Caractérisation et optimisation de systèmes d’imagerie polarimétriques innovants
Stephane Roussel

To cite this version:

HAL Id: tel-02920495
https://pastel.archives-ouvertes.fr/tel-02920495
Submitted on 24 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Caractérisation et optimisation de systèmes d’imagerie polarimétriques innovants

Thèse de doctorat de l’Université Paris-Saclay préparée à l’Institut d’optique

École doctorale n°575 PHYSIQUE-ET-INGENIERIE : électrons, photons, sciences du vivant (ED EOBE)
Spécialité de doctorat : Physique

Thèse présente et soutenue à Palaiseau, le 29 novembre 2019, par

Stéphane Roussel

Composition du Jury :

Laurent Bigué
ENSISA

Julien Fade
Université de Rennes 1

Frédéric Champagnat
ONERA

Marie-Claire Schanne-Klein
Ecole polytechnique

Philippe Adam
DGA

Vincent Devlaminck
Laboratoire CRISTAL

Matthieu Boffety
Institut d’optique

François Goudail
Institut d’optique

Rapporteur
Examineur
Examineur
Examineur
Examineur
Directeur de thèse
Table des matières

Introduction générale 5

1 Polarisation de la lumière et imagerie polarimétrique 9
 1.1 Polarisation de la lumière ... 11
 1.1.1 Vecteur de Stokes ... 12
 1.1.2 sphère de Poincaré .. 14
 1.1.3 Matrice de Mueller ... 15
 1.1.4 Mesure d’un vecteur de Stokes 17
 1.1.5 Mesure d’une matrice de Mueller 18
 1.2 Imagerie polarimétrique ... 19
 1.2.1 Imagerie de Stokes ... 19
 1.2.2 Imagerie de Mueller .. 19
 1.2.3 Polarimètres à division de temps 20
 1.2.4 Polarimètres à division de plan focal 20
 1.2.5 Mesurer un vecteur de Stokes complet avec un polarimètre à division de plan focal 22
 1.3 Conclusion ... 22

2 Configuration permettant d’obtenir un contraste optimal avec un polarimètre statique 25
 2.1 Configuration permettant de maximiser le contraste avec un polarimètre adaptatif 27
 2.2 Configuration permettant de maximiser le contraste avec un polarimètre statique 29
 2.2.1 Maximisation du contraste total 30
 2.2.2 Image de contraste total 33
 2.3 Contraste minimum sur la meilleure des 16 images de Mueller ... 34
 2.3.1 Borne sur des 16 contrastes dans la pire configuration possible ... 34
 2.3.2 Cas particulier : différence nulle en terme de diatténuation et de polarisance 35
 2.4 Validation expérimentale .. 37
 2.4.1 Description de l’expérience 38
 2.4.2 Configuration permettant d’obtenir le meilleur contraste sur la meilleure des 16 images 40
 2.4.3 Configuration donnant le pire contraste sur la meilleure des 16 images 41
 2.5 Conclusion ... 43
3 Précision d’un polarimètre à division de plan focal 45
3.1 Étalonnage de la caméra 47
3.1.1 Modélisation des pixels 47
3.1.2 Principe de l’étalonnage 48
3.1.3 Estimation du vecteur de Stokes linéaire 50
3.1.4 Résultats expérimentaux de l’étalonnage 51
3.2 Modélisation de l’erreur d’estimation des paramètre polarimétriques en présence de bruits de mesure ... 53
3.2.1 Estimation du vecteur de Stokes linéaire 53
3.2.2 Estimation de l’angle de polarisation 57
3.2.3 Estimation du degré de polarisation linéaire 60
3.3 Influence de différents défauts des micro-polariseurs sur les performances de la caméra ... 63
3.3.1 Influence de défauts d’orientation et de diatténuation des micro-polariseurs sur l’estimation de l’AOP 63
3.3.2 Influence de l’intensité d’illumination et du bruit de mesure sur l’estimation de l’AOP .. 64
3.4 Conclusion .. 65

4 Mesure du vecteur de Stokes complet avec un polarimètre à division de plan focal 67
4.1 Précision d’estimation du vecteur de Stokes complet en présence de bruits de mesure ... 69
4.1.1 Estimation du vecteur de Stokes complet 69
4.1.2 Choix d’un critère d’optimisation 71
4.2 Optimisation de la mesure du vecteur de Stokes complet en deux acquisitions 72
4.2.1 Détermination des configurations optimales 72
4.2.2 Validation expérimentale 74
4.3 Utilisation de la redondance des mesures pour augmenter la résolution spatiale 76
4.3.1 Détermination des configurations optimales 76
4.3.2 Augmentation de la résolution spatiale sur des images simulées 79
4.4 Utiliser la résolution complète de la caméra DoFP 80
4.4.1 Avec un PSA ... 80
4.4.2 Avec une lame retard 81
4.5 Conclusion .. 83

Conclusion générale 85
Introduction générale

Nos yeux sont de formidables outils d’imagerie, capables de distinguer les couleurs sur une plage de longueurs d’onde allant de 400nm à 800nm, de s’adapter à différentes intensités lumineuses, d’estimer la profondeur grâce à un système de vision stéréoscopique, le tout couplé à un réseau de neurones sophistiqué permettant d’analyser et de comprendre en temps réel la nature de la scène observée. Cependant, l’œil seul ne voit pas tout, la nature de la lumière contient certaines zones d’ombre. L’orientation du champ électrique, ou polarisation de la lumière, fait partie de ces zones d’ombre que l’œil seul ne sait voir.

On peut trouver dans la nature certains matériaux permettant d’observer des effets de la polarisation de la lumière. C’est par exemple le cas de la calcite, un cristal de carbonate de calcium ayant des propriétés biréfringentes. La première publication scientifique concernant la polarisation de la lumière date de 1669. Erasmus Bartholin, un scientifique danois, décrit pour la première fois l’observation d’une double réfraction dans un cristal de calcite sans en connaître la cause [1]. Bien avant cette première publication, les vikings pourraient avoir utilisé un tel cristal pour les aider à naviguer en observant la polarisation du ciel leur permettant de déterminer la position du soleil par temps nuageux [2]. C’est en 1809 qu’Étienne-Louis Malus, un ingénieur français, observe à travers un cristal de calcite que la lumière réfléchie sur une fenêtre est polarisée. Il découvre que l’intensité lumineuse de la lumière réfléchie varie en fonction de l’orientation du cristal, il utilise alors le terme « polarisation » afin de décrire cette propriété de la lumière. Depuis nous n’avons cessé de créer de nouveaux instruments pour comprendre, mesurer et utiliser la polarisation de la lumière.

De nos jours, l’utilisation de la polarisation de la lumière est omniprésente. Les écrans LCD (Liquid Crystal Display) de nos ordinateurs, télévisions et téléphones contiennent des cristaux liquides permettant de modifier l’état de polarisation de lumière pour faire varier l’intensité lumineuse de chaque pixel. Le cinéma 3D projette deux images polarisées qui sont ensuite filtrées par des lunettes munies de polariseurs permettant de voir une image différente sur chaque œil et donc de créer un effet de 3D stéréoscopique. Les lunettes de soleil polarisées ou les filtres polariseurs qu’on peut ajouter aux appareils photos permettent d’atténuer certains reflets.

Des systèmes d’imagerie utilisent la polarisation de la lumière afin de dévoiler des contrastes invisibles avec des systèmes d’imagerie classiques, ou de mesurer les caractéristiques polarimétriques de la lumière. Ces systèmes d’imagerie sont utilisés dans des domaines tels que le diagnostic médical, la télédétection, le contrôle industriel, le décamouflage. Les moyens technologiques permettant de contrôler et d’imager la polarisation de la lumière sont nombreux et de complexité variable.

L’objectif de cette thèse est d’évaluer et d’optimiser les performances de différentes technologies d’imageur polarimétrique en présence de bruits de mesure. Les systèmes d’imagerie polarimétriques et les formalismes utilisés sont présentés dans le chapitre 1. Les outils mathématiques présentés dans ce chapitre permettent de modéliser un pola-
rimètre parfait, mais dans la réalité les mesures sont soumises à des bruits aléatoires. La nature aléatoire des mesures réelles fait qu’elles doivent être modélisées et traitées de manière statistique, et différemment selon la nature de la perturbation aléatoire et le système d’imagerie polarimétrique utilisé.

L’imagerie polarimétrique peut être utilisée pour obtenir des images avec un fort contraste polarimétrique afin d’améliorer la détection d’objets camouflés ou dans des milieux diffusants [3–8]. Certains imageurs polarimétriques permettent de moduler la polarisation selon un nombre fixé d’états de polarisation alors que d’autres technologies plus complexes ont un nombre de degrés de liberté plus élevé leur permettant d’atteindre tous les états de polarisation. Dans le chapitre 2 nous étudions l’influence de la diminution du nombre de degrés de liberté sur le contraste obtenu en imagerie polarimétrique en présence de bruits de mesure. Le but est de quantifier la perte de contraste induite par la diminution du nombre de degrés de liberté entre deux imageurs polarimétriques différents : le premier permet de générer et d’analyser n’importe quel état de polarisation et d’obtenir un contraste optimal dans n’importe quel scénario, le second ne permet que de générer et d’analyser un nombre fixé d’états de polarisation. Ce système est plus simple à mettre en œuvre et moins coûteux mais ne permet pas d’optimiser le contraste. Notre objectif sera de quantifier la différence de contraste entre ces deux polarimètres afin de permettre un choix éclairé d’architecture selon des contraintes de contraste, de complexité et de coût du système.

Nous aborderons ensuite une technologie différente d’imageur polarimétrique permettant de mesurer les caractéristiques linéaires de la polarisation de la lumière en une seule acquisition car les différents filtres polarimétriques permettant de moduler la polarisation sont directement intégrés au capteur de la caméra. Cette technologie présente des avantages en termes de simplicité d’utilisation et de temps d’acquisition des images mais elle est plus limitée car elle ne permet pas de mesurer toutes les caractéristiques de l’état de polarisation et réduit la résolution spatiale de la caméra. La première étape avant d’utiliser ce type de caméra est de l’étalonner, c’est-à-dire de mesurer les caractéristiques exactes du capteur photométrique de la caméra et des filtres polarimétriques. La connaissance de ces caractéristiques permet de corriger les éventuels défauts. Cependant, en présence de bruits de mesure, même s’ils sont corrigés, ces défauts des filtres polarimétriques dégradent la précision de mesure de la polarisation de la lumière. Le but du chapitre 3 est de définir une méthode d’étalonnage et de modéliser la manière dont les différents défauts de ce polarimètre affectent la précision d’estimation des caractéristiques polarimétriques de la lumière en présence de bruit de mesure.

Les principales limites de ce type de caméra polarimétrique sont qu’elle ne permet pas de mesurer les caractéristiques complètes de la polarisation de la lumière, et que la résolution spatiale des images polarimétriques est deux fois inférieure à celle du capteur. Cependant, nous montrons qu’en ajoutant des composants polarimétriques au système et en faisant plusieurs acquisitions, il est possible de mesurer toutes les caractéristiques polarimétriques de la lumière plus rapidement qu’un polarimètre classique [9–11] et d’utiliser la redondance des mesures afin d’améliorer la résolution spatiale. On peut encore se poser la question de la complexité du système et du nombre de degrés de liberté nécessaires pour estimer correctement la polarisation en présence de bruit de mesure. La configuration des composants polarimétriques à ajouter au système dépend de la précision de mesure nécessaire et des contraintes matérielles. Dans le chapitre 4 nous étudions différentes configurations permettant d’obtenir une précision de mesure optimale avec différentes contraintes. Comme avec le contraste dans le chapitre 1, nous montrons que le nombre de degrés de liberté disponibles pour optimiser le système a une influence sur la précision
d’estimation des paramètres polarimétriques.
Chapitre 1

Polarisation de la lumière et
imagerie polarimétrique

<table>
<thead>
<tr>
<th>1.1 Polarisation de la lumière</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 Vecteur de Stokes</td>
<td>12</td>
</tr>
<tr>
<td>1.1.2 Sphère de Poincaré</td>
<td>14</td>
</tr>
<tr>
<td>1.1.3 Matrice de Mueller</td>
<td>15</td>
</tr>
<tr>
<td>1.1.4 Mesure d’un vecteur de Stokes</td>
<td>17</td>
</tr>
<tr>
<td>1.1.5 Mesure d’une matrice de Mueller</td>
<td>18</td>
</tr>
<tr>
<td>1.2 Imagerie polarimétrique</td>
<td>19</td>
</tr>
<tr>
<td>1.2.1 Imagerie de Stokes</td>
<td>19</td>
</tr>
<tr>
<td>1.2.2 Imagerie de Mueller</td>
<td>19</td>
</tr>
<tr>
<td>1.2.3 Polarimètres à division de temps</td>
<td>20</td>
</tr>
<tr>
<td>1.2.4 Polarimètres à division de plan focal</td>
<td>20</td>
</tr>
<tr>
<td>1.2.5 Mesurer un vecteur de Stokes complet avec un polarimètre à division de plan focal</td>
<td>22</td>
</tr>
<tr>
<td>1.3 Conclusion</td>
<td>22</td>
</tr>
</tbody>
</table>
Ce chapitre introduit les formalismes mathématiques liés à la polarisation de la lumière ainsi que différents systèmes d’imagerie polarimétrique utilisés dans les prochains chapitres. Dans un premier temps, je présente les notions sur la polarisation de la lumière permettant de modéliser un système d’imagerie polarimétrique. Dans un second temps, je présente les différentes technologies d’imageurs polarimétriques utilisés dans la suite de la thèse.

1.1 Polarisation de la lumière

La lumière est une onde électromagnétique caractérisée par un champ électrique \(\mathbf{E} \) et un champ magnétique \(\mathbf{B} \). Les directions des champs électrique et magnétique sont représentées par des vecteurs oscillant perpendiculairement à la direction de propagation de la lumière. La polarisation de l’onde est l’étude de l’orientation de ces champs dans le temps et dans l’espace. Comme le champ électrique \(\mathbf{E} \) et le champ magnétique \(\mathbf{B} \) oscillent de manière orthogonale entre eux, en ayant connaissance de l’un on peut retrouver l’autre. Il est d’usage de prendre comme référence le champ électrique.

Dans un repère cartésien orthonormal \(xyz \) considérons que la lumière se propage selon la direction \(z \) (figure 1.1). Son champ électrique évolue dans le temps \(t \) selon un plan \(xy \) orthogonal à l’axe \(z \) tel que :

\[
\mathbf{E} = \begin{bmatrix}
E_x(z, t) \\
E_y(z, t)
\end{bmatrix} = \begin{bmatrix}
E_{0x} \cos(\omega t - kz + \phi_x) \\
E_{0y} \cos(\omega t - kz + \phi_y)
\end{bmatrix} \tag{1.1}
\]

où \(\omega \) est la pulsation, \(k \) le nombre d’onde, \(E_{0x} \) et \(E_{0y} \) sont respectivement les amplitudes du champ électrique dans les directions \(x \) et \(y \), et \(\phi_x \) et \(\phi_y \) sont les phases associées aux directions \(x \) et \(y \).

![Figure 1.1 – Vecteur champ électrique \(E \) dans le repère \(xyz \).](image)

On peut décrire la trajectoire du vecteur champ électrique à partir de l’équation (1.1) de la manière suivante :

\[
\frac{E_x^2}{E_{0x}^2} + \frac{E_y^2}{E_{0y}^2} - 2 \cos(\phi) \frac{E_x E_y}{E_{0x} E_{0y}} = \sin^2(\phi) \tag{1.2}
\]

où \(\phi \) est le déphasage \(\phi_y - \phi_x \) entre les deux composantes \(E_x \) et \(E_y \) de l’onde électromagnétique. Cette équation décrit l’ellipse de polarisation représentée sur la figure 1.2. Le sens de rotation de l’ellipse dépend du signe de \(\phi \), par convention :

- Si \(\phi > 0 \) (\(\varepsilon > 0 \)) on parle de polarisation « gauche » (sens trigonométrique).
- Si \(\phi < 0 \) (\(\varepsilon < 0 \)) on parle de polarisation « droite ».
- Si \(\phi = 0 \) (\(\varepsilon = 0 \)) la polarisation est linéaire.

Dans la pratique, l’évolution du champ électrique peut être totalement ou partiellement aléatoire. Elle doit donc être décrite de manière statistique :
CHAPITRE 1. POLARISATION DE LA LUMIÈRE ET IMAGERIE POLARIMÉTRIQUE

Figure 1.2 – Ellipse de polarisation.

- Si le vecteur champ électrique de la lumière varie de manière totalement aléatoire, la lumière est dite totalement dépolarisée. C’est par exemple le cas de la lumière émise par une ampoule électrique ou le soleil.
- À l’inverse, si l’évolution du champ électrique est totalement déterministe, la lumière est dite totalement polarisée, il est alors possible de décrire l’oscillation du champ électrique avec l’ellipse de polarisation. C’est par exemple le cas de la lumière émise par un écran LCD ou un laser.
- Il existe un état intermédiaire décrit comme la superposition statistique pondérée de lumière totalement polarisée et dépolarisée. Dans ce cas, la lumière est dite partiellement polarisée. C’est par exemple le cas de la lumière réfléchie sur certaines surfaces : selon l’angle de réflexion, la lumière est partiellement, voire totalement polarisée.

On utilise différents formalismes pour décrire la polarisation de la lumière et ses interactions avec la matière selon que la lumière soit totalement ou partiellement polarisée. Le formalisme de Jones permet de décrire la polarisation totalement polarisée, mais comme dans la majorité des cas des mesures réelles, la lumière est partiellement polarisée, on utilise donc le formalisme de Stokes afin de décrire la polarisation de la lumière et le formalisme de Mueller afin de décrire la manière dont la polarisation est transformée lors de l’interaction avec un milieu ou un composant optique.

1.1.1 Vecteur de Stokes

Les formalismes de Stokes et de Mueller permettent de décrire n’importe quel état de polarisation et n’importe quelle transformation. L’état de polarisation de la lumière est décrit par le vecteur de Stokes à 4 composantes :

\[\mathbf{S} = \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{pmatrix}. \] (1.3)
Les 4 composantes du vecteur de Stokes peuvent être représentées à partir des amplitudes aléatoires du champ électrique E_x et E_y définies dans l’équation (1.1) :

\begin{align}
S_0 &= \langle |E_x|^2 \rangle + \langle |E_y|^2 \rangle \\
S_1 &= \langle |E_x|^2 \rangle - \langle |E_y|^2 \rangle \\
S_2 &= 2 \text{Re} \left(\langle E_x E_y^* \rangle \right) \\
S_3 &= -2 \text{Im} \left(\langle E_x E_y^* \rangle \right).
\end{align}

La notation $\langle \rangle$ désigne la moyenne statistique. Il est possible d’estimer les 4 composantes du vecteur de Stokes à partir de plusieurs mesures d’intensité de la manière suivante :

\begin{align}
S_0 &= I_x + I_y \\
S_1 &= I_x - I_y \\
S_2 &= I_+45^\circ - I_-45^\circ \\
S_3 &= I_{CD} - I_{CG}.
\end{align}

où I_x et I_y représentent les intensités lumineuses polarisées selon l’axe horizontal x et vertical y, I_+45° et I_-45° représentent les intensités lumineuses polarisées à 45° et -45°, et I_{CD} et I_{CG} représentent les intensités lumineuses polarisées selon un état circulaire droit et circulaire gauche. La première composante S_0 du vecteur de Stokes représente l’intensité lumineuse totale, qui n’est pas une propriété polarimétrique de la lumière. Dans la pratique, pour représenter l’état de polarisation de la lumière indépendamment de son intensité, on utilise souvent le vecteur de Stokes réduit normalisé par S_0 tel que :

\begin{align}
\mathbf{s} &= \begin{pmatrix} S_1/S_0 \\ S_2/S_0 \\ S_3/S_0 \end{pmatrix}.
\end{align}

De cette manière, les trois composantes du vecteur \mathbf{s} sont comprises dans l’intervalle $[-1, 1]$. Le vecteur de Stokes permet de définir d’autres paramètres utiles pour caractériser la polarisation de la lumière :

- Le degré de polarisation (DOP) :

\begin{align}
P &= \frac{\sqrt{S_1^2 + S_2^2 + S_3^2}}{S_0}.
\end{align}

Le degré de polarisation varie entre 0 pour une lumière totalement dépolorisée et 1 pour une lumière totalement polarisée. De la même manière, on peut aussi définir le degré de polarisation linéaire (DOLT) en supprimant S_3 de l’équation.

- L’angle de polarisation (AOP) :

\begin{align}
\alpha &= \frac{1}{2} \arctan \left(\frac{S_2}{S_1} \right)
\end{align}

L’angle de polarisation décrit l’orientation de la polarisation qu’elle soit linéaire ou elliptique. Lorsque l’état de polarisation est circulaire ou totalement dépolarisé, l’angle de polarisation est indéfini.

- L’ellipticité de polarisation (EOP) :

\begin{align}
\varepsilon &= \frac{1}{2} \arctan \left(\frac{S_3}{\sqrt{S_1^2 + S_2^2}} \right)
\end{align}
L’ellipticité varie entre 0° pour une polarisation linéaire et $\pm 45^\circ$ pour une polarisation circulaire gauche ou droite. Lorsque l’état de polarisation est totalement dépolarisé, l’ellipticité est indéfinie.

Le vecteur de Stokes réduit peut aussi être exprimé en fonction des trois paramètres précédents de la manière suivante :

$$s = P \begin{pmatrix} \cos(2\alpha) \cos(2\varepsilon) \\ \sin(2\alpha) \cos(2\varepsilon) \\ \sin(2\varepsilon) \end{pmatrix}. \quad (1.16)$$

Cette manière de représenter le vecteur de Stokes permet de faire directement le lien avec les propriétés de l’ellipse de polarisation.

1.1.2 Sphère de Poincaré

La sphère de Poincaré permet de représenter un vecteur de Stokes réduit selon des coordonnées sphériques. Chaque point sur la sphère de Poincaré représente un état de polarisation (figure 1.3 (à gauche)). La position d’un vecteur de Stokes S sur la sphère de Poincaré est définie par les deux angles et le rayon suivant (figure 1.3 (à droite)) :

- L’azimut 2α correspondant au double de l’angle de polarisation.
- L’élévation 2ε correspondant au double de l’ellipticité.
- Le rayon P correspondant au degré de polarisation.

![Figure 1.3 – Représentations de la sphère de Poincaré.](image)

Tous les états linéaires sont sur l’équateur, leur ellipticité ε est nulle. Les états circulaires droit ($\varepsilon = 45^\circ$) et gauche ($\varepsilon = -45^\circ$) se trouvent aux pôles nord et sud de la sphère de Poincaré (figure 1.3 (à gauche)). Les méridiens de la sphère correspondent à des états d’azimut constant. Les parallèles de la sphère correspondent à des états d’ellipticité constante. Le centre de la sphère correspond à un état totalement dépolarisé ($P = 0$) et la surface de la sphère aux états totalement polarisés ($P = 1$). Deux points diamétralement opposés correspondent à des états de polarisation orthogonaux.
1.1.3 Matrice de Mueller

Lorsque la lumière se réfléchit sur un matériau ou traverse un composant optique, son état de polarisation peut être modifié. Cette transformation linéaire du vecteur de Stokes est caractérisée par une matrice 4×4 appelée matrice de Mueller. La matrice de Mueller caractérise la réponse polarimétrique du milieu qui modifie la polarisation. Si une lumière polarisée selon un état S_{in} interagit avec un milieu ayant une matrice de Mueller M, la lumière produite sera polarisée selon un état S_{out} tel que :

$$S_{out} = MS_{in}. \quad (1.17)$$

Si la lumière caractérisée par un état polarimétrique S_{in} traverse successivement les milieux 1, 2 et 3 dont les matrices de Mueller sont respectivement M_1, M_2 et M_3, l’état de polarisation S_{out} est tel que :

$$S_{out} = M_3M_2M_1S_{in}. \quad (1.18)$$

Matrices de Mueller usuelles

Les effets des matrices de Mueller sont principalement décrits par quelques matrices d’éléments polarimétriques connus qui combinées entre elles permettent de décrire n’importe quelle modification de la polarisation. Les principales modifications de la polarisation sont la dépolarisation, la retardance et la diatténuation, ces effets pouvant être décrits à partir des matrices de Mueller suivantes :

- Matrice de Mueller d’un matériau purement dépolarisant :
 $$M_{depol} = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & a & 0 & 0 \\
 0 & 0 & b & 0 \\
 0 & 0 & 0 & c
 \end{bmatrix} \quad \text{avec} \quad -1 \leq a, b, c \leq 1. \quad (1.19)$$

Les éléments S_1, S_2 et S_3 du vecteur de Stokes sont respectivement multipliés par les coefficients a, b et c. Si $-1 < (a = b = c) < 1$ on parle de dépolarisation isotrope.

- Matrice de Mueller d’un polariseur linéaire idéal dont l’axe passant est horizontal :
 $$M_{idéal}^{polo} = \frac{1}{2} \begin{bmatrix}
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
 \end{bmatrix} \quad (1.20)$$

Lorsque de la lumière non polarisée passe par un polariseur horizontal, la lumière résultante est totalement polarisée dans la direction horizontale mais l’intensité lumineuse est divisée par deux. Si la lumière incidente est déjà polarisée horizontalement alors il n’y a pas de changement d’intensité. En réalité, les coefficients de transmission d’un polariseur ne sont jamais parfaits, dans le cas général, la matrice de Mueller d’un polariseur horizontal s’écrit de la manière suivante :

$$M_{réel}^{polo} = \frac{1}{2} \begin{bmatrix}
 p_x^2 + p_y^2 & p_x^2 - p_y^2 & 0 & 0 \\
 p_x^2 - p_y^2 & p_x^2 + p_y^2 & 0 & 0 \\
 0 & 0 & 2p_xp_y & 0 \\
 0 & 0 & 0 & 2p_xp_y
 \end{bmatrix} \quad \text{avec} \quad 0 \leq p_{x,y} \leq 1. \quad (1.21)$$

On note p_x le coefficient de transmission sur l’axe horizontal et p_y le coefficient de transmission sur l’axe vertical. Pour un polariseur dont l’axe passant est horizontal, on a $p_x = 1$ et $p_y = 0$ dans le cas idéal et on retrouve la matrice de Mueller dans l’équation (1.20).
CHAPITRE 1. POLARISATION DE LA LUMIÈRE ET IMAGERIE POLARIMÉTRIQUE

• Matrice de Mueller d’un retardateur linéaire avec un axe rapide horizontal :

\[
M_{R0}(\varphi) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos(\varphi) & -\sin(\varphi) \\
0 & 0 & \sin(\varphi) & \cos(\varphi)
\end{bmatrix}
\] (1.22)

où \(\varphi \) est la retardance du retardateur. On remarque qu’il s’agit d’une matrice de rotation en trois dimensions dont l’axe de rotation est orienté selon l’axe rapide (horizontal, selon le vecteur \((1, 0, 0)\)).

