental evolution, Genetics, vol.162, issue.2, pp.961-971, 2002.

L. M. Wahl and D. C. Krakauer, Models of experimental evolution: the role of genetic chance and selective necessity, Genetics, vol.156, issue.3, pp.1437-1448, 2000.

L. M. Wahl and A. D. Zhu, Survival Probability of Beneficial Mutations in Bacterial Batch Culture, Genetics, vol.200, issue.1, pp.309-320, 2015.

J. D. Watson and F. H. Crick, A structure for deoxyribose nucleic acid, Nature, vol.171, issue.4356, pp.737-738, 1953.

J. D. Watson and F. H. Crick, Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, vol.171, pp.737-738, 1953.

A. Weismann, Essais sur l'hérédité et la sélection naturelle. C. Reinwald, 1892.

G. C. Williams, Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought, 2018.

H. T. Williams and T. M. Lenton, Artificial selection of simulated microbial ecosystems, Proceedings of the National Academy of Sciences, vol.104, issue.21, pp.8918-8923, 2007.

D. S. Wilson, A theory of group selection, Proceedings of the National Academy of Sciences, vol.72, pp.143-146, 1975.

D. S. Wilson and W. G. Knollenberg, Adaptive indirect effects: the fitness of burying beetles with and without their phoretic mites, Evolutionary Ecology, vol.1, issue.2, pp.139-159, 1987.

D. S. Wilson and E. Sober, Reviving the superorganism, Journal of Theoretical Biology, vol.136, issue.3, pp.337-356, 1989.

D. S. Wilson and E. O. Wilson, Rethinking the theoretical foundation of sociobiology, The Quarterly review of biology, vol.82, pp.327-348, 2007.

E. O. Wilson, Sociobiology: the new synthesis, 1975.

E. O. Wilson, The Sociogenesis of Insect Colonies, Science, vol.228, issue.4707, pp.1489-1495, 1985.

M. J. Wiser, N. Ribeck, and R. E. Lenski, , 2013.

, Long-Term Dynamics of Adaptation in Asexual Populations, Science, vol.342, issue.6164, pp.1364-1367

S. Wright, On the Roles of Directed and Random Changes in Gene Frequency in the Genetics of Populations, Evolution, vol.2, issue.4, pp.279-294, 1948.

S. Wright, Population Structure in Evolution, Proceedings of the American Philosophical Society, vol.93, issue.6, pp.471-478, 1949.

S. Wright, The shifting balance theory and macroevolution. Annual review of genetics, vol.16, pp.1-20, 1982.

V. C. Wynne-edwards, Animal Dispersion in Relation to Social Behaviour, 1962.

L. Xie and W. Shou, Community function landscape and steady state species ratio shape the eco-evolutionary dynamics of artificial community selection. bioRxiv, p.264697, 2018.

L. Xie, A. E. Yuan, and W. Shou, Simulations reveal challenges to artificial community selection and possible strategies for success, PLOS Biology, vol.17, issue.6, p.3000295, 2019.

A. R. Zomorrodi and D. Segrè, Synthetic Ecology of Microbes: Mathematical Models and Applications, Journal of Molecular Biology, vol.428, issue.5, pp.837-861, 2016.

, En particulier, cette définition ne dépend pas de la génétique: ces premières formulations pré-datent la découverte des lois de l'hérédité chez les diploïdes (Mendel, 1866) ainsi que de la découverte de l'ADN comme support de l'hérédité (Watson and Crick, 1953a). Cependant, ces seules simples idées ont permis de produire une riche diversité de prédictions falsifiables à propos du devenir des systèmes vivants. Avant tout, elles offrent un mécanisme causal qui explique l'apparent "projet" observé dans l'organisation des êtres vivants, et pourquoi ils semblent adaptés à leur environnement, à leur survie et à leur reproduction: leur caractère téléonomique (Monod, 1970). Par conséquent, elles apportent une importante contribution à l'étude de l'émergence de la vie, et de l'apparition de la complexité biologique dans le système solaire et au-delà. S'il est impossible de prédire la diversité des formes et des métabolismes que la vie pourrait présenter ailleurs dans l'univers, il y a de forte chances que celle-ci devrait posséder des caractéristiques Darwiniennes pour que nous la reconnaissions comme telle. Le monde vivant sur Terre est organisé en différents niveaux d'organisation emboîtés: gènes, chromosomes, cellules, organismes, populations, communautés, Bibliography Un point important de ce paradigme est sa nature abstraite (Okasha, 2006): il se réfère à une collection d'objets et de propriétés sans préciser leur nature physique, que cela soit en termes de composition chimique ou de balance énergétique

. Cependant, Une difficulté majeure dans l'étude de l'évolution est de décider (implicitement ou explicitement) quelles sont les unités d'évolution pertinentes (c'est-à-dire les populations Darwiniennes) pour expliquer les phénomènes observés, en particulier quand des conflits existent entre niveaux d'organisation

. L'apoptose-cellulaire-ne-peut-Être-prédite-en, entité Darwinienne et nécessite de prendre en compte l'individu dans son ensemble pour expliquer son origine évolutive. À l'opposé, les lignées de cellules cancéreuses ne peuvent pas être comprises quand l'individu dans son ensemble est l'unité Darwinienne, mais sont une conséquence naturelle de la nature Darwinienne des cellules. La sélection naturelle agit simultanément sur tous les niveaux d'organisation, Démêler leurs effets respectifs est complexe. Cependant dans la majorité des situations, l'approche fondée sur le gène, qui considère que les gènes sont la cause ultime des changements, 1976.

, Une fois que l'on a constaté que la vie était organisée en de nombreux niveaux emboîtés, la question qui se pose naturellement est celle de leur origine. Les biologistes de l'évolution appellent l'émergence de ces nouveaux niveaux des transitions évolutives majeures, 1987.

, L'émergence des chromosomes à partir de gènes, des cellules eukaryotes à partir d'ancêtres procaryotes et d'organismes multicellulaire à partir de cellules individuelles en sont des exemples remarquables

, Le problème de l'émergence de la vie et celui des origines des propriétés