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“There is nothing more difficult to take in hand, more
perilous to conduct, or more uncertain in its success, than
to take the lead in the introduction of a new order of
things.”

— Niccolo Machiavelli

1
Introduction

In 1982 the well-known theoretical physicist Richard Feynman has proposed the idea of a
universal quantum simulator consisting of a special device to simulate any many-body quantum
system, hence, permitting to provide new insight on the many-body problem [1]. A many-
body system, ie. a quantum system composed of many interacting particles, is described
mathematically by a Hilbert space whose dimension depends exponentially on the number of
particles. Feynman has shown that the simulation of such system on a classical computer would
necessary lead to an exponential time while his hypothetical quantum simulator would not.
His approach consists of simulating a many-body quantum system using a fictional quantum
computer based on qubits mimicking the behaviour of the particles, see Refs. [2–10] for a
non-exhaustive list of reviews on quantum simulation. In the last decades, with the dramatic
progress realized in the experimental control of quantum matter in condensed matter, atomic,
molecular, and optical physics, such quantum simulators are not fictional anymore. Indeed,
they have been realized experimentally on a large variety of platforms including ultracold
atomic gases [5,11] and trapped ions [6,12–15]. For instance, a possible experimental realization
of the trapped-ion quantum simulator consists of confining by a large homogeneous magnetic
field, ie. a Penning trap, cold atomic ions. The outermost electron of each ion stores the
information of a qubit (a two-state quantum-mechanical system corresponding here to an
effective s = 1/2 spin) via the two quantized values of its spin projection. Another possibility
is to take advantage of a transition between two internal hyperfine states of the ions to encode
the two local states of a qubit [16,17].

Due to the simultaneous progress realized in the field of ultracold atomic gases and
trapped ions, the two corresponding experimental platforms have permitted to simulate a large
variety of isolated particle and spin lattice models initially introduced in condensed matter
physics with unprecedented control possibilities of the parameters in time. In particular, this
experimental opportunity in the tuning of interaction parameters has permitted to provide new
insights on one important aspect of the many-body problem, namely the far-from-equilibrium
dynamics [16–24]. Indeed, via a sudden modification of one or several interaction parameters
of the Hamiltonian governing an isolated quantum system, the latter can be driven far from
equilibrium. Experimentally, these quenches can be performed in different ways. For isolated
particle lattice models, the amplitude of the laser beams used to create the artificial lattice

14



1. Introduction

can be changed abruptly to modify the hopping amplitude [21, 22]. In the case of isolated
spin lattice models, laser-induced optical dipolar forces can be generated suddenly to create
long-range interactions [16,17].

Understanding the far-from-equilibrium dynamics of isolated quantum lattice models has
become a central subject of the many-body theory where one specific issue concerns the
spreading of quantum correlations [25–34]. The latter is at the center of many fundamental
phenomena including the propagation of information, relaxation and thermalization.
For isolated short-range interacting lattice systems, the existence of the so-called Lieb-Robinson
bound implies the emergence of a linear causality cone beyond which the quantum correlations
are exponentially suppressed [35–37]. However, this bound resulting in a ballistic propagation,
in particular, of the equal-time correlation functions [36] is not sufficient to fully characterize
the causal correlation cone [32].
Another class of quantum systems particularly interesting in the context of the far-from-
equilibrium dynamics corresponds to long-range interacting lattice models. Indeed, the latter
induce rich dynamical behaviour due to the breakdown of fundamental concepts such as the
equivalence of the thermodynamic ensembles, the Lieb-Robinson propagation bound and the
notion of group and phase velocities which can also lead to peculiar behaviours. For these
quantum systems, crucial open questions are still debated, in particular how the correlation
and information spreading is modified in the presence of long-range interactions. Naturally,
generalized Lieb-Robinson bounds for the correlation spreading have been derived in the
case of long-range quantum systems with power-law decaying interactions of the form 1/Rα
[37, 38]. Here, α refers to the power-law exponent controlling the decay of the long-range
interactions. These investigations of the transport of quantum correlations and information in
long-range interacting lattice models gained a lot of momentum in the last decades due to
the development of various experimental platforms offering the possibility to simulate a large
class of quantum systems where the strength and the decay of the long-range interactions
can be accurately controlled. For instance, long-range interacting quantum systems have
been realized experimentally using Rydberg gases [39–42], polar molecules [43–45], nonlinear
optical media [46], magnetic atoms [47–51], solid-state defects [52–54] and artificial ion crystals.
However, the related experiments and numerical investigations have led to conflicting pictures
[16,17,27–30,55]. For example, trapped-ion experiments [16] and numerical simulations [56]
for the long-range XY chain point towards bounded, super-ballistic, propagation for all values
of α. In contrast, experiments on the long-range transverse Ising chain have reported ballistic
propagation of correlation maxima [17]. Moreover, different powerful numerical approaches to
simulate low-dimensional quantum lattice models, such as the time-dependent density matrix
renormalization group and variational Monte-Carlo techniques have indicated the existence of
three distinct regimes, namely instantaneous, sub-ballistic, and ballistic, for increasing values
of the power-law exponent α [27–30,55,57].

Hence, while the correlation spreading in isolated quantum lattice models has been
extensively studied in the literature, a clear general approach and physical picture are
missing. The aim of this thesis is to contribute to establish a generic approach and to
draw a comprehensive physical picture for the spreading of correlations in short- and long-
range interacting lattice models. To do so, we investigate the spreading of quantum correlations
in isolated lattice models with short- or long-range interactions, driven far from equilibrium
via sudden global or local quenches, both theoretically and numerically. We propose a generic
approach relying on a quasiparticle theory that can be applied both to short-range and long-
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1. Introduction

range interacting particle and spin models on a hypercubic lattice. This quasiparticle approach
permits to unveil a generic form of the equal-time correlation functions. Our main result is
that the correlation pattern displays a twofold structure in the vicinity of the correlation edge.
It is characterized by local maxima and a correlation edge that usually propagate differently.
For short-range interacting lattice models, both structures propagate ballistically but with
different velocities. For quantum systems with intermediate-range interactions, we show that
the local maxima and the correlation edge propagate algebraically. However, the scaling
laws are completely different and essentially unrelated. On the one hand, the correlation
edge propagates sub-ballistically with a non-universal scaling law. On the other hand, the
correlation maxima may propagate either ballistically or super-ballistically depending on the
properties of the spectrum. This behaviour is universal in the sense that it only depends on
the spectrum and not on the observables. These results shed new light on the propagation
of correlations in short- and long-range interacting quantum lattice models. They also have
significant consequences for the interpretation of numerical and experimental observations, in
particular in long-range systems.

The manuscript is organized as follows :

• Chapter 2 : Far-from-equilibrium dynamics in many-body quantum systems
We start by giving a general introduction to the far-from-equilibrium dynamics of isolated
quantum lattice models. Important phenomena occuring during such dynamics, such as
the relaxation, equilibration and the thermalization, are presented and illustrated by a
numerical or experimental result extracted from the literature. In this chapter, a special
care is devoted to the correlation spreading in short-range interacting quantum systems
driven far from equilibrium via quantum quenches. Important insights on this many-
body problem including the Lieb-Robinson bound and the Calabrese-Cardy quasiparticle
picture are discussed. Then, we turn to a presentation of the experimental realization of
isolated quantum systems, quantum quenches and their subsequent dynamics. Firstly,
the quench dynamics of a short-range interacting bosonic lattice model using ultracold
atoms loaded in an optical lattice is discussed. Secondly, we move on to the case of
long-range interactions where the experimental implementation of a spin lattice model
with power-law decaying interactions relying on trapped atomic ions and its response
to a quantum quench is analyzed. Finally, we discuss several powerful numerical and
theoretical techniques permitting to study the quench dynamics and, more generally, the
far-from-equilibrium dynamics of isolated quantum lattice models. For the numerical
part, the time-dependent matrix product state, time-dependent variational Monte Carlo
and the exact diagonalization approaches are discussed. For the theoretical part, a
quasiparticle approach based on a mean field approximation and the so-called quench
action are briefly introduced.

• Chapter 3 : Universal scaling laws for the correlation spreading in quantum lattice
models with variable-range interactions
In this chapter, the correlation spreading in isolated quantum lattice models driven far
from equilibrium via sudden global quenches is investigated theoretically. We introduce
a quasiparticle approach relying both on a mean field approximation and the bosonic
Bogolyubov theory, which is applicable to short-range and long-range interacting bosonic
and spin systems. We show that the latter permits to unveil a generic form for the
correlation functions whose corresponding space-time pattern is analyzed using stationary
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phase arguments. It turns out that the causal region of the generic space-time correlations
is characterized by a twofold linear structure for short-range interacting quantum lattice
models and by a twofold algebraic structure for long-range systems with intermediate-
range interactions. The corresponding spreading velocities and scaling laws of the double
structure for short-range and long-range interacting lattice models respectively are also
determined. For the case of short-range interactions, the theoretical predictions are
confirmed by a detailed study of the one-dimensional Bose-Hubbard model in both
the gapped Mott-insulating and gapless superfluid phases. For long-range interactions,
the scaling laws predicted by our quasiparticle approach are verified for two different
one-dimensional long-range interacting s = 1/2 spin lattice models, namely the XY
chain in the x polarized phase and the transverse Ising chain in the z polarized phase
corresponding to a gapless and a gapped quantum system respectively.

• Chapter 4 : Twofold correlation cone in a short-range interacting quantum lattice model
This chapter is devoted to a numerical investigation of the correlation spreading induced by
sudden global quenches in the short-range interacting lattice model considered previously,
the Bose-Hubbard chain. The purpose of this study is twofold. On the one hand, we
aim at testing the analytic theory presented in Chapter 3 against a numerically exact
approach, beyond the mean field approximation. On the other hand, we aim at extending
the general picture to quantum regimes that are not amenable to analytic treatments.
After presenting the time-dependent matrix product state approach we use, we discuss
the results in detail. Our numerical results fully confirm our analytical predictions in
their respective regimes of validity, namely in the superfluid mean field regime and deep
in the Mott-insulating phase. Furthermore, we show that the twofold structure of the
correlation spreading survives in strongly interacting regimes, in particular in the vicinity
of the Mott transitions. We also extend the study to sudden local quenches in the Mott
phase, as well as in the Heisenberg model in order to treat the case of a short-range
interacting gapped and gapless quantum system respectively.

• Chapter 5 : Spreading of correlations and entanglement in the s = 1/2 long-range
transverse Ising chain
In the last chapter, we turn to long-range interacting lattice models. We present the
numerical approach we use, relying on the matrix product state representation within
the time-dependent variational principle. We then focus on the long-range transverse
Ising chain. The numerical results confirm the predictions of the analytic treatment
presented in Chapter 3 : For a sudden global quench and intermediate-range interactions,
the correlations show a clear twofold behaviour. While the maxima spread ballistically
for this gapped system, the correlation edge displays a sub-ballistic behaviour. For
the local regime, equivalent to the case of short-range interactions, a twofold ballistic
behaviour is found and the associated spreading velocities are fully characterized by the
excitation spectrum. Moreover, we extend our study to the case of sudden local quenches,
considering both the local magnetization and several Rényi entropies to characterize the
entanglement spreading. Finally, we turn to another long-range interacting spin lattice
model, namely the long-range XY chain, which is expected to behave differently owing
to its gapless spectrum. In this case, we find a twofold algebraic behaviour where the
maxima spread super-ballistically but the correlation edge spreads sub-ballistically.
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“It doesn’t matter how beautiful your theory is, it doesn’t
matter how smart you are. If it doesn’t agree with
experiment, it’s wrong.”

— Richard P. Feynman
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2. Far-from-equilibrium dynamics in many-body quantum systems

2.1 Dynamics in quantum mechanics

In the last decades, simultaneous progress realized in the experimental control of quantum
matter in condensed matter and atomic, molecular, and optical physics has given dramatic
momentum to the investigation of the far-from-equilibrium dynamics of isolated and correlated
quantum systems (see Refs. [6–8,10,58–70] and references therein). In particular, the major
achievement performed in the manipulation of ultracold quantum gases and trapped ions has
turned them into ideal experimental platforms for the quantum simulation. These platforms
can reproduce the quantum behavior of a wide class of isolated particle and spin lattice models
initially introduced in condensed matter physics with unprecedented control possibilities of the
corresponding Hamiltonian parameters in time, see Sec. 2.3. This experimental opportunity in
the tuning of interaction parameters has permitted to drive isolated lattice models far from
equilibrium via quantum quenches. The latter consist of preparing initially the quantum model
in a many-body quantum state and then modifying abruptly Hamiltonian parameters acting
on a specific lattice site or on the full quantum system and corresponding to the so-called
sudden local or global quenches respectively.
The atomic-gas and trapped-ion simulators permitting to drive many-body quantum systems
far from equilibrium have triggered a renewed interest for the research topic and shed new light
on long-standing open questions presented at Sec. 2.2. For instance, a fundamental question
about the out-of-equilibrium dynamics concerns the possibility for closed quantum systems
driven far from equilibrium to relax and equilibrate at long times. An important question raised
by these dynamical processes is then to characterize the corresponding stationary state and to
know whether the latter can be described by a thermal equilibrium state in the framework of
statistical quantum mechanics. Moreover, another important aspect of the far-from-equilibrium
dynamics concerns the transport properties. The main purpose is to understand how quantum
information, including quantum correlations and entanglement, can propagate into isolated
quantum lattice models and to determine how fast is this information spreading depending on
the dimensionality of the lattice, the interactions and the considered quantum phase.
At the moment, a universal picture to answer these fundamental questions is missing. Fur-
thermore, powerful theoretical generic approaches widely used to investigate near-equilibrium
dynamics are not valid anymore to explain the physical properties of the far-from-equilibrium
dynamics. One can mention for example the well-known linear response theory assuming weak
dynamical perturbations of the quantum system around its equilibrium state, see discussion
below. Nevertheless, important theoretical progress has been accomplished to solve these
important questions for low-dimensional lattice models, typically one- and two-dimensional
quantum lattice models, which are directly relevant to quantum simulations. Indeed, the
peculiarities of this class of lattice models make them amenable to a variety of analytical
and numerical techniques which are discussed at Sec. 2.4.

Near-equilibrium dynamics - The linear response theory

As discussed previously, the far-from equilibrium dynamics is a relatively new branch in the
research field of quantum dynamics and goes beyond the near-equilibrium one. The latter
consists of investigating the dynamical behavior of a quantum system submitted to a weak
external time-dependent perturbation around its equilibrium state. In what follows, we briefly
outline the widely-used theory to describe such dynamics : the linear response theory within
the Kubo formula, see Ref. [71] for more details. As famous results of this theory, one can
mention the spin (charge) susceptibilities of spin models submitted to a weak external magnetic
field (fermionic models submitted to a small external electric field).
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2. Far-from-equilibrium dynamics in many-body quantum systems

From a general point of view, this theory states that the response of the quantum system
to a weak external perturbation, which can be expanded in a power series of the perturbation,
is accurately described by performing a first-order approximation. In other words, the response
is proportional to the perturbation and hence the problem consists of understanding the
proportionality factor. Physically, considering a given weak external perturbation symbolized
by the operator V̂ , how is modified the expectation value at equilibrium 〈Â〉0 at first order in
V̂ ? This question is fully solved by the Kubo formula, characterizing the linear response of the
quantum system to any weak external perturbation, which is briefly discussed in what follows.

Considering a quantum model governed by the time-dependent Hamiltonian Ĥ = Ĥ0 +
V̂ (t)θ(t− t0). Ĥ0 denotes the time-independent Hamiltonian before applying the weak external
perturbation and V̂ (t)θ(t − t0) to the time-dependent perturbation applied at time t = t0
[θ(t− t0) corresponds to the translated Heaviside function defined as θ(t− t0) = 1, ∀t ≥ t0 and
0 otherwise]. Relying on the interacting picture particularly adapted for such non-equilibrium
problem, it can be shown that the time-dependent expectation value for a relevant physical
observable Â, ie. 〈Â(t)〉, at first order in the perturbative term V̂ , may be written as (see
Refs. [72, 73] for a complete derivation)

〈Â(t)〉 ≈ 〈Â〉0 − i
∫ t

t0
dt′〈[Â(t), V̂ (t′)]〉0. (2.1)

The brackets 〈...〉0 represents the equilibrium average with respect to the time-independent
Hamiltonian Ĥ0. We stress that Eq. (2.1) is valid for any relevant observable Â and weak
external perturbation V̂ . Note also that the analytical expression of the non-equilibrium
time-dependent expectation value 〈Â(t)〉 has been expressed in terms of a retarded correlation
function at equilibrium. Indeed, by defining the time-dependent connected expectation value
〈Âc(t)〉 = 〈Â(t)〉 − 〈Â〉0, allowing us to get rid of the equilibrium contribution, one obtains

〈Âc(t)〉 ≈
∫ +∞

t0
dt′CR

Â,V̂
(t, t′), (2.2)

where CR
Â,V̂

(t, t′) denotes the retarded (R) correlation function depending on the observables
Â and V̂ at time t and t′ respectively. The latter reads as

CR
Â,V̂

(t, t′) = −iθ(t− t′)〈[Â(t), V̂ (t′)]〉0. (2.3)

The causal response function at Eq. (2.3) corresponds to the well-known Kubo formula
representing the linear response of the quantum model to the perturbation V̂ acting on
the relevant observable Â. The latter states that the dynamical contribution of the time-
dependent expectation value 〈Â(t)〉 can be related to the expectation value at equilibrium of
the commutator involving the relevant observable Â and the perturbation V̂ , ie. 〈[Â(t), V̂ (t′)]〉0.

However, we stress that the Kubo formula does not hold anymore to investigate the
far-from-equilibrium dynamics of quantum models generated for instance via sudden quantum
quenches. The latter consist of preparing a highly excited initial state by applying suddenly a
strong global or local perturbation to the quantum system. Note that the protocol associated
to sudden global and local quenches are briefly discussed in the next section and presented in
more details at Subsec. 3.1.2. The strength of the linear response theory lies in the assumption
of a weak external perturbation permitting to truncate the response of the quantum system,
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2. Far-from-equilibrium dynamics in many-body quantum systems

displaying a power series of the perturbation, at first order. Hence, this yields to the powerful
and simple Kubo formula at Eq. (2.3) only requiring to evaluate a commutator involving
the relevant observable and the perturbation. As a consequence, due to the assumption that
the external perturbation is weak, this theoretical approach does not apply to describe the
dynamics of quantum models induced by sudden quantum quenches, except very small ones.

2.2 Far-from-equilibrium dynamics

In this section, we give a general introduction to the main research activities on the far-
from-equilibrium dynamics for isolated quantum lattice models. We first start by discussing
the relaxation and thermalization processes. They consist of characterizing the long-time
dynamics of far-from-equilibrium quantum systems to know whether the quantum model will
equilibrate or not, ie. if the long-time-evolved many-body quantum state can be seen as a
stationary state (relaxation), and if the latter can be described by a thermal state in the
framework of statistical mechanics (thermalization). Finally, we turn to a presentation of
the transport properties for such lattice models. More precisely, the information spreading,
including the propagation of entanglement and correlations, for isolated short-range interacting
quantum lattice models is discussed.

2.2.1 Relaxation process

Before discussing the relaxation process, we start by presenting the general context and more
precisely a class of widely-used protocols permitting to generate far-from equilibrium dynamics
for isolated quantum systems : the sudden global [21,29, 32–34,58,74–84] and local quenches
[34,85–87].

Concerning sudden global quenches, an isolated quantum system (quantum model decoupled
from its environment) governed by a Hamiltonian Ĥ(γ), depending on a single relevant
interaction parameter γ, is first considered. More precisely, Ĥ(γ) represents a translation
invariant, time independent and (in general) a short-range interacting Hamiltonian. At time
t = 0, the initial state, denoted by |Ψ0〉, corresponds to an eigenstate of Ĥ, in most cases to
the ground state of Ĥ. Hence, |Ψ0〉 = |Ψgs(Ĥi)〉 where Ĥi = Ĥ(γi) refers to the pre-quench
(initial) Hamiltonian. The latter is built from Ĥ for a specific initial interaction parameter γi.
Then, at time t = 0+, the interaction parameter γi is instantaneously modified to a value γf
and remains constant during the observation time. In other words, the real time evolution is
performed by considering a post-quench (final) Hamiltonian Ĥf = Ĥ(γf), see Fig. 3.2. Thus,
the time-evolved many-body quantum state |Ψ(t)〉 may be written as

|Ψ(t)〉 = e−iĤft |Ψ0〉 , with |Ψ0〉 = |Ψgs(Ĥi)〉 . (2.4)

Equation (2.4) represents the unitary 1 real time evolution of the initial state |Ψ0〉 with respect
to the post-quench Hamiltonian Ĥf . A direct consequence for such time evolution is the
conservation of both the norm and the energy from time t = 0+. Here, the conserved energy
Ef = 〈Ψ(t)|Ĥf |Ψ(t)〉 = 〈Ψ0|Ĥf |Ψ0〉 of the time-evolved quantum state |Ψ(t)〉 is higher than
Ei = 〈Ψ0|Ĥi|Ψ0〉 the ground state energy of the pre-quench Hamiltonian, ie. Ef > Ei. This
is due to the initial state |Ψ0〉 which can be seen as a highly excited state since it does not
consist of an eigenstate of Ĥf . As a consequence, the considered isolated quantum model is

1The quantum system has been assumed to be isolated from its environment.
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well driven far from equilibrium from time t = 0+.

Note that the protocol for sudden global quenches conserves the translational symmetry
during the full evolution process if both the pre- and post-quench Hamiltonians are transla-
tionally invariant. This is in opposition with the protocol for sudden local quenches which is
slightly different. Indeed, contrary to global quenches where the isolated quantum system is
globally quenched by considering a different Hamiltonian (more precisely a different interaction
parameter) to perform the real time evolution; for local quenches, a same Hamiltonian is
considered however the initial state is strongly perturbed locally. To present such protocol,
we consider as previously an initial state |Ψ0〉 corresponding to the ground state of Ĥ for a
specific interaction parameter γ. Then, |Ψ0〉 is strongly perturbed locally via for instance a
spin-flip for spin lattice models, or by moving, adding, or again removing a particle for bosonic
and fermionic lattice models. The direct consequence for this protocol step is the breaking of
the translational invariance. Finally, this highly excited state |Ψ̃0〉 perturbed locally evolves in
time with the Hamiltonian Ĥ used to compute the initial non-perturbed state |Ψ0〉.

We stress that it exists other classes of quantum quenches. One can mention the ramps
[18, 58, 88–91] (in opposition to sudden) where the Hamiltonian is changed progressively
according to a specific function in time, and the geometric quenches [77, 92, 93] consisting of a
sudden modification of the geometry of the lattice.

In what follows, to fix the context to discuss both the relaxation and equilibrium processes,
one considers the general case of an isolated quantum lattice model driven far from equilibrium
via a sudden global quench. An essential question is to understand how such quantum
model can possibly relax towards an equilibrium steady state. Indeed, the dynamics being
time-reversal invariant [see Eq. (2.4)] and recurrent for lattice models with a finite size, it is
relatively surprising for these models to reach equilibrium dynamically. A fundamental insight
to the understanding of such phenomena is that generic quantum lattice models driven far
from equilibrium display a relaxation and an equilibration processes when investigating the
long-time dynamics of time-dependent expectation values of local observables 〈Ô(t)〉. It is
important to stress that the locality plays a primordial role for these two long-time physical
processes.