• Matrice de Mueller d’un rotateur :

\[
M_{\text{rot}}(\theta) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(2\theta) & \sin(2\theta) & 0 \\
0 & -\sin(2\theta) & \cos(2\theta) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\] . (1.23)

Cette matrice correspond à une matrice de rotation selon l’axe \((0, 0, 1)\) dans un repère en 3 dimensions. Elle modifie l’AOP \(\alpha \) en fonction de \(\theta \).

La matrice de Mueller d’un rotateur est utile pour décrire les matrices de Mueller de composants tournés. Si un composant polarimétrique décrit par une matrice de Mueller \(M \) est tourné d’un angle \(\theta \), on peut décrire sa matrice de Mueller \(M(\theta) \) de la manière suivante :

\[
M(\theta) = M_{\text{rot}}(-\theta)MM_{\text{rot}}(\theta).
\] (1.24)

En appliquant l’équation (1.24) à la matrice de Mueller d’un polariseur horizontal définie dans l’équation (1.20) on obtient la matrice de Mueller d’un polariseur idéal orienté selon un angle \(\theta \) :

\[
M_{\text{pol}} = \frac{1}{2} \begin{bmatrix}
1 & \cos(2\theta) & \sin(2\theta) & 0 \\
\cos(2\theta) & \cos^2(2\theta) & \sin(2\theta) & 0 \\
\sin(2\theta) & \cos(2\theta) & \sin^2(2\theta) & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\] . (1.25)

De la même manière, en appliquant l’équation (1.24) à la matrice de Mueller d’un retardateur horizontal défini dans l’équation (1.22) on obtient la matrice de Mueller d’un retardateur orienté selon un angle \(\theta \) :

\[
M_R = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos^2(2\theta) + \cos(\varphi)\sin^2(2\theta) & (1 - \cos(\varphi))\sin(2\theta)\cos(2\theta) & -\sin(\varphi)\sin(2\theta) \\
0 & (1 - \cos(\varphi))\sin(2\theta)\cos(2\theta) & \sin^2(2\theta) + \cos(\varphi)\cos^2(2\theta) & \sin(\varphi)\cos(2\theta) \\
0 & \sin(\varphi)\sin(2\theta) & -\sin(\varphi)\cos(2\theta) & \cos(\varphi)
\end{bmatrix}
\] (1.26)

En combinant ces matrices de Mueller, on peut simuler n’importe quel système de mesure polarimétrique permettant de mesurer un vecteur de Stokes, une matrice de Mueller, ou d’améliorer le contraste dans une image.

Effet de la matrice de Mueller d’un retardateur sur la sphère de Poincaré

La sphère de Poincaré permet de représenter les modifications d’un état de polarisation \(S \) par un élément ayant une matrice de Mueller \(M \). Un élément retardateur aura pour effet de produire une rotation de l’état de polarisation sur la sphère de Poincaré. L’axe de la rotation est donné par le vecteur de Stokes réduit de l’état propre du composant, et l’angle de rotation est égal au déphasage \(\varphi \) du retardateur (figure 1.4).
Sur la figure 1.4 (à droite), on peut voir comment avec une lame quart d’onde ($\varphi = 90^\circ$) on peut transformer un état linéaire en un état circulaire gauche ou droite et inversement comment transformer un état circulaire en un état linéaire dont l’orientation sera définie par l’axe rapide et la lame quart d’onde.

On peut aussi voir que l’effet d’une lame demi onde ($\varphi = 180^\circ$) sur un état de polarisation linéaire orienté selon un angle α_0 est de tourner la polarisation d’un angle $2[\alpha - \alpha_0]$ et que son effet sur un état circulaire est d’inverser son sens de rotation. À noter que dans l’espace de la sphère de Poincaré les angles sont représentés avec un facteur 2 par rapport à l’espace réel.

En contrôlant l’orientation et la retardance du retardateur on accède à la totalité de la sphère de Poincaré. La plupart du temps, avec des retardateurs variables on peut contrôler la retardance mais l’orientation de l’axe rapide est fixée. Dans ce cas, on utilise deux retardateurs ce qui permet de faire deux rotations successives et d’accéder à la totalité de la sphère de Poincaré si les axes propres des deux retardateurs font un angle de 45° [12].

![Figure 1.4 – Effet d’un retardateur avec une retardance φ variant entre 0° et 360° dont l’axe rapide est orienté selon $\alpha = 15^\circ$ (à gauche) et $\alpha = 45^\circ$ (à droite) sur une lumière incidente ayant un vecteur de Stokes réduit $s = (1, 0, 0)$. Le vecteur de Stokes initial s est représenté par le point noir, l’orientation de l’axe rapide du retardateur est représenté par la grande flèche bleue, la position du vecteur de Stokes transformé en fonction de la retardance est représentée en échelle de couleur HSV.](image)

1.1.4 Mesure d’un vecteur de Stokes

On peut mesurer quantitativement un vecteur de Stokes en projetant la polarisation de la lumière selon plusieurs états différents et en mesurant pour chacun de ces états l’intensité lumineuse. On réalise N mesures d’intensité, pour chaque mesure $n \in [1, N]$, l’état de polarisation de la lumière est modifié par un composant ayant une matrice de Mueller $M(\theta)$ dépendant d’un paramètre θ_n. Faire une mesure d’intensité I_n revient à mesurer le premier élément S_0 du vecteur de Stokes à chaque acquisition tel que :

$$ I_n = [M(\theta_n)S]_0 = \sum_{i=0}^{3} M_{0i}(\theta_n)S_i $$ (1.27)
où le terme $M_0(\theta_n)$ correspond aux éléments de la première ligne de la matrice de Mueller $M(\theta_n)$.

Si on rassemble les intensités mesurées dans un vecteur $I = (I_1, ..., I_n)^T$, on obtient une relation matricielle entre le vecteur I et le vecteur de Stokes S à mesurer :

$$I = WS$$

(1.28)

où W est une matrice $N \times 4$ construite à partir des premières lignes de chaque matrice $M(\theta_n)$ tel que :

$$W_{ij} = M_{0j}(\theta_n) \quad \text{où} \quad W = \begin{bmatrix} M_0.(\theta_1) \\ \vdots \\ M_0.(\theta_n) \end{bmatrix}.$$

(1.29)

Chaque ligne de la matrice W représente un vecteur de mesure.

Il faut 4 mesures d’intensité pour que la matrice W soit inversible. Dans ce cas, le vecteur S est estimé en inversant W :

$$S = W^{-1}I.$$

(1.30)

Dans le cas où $N > 4$, la matrice W n’est pas carrée, et on utilise l’estimateur pseudo-inverse W^+ pour estimer le vecteur de Stokes :

$$S = W^+I \quad \text{avec} \quad W^+ = (W^TW)^{-1}W^T.$$

(1.31)

Dans tous les cas, la précision d’estimation du vecteur dépend du conditionnement de la matrice de mesure W.

Il a été montré qu’en présence de bruit additif gaussien et pour 4 mesures d’intensité, le conditionnement de la matrice W est optimal lorsque les vecteurs de mesure forment un tétraèdre régulier sur la sphère de Poincaré [13].

1.1.5 Mesure d’une matrice de Mueller

Mesurer la matrice de Mueller d’une scène revient à mesurer sa réponse polarimétrique. La différence avec la mesure du vecteur de Stokes est qu’en plus de moduler la polarisation de la lumière incidente en provenance de la scène, il faut aussi moduler la polarisation de la lumière illuminant la scène.

Pour N états en illumination et en analyse on réalise N^2 mesures d’intensité I où chaque état d’illumination est analysé par chaque état d’analyse. Les intensités I reçues sur le capteur dépendent donc des matrices A et W ainsi que de la matrice de Mueller M de la scène de la manière suivante :

$$I = AMW.$$

(1.32)

La matrice A est construite de la même manière que W mais pour les états d’illumination.

Il faut au moins 4 états d’analyse et d’illumination pour que les matrices A et W soient inversibles. Dans ce cas, la matrice de Mueller M est estimée en inversant A et W :

$$M = A^{-1}IW^{-1}.$$

(1.33)

La précision de mesure de la matrice de Mueller dépend du conditionnement des matrices A et W. Il a été montré qu’en présence de bruit additif gaussien et pour un minimum de 4 états d’illumination et d’analyse, le conditionnement des matrices A et W est optimal lorsque les vecteurs de mesure forment un tétraèdre régulier sur la sphère de Poincaré [13].
Les matrices de mesure \(W \) et \(A \) peuvent aussi être représentées sur la sphère de Poincaré. Chaque vecteur de mesure correspondant à une ligne de la matrice est représenté par un point sur la surface de la sphère de Poincaré. La répartition des vecteurs sur la sphère donne une information sur les états de polarisation que permet de mesurer la matrice de mesure. Par exemple, si les vecteurs de la matrice de mesure sont contenus dans un plan sur la sphère de Poincaré, l’ensemble d’états de polarisation qu’il sera possible de mesurer se trouvera sur le disque passant par la position de tous les vecteurs de mesure. C’est pour cela qu’en modulant la polarisation uniquement avec des états linéaires, on ne peut que mesurer des états linéaires se trouvant sur le plan équatorial de la sphère de Poincaré.

1.2 Imagerie polarimétrique

L’imagerie polarimétrique consiste à utiliser un polarimètre avec un capteur matriciel et une optique d’imagerie afin d’obtenir une image portant des informations sur la polarisation de la lumière. Cette technique permet de mesurer les propriétés polarimétriques de la lumière en chaque point d’une scène et permet aussi d’utiliser les propriétés polarimétriques des matériaux afin de dévoiler des contrastes non visibles en imagerie d’intensité classique.

1.2.1 Imagerie de Stokes

L’imagerie de Stokes consiste à mesurer en chaque pixel d’une image le vecteur de Stokes de la lumière incidente. Afin d’estimer le vecteur de Stokes, le polarimètre doit être en mesure de moduler la polarisation incidente selon un minimum de 4 états différents et de capturer l’intensité lumineuse résultante sur une caméra. Il dispose donc d’un analyseur d’états de polarisation (PSA Polarization State Analyser) et d’une caméra. L’imagerie de Stokes est le plus souvent utilisé pour mesurer la polarisation de la lumière incidente dans des domaines d’application comme le biomédical, le contrôle industriel, la télédétection et l’astronomie.

Un imageur de Stokes est dit « passif » car il ne dispose pas de système pour contrôler l’illumination de la scène, ce qui limite la possibilité d’amélioration du contraste. En effet, la plupart des sources lumineuses sont dépolarisées et peu de matériaux ont la propriété de polariser la lumière. Il est donc souvent difficile de mettre en évidence un contraste polarimétrique dans une scène sans contrôler la polarisation de l’illumination. Dans les cas où on souhaite mesurer les propriétés polarimétriques intrinsèques à une scène ou améliorer davantage le contraste, il est alors nécessaire d’illuminer en contrôlant la polarisation.

1.2.2 Imagerie de Mueller

L’imagerie de Mueller permet de mesurer la matrice de Mueller d’une scène en chaque point, c’est-à-dire les propriétés polarimétriques intrinsèques des objets de la scène. Un imageur de Mueller est un imageur actif car en plus du PSA, il nécessite son propre moyen d’illumination dont la polarisation est contrôlée avec un générateur d’états de polarisation (PSG Polarization State Generator). Afin d’estimer la matrice de Mueller, la scène est illuminée avec 4 états de polarisation connus et la lumière rétrodiffusée ou transmise par la scène est analysée selon 4 autres états de polarisation connus, cela permet de déterminer les 16 éléments de la matrice de Mueller.

Quelle que soit la technologie de polarimètre utilisée, un polarimètre de Mueller devra acquérir plusieurs images séquentiellement en illuminant la scène avec différents états de polarisation. Il est donc difficile de mesurer la matrice de Mueller d’une scène en mouvement. Dans le cas où on veut obtenir un contraste entre une cible et un fond, il est pos-
sible d’optimiser les états d’illumination et d’analyse afin de n’acquérir qu’une seule image permettant d’obtenir le contraste maximum. Cependant, pour cela, il faut au préalable connaître la matrice de Mueller de la cible et du fond.

1.2.3 Polarimètres à division de temps

Le principe d’un polarimètre à division de temps est d’acquérir plusieurs images les unes après les autres en modulant la polarisation de manière différente à chaque acquisition. Ce type de polarimètre est très couramment utilisé car peu coûteux et facile à mettre en œuvre puisqu’il utilise des composants optiques usuels. Il suffit d’une source de lumière dépolarisée, d’une caméra classique. Le PSG et le PSA peuvent utiliser des composants polarimétriques rotatifs et/ou des composants à retard variable. Pour générer la polarisation en illumination et analyser la polarisation, il est possible d’utiliser des composants polarimétriques rotatifs et/ou des composants à retard variable ainsi qu’une source polarisée ou dépolarisée avec un polariseur et qu’une caméra classique.

Les polarimètres de Stokes et de Mueller peuvent être construits sur le principe d’un polarimètre à division de temps. Comme les images sont capturées séquentiellement, l’acquisition de toutes les images permettant de mesurer la polarisation de la lumière prend un certain temps et la scène doit rester immobile par rapport au polarimètre pour qu’il n’y ait pas différences entre les images. Le polarimètre à division de temps n’est donc pas adapté à la mesure d’une scène en mouvement.

1.2.4 Polarimètres à division de plan focal

Afin de filtrer la lumière selon plusieurs polarisations différentes, un polarimètre à division de plan focal (DoFP Division of Focal Plane) dispose de plusieurs filtres polarimétriques placés sur le capteur photométrique. De la même manière qu’une caméra couleur dispose d’une matrice de filtres rouges, verts, et bleus sur ses pixels, une caméra DoFP dispose d’une matrice de différents filtres polarimétriques. Un polarimètre à division de plan focal ne comprend que la partie analyseur d’états de polarisation et la caméra, il s’agit donc d’un polarimètre de Stokes. Afin de mesurer une matrice de Mueller, il faut ajouter un système d’illumination et de génération d’états de polarisation et faire plusieurs images pour chaque état en illumination. La plupart des polarimètres à division de plan focal conçus à ce jour ont une matrice de filtres polarimétriques sensibles uniquement à la polarisation linéaire. La première matrice de micro-polariseurs permettant de mesurer un vecteur de Stokes linéaire a été développé par Chun en 1994 [14] avec une disposition de pixels en groupe de 2×2 appelé SuperPixel avec des orientations de polariseur à 0°, 45°, 90° et 135° (figure 1.5). C’est de ce type de caméra DoFP que nous avons utilisée dans les chapitres 3 et 4.

Chaque micro-polariseur est composé de fils d’aluminium dont la largeur et l’espace- ment est de l’ordre de la dizaine à la centaine de nanomètres. Ces fils d’aluminium peuvent être fabriqués par lithographie optique ou électronique [15–17] Les polariseurs fabriqués de cette manière fonctionnent en réflexion contrairement à la majorité des polariseurs macroscopiques qui fonctionnent en absorption. La matrice de micro-polariseurs peut être fabriquée séparément et déposée sur un capteur photométrique existant ou directement incluse dans le processus de fabrication du capteur photométrique. Le premier cas permet de fabriquer des caméras DoFP en utilisant un capteur photométrique existant donc sans avoir besoin de maîtriser tout le processus de conception d’un capteur. Cependant cette méthode peut provoquer des erreurs d’alignement entre la matrice de micro-polariseurs et les pixels du capteur. En plus des erreurs d’alignement, le fait que les micro-polariseurs...
Figure 1.5 – Représentation schématique des micro-polariseurs sur le capteur de la caméra DoFP. Un super-pixel est composé de 4 pixels avec des micro-polariseurs orientés à 0°, 45°, 90° et 135°.

Figure 1.6 – Exemple de trois images d’AOP estimées avec la caméra DoFP. (De gauche à droite) Sans interpolation, interpolation bilinéaire, interpolation par transformée de Fourier.

soit déposés sur le capteur provoque aussi du crosstalk entre les pixels [18]. Concevoir la matrice de micro-polariseurs directement au sein du capteur permet de grandement diminuer ces erreurs et d’améliorer la précision des micro-polariseurs [19].

Un avantage de ce type de polarimètre par rapport à un polarimètre à division de temps est qu’il permet de mesurer la polarisation en une seule acquisition, il est donc adapté à la mesure d’une scène en mouvement. En contrepartie, on perd en résolution spatiale et on risque de créer des artéfacts lorsque la fréquence spatiale de l’image est importante par rapport à la résolution spatiale de la caméra. De plus, ces polarimètres ont souvent des défauts d’alignement entre le capteur photométrique et la matrice de micro-polariseurs à cause de leur procédé de fabrication consistant à coller la matrice de micro-polariseurs sur un capteur photométrique existant. Cependant, ces défauts ont été majoritairement corrigés grâce à de nouveaux procédés de fabrication où la matrice de
micro-polariseurs est intégrée dans la fabrication du capteur. Ces nouveaux procédés de fabrication ont aussi une influence sur le prix des caméras DoFP qui a beaucoup diminué, faisant de ces dernières une technologie compétitive par rapport aux autres technologies d’imagerie polarimétrique.

1.2.5 Mesurer un vecteur de Stokes complet avec un polarimètre à division de plan focal

La majorité des caméras DoFP ne permettent que de mesurer la partie linéaire du vecteur de Stokes. Afin de mesurer le vecteur de Stokes complet en une seule acquisition, il faut qu’au moins un des pixels du super-pixel soit sensible à la polarisation circulaire. Des matrices de micro-polariseurs permettant de mesurer un vecteur de Stokes complet en plaçant des polariseurs circulaires sur 1 des 4 pixels ont été développées [29–31]. Ces premières technologies utilisent des pixels en groupes 2 × 2 avec 3 polariseurs orientés à 0°, 45° et 90° et un filtre circulaire. Cette configuration ne permet pas d’avoir une matrice d’analyse formant un tétraèdre régulier sur la sphère de Poincaré, elle n’est donc pas optimale. Le design a été amélioré en conservant des groupes de 2 × 2 pixels mais en appliquant une matrice de polymère biréfringent sur une matrice de polariseur afin de créer 4 états elliptiques ce qui permet d’obtenir un tétraèdre régulier sur la sphère de Poincaré et donc de maximiser la précision d’estimation du vecteur de Stokes [32, 33]. D’autres configurations existent avec plus de 4 pixels dans le super-pixel. Alenin et al. ont comparé les performances de différentes configurations de polarimètres DoFP permettant de mesurer un vecteur de Stokes complet [11].

Un autre moyen de mesurer un vecteur de Stokes complet avec une caméra DoFP est de faire plusieurs acquisitions en plaçant un retardateur devant la caméra [34]. Il est possible d’utiliser différents composants comme des composants polarimétriques rotatifs et/ou à retard variable en plus de la caméra DoFP afin de mesurer un vecteur de Stokes complet. Un tel système est simple à mettre en œuvre mais nécessite de faire plusieurs acquisitions successives ce qui le rend plus difficile à utiliser dans le cas d’une scène en mouvement. Dans le chapitre 4 nous allons étudier les configurations optimales permettant de mesurer un vecteur de Stokes complet de cette manière.

1.3 Conclusion

Dans ce chapitre, j’ai introduit les notions de base de la polarimétrie ainsi que différents principes d’imagerie polarimétrique qui seront utilisés dans les prochains chapitres.

La première partie a présenté des notions de polarisation et les formalismes utilisés dans les prochains chapitres : le vecteur de Stokes permettant de décrire l’état de polarisation de la lumière et la matrice de Mueller décrivant la manière dont un milieu modifie la polarisation de la lumière. J’ai ensuite présenté la sphère de Poincaré qui permet de visualiser le vecteur de Stokes réduit selon des coordonnées sphériques et qui est particulièrement utile pour représenter visuellement l’effet d’un retardateur sur un vecteur de Stokes. J’ai aussi présenté les formalismes utilisés pour estimer un vecteur de Stokes et une matrice de Mueller à partir de plusieurs mesures d’intensité lumineuse faites avec un polarimètre.

Dans une seconde partie j’ai présenté les différents systèmes d’imagerie polarimétrique étudiés dans cette thèse. Dans un premier temps, j’ai présenté brièvement les principes de l’imagerie de Stokes et de Mueller. Dans un second temps, j’ai introduit deux systèmes permettant d’acquérir des images polarimétriques : Le polarimètre à division de temps qui
acquiert des images séquentiellement et le polarimètre à division de plan focal permettant de prendre plusieurs images polarimétriques en une seule acquisition. Enfin j’ai présenté différentes technologies de caméra DoFP permettant de mesurer un vecteur de Stokes complet ainsi qu’un système utilisant une caméra DoFP linéaire avec des retardateurs pour atteindre le même objectif.
Chapitre 2

Configuration permettant d’obtenir un contraste optimal avec un polarimètre statique

2.1 Configuration permettant de maximiser le contraste avec un polarimètre adaptatif .. 27
2.2 Configuration permettant de maximiser le contraste avec un polarimètre statique .. 29
 2.2.1 Maximisation du contraste total 30
 2.2.2 Image de contraste total ... 33
2.3 Contraste minimum sur la meilleure des 16 images de Mueller 34
 2.3.1 Borne sur des 16 contrastes dans la pire configuration possible .. 34
 2.3.2 Cas particulier : différence nulle en terme de diatténuation et de polarisance ... 35
2.4 Validation expérimentale ... 37
 2.4.1 Description de l’expérience ... 38
 2.4.2 Configuration permettant d’obtenir le meilleur contraste sur la meilleure des 16 images 40
 2.4.3 Configuration donnant le pire contraste sur la meilleure des 16 images ... 41
2.5 Conclusion ... 43
Dans ce chapitre nous allons aborder l’utilisation d’un imageur polarimétrique pour améliorer le contraste entre une cible et un fond [3, 5–7, 35, 36]. Nous allons étudier l’influence du nombre de degrés de liberté polarimétriques sur le contraste que peut fournir un imageur polarimétrique actif. Ces travaux sont l’extension de résultats obtenus sur l’optimisation du contraste dans les images de Stokes [37]. La différence est que dans un imageur de Stokes, on ne contrôle que l’analyse de l’état de polarisation de la lumière, alors que dans un imageur de Mueller, on contrôle aussi les états d’illumination. Il est donc possible de jouer sur ces deux paramètres pour optimiser le contraste.

Les imageurs polarimétriques de Mueller peuvent être séparés en deux catégories, les polarimètres totalement adaptatifs et les polarimètres statiques. Dans le premier cas, le polarimètre permet de générer et d’analyser n’importe quel état de polarisation sur la sphère de Poincaré. Cela permet d’utiliser des états d’illumination et d’analyse optimisés pour obtenir un contraste entre une cible et un fond. En revanche, les polarimètres statiques offrent moins de liberté car ils sont limités à quelques états de polarisations fixes en illumination et en analyse. Il n’est donc pas possible d’optimiser les états pour atteindre le contraste maximum mais en contrepartie le système est moins couteux et plus simple à implémenter et à étalonner. Afin de guider le choix entre ces deux types de polarimètres, nous voulons quantifier la perte de contraste induite par l’utilisation d’un polarimètre statique au lieu d’un polarimètre totalement adaptatif.

2.1 Configuration permettant de maximiser le contraste avec un polarimètre adaptatif

Dans un premier temps, nous allons déterminer les états polarimétriques permettant de maximiser le contraste avec un polarimètre totalement adaptatif. Dans cette configuration on considère une scène illuminée par une lumière polarisée selon un vecteur de Stokes \mathbf{S}. Cette lumière est produite par une source non polarisée passant par un générateur d’état de polarisation (PSG). La lumière est diffusée par la scène puis passe par un analyseur d’état de polarisation (PSA) projetant la polarisation de la lumière sur un vecteur de Stokes \mathbf{T} purement polarisé. Un schéma de cet imageur de Mueller est représenté dans la figure 2.1. Afin de faciliter les prochains développements, nous allons modéliser les vecteurs de Stokes du PSG et du PSA par $\mathbf{S} = [1, s^T]^T$ et $\mathbf{T} = [1, t^T]^T$, où s et t sont des vecteurs à 3 dimensions de norme 1, et l’exposant T correspond à l’opération de transposition d’une matrice. En d’autres termes, le PSG et le PSA permettent de générer et d’analyser n’importe quel état de polarisation représenté respectivement par les vecteurs \mathbf{S} et \mathbf{T}.

Une image est ensuite formée sur un détecteur quantique tel qu’une caméra CMOS ou CCD et le signal mesuré en chaque pixel est exprimé en nombre de photoélectrons par

$$ i = \frac{f_0 \tau}{2} \mathbf{T}^T \mathbf{M} \mathbf{S} + \varepsilon \quad (2.1) $$

où le facteur f_0 correspond au nombre de photoélectrons par seconde et dépend de paramètres tels que la luminance de la source, les caractéristiques des optiques utilisées, la transmission des différents éléments, la taille du pixel et l’efficacité quantique du capteur. Le paramètre τ correspond au temps d’exposition et ε est un bruit de mesure supposé blanc, additif, gaussien, et de moyenne nulle et de variance σ^2.

Considérons que la scène observée est composée d’une cible ayant une matrice de Mueller M_a et un fond de matrice de Mueller M_b. Les intensités moyennes mesurées en chaque pixel pour ces deux régions sont

$$ \langle i \rangle_a = \frac{f_0 \tau}{2} \mathbf{T}^T M_a \mathbf{S} \quad \text{et} \quad \langle i \rangle_b = \frac{f_0 \tau}{2} \mathbf{T}^T M_b \mathbf{S} \quad (2.2) $$
où le symbole ⟨⟩ représente la moyenne statistique. Le contraste entre la cible et le fond, défini dans notre cas comme l'unique paramètre gouvernant la probabilité de discrimination, est donné par

\[C = \frac{1}{2\sigma^2} (\langle i \rangle_a - \langle i \rangle_b)^2. \]

(2.3)

Cette expression correspond au rapport de Fisher, qui est l'équivalent dans ce cas, de la distance de Bhattacharyya entre la cible et le fond [38]. En utilisant les équations (2.1) et (2.2) le contraste peut s'écrire sous la forme

\[C_{\text{ada}} = \frac{1}{8} \left(\frac{f_0 \tau}{\sigma} \right)^2 \left[T^T (M_a - M_b) S \right]^2, \]

(2.4)

où l'indice \textit{ada} signifie « adaptatif ».

Pour simplifier les prochains développements, on peut écrire la différence des matrices de Mueller de la cible et du fond de la manière suivante :

\[M_a - M_b = \begin{bmatrix} d_{00} & \mathbf{m}^T \\ \mathbf{n} & D \end{bmatrix}, \]

(2.5)

où \(d_{00} \) est un scalaire, \(\mathbf{m} \) et \(\mathbf{n} \) sont des vecteurs de dimension 3 et \(D \) est une matrice \(3 \times 3 \).

Avec cette notation, l'équation (2.4) peut s'écrire

\[C_{\text{ada}} = \frac{1}{8} \left(\frac{f_0 \tau}{\sigma} \right)^2 \times \left[d_{00} + s^T \mathbf{m} + t^T \mathbf{n} + t^T D s \right]^2. \]

(2.6)

Le meilleur contraste possible est défini comme

\[C_{\text{opt}}^{\text{ada}} = \max_{s, t} [C_{\text{ada}}]. \]

(2.7)

Afin de pouvoir exprimer ce contraste optimal de manière analytique nous allons faire les deux hypothèses suivantes :

- \(d_{00} = 0 \)
- \(\mathbf{m} = \mathbf{n} = 0 \)

La première hypothèse signifie qu'il n'y a pas de contraste d'intensité. C'est dans cette situation que l'imagerie polarimétrique est la plus utile. De plus, il a été démontré expérimentalement que dans le cas d'images de scènes réelles, le contraste d'intensité peut masquer le contraste polarimétrique de l'objet d'intérêt. Il est alors plus approprié de normaliser les images polarimétriques par leur réponse en intensité.
La seconde hypothèse signifie que la cible et le fond ont la même polarisation et la même diatténuation. Cela peut arriver par exemple dans le cas de scènes naturelles où la principale source de contraste polarimétrique est la dépolarisation ou la birefringence [7]. Dans ce cas, on peut modéliser la matrice D définie dans l’équation (2.5) par
\[
D = \|D\| \Delta, \quad \text{où} \quad \|D\| = \sqrt{\sum_{i,j} D_{ij}^2}.
\] (2.8)

$\|D\|$ représente la norme de Frobenius de la matrice de D, et Δ est une matrice 3×3 de norme de Frobenius égale à 1. On peut définir la décomposition en valeurs singulières de la matrice Δ de la manière suivante :
\[
\Delta = U \Lambda V^\dagger,
\] (2.9)

ou U et V sont des matrices unitaires, \dagger désigne la transposée-conjuguée d’une matrice et Λ est une matrice diagonale contenant des éléments $\lambda_i, i \in [1, 3]$, que l’on suppose ordonnés dans l’ordre décroissant : $\lambda_1 \geq \lambda_2 \geq \lambda_3$. D’après l’équation (2.8) la norme de Frobenius de la matrice Δ est égale à 1 ce qui fait que $\sum_i \lambda_i^2 = 1$. On peut montrer que la valeur maximale du contraste est obtenue lorsque t et s sont les premières colonnes des matrices U et V respectivement, soit les vecteurs singuliers associés à λ_1. Dans ce cas, la valeur optimale du contraste dans l’équation (2.7) est
\[
C_{opt\ ada} = \frac{1}{8} \left(\frac{f_0 \tau}{\sigma} \right)^2 \|D\|^2 \lambda_1^2.
\] (2.10)

Le contraste optimal dépend donc de λ_1^2. Comme il s’agit de la plus grande valeur singulière et que $\sum_i \lambda_i^2 = 1$, il est clair que $\lambda_1^2 \in [1/3, 1]$. Par conséquent, le contraste optimal est borné de la manière suivante :
\[
\frac{1}{8} \left(\frac{f_0 \tau}{\sigma} \right)^2 \|D\|^2 \leq C_{opt\ ada} \leq \frac{1}{8} \left(\frac{f_0 \tau}{\sigma} \right)^2 \|D\|^2.
\] (2.11)

La valeur de ces bornes dépend des caractéristiques de la cible et du fond à travers la matrice D. Les imageurs polarimétriques pouvant atteindre ce contraste optimal doivent être capables de générer n’importe quel état de polarisation sur la sphère de Poincaré. Ce n’est pas le cas des imageurs statiques qui ne peuvent atteindre qu’un nombre fixe d’états de polarisation en illumination et en analyse. Ce type d’imageur est donc plus facile à mettre en œuvre et à étalonner mais en contrepartie, leur performance en terme de contraste est plus faible que les imageurs totalement adaptatifs. Afin de pouvoir comparer ces deux types d’imageurs polarimétriques, nous voulons quantifier la perte de contraste induite par l’utilisation d’un polarimètre statique au lieu d’un polarimètre totalement adaptatif.

2.2 Configuration permettant de maximiser le contraste avec un polarimètre statique

La stratégie pour obtenir le meilleur contraste avec un polarimètre adaptatif est de mesurer la matrice de Mueller de la scène à partir de 16 mesures puis de déterminer à partir de la matrice de Mueller les états optimisant le contraste entre une cible et un fond. Dans le cas d’un polarimètre statique, les états polarimétriques d’illumination et
d’analyse sont fixes, on ne peut donc pas optimiser ces états par rapport aux propriétés polarimétriques de la scène. Le polarimètre statique permet de faire 16 mesures avec des états définis lors de la conception du système. Nous allons donc étudier la somme des contrastes apportés par les 16 images mesurées par ce polarimètre.

2.2.1 Maximisation du contraste total

On considère maintenant que la scène est observée par un imageur de Mueller statique pouvant illuminer la scène selon \(N \) états de polarisation représentés par des vecteurs de Stokes \(\mathbf{S}_k = [1, s_k^T]^T, k \in [1, N] \) et analyser la lumière diffusée par la scène selon \(N \) états de polarisation représentés par les vecteurs de Stokes \(\mathbf{T}_l = [1, t_l^T]^T, k \in [1, N] \). Cela donne \(N^2 \) mesures d’intensité

\[
i_{kl} = \frac{f_0 \tau}{2} \mathbf{T}_l^T \mathbf{M} \mathbf{S}_k + \varepsilon_{kl}, \quad (2.12)
\]

où \(\varepsilon_{kl} \) sont des bruits additifs gaussiens indépendants de moyenne nulle et de variance \(\sigma^2 \). Pour chaque mesure d’intensité on peut définir le contraste comme

\[
C_{kl} = \frac{1}{2\sigma^2} (\langle i_{kl} \rangle_a - \langle i_{kl} \rangle_b)^2 \quad (2.13)
\]

\[
= \frac{1}{8} \left(\frac{f_0 \tau}{\sigma} \right)^2 \left[d_{00} + s_k^T \mathbf{m} + t_l^T \mathbf{n} + t_l^T D s_k \right]^2 \quad (2.14)
\]

Le contraste total entre la cible et le fond est la somme de ces \(N^2 \) contrastes

\[
C_{tot} = \sum_{k=1}^{N} \sum_{l=1}^{N} C_{kl}. \quad (2.15)
\]

On peut définir \(S = \{ \mathbf{s}_k, k \in [1, N] \} \) et \(T = \{ \mathbf{t}_l, l \in [1, N] \} \) les ensembles de vecteurs de Stokes réduits d’illumination et d’analyse, et définir l’ensemble global \(\Omega = \{ S, T \} \). Notre but est de trouver \(\Omega_{opt} \), l’ensemble des états d’illumination et d’analyse maximisant le contraste total défini par l’équation (2.15). Pour un ensemble \(\Omega \) donné, le contraste va dépendre des caractéristiques polarimétriques de la cible et du fond à travers les paramètres \(d_{00}, \mathbf{n}, \mathbf{m} \) et \(D \) définis dans l’équation (2.5). La première de ces valeurs correspond au contraste d’intensité et les trois autres au contraste polarimétrique. Elles peuvent être décomposées de la manière suivante :

\[
\mathbf{m} = \| \mathbf{m} \| \mathbf{\mu}, \quad \mathbf{n} = \| \mathbf{n} \| \mathbf{\nu}, \quad \text{et} \quad D = \| D \| \Delta \quad (2.16)
\]

où \(\mathbf{\mu} \) et \(\mathbf{\nu} \) sont des vecteurs unitaires de dimension 3 et la décomposition de la matrice \(D \) est définie dans l’équation (2.8). On peut définir un ensemble \(P = \{ d_{00}, \mathbf{\mu}, \mathbf{\nu}, \Delta \} \) décrivant les différences de réponse polarimétrique entre la cible et le fond. On veut déterminer l’ensemble d’états d’illumination et d’analyse \(\Omega_{opt} \) tel que :

\[
\Omega_{opt} = \arg \max_{\Omega} \left\{ \min_{\mathcal{P}} |C_{tot}| \right\} \quad (2.17)
\]

C’est une approche « maximin » qui consiste à trouver l’ensemble \(\Omega \) maximisant le contraste minimal obtenu en faisant varier \(\mathcal{P} \). En d’autres termes, nous cherchons l’ensemble des vecteurs de mesure permettant de maximiser la valeur du contraste obtenue lorsque \(d_{00} \) et les “directions” \(\mathbf{\mu}, \mathbf{\nu} \) et \(\Delta \) sont les moins favorables. Afin de trouver \(\Omega_{opt} \) nous devons
résoudre le problème d’optimisation maximin défini dans l’équation (2.17). L’expression du contraste définie dans l’équation (2.15) peut être écrite sous la forme

\[F = \sum_{k,l} \left[d_{00} + \| m \| s_k^T \mu + \| n \| t_l^T \nu + \| D \| \left[t_l \otimes s_k \right]^T v_\Delta \right]^2. \]

(2.18)

L’opérateur \(\otimes \) représente le produit de Kronecker permettant d’écrire l’expression \(t_l^T \Delta s_k \) sous la forme \(\left[t_l \otimes s_k \right]^T v_\Delta \) où \(v_\Delta \) est un vecteur à 9 dimensions obtenu en vectorisant la matrice \(\Delta \).

Pour un ensemble \(\Omega \) donné, on peut minimiser \(F \) par rapport à \(d_{00} \) en annulant la dérivée \(\partial F / \partial d_{00} \). On obtient :

\[d_{00} = -\| m \| \left(\bar{s}^T \mu \right) + \| n \| \left(\bar{t}^T \nu \right) - \| D \| \left(\left[\bar{t} \otimes \bar{s} \right]^T v_\Delta \right) \]

(2.19)

avec

\[\bar{s} = \frac{1}{N} \sum_{k=1}^{N} s_k \] et \[\bar{t} = \frac{1}{N} \sum_{l=1}^{N} t_l \]

(2.20)

En substituant cette valeur de \(d_{00} \) dans l’équation (2.18), on obtient :

\[F' = \sum_{k,l} \left[\| m \| \left(\bar{s}^T \mu \right) + \| n \| \left(\bar{t}^T \nu \right) + \| D \| \left(\left[\bar{t} \otimes \bar{s} \right]^T v_\Delta \right) \right]^2 \]

(2.21)

avec

\[\bar{s}_k = s_k - \bar{s} \] and \[\bar{t}_l = t_l - \bar{t}. \]

(2.22)

On remarque que la somme des vecteurs \(\bar{s}_k \) et \(\bar{t}_l \) est nulle que soit \(N \) car :

\[\sum_{k=1}^{N} \bar{s}_k = \sum_{k=1}^{N} \left(s_k - \frac{1}{N} \sum_{k=1}^{N} s_k \right) = \sum_{k=1}^{N} s_k - N \left(\frac{1}{N} \sum_{k=1}^{N} s_k \right) = 0. \]

(2.23)

La fonction \(F' \) peut être développée de la manière suivante :

\[F' = N \| m \|^2 (\mu^T \Gamma_s \mu) + N \| n \|^2 (\nu^T \Gamma_t \nu) + \| D \|^2 (v_\Delta^T \Gamma_{ts} v_\Delta) + 2 \| m \| \| n \| \left(\mu^T \left[\sum_{kl} \bar{s}_k \bar{t}_l^T \right] \nu \right) + 2 \| m \| \| D \| \left(\mu^T \left[\sum_{kl} \bar{s}_k \left(\bar{t}_l \otimes \bar{s}_k \right)^T \right] v_\Delta \right) + 2 \| n \| \| D \| \left(\nu^T \left[\sum_{kl} \bar{t}_l \left(\bar{t}_l \otimes \bar{s}_k \right)^T \right] v_\Delta \right) \]

(2.24)

où

\[\Gamma_s = \sum_{k} \bar{s}_k \bar{s}_k^T, \quad \Gamma_t = \sum_{l} \bar{t}_l \bar{t}_l^T \]

(2.25)

\[\Gamma_{ts} = \sum_{kl} \left(\bar{t}_l \otimes \bar{s}_k \right) \left(\bar{t}_l \otimes \bar{s}_k \right)^T = \Gamma_s \otimes \Gamma_t \]

(2.26)
En utilisant les propriétés du produit de Kronecker on peut réécrire les deux derniers termes de l’équation (2.24) de la manière suivante :

\[\sum_{kl} s_k (t_l \otimes \bar{s}_k)^T = \sum_{kl} (s_k t_l^T \otimes \bar{s}_k^T) = \sum_k (s_k \sum_l t_l^T \otimes \bar{s}_l^T). \] (2.27)

Or d’après l’équation (2.23) : \(\sum_k \bar{s}_k = 0 \) et \(\sum_l \bar{t}_l = 0 \). On peut donc remarquer que l’équation (2.27) est égale à zéro et que les trois derniers termes de l’équation (2.24) sont nuls. On peut donc écrire :

\[F' = N \| m \|^2 (\mu^T \Gamma_s \mu) + N \| n \|^2 (\nu^T \Gamma_t \nu) + \| D \|^2 (\nu^T \Delta \Gamma_{ts} \nu_{\Delta}). \] (2.28)

Le minimum de la fonction \(F' \) est donc atteint lorsque les trois premiers termes de l’équation (2.24) sont simultanément minimaux.

\[\min_\mu (\mu^T \Gamma_s \mu), \min_\nu (\nu^T \Gamma_t \nu) \text{ et } \min_{\nu_{\Delta}} (\nu^T \Delta \Gamma_{ts} \nu_{\Delta}). \] (2.29)

Nous sommes devant un problème de minimisation sous contrainte, que nous pouvons résoudre avec la méthode des multiplicateurs de Lagrange. Nous avons la fonction à minimiser :

\[f(\mu) = \mu^T \Gamma_s \mu \text{ avec comme contrainte } \mu^T \mu = \| \mu \|^2 = 1. \] (2.30)

Le lagrangien est égal à :

\[\psi(\mu) = \mu^T \Gamma_s \mu - \lambda(\mu^T \mu - 1) \] (2.31)

et le gradient à :

\[\frac{\partial \psi}{\partial \mu} = 2 \Gamma_s \mu - 2\lambda \mu. \] (2.32)

L’annulation de ce gradient conduit donc à la relation suivante :

\[\Gamma_s \mu = \lambda \mu. \] (2.33)

Le paramètre \(\lambda \) étant un scalaire, les extrema de \(f(\mu) \) sont donc atteints lorsque \(\mu \) est un vecteur propre de \(\Gamma_s \). En utilisant le résultat de l’équation (2.33) dans la fonction à minimiser définie dans l’équation (2.30) on obtient alors :

\[f(\mu) = \lambda \mu^T \mu \text{ avec } \mu^T \mu = \| \mu \|^2 = 1. \] (2.34)

Le minimum de \(f(\mu) \) est donc atteint lorsque \(\mu \) est le vecteur propre de \(\Gamma_s \) correspondant à la valeur propre \(\lambda \) la plus faible. De la même manière, les deux autres termes de l’équation (2.28) sont minimum lorsque \(\nu \) est le vecteur propre de \(\Gamma_t \) correspondant à la valeur propre la plus faible, et lorsque \(\nu_{\Delta} \) est le vecteur propre de \(\Gamma_s \otimes \Gamma_t \) correspondant à la valeur propre la plus faible.

Pour que les valeurs propres minimales des matrices de covariance \(\Gamma_s \) et \(\Gamma_t \) ne soient pas nulles, il faut que leur rang soit égal à 3. Or ces matrices sont définies dans l’équation (2.25) comme étant la somme de \(N \) matrices de covariance de rang 1. Cependant, on a vu dans l’équation (2.23) que les matrices ne sont pas totalement indépendantes, le rang de la somme des \(N \) matrices de rang 1 n’est donc pas égal à \(N \) mais à \(N - 1 \). Il faut donc que \(N \) soit supérieur ou égal à 4 afin que \(\Gamma_s \) et \(\Gamma_t \) soient de rang 3 et que leur valeur propre minimale ne soit pas nulle.
Pour résoudre le problème d’optimisation maximin, nous devons trouver l’ensemble des vecteurs \(\Omega \) maximisant la valeur propre minimum des matrices \(\Gamma_s \) et \(\Gamma_t \). Ces deux conditions sont suffisantes car elles impliquent que la valeur propre minimum de \(\Gamma_s \otimes \Gamma_t \) soit aussi maximum, grâce à la propriété suivante du produit de Kronecker : si \(\lambda_s \) est une valeur propre de \(\Gamma_s \) et \(\lambda_t \) une valeur propre de \(\Gamma_t \), alors \(\lambda_s \lambda_t \) est une valeur propre de \(\Gamma_{st} \).[39]

La valeur propre minimum de \(\Gamma_s \) et \(\Gamma_t \) atteint sa valeur maximum lorsque les trois valeurs propres sont identiques et égales à trace[\(\Gamma_s \)]/3. La solution permettant de remplir ces conditions consiste à choisir des ensembles de vecteurs \(S \) et \(T \) formant un tétraèdre régulier sur la sphère de Poincaré [40–45]. Il est intéressant de remarquer que la configuration maximisant le contraste pour la détection de cible est la même qui minimise et égalise les variances d’estimation des paramètres de la matrice de Mueller [45]. Avec ce choix de \(S \) et \(T \), on peut montrer que :

\[
\Gamma_s = \Gamma_t = \begin{bmatrix}
\frac{4}{3} & 0 & 0 \\
0 & \frac{4}{3} & 0 \\
0 & 0 & \frac{4}{3}
\end{bmatrix}
\] (2.35)

et \(\Gamma_s \otimes \Gamma_t \) est donc une matrice diagonale dont les valeurs diagonales sont égales à 16/9.

L’expression du contraste total obtenue pour cet ensemble optimal de vecteurs d’analyse et d’illumination est obtenu en développant le terme au carré de l’équation (2.14), et en utilisant le fait que si les vecteurs de mesure forment un tétraèdre régulier sur la sphère de Poincaré, alors \(\sum_k s_k = 0 \) et \(\sum_l t_l = 0 \). En utilisant ensuite l’expression du contraste total définie dans l’équation (2.15) on obtient :

\[
C_{tot}^{opt} = C_{tot}(\Omega_{opt})
= 2 \left(\frac{f_0 \tau}{\sigma} \right)^2 \left[(d_{00})^2 + \frac{\|m\|^2}{3} + \frac{\|n\|^2}{3} + \frac{\|D\|^2}{9} \right].
\] (2.36)

Il est intéressant de remarquer que le contraste optimal ne dépend que des normes de \(m, n \) et \(D \). Il est indépendant des « directions » \(\mu, \nu \) et \(\Delta \). La structure en tétraèdre régulier des vecteurs de mesure fait que le contraste total est indépendant de la valeur de ces directions.

2.2.2 Image de contraste total

L’expression du contraste total pour un imageur statique dans l’équation (2.36) est la somme des contrastes de chacune des 16 images \(i_{kl} \) (équation (2.15)). Pour produire une image avec ce contraste, il faut faire une somme pondérée de l’intensité sur les 16 images :

\[
i_{opt} = \sum_{k,l} w_{kl} i_{kl},
\] (2.37)

où \(i_{kl} \) est défini dans l’équation (2.1) et les poids \(w_{kl} \) sont définis par

\[
w_{kl} = \frac{\langle i_{kl} \rangle_a - \langle i_{kl} \rangle_b}{\sqrt{\sum_{k,l} (\langle i_{kl} \rangle_a - \langle i_{kl} \rangle_b)^2}}.
\] (2.38)

On remarque qu’en reprenant l’expression du contraste dans l’équation (2.3) pour l’image optimale \(i_{opt} \) le contraste est égal à l’équation (2.36). En effet, dans cette image, les valeurs moyennes de la cible et du fond sont respectivement,

\[
\langle i_{opt} \rangle_a = \sum_{k,l} w_{kl} \langle i_{kl} \rangle_a
\] (2.39)
avec \(u = a \) ou \(b \). Selon l’équation (2.3), le contraste dans cette image est donc

\[
C = \frac{1}{2\sigma^2} \left(\langle i_{opt} \rangle_a - \langle i_{opt} \rangle_b \right)^2
\]

(2.40)

\[
= \frac{1}{2\sigma^2} \left[\sum_{k,l} w_{kl} (\langle i_{kl} \rangle_a - \langle i_{kl} \rangle_b) \right]^2
\]

(2.41)

En utilisant l’expression de \(w_{kl} \) dans l’équation (2.38), on obtient

\[
C = \frac{1}{2\sigma^2} \left[\sum_{k,l} (\langle i_{kl} \rangle_a - \langle i_{kl} \rangle_b)^2 \sqrt{\sum_{k,l} (\langle i_{kl} \rangle_a - \langle i_{kl} \rangle_b)^2} \right]
\]

(2.42)

\[
= \frac{1}{2\sigma^2} \sum_{k,l} (\langle i_{kl} \rangle_a - \langle i_{kl} \rangle_b)^2 = \sum_{k,l} C_{kl} = C_{tot}
\]

(2.43)

où nous avons utilisé les définitions de \(C_{kl} \) dans l’équation (2.13) et de \(C_{tot} \) dans l’équation (2.15).

Un inconvénient de cette méthode pour construire l’image avec le contraste optimal est qu’il faut connaître la valeur moyenne de la cible \(\langle i_{kl} \rangle_a \) et du fond \(\langle i_{kl} \rangle_b \) ce qui en pratique n’est pas toujours possible car il faut préalablement connaître l’emplacement de la cible dans l’image. Sans avoir connaissance de la cible et du fond, on ne peut pas combiner les 16 images. Une alternative consiste à sélectionner parmi les 16 images celle ayant le meilleur contraste pour obtenir un contraste optimal.

2.3 Contraste minimum sur la meilleure des 16 images de Mueller

Dans le cas où il est impossible connaître a priori la valeur moyenne de la cible et du fond, une stratégie envisageable est d’afficher les 16 images \(i_{kl} \). La question qu’on peut alors se poser est si la cible apparaîtra avec un contraste suffisant dans au moins une des 16 images.

2.3.1 Borne sur des 16 contrastes dans la pire configuration possible

Cela revient à optimiser le contraste non pas sur toutes les valeurs possibles de \(s \) et \(t \) comme cela a été fait dans la section 2.1, mais seulement sur les 16 combinaisons accessibles. Définissons le meilleur contraste parmi les 16 images de la manière suivante :

\[
C_{best1} = \max_{k,l} [C_{kl}].
\]

(2.44)

Notre but est de déterminer le meilleur contraste parmi les 16 images dans le pire cas possible, c’est-à-dire lorsque les paramètres polarimétriques \(\mathcal{P} \) de la cible et du fond et l’ensemble des états de polarisation d’illumination et d’analyse \(\Omega_{opt} \) donnent le pire contraste. En termes mathématiques, nous voulons déterminer

\[
C_{min}^{best1} = \min_{\mathcal{P}} \{ C_{best1} \}.
\]

(2.45)

On se retrouve devant un problème d’optimisation minimax complexe pour lequel nous n’avons pas trouvé de solution analytique dans le cas général. Mais on peut déterminer
simplement une borne inférieure de C_{min} en utilisant l'expression du contraste C_{tot} dans l'équation (2.15). Le contraste total étant la somme des contrastes des 16 images, la valeur minimale du contraste sur la meilleure des 16 images est obtenue lorsque tous les contrastes C_{kl} sont égaux. On a donc

$$C_{\text{min}}^\text{best1} \geq C_{\text{opt}}^\text{tot} / 16,$$ \hfill (2.46)

Et en utilisant l'expression du contraste total optimal définie dans l'équation (2.36), on obtient la borne inférieure suivante :

$$C_{\text{min}}^\text{best1} \geq \frac{1}{8} \left(\frac{f_0 \tau}{\sigma} \right)^2 \left[(d_{00})^2 + \frac{\|m\|^2}{3} + \frac{\|n\|^2}{3} + \frac{\|D\|^2}{9} \right].$$ \hfill (2.47)

Cette expression montre premièremment que le contraste minimax n’est jamais nul, ce qui signifie qu’il y a toujours au moins une des 16 images affichant un contraste non nul entre la cible et le fond. De plus, cette expression permet de déterminer une borne sur la perte de contraste induite par l’utilisation d’un polarimètre statique au lieu d’un polarimètre adaptatif. On peut définir cette perte comme étant le rapport entre $C_{\text{min}}^\text{best1}$ et $C_{\text{opt}}^\text{ada}$ (défini dans l’équation (2.7)) :

$$\rho_{\text{min}} = \frac{C_{\text{min}}^\text{best1}}{C_{\text{opt}}^\text{ada}}.$$ \hfill (2.48)

Ce rapport représente la fraction du contraste optimal pouvant être atteint par la meilleure des 16 images d’un imageur statique pour une scène et une configuration du PSG et du PSA données. Dans le cas général, la détermination d’un tel rapport n’est pas simple, mais je vais étudier certains cas particuliers pour lesquels il est possible d’obtenir une forme analytique.

2.3.2 Cas particulier : différence nulle en terme de diatténuation et de polarisation

Dans le cas d’observation de scènes naturelles, il a été montré que les principaux contrastes polarimétriques visibles proviennent des propriétés de dépolarisation et de biréfringence de la scène [7]. Afin de simplifier le problème on va supposer que $\|m\|$ et $\|n\|$ sont égaux à zéro, c’est-à-dire que la scène observée contient une cible et un fond ayant la même diatténuation et la même polarisation. On suppose aussi que $d_{00} = 0$, ce qui signifie qu’il n’y a pas de différence d’intensité entre la cible et le fond. C’est le cas où l’imagerie polarimétrique est la plus utile. On peut donc écrire l’expression du contraste total dans l’équation (2.36) de la manière suivante :

$$C_{\text{tot}} = \frac{16 A}{9}, \quad \text{avec} \quad A = \frac{1}{8} \left(\frac{f_0 \tau}{\sigma} \right)^2 \|D\|^2.$$ \hfill (2.49)

La constante A a été définie afin de simplifier les expressions mathématiques dans la suite. L’expression du contraste pour chacune des 16 images (k,l) est

$$C_{kl} = A t_l^T U \Lambda V s_k$$ \hfill (2.50)

où U, V et Λ sont définies dans l’équation (2.9). Dans le cas particulier où l’on suppose que $\|m\| = \|n\| = d_{00} = 0$, la borne inférieure du contraste définie dans l’équation (2.47) peut s’écrire de la manière suivante :

$$C_{\text{min}}^\text{best1} \geq \frac{A}{9}.$$ \hfill (2.51)
Il s’agit là du pire cas possible, celui pour lequel la perte de contraste induite par l’utilisation d’un polarimètre statique au lieu d’un polarimètre adaptatif est de $\rho_{\text{min}} = 1/9$.