To illustrate the previous statement, let us consider the example, provided at Ref. [94], of
a non-local (in space) hermitian operator P̂ defined as P̂ = |n〉 〈m|+ |m〉 〈n|. Here, |n〉 , |m〉
denotes two different eigenstates for the post-quench Hamiltonian Ĥf where the corresponding
eigenenergies are Ef

n and Ef
m respectively. According to Eq. (2.4), the corresponding time-

dependent expectation value of such observable can be written as

〈P̂ (t)〉 = 〈Ψ(t)|P̂ |Ψ(t)〉 = ei(E
f
n−Ef

m)t〈Ψ0|n〉〈m|Ψ0〉+ h.c. . (2.5)

Due to the presence of the oscillating terms ei(Ef
n−Ef

m)t and e−i(Ef
n−Ef

m)t in the first and second
contribution respectively, the long-time behavior of such non-local observable can not reach a
stationary (also called steady) value P̄ defined as P̄ = limt→+∞〈P̂ (t)〉 = limt→+∞〈Ψ(t)|P̂ |Ψ(t)〉.
In other words, for very long times the considered quantum model does not appear as if it had
equilibrated to a stationary state.

As a consequence, we stress that isolated quantum systems cannot globally relax to a
steady state but only locally. The interpretation is that the rest of the quantum system acts
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as an environment. A natural and rigorous description of such physical property is given in
terms of time-dependent reduced density matrices. They consist of performing a bipartition
of the lattice model. Then, to probe the behavior in time of one of the two subsystems, all
the degrees of freedom associated to the complementary subsystem are traced out for the
time-dependent density matrix (the latter characterizing globally the lattice model in time).
Mathematically, let us consider ρ̂(t) = |Ψ(t)〉 〈Ψ(t)| denoting the density matrix at time t
associated to the full quantum system, the reduced density matrix for the subsystem A is
given by ρ̂A(t) = TrB[ρ̂(t)] where B is the complementary subsystem (see also Appendix. K
for more details). Using a language based on reduced density matrices, one can formulate
a rigorous mathematical definition of both the local relaxation and local stationarity [94].
Concerning the local relaxation, one can state that an isolated quantum lattice model, having
a length L, relaxes locally if the following mathematical limit is verified :

lim
t→+∞

lim
L→+∞

ρ̂A(t) = ρ̂A(+∞), ∀ finite subsystem A. (2.6)

The latter states that an isolated quantum lattice model relaxes locally if the reduced density
matrix associated to any finite subsystem converges towards a time-independent matrix in the
thermodynamic limit and for very long times.

To define the local stationarity, we consider an isolated quantum system relaxing locally
in the previous sense. The latter admits a stationary state if its long-time dynamics can
be characterized locally via a time-independent density matrix ρ̂SS for the full quantum
system verifying the following condition

lim
L→+∞

TrB(ρ̂SS) = ρ̂A(+∞), ∀ finite subsystem A, (2.7)

where B is the complementary subsystem. Equation (2.7) states that each time-independent
reduced density matrix ρ̂A, found by considering the limit of infinite times which exists
due to the assumption of the local relaxation defined at Eq. (2.6), can be deduced from
the time-independent density matrix ρ̂SS by tracing out all the degrees of freedom of the
associated complementary subsystem B, in the thermodynamic limit. The fact that the
stationary state is described locally by a time-independent density matrix ρ̂SS implies that the
long-time expectation values of local observables are identical to the corresponding expectation
values using the density matrix ρ̂SS. Hence, if one considers Ô a local observable and Ō
its corresponding steady value, one should obtain

Ō = lim
t→+∞

〈Ô(t)〉 = Tr(ρ̂SSÔ). (2.8)

In what follows, we present an experimental observation of such relaxation and equilibration
processes. In Ref. [21], the authors have investigated the far-from-equilibrium dynamics of a
density wave of ultracold bosonic atoms loaded in an artificial (optical) lattice for an isolated
one-dimensional Bose gas. The latter is characterized by the Hamiltonian Ĥ of a non-integrable
Bose-Hubbard chain with an external harmonic trap which may be written as follows

Ĥ =
∑
R

[
−J(â†RâR+1 + h.c.) + U

2 n̂R(n̂R − 1) + K

2 R
2n̂R

]
, (2.9)

where âR (â†R) denotes the bosonic annihilation (creation) operator acting on the lattice site
R ∈ Z and n̂R the associated particle number operator. J > 0 corresponds to the hopping
amplitude, U > 0 to the on-site repulsive interaction energy and K = mω2a2 > 0 to the
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external harmonic trap (m refers to the particle mass, ω to the trapping frequency and a to
the lattice spacing).

The experimental protocol considered at Ref. [21], to observe the far-from-equilibrium
dynamics of a bosonic density wave in such isolated quantum model, is the following, see also
Fig. 2.1 :

1. At time t = 0, the quantum system is prepared in a bosonic density wave described by
the many-body quantum state

|Ψ0〉 = |..., 1R=−2, 0R=−1, 1R=0, 0R=1, 1R=2, ...〉 , (2.10)

where only the even lattice sites are occupied by a single bosonic particle. Note that, for
a same filling n̄ & 1/2, |Ψ0〉 can be built from the ground state of the extended version of
the previous Hamiltonian Ĥ by adding the interaction term V n̂Rn̂R+1 with V > 0 inside
the sum over the lattice sites at Eq. (2.9), and by considering the following condition on
the energy ratios V/J, U/J � 1 and K/J � 1.

2. At time t = 0+, the quantum model is suddenly and globally quenched to different
interaction parameters J, U,K from those considered initially to prepare the density
wave 2. The new set of parameters is characterized by U/J > 1 and K/J � 1 while
the filling n̄ is fixed 3. This defines the post-quench Hamiltonian used to perform the
unitary time evolution and where a tunneling process is allowed.

3. Finally, at time t, the time evolution of the quantum system is frozen by suppressing
the tunnel-coupling (J) between nearest lattice sites to read out the properties of the
corresponding time-evolved quantum state |Ψ(t)〉.

Figure 2.1: Quench and measurement protocols for the experimental investigation of the far-from-
equilibrium dynamics of a density wave for an isolated one-dimensional Bose gas. (a) Preparation: the
quantum system is initially prepared in a density wave |Ψ0〉, see Eq. (2.10), requiring a large lattice
depth to maximize the energy ratio U/J . (b) Evolution: a global quench is applied to the lattice
model at t = 0+ by reducing suddenly the lattice depth (or equivalently the ratio U/J) permitting a
tunneling process for bosons on nearest lattice sites. (c) Readout: the properties of the time-evolved
quantum state |Ψ(t)〉 are read out by freezing the time evolution of the quantum system by suppressing
the tunneling process. Figure extracted and adapted from Ref. [21].

On Fig. 2.2 extracted from Ref. [21], we display several experimental measurements of the
time-dependent odd-density average nodd(t) ∝∑R〈Ψ(t)|n̂2R+1|Ψ(t)〉 = ∑

R〈Ψ0|n̂2R+1(t)|Ψ0〉,
2The latter implies in particular U/J → +∞ in order to suppress the tunneling process.
3Note that the Hamiltonian Ĥ at Eq. (2.9) is fully characterized by three physical quantities : the ratio

U/J , K/J and the filling n̄.
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Figure 2.2: Relaxation and equilibration processes in the far-from-equilibrium dynamics of a
density wave for an isolated one-dimensional Bose gas via an experimental investigation of the time-
dependent odd-density average nodd(t). (1) Odd-density average nodd(t) ∝

∑
R〈Ψ(t)|n̂2R+1|Ψ(t)〉 =∑

R〈Ψ0|n̂2R+1(t)|Ψ0〉, where |Ψ0〉 denotes the state vector of the bosonic density wave defined at
Eq. (2.10), as a function of the time t in milliseconds. (2) nodd(t) as a function of the dimensionless
time 4Jt/h, where h is the Planck constant and J the hopping amplitude, for four different interaction
strengths U/J (blue circles). The solid lines represent numerical results obtained from t-DMRG
simulations. The dashed lines represents numerical results using the same tensor-network based
technique by adding a next-nearest neighbor hopping term of the form −JNNN

∑
R(â†RâR+2 + h.c.) in

the Hamiltonian at Eq. (2.9), where the associated hopping amplitude is given by JNNN/J ' 0.12 (a),
0.08 (b), 0.05 (c) and 0.03 (d). Both figures (1) and (2) are extracted from Ref. [21].

where |Ψ0〉 denotes the initial many-body quantum state defined at Eq. (2.10) and representing
the bosonic density wave.
The experimental results on Fig. 2.2(1) shows the evolution of nodd(t) as a function of the time t
(in milliseconds) for a post-quench Hamiltonian defined by the following ratios: h/4J ' 0.9 ms,
U/J = 5.16(7)� K/J ' 9× 10−3. As expected, nodd = 0 at t = 0. The latter is due to the
initial state |Ψ0〉 where only the even sites of the lattice chain are occupied by a single bosonic
particle. Then, just after the global quench where the lattice depth is significantly decreased
(and thus allowing a tunneling process to occur), the odd-density average rapidly increases to
reach a maximal value around 0.6 at time t = 0.5 ms. Finally, for t > 0.5 ms, clear damped
oscillations for nodd with a temporal period T ' h/4J can be observed. Consequently, such
behavior is a clear experimental evidence of the local relaxation process for a specific isolated
quantum lattice model. Furthermore, note that these damped oscillations on several periods
(consisting of a time of 3− 4 ms approximately) reach the value n̄odd ' 1/2 which remains
constant for longer times. Hence, the previous value can be seen as the steady (or stationary)
one and characterize the equilibration process. This stationary value was expected since the
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post-quench Hamiltonian is confined in the superfluid phase (n̄ /∈ N and J 6= 0), leading to a
similar occupation probability of the bosonic particles between the even and odd sites of the
lattice chain.
Similar experimental investigations have been performed by the authors of Ref. [21] for various
values of the interaction parameter U/J , as shown on Fig. 2.2(2), where the experimental data
are found to be in very good agreement with t-DMRG numerical simulations. For the four
different interaction strengths U/J , the previous statements concerning the time evolution of
nodd(t) deduced from Fig. 2.2(1) are still valid. Indeed, for each panel of Fig. 2.2(2), both a
relaxation and a equilibration process occur characterized by damped oscillations on several
periods and a steady odd-density average n̄odd ' 1/2 respectively.

On Fig. 2.2, when investigating the time-dependent odd-density average nodd(t) for different
interaction strengths U/J , both a relaxation and equilibration process have been unveiled.
Besides, since the Hamiltonian at Eq. (2.9) is non-integrable, the corresponding stationary
states are expected to be indistinguishable locally from a thermal equilibrium state described
by a standard Gibbs ensemble. This assumption is supported by the eigenstate thermalization
hypothesis conjecturing that only isolated non-integrable quantum systems driven far from
equilibrium will evolve in time to a thermal Gibbs state, ie. will thermalize. Such thermalization
process can not occur for integrable models due to their additional local or quasi-local
conservation laws 4. Nevertheless, the stationary states for integrable quantum models
can still be described in the framework of statistical quantum mechanics by relying on
the so-called generalized Gibbs ensemble. This statistical ensemble consists of building a
density matrix to describe the stationary state [see Eq. (2.7)] by taking into account all
the additional conservation laws. These features concerning the thermalization process are
discussed in more details at Subsec. 2.2.2.

2.2.2 Thermalization process

Within the study of the equilibration process for isolated quantum lattice models driven far
from equilibrium, one can wonder how to characterize the corresponding long-time equilibrium
state, described locally by a time-dependent density matrix ρ̂SS verifying Eq. (2.7). The
significant success of statistical mechanics [95–97] to study physical systems with a large
number of degrees of freedom indicates that equilibrium properties can be in general well
captured by few global parameters such as the temperature and possibly the chemical potential,
ie. by considering the standard Gibbs ensembles.

The term thermalization refers to the physical process where the stationary state can
be accurately described by a thermal equilibrium state. The latter is thus expected to be
proportional to the operator e−βeffĤ fully characterized by an effective inverse temperature
βeff [59]. Indeed, since isolated quantum systems are considered from the beginning, the total
energy is always a conserved physical quantity. To illustrate the previous statement and for
the following discussions, let us consider a sudden global quench at a time t = 0+ where
Ĥ denotes the post-quench Hamiltonian of an isolated many-body quantum system. The
total energy E(t) during the unitary time evolution is given by

4Hence, the allowed portion of the many-body Hilbert space will be drastically decreased biasing the quench
dynamics.
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E(t) = Tr[ρ̂(t)Ĥ] = Tr[ρ̂(0)Ĥ(t)] = Tr[ρ̂(0)Ĥ(0+)] = Tr[ρ̂(0+)Ĥ] = E(0+), (2.11)

and hence is well conserved during the quench dynamics. Let us discuss in more details the
definition of the thermal equilibrium state. According to the rigorous mathematical definition
of the local stationarity provided at Ref. [94] and presented at Eq. (2.7) to describe the
equilibration process, the time-dependent matrix ρ̂SS characterizing the stationary state locally
can be defined using a standard Gibbs ensemble. Here, the canonical ensemble is considered
since no physical quantity other than the energy is assumed to be conserved during the
quench dynamics. Consequently, while considering a fixed effective inverse temperature
βeff , ρ̂SS may be written as [94, 98]

ρ̂SS = ρ̂Gibbs,c = 1
Z
e−βeffĤ , (2.12)

with Z = Tr(e−βeffĤ) the canonical partition function. The effective inverse temperature βeff is
deduced by constraining the energy in the Gibbs canonical ensemble to be equal to the one of
the time-evolved quantum state |Ψ(t)〉, ie. 〈Ψ(t)|Ĥ|Ψ(t)〉 = 〈Ψ(0+)|Ĥ|Ψ(0+)〉 = Tr(ρ̂Gibbs,cĤ).
A very similar reasoning applies if one has in addition a particle-number conservation. For
this specific case, ρ̂SS is defined via the grand canonical ensemble leading to

ρ̂SS = ρ̂Gibbs,gc = 1
Z
e−βeff(Ĥ−µeffN̂), (2.13)

with N̂ the total particle number operator, µeff the effective chemical potential and Z =
Tr[e−βeff(Ĥ−µeffN̂)] the grand canonical partition function. βeff is fixed in a similar way as
before, ie. 〈Ψ(t)|Ĥ|Ψ(t)〉 = 〈Ψ(0+)|Ĥ|Ψ(0+)〉 = Tr(ρ̂Gibbs,gcĤ). To set µeff , the total number
of particles N in the Gibbs grand canonical ensemble has to be equivalent to the one of
the time-evolved quantum state |Ψ(t)〉. Hence, the constraint can be formulated as follows,
N = 〈Ψ(t)|N̂ |Ψ(t)〉 = Tr(ρ̂Gibbs,gcN̂).

We stress again that Eq. (2.12) has to be understood in the following sense : the stationary
state is described locally by the Gibbs canonical ensemble meaning that the long-time
expectation values of local observables are identical to the corresponding thermal expectation
values. Mathematically, by considering Ô a local observable and Ō its steady value, we get

Ō = lim
t→+∞

〈Ô(t)〉 = Tr(ρ̂SSÔ) = Tr(ρ̂Gibbs,cÔ). (2.14)

Hence, one can be more precise about the underlying physical process behind the thermalization.
We recall that for the equilibration process, the complementary subsystem with respect to
the one on which the local observable Ô acts, can be seen as an environment. Therefore, for
the thermalization process, this environment is similar to a heat bath with the fixed effective
inverse temperature βeff [94]. Similar statements also hold for Eq. (2.13) when considering the
Gibbs grand canonical ensemble.

To sum up, the thermalization process, or again the local relaxation toward a thermal
equilibrium state, is expected to occur for isolated quantum systems in the absence of additional
local conserved quantities which are not taken into account by the standard Gibbs ensembles.
Such statement is conjectured by the eigenstate thermalization hypothesis (ETH) [80, 99–102].
Indeed, the latter suggests that, for generic non-integrable (complex-enough) isolated many-
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body quantum systems driven far from equilibrium, each eigenstate of the quench Hamiltonian
is locally indistinguishable from a thermal state with the same energy. Hence, this hypothesis
implies that the stationary state can be described accurately and locally by the standard Gibbs
ensembles, ie. is indistinguishable locally from a thermal equilibrium state, see Ref. [80] for
more details.

On Fig. 2.3 extracted from Ref. [80], we present numerical results illustrating the thermal-
ization process for a non-integrable isolated quantum lattice model driven far from equilibrium.
To do so, the authors have investigated, via an exact diagonalization technique, the relaxation
dynamics. The considered quantum lattice model consists of 5 hardcore bosons confined in a
two-dimensional lattice where 4 lattice sites are missing, see Fig. 2.3(a). The hardcore bosons
are prepared in the ground state of the sublattice in the lower-right corner denoted by |Ψ(0)〉.
Then, the system is driven far from equilibrium via a sudden geometric quench performed
by releasing them through the indicated link (see the door symbol on Fig. 2.3). Since the
quantum model is assumed to be isolated, its time evolution is unitary and the corresponding
time-evolved quantum state |Ψ(t)〉 can be written as |Ψ(t)〉 = e−iĤt |Ψ(0)〉 where Ĥ denotes
the final (or the quench) Hamiltonian. The latter reads as (~ = 1)

Ĥ = −J
∑
〈i,j〉

(b̂†i b̂j + h.c.) + U
∑
〈i,j〉

n̂in̂j , (2.15)

where 〈i, j〉 indicates a summation over all the nearest-neighbor lattice sites. As usual, J > 0
refers to the hopping amplitude and U > 0 to the nearest-neighbor repulsion parameter fixed to
U = 0.1J . Since hardcore bosons are considered, they fulfill the usual canonical commutation
rules on distinct lattice sites [b̂i, b̂j ] = [b̂i, b̂†j ] = [b̂†i , b̂

†
j ] = 0, ∀i 6= j. However, the hardcore

constraint imposes the canonical anticommutation rules on a same lattice site {b̂i, b̂†i} = 1 and
(b̂i)2 = (b̂†i )2 = 0 for all i. n̂i = b̂†i b̂i corresponds to the local density operator acting on the
lattice site i = (ix, iy).

On Fig. 2.3(b), n(kx = 0, t) = ∑
ky n(kx = 0, ky, t) the time-dependent momentum

distribution center is represented as a function of the dimensionless time tJ (~ = 1). The
latter is defined from the time-dependent momentum distribution 5 n(k, t) of the full two-
dimensional square lattice, which may be written as

n(kx, ky, t) = (1/L2)
∑
i,j

e−i2πk(ri−rj)/L〈Ψ(t)|b̂†i b̂j |Ψ(t)〉, (2.16)

where L = Lx = Ly = 5 (Ly : lattice width along the vertical axis) and ri = (ixd, iyd), the
position, involves the lattice spacing d. The time-dependent momentum distribution center
n(kx = 0, t) clearly displays a relaxation process and then equilibrates to the steady value
n̄(kx = 0) ' 1.6, see solid blue line. Hence, it should exist a time-independent density matrix
ρ̂SS describing accurately and locally this stationary state. The previous results are also
compared to the predictions of the diagonal, microcanonical and canonical ensembles (see
the dashed red, green, purple lines respectively and see caption of Fig. 2.3 and Ref. [80] for
more details concerning the standard Gibbs ensembles), and show a very good agreement on
a large timescale. Consequently, the density matrix ρ̂SS previously introduced, can be seen

5The latter is easily found by performing a Fourier transform of the density operator in momentum space
n̂(k) = b̂†kb̂k and then by considering its expectation value with respect to the time-evolved quantum state
|Ψ(t)〉.
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Figure 2.3: Relaxation towards a thermal equilibrium state. (a) Two-dimensional lattice on which 5
hardcore bosons propagate in time. Initially, the hardcore bosons are prepared in the ground state
of the sublattice in the lower-right corner denoted by |Ψ(0)〉. Then, a sudden geometric quench is
performed by releasing them through the indicated link. (b) Relaxation dynamics of n(kx = 0) the
momentum distribution center and compared with the predictions of the diagonal, microcanonical
and canonical statistical ensembles. For the microcanonical ensemble, the average is taken over all
eigenstates whose corresponding eigenenergies are lie within a narrow window [E0 −∆E,E0 + ∆E]
where E0 = 〈Ψ(0)|Ĥ|Ψ(0)〉 = 〈Ψ(t)|Ĥ|Ψ(t)〉 = −5.06J is the mean energy of the initial state just
after the geometric quench (Ĥ denotes the final Hamiltonian), ∆E = 0.1J and J corresponds to the
hopping amplitude. The canonical ensemble (effective) temperature is fixed to kBT = 1.87J , with kB
the Boltzmann constant, so that the ensemble prediction concerning the energy leads to the value E0.
(c) Momentum distribution function n(kx) as a function of the momentum kx in units of 2π/(Lxd) in
the initial state, after relaxation, and in the three previous ensembles. d refers to the lattice spacing
and Lx = 5 to the lattice width along the horizontal axis. Figures extracted from Ref. [80].

as being equal locally to the one associated to the standard Gibbs ensembles considered here
(microcanonical, canonical), ie. ρ̂SS,loc = ρ̂Gibbs,loc (loc refers to the locality). As a consequence,
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the stationary state is indistinguishable locally from a thermal equilibrium state and this
validates the conclusion provided by the ETH. Indeed, one reminds that this hypothesis
conjectures that isolated non-integrable quantum systems, driven far from equilibrium, evolve
in time towards a stationary state which appears to be in thermal equilibrium.
A second verification is provided at Fig. 2.3(c) where the momentum distribution n(kx) is
represented as a function of the momentum kx in units of 2π/(Lxd), after relaxation, and
using the three same ensembles (diagonal, microcanonical, canonical). The numerical results
for this observable after the relaxation process and the corresponding predictions from the
two Gibbs ensembles are in very good agreement. This means once again that the properties
of the stationary state are well captured by the standard Gibbs ensembles. Note that both
physical quantities, n(kx) the full momentum distribution with respect to the horizontal axis
and the associated time-dependent momentum distribution center n(kx = 0, t), are accessible
from actual experiments using ultracold cold atoms loaded in an artificial (optical) lattice, see
Ref. [103] for instance.

However, in the case of integrable isolated quantum systems [104] having additional local
conservation laws than the sole energy (and possibly the particle-number conservation) during
the quench dynamics, they do not thermalize and the ETH fails (see Refs. [77,80,105] for several
examples). More precisely, the ETH breakdown is due to these additional local conserved
quantities biasing the dynamics and preventing a thermalization in a Gibbs canonical (or grand
canonical) ensemble to occur. Hence, the failure of the eigenstate thermalization hypothesis
results in an impossibility to describe the stationary state for integrable isolated systems by
a thermal equilibrium state via a standard Gibbs ensemble. Note that the validity and the
breakdown of the ETH have been extensively studied for a large panel of models [58,80,105–107].

Nevertheless, using a so-called generalized Gibbs ensemble (GGE), the stationary state
of integrable isolated quantum systems can be accurately described locally, see Ref. [98] and
references therein for more details. The GGE denotes a statistical ensemble characterized by
a density matrix ρ̂GGE constructed by taking into account all the local conserved quantities
during the quench dynamics. In the following, we consider a general context to build such
density matrix. To do so, a set of local operators {Q̂n} is introduced and denotes the different
local conserved quantities of the quench dynamics with an associated set of Lagrange multipliers
βn. Since the set {Q̂n} represents the non-trivial constants of motion, they commute mutually,
ie. [Q̂n, Q̂n′ ] = 0, ∀n, n′, but also each of them commutes with the post-quench Hamiltonian
Ĥ, ie. [Ĥ, Q̂n] = 0, ∀n. Therefore, the associated GGE density matrix is defined as

ρ̂GGE = 1
Z
e−
∑

n
βnQ̂n , (2.17)

with Z = Tr(e−
∑

n
βnQ̂n) the partition function of the generalized Gibbs ensemble. Each

Lagrange multiplier βn is fixed such that the GGE expectation value of its corresponding
operator Q̂n is equal to the one just after the quench. Once again, we consider the case of a
sudden global quench at time t = 0+ to drive the isolated integrable model far from equilibrium.
Mathematically, the effective parameter βn is determined by the following constraint

〈Ψ(0+)|Q̂n|Ψ(0+)〉 = Tr(ρ̂GGEQ̂n). (2.18)

Finally, for an integrable isolated many-body quantum model relaxing and equilibrating locally
to a non-thermal equilibrium state, one expects to find the following relation
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Ō = lim
t→+∞

〈Ψ(t)|Ô|Ψ(t)〉 = Tr(ρ̂GGEÔ), (2.19)

where Ô is a local observable having a steady value Ō. Several examples using the generalized
Gibbs ensemble can be found at Refs. [98, 108, 109].

2.2.3 Information spreading and the Lieb-Robinson bound

Another important aspect of the far-from-equilibrium dynamics concerns the transport
properties of isolated quantum lattice models and more precisely the spreading of information.
Indeed, the ability of quantum lattice models to establish long-distance correlations and
entanglement, and possibly equilibrate, is determined by the speed at which information
can propagate within the lattice. An important progress for a better understanding of the
information spreading is given by the Lieb-Robinson bound limiting the speed at which
the information can propagate into lattice systems having short-range interactions and a
finite local Hilbert space.

Lieb-Robinson bound In 1972, Lieb and Robinson have unveiled a bound that forms a
linear causality cone beyond which information decays exponentially, see Ref. [35]. More
precisely, the Lieb-Robinson bound makes a statement about the norm of the commutator
of any observables ÔA and ÔB, supported on regions A and B respectively, and taken at
different times. The latter may be written as follows

||[ÔA(t), ÔB(0)]|| ≤ cNmin||ÔA|| ||ÔB||e−
L−v|t|
ξ , (2.20)

where L denotes the distance between the region A and B, and can be seen as the number of
edges in the shortest path connecting the two regions. Nmin = min(|A|, |B|) corresponds to
the number of lattice sites in the smallest region, ||ÔA|| (||ÔB||) to the operator norm of the
observable ÔA (ÔB) and c, v, ξ to positive constants. The positive constant v, depending only
on the interactions of the Hamiltonian governing the quantum model and the lattice structure,
plays the role of the group velocity and is generally called the Lieb-Robinson velocity. We
point out that the Lieb-Robinson bound does not depend on the quantum state of the system
but only on the Hamiltonian Ĥ governing the dynamics. Indeed, the norm of the commutator
[ÔA(t), ÔB(0)] = ÔA(t)ÔB(0)− ÔB(0)ÔA(t) involves the time-evolved operator ÔA(t) which
may be written as ÔA(t) = eiĤtÔA(0)e−iĤt in the Heisenberg picture and depends only on Ĥ.
Hence, once this operator norm is established, the bound is valid for any quantum state of the
system.

This Lieb-Robinson bound describes how an observable ÔA supported on a region A
can affect another observable ÔB living in a different region B after a time t. According to
Eq. (2.20), it states that the speed of propagation for the quantum information is bounded
ballistically and leads for the space-time pattern of the physical quantity ||[ÔA(t), ÔB(0)]|| to
a linear causality cone (also called effective light cone) beyond which the information decays
exponentially. Indeed, the quantum information decreases exponentially fast with the distance
L − v|t| and becomes negligible for any time |t| fulfilling |t| � L/v. Although the norm of
the commutator between two observables ÔA and ÔB is not of a general interest in quantum
mechanics, the latter is essential since it implies a similar bound for both the entanglement and
the equal-time correlation functions (providing that the initial many-body quantum state does
not contain long-range correlations) [36]. In the following, a special care will be devoted to the
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understanding of the space-time behavior of equal-time correlation functions corresponding to
the main research topic of this thesis.

In Ref. [36], the authors have characterized the amount of correlations that can be
created by a short-range interacting Hamiltonian evolution. They found that the latter
vanishes also exponentially outside a linear causality cone. In other words, they unveiled as
previously for the quantum information, a ballistic bound for the propagation of correlations.
To do so, the space-time behavior of equal-time connected correlation functions has been
investigated. The authors started by considering a many-body quantum state |Ψ〉 with a finite
correlation length χ > 0, ie. one for which all the connected correlation functions, 〈ÔAÔB〉c ≡
〈Ψ|ÔA(t)ÔB(t)|Ψ〉 − 〈Ψ|ÔA(t)|Ψ〉〈Ψ|ÔB(t)|Ψ〉, decay exponentially. This implies that

|〈ÔAÔB〉c| ≤ c̃e−
L
χ , (2.21)

where c̃ is a positive constant, ÔA and ÔB correspond as previously to normalized quantum
operators (||ÔA||, ||ÔB|| ≤ 1) acting on region A and B respectively where the two regions are
separated from each other by a distance L. Relying on the Lieb-Robinson bound provided
at Eq. (2.20), the authors of Ref. [36] have shed new light on the amount of correlations
created after a time t by demonstrating that the corresponding connected correlation function,
ie. |〈ÔA(t)ÔB(t)〉c|, is bounded by the following quantity

|〈ÔA(t)ÔB(t)〉c| ≤ c̄(|A|+ |B|)e−
L−2vt
χ′ , (2.22)

where c̄ is a positive constant and χ′ = χ+ 2ξ > 0. Hence, from Eq. (2.22), a ballistic bound
also exists for the propagation of correlations. More precisely, the authors have shown that
the correlation spreading is bounded ballistically leading for its associated space-time pattern
to a linear causality cone beyond which the correlations decrease exponentially fast with the
distance L − 2vt. Note that this ballistic bound for the propagation of correlations is very
similar to the one for the spreading of quantum information given by the Lieb-Robinson bound
at Eq. (2.22). However, the major difference is related to the bounded velocity at which
correlations can be created which characterizes the linear causality cone for the space-time
connected correlation functions. Indeed, the bounded velocity for the correlations is given by
2v, ie. twice the Lieb-Robinson velocity and has been explained by the authors of Ref. [75]
using a quasiparticle picture.

Calabrese-Cardy picture In Ref. [75], using a conformal field theory (CFT), Calabrese
and Cardy have investigated the space-time behavior of correlation functions following a
quantum quench in isolated quantum lattice models. According to their analytical results, they
propose a simple picture based on the spreading of quasiparticle excitations. This quasiparticle
picture permits not only to explain the previous factor 2 for the bounded velocity characterizing
the maximal speed at which the correlations can be created but also, and most importantly,
how those correlations are generated providing a more precise physical picture and theoretical
results than the previous ballistic bound.

For the general context of this quasiparticle picture, the authors have considered an isolated
quantum lattice model driven far from equilibrium via a global quantum quench where the
subsequent dynamics is analyzed by investigating the generation of correlations. For a global
quantum quench, the initial state |Ψ0〉 having a very high energy compared to the one of the

32



2. Far-from-equilibrium dynamics in many-body quantum systems

ground state of the quench Hamiltonian Ĥ, acts as a source of quasiparticle excitations. Once
emitted via the quench, these entangled quasiparticles behave semi-classically and travel at
speed v. For this initial part of the discussion, a linear and gapless quasiparticle dispersion
relation of the form ωk = v|k| is considered. Hence, the quasiparticles of such excitation
spectrum are characterized by a single characteristic velocity given by v. For those arriving at
a same time t between points separated by a distance R, quantum correlations between local
observables are created. Therefore, these quantum correlations in the R− t plane display a
sharp light-cone effect. Indeed, the connected correlations does not change significantly from
their initial values until the so-called activation time t∗ ∼ R/2v.

Furthermore, this quasiparticle picture is not restricted to one-dimensional isolated quantum
lattice models but also holds in higher dimensions. The latter is also valid for more general
excitation spectra taking into account both the properties of the lattice and the presence of a
possible finite gap but has to be slightly adapted. The semi-classical picture is expected to
describe accurately the generation of correlations for such more complex excitation spectrum
(denoted by Ek) as long as each quasiparticle of quasimomentum k is assumed to propagate
with its corresponding group velocity Vg(k) = ∂kEk (with ~ fixed to unity). For this case,
the reasoning concerning the generation of quantum correlations is very similar than the one
explained before. The space-time correlations still display a linear causality cone. However,
the correlation edge built from the different activation times t∗ for each distance R is not
anymore characterized by twice the sound velocity 2v but by twice the maximal group velocity
2V ∗g = 2maxk[Vg(k)]. Indeed, the first correlation for a distance R is expected to occur at the
activation time t∗ = R/2V ∗g and is generated by the fastest quasiparticles.

The ballistic motion of the correlation edge when investigating equal-time connected
correlation functions for isolated short-range interacting quantum lattice models has been
observed not only experimentally [22, 110] but also numerically [25,111,112]. In the following,
we propose to discuss in details numerical results found using a time-dependent density matrix
renormalization group approach (t-DMRG) and extracted from Ref. [111] where a light-cone
effect, ie. a linear causality cone for the spreading of correlations, has been clearly identified
when studying the quench dynamics of a one-dimensional lattice model of spinless fermions.

More precisely, the authors of Ref. [111] have investigated the quench dynamics of an
isolated one-dimensional lattice model of interacting spinless fermions at half-filling, implying
n̄ = N/Ns = 1/2 with N the number of spinless fermions and Ns the number of lattice
sites, and governed by the following Hamiltonian Ĥ,

Ĥ = −th
∑
j

(ĉ†j+1ĉj + h.c.) + V
∑
j

n̂jn̂j+1. (2.23)

th > 0 represents the nearest-neighbor hopping amplitude and V > 0 the nearest-neighbor
repulsion. The operators ĉ†j (ĉj) denotes the creation (annihilation) of a spinless fermion
on the lattice site of index j and n̂j the associated local density operator. The convention
adopted by the authors is the following : ~ = 1 (Planck constant) and a = 1 (lattice spacing)
such that the energy is given in units of the hopping amplitude th and the time in units
of the inverse hopping amplitude t−1

h . In what follows, th will be also fixed to unity. The
Hamiltonian Ĥ = Ĥ(V ) defined at Eq. (2.23) and fully characterized by the interaction
parameter V (the filling is fixed to n̄ = 1/2), displays a quantum phase transition at Vc = 2
between a Luttinger-liquid regime for V < Vc (metallic behavior) and a charge-density-wave
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(CDW) regime for V > Vc (insulating behavior). The authors have investigated the far-
from-equilibrium dynamics of such quantum lattice model via sudden global quenches. The
initial state |Ψ0〉 is defined as the ground state of Ĥ(V0) confined in the CDW regime where
V0 = 10. Then, the sudden global quench is performed by modifying abruptly the interaction
parameter from the value V0 to V and remains constant in time. The latter defines the
quench Hamiltonian Ĥ(V ) governing the unitary time evolution. Since the quantum system is
assumed to be closed (or isolated), the time-evolved quantum state |Ψ(t)〉 is governed by the
Schrödinger equation and may be written as |Ψ(t)〉 = e−iĤ(V )t |Ψ0〉. Finally, to characterize
the quench dynamics of the lattice model and more precisely the spreading of correlations in
the space-time plane, the authors have studied the time evolution of the equal-time connected
density correlation function Ci,j(t) defined as follows

Ci,j(t) = C|i−j|(t) = 〈n̂i(t)n̂j(t)〉 − 〈n̂i(t)〉〈n̂j(t)〉. (2.24)

where 〈...〉 represents the expectation value with respect to the initial many-body quantum
state |Ψ0〉 = |Ψgs[Ĥ(V0)]〉. On Fig. 2.4, several numerical results of the space-time pattern
of C|i−j|(t) using the t-DMRG approach are displayed as a function of the time t and the
distance |i− j|. Note that a large panel of post-quench nearest-neighbor repulsion parameters
V has been considered allowing to probe the quench dynamics of the quantum model for
significantly different physical scenarios. Indeed, on Fig. 2.4(a), V = 0 hence the post-quench
Hamiltonian is confined in a non-interacting Luttinger-liquid regime. According to the value
V0 given previously, this sudden global quench crosses the quantum critical point at Vc = 2.
On Fig. 2.4(b), V = Vc = 2 and thus the quantum system is globally quenched from the CDW
regime to the quantum critical point. On Figs. 2.4(c,d), V = 5 and 20 respectively. For these
two last cases, the sudden global quench is confined within the CDW regime.

For the four different sudden global quenches presented previously, a clear linear causality
cone is visible on each plot as expected from the general quasiparticle picture provided by
Calabrese and Cardy for the spreading of correlations in short-range interacting lattice models.
Let us analyze in details Fig. 2.4(a) for instance. For each distance |i− j|, one can define an
activation time t∗ defined as follows : for any time t < t∗ the correlations are not activated
yet, ie. C|i−j| ' 0 (and straightforwardly, for any time t fulfilling t ≥ t∗, the correlations
are present). Note that these different times below (above) the activation one for each
separation distance |i − j| form the non-causal (causal) region of correlations 6. Once the
activation time t∗ for each separation distance |i − j| is located, one can fit them using a
linear ansatz. Consequently, it yields for the space-time pattern of C|i−j|(t) a linear causality
cone beyond which the correlations are exponentially suppressed 7. While considering the
same example given at Fig. 2.4(a), let us verify that the correlations activated ballistically are
characterized by twice the maximal group velocity with respect to the quench Hamiltonian
governing the time evolution, as predicted by the Calabrese-Cardy picture. On Fig. 2.4(a),

6In general, to get a clear non-causal region of correlations (zero-value correlations for times below the
activation one), the equilibrium value of the equal-time connected correlation function is substracted. Here,
this is not necessary since the initial state |Ψ0〉 is defined by a simple density wave, ie. is characterized by
an unique ground state of the CDW regime, and thus implying C|i−j|(0) = 0, ∀|i− j| (see Ref. [111] for the
parameters N and Ns considered to obtain such initial quantum state |Ψ0〉).

7The exponential decrease of the density correlations as a function of the distance |i− j| during the quench
dynamics is due to the initial many-body quantum state |Ψ0〉. Indeed, the latter corresponds to the ground
state of Ĥ(V0) where V0 has been carefully chosen such that the quantum model is initially well confined in the
charge-density-wave insulating regime. The charge gap in the CDW ground state |Ψ0〉 implies an exponential
decay of the density correlations at equilibrium and this property is conserved during the unitary time evolution.
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Figure 2.4: Space-time pattern of the equal-time connected density correlation function Ci,j(t) =
C|i−j|(t) = 〈n̂i(t)n̂j(t)〉− 〈n̂i(t)〉〈n̂j(t)〉 of spinless fermions after a sudden global quantum quench. The
initial state |Ψ0〉 is defined by the ground state of Ĥ(V0) confined in the charge-density wave regime
for a nearest-neighbor repulsion V0 = 10, and then evolves unitarily in time with the post-quench
Hamiltonian Ĥ(V ) with (a) V = 0, (b) V = 2, (c) V = 5 and (d) V = 20. Ci,j(t) = C|i−j|(t) is due to
the conservation of the translational invariance during the quench dynamics. Figure extracted from
Ref. [111].

we may remind the reader that a sudden global quench crossing the quantum critical point
(Vc = 2) is considered. The latter is characterized by a pre-quench (initial) Hamiltonian Ĥ(V0)
well confined within the CDW regime and a post-quench Hamiltonian Ĥ(V ) confined in the
non-interacting Luttinger-liquid regime implying V = 0. Hence, the quench Hamiltonian
Ĥ(V = 0) can be easily diagonalized by performing a Fourier transform of the fermionic
operators of creation and annihilation in real space. This yields to the gapless dispersion
relation Ek = −2th cos(k) (a the lattice spacing is fixed to unity). As a consequence, one can
deduce the theoretical group velocity Vg(k) = ∂kEk (~ = 1) associated to Ek which may be
written as Vg(k) = 2th sin(k). Finally, the characteristic velocity, ie. twice the maximal group
velocity, is given by 2V ∗g = 2Vg(k∗) = 2max[Vg(k)] = 4th with k∗ = π/2 corresponding to the
edge of the first Brillouin zone. This analytical velocity is in very good agreement with the
slope of the linear correlation edge separating the causal region of the density correlations
from the non-causal one at Fig. 2.4(a). This validates the quasiparticle picture of Calabrese
and Cardy concerning the spreading of correlations for isolated short-range interacting lattice
models driven far from equilibrium via sudden global quenches, at least for a specific quantum
lattice model and for a specific sudden global quench.

Although the semi-classical picture of Calabrese and Cardy seems to be correct to explain
the generation of correlations for short-range interacting lattice models, it turns out that the
latter is not precise enough and incomplete.
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Indeed, at Chap. 3 we present a generic form for the equal-time connected correlation functions
for isolated short-range interacting quantum lattice models 8 driven far from equilibrium via
sudden global quenches confined in a same quantum phase (or quantum regime), see Eq. (3.8)
and Sec. 3.2. Then, by means of stationary phase arguments, a twofold linear structure in the
vicinity of the correlation edge (CE) is unveiled.
Consistently with the Calabrese-Cardy picture, one recovers that the CE spreads ballistically
with the velocity 2Vg(k∗), ie. twice the maximal group velocity. However, this implies that the
quasiparticle picture of Calabrese and Cardy is not precise enough since specific sudden global
quenches have been considered to find this important result, ie. sudden global quenches such
that both the pre- and post-quench Hamiltonians are confined in a same quantum phase (or
regime). If the previous condition is not fulfilled, the velocity of the CE is not necessarily given
by 2Vg(k∗). This statement has been verified at Ref. [111] where the authors have investigated
the correlation edge velocity of the equal-time density correlation function Ci,j(t) defined at
Eq. (2.24) for sudden global quenches characterized by a same pre-quench Hamiltonian confined
in the CDW regime and different post-quench Hamiltonians confined in the Luttinger-liquid
regime. The numerical spreading velocity associated to the CE has been found to display
significant, but relatively small, deviations from twice the theoretical maximal group velocity
in the Luttinger-liquid regime.
Moreover, according to our generic form, we also show at Sec. 3.2 that in the vicinity of the
correlation edge, a series of local extrema should also appear. The latter is found to propagate
ballistically with a different velocity given by 2Vϕ(k∗) = 2Ek∗/k∗ (~ = 1) corresponding to
twice the phase velocity at k∗ the quasimomentum for which the group velocity is maximal.
Such linear twofold structure for the spreading of correlations is clearly visible at Figs. 2.4(c,d)
where the density correlations are investigated for sudden global quenches confined in a similar
regime, here the charge-density-wave insulating regime. In both cases, the CE spreads linearly
as well as the series of local minima and maxima present in its vicinity and characterized
by the velocity Vm = 0 (vertical extrema). This explains why the Calabrese-Cardy picture
is incomplete and hence does not fully characterize the correlation spreading in short-range
lattice models.

An interesting extension to the previous investigation of the correlation spreading would
be to investigate the case of isolated quantum lattice models with long-range interactions.
This research topic has already been initiated where generalized Lieb-Robinson bounds have
been derived for long-range systems where the interactions decay algebraically, 1/Rα, with
the distance R [37,38]. However, the related experiments and numerical investigations have
lead to conflicting pictures [16, 17, 27–30, 55]. For instance, experiments [16] and numerical
simulations within truncated Wigner approximation [56] for the one-dimensional long-range
XY model point towards bounded, super-ballistic, propagation for all values of the power-law
exponent α. In contrast, experiments on the long-range transverse Ising (LRTI) model have
reported a ballistic propagation of the correlation maxima with, however, observable leaks
that increase when α decreases [17].

In the next chapters, we shed new light on these conflicting results. Indeed, a theoretical
description of the scaling laws for the correlation spreading in long-range interacting quantum
lattice models is provided at Chap. 3. The latter relies on stationary-phase arguments applied
to our generic form for the equal-time connected correlation functions. At Chap. 5, these

8Note that the generic form presented and analyzed at Chap. 3 is also valid for isolated quantum lattice
models with long-range interactions.
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analytical scaling laws are verified numerically using a tensor network based technique for
two different long-range interacting spin lattice chains which can be simulated experimentally
using trapped ions, namely the 1D long-range Ising chain and the 1D long-range XY chain.

2.3 Experimental realization of quantum lattice models and
sudden global quenches

The investigation of the correlation spreading in isolated quantum lattice models with short-
range or long-range interactions driven far from equilibrium is significantly stimulated by
experiments. Indeed, the simultaneous progress realized in the manipulation of cold atoms or
ions have permitted to simulate many different particle and spin Hamiltonians of condensed-
matter physics with an unprecedented control of the interaction parameters in time. Hence,
this experimental breakthrough has offered the possibility to investigate the physical properties
of their out-of-equilibrium dynamics via quantum quenches and especially to shed new light
on the central question of this thesis which concerns the spreading of quantum correlations.
For instance, ultracold atoms loaded in artificial (optical) lattices provide a very interesting
platform [5,11] to investigate the out-of-equilibrium (quench) dynamics of isolated quantum
models governed by short-range interacting bosonic and fermionic Hamiltonians such as the
Bose- and Fermi-Hubbard Hamiltonian respectively (see Refs. [18–24]) allowing also to emulate
effective quantum spin models, such as the Ising one [113]. Another promising platform to
investigate the quench dynamics consists of trapped ions [6, 15] where the relevant parameters
and interactions can be efficiently controlled. In particular, these experimental setups are well
suitable to simulate long-range interacting quantum spin models due to the involved Coulomb
interaction between the trapped ions [16,17].

In the following, to discuss how these experimental quantum simulations based on cold
atoms and ions are particularly relevant to explore the quench dynamics and to probe the
spreading of correlations in isolated quantum lattice models with short-range and long-range
interactions respectively, two different experiments are discussed. Firstly, a one-dimensional
short-range interacting bosonic model simulated via cold atoms is considered, namely the
Bose-Hubbard chain [22]. The experimental results concerning the spreading of density (parity)
correlations in its Mott-insulating phase are analyzed. Finally, we turn to a presentation
of the experimental realization using trapped ions of a 1D long-range interacting quantum
spin model, the 1D long-range XY model where the quench dynamics has been investigated
by measuring the spin correlations [16].

2.3.1 Quantum simulation with ultracold atoms : the Bose-Hubbard chain

In the following, we discuss the experimental realization of the one-dimensional short-range
interacting Bose-Hubbard model using bosonic ultracold atoms loaded in an optical lattice, see
Refs. [114,115]. The main physical properties of this bosonic lattice model are discussed in a first
time. Then, the experimental setup and the quench protocol considered at Ref. [22] to simulate
and drive such bosonic lattice model far from equilibrium are introduced. Finally, several
experimental results concerning its quench dynamics confined in the Mott-insulating phase are
presented where the authors have investigated the parity correlation function to shed new light
on the spreading of correlations for short-range interacting closed quantum lattice models.
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Presentation of the model The one-dimensional short-range Bose-Hubbard (1D SRBH)
model is described by a Hamiltonian Ĥ which may be written as follows

Ĥ = −J
∑
R

(
â†RâR+1 + h.c.

)
+ U

2
∑
R

n̂R(n̂R − 1). (2.25)

The operators âR and â†R denote the annihilation and creation of a bosonic particle on the
lattice site R respectively and n̂R = â†RâR the local density operator on site R. This bosonic
lattice model is characterized by three different parameters : the filling n̄ = N/Ns (N refers to
the number of bosonic particles on the lattice chain, Ns to the number of lattice sites), the
nearest-neighbor hopping amplitude J > 0 and the repulsive on-site interaction energy U > 0.