Pour une matrice Λ donnée, le contraste optimal d’un imageur statique peut prendre différentes valeurs en fonction de U et V. Ces valeurs variant entre les bornes suivantes :

$$C_{\text{best}1}^{\text{min}}(\Lambda) = \min_{U,V} [C_{\text{best}1}] ; \quad C_{\text{best}1}^{\text{max}}(\Lambda) = \max_{U,V} [C_{\text{best}1}] . \quad (2.52)$$

En appliquant une rotation aux vecteurs de mesure du PSG et du PSA avec les matrices de rotation R_S et R_T on a

$$C_{kl} = A (R_T t_i)^T U A V^T (R_S s_k) = A t_i^T (R_T^T U) \Lambda (R_S^T V) s_k,$$

(2.53)

On remarque que faire varier U et V pour une orientation donnée du tétraèdre du PSG et du PSA est équivalent à faire varier les orientations du tétraèdre du PSG et du PSA pour une valeur donnée de U et V. On a donc

$$\min_{U,V} [C_{\text{best}1}] = \min_{R_S,R_T} [C_{\text{best}1}] , \quad (2.54)$$

car dans les deux cas, $R_T^T U (R_S^T V)$ décrivent l’ensemble de toutes les rotations 3D possibles en faisant varier U ou R_T (V ou R_S).

De plus, on note que $C_{\text{best}1}^{\text{max}}(\Lambda) = C_{\text{opt}}(\Lambda)$ car cette valeur de contraste est obtenue lorsqu’un des vecteurs de mesure du PSA (PSG) est aligné avec le vecteur singulier gauche (droit) de la matrice D correspondant à la valeur singulière la plus grande.

La valeur du contraste $C_{\text{best}1}^{\text{min}}$ varie en fonction des propriétés polarimétriques, définies de manière simplifiée par la matrice Λ. Nous allons étudier certains cas particuliers de la matrice Λ résumés dans le tableau 2.1. Dans un premier temps, nous considérons la matrice Λ_1 définie dans la première ligne du tableau 2.1. Cette matrice n’a qu’une valeur singulière non nulle égale à 1. Dans ce cas, $C_{\text{best}1}^{\text{max}}(\Lambda_1) = A$. De plus on a $U \Lambda_1 V^T = u v^T$ où u est un vecteur de dimension 3, première colonne de la matrice U, et v est la première colonne de la matrice V. Selon l’équation (2.50), l’expression du contraste pour chaque image est

$$\forall (k,l) \in [1,4] \times [1,4] , \quad C_{kl} = A (t_i^T u)^2 (s_k^T v)^2 . \quad (2.55)$$

Il a été montré dans [37] que si les vecteurs s_k forment un tétraèdre sur la sphère de Poincaré, alors

$$\min_\mu \left\{ \max_k \left[(s_k^T \mu)^2 \right] \right\} = \frac{1}{3} , \quad (2.56)$$

et si on appelle μ_{opt} le vecteur μ pour lequel ce minimum est atteint, alors on a $\forall k \in [1,4], (s_k^T \mu_{\text{opt}})^2 = 1/3$. On peut donc en conclure que les valeurs de contraste C_{kl} sont minimum lorsque $\forall l \in [1,4], (t_i^T u)^2 = 1/3$, et $\forall k \in [1,4], (s_k^T v)^2 = 1/3$. Dans ce cas, le contraste C_{kl} est le même pour les 16 images et égal à

$$C_{\text{best}1}^{\text{min}}(\Lambda_1) = \frac{A}{9} . \quad (2.57)$$

On remarque que dans ce cas, le contraste atteint sa borne inférieure définie dans l’équation (2.51). La valeur de la perte de contraste induite par l’utilisation d’un polarimètre statique au lieu d’un polarimètre adaptatif définie dans l’équation (2.48) atteint aussi sa valeur minimale de $\rho_{\text{min}}(\Lambda_1) = 1/9$.

Considérons maintenant la matrice Λ_2 définie dans la seconde ligne du tableau 2.1. Cette matrice contient deux valeurs singulières non nulles égales à $1/\sqrt{2}$. Dans ce cas
on remarque que $C_{\text{best}} \min (\Lambda_2)$ est aussi égal à $A/9$, la borne inférieure du contraste est donc encore atteinte. Cependant, cette fois-ci, $C_{\text{best}} \max (\Lambda_2) = A/2$ ce qui donne $\rho_{\text{min}} (\Lambda_2) = 1/4.5$. La perte induite par l’utilisation d’un polarimètre statique au lieu d’un polarimètre adaptatif est donc deux fois plus faible que dans le cas précédent.

La perte induite par l’utilisation d’un polarimètre statique au lieu d’un polarimètre adaptatif est donc deux fois plus faible que dans le cas précédent.

Table 2.1 – Perte de contraste ρ_{min} pour différentes matrices Λ.

<table>
<thead>
<tr>
<th>Λ</th>
<th>$C_{\text{opt}} \opt (\Lambda)$</th>
<th>$C\min_{\text{best1}} (\Lambda)$</th>
<th>$\rho_{\text{min}} (\Lambda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda_1 = \text{diag}(1, 0, 0)$</td>
<td>A</td>
<td>$A/9$</td>
<td>$1/9$</td>
</tr>
<tr>
<td>$\Lambda_2 = 1/\sqrt{2} \text{diag}(1, 1, 0)$</td>
<td>$A/2$</td>
<td>$A/9$</td>
<td>$1/4.5$</td>
</tr>
<tr>
<td>$\Lambda_3 = 1/\sqrt{3} \text{diag}(1, 1, 1)$</td>
<td>$A/3$</td>
<td>$A/4.63$</td>
<td>$1/1.54$</td>
</tr>
</tbody>
</table>

Table 2.1 – Perte de contraste ρ_{min} pour différentes matrices Λ.

Enfin, considérons la matrice Λ_3 définie dans dernière ligne du tableau 2.1. Cette matrice est proportionnelle à la matrice identité. Dans ce cas, le contraste ne dépend que des orientations relatives du tétraèdre d’illumination et d’analyse (PSG et PSA). La valeur maximale du contraste est obtenue lorsque les deux tétraèdres sont alignés, dans ce cas, on obtient, $C_{\text{best1}} \max (\Lambda_3) = C_{\text{opt}} \opt (\Lambda_3) = A/3$, ce qui est aussi la plus petite valeur que peut atteindre $C_{\text{opt}} \opt$ selon l’équation (2.11). La plus petite valeur du contraste est obtenue lorsque les deux tétraèdres d’illumination et d’analyse sont tels que la valeur du plus grand produit scalaire entre chaque vecteur est minimale. On peut déterminer de manière numérique que ce contraste est de $C_{\text{best1}} \min (\Lambda_3) = A+(1+\sqrt{2})^2/27 = A/4.63$. Cette valeur est environ le double de la borne inférieure du contraste définie dans l’équation (2.51). C’est aussi le cas où la perte induite par l’utilisation d’un polarimètre statique au lieu d’un polarimètre adaptatif est la plus faible, avec un ratio $\rho_{\text{min}} (\Lambda_3) = 3/4.63 = 1/1.54$.

J’ai tracé dans la figure 2.2 la valeur de $\rho_{\text{min}} (\Lambda)$ pour toutes les matrices Λ possibles. Comme cette matrice est diagonale et que ses 3 éléments diagonaux sont positifs et vérifient $\lambda_1^2 + \lambda_2^2 + \lambda_3^2 = 1$, les valeurs de $\rho_{\text{min}} (\Lambda)$ peuvent être représentées sur une portion d’un huitième de sphère. Pour tracer cette courbe, j’ai échantillonné la portion de sphère en 1024 points [46]. Chacun de ces points représente une matrice Λ pour laquelle a été estimé $C_{\text{opt}} \opt (\Lambda)$ en utilisant l’équation (2.10), $C_{\text{best1}} \min (\Lambda)$ en utilisant l’équation (2.54) (rotation du tétraèdre du PSG et du PSA), et enfin $\rho_{\text{min}} (\Lambda)$ en utilisant l’équation (2.48). On peut voir sur la figure 2.2 que la valeur maximale de $\rho_{\text{min}} (\Lambda)$ est obtenue lorsque $\Lambda = \Lambda_3$ (au centre du graphe). Ce point correspond au cas où la perte de contraste maximal induite par l’utilisation d’un polarimètre statique au lieu d’un polarimètre adaptatif est la plus faible. Les valeurs minimales de $\rho_{\text{min}} (\Lambda)$ sont atteintes sur les trois extrémités de la courbe pour des matrices qui comme Λ_1 n’ont qu’une seule valeur singulière non nulle. Cela correspond à la pire perte de contraste $\rho_{\text{min}} (\Lambda) = 1/9$.

2.4 Validation expérimentale

Nous avons déterminé de manière théorique les configurations d’illumination et d’analyse permettant d’obtenir le contraste maximum pour un imageur adaptatif et le contraste total maximum pour un imageur statique. Nous avons aussi trouvé les configurations d’un
polarimètre statique donnant le pire contraste possible pour une scène donnée. Dans cette partie, nous allons utiliser un polarimètre adaptatif à division de temps afin de vérifier ces résultats théoriques sur des mesures de matrices de Mueller réelles.

2.4.1 Description de l’expérience

Le système de mesure utilisé est un imageur polarimétrique actif composé d’une source halogène d’un PSG et d’un PSA et d’une caméra, j’ai représenté le schéma de l’expérience sur la figure 2.3. Le principe de mesure est d’illuminer une scène avec une polarisation connue générée par le PSG, la lumière réfléchie et diffusée par la scène est ensuite analysée par le PSA qui transforme les informations polarimétriques en intensité visible sur une caméra CCD.

Le PSG et le PSA de l’imageur polarimétrique adaptatif sont composés de cristaux liquides nématiques permettant de générer et d’analyser n’importe quel état de polarisation sur la sphère de Poincaré. Avec ce polarimètre totalement adaptatif, nous allons observer une scène composée d’un carré de scotch noté (a) sur la figure 2.4 collé sur une surface en bois le tout recouvert d’une large bande d’un deuxième type de scotch (b). Les morceaux de ruban adhésif sont légèrement birefringents, et la surface en bois est majoritairement dépolarisante. La région faisant office de cible est le petit carré de scotch (a) au centre de la scène, et le fond est la région qui l’entoure, et qui est elle aussi composée de scotch (b). Le contraste est donc généré par la différence de birefringence entre les deux couches de scotch superposées (région de la cible) et la couche unique de scotch (région du fond).

On a représenté sur la figure 2.5 l’image de Mueller calculée à partir des 16 mesures faites avec le polarimètre. On remarque que la cible n’est pas visible sur l’image d’intensité M_{00} ce qui signifie qu’il n’y a pas de contraste d’intensité entre la cible et fond. À partir de la matrice de Mueller de la scène nous avons estimé la matrice de Mueller moyenne de la cible (M_a) et du fond (M_b). Nous avons calculé la différence des matrices $M_a - M_b$ ainsi que la matrice Λ (Tableau 2.2). On peut voir que les différences entre la cible et le fond sont les plus importantes dans la matrice $3 \times 3 \ D$ définie dans l’équation (2.5) regroupant les 9 éléments en bas à droite de la matrice $M_a - M_b$. Cette scène correspond
approximativement au cas particulier étudié dans la section 2.3.2 où les différences entre la cible et le fond viennent principalement de la biréfringence et de la dépolarisation. On remarque aussi que la matrice Λ expérimentale calculée à partir de la matrice D (équation (2.9)) correspond à la matrice Λ_2 du cas particulier représentée dans le tableau 2.1 car les deux valeurs propres les plus grandes ont des valeurs similaires et la troisième est quasiment nulle.

<table>
<thead>
<tr>
<th>$M_a - M_b$</th>
<th>Λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\begin{bmatrix} 44 & -24 & 117 & -2 \ -50 & -221 & 488 & -155 \ -136 & -783 & 1590 & -362 \ -11 & -293 & 376 & 1589 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0.759 & 0.000 & 0.000 \ 0.000 & 0.651 & 0.000 \ 0.000 & 0.000 & 0.006 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

Table 2.2 – Différence des matrices de Mueller de la cible (M_a) et du fond (M_b), et la matrice Λ correspondante.
CHAPITRE 2. CONFIGURATION PERMETTANT D’OBTENIR UN CONTRASTE OPTIMAL AVEC UN POLARIMÈTRE STATIQUE

2.4.2 Configuration permettant d’obtenir le meilleur contraste sur la meilleure des 16 images

Comme on l’a vu dans la section 2.3.2, les contrastes C_{kl} obtenus sur les 16 images du polarimètre de Mueller dépendent de l’orientation du tétraèdre d’illumination et d’analyse, et donc des rotations R_S et R_T appliquées aux vecteurs de mesure du PSG et du PSA. On définit cet ensemble de rotations $\mathcal{R} = (R_S, R_T)$ et le contraste dépendant de ces rotations $C_{kl}(\mathcal{R})$. A partir de la matrice Λ de la scène (tableau 2.1), nous avons déterminé l’ensemble d’orientations \mathcal{R} pour lesquelles le contraste $C_{best1}(\mathcal{R})$ est maximum, soit

$$\mathcal{R}_{max} = \arg \max_{\mathcal{R}} [C_{best1}(\mathcal{R})].$$

(2.58)

Les valeurs de $C_{kl}(\mathcal{R}_{max})$ sont données dans partie gauche du tableau 2.3. On observe que le contraste maximal est C_{33}, que C_{44} est juste légèrement inférieur et que les autres contrastes sont très inférieurs. Comme notre imageur polarimétrique est capable de générer et d’analyser n’importe quel état de polarisation, nous pouvons implémenter l’ensemble de rotations \mathcal{R}_{max}, et acquérir les 16 images d’intensité $i_{kl}(i, j)$ (équation (2.12)), où (i, j) représente la position d’un pixel. J’ai représenté sur la figure 2.6 les images

$$c_{kl}(i, j) = \left(\frac{i_{kl}(i, j) - \langle i_{kl} \rangle_b}{M_{00}(i, j)} \right)^2,$$

(2.59)

où la valeur moyenne $\langle i_{kl} \rangle_b$ a été estimée de manière empirique sur le fond de chacune des 16 images. Cette image représente l’estimation du contraste C_{kl} défini dans l’équation (2.13). On notera que la valeur de la variance du bruit gaussien σ^2 présent dans l’équation (2.13) a été négligée. En effet, notre but est de proposer une représentation visuelle du contraste obtenu avec deux configurations différentes du PSG et du PSA, or la multiplication par une constante ne modifie pas la représentation visuelle du contraste car l’échelle est adaptée à la dynamique de l’image. De plus, les pixels de l’image ont été divisés par $M_{00}(i, j)$ afin de supprimer les variations d’intensité induites par l’illumination non uniforme sur la scène.
Table 2.3 – Valeurs de $C_{kl}(R_{\text{max}})$ simulées en utilisant la matrice Λ (à gauche) et la matrice de Mueller complète (à droite).

<table>
<thead>
<tr>
<th>Avec Λ</th>
<th>Avec la matrice de Mueller complète</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34 0.32 0.41 0.27</td>
<td>0.37 0.41 0.19 0.23</td>
</tr>
<tr>
<td>0.32 0.34 0.41 0.27</td>
<td>0.34 0.42 0.20 0.24</td>
</tr>
<tr>
<td>0.41 0.41 3.65 0.41</td>
<td>0.63 0.55 3.71 0.61</td>
</tr>
<tr>
<td>0.27 0.27 0.41 2.79</td>
<td>0.21 0.17 0.16 3.04</td>
</tr>
</tbody>
</table>

Figure 2.6 – Ensemble des 16 images normalisées en intensité $c_{kl}(R_{\text{max}})$. L’échelle est inversée : noir pour les grandes valeurs et blanc pour les petites valeurs.

Comme prévu par les résultats de la simulation dans la partie droite du tableau 2.3, on peut voir sur la figure 2.6 que les contrastes entre la cible et le fond sont les plus élevés pour les images i_{33} et i_{44}. Ils ne sont pas exactement égaux à ceux figurant dans la partie gauche du tableau car ils prennent en compte la différence des matrices de Mueller complètes et pas seulement la matrice Λ calculée à partir de la matrice $D_{3 \times 3}$. Cependant, les contrastes sont du même ordre de grandeur et C_{33} et C_{44} sont toujours bien plus élevés que les autres coefficients.

2.4.3 Configuration donnant le pire contraste sur la meilleure des 16 images

Nous considérons maintenant l’ensemble R des rotations pour lesquelles $C_{\text{best1}}(R)$ est le plus petit, soit,

$$R_{\text{min}} = \arg \min_{R} [C_{\text{best1}}(R)].$$

Les valeurs de $C_{kl}(R_{\text{min}})$ sont données dans la partie gauche du tableau 2.4. On remarque tout d’abord que la valeur de la somme des 16 contrastes C_{tot} est égale à la somme des contrastes de la partie gauche du tableau 2.3, soit $C_{\text{tot}} = 11.26$. Cela vérifie le résultat dans la section 2.2, démontrant que la valeur de C_{tot} est indépendante de U et V, ou de R. Cependant, même si les sommes sont égales, la répartition des contrastes C_{kl} entre les
CHAPITRE 2. CONFIGURATION PERMETTANT D'OBTENIR UN CONTRASTE OPTIMAL AVEC UN POLARIMÈTRE STATIQUE

tableaux 2.3 et 2.4 est différente. Les contrastes dans le tableau 2.4 sont très similaires les uns aux autres et beaucoup plus faibles que le contraste maximal du tableau 2.3. Le contraste maximal $C_{\text{min}}^{\text{best}}$ est égal à 0.82, soit légèrement plus élevé que la borne inférieure définie dans l'équation (2.47) égale à $C_{\text{tot}}/16 = 0.71$. Le rapport du contraste par rapport à un polarimètre adaptatif est égal $\rho_{\text{min}} = 0.82/3.65 = 1/4.45$. Cette valeur est très proche de celle obtenue pour la matrice Λ_2 dans la seconde ligne du tableau 2.1.

<table>
<thead>
<tr>
<th>Avec Λ</th>
<th>Avec la matrice de Mueller complète</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.61 0.59 0.59 0.61</td>
<td>0.58 0.42 0.85 0.57</td>
</tr>
<tr>
<td>0.59 0.61 0.61 0.59</td>
<td>0.69 0.73 0.45 0.56</td>
</tr>
<tr>
<td>0.82 0.80 0.82 0.80</td>
<td>1.14 0.76 0.83 1.03</td>
</tr>
<tr>
<td>0.80 0.82 0.80 0.82</td>
<td>0.93 0.49 0.43 1.03</td>
</tr>
</tbody>
</table>

Table 2.4 – Valeurs de $C_{kl}(R_{\text{min}})$ simulée en utilisant la matrice Λ (à gauche) et la matrice de Mueller complète (à droite).

Nous avons implémenté les orientations R_{min} sur notre polarimètre de Mueller, et nous avons obtenu 16 images d’intensité i_{kl}. Ces images $c_{kl}(i,j)$ (équation 2.59) sont représentées dans la figure 2.7. On peut voir que le contraste est similaire pour l’ensemble des 16 images. Les valeurs des 16 contrastes estimées dans ces images sont données dans la partie droite du tableau 2.4. Ces valeurs ne sont pas exactement égales à la partie gauche du tableau car elles prennent en compte la différence des matrices de Mueller complètes et pas seulement la matrice Λ calculée à partir de la matrice D. Cependant, les contrastes sont du même ordre de grandeur.

Nous avons aussi représenté dans la figure 2.8 la somme des 16 images de la figure 2.6, représentant $c_{kl}(R_{\text{max}})$, et de la figure 2.7 représentant $c_{kl}(R_{\text{min}})$. Les deux images sont très similaires car elles représentent chacune le contraste total qui est égal dans les deux cas.

En résumé, nous avons validé dans cette partie les résultats théoriques démontrés
Figure 2.8 – (a) Somme des 16 images de la figure 2.6. (b) Somme des 16 images de la figure 2.7. L'échelle est inversée : noir pour les grandes valeurs et blanc pour les petites valeurs.

dans la partie précédente. Nous avons montré qu’en pratique, le contraste observé sur la meilleure des 16 images d’un polarimètre de Mueller varie en fonction de la configuration de mesure dans les limites définies par les résultats théoriques.

2.5 Conclusion

Dans ce chapitre, nous avons effectué une comparaison quantitative des contrastes obtenus avec un imageur de Mueller totalement adaptatif et un imageur statique. Nous avons exprimé de manière analytique le contraste maximum pouvant être atteint avec un polarimètre adaptatif dans le cas particulier où il n’y a pas de contraste d’intensité, de polarisation et de diatténuation entre la cible et le fond. Nous avons montré que la configuration optimale permettant de maximiser la somme des 16 images d’un polarimètre statique consiste à illuminer et analyser la scène avec des états formant un tétraèdre régulier sur la sphère de Poincaré.

Nous avons montré qu’avec un polarimètre dans les pires conditions d’illumination et d’analyse, le meilleur contraste parmi les 16 images a une borne inférieure non nulle. De plus, dans le cas où le contraste est purement polarimétrique et qu’il n’y a pas de différence de diatténuation et de polarisation entre la cible et le fond, nous avons montré qu’il est possible d’utiliser la matrice réduite Λ au lieu de la différence des matrices de Mueller complètes pour déterminer les états optimaux de mesure permettant d’obtenir le meilleur contraste.

Toujours dans ce cas particulier, nous avons montré que le rapport entre le pire contraste obtenu en utilisant un polarimètre statique et le meilleur contraste en utilisant un polarimètre adaptatif, a une borne inférieure égale à 1/9. Cela signifie que la perte de contraste induite par l’utilisation d’un polarimètre statique au lieu d’un polarimètre adaptatif est limitée et que cette limite peut être déterminée en fonction de la scène observée. Comme les polarimètres statiques sont plus faciles à concevoir, à étalonner et à utiliser que les polarimètres adaptatifs, ils peuvent être une alternative crédible aux polarimètres adaptatifs.

Dans ce chapitre, nous avons utilisé un polarimètre à division de temps pour obtenir un contraste entre une cible et un fond et mesurer la matrice de Mueller complète d’une scène. Un polarimètre statique permet de simplifier le système. Cela implique une perte du nombre de degrés de libertés et donc une perte de contraste, mais permet toujours de mesurer une matrice de Mueller complète en 16 mesures. Il est possible d’aller encore plus loin dans la simplification du système avec d’autres technologies de polarimètres telles que les caméras polarimétriques à division de plan focal composées de grilles de micro-
polariseurs qui permettent de mesurer un vecteur de Stokes linéaire en une seule image contre 3 pour un polarimètre à division de temps. Ce sont ces caméras que nous allons étudier dans la suite de ce rapport.
Chapitre 3

Précision d’un polarimètre à division de plan focal

3.1 Étalonnage de la caméra 47
 3.1.1 Modélisation des pixels 47
 3.1.2 Principe de l’étalonnage 48
 3.1.3 Estimation du vecteur de Stokes linéaire 50
 3.1.4 Résultats expérimentaux de l’étalonnage 51
3.2 Modélisation de l’erreur d’estimation des paramètre polarimétriques en présence de bruits de mesure .. 53
 3.2.1 Estimation du vecteur de Stokes linéaire 53
 3.2.2 Estimation de l’angle de polarisation 57
 3.2.3 Estimation du degré de polarisation linéaire 60
3.3 Influence de différents défauts des micro-polariseurs sur les performances de la caméra 63
 3.3.1 Influence de défauts d’orientation et de diatténuation des micro-polariseurs sur l’estimation de l’AOP 63
 3.3.2 Influence de l’intensité d’illumination et du bruit de mesure sur l’estimation de l’AOP 64
3.4 Conclusion ... 65
Dans ce chapitre nous allons étudier les performances d’un polarimètre à division de plan focal pour la mesure des propriétés polarimétriques linéaires de la lumière en présence de bruits de mesure. Le polarimètre à division de plan focal que nous allons étudier, permet de mesurer les caractéristiques linéaires de la polarisation en une seule acquisition. Chaque pixel du capteur projette la polarisation selon une orientation propre au micro-polariseur placé devant le pixel (voir section 1.2.4).

Avant d’utiliser ce type de caméra, la première étape est de l’étalement. Cette démarche est plus compliquée qu’avec une caméra classique car la matrice de micro-polariseurs placée devant les pixels doit elle aussi être étalementée. Des méthodes d’étalement ont déjà été mises au point pour ce genre de caméra [47–49]. Cependant, cette caméra étant un outil de mesure polarimétrique, il est important de faire le lien entre les caractéristiques des micro-polariseurs obtenues avec l’étalement et la précision d’estimation des paramètres polarimétriques en présence de bruits de mesure. J’ai donc développé une méthode d’étalement originale permettant de faire ce lien de manière efficace.

Dans cette section je vais présenter cette méthode d’étalement puis je vais utiliser les données de l’étalement afin de modéliser la variance d’estimation des propriétés polarimétriques de la lumière incidente.

3.1 Étalement de la caméra

Cette partie décrit à la fois une méthode d’étalement pour les caméras à division de plan focal prenant en compte les aspects radiométriques et polarimétriques. Cette méthode repose sur de récents travaux proposant des méthodes d’étalement pour ce type de caméra [18,50–52]. Le principe de l’étalement est de mesurer les propriétés du capteur de la caméra et des micro-polariseurs afin de pouvoir corriger les défauts.

3.1.1 Modélisation des pixels

Considérons un pixel du capteur associé à un micro-polariseur défini par les 3 paramètres suivants : son orientation ϕ, ses transmissions pour un état parallèle t_{\parallel} et perpendiculaire t_{\perp}. La lumière incidente sur le capteur a un état de polarisation linéaire défini par un vecteur de Stokes linéaire I_0S, où $S^T = (1, S_1, S_2)$ est un vecteur de Stokes unitaire tel que $S_1^2 + S_2^2 = 1$, et I_0 est l’intensité lumineuse sur un pixel exprimé en nombre de photo-électrons. Le signal numérique produit sur chaque pixel est égal à :

$$d = g\eta I_0 v^T S + b$$ \hspace{1cm} (3.1)

où d est exprimé en nombre de niveaux numériques, b est un offset aussi exprimé en nombre de niveaux numériques, η est l’efficacité quantique du pixel, g est le gain du détecteur exprimé en nombre de niveaux numériques par photo-électron, $t = t_{\parallel} + t_{\perp}$ \hspace{1cm} (3.2)

est la transmission totale du micro-polariseur, et v est le vecteur d’analyse normalisé du micro-polariseur défini par

$$v^T = \frac{1}{2}[1, q \cos(2\phi), q \sin(2\phi)]$$ \hspace{1cm} (3.3)

où ϕ est l’angle du micro-polariseur et

$$q = \frac{t_{\parallel} - t_{\perp}}{t_{\parallel} + t_{\perp}}$$ \hspace{1cm} (3.4)

47
sa diatténuation variant entre 0 et 1. Un polariseur parfait a une diatténuation égale à 1. On peut aussi représenter la même information par le coefficient d’extinction

\[\zeta = \frac{t_\parallel}{t_\perp} = \frac{1 + q}{1 - q}. \] (3.5)

Ce coefficient variant entre 1 et \(+\infty \). Chacune de ces propriétés est propre à un micro-polariseur et peut varier selon la position du pixel sur le capteur. Les pixels du capteur peuvent être regroupés par groupes de 4 pixels appelés super-pixels (figure 3.1). Sur le capteur, on a \(N \) super-pixels comprenant chacun 4 pixels, on peut donc noter l’indice d’un pixel \(nm \) où \(n \in [1, N] \) donne l’indice du super-pixel et \(m \in [1, 4] \) donne l’indice du pixel dans le super-pixel et donc l’orientation du micro-polariseur devant le pixel. En supposant l’illumination uniforme sur tout le capteur et égale à \(I_0S \), le signal mesuré par un pixel de la caméra d’indice \(nm \) est de :

\[d_{nm} = gI_0\eta_{nm}t_{nm}v_{nm}^TS + b_{nm} \] (3.6)

où \(\eta_{nm}, t_{nm}, v_{nm}, \) et \(b_{nm} \) sont respectivement l’efficacité quantique, la transmission totale du polariseur, le vecteur d’analyse normalisé, et le niveau numérique d’offset du pixel \(nm \). Cet ensemble de caractéristiques décrit la manière dont le pixel transforme la lumière incidente en niveaux numériques en fonction de l’intensité et des propriétés polarimétriques linéaires de la lumière.

Figure 3.1 – Représentation schématique des micro-polariseurs sur le capteur de la caméra. Un super-pixel est composé de 4 pixels avec des micro-polariseurs orientés à 0°, 45°, 90° et 135°.

3.1.2 Principe de l’étalonnage

Pour estimer les propriétés polarimétriques de la lumière incidente représentées par le vecteur de Stokes linéaire \(S \) à partir des mesures \(d_{nm} \), il faut préalablement étalonner la caméra. Étalonner la caméra revient à mesurer l’ensemble des caractéristiques de chaque pixel. Pour cela, on illumine le capteur avec un éclairage spatialement uniforme à l’aide d’une sphère intégrante. La polarisation de la lumière incidente est contrôlée à l’aide d’un polariseur linéaire placé entre la sphère intégrante et la caméra (figure 3.2). En prenant un nombre \(K \) d’images obtenues en illuminant le capteur avec différents vecteurs de Stokes \(A_k, k \in [1, K] \) (l’intensité du vecteur \(A_k \) est normalisée), on peut définir la matrice \(A \) de taille \(K \times 3 \) de la manière suivante :

\[A = \begin{bmatrix} A_1 & A_2 & \ldots & A_K \end{bmatrix}^T \] (3.7)
Le niveau numérique de chaque pixel obtenu à partir de mesures est défini par un vecteur d_{nm} de dimension K tel que

$$d_{nm} = (gI_0\eta_{nm}t_{nm})Av_{nm} + b_{nm}1$$ \hspace{1cm} (3.8)

où 1 est un vecteur de dimension K composé de uns. À partir de l’intensité lumineuse mesurée traduite en niveaux numériques sur le pixel, on peut estimer les caractéristiques du micro-polariseur situé devant le pixel de la manière suivante :

$$gI_0\eta_{nm}t_{nm}v_{nm} = A^+(d_{nm} - b_{nm}1)$$ \hspace{1cm} (3.9)

où l’exposant $+$ représente le pseudo-inverse de la matrice. L’offset b_{nm} peut être estimé à partir de mesures effectuées dans l’obscurité. Le coefficient g est estimé en traçant la courbe du nombre de niveaux numériques en fonction de la variance temporelle de l’intensité moyenne pour plusieurs intensités d’illumination. Lorsque le niveau d’illumination est suffisant, la courbe devient une droite dont le coefficient directeur est égal à g.

![Figure 3.2 – Représentation schématique du dispositif expérimental permettant d’étalonner la caméra polarimétrique.](image)

Notre montage expérimental ne disposant pas d’une source étalonnée en intensité, l’efficacité quantique η_{nm} et le coefficient de transmission t_{nm} ne pourront donc être connus qu’à un facteur près. Pour représenter leur variation spatiale sur le capteur, on va les normaliser par rapport à leur valeur moyenne sur l’ensemble du capteur. En faisant la moyenne du signal sur l’ensemble du capteur à partir de l’équation (3.9) et en ne prenant en compte que l’information d’intensité, c’est-à-dire le premier élément du vecteur de Stokes, on obtient :

$$\frac{A_{d0}}{A_{d0}} = \frac{1}{4N} \sum_{n=1}^{N} \sum_{m=1}^{4} [A^+(d_{nm} - b_{nm}1)]_0 = \frac{1}{2} gI_0\overline{\eta t}$$ \hspace{1cm} (3.10)

où

$$\overline{\eta t} = \frac{1}{4N} \sum_{n=1}^{N} \sum_{m=1}^{4} \eta_{nm}t_{nm}$$ \hspace{1cm} (3.11)

le facteur $1/2$ vient du premier élément du vecteur d’analyse d’un polariseur $[v_{nm}]_0 = 1/2$.

On peut alors caractériser la réponse polarimétrique de chaque pixel du capteur par un vecteur d’analyse normalisé tel que :

$$w_{nm} = A^+(d_{nm} - b_{nm}1) = \frac{\eta_{nm}t_{nm}}{\overline{\eta t}}v_{nm}.$$ \hspace{1cm} (3.12)

Cette méthode d’étalonnage permet de connaître les valeurs relatives de l’efficacité quantique η_{nm} et du coefficient de transmission t_{nm} de chaque pixel mais pas leurs valeurs absolues. Maintenant que nous connaissions la réponse polarimétrique de la caméra, nous pouvons l’utiliser pour estimer les caractéristiques polarimétriques de la lumière incidente.

49
CHAPITRE 3. PRÉCISION D’UN POLARIMÈTRE À DIVISION DE PLAN FOCAL

3.1.3 Estimation du vecteur de Stokes linéaire

La caméra peut être utilisée pour estimer un vecteur de Stokes linéaire paramétré de la manière suivante :

\[S = S_0 [1, P \cos(2\alpha), P \sin(2\alpha)] \] \hspace{1cm} (3.13)

où \(S_0 \) est l’intensité lumineuse, \(P \) le degré de polarisation linéaire (DOLP) et \(\alpha \) l’angle de polarisation (AOP). On estime le vecteur de Stokes linéaire à partir des données de mesure de la caméra exprimées en niveaux numériques. En utilisant les notations de la section précédente, les données de mesure peuvent s’écrire sous la forme :

\[d_{nm} = g \eta_t W_{nm}^T S + b_{nm}. \] \hspace{1cm} (3.14)

Afin d’estimer le vecteur de Stokes linéaire, on a besoin des données de mesure d’un super-pixel complet. On va donc regrouper les 4 intensités mesurées d’un super-pixel \(n \) dans un vecteur \(d_n = [d_{n1}, d_{n2}, d_{n3}, d_{n4}]^T \) de dimension 4 ainsi que l’offset de ce signal \(b_n = [b_{n1}, b_{n2}, b_{n3}, b_{n4}]^T \). De plus, les 4 vecteurs d’analyse d’un super-pixel correspondants aux 4 micro-polariseurs peuvent être regroupé dans une matrice \(4 \times 3 \) telle que :

\[W_n = g [w_{n1}, w_{n2}, w_{n3}, w_{n4}]^T \] \hspace{1cm} (3.15)

où les lignes de cette matrice sont les vecteurs d’analyse de chaque pixel du super-pixel \(n \) multipliés par le coefficient \(g \). On peut alors réécrire l’équation (3.14) pour chaque super-pixel sous la forme :

\[d_n = \eta_t W_n S + b_n. \] \hspace{1cm} (3.16)

Le vecteur de Stokes peut être estimé en inversant la relation précédente

\[\eta_t S = W_n^+ (d_n - b_n) \] \hspace{1cm} (3.17)

où \(\eta_t S \) est le vecteur de Stokes exprimé en nombre de photoélectrons, il est proportionnel au vecteur de Stokes incident \(S \) sur la caméra exprimé en nombre de photons. Pour simplifier les notations dans la suite du chapitre, on va remplacer \(\eta_t S \) par \(S \). De plus, comme l’offset est toujours soustrait au vecteur de mesure, on note

\[\tilde{d}_n = d_n - b_n \] \hspace{1cm} (3.18)

le vecteur de mesure moins l’offset. Avec ces notations, les équations (3.16) et (3.17) deviennent :

\[\tilde{d}_n = W_n S \quad \text{et} \quad S = W_n^+ \tilde{d}_n. \] \hspace{1cm} (3.19)

À partir du vecteur de Stokes linéaire estimé il est possible d’estimer deux paramètres polarimétriques importants qui sont le degré de polarisation linéaire (DOLP)

\[P = \frac{\sqrt{S_1^2 + S_2^2}}{S_0} \] \hspace{1cm} (3.20)

et l’angle de polarisation (AOP)

\[\alpha = \frac{1}{2} \arctan \left[\frac{S_2}{S_1} \right]. \] \hspace{1cm} (3.21)

Ces paramètres peuvent être mesurés expérimentalement après avoir étalonné la caméra.
3.1.4 Résultats expérimentaux de l’étalonnage

Pour illustrer cette méthode d’étalonnage permettant d’estimer les paramètres polarimétriques linéaires, j’ai réalisé l’étalonnage d’une caméra polarimétrique conçue par 4D Technology [53]. L’étalonnage polarimétrique consiste à estimer la matrice W_n de chaque super-pixel et l’étalonnage radiométrique à estimer le coefficient g et l’offset moyen dans l’obscurité. Pour estimer le coefficient g, j’ai illuminé le capteur avec différentes intensités lumineuses et estimé la variance pour chacune de ces intensités. Le bruit de mesure dominant ayant une statistique de bruit de Poisson, on a:

$$\text{VAR}[N_i] = \langle N_i \rangle$$

(3.22)

où N_i est le nombre de photo-électrons créé au niveau du pixel i. J’ai représenté sur la figure 3.3 la courbe de la variance temporelle moyenne des pixels en fonction de l’intensité moyenne en niveaux numériques sur 100 acquisitions. La caméra ayant une réponse linéaire, le nombre de niveaux numériques X_i est proportionnel au nombre de photo-électrons généré, on obtient donc :

$$X_i = \frac{1}{g} N_i + b_i$$

(3.23)

où g est le nombre de photo-électrons par niveaux numériques et b_i le bruit additif. En reprenant l’équation (3.22) dans l’équation (3.23) on obtient :

$$\text{VAR}[X_i] = \frac{1}{g} \langle X_i \rangle + \text{VAR}[b_i]$$

(3.24)

où g est le coefficient directeur de la droite égal à 0.127, ce qui donne $1/g = 7.85$ photo-électrons par niveau numérique.

À partir des mesures effectuées lors de l’étalonnage, on peut représenter des cartes de ces paramètres sur l’étendue du capteur. Par exemple, j’ai représenté sur la figure 3.4 les cartes du taux d’extinction ζ des micro-polariseurs. Chacune des 4 cartes correspond à une des 4 orientations des micro-polariseurs. On remarque que le taux d’extinction est meilleur au centre du capteur que sur les bords. Cela peut être en partie causé par un effet de crosstalk entre les pixels. L’effet de crosstalk se produit lorsque la lumière passe par un micro-polariseur donné mais au lieu de toucher le pixel du capteur situé directement derrière le micro-polariseur, elle touche le pixel d’à côté (figure 3.5). L’effet
est plus important sur les bords du capteur car la lumière arrive sur le capteur avec un angle plus important. Une autre raison de cette inhomogénéité du taux d’extinction peut être le fait que lors de l’étalonnage, l’éclairement sur le capteur n’était pas parfaitement uniforme. Cette non-uniformité d’éclairement vient en partie la distance entre la sphère intégrante et la caméra nécessaire pour placer le polariseur dans le montage expérimental. La carte du taux d’extinction est similaire à d’autres cartes trouvées dans la littérature [50] où le taux d’extinction est plus grand au centre du capteur. Néanmoins, les valeurs moyennes du taux d’extinction dans le tableau 3.1 sont légèrement plus faibles que dans d’autres résultats trouvés dans la littérature [18], environ 20dB contre 26dB. Cette différence peut être due au fait qu’on suppose que le polariseur utilisé lors de l’étalonnage est parfait et qu’on ne prend donc pas en compte le taux d’extinction réel du polariseur utilisé comme étalon.

Sur la figure 3.6 est représentée l’orientation des micro-polariseurs estimée pendant l’étalonnage. On remarque que l’orientation des micro-polariseurs n’est pas uniforme sur tout le capteur. Cette inhomogénéité d’orientation peut être due en partie à une erreur d’alignement entre la grille de micro-polariseurs et le capteur. On peut aussi voir dans le tableau 3.1 que la valeur moyenne des orientations est décalée de d’environ 1.5° ce qui

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Taux d’extinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.45 ± 0.35</td>
<td>12.4 ± 1.78</td>
</tr>
<tr>
<td>46.5 ± 0.28</td>
<td>13.5 ± 1.93</td>
</tr>
<tr>
<td>91.2 ± 0.46</td>
<td>10.7 ± 1.47</td>
</tr>
<tr>
<td>136.5 ± 0.45</td>
<td>9.4 ± 1.31</td>
</tr>
</tbody>
</table>

Table 3.1 – Orientations et taux d’extinction moyens des micro-polariseurs.
Figure 3.5 – Vue en coupe du capteur de la caméra polarimétrique. Le rayon en rouge passe par le micro-polariseur à 45° mais atteint le pixel du capteur qui est en face d’un micro-polariseur à 90°, c’est le crosstalk. L’angle d’incidence du rayon en vert est moins important et ne produit donc pas de crosstalk.

peut être dû à un offset constant de l’angle du polariseur utilisé pour étalonner la caméra.

Les défauts du capteur dévoilés par l’étalonnage de la caméra ont une influence sur l’estimation des paramètres polarimétriques de la lumière incidente avec cette caméra.

3.2 Modélisation de l’erreur d’estimation des paramètre polarimétriques en présence de bruits de mesure

3.2.1 Estimation du vecteur de Stokes linéaire

La caméra polarimétrique à division de plan focal permet de projeter les états de polarisation incidents selon 4 états linéaires différents en une seule acquisition. Il en ressort un vecteur de mesure \mathbf{d} à partir duquel on peut estimer le vecteur de Stokes \mathbf{S} si la caméra a été étalonnée et qu’on connaît la matrice d’analyse W des super-pixels. On a alors la relation suivante :

$$\mathbf{d} = W \mathbf{S}.$$ \hspace{1cm} (3.25)

En utilisant la pseudo-inverse de la matrice W, on peut estimer le vecteur de Stokes tel que :

$$\hat{\mathbf{S}} = W^+ \hat{\mathbf{d}}.$$ \hspace{1cm} (3.26)

Comme la mesure est perturbée par du bruit, le vecteur $\hat{\mathbf{d}}$ est un vecteur aléatoire et l’estimateur $\hat{\mathbf{S}}$ du vecteur de Stokes aussi. Les images peuvent être perturbées par deux
sources principales de bruit : le bruit additif gaussien et le bruit de Poisson, ce dernier étant la source de bruit dominante lorsque l’intensité lumineuse est suffisante. En présence de ces deux sources de bruit indépendantes l’une de l’autre, \mathbf{d} est un vecteur aléatoire tel que [44] :

$$\text{VAR}(\mathbf{d}) = gW + g^2\sigma_a^2$$ \hspace{1cm} (3.27)

où $\text{VAR}[]$ est la variance d’un vecteur aléatoire, σ_a est l’écart type du bruit additif gaussien exprimé en nombre de photo-électrons, et g est le nombre de niveaux numériques par photo-électron. Les bruits additif gaussien et de Poisson sont statistiquement indépendants d’une mesure à l’autre, la matrice de covariance Γ^d des mesures d’intensité \mathbf{d} est donc diagonale.

En présence de bruit de Poisson, la pseudo-inverse n’est pas l’estimateur équivalent à l’estimateur de maximum de vraisemblance [55]. Cependant, l’estimateur pseudo-inverse sera utilisé dans la suite de ce chapitre car il a une forme analytique simple donnant de bons résultats en pratique.

Il a été montré que si les seules perturbations affectant les mesures sont des bruits additif gaussien ou de Poisson, l’estimateur défini dans l’équation (3.26) n’est pas biaisé [44]. La précision de l’estimateur, définie dans l’équation (3.26), peut donc être représentée par sa matrice de covariance $\Gamma^{\mathbf{S}}$. La variance des trois composantes du vecteur de Stokes linéaire est donnée par les trois éléments diagonaux de la matrice de covariance. On peut caractériser les performances d’estimation par la somme de ces variances c’est-à-dire en faisant la trace de la matrice de covariance aussi appelée equally weighted variance (EWV) :

$$\text{EWV} = \text{trace} \left[\Gamma^{\mathbf{S}} \right]$$ \hspace{1cm} (3.28)

Le bruit additif gaussien et le bruit de Poisson étant statistiquement indépendants, on peut donc décomposer la matrice de covariance du vecteur de Stokes de la manière suivante :

$$\Gamma^{\mathbf{S}} = \Gamma^{\text{add}} + \Gamma^{\text{poi}}$$ \hspace{1cm} (3.29)

Figure 3.6 – Cartes de l’orientation des micro-polariseurs. a) 0°, b) 45°, c) 90°, d) 135°.
où Γ^{add} est la matrice de covariance en présence de bruit additif, et Γ^{poi} est la matrice de covariance en présence de bruit de Poisson. Ces deux matrices ont les expressions suivantes [44,56] :

\[
\Gamma^{\text{add}}_{ij} = \sigma^2_a \delta_{ij} \quad \text{et} \quad \Gamma^{\text{poi}}_{ij} = \sum_{k=0}^{2} S_k \gamma^k_{ij} \tag{3.30}
\]

où

\[
\delta_{ij} = g^2 \left[(W^T W)^{-1} \right]_{ij} \quad \text{et} \quad \gamma^k_{ij} = g \sum_{l=1}^{4} W^+_{il} W^+_j W_{lk} \quad \forall (k, i, j) \in [0,2]^3.
\tag{3.31}
\]

On peut simplifier ces équations en prenant en compte que $W_{10} = \frac{1}{2}, \forall n \in \{1, N\}$, ce qui fait que $\forall (i, j) \in [0,3]^2$,

\[
\gamma^0_{ij} = \frac{1}{2} \sum_{n=1}^{N} W^+_{in} W^+_{jn} = \frac{1}{2} [(W^+)^T W^+]_{ij} = \frac{1}{2} [(W^T W)^{-1}]_{ij} = \frac{1}{2} \delta_{ij},
\tag{3.32}
\]

On peut alors réécrire l’expression de la matrice de covariance du vecteur de Stokes en présence de bruit de Poisson définie dans l’équation (3.30) de la manière suivante :

\[
\Gamma^{\text{poi}}_{ij} = \left[\sigma^2_a + \frac{S_0}{2} \right] \delta_{ij} + \sum_{k=1}^{2} \gamma^k_{ij} S_k. \tag{3.33}
\]

Un super-pixel est idéal lorsque les 4 micro-polariseurs ont des transmissions égales à 1, des diatténuations égales à 1, et sont orientés exactement à 0, 45, 90 et 135 degrés. Dans ce cas, les expressions des matrices de covariance en présence de bruit additif et de bruit de Poisson sont [54] :

\[
\Gamma^{\text{add}} = \sigma^2_a \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{et} \quad \Gamma^{\text{poi}} = \frac{1}{2} \begin{bmatrix} S_0 & S_1 & S_2 \\ S_1 & 2S_0 & 0 \\ S_2 & 0 & 2S_0 \end{bmatrix}.
\tag{3.34}
\]

Dans ce cas, on peut facilement calculer l’EWV idéal en faisant la somme de la trace de ces deux matrices, soit :

\[
\text{EWV}_{\text{ideal}} = 5 \left(\sigma^2_a + \frac{S_0}{2} \right). \tag{3.35}
\]

On remarque que dans le cas idéal, l’EWV ne dépend que du paramètre d’intensité S_0 du vecteur de Stokes. Mais ce n’est plus le cas lorsque les 4 vecteurs d’analyse du super-pixel ne sont plus idéaux. En effet, dans le cas général, en calculant l’EWV à partir de l’équation (3.30) on obtient :

\[
\text{EWV} = \left[\sigma^2_a + \frac{S_0}{2} \right] \sum_{i=0}^{2} \delta_{ii} + \sum_{k=1}^{2} S_k \beta_k \tag{3.36}
\]

avec

\[
\beta_k = \sum_{i=0}^{2} \gamma^k_{ii}. \tag{3.37}
\]

55
En utilisant la paramétrisation de S définie dans l’équation (3.13) cette expression peut aussi être écrite sous la forme :

$$
EWV = \left[\sigma_a^2 + \frac{S_0}{2} \right] \sum_{i=0}^{2} \delta_{ii} + C \cos[2(\alpha - \theta)]
$$

(3.38)

avec

$$
\theta = \frac{1}{2} \arctan \left[\frac{\beta_2}{\beta_1} \right]
\quad \text{et} \quad
C = S_0 P \sqrt{\beta_1^2 + \beta_2^2}.
$$

(3.39)

En reprenant l’expression de l’EWV idéal dans l’équation (3.35) on peut écrire l’EWV sous la forme :

$$
EWV = \frac{EWV_{ideal}}{5} \sum_{i=0}^{2} \delta_{ii} + C \cos[2(\alpha - \theta)].
$$

(3.40)

On peut voir dans l’équation (3.40) que l’expression de l’EWV est composée de la somme de deux termes. Le premier est constant car il ne dépend que de l’EWV idéal et de la matrice W. Le second terme varie de manière sinusoïdale en fonction de l’AOP α et de la phase θ de la sinusoïde. Il dépend aussi de la matrice W et du degré de polarisation du vecteur de Stokes incident à travers C. L’EWV varie périodiquement en fonction de l’AOP du vecteur de Stokes incident, on peut donc définir l’EWV moyen de la manière suivante :

$$
EWV = \frac{1}{\pi} \int_{0}^{\pi} EWV(\alpha) \, d\alpha
$$

$$
= \left(\sigma_a^2 + \frac{S_0}{2} \right) \sum_{i=0}^{2} \delta_{ii}
$$

$$
= \frac{EWV_{ideal}}{5} \sum_{i=0}^{2} \delta_{ii}.
$$

(3.41)

La précision d’estimation du vecteur de Stokes est représentée par l’EWV qui dépend des caractéristiques de la caméra par la matrice W et du vecteur de Stokes incident S. Lors de l’étalonnage de la caméra, j’ai mesuré les caractéristiques de chaque micro-polariseur. À titre d’exemple, je vais appliquer ces équations sur un des super-pixels ayant les caractéristiques suivantes :

$$
W = \begin{bmatrix}
0.0645 & 0.0574 & 0.0025 \\
0.0662 & -0.0030 & 0.0595 \\
0.0667 & -0.0581 & -0.0020 \\
0.0599 & 0.0025 & -0.0511
\end{bmatrix}
$$

(3.42)

Le niveau de bruit additif de la caméra $\sigma_a = 16$ électrons est donné dans la documentation de la caméra et le coefficient $g = 1/7.85$ a été calculé à partir de l’étalonnage. La figure 3.7 représente le rapport $EWV(\alpha)/EWV_{ideal}$, en fonction de α (ligne bleue en pointillé), c’est le rapport entre l’EWV obtenu avec un super-pixel réel et l’EWV obtenu avec un super-pixel idéal. La valeur moyenne de $EWV(\alpha)/EWV_{ideal}$ est représentée par ligne rouge continue. On peut en conclure que les défauts de fabrication des micro-polariseurs de ce super-pixel augmentent l’EWV d’un facteur 1.2. La variation de l’EWV en fonction de l’AOP n’est que de ±4% autour de la moyenne.

Pour valider expérimentalement ces résultats, on estime l’EWV lorsque le super-pixel est illuminé par un vecteur de Stokes ayant un DOLP $P = 1$ et un AOP variable sur une
Figure 3.7 – EWV divisé par l’EWV idéal. Les données expérimentales (lignes continues) et théoriques (lignes en pointillé) sont représentées en bleu et leur valeur moyenne en rouge.

étendue de 180°. Le dispositif expérimental permettant de faire ces mesures est le même que pour l’étalonnage. Pour chaque orientation du polariseur, l’EWV est estimé à partir de 10⁴ mesures. Le nombre de mesures a été défini de manière empirique et permet d’estimer l’EWV avec une précision suffisante pour observer les variations périodiques en fonction de l’AOP.

Capturer 10⁴ images pour 10 AOP différents avec cette caméra ayant un capteur de 1512 × 1200 pixels chacun codé sur un entier de 16 bits produirait 10⁴ × 10 × 1512 × 1200 × 16 ≈ 2.9Tb (≈ 360Go) de données. Une telle quantité de données est compliquée à traiter et n’est pas nécessaire pour notre application car nous n’avons pas besoin d’estimer l’EWV sur tous les super-pixels du capteur. Afin de réduire la quantité de données et d’accélérer les mesures et les traitements, j’ai programmé la caméra pour prendre les 10⁴ images sur une région de seulement 32 × 32 pixels au centre du capteur.

L’EWV estimé expérimentalement est représenté sur la figure 3.7 en fonction de l’AOP (ligne bleu continue) ainsi que la moyenne de ces valeurs (ligne rouge en continue). Les points expérimentaux suivent la variation sinusoïdale prédite par la théorie. En représentant les mesures de l’étalonnage qui ont été effectuées sur tous les pixels du capteur, j’ai représenté sur la figure 3.8 le rapport EWV/EWV_ideal pour tous les super-pixels moyenné sur toutes les valeurs de α. On retrouve un EWV moyen d’environ 1.2 vers le centre du capteur comme le super-pixel utilisé dans la figure 3.7 mais sur les bords du capteur l’EWV moyen peut monter jusqu’à 1.8. On remarque une corrélation entre les variations d’EWV et les variations d’intensité représentées sur la figure 3.9. La différence d’intensité visible entre les parties gauche et droite du capteur est due au fait que la caméra utilise deux convertisseurs analogiques numériques. Cette différence n’est visible ni sur les cartes de taux d’extinction (figure 3.4) ni sur l’orientation des micro-polariseurs (figure 3.6) car ces valeurs ne dépendent pas du gain du capteur.

3.2.2 Estimation de l’angle de polarisation

Comme pour l’EWV dans la partie précédente, nous allons étudier dans cette partie la précision d’estimation de l’Angle de polarisation (AOP). L’AOP est estimé à partir du vecteur de Stokes linéaire, son expression est donnée dans l’équation (3.21). C’est une fonction non linéaire du vecteur de Stokes, il est donc difficile d’obtenir une expression
Figure 3.8 – Carte du rapport $\text{EWV}/\text{EWV}_{\text{ideal}}$.