At zero-temperature and at equilibrium, the phase diagram of the 1D SRBH model has been
extensively studied and well characterized [116,117]. The latter comprises a superfluid (SF)
and a Mott-insulating (MI) phase, determined by the competition of the hopping J , the on-site
interaction U , and the average filling n̄ (or equivalently the chemical potential µ if the grand
canonical statistical ensemble is considered). Furthermore, the 1D SRBH model hosts two
different phase transitions : (i) For commensurate filling, n̄ ∈ N∗ the SF-MI phase transition
(also called Mott-U phase transition) is of the Berezinskii-Kosterlitz-Thouless type, at the
critical value (U/J)c ' 3.3 for unit filling (n̄ = 1) in 1D [118–121]. (ii) For incommensurate
filling, ie. n̄ /∈ N, this short-range interacting bosonic lattice model is confined in the superfluid
phase for any value of the interaction parameter U/J . For strong enough interaction ratios
U/J , the commensurate-incommensurate SF-MI phase transition (also called Mott-δ phase
transition), of the mean field type, is driven by doping when n̄ approaches a positive integer
value. Note that the physical properties of the 1D SRBH model will be discussed in details at
Chap. 4 where the correlation spreading has been investigated numerically in different regimes
for each quantum phase and for several observables. In the following, we propose to recall
the main properties of the Mott-insulating phase since the latter has been considered by the
authors of Ref. [22] to investigate experimentally the quench dynamics of the bosonic lattice
model.

The Mott-insulating phase is characterized by a gapped excitation spectrum and requires
not only a positive integer filling n̄ ∈ N∗ but also a sufficiently strong interaction parameter U/J .
The latter tends to pin the bosonic particles in the lattice sites by minimizing the fluctuations of
the on-site occupation number. Furthermore, the Mott-insulating phase displays two different
regimes, the weakly interacting and strong-coupling regimes depending on the value of the
interaction parameter U/J at fixed n̄ ∈ N∗. For the strong-coupling regime requiring U/J � 1,
the short-range Bose-Hubbard chain can be diagonalized using a first-order perturbation theory.
The gapped excitation spectrum is then characterized by, see Refs. [25,122,123] for more details,

2Ek = U − 2J(2n̄+ 1) cos(k). (2.26)

where k refers to the quasimomentum confined in the first Brillouin zone B. Deep enough
in the MI phase, ie. U/J & 2(2n̄ + 1), corresponding to the weakly interacting regime of
the Mott-insulating phase, the gapped excitation spectrum presented at Eq. (2.26) does not
hold anymore. In other words, the first-order perturbation theory fails to predict the correct
quasiparticle dispersion relation. To go beyond such theory, one can rely on a fermionization
technique. The latter consists of treating the bosonic particles as hardcore bosons leading finally,
using a Jordan-Wigner transformation, to an effective quadratic Hamiltonian of interacting
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(spinful) fermions for the 1D SRBH model. This quadratic fermionic Hamiltonian is then
diagonalized using a (fermionic) Bogolyubov transformation (see Ref. [25] for a complete
discussion about the technique) and it yields the following gapped excitation spectrum [25,124]

2Ek '
√

[U − 2J(2n̄+ 1) cos(k)]2 + 16J2n̄(n̄+ 1) sin2(k). (2.27)

Note that this quasiparticle dispersion relation is also valid for the strongly interacting regime
of the MI phase. Indeed, by developing the latter and keeping the first-order terms in U/J , one
recovers the excitation spectrum at Eq. (2.26) found using a first-order perturbation theory and
valid in the strong-coupling limit U/J � 1. Most importantly, for both regimes within the MI
phase, the elementary excitations correspond to doublon-holon excitation pairs (which can also
be seen as fermionic Bogolyubov quasiparticles when relying on the fermionization technique)
where a doublon refers to the occupation of n̄+1 bosonic particles on a lattice site R (nR = n̄+1)
whereas a holon corresponds to n̄− 1 bosons (nR = n̄− 1). The previous discussion about the
Mott-insulating phase, its elementary excitations consisting of doublon-holon excitation pairs
and the associated excitation spectrum presented at Eq. (2.27), was essential. Indeed, the latter
will facilitate the analysis of the experimental results extracted from Ref. [22] characterizing
the far-from-equilibrium dynamics of the 1D SRBH model in the MI phase.

Experimental setup and quench protocol In what follows, we present the experimental
setup and the quench protocol performed by the authors of Ref. [22] in order to simulate
the short-range Bose-Hubbard chain and to investigate its quench dynamics confined in the
Mott-insulating phase respectively.

Figure 2.5: Quench dynamics of the 1D short-range Bose-Hubbard model in the Mott-insulating
phase. (a) Initially, a one-dimensional gas of ultracold bosonic atoms (black balls) loaded in an optical
lattice is prepared deep in the Mott-insulating phase at unit-filling, n̄ = 1. Then, this bosonic lattice
model is driven far from equilibrium via a sudden global quantum quench performed by lowering the
lattice depth. (b) Due to the quench, the elementary excitations of the Mott-insulating phase are
emitted at each lattice site. Each elementary excitation of quasimomentum k consists of a quasiparticle
pair formed of a doublon (nR = 2 for n̄ = 1, see red ball) and a holon (nR = 0 for n̄ = 1, see blue ball)
of quasimomentum k and −k respectively (or vice versa) and propagating ballistically through the
lattice with respect to their associated group velocity. Figure extracted from Ref. [22].

The experimental sequence consists of loading ultracold bosonic particles in a one-dimensional
optical lattice. To do so, the authors have first prepared a two-dimensional (2D) degenerate
gas of 87Rb confined in an optical lattice along the z-axis with a lattice spacing alat = 532 nm
[125, 126]. Then, this 2D boson-lattice system is divided into 10 decoupled chains via a
second optical lattice along the y-axis and by fixing both lattice depths to the value 20Er.
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Er = (2π~)2/(8ma2
lat) refers to the recoil energy of the lattice 9 (m to the atomic mass of

87Rb). The interaction strength U/J of the different chains is tuned via a third optical lattice
along the x-axis. The number of bosonic atoms per chain has been controlled such that a
lattice filling n̄ = 1 is considered (a positive integer filling n̄ is mandatory for the bosonic
lattice model to be confined in the MI phase).

Concerning the quench protocol, an initial many-body quantum state |Ψ0〉 is prepared deep
in the Mott-insulating phase by increasing the x-lattice depth until an interaction parameter
(U/J)0 = 40 � (U/J)n̄=1

c ' 3.3 is reached. Then, the bosonic lattice model is driven far
from equilibrium by suddenly lowering the lattice depth. The final lattice depths are chosen
such that the quantum system is still confined in the Mott-insulating phase and relatively
close to the the quantum critical point, ie. implying a post-quench interaction parameter
U/J & (U/J)n̄=1

c , see Fig. 2.5. To sum up, the authors of Ref. [22] have investigated the
quench (far-from-equilibrium) dynamics of the Bose-Hubbard chain at unit-filling by suddenly
and globally tuning the effective interaction parameter U/J .

To read out the properties of the time-evolved quantum state |Ψ(t)〉, the time evolution
is frozen by rapidly increasing the different lattice depths to a value ' 80Er. This operation
permits to suppress the tunneling process and consequently to freeze the density distribution
of the many-body quantum state |Ψ(t)〉. Finally, the atoms were detected via a fluorescence
technique and the occupation number of the bosonic particles on each lattice site deduced using
a reconstruction algorithm. Due to inelastic (light-assisted) collisions during the imaging process
and leading to a loss of atoms pairs, the authors have measured the parity correlation function 10.

Figure 2.6: Spreading of the two-point parity correlations in the short-range Bose-Hubbard chain
for sudden global quenches confined in the Mott-insulating phase at unit-filling. (a) Experimental
result for the time evolution of the parity correlations Cd(t) for a quench starting from (U/J)0 = 40 to
U/J = 9. (b) Investigation of the propagation velocity for global quenches to U/J = 5 (dark blue),
U/J = 7 (medium blue) and U/J = 9 (light blue). For each quench and distance d, the time of the
maximum of the correlation signal is extracted from the experimental data of Cd(t). The corresponding
propagation velocity is deduced via a linear fit restricted to 2 ≤ d ≤ 6. Note that the data for U/J = 5
and U/J = 7 have been shifted horizontally for clarity. Figures extracted from Ref. [22].

9The recoil energy Er represents here the kinetic energy of a 87Rb atom after emitting a lattice photon.
10Hence, no distinction can be made between a holon and a doublon implying an occupation number nR = 0

and nR = 2 at unit-filling n̄ = 1.
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Quench dynamics As previously discussed, the authors of Ref. [22] have investigated the
two-point parity correlations to characterize the quench dynamics of the 1D SRBH model
in the Mott-insulating phase. This observable is defined as follows

Cd(t) = 〈ŝR(t)ŝR+d(t)〉 − 〈ŝR(t)〉〈ŝR+d(t)〉, (2.28)

where an average on the lattice sites R has to be understood (permitted by the translational
invariance of the considered bosonic model). The expectation value 〈...〉 is taken with respect
to the initial many-body quantum state |Ψ0〉 corresponding here to a deep Mott state at
n̄ = 1, ie. |Ψ0〉 ' |1〉⊗Ns . The latter is due to the very large initial interaction parameter
(U/J)0 = 40 considered in the experimental quench protocol. The two-point parity correlation
function presented at Eq. (2.28) depends only on the parity operator ŝR(t) = eiπ[n̂R(t)−n̄]

characterizing the presence of particles on the lattice site R at time t. Indeed, if a doublon
(〈n̂R(t)〉 = n̄+ 1) or holon (〈n̂R(t)〉 = n̄− 1) is present on the lattice site R at time t, then
〈ŝR(t)〉 = −1. Otherwise, 〈ŝR(t)〉 = 1 corresponding to the case where 〈n̂R(t)〉 = n̄. Note
that since the quench dynamics starts from an almost Mott state at unit-filling, the initial
two-point parity correlations are equal to zero, ie. Cd(0) = 0, ∀d.

On Fig. 2.6, experimental results of the quench dynamics of the 1D SRBH model in the
Mott-insulating phase are presented. On Fig. 2.6(a), a typical experimental result of the
two-point parity correlation function Cd(t) rescaled by its maximal value Cmax

d is displayed
and represented as a function of the distance d and the time t (in units of ~/J). Although
relatively small distance and time scales are considered, one can clearly distinguish a signal
propagating ballistically coherently with the existence of an effective light cone.

On Fig. 2.6(b), the authors have tracked the time of maximum correlation for each distance
d for several interaction parameters U/J , see blue circles. As expected, a ballistic motion
of the signal has been unveiled and fitted using a linear ansatz. By computing the slope of
the latter, the associated spreading velocity has been extracted, see solid blue lines. Note
that this signal is usually associated with the causality cone velocity. However, as discussed
in the next chapters, the true light-cone velocity generally differs from the velocity of such
maxima. It turns out that for the specific quenches considered here, the two velocities are
very similar because they are performed by considering a post-quench interaction parameter
U/J relatively close to the quantum critical point. In any other case, the two velocities are
significantly different, see discussion at Chapter. 4 and Fig. 4.14.

After numerical analysis and treatment, the authors found the following spreading velocity
~v/(Jalat) = 5.0(2), 5.6(5), 5.0(2) for the sudden global quench defined by a post-quench
interaction parameter U/J = 5.02(2), 7.0(3), 9.0(3) respectively. Note that these experimental
velocities are in good agreement with 2V ∗g corresponding to the maximal group velocity of the
doublon-holon excitations pairs, ie. the elementary excitations in the MI phase. To deduce
these analytical values, the excitation spectrum 2Ek valid in the weakly interacting regime of
the Mott-insulating phase [requiring an interaction parameter U/J & 2(2n̄+ 1) and presented
at Eq. (2.27)] is considered. One finds the following theoretical velocities 2V ∗g ' 4.7, 5.8, 5.9
for the interaction parameters U/J = 5, 7, 9 respectively.

These results are consistent with the conclusions provided by our quasiparticle picture
concerning the spreading of correlations in short-range interacting lattice models driven far
from equilibrium via sudden global quenches. Indeed, the latter predicts that the space-
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time correlations display a twofold causality cone characterized by a ballistic correlation
edge and a series of local maxima propagating at the velocity 2V ∗g and 2V ∗ϕ respectively.
For the previous interaction parameters U/J , 2V ∗g ' 2V ∗ϕ . Hence, one expects to find
that the experimental spreading velocity associated to the first local maxima is very close
to 2V ∗g . Note that the quench dynamics of the 1D SRBH model confined in the gapped
Mott-insulating quantum phase will be discussed in details at Chap. 3 and Chap. 4 using
theoretical and numerical techniques respectively.

2.3.2 Quantum simulation with trapped ions : the long-range XY chain

In what follows, we turn to a discussion concerning the quantum simulation of isolated
lattice models with long-range interactions. In particular, the experimental realization of
the one-dimensional s = 1/2 long-range interacting XY (1D LRXY) model using trapped
atomic ions performed by Richerme et al. at Ref. [16] is presented. To do so, we introduce
first the main physical properties of this s = 1/2 spin lattice model and the sudden global
quench considered by the authors of Ref. [16]. Then, the experimental sequence and the
quench protocol to simulate and to drive the 1D LRXY model far from equilibrium are
discussed. Finally, a typical experimental result of the space-time spin-spin correlations is
presented and analyzed. The purpose of this discussion is to point out that, experimentally,
new light can be shed on the central research topic of the correlation spreading in isolated
long-range interacting quantum lattice models.

Presentation of the model and the quench In the following, the long-range interacting
s = 1/2 XY spin lattice chain is considered. The latter is defined by a Hamiltonian Ĥ
which may be written as follows (~ is fixed to unity)

Ĥ = 1
2
∑
i<j

Ji,j(σ̂xi σ̂xj + σ̂zi σ̂
z
j ) =

∑
i<j

2Ji,j(Ŝxi Ŝxj + Ŝzi Ŝ
z
j ). (2.29)

This quantum lattice model is fully characterized by the isotropic long-range exchange coupling
term Ji,j between the spins on lattice sites i and j. The latter, tunable experimentally, is
assumed to display a power-law decaying behavior, ie. Ji,j = J0/|i − j|α. J0 > 0 denoting
a constant and α the power-law exponent characterize the strength and the decay of the
long-range spin-spin interactions in both directions x and z of the Bloch sphere. The operator
σ̂ai (Ŝai = (1/2)σ̂ai , ~ = 1), with a ∈ {x, y, z}, refers to the s = 1/2 Pauli matrix (s = 1/2 spin
operator) acting on the ith spin in the a direction. They obey the following commutation rule[
σ̂ai , σ̂

b
j

]
= 2iεabcδi,j σ̂ci with (a, b, c) ∈ {x, y, z}3, ε the Levi-Civita symbol defined as follows

εabc =


= 1 if abc ∈ {xyz, yzx, zxy}
= −1 if abc ∈ {xzy, yxz, zyx}
= 0 if a = b or b = c or a = c

and δi,j the Kronecker delta symbol (δi,j = 1 if i = j and 0 otherwise). The Pauli matrices for
spins s = 1/2 also obey the anticommutation rule {σ̂ai , σ̂bi} = 2δa,bI with I the 2× 2 identity
matrix.

To investigate the far-from-equilibrium dynamics of this spin lattice model, a sudden global
quench has been considered by the authors of Ref. [16]. The quantum system is initially
prepared in a many-body quantum state |Ψ0〉 where each spin is in its ’down’ state along the z
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direction, ie. |Ψ0〉 = |↓↓ ... ↓↓〉z. This initial product state can be realized as the ground state
of the Hamiltonian Ĥ of the LRXY chain [see Eq. (2.29)] with an additional term +h∑i σ̂

z
i

(h > 0 represents a homogeneous transverse field in the z direction) and by considering the
limit regime where h� J0. Then, suddenly at time t = 0, the quantum model is quenched
globally by switching on the long-range interactions in order to generate the Hamiltonian of
the LRXY chain. This quench Hamiltonian fully characterized by a fixed and specific value of
J0 and α governs the unitary time evolution of the quantum system. Hence, the time-evolved
quantum state at time t denoted by |Ψ(t)〉 may be written as |Ψ(t)〉 = e−iĤt |Ψ0〉 according to
the time-dependent Schrödinger equation for isolated quantum models.

In the aim of characterizing the properties of this time-dependent many-body quantum
state |Ψ(t)〉, the authors of Ref. [16] have investigated the equal-time connected spin-spin
correlation function along the z direction, denoted by Ci,j(t), which reads as

Ci,j(t) = 〈σ̂zi (t)σ̂zj (t)〉 − 〈σ̂zi (t)〉〈σ̂zj (t)〉, (2.30)

where the expectation value 〈...〉 is taken with respect to the initial product state |Ψ0〉. Besides,
according to the Heisenberg picture, σ̂zi (t) = eiĤtσ̂zi e

−iĤt and consequently one can rewrite the
previous correlation function as Ci,j(t) = 〈Ψ(t)|σ̂zi σ̂zj |Ψ(t)〉−〈Ψ(t)|σ̂zi |Ψ(t)〉〈Ψ(t)|σ̂zj |Ψ(t)〉. Note
also that due to the specific expression of the long-range spin exchange coupling Ji,j = J0/|i−j|α,
the Hamiltonian Ĥ of the 1D LRXY model is translationally and parity invariant leading to
Ci,j(t) = C|i−j|(t),∀t. Furthermore, one can also stress that it is not necessary to subtract the
equilibrium value Ci,j(0) to the connected correlation function at Eq. (2.30) to obtain a clear
space-time pattern. Indeed, since |Ψ0〉 corresponds to a product state (|Ψ0〉 = |↓↓ ... ↓↓〉z), it
implies Ci,j(0) = 0, ∀i, j. A typical experimental result of the space-time spin-spin correlation
function Ci,j(t) is displayed at Fig. 2.8. The latter allows us to characterize the quench
dynamics of the considered spin lattice model and to shed new light on the correlation
spreading for isolated long-range interacting lattice models.

Experimental setup Before presenting and analyzing the experimental data extracted from
Ref. [16], we briefly discuss the corresponding experimental setup to simulate and to drive far
from equilibrium the LRXY spin chain.

In the experiment of Richerme et al. at Ref. [16], trapped atomic 171Yb+ ions are
manipulated in order to implement qubits, ie. effective s = 1/2 spins. More precisely,
their hyperfine states 2S1/2 |F = 0,mF = 0〉 and |F = 1,mF = 0〉 permit to encode the local
quantum state |↓〉z and |↑〉z respectively, see also Ref. [127]. In this experiment, the Ytterbium
ions are cooled and arranged by using a Paul trap and the long-range interactions between
them are mediated via phonons coupling the internal hyperfine states with the collective
vibrational modes [128].

Concerning the quench protocol, the ion chain is initially prepared into the product state
|Ψ0〉 = |↓ ... ↓〉z via an optical pumping, see Fig. 2.7(1). Then, a sudden global quench is
performed at time t = 0 by applying laser-induced optical dipolar forces on the ions to yield the
Hamiltonian Ĥ of the LRXY chain at Eq. (2.29). The latter defines the quench Hamiltonian
governing the time evolution of the quantum system, see Fig. 2.7(2). Finally, to characterize the
properties of the time-evolved quantum state |Ψ(t)〉 = e−iĤt |Ψ0〉, the projection of each spin
along the z direction is measured. To do so, a fluorescence technique is considered by applying
a laser beam, addressing the transition 2S1/2 |F = 1〉 to 2P1/2 |F = 0〉, to the Ytterbium ions.
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Figure 2.7: Experimental sequence for the investigation of the quench dynamics in the long-range XY
s = 1/2 spin chain. (1) Initially, the quantum spin model is prepared by optically pumping all the spins
(11 spins, or equivalently 11 lattice sites, have been considered in this experiment) in their ’down’ state
leading to the initial many-body quantum state |Ψ0〉 = |↓〉⊗11

z . (2) Once the spin lattice model has
been initialized, the latter is quenched suddenly and globally by generating the long-range (power-law
decaying) interactions via laser-induced optical dipolar forces on the trapped ions to simulate the
Hamiltonian of the LRXY spin chain Ĥ defined at Eq. (2.29). Finally, the initial many-body product
state |Ψ0〉 evolves unitarily in time with the Hamiltonian Ĥ leading to the time-evolved quantum state
|Ψ(t)〉 = e−iĤt |Ψ0〉. (3) During the unitary time evolution, the projection of each of the 11 spins along
the z direction is imaged onto a CCD camera. These experimental data allows us to have access to
the space-time spin-spin correlations along the z axis, denoted by Ci,j(t). Such correlation function
permits to characterize the properties of the time-evolved quantum state |Ψ(t)〉 and more precisely the
correlation spreading for a long-range interacting spin lattice model. Figure extracted from Ref. [16].

The latter fluoresce only if they are in the effective local quantum state |↑〉z, ie. the hyperfine
state 2S1/2 |F = 1〉. The (spontaneous) emission of light due to the fluorescence is collected
through an objective and imaged onto a CDD camera having a single-site resolution, see
Fig. 2.7(3). Using this experimental scheme, the space-time spin-spin correlations along the
z axis, denoted by Ci,j(t) and presented at Eq. (2.30), can be reconstructed.

Quench dynamics On Fig. 2.8, we present an experimental result extracted from Ref. [16]
of the space-time spin correlations along the z direction, Ci,j(t). More precisely, the connected
correlation function C1,1+r(t) is considered and characterizes the spin correlations with respect
to the first spin. These space-time spin correlations are represented as a function of r, denoting
the ion-ion separation distance according to the previous reference spin, and the time t in units
of 11 1/Jmax (~ = 1). Besides, the long-range decaying interactions of the LRXY Hamiltonian
Ĥ are defined by a power-law exponent α = 1.19, see caption of Fig. 2.8 for a detailed
description of the sudden global quench considered here.

11See Ref. [16] for the value of Jmax.
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Figure 2.8: Spreading of spin correlations in the long-range XY s = 1/2 spin chain. The experimental
data of C1,1+r(t) the space-time spin-spin correlations along the z direction of the Bloch sphere are
represented for a specific sudden global quench (see Eq. (2.30) for the general expression of the space-
time spin correlations along the z axis denoted by Ci,j(t)). The connected correlation function C1,1+r(t)
characterizes the spin correlations while considering the 1st spin (or equivalently the 1st lattice site) as
a reference point, r refers to the ion separation from the reference spin. Here, the sudden global quench
is defined as follows : The ion chain is initially prepared in the product state |Ψ0〉 = |↓↓ ... ↓↓〉z. Then,
at time t = 0, the quantum system is suddenly and globally quenched by performing a time evolution
of the initial product state |Ψ0〉 with respect to the Hamiltonian Ĥ of the LRXY chain at Eq. (2.29)
with a power-law exponent α = 1.19. Figure extracted from Ref. [16].

An important observation about the spreading of the spin correlations at Fig. 2.8 is the
presence of a correlation edge (CE). Indeed, the space-time pattern of C1,1+r(t) displays
both a causal and a non-causal region corresponding to non-zero and zero values for the
quantum correlations respectively. The CE associated to these space-time spin correlations
corresponds to the separation between the two regions. Contrary to the quench dynamics of
isolated short-range interacting lattice models where a linear causality cone for the space-time
correlations is expected, the latter is characterized by a non-ballistic motion. The latter has
been extracted from the experimental data by tracking the activation time t∗, ie. the first
time for which the spin correlation is different from zero, for each ion separation distance r
(see Ref. [16] for more details about the tracking technique). Then, these activation times
as a function of the ion-ion separation distance r have been fitted by the authors via an
algebraic ansatz of the form r ∼ t1/β , where the value 1/β = 1.67± 0.08 is found. Hence, their
experimental result suggests the existence of a super-ballistic (faster-than ballistic) growth of
the light-cone boundary. In other words, the measurements seem to point in the direction of a
CE propagating algebraically with a faster-than-ballistic motion, ie. 1/β > 1 (or β < 1).

However, one needs to take a step back from these experimental results since very small
distance and time scales are considered, ie. max(r) = 10 and max(t) = 0.3/Jmax. The adverse
consequence is that the quench dynamics of the LRXY chain, and more precisely the motion
of the CE, are biased by strong finite-size effects. Furthermore, the considered connected
correlation function C1,1+r(t) is responsible for additional errors. Indeed, the latter considers
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the first spin, located on one of two edges of the lattice chain, as the reference spin which is
the most affected by the finite-size effects.

This specific research topic concerning the correlation spreading in long-range interacting
lattice models will be extensively studied in this thesis. At Chap. 3, by relying on our generic
form for the equal-time connected correlation functions, a sub-ballistic motion of the CE
(r ∼ t1/β, with β > 1) is unveiled for the correlation spreading in isolated lattice models
with strong power-law decaying interactions. Besides, this scaling law for the spreading of
the CE is found to not depend on the quantum phase of the quench Hamiltonian, ie. if the
latter is gapped or gapless. Note that for a gapless quench Hamiltonian, a super-ballistic
scaling law has to be associated to the spreading of the local maxima and not to the motion
of the CE. The previous statements, deduced from our quasiparticle theory presented at
Chap. 3, are verified numerically at Chap. 5.

2.4 Numerical and theoretical approaches

In this section, we present several numerical techniques and theoretical approaches allowing
us to investigate the far-from-equilibrium dynamics of closed quantum lattice models. More
precisely, these techniques permit to shed new light on the remaining open questions presented
above at Sec. 2.2. In what follows, we first briefly discuss the time-dependent matrix product
state (t-MPS) algorithm. More details about this numerical approach are provided at Chap. 4
and 5 for one-dimensional quantum systems with short- and long-range interactions respectively.
The latter will be used to tackle the question of the transport of correlations and entanglement in
isolated one-dimensional quantum lattice models numerically. Then, we present other numerical
techniques such as the time-dependent variational Monte-Carlo (t-VMC) and the exact
diagonalization (ED) whose advantages and disadvantages are discussed. Finally, we turn to a
brief overview of the analytic quasiparticle approach, which relies on a mean field approximation.
A second theoretical technique, namely the quench action (QA), is also briefly presented.

2.4.1 Time-dependent matrix product state

In the following, we discuss the time-dependent matrix product state (t-MPS) technique. The
latter consists of a powerful numerical approach to compute the static and dynamical physical
properties of closed 1D quantum lattice models based on an analysis of the entanglement
entropy (see Appendix. K, Refs. [129–131] and references therein). More precisely, the t-MPS
approach gives access not only to the ground state but also to the (real-) time-evolved quantum
state. Both algorithms, allowing us to deduce the static and dynamical properties, rely on
the optimization of a many-body ansatz of the form (see Fig. 4.2)

|Ψ〉 =
∑
σ

∑
a

Aσ1
1,a1A

σ2
a1,a2 ... A

σL−1
aL−2,aL−1A

σL
aL−1,1 |σ〉 . (2.31)

with σ = σ1, σ2, ..., σL−1, σL and a = a1, a2, ..., aL−2, aL−1. This ansatz 12 |Ψ〉 is valid for the
description of a general many-body quantum state for 1D quantum models containing L lattice
sites. |Ψ〉 lives in the full Hilbert space H = H⊗LR of dimension dim(HR)L = dL where HR

denotes the local Hilbert space. This d-dimensional local Hilbert space is described by the local
12Here, we have considered the so-called left-canonical representation of a matrix product state where each

tensor is left-normalized ie. each tensor fulfills the condition
∑

σR
(AσR )†AσR = I (see Chapter. 4 and Ref. [130]

for more details).

46



2. Far-from-equilibrium dynamics in many-body quantum systems

basis {|σR〉 , σR = 1, ..., d}. Hence, the set of parameters {σR, R = 1, ..., L, σR = 1, ..., d} (or
equivalently σ) corresponds to the different physical indices of the ansatz. Note that the ansatz
|Ψ〉 at Eq. (2.31) is also described by a second set of indices. This second set, corresponding to
{aR̃, R̃ = 1, ..., L− 1, aR̃ = 1, ..., āR̃} (or equivalently a), denotes the so-called virtual indices
and χ = maxR̃(āR̃) corresponds to the MPS bond dimension.

The set of maximal values {āR̃, R̃ = 1, ..., L − 1}, characterized by the condition āR̃ ≤
min(dR̃, dL−R̃) (see Appendix. H) gives us some information about the amount of entanglement
in the lattice model. Indeed, the previous set contains L−1 values where each of them is related
to one of the L− 1 different bipartitions of the 1D quantum model containing L lattice sites
13. More precisely, the value āR̃ (R̃ ∈ [|1, L− 1|]) corresponds to the number of singular values
kept in the R̃-th Schmidt matrix ie. to the dimension of the R̃-th Schmidt matrix. This R̃-th
Schmidt matrix is found when performing the R̃-th singular value decomposition (SVD) to the
many-body quantum state |Ψ〉 written under a general form to get its corresponding MPS form,
see Appendix. H and Ref. [130]. Most importantly, the latter fully determines the amount of
entanglement between the two subsystems A and B of the finite chain, where A is defined as
the first R̃ lattice sites and B as the L− R̃ last lattice sites. Considering that the R̃-th Schmidt
matrix S(R̃) has a dimension āR̃× āR̃ with entries SaR̃,aR̃ ≥ 0, the corresponding entanglement
entropy (also called von Neumann entropy) is defined as S(R̃) = −∑āR̃

aR̃=1 S
2
aR̃,aR̃

log(S2
aR̃,aR̃

),
see Ref. [130] and Appendices. H-K for more details.

For low-entangled quantum states ie. for S(R̃) relatively small (∀R̃ ∈ [|1, L − 1|]), only
few singular values with a significant weight in the R̃-th Schmidt matrix will contribute to
the entanglement 14. Hence, the latter can be truncated to reproduce the same amount of
entanglement implying āR̃ � min(dR̃, dL−R̃), ∀R̃ ∈ [|1, L− 1|]. Consequently, the MPS form
presented at Eq. (2.31) consists of a local 15 and very compact 16 representation without
breaking the non-locality property (in other words the entanglement) of the state |Ψ〉.

Note that for a generic state |Ψ〉 living in the full Hilbert space H, its entanglement entropy
follows a volume law ie. the latter scales with the length of the subsystem [S(R̃) ∼ R̃] until
reaching a maximal value [S(L/2) ∼ L/2] corresponding to the specific bipartition where
both subsystems A and B contains a same number of lattice sites (have the same length), see
Ref. [132] and Fig. 2.9(a).
However, for the ground state and the low-lying excited states of gapped Hamiltonians
containing relatively short-range interactions 17, the entanglement entropy does not follow
anymore a volume law but an area law ie. scales with the area of the cuts [133]. Therefore, for
1D quantum lattice models, the area law can be reformulated as S(R̃) ∼ cst, ∀R̃ ∈ [|1, L− 1|],
see Fig. 2.9(b).

To sum up, the MPS ansatz presented at Eq. (2.31) is characterized by two main parameters

13For a 1D quantum model containing L lattice sites, there are L− 1 different possibilities to cut the lattice
chain.

14The R̃ Schmidt matrices are defined as diagonal square matrices with positive entries also called singular
values. Here, we assume a descending order for the singular values.

15The local representation of any many-body quantum state, without breaking its entanglement, is particularly
interesting from a numerical point of view. Indeed, one can associate a graphical representation in terms of
tensor networks so that the implementation is drastically simplified.

16Indeed, the MPS form at Eq. (2.31) involves L 3-rd order tensors of dimension āR̃ × āR̃+1 × d.
17Interactions which couple a finite and small number of lattice sites.
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Figure 2.9: Boundary law for the entanglement (von Neumann) entropy in the case of a 1D quantum
model containing L lattice sites. (a) Volume law for a typical many-body quantum state |Ψ〉, the
entanglement entropy scales with the length of the subsystem (S(R̃) ∼ R̃, with R̃ ∈ [|1, L − 1|]).
(b) Area law for the low-lying excited states of gapped and short-range interacting Hamiltonians, the
entanglement entropy scales with the area of the cuts (S(R̃) ∼ cst). The dashed blue line represents a
cut of the 1D quantum lattice model leading to a bipartition where each subsystem A and B contains
half of the total number of lattice sites L.

: d the dimension of the local Hilbert space (corresponding to the maximal value of each
physical index ({|σR〉 , σR = 1, ..., d}) and χ the MPS bond dimension related to the amount
of entanglement in the lattice model. As discussed previously, the MPS ansatz is optimal for
1D gapped and short-range interacting Hamiltonians which satisfy the area law (χ small) and
more precisely for fermionic or spin lattice models (d small 18). Note that it is still possible to
rely on the t-MPS approach to describe accurately the static and dynamical properties of 1D
bosonic lattice models in gapless phases, see Refs. [25,33] for instance. However, the latter,
corresponding to the worst case (large d due to the bosonic nature of the particles and large
χ due to the volume law), require much more efforts from a numerical point of view to be
simulated correctly.

This numerical approach has been significantly used to investigate the information spreading
in 1D quantum lattice models, see Refs. [22, 25, 30, 31, 33, 111]. In this manuscript, all the
numerical results concerning the correlation and entanglement spreading in different 1D
quantum lattice models are found using this method. In Chap. 4, we investigate the correlation
spreading in the 1D short-range Bose-Hubbard model. In Chap. 5, we turn to 1D long-range
interacting lattice models (namely the 1D long-range XY model and the 1D long-range Ising
model) where the correlation and entanglement spreadings are studied.

2.4.2 Time-dependent variational Monte Carlo

The time-dependent Variational Monte Carlo (t-VMC) corresponds to another powerful
numerical technique allowing us to deduce the static and dynamical properties of (closed)
quantum lattice models. Note that contrary to the t-MPS algorithm, this approach is
not limited to one-dimensional lattice models and can be used in higher dimensions. The
technique gives the optimal real time evolution of a variational quantum state which is
generally parametrized as [112, 134]

|Ψ(t)〉 = e
∑

R
λR(t)ÔR |Ψ(0)〉 . (2.32)

|Ψ(0)〉 refers to an initial many-body quantum state, the set {λR(t)} denotes the complex and
18Indeed, for spinless (spinful) fermions d = dim(HR) = 2 (= 4). For s = 1/2 (s = 1) spin models d = 2

(d = 3).
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time-dependent variational parameters. The set {ÔR} also called set of excitation operators
corresponds to time-independent local operators. The latter is expected to describe accurately
the relevant excitations involved in the unitary dynamics of the closed quantum lattice model.
Therefore, these operators defining the variational ansatz need to be chosen carefully and
accordingly to the Hamiltonian Ĥ and the quantum phase considered.

The variational parameters λR(t) are deduced via the Dirac-Frenkel time-dependent
variational principle 19. This principle consists of minimizing the distance in the Hilbert
space between the exact and the variational time dynamics. In other words, the goal is
to minimize the distance between the exact generator 20, ∂t |Ψexact(t)〉 = −iĤ |Ψ(t)〉, and
the variational generator, ∂t |Ψvariational(t)〉 =

(∑
R λ̇R(t)ÔR

)
|Ψ(t)〉, of the dynamics where

|Ψ(t)〉 is the variational wavefunction at time t defined at Eq. (2.32). To fulfill the previous
minimization problem, it can be shown that the variational parameters λR(t) have to satisfy
the following motion equation at each iteration in time,

i
∑
R′

〈Ô∗RÔR′〉ct λ̇R′(t) = 〈Ô∗RĤ〉ct , ∀R. (2.33)

〈...〉ct denotes the connected average defined as, 〈ÂB̂〉ct = 〈(Â− 〈Â〉t)(B̂ − 〈B̂〉t)〉t = 〈ÂB̂〉t −
〈Â〉t〈B̂〉t, where Â and B̂ are two local operators. 〈...〉t = 〈Ψ(t)|...|Ψ(t)〉 corresponds to the
expectation value with respect to the variational ansatz at time t denoted by |Ψ(t)〉 while
assuming that the ansatz is well normalized, ie. 〈Ψ(t)|Ψ(t)〉 = 1.

As discussed previously, t-VMC permits to deduce the static and dynamical properties of
closed quantum lattice models. It can simulate both the dynamics of short- and long-range
interacting lattice models at short and long times with an accuracy similar to the one obtained
using tensor network based techniques. Consequently, one can rely on this numerical approach
to investigate for instance the correlation spreading in quantum lattice models generated by
sudden global quenches. One reminds the reader that a sudden global quench corresponds to a
sudden modification of at least one parameter in the Hamiltonian Ĥ at a specific time. More
precisely, at t = 0, the initial many-body quantum state |Ψ(0)〉 corresponds to the ground
state of the pre-quench (initial) Hamiltonian Ĥi. Then, the initial Hamiltonian Ĥi is suddenly
quenched at t = 0+ to a post-quench (final) Hamiltonian Ĥf governing the real time evolution
of the quantum model. This process to drive quantum lattice models far from equilibrium is
described at Chap. 3 in more details.

On Fig. 2.10, we display t-VMC numerical results extracted from Ref. [112] and concerning
the spreading of correlations in the 1D short-range Bose-Hubbard model (see Eq. (3.2)
and Subsec. 3.2.2 for more details about this bosonic lattice model). The authors have
investigated the quench dynamics of this 1D generic bosonic lattice model in the gapless
superfluid (SF) phase at average density 〈n̂R〉 = 1 (unit-filling of the lattice chain). The
latter implies a relatively small pre- (Ui) and post-quench (Uf) two-body interaction strength
compared to the hopping amplitude J . In order to investigate the space-time response of
the quantum model to a sudden global quench confined in the SF phase, the density-density
correlation function N(R, t) defined as

19Note that this principle is also used at Chap. 5 to perform real time evolution of long-range interacting
lattice models using a tensor-network language.

20Since a closed quantum lattice model is considered, its exact dynamics is governed by an unitary evolution
given by |Ψ(t)〉 = e−iĤt |Ψ(0)〉.
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Figure 2.10: Spreading of correlations in the 1D short-range Bose-Hubbard model. (Left panel)
Density-density correlations N(R, t) versus dimensionless distance R (a the lattice spacing is fixed to
unity) and dimensionless time (J = ~ = 1) for a sudden global quench on the interaction strength
from Ui = 2 [defining the pre-quench Hamiltonian Ĥi = Ĥ(Ui)] to Uf = 4 [characterizing the post-
quench Hamiltonian Ĥf = Ĥ(Uf)]. (Right panel) Evolution of the dimensionless light-cone velocity vlc
(~ = J = a = 1) as a function of the final interaction strength Uf (and of several initial interaction
strengths Ui ∈ [|1, 3|]). These numerical results are also compared to twice the sound velocity, 2vs
(see dashed black line), and twice the maximum excitation (group) velocity, 2vm (see dashed red line)
computed with respect to the post-quench Hamiltonian Ĥf . Figures extracted from Ref. [112].

N(R, t) = 〈n̂R(t)n̂0(t)〉 − 〈n̂R(0)n̂0(0)〉 (2.34)

has been considered. At Eq. (2.34), 〈...〉 corresponds to the expectation value with respect to
the initial state |Ψ(0)〉, the ground state of Ĥi.

On Fig. 2.10(left panel), a typical t-VMC result for N(R, t) the density-density correlations
is shown on relevant spatial and temporal scales. The latter displays a clear linear causality
structure : a non-causal region of correlations, characterized by N(R, t) ' 0, is separated from
the causal region, ie. N(R, t) > 0, by a correlation edge (CE) propagating ballistically. The
propagation velocity associated to the CE, called vlc in Ref. [112], is extracted from the slope.

For short-range interacting lattice systems, the existence of a correlation edge velocity
VCE implies the emergence of a linear causality cone beyond which the quantum correlations
are exponentially suppressed, see Refs. [32,35–37]. For equal-time correlation functions and
sudden global quenches confined in a same quantum phase, our quasiparticle picture predicts
that VCE is characterized by twice the maximal group velocity associated to the post-quench
Hamiltonian Ĥf (the Hamiltonian driving the real time evolution of the quantum lattice model),
ie. VCE = 2V ∗g = 2max(∂kEf

k) with ~ = 1, see Chap. 3 for more details.

On Fig. 2.10(right panel), the velocity vlc extracted from t-VMC numerical calculations
is plotted with respect to the post-quench interaction strength Uf (and for three different
pre-quench interaction strengths Ui). This so-called light-cone velocity is also compared to
twice the sound velocity 2vs and twice the maximal group velocity 2vm (see Ref. [112] and
references therein). As expected, they found that vlc is independent of the initial Hamiltonian
Ĥi. However, the fitted velocities vlc show significant deviations from 2vm. The results can be
explained by the fact that the authors have tracked the motion of the local maxima instead of
the one related to the CE. Indeed, we will show in the next chapter that the causality cone of
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equal-time correlation functions displays a twofold linear structure for short-range interacting
lattice models driven far from equilibrium via sudden global quenches. This twofold structure is
defined not only by a CE propagating with the velocity VCE = 2Vg(k∗) = 2max(∂kEf

k) but also
by a series of local extrema, located in the vicinity of the CE, spreading with a different velocity
in general (see Figs. 3.6 and 3.7 as examples of such twofold linear causality structure for the
1D short-range Bose-Hubbard model). This second velocity, defining the motion of the series
of local extrema and denoted by Vm, is characterized by twice the phase velocity at k∗, the
quasimomentum for which the group velocity is maximal ie. Vm = 2Vϕ(k∗) = 2Ef

k∗/k
∗ (~ = 1).

Consequently, one can not track the motion of the local extrema to deduce the one of the CE.
Otherwise, one is characterizing the inner structure (the local extrema) of the causality cone and
not the propagation front (correlation edge). By comparing the behavior of the fitted velocity
vlc [see Fig. 2.10(right panel)] with twice the theoretical phase velocity at k∗, ie. 2V ∗ϕ , [see
Fig. 3.5(b)] as a function of Uf , one finds a very good agreement between them. This suggests
that the authors have extracted from the t-VMC calculations the velocity Vm instead of VCE.

2.4.3 Exact diagonalization

The quench dynamics of a Hamiltonian Ĥ can also be investigated numerically using the
exact diagonalization. To get information about the static properties (low-lying eigenstates
and eigenvectors of the Hamiltonian Ĥ) of the quantum model, the latter consists of solving
directly the Schrödinger equation given by Ĥ |Ψ〉 = E |Ψ〉.

To do so, it first requires to define a basis for the many-body Hilbert space. Then, the
corresponding Hamiltonian matrix is built and has to be diagonalized. Finally, both the
spectrum and the eigenstates of the Hamiltonian Ĥ can be analyzed. However, a strong
limitation of this method lies in the size of the full Hilbert space H increasing exponentially
with the system size L (dim(H) = dim(HR)L with HR denoting the local Hilbert space). To
reduce the complexity (computational cost) of such problem, the symmetries of the Hamiltonian
Ĥ can be used in order to restrict ourselves to a relevant subset of the many-body Hilbert
space. Note that one can also rely on a Lanczos algorithm (see Ref. [135] for more details)
to decrease the complexity of the method. The main idea behind the latter is to construct
the Hamiltonian in a special basis such that it displays a tridiagonal form (to obtain a sparse
Hamiltonian matrix) which can be then easily diagonalized using the standard subroutines.

To deduce the dynamical properties, one needs to compute the time-evolved quantum
state |Ψ(t)〉 evolving unitarily via the time evolution operator e−iĤt, ie. |Ψ(t)〉 = e−iĤt |Ψ(0)〉,
since closed quantum lattice models are considered here. Let us consider in what follows
an infinitesimal iteration in time dt. The time-evolved quantum state |Ψ(t+ dt)〉 can be
deduced from |Ψ(t)〉 using for instance a truncated Taylor expansion of the infinitesimal
time evolution operator e−iĤdt [134]. As a consequence, the many-body quantum state
|Ψ(t+ dt)〉 may be written as

|Ψ(t+ dt)〉 = e−iĤdt |Ψ(t)〉 '
nmax∑
n=0

(−idt)n
n! Ĥn |Ψ(t)〉 . (2.35)

This technique is particularly simple to implement since each term of the truncated Taylor
expansion is constructed by applying the Hamiltonian Ĥ several times to the many-body
quantum state at time t, |Ψ(t)〉. In general, the series is expected to converge rapidly
with n. Furthermore, at each infinitesimal iteration in time dt, the corresponding cutoff
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nmax is fixed such that the desirable truncation error is reached. This truncation error,
determining the numerical accuracy of the unitary real time evolution, can be characterized
by implementing a condition on the different conserved quantities during the dynamics. For
instance, since the real time evolution is unitary here, the total energy is a conserved quantity
(E(t) = 〈Ψ(t)|Ĥ|Ψ(t)〉 = 〈Ψ(0)|Ĥ|Ψ(0)〉 = E0, with E0 the energy associated to the initial state
|Ψ(0)〉) and, hence, corresponds to a possible choice to formulate the condition of convergence
in order to fix the cutoff nmax. One can state for example that |Ψtruncated(t)〉 has converged if
it fulfills the following condition: |E(|Ψtruncated(t)〉)− E0| ≤ ε, with ε� E0.

As discussed previously, the exact diagonalization consists of a numerical method permitting
to deduce both the static and dynamical properties of closed quantum lattice models. The
latter has the advantage to give very accurate results but is restricted to relatively small
system sizes. Nevertheless, the typical length scale (to give an order of magnitude Lmax . 50
for s = 1/2 spin lattice chains 21) is still relevant to investigate the quench dynamics of a large
panel of one- and two-dimensional quantum lattice models.

Figure 2.11: Spreading of magnonic excitations in the 1D short-range Heisenberg model. (a) Initial
many-body quantum state where both central ’up’ spins are flipped, ie. |Ψ(0)〉 = |↑ ... ↑↓↓↑ ... ↑〉,
and its decomposition into bound (b) and free (c) magnons propagating through the lattice chain.
(d) Numerical result obtained from exact diagonalization showing the probability to find a flipped
(’down’) spin at a given lattice site following the initial state preparation. Note that on panel (d),
two different wavefronts corresponding to bound and free magnons can be identified (see insets). The
maximum probability (Pmax = 1 at t = 0× (~/Jex) for both central lattice sites) was clipped in the
graph for clarity. Figure extracted from Ref. [110].

On Fig. 2.11, we display a numerical result found using exact diagonalization (extracted
from Ref. [110]) and concerning the spreading of magnonic excitations in the s = 1/2 short-range
Heisenberg chain (1D SRH) whose Hamiltonian Ĥ is defined as

21Note however that this typical length scale can drastically decrease if one considers lattice models with
a dimension of the local Hilbert space higher than two. For instance, one can think to spinful fermions
(dim(HR) = 4) or typical bosonic lattice models (dim(HR)� 1).
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Ĥ = −Jex
∑
R

[1
2
(
Ŝ+
R Ŝ
−
R+1 + Ŝ−R Ŝ

+
R+1

)
+ ŜzRŜ

z
R+1

]
,

Ĥ = −Jex
∑
R

(
ŜxRŜ

x
R+1 + ŜyRŜ

y
R+1 + ŜzRŜ

z
R+1

)
. (2.36)

ŜαR denotes the spin operator acting on the lattice site R ∈ Z along the α ∈ {x, y, z} direction,
Jex > 0 corresponds to the isotropic spin-exchange coupling (see Subsec. 4.7.2 for more details).
This model comprises an unique quantum phase ie. the quasi-long range order ferromagnetic
phase along the z direction 22. This gapless quantum phase is characterized by the following
excitation spectrum Efree

k = Jex[1− cos(k)] which can be deduced from a Holstein-Primakoff
transformation [see Subsec. 4.7.2 for the derivation]. The previous excitation spectrum Efree

k

characterizes the low-energy excitations of this 1D short-range s = 1/2 spin lattice model
consisting of free spin-wave excitations, ie. free magnonic quasiparticles.