Figure 3.9 – Intensité moyenne mesurée par le capteur.
analytique de sa variance. Cependant, dans le cas où les variations de la fonction sont faibles, il est possible de déterminer une valeur approximative de la variance. Soit un vecteur \(\mathbf{X} \) aléatoire, de moyenne \(\langle \mathbf{X} \rangle \) et de covariance \(\Gamma^{\mathbf{X}} \), et \(y = f(\mathbf{X}) \) une variable aléatoire fonction de ce vecteur. Si les variations de \(\mathbf{X} \) autour de \(\langle \mathbf{X} \rangle \) sont suffisamment faibles et que la fonction \(f \) est suffisamment lisse alors [57] :

\[
\langle y \rangle \simeq f(\langle \mathbf{X} \rangle) \quad \text{et} \quad \text{VAR}[y] \simeq \left[\nabla f(\langle \mathbf{X} \rangle) \right]^T \Gamma^{\mathbf{X}} \nabla f(\langle \mathbf{X} \rangle)
\]

(3.43)
où \(\nabla f(\mathbf{x}) = [\partial f/\partial X_1(\mathbf{x}), \ldots, \partial f/\partial X_K(\mathbf{x})]^T \) est le gradient de la fonction \(f \). L’expression du gradient de l’équation (3.21) est [54] :

\[
\nabla \alpha = \frac{1}{2 P^2 S_0^2} [0, -S_2, S_1]^T.
\]

(3.44)
On peut trouver l’expression de la variance de \(\hat{\alpha} \) à partir de l’équation (3.43) avec l’expression du gradient \(\nabla \alpha \) définie dans l’équation (3.44) et de la matrice de covariance de \(\hat{\mathbf{S}} \) en présence de bruit additif et de Poisson dans l’équation (3.30). L’équation (3.43) devient alors :

\[
\text{VAR}[\hat{\alpha}] = \nabla \alpha^T (\Gamma^{\text{add}} + \Gamma^{\text{poi}}) \nabla \alpha.
\]

(3.45)
Dans le cas où le super-pixel est idéal, on peut utiliser les valeurs des matrices de covariance du vecteur de Stokes définies dans l’équation (3.34) ce qui donne :

\[
\text{VAR}[\hat{\alpha}]_{\text{ideal}} = \frac{1}{2 P^2 S_0^2} \left(\sigma_a^2 + \frac{S_0}{2} \right).
\]

(3.46)
On remarque que dans le cas idéal, cette variance est indépendante de l’AOP, elle ne dépend que de \(\sigma_a \), \(S_0 \) et \(P^2 \). Cependant, ce n’est plus le cas dans la configuration non idéale car les matrices de covariance du vecteur de Stokes définies dans l’équation (3.30) dépendent de la matrice d’analyse \(\mathbf{W} \). L’expression de la variance de \(\hat{\alpha} \) dans le cas général est alors :

\[
\text{VAR}[\hat{\alpha}] = \frac{\text{VAR}[\hat{\alpha}]_{\text{ideal}}}{2} \left\{ \delta_{11}s^2 + \delta_{22}c^2 - 2\delta_{12}cs \right\} + \\
\frac{1}{4P S_0} \left\{ c^2 \left[(\gamma_{22}^1 - 2\gamma_{12}^1)s + \gamma_{11}^1c \right] + s^2 \left[(\gamma_{11}^1 - 2\gamma_{12}^1)c + \gamma_{11}^2s \right] \right\}
\]

(3.47)
où les notations suivantes ont été utilisées :

\[
c = \cos(2\alpha) \quad \text{et} \quad s = \sin(2\alpha).
\]

(3.48)
On peut voir dans l’équation (3.47) que \(\text{VAR}[\hat{\alpha}] \) est la somme de deux termes. Le premier est proportionnel à la valeur de la variance. Le second terme, est inversement proportionnel à \(S_0 \) qui est le rapport signal sur bruit de l’intensité lumineuse en présence de bruit de Poisson. Dans les cas où l’illumination est faible, c’est-à-dire pour les faibles valeurs de \(S_0 \), la variance de l’AOP varie en \(1/S_0^2 \), alors que lorsque l’illumination est forte, elle varie en \(1/S_0 \). On peut aussi voir que \(\text{VAR}[\hat{\alpha}] \) est une somme pondérée de fonctions trigonométriques de \(\alpha \) : la variance d’estimation de \(\alpha \) dépend donc elle-même de \(\alpha \). L’amplitude de cette variation par rapport à \(\alpha \) dépend du degré de polarisation \(P \) du vecteur de Stokes incident, de \(S_0 \), \(\sigma_a \) et de la matrice de mesure \(\mathbf{W} \) par les coefficients \(\delta_{ij} \) et \(\gamma_{ij}^k \). On peut définir une moyenne de la variance de \(\hat{\alpha} \) sur toutes les valeurs possibles de \(\alpha \) de la manière suivante :

\[
\overline{\text{VAR}[\hat{\alpha}]} = \frac{1}{\pi} \int_0^\pi \text{VAR}[\hat{\alpha}](\alpha) \, d\alpha = \frac{\text{VAR}[\hat{\alpha}]_{\text{ideal}}}{4} (\delta_{11} + \delta_{22}).
\]

(3.49)
3.2.3 Estimation du degré de polarisation linéaire

Dans cette partie, on va faire le même raisonnement que dans les deux parties précédentes, mais pour l’estimation du degré de polarisation linéaire (DOLP). Comme pour l’angle de polarisation, on peut exprimer la variance du degré de polarisation linéaire à partir de son gradient. En dérivant l’équation (3.20) on obtient l’expression du gradient du degré de polarisation linéaire [54] :

$$\nabla \hat{P} = \frac{1}{PS_0} \begin{bmatrix} -P^2S_0, & S_1, & S_2 \end{bmatrix}^T. \quad (3.50)$$

On peut alors exprimer la variance de P à partir de l’équation (3.43) avec l’expression du gradient $\nabla \hat{P}$ définie dans l’équation (3.50) et de la matrice de covariance de \hat{S} définie dans l’équation (3.30). L’équation (3.43) devient :

$$\text{VAR}[\hat{P}] = \nabla \hat{P}^T (\Gamma^{add} + \Gamma^{poi}) \nabla \hat{P}. \quad (3.51)$$

Figure 3.10 – Variance de l’AOP divisée par la variance idéale de l’AOP. Les données expérimentales (lignes continues) et théoriques (lignes en pointillé) sont représentées en bleu et leur valeur moyenne en rouge.

Pour illustrer ces équations, considérons le même super-pixel que dans la partie précédente. J’ai représenté sur la figure 3.10, le rapport \(\frac{\text{VAR}[\hat{\alpha}]}{\text{VAR}[\hat{\alpha}]_{\text{ideal}}} \), qui est le rapport entre la variance de l’AOP avec la caméra réelle et avec une caméra parfaite (ligne bleue en pointillé), en fonction de α pour $P = 1$. J’ai aussi représenté le niveau moyen \(\frac{\text{VAR}[\hat{\alpha}]}{\text{VAR}[\hat{\alpha}]_{\text{ideal}}} \) (ligne rouge en pointillé). On peut en conclure que les imperfections de ce super-pixel multiplient la variance d’estimation de l’AOP en moyenne d’un facteur 1.3. La variation de ce rapport autour de la moyenne en fonction de l’AOP est de l’ordre de ±10%.

Pour valider expérimentalement ces résultats, j’ai estimé la variance d’estimation de l’AOP lorsque le super-pixel est illuminé par un vecteur de Stokes ayant un DOLP $P = 1$ et un AOP variable à partir de 10^4 mesures du vecteur de Stokes pour chaque valeur d’AOP. J’ai représenté sur la figure 3.7(b) le rapport entre la variance expérimentale de l’AOP et la variance idéale (ligne bleue continue) ainsi que la moyenne sur toutes les valeurs de α (ligne rouge continue). Les points expérimentaux suivent la variation de la courbe théorique. Dans le but d’avoir une représentation globale de la précision d’estimation de l’AOP sur l’ensemble du capteur, j’ai représenté sur la figure 3.11 le rapport \(\frac{\text{VAR}[\alpha]}{\text{VAR}[\alpha]_{\text{ideal}}} \). On observe que ce rapport varie de 1.3 à 2, et que sa distribution spatiale est corrélée à la carte de sensibilité du capteur (figure 3.9).
Dans le cas où le super-pixel est idéal, on peut utiliser les valeurs des matrices de covariance du vecteur de Stokes définies dans l’équation (3.34), on obtient :

\[
\text{VAR}[\hat{\alpha}]_{\text{ideal}} = \frac{\sigma_a^2}{S_0^2} \left[2 + P^2 \right] + \frac{1}{2S_0} \left[2 - P^2 \right] \tag{3.52}
\]

La variance est indépendante de la valeur de l’AOP et ne dépend que de \(\sigma_a\), \(S_0\) et \(P^2\). Cependant, ce n’est plus le cas dans la configuration non idéale car les matrices de covariance du vecteur de Stokes définies dans l’équation (3.30) dépendent de la matrice d’analyse \(W\).

L’expression de la variance de \(\hat{P}\) dans le cas général est alors :

\[
\text{VAR}[\hat{P}] = \frac{1}{S_0^2} \left(\sigma_a^2 + \frac{S_0}{2} \right) \left\{ P^2 \delta_{00} - 2P(\delta_{01}c + \delta_{02}s) + 2\delta_{12}cs + \delta_{11}c^2 + \delta_{22}s^2 \right\} + \\
\frac{P}{S_0} \left\{ P^2 (\gamma_{00}c + \gamma_{00}s) + P [-2\gamma_{01}c^2 - 2\gamma_{02}s^2 - 2(\gamma_{01} + \gamma_{02})cs] + \\
(\gamma_{11}^2 + 2\gamma_{12}^2)c^2s + (\gamma_{22}^2 + 2\gamma_{12}^2)cs^2 + \gamma_{11}c^3 + \gamma_{22}s^3 \right\} \tag{3.53}
\]

avec

\[
c = \cos(2\alpha) \quad \text{et} \quad s = \sin(2\alpha). \tag{3.54}
\]

On remarque que de la même manière que \(\text{VAR}[\hat{\alpha}]\), \(\text{VAR}[\hat{P}]\) est la somme d’un terme inversement proportionnel à \((S_0/\sigma_a)^2\) correspondant à la contribution du bruit additif, et d’un second terme inversement proportionnel à \(S_0\) correspondant à la contribution du bruit de Poisson. Les deux termes sont des sommes pondérées de fonctions trigonométriques de \(\alpha\), la variance d’estimation de \(\hat{P}\) dépend donc de \(\alpha\). L’amplitude de cette variation par rapport à \(\alpha\) dépend du degré de polarisation \(P\) du vecteur de Stokes incident, de \(S_0\), \(\sigma_a\) et de la matrice de mesure \(W\) par les coefficients \(\delta_{ij}\) et \(\gamma_{ik}^j\). On peut définir une moyenne de la variance de \(\hat{P}\) par rapport à l’azimut de la manière suivante :

\[
\overline{\text{VAR}[\hat{P}]} = \frac{1}{\pi} \int_0^\pi \text{VAR}[\hat{P}](\alpha) \, d\alpha = \left(\frac{\sigma_a^2}{S_0^2} + \frac{1}{2S_0} \right) \left[P^2 \delta_{00} + \frac{\delta_{11} + \delta_{22}}{2} \right] - \frac{P^2}{S_0} \left[\gamma_{01} + \gamma_{02}^2 \right]. \tag{3.55}
\]

Pour illustrer ces équations, considérons le même super-pixel que dans les deux parties précédentes. J’ai représenté sur la figure 3.12, le rapport \(\text{VAR}[\hat{P}] / \text{VAR}[\hat{P}]_{\text{ideal}}\), qui est le
Figure 3.12 – Variance du DOLP divisée par la variance idéale du DOLP. Les données expérimentales (lignes continues) et théoriques (lignes en pointillé) sont représentées en bleu et leur valeur moyenne en rouge.

rapport entre la variance du DOLP avec la caméra réelle et avec une caméra parfaite (ligne bleue en pointillé). J’ai aussi représenté le niveau moyen $\frac{\text{VAR}[P]}{\text{VAR}[P]_{\text{ideal}}}$ (ligne rouge en pointillé). On peut en conclure que les imperfections de ce super-pixel multiplient la variance d’estimation du DOLP en moyenne d’un facteur 1.6. La variation de ce rapport autour de la moyenne en fonction de l’AOP est de l’ordre de ±25%, ce qui est significativement plus important que les variations de la variance d’estimation de l’AOP étudiées dans la partie précédente.

Afin de valider expérimentalement ces résultats, j’ai estimé la variance d’estimation du DOLP lorsque le super-pixel est illuminé par un vecteur de Stokes avec un DOLP $P = 1$ et un AOP variable à partir de 10^4 mesures du vecteur de Stokes pour chaque valeur de l’AOP. J’ai représenté sur la figure 3.12 le rapport entre la variance expérimentale du DOLP et la variance idéale (ligne bleu continue) ainsi que la moyenne sur toutes les valeurs de α (ligne rouge continue). Les points expérimentaux suivent la variation de la courbe théorique. Dans le but d’avoir une représentation globale de la précision d’estimation du DOLP sur l’ensemble du capteur, j’ai représenté sur la figure 3.13 le rapport $\frac{\text{VAR}[P]}{\text{VAR}[P]_{\text{ideal}}}$. On observe que ce rapport varie de 1.6 à 3 et que sa distribution spatiale est corrélée à la carte de sensibilité du capteur (figure 3.9).

Ces résultats et ceux des deux parties précédentes, montrent qu’il est possible de connaître les performances d’estimation de chaque super-pixel d’une caméra à division de plan focal en présence de bruit additif et de bruit de Poisson en utilisant les résultats de l’étalonnage. L’application de ces résultats à une caméra réelle montre que les défauts de fabrication de la matrice de micro-polariseurs augmentent la variance d’estimation des paramètres polarimétriques de la lumière incidente. Cette variance dépend de l’angle de polarisation de la lumière incidente mais ces variations sont relativement faibles comparées à la valeur moyenne de la variance.

3.3 Influence de différents défauts des micro-polariseurs sur les performances de la caméra

Les principaux résultats de ce chapitre sont contenus dans les équations (3.47) et (3.53) qui permettent d’évaluer les performances d’estimation de l’AOP et du DOLP avec une
caméra polarimétrique à division de plan focal. On a vu que les défauts de fabrication de la matrice de micro-polariseur influent directement sur les performances d’estimation de l’AOP et du DOLP en présence de bruits de mesure. En pratique ces résultats permettent de prédire les performances de ces caméras en présence de différents défauts de fabrication et différentes conditions d’illumination.

3.3.1 Influence de défauts d’orientation et de diatténuation des micro-polariseurs sur l’estimation de l’AOP

Dans cette partie nous allons grâce, aux équations (3.47) et (3.53), analyser l’influence de différents défauts sur les performances de la caméra. Nous allons en donner deux exemples.

On génère $K = 10^4$ super-pixels différents, chaque pixel ayant un indice $k \in [1, K]$. Pour chacune de ces configurations, on peut estimer la variance de l’AOP $\text{VAR}[\hat{\alpha}]_k$ avec l’équation (3.47), qui dépend aussi de la valeur de α. L’orientation des K super-pixels étant aléatoires, on considère la variance obtenue dans le pire cas possible, c’est-à-dire la pire adéquation entre la configuration du super-pixel et la valeur de l’AOP incident :

$$\text{VAR}[\hat{\alpha}]_{max} = \max_k \max_{\alpha} \text{VAR}[\hat{\alpha}]_k.$$ \hspace{1cm} (3.56)

Sur la figure 3.14, j’ai représenté $\text{VAR}[\hat{\alpha}]_{max}/\text{VAR}[\hat{\alpha}]_{ideal}$ en fonction $\Delta \varphi$, pour des valeurs de diatténuation d égales à 1, 0.9, et 0.8. Comme on pouvait s’y attendre, on peut voir que $\text{VAR}[\hat{\alpha}]_{max}$ augmente lorsque $\Delta \varphi$ augmente et que d diminue. Le principal intérêt de ce graphique est de comparer l’influence des fluctuations de l’angle des micro-polariseurs et de la valeur de diatténuation sur la précision d’estimation de l’AOP. Par exemple, on peut voir qu’avec une diatténuation $d = 0.8$ et aucune fluctuation d’angle ($\Delta \varphi = 0$) on obtient les mêmes performances qu’avec une diatténuation $d = 0.9$ et des fluctuations d’angle d’une amplitude $\Delta \varphi$ d’environ 7°. Dans un cas réel, une fluctuation de l’orientation des micro-polariseurs aussi importante que 7° est peu probable. Mais plus la diatténuation est faible,
plus les fluctuations d’orientation des micro-polariseurs ont une influence importante sur la variance de α, en effet, lorsque d = 0.8, les fluctuations d’orientation ont presque deux fois plus d’influence sur la variance de α que lorsque d = 1. Lors de la fabrication de la matrice de micro-polariseurs, de telles informations peuvent être utiles afin de définir le tolérancement des caractéristiques des micro-polariseurs.

3.3.2 Influence de l’intensité d’illumination et du bruit de mesure sur l’estimation de l’AOP

Une autre utilisation possible des équations (3.47) et (3.53) est d’étudier l’influence de l’intensité d’illumination et du bruit de mesure sur la précision d’estimation. J’ai représenté sur la figure 3.15 la variation de l’estimation de la variance de l’AOP moyennée sur les azimuts, $\text{VAR}[\hat{\alpha}]$, en fonction de l’intensité d’illumination S_0 pour un super-pixel ayant les mêmes caractéristiques que dans la partie précédente, et pour différentes valeurs de bruit additif d’écart type σ_a. Lorsque l’intensité d’illumination est faible, l’estimation de la variance diminue de manière quadratique en fonction de l’intensité lumineuse car le bruit additif est dominant, il s’agit de la partie de la courbe ayant une pente de -2 sur l’échelle log-log. Lorsque l’intensité lumineuse est plus élevée, la variance de l’AOP varie linéairement, il s’agit de la partie de la courbe ayant une pente de -1. Le basculement entre les deux régimes apparaît lorsque les deux SNRs dans l’équation (3.47) sont égaux :

$$\frac{\text{VAR}[\hat{\alpha}]_{\text{ideal}}}{2} = \frac{1}{4P^2S_0}. \quad (3.57)$$

En traçant la courbe pour plusieurs valeurs de σ_a, on voit bien que la position du basculement dépend de la valeur de σ_a.

3.4 Conclusion

Dans ce chapitre, nous avons étudié l’influence des défauts d’une caméra polarimétrique à division de plan focal sur les performances d’estimation des paramètres polarimétriques de la lumière incidente. Afin de connaître les défauts du capteur, nous avons mis en œuvre une méthode d’étalonnage de la caméra permettant de mesurer les caractéristiques polarimétriques de la matrice de micro-polariseurs. Cette méthode d’étalonnage permet d’obtenir la valeur absolue des caractéristiques des micro-polariseurs seulement si le polariseur
utilisé et la source lumineuse ont été préalablement étalonnés. L’étalonnage permet de correctement mesurer les caractéristiques polarimétriques de la lumière incidente, mais en présence de bruit de mesure, les défauts du capteur ont une influence sur les performances de la caméra.

Nous avons évalué les performances de la caméra polarimétrique en estimant la variance du vecteur de Stokes, de l’AOP et du DOLP. Ces variances dépendent des caractéristiques de chaque micro-polariseur, qui sont obtenues lors de l’étalonnage. Nous avons défini des expressions analytiques de ces variances en fonction de ces caractéristiques. Ces expressions ont été validées expérimentalement à l’aide de mesures effectuées avec une caméra polarimétrique à division de plan focal préalablement étalonnée. Avec la caméra à notre disposition, pour la variance de l’AOP et du DOLP, on trouve un rapport d’environ 1.5 par rapport à une caméra sans défauts. Le DOLP semble être le paramètre le plus affecté par les défauts de la caméra, avec un rapport moyen supérieur à 1.5 et des variations de ±25% en fonction de l’orientation de la polarisation incidente. De plus, la variance des paramètres polarimétriques estimés est aussi fonction de l’angle de polarisation et du degré de polarisation de la lumière incidente.

L’influence des défauts de la matrice de micro-polariseurs a été évaluée pour une caméra spécifique, combinant plusieurs types de défauts. Les résultats de ce chapitre peuvent être utilisés afin d’évaluer l’influence de certaines imperfections en particulier sur l’estimation des paramètres polarimétriques. Les exemples de la dernière partie montrent comment utiliser les équations permettant de comparer l’influence des différents défauts pouvant affecter une matrice de micro-polariseurs. Cette approche pourrait permettre de guider la fabrication des micro-grilles de polariseurs en optimisant les contraintes de fabrication de manière à minimiser la variance des paramètres polarimétriques.
CHAPITRE 3. PRÉCISION D’UN POLARIMÈTRE À DIVISION DE PLAN FOCAL
Chapitre 4

Mesure du vecteur de Stokes complet avec un polarimètre à division de plan focal

4.1 Précision d’estimation du vecteur de Stokes complet en présence de bruits de mesure
4.1.1 Estimation du vecteur de Stokes complet
4.1.2 Choix d’un critère d’optimisation

4.2 Optimisation de la mesure du vecteur de Stokes complet en deux acquisitions
4.2.1 Détermination des configurations optimales
4.2.2 Validation expérimentale

4.3 Utilisation de la redondance des mesures pour augmenter la résolution spatiale
4.3.1 Détermination des configurations optimales
4.3.2 Augmentation de la résolution spatiale sur des images simulées

4.4 Utiliser la résolution complète de la caméra DoFP
4.4.1 Avec un PSA
4.4.2 Avec une lame retard

4.5 Conclusion
Dans ce chapitre, nous allons étudier les configurations optimales permettant de mesurer un vecteur de Stokes complet avec un polarimètre à division de plan focal (DoFP). La majorité des polarimètres DoFP sont composés d’une grille de micro-polarisateurs linéaires permettant de mesurer les caractéristiques linéaires du vecteur de Stokes en une seule acquisition. Néanmoins, il est possible d’ajouter un élément retardateur en amont du polarimètre DoFP (figure 4.1) ce qui permet de mesurer le vecteur de Stokes complet en faisant plusieurs acquisitions. Il existe plusieurs configurations avec différents éléments retardateurs et nombre d’acquisitions permettant de mesurer la composante circulaire du vecteur de Stokes. Nous allons montrer que certaines configurations peuvent être utiles pour diminuer le nombre d’acquisitions ou améliorer la précision d’estimation des paramètres polarimétriques sans augmenter le nombre d’acquisitions par rapport à un polarimètre à division de temps classique, d’autres peuvent permettre d’augmenter la résolution spatiale des mesures faites avec un polarimètre DoFP.

Figure 4.1 – Montage d’un retardateur placé devant la caméra DoFP.

4.1 Précision d’estimation du vecteur de Stokes complet en présence de bruits de mesure

Dans cette partie, nous allons définir des outils permettant d’estimer le vecteur de Stokes complet en faisant plusieurs acquisitions avec une caméra DoFP et un retardateur. Nous allons ensuite définir un critère sur la précision d’estimation du vecteur de Stokes afin d’utiliser ce critère pour optimiser les configurations de mesure.

4.1.1 Estimation du vecteur de Stokes complet

Considérons un super-pixel contenant 4 pixels devant chacun desquels est placé un micro-polariseur de matrice de Mueller P_u avec $u \in [1, 4]$, chaque valeur de u correspondant respectivement à l’orientation 0° (horizontal), 45°, 90° et 135°. Dans cette étude, nous allons considérer que les caractéristiques des micro-polarisateurs sont idéales. Afin de mesurer la quatrième composante du vecteur de Stokes, on place un retardateur de matrice de Mueller $R(p)$ devant la caméra polarimétrique. Ce retardateur est défini par sa retardance φ et son vecteur propre (axe de rotation sur la sphère de Poincaré) défini par un azimut α et une ellipticité ε, soit un ensemble de paramètres $p = (\varphi, \alpha, \varepsilon)$.

La caméra seule peut mesurer en une seule acquisition les caractéristiques linéaires de la polarisation se trouvant sur l’équateur de la sphère de Poincaré (figure 4.2(a)). En
Figure 4.2 – a) La caméra DoFP seule ne permet que de mesurer la polarisation linéaire sur l’équateur de la sphère de Poincaré. b) En ajoutant un retardateur, on peut mesurer la polarisation sur n’importe quel cercle sur la sphère de Poincaré. c) Avec deux mesures et deux retardateurs différents on peut mesurer n’importe quelle polarisation sur la sphère de Poincaré.

En ajoutant un retardateur on peut mesurer en une acquisition la polarisation sur n’importe quel cercle sur la sphère de Poincaré selon les paramètres du retardateur (figure 4.2(b)) car l’effet du retardateur est d’effectuer une rotation 3D sur la polarisation incidente. Pour mesurer n’importe quel état de polarisation sur la sphère de Poincaré il faut donc faire au moins deux acquisitions en optimisant les paramètres des retardateurs (figure 4.2(c)).

On veut mesurer le vecteur de Stokes complet de la lumière incidente tel que :
\[\mathbf{S} = (S_0, S_1, S_2, S_3)^T. \] (4.1)

L’intensité sur chaque pixel d’orientation \(u \) mesurée sur \(K \) acquisitions avec \(k \in [1, K] \) peut être écrite sous la forme :
\[i_{u,k} = \mathbf{v}_u^T R(p_k) \mathbf{S}, \quad (u, k) \in [1, 4] \times [1, K], \] (4.2)

où \(\mathbf{v}_u \) est la première ligne de la matrice de Mueller \(P_u \). Le vecteur de Stokes est calculé à partir des intensités des deux acquisitions, on va donc regrouper les intensités \(i_{u,k} \) des \(K \) acquisitions dans un vecteur colonne à \(4 \times K \) composantes dont chaque groupe de 4 lignes correspond à une acquisition. On définit la matrice de mesure \(W(\theta) \) dont la ligne numéro \(4(k-1) + u \) est égale au vecteur \(\mathbf{v}_u^T R(p_k) \), chaque ligne de la matrice \(W(\theta) \) correspondant à une mesure d’intensité sur un pixel de la caméra. Par exemple, en faisant deux acquisitions avec des retardateurs différents, les 4 premières lignes correspondent à la matrice de mesure du système avec un retardateur ayant les paramètres \(p_1 \) et les 4 dernières avec un retardateur \(p_2 \) de sorte que :
\[W(\theta) = \begin{bmatrix} W(p_1) \\ W(p_2) \end{bmatrix} \] (4.3)

Le symbole \(\theta = (p_1, p_2) \) correspond à l’ensemble des paramètres dont la matrice \(W(\theta) \) dépend. L’équation (4.2) peut être écrite sous la forme :
\[\mathbf{I} = W(\theta) \mathbf{S}. \] (4.4)

On peut alors estimer le vecteur de Stokes de la manière suivante :
\[\mathbf{S} = [W(\theta)]^+ \mathbf{I} \] (4.5)
où l’exposant + représente la pseudo-inverse. Dans la pratique, cet estimateur du vecteur de Stokes est un vecteur aléatoire de moyenne S car les mesures I sont perturbées par du bruit. L’importance de l’influence du bruit de mesure sur l’estimation du vecteur de Stokes dépend des caractéristiques de la matrice $W(\theta)$ et donc de l’ensemble des paramètres θ. Il est important d’optimiser ces paramètres afin d’estimer le vecteur de Stokes avec la meilleure précision possible.