On Fig. 2.11, the authors have investigated the quench dynamics of the 1D SRH model
by studying its response to a so-called local quench that we discuss now (see Chap. 3 for a
more detailed discussion about the protocol associated to sudden local quenches in order to
drive quantum lattice models far from equilibrium). They first consider an initial quantum
state where the two central spins have been flipped 23 leading to |Ψ(0)〉 = |↑ ... ↑↓↓↑ ... ↑〉.
Note that the previous state can be built from the ground state of the 1D SRH model,
|Ψgs〉 = |↑ ... ↑〉, and where the two central spins located on the lattice site R = 0 and R = 1
are flipped via Ŝ−0 and Ŝ−1 respectively. Hence, it yields the initial state |Ψ(0)〉 = Ŝ−0 Ŝ

−
1 |Ψgs〉 =

|↑ ... ↑ ↓R=0 ↓R=1 ↑ ... ↑〉 [see Fig. 2.11(a)]. Then, this initial state evolves unitarily in time
with the Hamiltonian Ĥ of the 1D SRH model presented at Eq. (2.36), |Ψ(t)〉 = e−iĤt |Ψ(0)〉.

It is essential to stress that due to the specific initial state |Ψ(0)〉 considered here, where
two neighbouring spins have been flipped, two species of magnonic excitations will be generated
after the sudden local quench : (i) free magnons whose associated excitation spectrum Efree

k has
already been discussed previously [see also Fig. 2.11(c)] (ii) bound magnons whose excitation
spectrum 24 is characterized by Ebound

k = (Jex/2)[1− cos(k)] (see Ref. [136]).

To characterize the spreading of both magnonic excitations, the probability P (R, t) to
find a flipped (’down’) spin at a given lattice site R and for a time t (in units of ~/Jex)
following the initial state preparation |Ψ(0)〉 has been studied numerically using exact
diagonalization [see Fig. 2.11(d)]. Indeed, investigating the space-time behavior of local
(on-site) observables, for a lattice model in a specific quantum phase and submitted to
a local quench, allows us to characterize the spreading of the corresponding species of
quasiparticles. As expected, the authors found two wavefronts related to the two different
species of quasiparticle presented previously. More precisely, at time t = 0+, all the different
free and bound magnons (for each quasimomentum k in the first Brillouin zone [−π, π]) are
generated due to the highly excited initial state |Ψ(0)〉 (with respect to the Hamiltonian Ĥ

22Here, the direction has been fixed arbitrarily.
23According to Fig. 2.11(d), it seems that the two central lattice sites are R = 0 and R = 1.
24Note that for a same quasimomentum k, the bound magnonic excitation has a lower energy than the free

magnonic excitation. This is due to the term −JexŜ
z
RŜ

z
R+1 in the Hamiltonian of the 1D SRH model, see

Eq. (2.36). The latter tells us that two flipped spins can lower their energy if and only if they are located on
adjacent lattice sites (in a nearest-neighbor configuration).
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2. Far-from-equilibrium dynamics in many-body quantum systems

used to perform the unitary time evolution). Their spreading is governed by the shape of their
corresponding excitation spectrum [E(free,bound)

k ] and more precisely by their corresponding
group velocity [V (free,bound)

g (k) = ~−1∂kE
(free,bound)
k ]. The fastest wavefront is associated

to the spreading of the free magnonic excitation with the highest group velocity given by
V free

g (k∗) = maxk[V free
g (k)] = Jex/~ (k∗ = π/2). Straightforwardly, the slowest wavefront is

determined by the spreading of the bound magnonic excitation with the highest group velocity
V bound

g (k∗) = maxk[V bound
g (k)] = Jex/2~ (k∗ = π/2).

Note that for the same lattice model, we found similar results concerning its local
quench dynamics both numerically [using a tensor-network technique, see Fig. 4.18] and
analytically (via the linear spin-wave theory, see Subsec. 4.7.2 and Appendix. J for more
details). However, in our study, we have investigated the local magnetization along the
z axis, ie. 〈Ψ(0)|ŜzR(t)|Ψ(0)〉 for an initial state |Ψ(0)〉 defined as |Ψ(0)〉 = |↑ ... ↑↓↑ ... ↑〉.
Since only one spin has been flipped for the locally perturbed initial many-body quantum
state |Ψ(0)〉, only the free magnonic excitations are generated 25. One recovers that the
spreading of the free magnonic excitations in the R− t plane lead to a symmetric 26 wavefront
characterized by the velocity ±V free

g (k∗) = ±Jex/~.

2.4.4 Mean field approximation and quasiparticle description

To investigate theoretically the far-from-equilibrium dynamics of quantum lattice models, one
can rely on a quasiparticle picture within a mean field approximation [29,32]. This theoretical
method permits to shed new light on the different open questions presented at Sec. 2.2 and in
particular on the correlation spreading in bosonic and spin lattice models submitted to sudden
global or local quantum quenches (see for instance Subsec. 2.4.2 and 2.4.3 for an example
of a sudden global and local quench respectively). This picture is based on the assumption
that immediately after the local (global) quench, free counter-propagating quasiparticles
(quasiparticles pairs) are emitted (see Fig. 3.3) and spread into the lattice. The generation
of these quasiparticles is a consequence of the initial state preparation where a strong local
or global perturbation has been applied to the quantum system. Hence, the initial state can
be seen as a highly excited state for the Hamiltonian considered to perform the real time
evolution, and acts a source of quasiparticles (for sudden local quenches) or quasiparticle pairs
(for sudden global quenches). However, this theoretical picture contains several assumptions on
the quasiparticles e.g. an infinite lifetime, and neglected quasiparticle-quasiparticle interactions.
Consequently, all the analytical predictions provided by this approach and presented in this
manuscript are compared to numerical results obtained via tensor network based techniques 27

to verify the validity of the different assumptions.

This quasiparticle theory, briefly outlined here but discussed in details at Chap. 3, has been
found to describe accurately the space-time dynamics of a wide class of relevant observables
for a large panel of quantum lattice models in different phases. The latter comprises one-

25Indeed, to generate the bound magnonic excitations, one would have to flip two adjacent spins as done
previously.

26Indeed, the wavefront is symmetric since the velocity associated to each of the two edges is equal in absolute
value. The latter is due to the symmetry k → −k of the excitation spectrum Efree

k associated to the free
magnonic quasiparticles. As a consequence, the slowest quasiparticle will propagate at the same velocity than
the fastest one with a minus sign, mink[V free

g (k)] = −maxk[V free
g (k)] = −V free

g (k∗) = V free
g (−k∗).

27Note that other numerical methods can be considered as discussed previously.
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dimensional 28 bosonic and spin lattice models 29 with short-range [see Chaps. 3 and 4] or
long-range interactions [see Chaps. 3 and 5] in gapped or gapless quantum phases.

This analytical method is essentially based on a mean field approximation together with
the bosonic Bogolyubov theory. Firstly, the mean field approximation allows us to write
the considered Hamiltonian in a generic quadratic Bose form in the momentum space (up
to a possible shift in energy),

Ĥ = 1
2
∑

k
Ak

(
â†kâk + â−kâ

†
−k

)
+ Bk

(
â†kâ

†
−k + âkâ−k

)
, (2.37)

where Ak and Bk are momentum-dependent quantities depending on the lattice model, âk
(â†k) denotes the bosonic annihilation (creation) operator. Since the Bose form at Eq. (2.37) is
quadratic, it exists an unique canonical transformation diagonalizing the bosonic Hamiltonian
Ĥ. The diagonalized form of Ĥ is obtained relying on the bosonic Bogolyubov theory
[see Eq. (3.19)] and reads as

Ĥ =
∑

k
Ekβ̂

†
kβ̂k, (2.38)

with β̂k (β̂†k) denotes the annihilation (creation) of a Bogolyubov quasiparticle. Ek corresponds
to the excitation spectrum associated to the Bogolyubov quasiparticle excitations of the
considered lattice model. Finally, the time-dependent expectation values of the relevant
physical observables to describe the quench dynamics are expanded onto the elementary
excitations of the quantum system previously described. In the case of sudden global quenches,
this theoretical method has permitted to unveil a generic expression for the equal-time
connected correlation functions G(R, t) of the form

G(R, t) ≡ 〈ÂX(t)B̂Y(t)〉 − 〈ÂX(t)〉〈B̂Y(t)〉 − 〈ÂX(0)B̂Y(0)〉+ 〈ÂX(0)〉〈B̂Y(0)〉, (2.39)

where Â and B̂ are two local operators acting on the local Hilbert space HX and HY (on the
lattice site X and Y) respectively, where R = |X−Y| is the distance between both lattice
sites. The generic form [32] of G(R, t) is given by the following expression

G(R, t) = g(R)−
∫
B

dk
(2π)DF(k)

{
ei(k.R+2Ekt) + ei(k.R−2Ekt)

2

}
, (2.40)

where the D-dimensional integral spans the first Brillouin zone B. g(R) corresponds to a
real-space-dependent quantity and F(k) to a quasimomentum-dependent function giving the
amplitude (the contribution weight) of each Bogolyubov quasiparticle. The latter depends
not only on the quench strength but also on both local observables (Â, B̂). This generic form,
extensively studied theoretically at Chap. 3 and compared to numerical results at Chap. 4
and 5, permits to understand in details the space-time pattern of correlation functions by
reasoning in terms of quasiparticle pairs spreading into the lattice.

28We stress that our quasiparticle theory to explain the correlation spreading in isolated quantum lattice
models is expected to work in higher dimensions and more precisely for a D-dimensional hypercubic lattice, see
Chap. 3.

29We also expect that our quasiparticle theory can be extended straightforwardly to fermionic lattice models.
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2.4.5 Quench action

The quench action [83, 137] corresponds to another theoretical technique to investigate
the far-from-equilibrium dynamics of closed quantum lattice models. It consists of an
effective representation for the calculation of time-dependent expectation values (of the
form 〈Ψ(t)|Ô|Ψ(t)〉) of a wide class of local observables (here represented by the operator
Ô) following a quantum quench. More precisely, the latter is based on an encoding of the
relevant information contained in the overlaps 〈φf

n|Ψ0〉 between the initial state |Ψ0〉 and the
eigenstates of the post-quench Hamiltonian |φf

n〉. Note that these overlaps are essential since
they fully characterize the time-dependent many-body quantum state |Ψ(t)〉, and by extension,
the quench dynamics of the lattice model. Considering |Ψ0〉 the initial state corresponding to
the ground state of the pre-quench (initial) Hamiltonian Ĥi and {|φf

n〉} the eigenbasis for the
post-quench (final) Hamiltonian Ĥf , the time-evolved quantum state |Ψ(t)〉 (evolving unitarily
with Ĥf since closed quantum lattice models are considered) may be written as

|Ψ(t)〉 = e−iĤft |Ψ0〉 =
∑
n

〈φf
n|Ψ0〉e−iE

f
nt |φf

n〉 . (2.41)

Ef
n corresponds to the (energy) eigenvalue associated to the eigenvector |φf

n〉. Finally, it can
be shown that the expectation values can be reduced to a single sum over the Hamiltonian
eigenstates |φf

n〉, decreasing drastically the computational cost, see Ref. [83] for more details.
This method is expected to be generally valid and to describe accurately the quench dynamics
of local observables at arbitrary times after the quantum quench. In other words, this effective
representation can be used to investigate both the short-time and long-time dynamics. As
a consequence, one can rely on the quench action method to characterize the stationary (or
steady) state and hence investigating both the local relaxation and thermalization processes,
see Subsections. 2.2.1 and 2.2.2.

In the next chapters, the quench dynamics of one-dimensional quantum lattice models is
extensively studied. The latter is characterized by analyzing the propagation of information,
including the correlations and entanglement, in situations relevant to the modern experiments
on ultracold atoms and ions. Firstly, we focus on the correlation spreading for short-range
interacting lattice models, in gapped and gapless quantum phases for sudden global and local
quenches. Then, we turn to a similar analysis for quantum lattice models with long-range
interactions, particularly relevant to experiments on molecular condensates and ultracold
ions and where well-known theorems break down. These fundamental issues about the
correlation spreading are tackled using the most modern many-body approaches. Concerning,
the analytical point of view, a quasiparticle picture relying on the Bogolyubov theory within
a mean field approximation is developed. For the numerical part, tensor network based
techniques adapted to describe both the static and dynamical properties of one-dimensional
quantum lattice models are considered.
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“The important thing about electrons and protons is not
what they are but how they behave, how they move. I can
describe the situation by comparing it to the game of chess.
In chess, we have various chessmen, kings, knights, pawns
and so on. If you ask what chessman is, the answer would
be that it is a piece of wood, or a piece of ivory, or perhaps
just a sign written on paper, or anything whatever. It
does not matter. Each chessman has a characteristic way
of moving and this is all that matters about it.”

— Paul A.M. Dirac

3
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quantum lattice models with variable-range
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3. Universal scaling laws for correlation spreading in quantum lattice models with . . .

3.1 Position of the problem and generic approach

In the last decades, simultaneous progress realized in the field of ultracold atoms permitted to
simulate many particle and spin Hamiltonians of condensed-matter physics with unprecedented
control possibilities of the parameters in time allowing to investigate their out-of-equilibrium
dynamics. One fundamental issue of the out-of-equilibrium dynamics concerns the spreading
of quantum correlations. It is at the center of many fundamental phenomena including
the propagation of information and entanglement, thermalization, and the area laws for
entanglement entropy. For short-range interacting lattice systems, the existence of Lieb-
Robinson (LR) bounds implies the emergence of a linear causality cone beyond which the
quantum correlations are exponentially suppressed [35–37]. However, this bound resulting
in a ballistic propagation, in particular, of the equal-time connected correlations [36] is not
sufficient to fully characterize the causal correlation cone and does not hold for long-range
interacting quantum systems. Hence, generalized LR bounds have been derived for long-range
systems where the interactions decay algebraically, 1/Rα, with the distance R [37,38]. The
related experiments and numerical investigations have, however, lead to conflicting pictures [16,
17,27–30,55]. For instance, experiments on ion chains [16] and numerical simulations within
truncated Wigner approximation [56] for the one-dimensional (1D) long-range XY (LRXY)
model point towards bounded, super-ballistic, propagation for all values of α. In contrast,
experiments on the long-range transverse Ising (LRTI) model reported ballistic propagation of
correlation maxima [17]. Moreover, time-dependent Density Matrix Renormalization Group
(t-DMRG) and Variational Monte-Carlo (t-VMC) numerical simulations indicate the existence
of three distinct regimes, namely instantaneous, sub-ballistic, and ballistic, for increasing
values of the exponent α [27–30,55,57].
In this chapter, we shed new light on these apparently conflicting results concerning the
scaling laws of the LR bound and on the lack of universality. In order to give a general and
complete description of the correlation spreading, we propose a generic approach based on
a quasiparticle picture that can be applied both to short-range and long-range interacting
particle and spin models on a hypercubic lattice. Using the latter, we unveil a universal twofold
structure for the causality cone of correlations, an outer and inner structure determining
the correlation edge (CE) and the propagation of local extrema respectively. The associated
scaling laws mainly depend on the interactions between particles and are characterized both
for short-range interactions (see Sec. 3.2) and long-range interactions (see Sec. 3.3). For
particle systems, the equal-time connected one-body and density-density correlation functions
are studied whereas for spin systems, we consider equal-time connected spin-spin correlation
functions. Moreover, an illustration of the scaling laws for the correlation spreading within
a mean field approximation is provided here for the case study of the one-dimensional (1D)
Short-Range Bose-Hubbard (SRBH) model and two distinct long-range spin lattice models,
namely the 1D Long-Range Transverse Ising (LRTI) and 1D Long-Range XY (LRXY) models.
In the next two chapters, a numerical confirmation of the scaling laws for the same lattice
models is presented relying on tensor-network techniques.

3.1.1 Generic Hamiltonian

Consider a generic quantum system defined on a hypercubic lattice of dimension D and
governed by a translation-invariant Hamiltonian Ĥ of the following form

Ĥ =
∑

R,R′
J(R,R′)Ô1(R)Ô2(R′) +

∑
R
h(R)Ô3(R), (3.1)
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where (R,R′) ∈ Z2D are two lattice sites. The first term accounts for a two-site coupling term
built from two operators Ô1(R) and Ô2(R′) with an amplitude given by J(R,R′). The second
term denotes a local interaction via the operator Ô3(R) and the associated energy h(R). The
translational invariance of the quantum model implies J(R,R′) = J(R −R′) and h(R) = h,
∀ (R,R′) ∈ Z2D.

The generic form of Eq. (3.1) applies to a variety of particle and spin lattice models,
including the 1D short-range Bose-Hubbard model, the 1D long-range transverse Ising and 1D
long-range XY models, which are particularly relevant for experimental investigations of the
correlation spreading based on ultracold atoms or trapped ions, see for instance Refs. [16,17,22],
and considered in the following. For instance, we show below that the 1D SRBH and the 1D
Short-Range Transverse Ising (SRTI) models corresponding to a generic short-range interacting
lattice and spin model respectively can be written under the general form of Eq. (3.1).

One-dimensional short-range Bose-Hubbard model

The 1D SRBH model, represented on Fig. 3.1(a), is built from the bosonic operators âR (â†R)
corresponding to the bosonic annihilation (creation) operator and n̂R = â†RâR to the number
operator on the lattice site R. They obey the usual commutation rules ie.

[
âR, â

†
R′

]
= δR,R′

and [âR, âR′ ] =
[
â†R, â

†
R′

]
= 0. For the two-site couplings, there are two terms defined

by Ô1(R) = â†R, Ô2(R′) = âR′ with J(R,R′) = −J(δR+1,R′ + δR−1,R′) corresponding to
the hopping amplitude. For the local interaction, h(R) = U/2 and Ô3(R) = n̂R (n̂R − 1).
Consequently, equation (3.1) leads to the Hamiltonian of the 1D SRBH model given by

Ĥ = −J
∑
R

(
â†RâR+1 + h.c

)
+ U

2
∑
R

n̂R (n̂R − 1) . (3.2)

One-dimensional short-range Transverse Ising model

Concerning the 1D SRTI model represented on Fig. 3.1(b), it is built from spin operators
Ŝα(R) = (~/2)σ̂α(R) fulfilling the following commutation rule

[
ŜαR, Ŝ

β
R′

]
= iεαβγδR,R′Ŝ

γ
R with

(α, β, γ) ∈ {x, y, z}3 and ε the Levi-Civita symbol defined as follows

εαβγ =


= 1 if αβγ ∈ {xyz, yzx, zxy}
= −1 if αβγ ∈ {xzy, yxz, zyx}
= 0 if α = β or β = γ or α = γ

.

The two-site coupling of the 1D SRTI model is characterized by Ô1(R) = ŜxR, Ô2(R′) = SxR′
and J(R,R′) = 2JδR+1,R′ . The local interaction is defined by Ô3(R) = ŜzR and h(R) = −2h
leading to the well-known Hamiltonian of the 1D SRTI model which reads as follows

Ĥ = 2J
∑
R

ŜxRŜ
x
R+1 − 2h

∑
R

ŜzR. (3.3)

3.1.2 Quench dynamics

To characterize the far-from-equilibrium dynamics of the generic model represented at Eq. (3.1),
we analyze its response to a so-called global or local quench. In the following, we consider
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Figure 3.1: Short-range interacting lattice models. (a) Sketch of the 1D short-range Bose-Hubbard
model representing interacting bosonic particles in an optical lattice. (b) Sketch of the 1D short-range
interacting transverse Ising model corresponding to spins s = 1/2 interacting via an antiferromagnetic
interaction J > 0 while an uniform and constant transverse magnetic field h > 0 is applied along the z
axis favorizing the spins to align along this direction.

the specific case of sudden global and local quenches.

Sudden global quenches

A global quench denotes a modification of, at least, one of the parameters in the Hamiltonian at
a given time for a specific duration. For a sudden global quench, starting from |Ψ0〉 the ground
state of Ĥ for an initial set of parameters, we quench the quantum system out-of-equilibrium
at time t = 0 by considering the same Hamiltonian Ĥ with a different set of parameters or
another Hamiltonian, see Fig. 3.2(a). We will refer to the initial and final Hamiltonians as the
pre-quench Hamiltonian Ĥi and post-quench Hamiltonian Ĥf respectively. These sudden global
quenches have the particularity to conserve the translational invariance of the model during the
full process, providing that Ĥi, Ĥf are translationally invariant. Except whenever mentionned,
the pre- and post-quench Hamiltonians are identical, only the interaction parameter is modified.

Sudden local quenches

For sudden local quenches, a single Hamiltonian Ĥ is considered. In general, one starts from
the ground state of Ĥ whose interaction parameter is choosen such that the latter corresponds
to a product (not entangled) state. Then, a local perturbation is applied e.g. a spin-flip for
spin lattice models or moving a particle for bosonic or fermionic lattice models resulting in
an initial state |Ψ0〉 which is not translationally invariant anymore. Finally, the initial state
is suddenly quenched at t = 0 via the Hamiltonian Ĥ with the same set of parameters as before.

Driving lattice models out of equilibrium

In the following, we provide more details about the quenching process. According to the
time-dependent Schrödinger equation, which reads as

i∂t |Ψ(t)〉 = Ĥ |Ψ(t)〉 , (3.4)

the time-evolved quantum state |Ψ(t)〉 with respect to the post-quench Hamiltonian Ĥf can
be written as follows (~ fixed to unity)

|Ψ(t)〉 = e−iĤft |Ψ0〉 . (3.5)

This unitary time evolution of the initial quantum state |Ψ(t)〉 conserves both the norm,
〈Ψ(t)|Ψ(t)〉 = 〈Ψ0|Ψ0〉 = 1, and the total energy, 〈Ψ(t)|Ĥf |Ψ(t)〉 = 〈Ψ0|Ĥf |Ψ0〉 = Ef

0 assuming
that |Ψ0〉 is well normalized. The energy is conserved from t = 0+, corresponding to the time
right after having applied the sudden global quench to a final observation time. Indeed, the
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sudden global quench allows to drive the quantum system far from equilibrium by starting
from a highly excited state ie. Ef

0 > E0 = 〈Ψ0|Ĥi|Ψ0〉 where E0 denotes the ground state
energy with respect to the pre-quench Hamiltonian Ĥi, see Fig. 3.2(b). The latter is due to
the initial quantum state |Ψ0〉 which is not an eigenvector of the post-quench Hamiltonian Ĥf .

3.1.3 The connected correlation functions

The real time evolution of quantum lattice systems can be characterized by computing equal-
time connected correlation functions. Those observables read as

G0(R, t) ≡ 〈ÂX(t)B̂Y (t)〉 − 〈ÂX(t)〉〈B̂Y (t)〉 (3.6)

where ÂX , B̂Y denote operators with support in region X and Y separated by a distance
R. In practice, ÂX , B̂Y correpond to local operators acting on a single lattice site X and
Y respectively. In order to conserve only the dynamical part of G0(R, t), we substract
its equilibrium value G0(R, 0) and the resulting connected correlation function denoted by
G(R, t) = G0(R, t) − G0(R, 0) reads as

G(R, t) ≡ 〈ÂX(t)B̂Y(t)〉 − 〈ÂX(t)〉〈B̂Y(t)〉 − 〈ÂX(0)B̂Y(0)〉+ 〈ÂX(0)〉〈B̂Y(0)〉 (3.7)

Such correlations for particle (one-body, density-density correlation functions) and spin lattice
models (spin-spin correlation functions along different directions) can be measured in state-of-
the-art experiments based on ultracold atoms or artifical ion crystals for instance [16,17,22,110].