4.1.2 Choix d’un critère d’optimisation

Le but est de déterminer les meilleures configurations permettant de mesurer un vecteur de Stokes complet avec une caméra polarimétrique à division de plan focal. En d’autres termes, nous voulons minimiser la variance d’estimation des 4 éléments du vecteur de Stokes. Le critère d’optimisation que nous avons choisi est l’*Equally Weighted Variance* (EWV), soit la somme de la variance des 4 éléments du vecteur de Stokes estimé \hat{S} [58,59]. Son expression dépend de la statistique du bruit de mesure [44,60]. Supposons dans un premier temps que la mesure est perturbée par un bruit blanc additif gaussien (AWGN *Additive White Gaussian Noise*) de variance σ^2, dans ce cas, l’expression de l’EWV est la suivante [58,59] :

$$EWV_{awgn} = \sigma^2 \text{trace} \left[(W(\theta)^TW(\theta))^{-1} \right].$$ (4.6)

On peut retirer σ^2 du critère d’optimisation car il ne dépend pas de θ, ce qui donne le critère d’optimisation suivant :

$$C_{awgn}(\theta) = \text{trace} \left[W(\theta)^TW(\theta) \right]^{-1}.$$ (4.7)

Supposons maintenant que la mesure est perturbée par un bruit de Poisson (PSN *Poisson Shot Noise*). Dans ce cas, il a été montré que l’EWV dépend du vecteur du vecteur de Stokes incident [61]. Le critère d’optimisation à minimiser en présence de bruit de Poisson est [44] :

$$C_{psn}(\theta) = \frac{1}{2}C_{awgn}(\theta) + \|v\|,$$ (4.8)

où v est un vecteur de 4 dimensions tel que :

$$v_k = \sum_{n=1}^{8} [W(\theta)]_{nk} \sum_{i=0}^{3} ([W(\theta)]_{in})^2, \quad k \in [0,3].$$ (4.9)

Le premier terme de l’équation (4.8) est proportionnel à $C_{awgn}(\theta)$ et le second est positif et dépend de $W(\theta)$. Dans le cas où les vecteurs définis par chaque ligne de la matrice de mesure $W(\theta)$ forment un *spherical t design* sur la sphère de Poincaré, on a $\|v\| = 0$, ce qui est sa plus petite valeur possible [44]. Dans ces cas-là, la configuration minimisant l’EWV en présence de bruit de Poisson est la même qu’en présence de bruit gaussien. Un *spherical t design* est défini comme un nuage de N points w_j sur la surface d’une sphere de rayon 1 pour lesquels l’intégrale normalisée de n’importe quel polynôme, $f(w)$, de degré t ou moins est égal à la moyenne sur les N points. Des exemples bien connus de *spherical 2 design* sont le tétraèdre régulier ($N = 4$), l’octaèdre ($N = 6$), le cube ($N = 8$), l’icosaèdre ($N = 12$), le dodécaèdre ($N = 20$). Les *spherical 2 designs* existent pour tout $N \geq 4$ à l’exception de $N = 5$ [62,63].
4.2 Optimisation de la mesure du vecteur de Stokes complet en deux acquisitions

Un polarimètre à division de temps permet de mesurer un vecteur de Stokes complet en 4 acquisitions minimum. En remplaçant la caméra et le polariseur par une caméra polarimétrique DoFP, il est possible de mesurer le vecteur de Stokes complet en seulement deux acquisitions. Les paramètres des deux retardateurs utilisés lors des deux acquisitions peuvent être optimisés pour maximiser la précision d’estimation du vecteur de Stokes.

4.2.1 Détermination des configurations optimales

Dans cette partie, nous allons étudier les différents paramètres des retardateurs permettant d’obtenir la configuration optimale c’est-à-dire l’EWV minimal. Avec deux retardateurs, l’ensemble \(\theta \) contient 6 paramètres ayant une influence sur les critères d’optimisation \(C_{\text{awgn}} \) et \(C_{\text{psn}} \). Pour trouver le minimum de ces fonctions, j’ai tout d’abord fait une recherche exhaustive sur les 6 paramètres. Cette recherche a permis de trouver un continuum de valeurs optimales de \(\theta \) donnant un EWV minimal de \(5.5\sigma^2 \). Dans ces configurations les deux critères d’optimisation pour le bruit gaussien et le bruit de Poisson sont égaux. Un ensemble de configurations optimales est obtenu lorsque les deux retardateurs ont une différence de retardance de 90° entre les deux mesures [9]. Deux solutions sont particulièrement intéressantes :

- Solution 1 : La première acquisition est faite sans retardateur et la seconde est faite avec un retardateur linéaire ayant une retardance de \(\varphi = 90^\circ \) (une lame quart d’onde) avec n’importe quelle orientation.
- Solution 2 : Les deux acquisitions sont faites avec une lame quart d’onde avec deux angles différents tel que \(\alpha_2 = \alpha_1 + 45^\circ \), pour n’importe quel \(\alpha_1 \).

Ces solutions sont intéressantes car les retardateurs utilisés sont des lames \(\lambda/4 \) qui sont des éléments couramment utilisés donc faciles à trouver dans le commerce.

Considérons la solution 1 plus en détails. L’EWV est indépendant de l’angle du retardateur \(\alpha \) dont dépend la matrice \(W(\theta) \) mais la position des vecteurs de mesure sur la sphère de Poincaré dépend de \(\alpha \). Dans l’ensemble de matrices de mesure \(W(\theta) \) de la solution 1, on retrouve des configurations intéressantes, comme par exemple lorsque \(\alpha = 0^\circ \), la représentation de \(W(\theta) \) sur la sphère de Poincaré est un octaèdre à 6 sommets, où deux des sommets sont occupés par deux vecteurs de mesure différents (figure 4.3(a)). Une autre configuration particulière est obtenue lorsque \(\alpha = 22.5^\circ \). Dans ce cas, les lignes de la matrice \(W(\theta) \) forment un parallélépipède rectangle à 8 sommets sur la sphère de Poincaré (figure 4.3(b)). Les matrices se reproduisent avec une périodicité de 45°, ce qui correspond à l’écart angulaire entre les 4 micro-polariseurs d’un super-pixel.

Il est intéressant de rappeler que la configuration de mesure optimale avec 8 acquisitions sans contraintes est un cube et permet d’obtenir un EWV de \(5\sigma^2 \) [59, 64]. Cet EWV est légèrement inférieur à l’EWV de \(5.5\sigma^2 \) trouvé dans notre configuration car les 8 acquisitions ont pour contrainte l’orientation relative des micro-polariseurs qui est fixe. Il est aussi intéressant de rappeler que l’EWV optimal pour 6 mesures d’intensité est obtenu lorsque les vecteurs de mesures forment un octaèdre sur la sphère de Poincaré ce qui donne un EWV de \(6.67\sigma^2 \) [59, 64]. L’octaèdre obtenu avec 8 mesures d’intensité donne donc un EWV plus faible que l’octaèdre obtenu avec 6 mesures d’intensité. Notre solution est donc comprise entre le cube et l’octaèdre à 6 sommets.

Pour la solution 1, l’EWV est indépendant de \(\alpha \) mais ce n’est pas le cas de la variance individuelle des éléments du vecteur de Stokes. J’ai représenté la variance des 4 éléments du
Figure 4.3 – Représentation des lignes de la matrice $W(\theta)$ sur la sphère de Poincaré pour la solution 1 avec : a) $\alpha = 0^\circ$ et b) $\alpha = 22.5^\circ$

Figure 4.4 – Variance des 4 coefficients du vecteur de Stokes normalisée par σ^2 en fonction de α.

Le vecteur de Stokes en fonction de α dans la figure 4.4. Les variances de l’intensité $\text{VAR}[S_0]$ et de l’élément circulaire $\text{VAR}[S_3]$ du vecteur de Stokes sont indépendantes de α mais ce dernier est 4 fois plus important que le premier. Les variances des deux composants linéaires du vecteur de Stokes $\text{VAR}[S_1]$ et $\text{VAR}[S_2]$ varient en opposition de phase entre σ^2 et $2\sigma^2$.

Entre les deux acquisitions de la solution 1, le seul paramètre qui diffère est la retardance du retardateur égale à 0° pour la première acquisition et 90° pour la seconde. Afin d’implémenter cette solution sur un polarimètre il est possible d’utiliser un modulateur à cristaux liquides avec une retardance variable de 0° à 90°.

Considérons maintenant la solution 2 plus en détails. L’EWV est minimum lorsque l’orientation relative de la lame quart d’onde entre les deux acquisitions est de 45° mais il est indépendant de son orientation absolue. Dans l’ensemble des matrices de mesure $W(\theta)$ de la solution 2, on retrouve une représentation formant un octaèdre sur la sphère de Poincaré lorsque $\alpha_1 = 0$, comme pour la solution 1. Une autre solution particulière est
CHAPITRE 4. MESURE DU VECTEUR DE STOKES COMPLET AVEC UN POLARIMÈTRE À DIVISION DE PLAN FOCAL

obtenue lorsque \(\alpha_1 = 22.5^\circ \). Dans ce cas, la matrice de mesure forme un parallélépipède rectangle (différent de la solution 1) sur la sphère de Poincaré (figure 4.5). Les matrices se reproduisent avec une périodicité de 45°, ce qui correspond à l’écart angulaire entre les 4 micro-polariseurs d’un super-pixel.

Figure 4.5 – Représentation des lignes de la matrice \(W(\theta) \) sur la sphère de Poincaré pour la solution 2 lorsque \(\alpha_1 = 22.5^\circ \).

Pour la solution 2, les variances individuelles des 4 éléments du vecteur de Stokes sont indépendantes de \(\alpha_1 \) et prennent les valeurs suivantes :

- \(\text{VAR}[S_0] = 0.5\sigma^2 \)
- \(\text{VAR}[S_1] = 2\sigma^2 \)
- \(\text{VAR}[S_2] = 2\sigma^2 \)
- \(\text{VAR}[S_3] = 1\sigma^2 \)

La variance de \(S_3 \) est deux fois plus faible que celle obtenue avec la solution 1. Les variances de \(S_1 \) et \(S_2 \) sont constantes mais égales à \(2\sigma^2 \), ce qui est entre 1 et 2 fois plus important que celles obtenues avec la solution 1 selon l’orientation du retardateur.

Entre les deux acquisitions de la solution 2, le seul paramètre qui diffère est l’orientation de la lame \(\lambda/4 \) avec une différence de 45° entre la première et la seconde acquisition. Afin d’implémenter cette solution sur un polarimètre, il est possible d’utiliser une simple lame \(\lambda/4 \) rotative.

Les deux solutions proposées permettent d’obtenir un EWV optimal mais les variances individuelles des éléments du vecteur de Stokes sont différentes selon la solution choisie. Le choix de la solution peut donc être guidé par un besoin de précision sur un élément spécifique du vecteur de Stokes ou guidé par une contrainte technique lors de l’implémentation dans un polarimètre.

4.2.2 Validation expérimentale

Afin de vérifier les résultats précédents, nous avons mis en place la solution 1 avec la caméra polarimétrique à division de plan focal. Le principe de la mesure est donc de faire deux acquisitions avec et sans retardateur placé devant la caméra. Le retardateur choisi est un modulateur à cristaux liquides permettant de faire varier la retardance en fonction d’un signal électrique. L’axe lent du cristal liquide est orienté à 45°, mais son orientation n’a pas d’influence sur l’EWV. Dans ces conditions de mesure, la théorie prévoit que l’EWV du vecteur de Stokes soit minimum lorsque la retardance \(\varphi \) du retardateur est égale à 90°. Le vecteur de Stokes incident est linéaire et orienté à 30° mais d’après la théorie l’état de
polarisation incident n’a pas d’influence sur l’EWV du vecteur de Stokes.

La caméra DoFP utilisée est affectée par un bruit additif gaussien d’écart type égal à 16 électrons, l’intensité moyenne mesurée est de $S_0 = 27095$ électrons, ce qui correspond à un bruit de Poisson d’écart type $\sqrt{S_0} = 165$. Donc le bruit de Poisson est dominant par rapport au bruit gaussien égal à 16 d’après la documentation de la caméra, mais ce dernier n’est pas non plus négligeable.

Pour chaque valeur de retardance φ du cristal liquide, j’effectue 1000 acquisitions du vecteur de Stokes pour chaque super-pixels. L’EWV est estimé en calculant la trace de la matrice de covariance du vecteur de Stokes \hat{S} estimé à partir des 1000 acquisitions tel que :

$$\text{EWV} = \text{trace} \left[\Gamma^{S} \right].$$

L’EWV théorique est calculé en utilisant l’expression théorique de la matrice de covariance du vecteur de Stokes en supposant que la mesure est perturbée par du bruit additif gaussien et du bruit de Poisson :

$$\Gamma^{\hat{S}} = \Gamma^{\text{add}} + \Gamma^{\text{poi}}.$$ (4.11)

Ces deux matrices ont les expressions suivantes :

$$\Gamma^{\text{add}}_{ij} = \sigma_a^2 \delta_{ij} \quad \text{et} \quad \Gamma^{\text{poi}}_{ij} = \sum_{k=0}^{3} S_k \gamma_{ij}^k$$ (4.12)

avec

$$\delta_{ij} = g^2 \left[(W^T W)^{-1} \right]_{ij} \quad \text{et} \quad \gamma_{ij}^k = g \sum_{l=1}^{8} W_{il}^+ W_{jl}^+ W_{lk} , \quad \forall (i, j, k) \in [0, 3]^3$$ (4.13)

où g est le nombre de niveaux numériques par photo-électrons spécifique à cette caméra. La somme des deux matrices de covariance peut être écrite sous la forme :

$$\Gamma^{\hat{S}}_{ij} = \left[\sigma_a^2 + \frac{S_0}{2} \right] \delta_{ij} + \sum_{k=1}^{3} \gamma_{ij}^k S_k.$$ (4.14)

L’EWV est la trace de la matrice de covariance $\Gamma^{\hat{S}}_{ij}$ du vecteur de Stokes, il dépend donc que de la matrice de mesure W et du vecteur de Stokes estimé \hat{S} tel que :

$$\text{EWV} = \left[\sigma_a^2 + \frac{S_0}{2} \right] \sum_{i=0}^{3} \delta_{ii} + \sum_{k=1}^{3} S_k \beta_k \quad \text{avec} \quad \beta_k = \sum_{i=0}^{3} \gamma_{ii}^k.$$ (4.15)

Cette expression de l’EWV est similaire à celle obtenue dans le chapitre 3 la différence étant que l’équation (4.15) prend en compte le vecteur de Stokes complet.

Les résultats des mesures sont visibles dans la figure 4.6. La ligne bleue continue représente la valeur théorique de $\rho(\varphi) = \text{EWV}(\varphi)/\text{EWV}_{\text{min}}$ estimé à partir de l’équation (4.15) en fonction de la retardance φ et les marqueurs noirs représentent $\rho(\varphi)$ estimé à partir de l’équation (4.10). On peut voir que les mesures correspondent de très près à la théorie et que l’EWV minimum est bien atteint lorsque la retardance φ est égale à 90°.

Ces mesures ont permis de vérifier qu’avec une mesure composée d’une acquisition avec la caméra DoFP seule et une mesure avec un retardateur linéaire, l’EWV du vecteur de Stokes est bien minimal lorsque la retardance du retardateur est égale à 90°, même lorsque le bruit de Poisson est dominant.
Figure 4.6 – La ligne bleue continue représente la valeur théorique de $\rho(\varphi) = \frac{\text{EWV}(\varphi)}{\text{EWV}_{\text{min}}}$ en fonction de la retardance φ. Les marqueurs représentent l’estimation de $\rho(\varphi)$ pour chaque mesure réelle.

En faisant deux acquisitions de cette manière, on obtient 8 mesures d’intensité pour chaque super-pixel. Ces mesures sont partiellement redondantes car dans des conditions idéales on aurait besoin de seulement 4 mesures pour mesurer un vecteur de Stokes complet. Il a déjà été proposé d’utiliser cette redondance pour calibrer dynamiquement le retardateur [65] mais cela nécessite un minimum de 3 acquisitions avec 3 orientations différentes pour le retardateur. Il est aussi possible d’utiliser cette redondance pour améliorer la résolution spatiale de la caméra en deux acquisitions.

4.3 Utilisation de la redondance des mesures pour augmenter la résolution spatiale

Un des principaux inconvénients des caméras DoFP est qu’il est nécessaire d’utiliser 4 pixels pour estimer l’état de polarisation de la lumière incidente. Les intensités mesurées sur les 4 pixels du super-pixel ne proviennent pas de la même position sur l’image. Cette particularité cause des erreurs d’estimation et des artefacts dans les régions de l’image où les variations du vecteur de Stokes sont importantes [66]. Pour améliorer la résolution spatiale, différents algorithmes d’interpolation des pixels ont été étudiés [66–69], dont deux exemples que j’ai présentés dans la section 1.2.4. Cependant, ces algorithmes ne résolvent pas tous les problèmes car ils nécessitent toujours d’utiliser plusieurs pixels voisins sur le capteur. Dans cette partie, je propose d’utiliser la redondance des mesures pour estimer le vecteur de Stokes avec la résolution native de la caméra mais dans une seule direction (horizontale ou verticale).

4.3.1 Détermination des configurations optimales

Dans la partie précédente, le super-pixel complet est utilisé, ce qui permet d’estimer le vecteur de Stokes complet à partir de 8 mesures d’intensité. Cependant, il est possible de n’utiliser que 4 mesures d’intensité pour estimer un vecteur de Stokes complet. L’idée est de diviser les 4 pixels d’un super-pixel en 2 groupes de deux pixels, chacun des groupes produisant 4 mesures d’intensité permettant d’estimer le vecteur de Stokes com-
Considérons deux groupes de pixels a et b dans un super-pixel. Si chacun des deux groupes forme une colonne du super-pixel (figure 4.7(b)) alors la résolution spatiale horizontale est préservée. Si chacun des deux groupes forme une ligne du super-pixel (figure 4.7(c)) alors la résolution spatiale verticale est préservée.

Comme dans la partie précédente, la mesure consiste à faire deux acquisitions successives avec deux retardateurs placés devant la caméra. Les deux retardateurs sont définis par leur orientation et leur retardance (α_1, φ_1) et (α_2, φ_2). Il y a donc un ensemble $\theta = (\alpha_1, \varphi_1, \alpha_2, \varphi_2)$ de 4 paramètres pour une mesure. En regroupant les mesures des deux pixels du groupe a sur les deux acquisitions, on obtient une matrice de mesure $W_a(\theta)$ de dimension 4×4 pouvant être utilisée pour estimer l’état de polarisation de la lumière incidente sur ce groupe de pixels. De la même manière, en regroupant les mesures des deux pixels du groupe b sur les deux acquisitions, on obtient une matrice de mesure $W_b(\theta)$ de dimension 4×4 pouvant être utilisée pour estimer l’état de polarisation de la lumière incidente sur ce groupe de pixels. Le but est de déterminer l’ensemble des paramètres θ minimisant la somme des EWV des deux groupes de pixels :

$$\theta_{opt} = \arg \min_\theta [\text{EWV}_a(\theta) + \text{EWV}_b(\theta)].$$

Le critère d’optimisation utilisé est celui adapté au bruit additif (équation (4.7)).

Une première stratégie d’optimisation consiste à faire une recherche exhaustive en faisant varier les 4 paramètres de 0° à 180° avec un pas de 5°. Cette recherche m’a permis de trouver plusieurs minima locaux. J’ai ensuite utilisé une fonction d’optimisation de type Particle Swarm [70] qui m’a permis d’affiner la valeur de l’EWV trouvée lors de la recherche exhaustive et de confirmer l’absence d’un minimum global unique. L’optimisation a convergé vers des valeurs minimales pour les deux groupes de pixels $\text{EWV}_a(\theta_{opt}) = \text{EWV}_b(\theta_{opt}) = 11\sigma^2$. Il est intéressant de remarquer que cette valeur est exactement deux fois plus élevée que l’EWV obtenu en utilisant le super-pixel complet ($5.5\sigma^2$). Le prix à payer pour augmenter la résolution spatiale dans une direction est donc de doubler l’EWV, ce qui est lié au fait que le nombre de mesures d’intensité utilisées pour estimer le vecteur de Stokes est divisé par deux.

Une des configurations conduisant à un EWV minimal correspond au cas où $\varphi_1 = \varphi_2 = 120^\circ$. Cette configuration est intéressante car seule l’orientation varie entre les deux acquisitions, elle permet donc d’utiliser un retardateur rotatif (figure 4.8). Dans ce cas, les angles optimaux sont $(\alpha_1^{opt}, \alpha_2^{opt}) = (85^\circ, 140^\circ)$ pour les groupes de pixels verticaux et $(40^\circ, 95^\circ)$ pour les groupes de pixels horizontaux. Cependant, les retardateurs ayant une retardance de $\varphi = 120^\circ$ ne sont pas très répandus. Supposons qu’on utilise une lame $\lambda/4$ avec une retardance $\varphi = 90^\circ$ facilement trouvable dans le commerce. Avec cette
Lame retard rotative

Figure 4.8 – Schéma de la caméra DoFP avec une lame retard rotative placée devant.

Table 4.1 – EWV et angles de retardateurs optimaux (liste non exhaustive) pour des groupes de pixels horizontaux/verticaux avec une retardance de $\varphi = 120^\circ$ (haut du tableau) et $\varphi = 90^\circ$ (bas du tableau).

<table>
<thead>
<tr>
<th></th>
<th>EWV $\times \sigma^2$</th>
<th>$\alpha_1(\degree)$</th>
<th>$\alpha_2(\degree)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>11</td>
<td>85</td>
<td>140</td>
</tr>
<tr>
<td>Horizontal</td>
<td>11</td>
<td>40</td>
<td>95</td>
</tr>
<tr>
<td>Vertical & Horizontal</td>
<td>15.9</td>
<td>16</td>
<td>74</td>
</tr>
<tr>
<td>$\varphi = 90^\circ$</td>
<td>EWV $\times \sigma^2$</td>
<td>$\alpha_1(\degree)$</td>
<td>$\alpha_2(\degree)$</td>
</tr>
<tr>
<td>Vertical</td>
<td>15.3</td>
<td>87</td>
<td>138</td>
</tr>
<tr>
<td>Horizontal</td>
<td>15.3</td>
<td>42</td>
<td>93</td>
</tr>
<tr>
<td>Vertical & Horizontal</td>
<td>20.9</td>
<td>17</td>
<td>73</td>
</tr>
</tbody>
</table>

Contrainte, on n’a plus que deux paramètres d’optimisation $\theta = (\alpha_1, \alpha_2)$ pour trouver une configuration optimale. Les résultats de l’optimisation donnent la valeur minimale $\text{EWV}_a(\theta_{opt}) = \text{EWV}_b(\theta_{opt}) = 15.3\sigma^2$. En prenant une lame $\lambda/4$ on a donc une augmentation d’environ 50% par rapport à une configuration optimale avec $\varphi = 120^\circ$. Ces configurations optimales particulières sont résumées dans le tableau 4.1.

Dans ce tableau, on peut voir que les angles optimaux sont différents entre les groupes horizontaux et les groupes verticaux. On peut alors se demander si une mesure faites avec des angles optimaux pour des groupes verticaux permettrait aussi d’estimer un vecteur de Stokes sur des groupes horizontaux. J’ai vérifié qu’avec tous les angles optimaux des groupes d’une orientation donnée, l’EWV est infini pour les groupes de l’autre orientation, il est donc impossible d’estimer le vecteur de Stokes. Néanmoins, il est possible d’optimiser les paramètres des retardateurs pour les groupes horizontaux et verticaux conjointement en optimisant sur la somme des EWV des groupes a et b horizontaux et verticaux:

$$\theta_{opt} = \arg \min_{\theta} \left[\text{EWV}_{a_{ver}}(\theta) + \text{EWV}_{b_{ver}}(\theta) + \text{EWV}_{a_{hor}}(\theta) + \text{EWV}_{b_{hor}}(\theta) \right]. \tag{4.17}$$

Les résultats de cette optimisation sont présentés dans le tableau 4.1 dans les lignes intitulées « Vertical & Horizontal ». Par exemple, avec une lame $\lambda/4$ on obtient un EWV égal à 20.9σ^2 pour les groupes de pixels horizontaux et verticaux, ce qui permet d’améliorer la résolution spatiale dans les deux directions. C’est moins de 40% plus élevé que l’EWV optimal pour les groupes de pixels d’une seule orientation. Cette augmentation de l’EWV est due aux contraintes supplémentaires ajoutées au critère d’optimisation. Un retardateur
avec une retardance de 120° permet d’obtenir l’EWV optimal pour des groupes de pixels horizontaux ou verticaux mais ce n’est pas le cas lorsqu’on cherche à optimiser l’EWV pour les groupes horizontaux et verticaux conjointement. Sans contrainte de retard ou d’orientation, l’EWV optimisé pour les groupes horizontaux et verticaux est de 15.7σ² avec une lame retard dont la retardance est de 115.5°, ce qui est très proche de l’EWV optimal avec un retardateur ayant une retardance de 120° (15.9σ²).

4.3.2 Augmentation de la résolution spatiale sur des images simulées

Afin d’illustrer l’augmentation de la résolution spatiale, j’ai simulé une scène très simple de 50 × 50 pixels soit, 25 × 25 super-pixels. La scène est composée d’un carré de 30 × 30 pixels au centre de celle-ci avec les caractéristiques polarimétriques suivantes :

- Intensité : 1
- Degré de polarisation (DOP) : 1
- Angle de polarisation (AOP) : 10°
- Ellipticité de polarisation (EOP) : 20°

Le reste de la scène autour du carré a les caractéristiques suivantes :

- Intensité : 1
- Degré de polarisation (DOP) : 1
- Angle de polarisation (AOP) : 60°
- Ellipticité de polarisation (EOP) : 5°

Le carré est placé de manière à ce que ses bords coupent en deux les super-pixels placés à la frontière. Cela permet de visualiser les artefacts présents lorsqu’une variation spatiale des paramètres polarimétriques de la scène apparaît au milieu d’un super-pixel. Pour chaque pixel, je simule une mesure d’intensité $i_{u,k}$ comme dans l’équation (4.2), en prenant comme retardateur une lame $\lambda/4$ avec des orientations de $\alpha_1 = 17^\circ$ et $\alpha_2 = 73^\circ$ pour la première et la seconde acquisition. Ces deux valeurs d’angle permettent d’estimer le vecteur de Stokes avec des groupes de pixels horizontaux et verticaux (tableau 4.1). Un bruit additif gaussien d’écart type $\sigma = 1/60$ a été ajouté à chaque mesure.