We describe global quenches where the dynamics is driven by the low-energy sector of
Ĥ that may be assumed to consist of quasiparticle excitations. Due to the translational
invariance, they are characterized by a well-defined quasimomentum k and an associated
energy Ek. As we shall see later, many relevant observables for particle and spin lattice
models in various phases and regimes, may be cast into a generic form, see for instance
Refs. [25–31]. The latter may be written as [32]

Figure 3.2: Sudden global quench for a generic Hamiltonian Ĥ. (a) Representation of a global
quench where the Hamiltonian Ĥ is prepared in the pre-quench Hamiltonian Ĥi then a global quench
is suddenly applied on Ĥi at t = 0 and the quantum system evolves with the post-quench Hamiltonian
Ĥf . (b) Evolution of the total energy as a function of time t. Sudden global quenches allow to drive
quantum systems far from equilibrium by simply changing a parameter of a Hamiltonian Ĥ. This
results in an initial highly excited state (not even an eigenvector) with respect to the post-quench
Hamiltonian Ĥf whose far-from-equilibrium dynamics can be observed in time.
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G(R, t) = g(R)−
∫
B

dk
(2π)DF(k)

{
ei(k.R+2Ekt) + ei(k.R−2Ekt)

2

}
, (3.8)

where the D-dimensional integral spans the first Brillouin zone B. The real-space-dependent
quantity g(R) can be dropped since one wants to describe the far-from-equilibrium dynamics of
the lattice model. Equation (3.8) describes the motion of free counterpropagating quasiparticle
pairs, with velocities determined by the excitation spectrum Ek. The amplitude function F(k)
encodes the overlap between the initial state and the different quasiparticle wavefunctions
with the matrix elements of both the local operators Â, B̂. In other words, it can be seen as a
weight associated to each quasiparticle with a quasimomentum k within the first Brillouin zone.
This weight depends not only on the considered observables but also on the global quench.
This explicit form of the correlations can be derived in exactly solvable models and quadratic
systems, which can be diagonalized by means of canonical transformations e.g. bosonic or
fermionic Bogolyubov transformation. The concept of quasiparticles also applies to models
that are not exactly solvable, where they can be determined using tensor-network techniques
[138,139] and our theory on correlation spreading also holds for such quantum systems.

It is convenient to distinguish the case of Hamiltonians having short-range couplings
from those having long-range couplings where the scaling laws of the universal causality
cone are significantly different.

3.2 Lattice models with short-range couplings

We start with the case of lattice models with short-range interactions and more precisely nearest-
neighbor interactions. It is the simplest case and it applies to a variety of particle and spin mod-
els.

3.2.1 Stationary phase approach

In order to extract the scaling laws of the causality cone, we rely on the stationary phase
approximation to investigate the long-distance and long-time behavior of the generic form of
the equal-time connected correlation function at Eq. (3.8).

In order to investigate the asymptotic behavior ie. long-time and long-distance behavior
along the line R/t = const of the generic connected correlation function G(R, t) at Eq. (3.8),
one can rely on the stationary phase approximation. This approximation is based on the
cancellation of sinusoids with rapidly varying phase. Indeed, a sum of many sinusoids having
the same phase will add constructively, otherwise they will add incoherently. Therefore, the
D-dimensional integral at Eq. (3.8) is dominated by the quasimomentum contributions with
a stationary phase (sp) corresponding to the following condition,

∂k (k.R ∓ 2Ekt) = 0 equivalent to 2Vg(ksp) = ±R/t. (3.9)

For short-range lattice systems, the quasiparticle group velocity Vg(k) = ∂kEk is bounded
1 within the first Brillouin zone where Ek corresponds to the excitation spectrum of the

1This statement is not valid for long-range lattice systems. The group velocity can diverge within the first
Brillouin zone leading to strong modifications of the scaling laws for the causality cone, see Sec. 3.3.
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short-range interacting lattice model. In other words, this statement implies that one can
find a quasimomentum k∗ such that

k∗ = arg max [Vg(k)] . (3.10)

Since the group velocity is upper bounded by a value V ∗g = Vg(k∗) = max [Vg(k)], Eq. (3.9)
has a solution only for R/t ≤ 2V ∗g . When applying the stationary phase approximation to
Eq. (3.8), the asymptotic behavior of the connected correlation function G(R, t) is given by,
see Appendix. A for more details about the derivation,

G(R, t) ∝ F(ksp)(
|2∂2

kEksp |t
)D

2
cos

(
ksp.R − 2Ekspt+ σD

π

4

)
, σ = sgn

[
−2∂2

kEkspt
]
. (3.11)

The latter contains all the necessary information to predict the space-time behavior of the
correlation front, as described below.

Twofold causality cone for the space-time correlations

For R/t > 2Vg∗ , Eq. (3.9) has no solution meaning that the different sinusoids are added
incoherently leading to vanishingly small correlations. Therefore, the space-time correlations
have a so-called causal (for R/t < 2Vg∗) and non-causal (for R/t > 2V ∗g ) regions where the
values are non-zero and zero respectively. More precisely, the correlations are activated at the
time t∗ = R/2V ∗g , also called activation time, separating the causal and non-causal regions.
The previous equation defines a correlation edge (CE) whose ballistic spreading is characterized
by the velocity VCE = 2V ∗g = 2∂kEk∗ consistently with the Calabrese-Cardy picture and the
Lieb-Robinson bound, see Refs. [35, 75].

In addition, Eq. (3.11) leads to a CE but also to a series of local maxima and minima
whose space-time propagation can be determined by the cosine argument. Indeed, in the
vicinity of the CE, only the quasiparticles with a quasimomentum k close to k∗, moving at
the maximal group velocity V ∗g , contribute to the correlations. The other quasiparticles with
a quasimomentum k significantly different from k∗ also propagate through the lattice but
with a smaller group velocity. As a consequence, these quasiparticles affect the correlations
of the inner structure of the correlation cone but are irrelevant in the vicinity of the CE.
Then, the maxima (m) are defined by the following motion equation

k∗.R − 2Ek∗t+ σD
π

4 = 2πn with n ∈ Z. (3.12)

Concerning the minima, the motion equation will be slightly different. Indeed, the cosine
argument has to be equal to (2n+ 1)π with n ∈ Z. Hence, both the series of local maxima
and minima propagate at the velocity Vm = 2V ∗ϕ = 2Ek∗/k∗ corresponding to twice the phase
velocity at k∗ defined by Eq. (3.10).

In general, for interacting lattice models, the excitation spectrum Ek is not linear with the
quasimomentum k over the first Brillouin zone, thus the group and phase velocities differ, see
for instance Fig. 3.5 and inset of Fig. 3.6(a). Consequently, for short-range interacting lattice
models, the correlation cone is expected to feature a universal twofold structure characterized
by a ballistic motion of the CE and the series of local maxima with an associated velocity
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VCE = 2V ∗g and Vm = 2V ∗ϕ respectively.

The twofold structure for the correlation spreading in short-range interacting models
found via the stationary phase approximation is clarified now. For simplicity, let us first
consider a 1D lattice model. A correlation between two distinct points separated by a distance
R is seeded when two correlated, counterpropagating quasiparticles emanating from the
center reach the two points, see Fig. 3.3(a). The fastest ones are those propagating at the
maximal group velocity V ∗g . Therefore, it leads the effective velocity 2V ∗g in order to reach the
corresponding activation time t∗. More precisely, a correlation at a distance R and time t is
built from a coherent superposition of the contributions of all the quasiparticles in the first
Brillouin zone. As discussed previously, in the vicinity of the CE, only the fastest ones with a
quasimomentum k∗ contribute. It creates a sine-like signal at the driving spatial frequency k∗
whose maxima propagate at the velocity Vm = 2V ∗ϕ . Then, the contribution of quasiparticles
with a quasimomentum around k∗ modulates the sine-like signal by an envelope moving at the
CE velocity VCE = 2V ∗g , see Fig. 3.3(b). This behavior is reminiscent of the propagation of a
coherent wave-packet in a dispersive medium [140–142].

Figure 3.3: Quantum quench in a 1D short-range lattice model. (a) Generation of correlations
between two points at a distance R by pairs of counter-propagating quasiparticles emitted at the
mid-point R/2. The first correlation is generated by the fastest quasiparticles at the activation time
t∗ = R/2V ∗g . (b) Correlation spreading in the vicinity of the correlation edge (CE). The correlation
function forms a periodic series of maxima moving at the velocity Vm = 2V ∗ϕ , with an envelope moving
at the velocity VCE = 2V ∗g . Figure adapted from Ref. [33].

Our theoretical prediction on the linear twofold structure for the correlation spreading in
short-range interacting lattice models is explicitly tested in the following for the 1D SRBH
model in both phases, namely the gapless superfluid and gapped Mott-insulating phases and
more precisely in their limit regime (U � J for the SF phase and J � U for the MI phase)
where the model is solvable using a mean field approximation.

3.2.2 Case study of the Bose-Hubbard chain: Superfluid phase

In the following, we illustrate the scaling laws, and more exactly the velocities, characterizing
the twofold structure of the correlation cone for short-range interacting lattice models. To
do so, we investigate a one-dimensional bosonic lattice model namely the 1D short-range
Bose-Hubbard model whose Hamiltonian is given at Eq. (3.2). For the latter, a competition
occurs between a delocalization of the bosons on the lattice (favored by the hopping amplitude
J > 0) and a localization (via the repulsive two-body interaction U > 0, which tends to localize
the bosonic particles by minimizing the fluctuations of the number of bosons per lattice site).

64



3. Universal scaling laws for correlation spreading in quantum lattice models with . . .

The Bose-Hubbard model possesses two different quantum phases at integer fillings n̄ ∈ N∗
: the superfluid (SF) phase at J � U and the Mott-insulating (MI) phase at U � J , see
Fig. 3.4. The superfluid phase is characterized by a gapless excitation spectrum and a non-zero
compressibility whereas the Mott-insulating phase is incompressible and has a gapped excitation
spectrum. More details about this lattice model will be given in the next chapter at Sec. 4.1.

Figure 3.4: Sketch of the 1D short-range Bose-Hubbard model representing interacting bosonic
particles at unit-filling n̄ = N/Ns = 1, in an optical lattice. (a) Gapless superfluid phase for J � U . In
the SF phase, the bosons are delocalized over the lattice sites. (b) Gapped Mott-insulating phase for
U � J . In the MI phase, the bosons are pinned in the lattice sites and the particle-number fluctuations
are suppressed.

Excitation spectrum in the mean field regime

We first consider the superfluid phase (SF) and the mean field regime corresponding to a
high-enough average particle density denoted by n̄� U/2J , see Appendix. B for a derivation
of the mean field condition. In this regime, the Hamiltonian of the Bose-Hubbard chain can be
diagonalized using a (bosonic) Bogolyubov approximation, see for instance Refs. [26,28,143,144].
In the following, we provide a brief outline for the derivation of the excitation spectrum.

In the limit J/U → 0 of the SF phase, the bosons are fully delocalized over the lattice.
Hence, the many-body wavefunction |Ψ〉 may be written as

|Ψ〉 = 1√
N !

(
1√
Ns

Ns∑
R=1

â†R

)N
|0〉 = 1√

N !
(â†k=0)N |0〉 . (3.13)

where N denotes the total number of bosons and Ns the number of lattice sites (a the lattice
spacing is fixed to unity by convention). All the bosonic particles are in the mode k = 0
due to their perfect delocalization in real space. Therefore, when considering a finite and
non-zero ratio U/J such that U � J , one may assume that the mode k = 0 is occupied by a
macroscopic number of bosonic particles. The latter can be formulated as follows

âk=0 |N0〉 '
√
N0 |N0〉 , â†k=0 |N0〉 '

√
N0 |N0〉 (3.14)

where N0 refers to the number of particles in the mode k = 0. Furthermore, the total number of
bosonic particles N is linked to the one for the mode k = 0, ie. N0, by both following equations

N = N0 +
∑
k 6=0

nk, N2
0 ' N2 − 2N

∑
k 6=0

nk, (3.15)

where the second is found by assuming small density fluctuations. To obtain a quadratic form
of the Bose-Hubbard chain at Eq. (3.2) in the SF mean field regime, it requires to express
bosonic operators in momentum space. The transformation is obtained via a Fourier transform
and leads for the bosonic operators of creation (annihilaton) in real space â†R (âR) to

65



3. Universal scaling laws for correlation spreading in quantum lattice models with . . .

â†R = 1√
Ns

∑
k

eikRâ†k, âR = 1√
Ns

∑
k

e−ikRâk. (3.16)

where â†k, âk, correspond to the bosonic operator of creation and annihilation in the momentum
space respectively. Then, by injecting Eq. (3.16) in the Bose-Hubbard chain and using
Eq. (3.15), the interaction term can be developed up to quadratic order (in terms of â†k and âk).
Finally, it yields the following quadratic form for the BH Hamiltonian in the Fourier space,

Ĥ = e0 + 1
2
∑
k 6=0
Ak
(
â†kâk + â−kâ

†
−k

)
+ Bk

(
â†kâ
†
−k + âkâ−k

)
(3.17)

with e0 a constant energy and Ak, Bk two momentum-dependent coefficients. These coefficients
are defined as

Ak = γk + Un̄ = 4J sin2(k/2) + Un̄, Bk = Un̄. (3.18)

where γk = 4J sin2(k/2) corresponds to the dispersion relation of the free-particle tight-binding
model. The resulting quadratic form at Eq. (3.17) can then be diagonalized using a (bosonic)
Bogolyubov canonical transformation. This transformation is based on the introduction of
hybrid bosonic operators β̂k and β̂†k. These new operators, β̂k and β̂†k, denoting the annihilation
and creation of a Bogolyubov quasiparticle at quasimomentum k are related to the initial
bosonic operators via the two following equations

âk = ukβ̂k + v−kβ̂
†
−k, â†k = u∗kβ̂

†
k + v∗−kβ̂−k. (3.19)

Besides, since the Bogolyubov (quasiparticle) operators are bosonic, they obey the usual
commutation rules given by [β̂k, β̂†k′ ] = δk,k′ and [β̂k, β̂k′ ] = [β̂†k, β̂

†
k′ ] = 0. This implies for the

coefficients uk and vk to fulfill the condition |uk|2 − |v−k|2 = 1. Consequently, they can be
expressed as a function of a (unknown) parameter αk where uk = cosh(αk) and v−k = sinh(αk).
The value of αk is then determined such that the non-diagonal terms ie. β̂kβ̂−k and β̂†kβ̂

†
−k

are suppressed. The latter appear when injecting Eq. (3.19) in the quadratic form of the
BH model given previously at Eq. (3.17). It yields the condition

2Akukv−k + Bk(u2
k + v2

−k) = 0. (3.20)

The coefficients uk = cosh(αk) and v−k = sinh(αk) fulfilling the previous condition read as

uk, v−k = ±
[1

2

(Ak
Ek
± 1

)]1/2
= ±

(
γk + Un̄

2
√
γk (γk + 2Un̄)

± 1
2

)1/2

. (3.21)

This specific analytical expression of uk and v−k permits to suppress the off-diagonal terms in
the quadratic form. The BH Hamiltonian in the SF mean field regime is then diagonalized
ie. depends only on the quasiparticle number operator n̂β,k = β̂†kβ̂k. It reads as

Ĥ = E0 +
∑
k 6=0

Ekβ̂
†
kβ̂k, (3.22)

with the excitation spectrum Ek defined as
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Ek =
√
γk(γk + 2Un̄), (3.23)

where γk = 4J sin2(k/2) corresponds to the dispersion relation of the free tight-binding model.

According to the diagonal form of the BH model at Eq. (3.22), the ground state at T = 0 is
defined as the vacuum state |0〉 for the Bogolyubov quasiparticles. The associated ground state
energy is given by 〈0|H |0〉 = E0. The gapless excitation spectrum Ek at Eq. (3.23) is displayed
on Fig. 3.5(a) for several interaction parameters U/J and a relatively high filling n̄ = 5. The
latter gives the corresponding energy of a Bogolyubov quasiparticle at quasimomentum k
confined in the first Brillouin zone B = [−π, π]. Two different regimes need to be distinguished :

• A phononic regime corresponding to the limit of small quasimomenta (or large wave-
lengths). For |k| ' 0, Ek is described by an effective linear spectrum consisting of
phononic modes, ie. Ek ' c|k| with c =

√
2n̄JU the sound velocity, see Fig. 3.5(b).

• A particle-like regime corresponding to the limit of high quasimomenta (or small wave-
lengths), provided that J � Un̄. In this limit, Ek converges towards γk = 4J sin2(k/2)
the dispersion relation of the tight-binding model.

Considering positive quasimomenta, the two (phononic and particle-like) regimes are separated
by an inflection point at 0 < k∗ < π depending on the value of Un̄/J . According to the
excitation spectrum in the SF mean field regime at Eq. (3.23), the physical quantity Un̄/J is
the single relevant parameter. Note that the slope of Ek at k∗ corresponds to the maximum
group velocity, ie. Vg(k∗) = max[Vg(k)].

In the following, we briefly analyze the different characteristic velocities of the SF meanfied
regime. It will be particularly helpful in the next paragraphs to analyze the spreading of
both the density and phase correlations in this regime. The three investigated characteristic
velocities correspond to (i) the group velocity Vg (ii) the phase velocity Vϕ(k) and (iii) the
sound velocity c defined as follows (~ is fixed to unity)

Vg(k) = ∂kEk, Vϕ(k) = Ek/k, c = lim
k→0

Vg(k). (3.24)

Relying on Eq. (3.23), the three previous velocities in the SF mean field regime can be
determined analytically. It yields respectively for the group, phase and sound velocities

Vg(k) = 4J cos(k/2) sin(k/2)
[
4J sin2(k/2) + Un̄

]√
4J sin2(k/2)

[
4J sin2(k/2) + 2n̄U

] , (3.25)

Vϕ(k) = k−1
√

4J sin2(k/2)
[
4J sin2(k/2) + 2n̄U

]
, (3.26)

c =
√

2n̄JU. (3.27)

On Fig. 3.5(b), the maximal value of the group velocity (V ∗g = Vg(k∗)), the phase velocity at
k∗ (V ∗ϕ ) together with the sound velocity (c) are displayed as a function of the dimensionless
quantity Un̄/J . One notices that V ∗g > V ∗ϕ > c, ∀ (Un̄/J) ∈ R+. Indeed, due to the convexity
of the excitation spectrum Ek and its gapless property, it leads Vg(k∗) ≥ Vϕ(k∗) at the inflexion
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Figure 3.5: Excitation spectrum properties of the 1D short-range Bose-Hubbard model in the mean
field regime of the superfluid phase for n̄ = 5. (a) Energy rescaled by the hopping amplitude Ek/J
as a function of the quasimomentum k (a lattice spacing fixed to unity) in the first Brillouin zone
B = [−π, π] for several interaction parameters U/J . (b) Dimensionless physical quantity ~V/J as
a function of the relevant parameter in the SF mean field regime Un̄/J . V denotes three different
characteristic velocities : the maximal group velocity V ∗g = Vg(k∗), the corresponding phase velocity at
k∗ denoted by Vϕ(k∗) and the sound velocity c.

point k∗. However, in the limit of high values of Un̄/J , V ∗g ' V ∗ϕ ' c. The latter is due to the
excitation spectrum Ek getting phononic modes at higher quasimomentum k, see Fig. 3.5(a).

Sudden global quenches in the mean field regime

In the following, we verify the analytical predictions concerning the spreading velocities
of each correlation cone structure for short-range lattice models. To do so, we investigate
the Bose-Hubbard chain in the SF mean field regime driven out of equilibrium via sudden
global quenches. Consequently, the pre- and post-quench interaction parameters fulfill the
conditions (U/J)i, (U/J)f � 2n̄ while the filling n̄ is fixed during the real time evolution.
Besides, the spreading of both the phase and density fluctuations are investigated via the
connected correlation functions G1(R, t)

G1(R, t) = 〈â†R(t)â0(t)〉 − 〈â†R(0)â0(0)〉 (3.28)

and G2(R, t) respectively,

G2(R, t) = g2(R, t)− g2(R, 0) with g2(R, t) = 〈n̂R(t)n̂0(t)〉 − 〈n̂R(t)〉〈n̂0(t)〉. (3.29)

Both equal-time connected correlation functions are of the form presented at Eq. (3.6) where
Âx = â†R and B̂y = â0 for G1. Note that the connected parts for G1, involving the correlators
〈â†R(t)〉, 〈â†R(0)〉, 〈â0(t)〉 and 〈â0(0)〉, vanish since the canonical statistical ensemble is considered
ie. implying a fixed total number of bosonic particles on the chain. For G2, Âx = n̂R and
B̂y = n̂0.

To compute analytically both connected correlation functions G1 and G2 for a global
quench such that the pre- and post-quench Hamiltonians are confined in the SF mean
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field regime, the reasoning is identical :

• Firstly, one starts by expressing the correlation functions in terms of the post-quench
bosonic operators in the momentum space denoted by âk,f(t), â†k,f(t).

• Secondly, using the Bogolyubov transformation defined at Eq. (3.19), one expresses
âk,f(t) and â†k,f(t) as a function of the post-quench Bogolyubov operators β̂k,f(t), β̂†k,f(t).

• Since, the post-quench Bogolyubov operators diagonalize the post-quench Hamiltonian
Ĥf = Ĥ [(U/J)f ], their time-dependent version take a simple expression. Indeed, relying
on the equation of motion −i∂tβ̂(†)

k,f (t) =
[
Ĥ, β̂

(†)
k,f

]
t
, one finds

β̂k,f(t) = e−iEk,ftβ̂k,f(0), β̂†k,f(t) = eiEk,ftβ̂†k,f(0) (3.30)

• Then, the continuity at t = 0 between the post-quench and pre-quench bosonic operators
â

(†)
k,f (0) = â

(†)
k,i permits to find a relation between the post-quench Bogolyubov operators at

t = 0, β̂k,f(0), β̂†k,f(0), and the pre-quench Bogolyubov operators β̂k,i, β̂†k,i. The continuity
condition is given by

âk,f(0) = uk,f β̂k,f(0) + v−k,f β̂
†
−k,f(0) = uk,iβ̂k,i + v−k,iβ̂

†
−k,i (3.31)

â†k,f(0) = uk,f β̂
†
k,f(0) + v−k,f β̂−k,f(0) = uk,iβ̂

†
k,i + v−k,iβ̂−k,i (3.32)

leading for the post-quench Bogolyubov operators at t = 0 to

β̂k,f(0) = (uk,iuk,f − v−k,iv−k,f) β̂k,i − (uk,iv−k,f − v−k,iuk,f) β̂†−k,i (3.33)

β̂†k,f(0) = (uk,iuk,f − v−k,iv−k,f) β̂†k,i − (uk,iv−k,f − v−k,iuk,f) β̂−k,i (3.34)

• At this stage, both correlation functions involve only the pre-quench Bogolyubov operators
β̂k,i, β̂

†
k,i. Finally, using the condition β̂k,i |GSi〉 = 0, where |GSi〉 denotes the ground

state of the pre-quench Hamiltonian Ĥi = Ĥ [(U/J)i], one finds the analytical expression
of G1 and G2.

The phase fluctuations - G1 correlation function

We first investigate the phase fluctuations G1 for a sudden global quench confined in the SF
mean field regime. In the following, the sudden global quench is applied on the two-body
repulsive interaction strength U (Ui, Uf will thus denote the pre- and post-quench two-body
interaction) and the hopping amplitude J is fixed. Since the Bose-Hubbard chain in this
regime can be diagonalized using a Bogolyubov canonical transformation, G1 can be calculated
analytically using the previous scheme, see Appendix. C. It yields forG1 the following expression

G1(R, t) ∼ −
∫
B

dk
2πF1(k)

{
ei(kR+2Ek,ft) + ei(kR−2Ek,ft)

2

}
, (3.35)

with the amplitude function F1 defined as follows
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F1(k) = n̄2Ufγk(Uf − Ui)
2Ek,iE2

k,f
, (3.36)

where Ek,i(Ek,f) denotes the pre-quench (post-quench) excitation spectrum of the 1D short-
range Bose-Hubbard model in the mean field regime of the SF phase given at Eq. (3.23).