Les figures 4.9(a) et 4.9(d) représentent l’AOP et l’EOP estimés en utilisant les 4 pixels du super-pixel. On remarque que sur ces images, les frontières entre le carré et le reste de la scène présentent des artefacts. L’AOP et l’EOP simulés sur les bords du carré n’ont pas les valeurs réelles ni du carré ni du fond. Les figures 4.9(b) et 4.9(e) représentent l’AOP et l’EOP estimés en utilisant des groupes de deux pixels verticaux. On peut voir qu’il n’y a plus d’artefacts sur les bords verticaux du carré car il n’y a plus de mélange entre différentes polarisations dans le groupe de pixel utilisé pour estimer l’état de polarisation. De plus, la résolution spatiale horizontale est deux fois plus grande par rapport à l’image simulée avec un super-pixel complet. Par contre les bords horizontaux présentent toujours des artefacts. Ils sont différents d’un pixel à l’autre car les orientations des micro-polariseurs sont différentes selon le groupe a ou le groupe b.

On peut aussi voir que l’image simulée avec des groupes de 2 pixels est plus bruitée que celle simulée avec un super-pixel complet. Cette différence de bruit visible entre les deux images illustre la différence d’EWV d’un vecteur de Stokes estimé avec des groupes de 4 pixels (6.15σ²) et des groupes de deux pixels (20.9σ²) avec cette configuration de retardateur. Enfin, les figures 4.9(c) et 4.9(f) représentent l’AOP et l’EOP estimés à partir de groupes de deux pixels horizontaux. Il n’y a plus d’artefacts sur les bords horizontaux du carré mais ils sont toujours présents sur les bords verticaux. Cette simulation montre qu’avec seulement deux acquisitions il est possible d’améliorer la résolution spatiale horizontale ou verticale et donc d’avoir une meilleure estimation de l’état de polarisation lorsque la scène présente des variations spatiales.
CHAPITRE 4. MESURE DU VECTEUR DE STOKES COMPLET AVEC UN POLARIMÈTRE À DIVISION DE PLAN FOCAL

Figure 4.9 – Images simulées de l’AOP (première ligne) et de l’EOP (seconde ligne) de la scène estimée avec des super-pixels complets (a et d), avec des groupes de 2 pixels verticaux (b et e), et des groupes de pixels horizontaux (c et f).

En combinant une caméra polarimétrique à division de plan focal avec un polarimètre à division de temps, on peut donc diviser par deux le nombre d’acquisitions nécessaires pour mesurer un vecteur de Stokes complet et améliorer la résolution spatiale du polarimètre DoFP. Combiner ces deux types de polarimètres permet d’avoir une certaine flexibilité entre le nombre d’acquisitions et la résolution spatiale.

4.4 Utiliser la résolution complète de la caméra DoFP

Un minimum de 4 mesures d’intensité est nécessaire pour mesurer un vecteur de Stokes complet. Si on ne fait aucun groupement de pixels on a besoin de 4 mesures d’intensité sur chaque pixel donc de 4 acquisitions successives. Le but de cette partie est de montrer les différentes configurations permettant d’utiliser une caméra DoFP dans un polarimètre à division de temps sans perdre en résolution et de profiter le la flexibilité qu’offre un tel système de mesure.

Un polarimètre à division de temps est composé d’une caméra classique, d’un polariseur et d’un retardateur, dans notre cas, la caméra classique est remplacée par une caméra DoFP. En 4 acquisitions un polarimètre à division de temps permet d’estimer un vecteur de Stokes complet avec un EWV de \(10^2\) [71]. Le but de cette partie est d’étudier différentes configurations permettant de combiner un polarimètre à division de temps avec une caméra DoFP en conservant sa résolution complète.

4.4.1 Avec un PSA

Considérons un polarimètre de Stokes à division de temps adaptatif avec un analyseur d’états de polarisation (PSA) composé de deux cristaux liquides orientés à 45° l’un de l’autre, suivis d’un polariseur linéaire orienté à 45° par rapport au deuxième cristal liquide et d’une caméra (figure 4.10). Cette configuration permet d’analyser n’importe quelle
polarisation sur la sphère de Poincaré et d’avoir un nombre de degrés de liberté infini pour optimiser la mesure des états polarimétriques. Si tous les éléments de ce polarimètre sont fixés, les seuls paramètres permettant d’optimiser la mesure sont la retardance des deux cristaux liquides. On a deux paramètres pour chaque acquisition donc 8 paramètres pour les 4 acquisitions. Avec ces 8 paramètres, un polarimètre à division de temps classique permet d’obtenir un EWV de $10\sigma^2$ ce qui est le meilleur EWV possible pour ce nombre d’acquisitions. Cependant, si on utilise une caméra DoFP (figure 4.11), pour chaque acquisition, la retardance des deux cristaux liquides devra être optimisée pour 4 orientations différentes de polariseurs en même temps contre une seule orientation pour un simple polarimètre à division de temps. Le nombre de paramètres d’optimisation est le même quelle que soit la caméra utilisée mais les contraintes différentes. On note l’ensemble des paramètres d’optimisation $\theta = (\varphi_{a1}, \varphi_{b1}, \varphi_{a2}, \varphi_{b2}, \varphi_{a3}, \varphi_{b3}, \alpha_{a4}, \varphi_{b4})$ correspondant aux retardances des deux cristaux liquides a et b pendant les 4 acquisitions. Avec une caméra classique, on optimise l’EWV en fonction de l’ensemble des paramètres θ tel que :

$$\theta_{\text{opt}} = \arg \min_{\theta} [\text{EWV}(\theta)]$$ (4.18)

Avec la caméra DoFP, l’EWV dépend toujours uniquement de θ mais il n’est pas le même selon l’orientation des micro-polariseurs. Pour trouver les orientations optimales pour les 4 orientations, j’optimise conjointement les 4 EWV en cherchant le minimum de la somme des EWV de chaque pixel du super-pixel.

$$\theta_{\text{opt}}^{\text{DoFP}} = \arg \min_{\theta} [\text{EWV}_{0^\circ}(\theta) + \text{EWV}_{45^\circ}(\theta) + \text{EWV}_{90^\circ}(\theta) + \text{EWV}_{135^\circ}(\theta)]$$ (4.19)

Malgré ces nouvelles contraintes, on arrive aussi à obtenir un EWV de $10\sigma^2$ avec une caméra DoFP, ce qui signifie que la matrice de mesure de chaque pixel du super-pixel forme un tétraèdre régulier sur la sphère de Poincaré.

Figure 4.10 – Schéma d’un polarimètre à division de temps composé d’un analyseur d’état de polarisation (PSA), d’un polariseur et d’une caméra. Le PSA est composé de deux cristaux liquides à retardance variable (LCVR 1 et 2).

Un tel polarimètre permet de mesurer un vecteur de Stokes complet en un minimum de 2 acquisitions en sacrifiant la résolution spatiale, comme nous l’avons montré dans la section précédente, et en 4 acquisitions pour profiter de la résolution spatiale complète de la caméra avec à chaque fois le meilleur EWV possible. Il propose donc un compromis entre résolution spatiale et temporelle selon le choix de l’utilisateur sans jamais compromettre la précision de mesure.

4.4.2 Avec une lame retard

Dans le but de simplifier davantage le système, on peut réduire le PSA à un élément passif avec une retardance constante comme une lame retard. On va étudier le cas d’une
Figure 4.11 – Schéma d’un polarimètre composé d’un PSA et d’un caméra DoFP. Le PSA est composé de deux cristaux liquides à retardance variable (LCVR 1 et 2). La caméra DoFP contient une matrice de micro-polariseurs devant son capteur.

Table 4.2 – EWV obtenus avec 4 acquisitions pour un polarimètre à division de temps dans la seconde colonne et pour le même polarimètre mais avec une caméra DoFP dans la troisième colonne.

<table>
<thead>
<tr>
<th>Type de retardateur</th>
<th>EWV \times \sigma^2</th>
<th>EWV_{DoFP} \times \sigma^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSA</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>\varphi = 120°</td>
<td>10.7</td>
<td>15.3</td>
</tr>
<tr>
<td>\varphi = 90°</td>
<td>20.6</td>
<td>27.6</td>
</tr>
</tbody>
</table>

Avec une retardance de 120° on arrive à obtenir un EWV de 10.6\sigma^2 sans la caméra DoFP, ce qui est très proche de l’EWV idéal qu’on peut obtenir avec PSA adaptatif. En utilisant la caméra DoFP, l’EWV optimal est de 15.3\sigma^2 ce qui est environ 50% plus important que sans la caméra DoFP. Avec une lame quart d’onde, l’EWV optimal avec une caméra classique est de 20.6\sigma^2 ce qui est environ 2 fois plus important que l’EWV idéal qu’on peut obtenir avec un PSA adaptatif. En utilisant une caméra DoFP avec une lame quart d’onde, l’EWV optimal est de 27.6\sigma^2 ce qui est presque 2 fois plus élevé qu’avec une lame à 120°.

Le tableau 4.2 regroupe les EWVs obtenus avec 4 acquisitions avec une caméra classique dans la seconde colonne et avec la caméra DoFP dans la troisième colonne. On peut voir que dans les cas où on utilise une lame retard, l’EWV est plus élevé en utilisant la caméra DoFP. Cet écart est dû au fait que les paramètres du retardateur doivent être optimisés pour 4 orientations des polariseurs en même temps au lieu d’un seul polariseur avec une caméra classique.

On trouve plusieurs configurations de \theta_{opt} permettant de trouver l’EWV optimal. Avec une lame retard dont la retardance est de 120° et avec une caméra classique, il y a deux
configurations permettant d’obtenir l’EWV optimal :

\[\alpha_a = (\delta_1, 90 - \delta_2, 90 + \delta_2, 180 - \delta_1) + 90n \]
\[\alpha_b = (\delta_2, 90 - \delta_1, 90 + \delta_1, 180 - \delta_2) + 90n \]

avec

\[\delta_1 \approx 14.9^\circ, \quad \delta_2 \approx 38.1^\circ \text{ et } n \in \mathbb{Z}. \]

(4.22)

Avec une caméra classique et une lame quart d’onde on retrouve les mêmes configurations mais avec :

\[\delta_1 \approx 14.4^\circ \text{ et } \delta_2 \approx 38.2^\circ. \]

(4.23)

Avec une lame retard dont la retardance est de 120° et avec une caméra DoFP, il y a deux configurations permettant d’obtenir l’EWV optimal :

\[\alpha_a = (0 + \delta_2, 45 + \delta_1, 90 - \delta_1, 135 - \delta_2) + 45n \]
\[\alpha_b = (0 + \delta_1, 45 - \delta_1, 90 - \delta_2, 135 + \delta_2) + 45n \]
\[\alpha_c = (0 - \delta_2, 45 + \delta_2, 90 + \delta_1, 135 - \delta_1) + 45n \]

avec

\[\delta_1 \approx 8^\circ, \quad \delta_2 \approx 16.8^\circ \text{ et } n \in \mathbb{Z}. \]

(4.27)

Avec une caméra DoFP et une lame quart d’onde on retrouve les mêmes configurations mais avec :

\[\delta_1 \approx 8^\circ \text{ et } \delta_2 \approx 16.3^\circ. \]

(4.28)

On remarque que les orientations des lames retard permettant d’obtenir le meilleur EWV dépendent très peu de la retardance, en effet, les angles obtenus avec une retardance de 120° sont très proches de ceux obtenus avec la lame quart d’onde. Avec une caméra classique donc avec une seule orientation de polariseur, les solutions se répètent tous les 90° alors qu’avec la caméra DoFP elles se répètent tous les 45° ce qui correspond à l’écart entre les 4 orientations des micro-polariseurs.

Cette configuration permet de construire un polarimètre très flexible permettant de faire des mesures en 2 ou 4 acquisitions avec un super-pixel complet, des groupes de deux pixels pour augmenter la résolution spatiale ou en 4 acquisitions avec la résolution complète de la caméra sans changer le montage. Avoir un tel montage permet de s’adapter à différentes situations. Si la scène à mesurer contient des objets en mouvement, on va préférer faire 2 acquisitions pour minimiser le temps de mesure. Si la scène à mesurer est statique, on peut alors choisir de faire 4 acquisitions afin de profiter de la résolution complète de la caméra.

4.5 Conclusion

Dans ce chapitre nous avons trouvé différentes configurations permettant de mesurer un vecteur de Stokes complet avec une caméra polarimétrique à division de plan focal. La caméra seule permet de mesurer le vecteur de Stokes linéaire de la lumière incidente mais en plaçant un retardateur devant la caméra et en faisant plusieurs acquisitions, il est possible de mesurer le vecteur de Stokes complet. Nous avons montré qu’il est nécessaire de faire au minimum deux acquisitions avec des retardateurs différents afin de mesurer le vecteur de Stokes complet. Il existe plusieurs configurations de retardateurs permettant de minimiser la variance d’estimation du vecteur de Stokes. Ces configurations permettent d’obtenir un EWV optimal mais les variances individuelles des éléments du vecteur de

83
Stokes sont différentes selon la configuration choisie. Le choix de la solution peut donc être guidé par un besoin de précision sur un élément spécifique du vecteur de Stokes ou guidé par une contrainte technique lors de l’implémentation dans un polarimètre. Une de ces configurations a été implémentée sur un polarimètre afin d’estimer la variance du vecteur de Stokes dans des conditions réelles en présence de bruit de Poisson (dominant) et de bruit additif gaussien. Les valeurs de l’EWV estimées à partir des mesures sont cohérentes avec les résultats théoriques estimés à partir de la matrice de mesure et du vecteur de Stokes estimé.

Nous avons montré qu’il est possible de grouper les pixels par paires au lieu d’utiliser le super-pixel complet ce qui revient à mesurer le vecteur de Stokes complet à partir de 4 mesures d’intensité au lieu de 8. Estimer le vecteur de Stokes avec seulement deux pixels au lieu de 4 permet d’augmenter la résolution spatiale dans une direction. En prenant des paires de pixels en ligne et en colonne, on peut augmenter la résolution spatiale dans les deux directions. Le fait d’utiliser 4 mesures d’intensité au lieu de 8 dégrade la précision d’estimation du vecteur de Stokes d’un facteur 2. Nous avons étudié différentes configurations permettant d’obtenir l’EWV optimal, l’une d’entre elles correspond à utiliser une lame retard avec une retardance de 120°. Il est aussi possible d’utiliser des éléments optiques plus courants comme une lame λ/4 en dégradant légèrement l’EWV. Utiliser la résolution complète de la caméra dans une direction permet d’éviter les artefacts présents lorsque la fréquence spatiale de la scène est élevée par rapport à la résolution de la caméra.

Pour utiliser la résolution complète de la caméra DoFP il faut au moins 4 mesures d’intensité par pixel comme pour une caméra classique. Nous avons étudié les différentes configurations de retardateur permettant d’optimiser la précision de mesure du vecteur de Stokes. L’utilisation d’un analyseur d’état de polarisation composé de cristaux liquides permet de ne pas perdre en précision en utilisant la caméra DoFP par rapport à une caméra classique. En revanche, si on utilise des éléments plus simples comme une lame retard avec retardance de 120° ou 90°, le fait d’utiliser une caméra DoFP dégrade l’EWV.

L’intérêt d’utiliser une caméra DoFP est d’avoir un polarimètre très flexible permettant de mesurer un vecteur de Stokes complet en un minimum de 2 acquisitions ou en 4 acquisitions pour avoir une résolution spatiale maximum sans avoir à changer le montage. De plus, la mesure en 2 acquisitions permet aussi de choisir entre augmenter la résolution spatiale ou utiliser le super-pixel complet pour maximiser la précision de mesure. Le tableau 4.3 récapitule les différentes configurations permettant de mesurer un vecteur de Stokes complet avec différents retardateurs en 2 ou 4 acquisitions avec différents groupes de pixels. Un tel polarimètre permet de s’adapter à diverses situations selon les besoins de précision, en résolution temporelle ou spatiale.

<table>
<thead>
<tr>
<th>Acquisitions</th>
<th>Pixels</th>
<th>EWV × σ²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PSA 5.5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>2 (ligne)</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>2 (colonne)</td>
<td>15.7</td>
</tr>
<tr>
<td>2</td>
<td>2 (ligne) et 2 (colonne)</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 4.3 – Tableau récapitulatif de différentes configurations permettant de mesurer un vecteur de Stokes complet en utilisant la caméra DoFP avec un retardateur de type PSA, lame retard de retardance 120° ou lame quart d’onde.
Conclusion générale

L'imagerie polarimétrique consiste à faire des images contenant des informations sur l'orientation du champ électrique de la lumière. Ces informations peuvent être utilisées pour mesurer directement les propriétés de polarisation de la lumière ou pour créer un contraste entre une cible et un fond.

Le contraste que permet d'obtenir un imageur polarimétrique dépend de la scène observée et de la capacité du polarimètre à s'adapter à la scène pour optimiser le contraste. Plus un polarimètre possède de degrés de liberté pour moduler la polarisation en illumination et en analyse, plus il pourra s’approcher de la configuration optimale permettant d’obtenir le meilleur contraste. Cependant, des contraintes de complexité de mise en œuvre, d’étalonnage ou de coût peuvent guider le choix du système d’imagerie vers une technologie proposant un nombre de degrés de liberté limité, ce qui implique une perte de contraste par rapport à un système ayant un nombre de degrés de liberté infini. Nous avons comparé les contrastes qu’il est possible d’obtenir entre un polarimètre de Mueller totalement adaptatif et un polarimètre de Mueller statique lorsque que l'intensité de la lumière ne permet pas d’obtenir un contraste et dans un cas particulier adapté à l’observation de scène dans un milieu naturel. Nous avons démontré que le rapport entre le meilleur contraste obtenu en utilisant un polarimètre statique et le meilleur contraste en utilisant un polarimètre adaptatif varie entre 1 et 1/9. Cela montre qu’il est possible d’utiliser un imageur statique plus simple en ayant l’assurance que le contraste soit toujours supérieur ou égal 1/9 du contraste obtenu avec un imageur adaptatif.

Pour aller plus loin dans la simplification d’un imageur polarimétrique, nous avons étudié le cas d’un polarimètre à division de plan focal. Ce système d’imagerie polarimétrique a la particularité d’avoir des micro-polariseurs placés directement sur le capteur de la caméra ce qui permet de mesurer un vecteur de Stokes linéaire en une seule acquisition mais en contrepartie, la résolution spatiale des images polarimétriques est réduite. Nous avons mis au point une méthode d’étalonnage du polarimètre permettant de mesurer les caractéristiques des micro-polariseurs et du capteur de la caméra. L’étalonnage nous permet de connaître les défauts de la matrice de micro-polariseurs et donc de les compenser. Cependant, en présence de bruits de mesure, ces défauts ont toujours une influence sur la précision des paramètres polarimétriques estimés avec ce polarimètre. Nous avons défini des expressions analytiques pour exprimer la variance d’estimation des paramètres polarimétriques en fonction des défauts des micro-polariseurs pour chaque super-pixel et en fonction de l’orientation de la polarisation incidente. Ces résultats peuvent être utilisés afin de guider la fabrication des micro-grilles de polariseurs en optimisant les contraintes de fabrication pour minimiser la variance d’estimation des paramètres polarimétriques.

Les principales limites de cette technologie de polarimètre sont qu’elle ne permet de mesurer que les caractéristiques linéaires de la polarisation et que la résolution spatiale des images polarimétriques est réduite par rapport à la résolution native du capteur. Il est possible de repousser ces limites en plaçant un composant retardateur en amont de la
caméra et en faisant plusieurs acquisitions. Ainsi, en un minimum de deux acquisitions contre quatre avec un polarimètre à division de temps classique, il est possible de mesurer un vecteur de Stokes complet. Nous avons trouvé plusieurs configurations du retardateur pour estimer le vecteur de Stokes de manière optimale en présence de bruits de mesure. De plus, faire deux acquisitions avec un polarimètre DoFP permet d’obtenir 8 mesures d’intensité par super-pixel, or, l’estimation d’un vecteur de Stokes nécessite seulement 4 mesures d’intensité, il y a donc une redondance dans les mesures. Nous avons montré qu’il est alors possible d’estimer le vecteur de Stokes à partir de seulement 2 pixels au lieu de 4 ce qui revient donc à estimer le vecteur de Stokes à partir de 4 mesures d’intensité et permet d’augmenter la résolution spatiale des images polarimétriques dans une direction. Avec le même instrument, il est aussi possible d’obtenir des images polarimétriques à la résolution native du capteur, ce qui est possible en faisant 4 acquisitions, ce qui revient au même nombre d’acquisitions qu’un polarimètre à division de temps classique. Il est ainsi possible de choisir le nombre d’acquisitions et le composant retardateur en fonction des contraintes de temps de mesure, de résolution spatiale et des contraintes matérielles. Toutes ces configurations font de cette imageur polarimétrique un système de mesure flexible capable de s’adapter à de nombreuses situations.

Perspectives

Les caméras DoFP sont devenues plus abordables et de meilleure qualité ces dernières années, notamment grâce au développement de nouveaux capteurs Sony dont la matrice de micro-polariseur est intégrée directement au capteur lors de sa fabrication [19]. Ces nouveaux développements ainsi que les études sur des matrices de micro-polariseurs innovantes permettant de mesurer un vecteur de Stokes complet ouvrent des perspectives intéressantes pour la mesure des caractéristiques polarimétrique et pour l’amélioration du contraste.

Nous avons étudié la précision de mesure du vecteur de Stokes linéaire avec une caméra DoFP en prenant en compte les caractéristiques réelles de la matrice de micro-polariseurs et en présence de bruits de mesure. Nous avons aussi étudié la précision de mesure lorsqu’on ajoute un retardateur mais dans cette étude nous avons supposé que la matrice de micro-polariseur était parfaite. On peut généraliser cette étude en prenant en compte les éventuels défauts des micro-polariseurs et les nouvelles technologies de matrice de filtres polarimétriques permettant de mesurer un vecteur de Stokes complet en une seule acquisition.

On a vu que l’acquisition du vecteur de Stokes complet en deux acquisitions en ajoutant un retardateur devant la caméra DoFP permet d’augmenter la résolution spatiale horizontale en prenant des paires de pixels verticales ou d’augmenter la résolution spatiale verticale en prenant des paires de pixels horizontales. Une perspective intéressante est de combiner ces deux images grâce à un algorithme d’interpolation de manière à obtenir une seule image dont la résolution spatiale serait améliorée dans les deux directions.

Enfin, ces technologies offrent de nouvelles possibilités pour l’amélioration du contraste dans les images polarimétriques. La caméra DoFP peut être utilisée avec ou sans retardateur statique ou adaptatif, dans chaque configuration le nombre de degrés de liberté permettant d’optimiser le contraste est différent. Une étude comparative des performances d’optimisation du contraste dans les différentes configurations pourrait permettre de guider le choix vers le système le plus adapté aux différents besoins et contraintes d’une application donnée.
Liste des publications et communications

Publications dans des revues à comité de lecture

Conférence internationale

Conférence Française

Bibliographie

[27] Ning Li, Yongqiang Zhao, Quan Pan, and Seong G. Kong. Demosaicking DoFP images using Newton’s polynomial interpolation and polarization difference model. *Optics Express*, 27(2) :1376, 2019.

Titre : Caractérisation et optimisation de systèmes d’imagerie polarimétriques innovants

Mots clés : Imagerie, Polarisation, Contraste, Précision d’estimation

Résumé : L’imagerie polarimétrique permet de mesurer la polarisation de la lumière en chaque point d’une scène et de révéler des contrastes invisibles en imagerie classique. Nous étudions dans cette thèse le compromis entre la complexité instrumentale de ces imageurs et leur performance en présence de bruit de mesure. Le contraste que permet d’obtenir un imageur polarimétrique dépend de la capacité du polarimètre à adapter la modulation de la polarisation en fonction de la scène observée. En comparant les contrastes obtenus avec un imageur adaptatif capable de s’adapter à une scène et un imageur statique dont les états de polarisation accessibles sont en nombre limité, nous montrons que la perte de contraste est bornée et que dans le pire des cas le rapport entre les deux contrastes est de 1/9. Dans la pratique, l’utilisation d’un imageur statique est donc envisageable pour simplifier le système tout en conservant un contraste non nul.

La capacité d’un polarimètre à moduler la polarisation de la lumière a aussi une influence sur la précision avec laquelle on peut mesurer son état de polarisation. Nous avons étudié la précision de mesure d’un imageur polarimétrique à division de plan focal. Ce type de système à la particularité d’avoir une matrice de micro-polariseurs directement sur le capteur de la caméra ce qui permet de mesurer un vecteur de Stokes linéaire en une seule acquisition. Nous montrons qu’en présence de bruits de mesure, les défauts de fabrication des micro-polariseurs ont une influence sur la variance d’estimation des paramètres polarimétriques et que cette différence peut être quantifiée de manière précise.

D’autre part, nous montrons qu’il est possible de repousser les limites de ce type d’imageur en ajoutant un composant retardateur et en faisant plusieurs acquisitions ce qui permet de mesurer un vecteur de Stokes complet et d’améliorer la résolution spatiale. Nous déterminons les configurations permettant d’optimiser la précision de mesure en fonction de plusieurs contraintes telles que le temps d’acquisition, la résolution spatiale, le type de retardateur utilisé. La possibilité de choisir parmi toutes ces configurations donne à cet imageur la capacité de s’adapter à de nombreuses situations.

Title : Characterization and optimization of innovating polarimetric imaging systems

Keywords : Imaging, Polarization, Contrast, Estimation precision

Abstract : Polarimetric imaging allows to measure the polarization state of the light and to reveal contrasts that are invisible with classical imaging systems. In this thesis we study the trade-off between the instrumental complexity of these imagers and their performance in the presence of measurement noise. The contrast that can be obtained with a polarimetric imager depends on its capacity to modulate the polarization depending on the observed scene. By comparing the contrasts obtained with an imager that can be adapted to a given scene and a static imager which polarization states are fixed, we show that the loss of contrast is limited and that in the worst case the ratio between both contrast is 1/9. In practice static imagers that are easier to build and operate can thus be a good alternative to adaptive imagers.

The polarimeter’s ability to modulate light polarization influences the measurement precision of its polarization state. We have studied the measurement precision of a division of focal plane polarimeter. The distinguishing aspect of this kind of imager is that a matrix of micro-polarizers is placed directly on the camera sensor which allows to measure a linear Stokes vector in one acquisition. We show that in the presence of measurement noise, the manufacturing defects of the micro-polarizers have an influence on the estimation variance of polarimetric properties and that this difference can be precisely quantified.

Moreover, we show that it is possible to push the boundaries of this type of imager by doing multiple acquisitions and adding a retarder in front of the camera which allows to measure the full Stokes vector and to improve spatial resolution. We determine the configurations that optimize the measurement precision as a function of different constraints such as acquisition time, spatial resolution and the type of retarder. The possibility to choose among all these configurations gives to this imager the ability to adapt to many situations.