The analytical expression of the phase fluctutations G1 at Eq. (3.35) fulfills the generic
form presented at Eq. (3.8). Moreover, according to Eq. (3.35), the real time evolution of G1
is governed by the post-quench Hamiltonian Ĥf through its excitation spectrum Ek,f present
in both space-time dependent plane waves. The previous statement is straightforward since
the many-body wavefunction of the quantum system evolves in time with the post-quench
Hamiltonian, see Eq. (3.5). Finally, based on the analytical expression of F1 at Eq. (3.36),
one finds that if Ui = Uf ie. the post-quench Hamiltonian is identical to the pre-quench
Hamiltonian then G1(R, t) = 0, ∀(R, t) ∈ Z× R+ meaning that the dynamics is suppressed as
expected.

On Fig. 3.6(a), the analytical connected correlation function G1 is displayed as a function of
the rescaled time tJ/~ and distance R for the Bose-Hubbard chain in the SF mean field regime.
In order to put the bosonic chain out of equilibrium, a sudden global quench is considered.
Indeed, at t = 0, while the hopping amplitude J and the filling n̄ are fixed, the repulsive
two-body interaction is suddenly modified such that Ui/2Jn̄, Uf/2Jn̄� 1. For instance, on
Fig. 3.6(a), the global quench is characterized by the following pre- and post-quench ratios
Uin̄ = J and Uf n̄ = 0.5J . Note that in this mean field regime, the ratio Un̄/J is the single
relevant parameter, see Eq. (3.35) and (3.23). Figure 3.6(a) clearly shows a twofold structure
for the correlations, characterized by two different velocities.

On the one hand, a series of parallel extrema move along straight lines corresponding to
a constant propagation velocity Vm. The latter is found using a linear fit, as shown by the
dashed blue lines on Fig. 3.6(a). The values of Vm associated to different global quenches, by
varying the post-quench interaction parameter Uf n̄/J = Un̄/J , confined in the SF mean field
regime are reported on Fig. 3.6(b) and symbolized by the blue disks. They are compared to
twice the phase velocity at the quasimomentum k∗ where the group velocity is maxima, ie.
2V ∗ϕ , see dashed blue line. According to our quasiparticle theory for the correlation spreading,
this velocity is expected to characterize the spreading of the inner structure (local extrema).
This statement is confirmed quantitatively on Fig. 3.6(b) where Vm ' 2V ∗ϕ .

On the other hand, the various local extrema start at different activation times t∗(R). The
latter are aligned along a straight line with a different slope, as shown by the solid green line
on Fig. 3.6(a). This line characterizes the outer structure [correlation edge, (CE)] beyond
which the correlations are exponentially suppressed. In other words, the latter permits to
separate the causal and non-causal regions of correlations. However, the CE is defined by
a different velocity VCE which is not related to the one for the series of local extrema. On
Fig. 3.6(b), VCE is reported for the same global quenches than those considered previously to
study the spreading of the inner structure, see green diamonds. They are compared to twice
the maximal group velocity, ie. 2V ∗g , see solid green line on Fig. 3.6(b), which is expected
to characterize the motion of the CE according to our theory. Both velocities are found to
be in very good agreement, where the maximal relative error is less than 10%. Note that
the sound velocity c is also represented on Fig. 3.6(b) by the solid purple line. This permits
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to conclude that the latter is irrelevant to characterize both the spreading of the inner and
outer structures. Hence, an effective low-energy theory e.g. a Luttinger-liquid approach can
not explain the twofold structure for the space-time correlations.

Figure 3.6: Spreading of the connected one-body correlation function G1(R, t) = 〈â†R(t)â0(t)〉 −
〈â†R(0)â0(0)〉 for the 1D Bose-Hubbard model in the mean field regime of the SF phase. (a) Analytical
result, see Eq. (3.35) and (3.36), for a global quench from the initial value Uin̄ = J to the final value
Uf n̄ = 0.5J . (b) Comparison between twice the maximum group velocity (2V ∗g , solid green line), twice
the corresponding phase velocity (2V ∗ϕ , dashed blue line), twice the sound velocity (2c, solid purple
line), and the spreading velocities obtained via linear fits to the correlation edge (VCE, green diamonds)
and to several maxima (Vm, blue disks) with the same initial value Uin̄/J as for (a). For the specific
value Uf n̄/J = 1, we considered a different initial ratio Uin̄/J . The inset of (a) represents a sketch
of the excitation spectrum Ek (in the SF mean field regime) as a function of the quasimomentum k
showing an inflexion point at k∗. The group velocity together with the phase velocity at the inflexion
point are shown (see solid green and dashed blue line respectively) and denoted by V ∗g and V ∗ϕ . Figure
extracted from Ref. [32].

The density fluctuations - G2 correlation function

We now turn to another physical quantity ie. the density fluctuations via the study of the G2
connected correlation function. This quantity has been widely investigated for the 1D SRBH
model both theoretically and experimentally but also in other bosonic and fermionic lattice
models, see for instance Refs. [22, 25, 28, 32, 33, 112]. The space-time behavior of a second
physical quantity is investigated in order to confirm that both spreading velocities VCE and
Vm for the CE and the series of local extrema respectively are observable-independent.

Similarly to the G1 correlation function to study the phase fluctuations, the G2 density
correlations can also be derived analytically in the SF mean field regime and reads as (see Ap-
pendix. D),

G2(R, t) ∼ −
∫
B

dk
2πF2(k)

{
ei(kR+2Ek,ft) + ei(kR−2Ek,ft)

2

}
, (3.37)

with the amplitude function F2 given by
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F2(k) ' n̄2γk(Ui − Uf)
Ek,i(γk + 2n̄Uf)

. (3.38)

Similarly to G1, the analytical expression of the density fluctuations G2 at Eq. (3.37)
fulfills the generic form, see Eq. (3.8). Therefore, we expect to find a twofold structure for
G2 characterized by a correlation edge and a series of local extrema. Besides, according to
our correlation spreading theory, we predicted that the spreading velocities of the CE and the
extrema do not depend on the observable (provided that the generic form is fulfilled). Both
statements are verified below relying on the previous analytical form of G2.

On Fig. 3.7(a), we show the analytical G2 density correlations as a function of the rescaled
time tJ/~ and distance R. The global quench (confined in the SF mean field regime of the
BH chain) is the same as the one considered for G1 at Fig. 3.6(a). As expected, G2 displays a
double structure ie. a CE and a series of local extrema characterized by two distinct velocities.
Note that the double structure of G2 is much clearer compared to the one for G1. This effect,
discussed in the next chapter, can be attributed to the relatively strong long-range correlations
present at equilibrium for G1 compared to those for G2.
As previously for G1, we use linear fits to determine the values of the spreading velocities VCE
and Vm for the CE and the local extrema respectively. The resulting data are displayed on
Fig. 3.7(b) and the values of VCE (Vm) are represented by the green diamonds (blue disks).
The fitted velocities are compared, as previously, to three characteristic velocities determined
by the analytical post-quench excitation spectrum in the SF mean field regime, ie. 2V ∗g [twice
the (maximal) group velocity at the quasimomentum k∗], 2V ∗ϕ (twice the phase velocity at k∗)
and 2c (twice the sound velocity). As predicted and confirmed at Fig. 3.7, the CE moves at
2V ∗g and the local extrema propagate at 2V ∗ϕ whereas the velocity 2c is irrelevant.
Finally, the spreading velocities of each structure are similar for G1 and G2 according
to Figs. 3.6(b) and 3.7(b). Indeed, the CE and the local extrema move at VCE ' 2V ∗g
and Vm ' 2V ∗ϕ respectively. The latter allows us to certify that the spreading velocities
for the twofold structure are observable-independent and fully characterized by the post-
quench excitation spectrum.

Numerical simulations of the correlation spreading in 1D short-range lattice mod-
els

The distinction between the CE propagating at the velocity 2V ∗g and the extrema emanating
from it and propagating at a different velocity given by 2V ∗ϕ allows to understand several
unexplained observations. In this paragraph, we shed new light on numerical results in the
litterature concerning the correlation spreading in 1D short-range lattice models.

In Ref. [112], the 1D short-range Bose-Hubbard model is studied (but also the 2D case). A
special care is devoted to the G2 density correlations using the time-dependent Variational
Monte-Carlo technique (t-VMC) on relevant time and distance scales. On Fig. 1(a) of Ref. [112],
a single structure ie. Vm ' VCE is observed for the correlation cone. The latter is due to the
large post-quench two-body interaction parameter Uf = 4. Indeed, for large ratio Un̄/J , the
analytical spreading velocities of the CE (2V ∗g ) and local extrema (2V ∗ϕ ) are almost equal,
see Fig. 3.6(b). Besides, the correlation edge velocity extracted from the t-VMC calculations
quantitatively agrees with the value 2V ∗ϕ calculated previously at Fig. 3.7(b). Our analysis

72



3. Universal scaling laws for correlation spreading in quantum lattice models with . . .

Figure 3.7: Spreading of the connected density-density correlation function G2(R, t) = g2(R, t) −
g2(R, 0) with g2(R, t) = 〈n̂R(t)n̂0(t)〉− 〈n̂R(t)〉〈n̂0(t)〉 for the 1D Bose-Hubbard model in the superfluid
mean field regime. (a) Analytical result, see Eq. (3.37) and (3.38), for a global quench from the initial
value Uin̄ = J to the final value Uf n̄ = 0.5J . (b) Comparison between twice the maximum group
velocity (2V ∗g , solid green line), twice the corresponding phase velocity (2V ∗ϕ , dashed blue line), twice
the sound velocity (2c, solid purple line) and the spreading velocities obtained via linear fits to the
correlation edge (VCE, green diamonds) and to several maxima (Vm, blue disks) with the same initial
value Uin̄/J as for (a).

shows that it should thus be assimilated to the spreading of the local extrema of the causal
region of correlations and not to the one of the correlation edge. In contrast, the CE is
determined by the raise of the envelop of these extrema, and moves at the velocity 2V ∗g .
Finally, we stress that the t-VMC result of G2 at Fig. 1(a) is in very good (quantitative)
agreement with our analytical expression at Eq. (3.37) and represented on Fig. 3.8. Hence, the
latter cross-validates the t-VMC calculations performed on relevant time and distance scales
on the one hand and our quasiparticle picture on the other hand.

Figure 3.8: Spreading of the connected density-density correlation function G2(R, t) = g2(R, t) −
g2(R, 0) with g2(R, t) = 〈n̂R(t)n̂0(t)〉− 〈n̂R(t)〉〈n̂0(t)〉 for the 1D Bose-Hubbard model in the superfluid
phase, see Eq. (3.37) and Eq.(3.38). A global quench from the initial value Uin̄ = 2J to the final value
Uf n̄ = 4J is considered. The latter is in excellent quantitative agreement with Fig. 1(a) of Ref. [112].

In Ref. [111], the 1D Fermi-Hubbard model is considered where the G2 density correlations
are investigated numerically using time-dependent Density Matrix Renormalization Group
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(t-DMRG) simulations. A similar analysis applies, for global quenches in both the SF and
CDW (Charge-Density-Wave insulating) regimes of this model, where a twofold spike-like
structure appears. However, one needs to be prudent since our quasiparticle picture deals only
with bosonic lattice models. Nevertheless, we expect that the generic form of the correlations
at Eq. (3.6) also holds for fermionic lattice models.

3.2.3 Case study of the Bose-Hubbard chain: Mott-insulating phase

We now turn to the Mott-Insulating phase (MI) of the 1D short-range Bose-Hubbard model
implying that the filling n̄ is integer, ie. n̄ ∈ N∗. This quantum phase is characterized
by a finite gap in its excitation spectrum contrary to the SF phase. In the following, the
correlation spreading is investigated in the strong-coupling regime implying U � Jn̄. To
deduce the excitation spectrum of this specific regime, the Hamiltonian can be diagonalized
using strong-coupling expansions, see Refs. [25,122,123]. In the following, we give more details
about the strong-coupling perturbation theory working along the lines of Ref. [25].

The low-energy excitations of the MI phase consist of removing one bosonic particle from
a lattice site and to put it on another one of the chain. It yields a so-called doublon-holon
excitation pair where the holon (doublon) denotes n̄ − 1 (n̄ + 1) particles on a lattice site.
The main idea of the first-order perturbation theory applied to MI strong-coupling regime
is to consider one doublon-holon excitation pair of energy U and then treating the hopping
operator Ĥhop, defined below, as a perturbative term. Firstly, one starts by rewriting the
Hamiltonian of the Bose-Hubbard chain at Eq. (3.2) under the following form

Ĥ = Ĥhop + Ĥint, Ĥint = U

2
∑
R

n̂R(n̂R − 1), Ĥhop = −J
∑
R

(â†RâR+1 + h.c). (3.39)

The ground state of the Bose-Hubbard chain in the limit regime U/J → +∞ is given by
the pure Mott state defined as follows

|GS(0)〉 = |n̄〉⊗Ns ≡ |n̄〉 . (3.40)

Then, using the first-order perturbation theory, it leads for the perturbed ground state |GS(1)〉 to

|GS(1)〉 ' |n̄〉+
∑

R,R′,R′ 6=0

〈φ(0)
R,R′ |Ĥhop|GS(0)〉
E0 − ER,R′

|φ(0)
R,R′〉 , (3.41)

where E0 = 0 is the energy associated to the pure Mott state |GS(0)〉. |φ(0)
R,R′〉 = [n̄(n̄+ 1)]−1/2 âR+R′ â

†
R |n̄〉

with R′ 6= 0 represents the many-body quantum state with a doublon-holon pair present on
the lattice chain. The condition R′ 6= 0 enforces that one cannot remove and put the bosonic
particle on the same lattice. Indeed, in the opposite case, the doublon-holon pair is not created.
Finally, the prefactor [n̄(n̄+ 1)]−1/2 comes from the normalization of the quantum state |φ(0)

R,R′〉
(
√
n̄,
√
n̄+ 1 comes from the creation of a holon and doublon respectively). Performing the

calculation starting from Eq. (3.41) leads to the following expression for |GS(1)〉

|GS(1)〉 ' |n̄〉+ J

U

√
n̄(n̄+ 1)

∑
R

(
|φ(0)
R,1〉+ |φ(0)

R,−1〉
)
. (3.42)

The equation (3.42) describes the perturbed ground state |GS(1)〉 as a superposition of the pure
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MI state |GS(0)〉 ≡ |n̄〉 and the degenerated quantum states |φ(0)
R,±1〉 which consist of creating

a bosonic particle at the lattice site R and to remove one on the nearest lattice site R ± 1.
The previous statement is due to the hopping term Ĥhop where only a tunnelling between the
nearest-neighbor lattice sites is allowed.

We now turn to the derivation of the excitation spectrum for the MI strong-coupling
regime. To do so, a degenerate pertubation theory needs to be considered. At first order
in J/U , the latter consists of diagonalizing the Bose-Hubbard Hamiltonian reduced to the
subspace containing all the many-body quantum states having one doublon-holon excitation
pair. Due to the lattice translational symmetry, the perturbative term Ĥhop is diagonalized in
the Fourier space via the eigenbasis {|φ(0)

k 〉}. The eigenstate |φ(0)
k 〉 at quasimomentum k

is given by the following form

|φ(0)
k 〉 =

√
2

Ns

∑
R,R′

sin
(
kR′

)
|φ(0)
R,R′〉 , (3.43)

and is built from a superposition of the many-body quantum states |φ(0)
R,R′〉 denoting the states

with one doublon-holon excitation pair (the sum over R′ is performed over all the lattice sites
since the term sin(kR′) implies that the contribution of the non-physical term R′ = 0 vanishes).
Its corresponding eigenvalue is found by calculating the energy 〈φ(0)

k |Ĥhop|φ
(0)
k 〉 leading to

〈φ(0)
k |Ĥhop|φ

(0)
k 〉 = −2J(2n̄+ 1) cos(k). (3.44)

The last step consists of calculating the contribution in energy coming from the local interaction
term Ĥint which gives 〈φ(0)

k |Ĥint|φ(0)
k 〉 = U . The latter is straightforward since the considered

subspace is built from a superposition of all the quantum states having one doublon-holon
excitation pair. Finally, the excitation spectrum Ek reads as

2Ek = U − 2J(2n̄+ 1) cos(k). (3.45)

On Fig. 3.9(a), the excitation spectrum 2Ek, rescaled by the hopping amplitude J , is
displayed as a function of the quasimomentum k for different ratios U/J . In the Mott-insulating
phase, only the interaction parameter U/J is relevant, see Eq. (3.45). In the MI strong-coupling
regime , 2Ek develops a finite gap as expected and determined by ∆ = U − 2J(2n̄+ 1).

In the following, we analyze briefly the group (Vg) and phase (Vϕ) velocities. Note that
contrary to the SF phase, the MI phase is incompressible. Therefore, the sound velocity c
defined as c = limk→0 Vg(k) is meaningless. The analysis of the characteristic velocities will
be particularly helpful to characterize the (possible at this stage) twofold structure for the
G1 phase fluctuations calculated analytically in the following. According to Eq. (3.45), the
analytical expression of the group and phase velocities are given by

Vg(k) = (2n̄+ 1)J sin(k) (3.46)

Vϕ(k) = k−1 [U/2− J(2n̄+ 1) cos(k)] (3.47)

On Fig. 3.9(b), the dimensionless quantity ~V/J is represented as a function of the interaction
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parameter U/J . V denotes two different parameters namely twice the maximal group velocity
(2V ∗g = 2Vg(k∗)) and twice the phase velocity at k∗ (2V ∗ϕ = 2Vϕ(k∗)). In the case where the
analytical G1 correlation function displays a twofold structure, the latter are expected to
correspond to the spreading velocities of the CE and the series of local extrema respectively.
According to Fig. 3.9(b) and Eq. (3.45), the maximum of the group velocity V ∗g is at the
center of the first Brillouin zone ie. k∗ = π/2, where the group and phase velocities are
V ∗g = (2n̄+ 1)J and V ∗ϕ = U/π, respectively. Contrary to the SF mean field regime, the phase
velocity can exceed the group velocity at k∗. The condition is given by U/J > π(2n̄+ 1) >
uc ' 3.3 where uc = (U/J)n̄=1

c denotes the critical point of the SF-MI phase transition
at unit-filling (n̄ = 1), see Fig. 3.9(b).

Figure 3.9: Excitation spectrum properties of the 1D short-range Bose-Hubbard model in the
strong-coupling limit of the Mott-insulating phase at unit-filling n̄ = 1. (a) Twice the excitation
spectrum rescaled by the hopping amplitude 2Ek/J as a function of the quasimomentum k in the
first Brillouin zone B = [−π, π] for different interaction parameters U/J . (b) Dimensionless physical
quantity ~V/J as a function of U/J . V denotes two distinct velocities namely twice the maximal group
velocity 2V ∗g and twice the corresponding phase velocity at k∗ denoted by 2V ∗ϕ .

Sudden global quenches in the strong-coupling limit

In the following, we verify the theoretical spreading velocities of the twofold causality cone for
a sudden global quench confined in a gapped quantum phase. Previously, a similar analysis has
been performed for the case of a gapless phase where the phase G1 and density G2 fluctuations
in the (gapless) SF mean field regime of the Bose-Hubbard chain were investigated. We have
shown that both correlation functions (i) fulfill the generic form presented and analyzed at
Eq. (3.8) (ii) display a twofold structure whose spreading velocities VCE (for the correlation
edge) and Vm (for the series of local maxima) are determined by 2V ∗g and 2V ∗ϕ respectively.
Here, while still considering the Bose-Hubbard chain, we turn to the (gapped) Mott-insulating
phase in the strong-coupling regime discussed in the previous paragraph. Once again, the
BH chain is put out-of-equilibrium via sudden global quenches confined in a same phase and
regime. To investigate the strong-coupling regime, it implies for the pre- and post-quench
interaction parameters to fulfill (U/J)i, (U/J)f � 1. The filling n̄ is integer in the MI phase
and is fixed to unity during the full real time evolution. Only the phase fluctuations G1
will be investigated. The density fluctuations G2, presented in details in the next chapter at
Sec. 4.3, are a pathological case. Indeed, the corresponding analytical expression is slightly
different from the generic form at Eq. (3.8). This slight difference leads for G2 to a single
structure which can still be explained by our quasiparticle theory.

76



3. Universal scaling laws for correlation spreading in quantum lattice models with . . .

The phase fluctuations - G1 correlation function

Similarly to the case of the superfluid mean field regime, the spreading of the phase fluctuations
is studied via the G1 connected correlation function which reads as

G1(R, t) = 〈â†R(t)â0(t)〉 − 〈â†R(0)â0(0)〉. (3.48)

Using the time-dependent perturbation theory, see Ref. [25] and Appendix. E, the G1 connected
correlation function can be calculated analytically for global quenches confined in the strong-
coupling regime. For the specific case of global quenches defined by Ui → +∞ and Uf � Jn̄,
its analytical expression can be expressed in the generic form of Eq. (3.8),

G1(R, t) ∼ −
∫
B

dk
2πF1(k)

{
ei(kR−2Ek,ft) + ei(kR+2Ek,ft)

2

}
, (3.49)

where Ek,f denotes the post-quench excitation spectrum valid in the strong-coupling limit, see
Eq. (3.45) and F1 the quasimomentum-dependent amplitude function defined as

F1(k) = 4J
iUf

n̄(n̄+ 1) sin(k). (3.50)

Figure 3.10: Spreading of the connected one-body correlation function G1(R, t) = 〈â†R(t)â0(t)〉 −
〈â†R(0)â0(0)〉 for the 1D Bose-Hubbard model in the strong-coupling limit of the Mott-insulating phase
at unit-filling n̄ = 1. (a) Analytical result for a global quench from the initial value Ui → +∞, ie. from
the pure Mott state, to the final value Uf = 18J . (b) Comparison between twice the maximum group
velocity (2V ∗g , solid green line), twice the corresponding phase velocity at k∗ (2V ∗ϕ , dashed blue line)
and fits to the correlation edge velocity (VCE, green diamonds) and to the velocity of the maxima (Vm,
blue disks) with the same initial values as for (a). The inset of (a) represents a sketch of the excitation
spectrum Ek (in the MI strong-coupling regime) as a function of the quasimomentum k showing an
inflexion point at k∗. The group velocity together with the phase velocity at the inflexion point are
shown (see solid green and dashed blue line respectively) and denoted by V ∗g and V ∗ϕ . Figures extracted
from Ref. [32].

On Fig. 3.10(a), the space-time pattern of the G1 connected correlation function is shown
for a sudden global quench confined in the strong-coupling limit of the MI phase starting from a
pure Mott state Ui → +∞ to Uf = 18J at unit-filling n̄ = 1. As expected, it displays a twofold
structure with a CE (solid green line) and a series of local maxima (dashed blue lines). Besides,
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contrary to G1 in the SF mean field regime [see Fig. 3.6(a,b)], the correlation edge velocity is
lower than the one for the extrema, ie. VCE < Vm. According to Fig. 3.10(b), the latter coincide
with twice the group and phase velocities at k∗ respectively, VCE ' 2V ∗g and Vm ' 2V ∗ϕ . This
is consistent with the form of the excitation spectrum 2Ek in the strong-coupling limit, see
Eq. (3.45), displaying a finite gap ∆ = U−2J(2n̄+1) allowing to reach a regime where V ∗ϕ > V ∗g .

Experimental investigation of the correlation spreading in the Bose-Hubbard
chain

So far, an experimental characterization of the correlation spreading in the Mott-insulating
phase at unit-filling n̄ = 1 in a 1D optical lattice was only performed close to the critical
point2 (U/J)n̄=1

c ' 3.3 [118–121] and for the two-point parity correlations, see Ref. [22]
for more details. This observable is defined as C(R, t) = 〈ŝ0(t)ŝR(t)〉 − 〈ŝ0(t)〉〈ŝR(t)〉. The
operator ŝR(t) = eiπ[n̂R(t)−n̄] gives information on the presence or not of a quasiparticle on
the lattice R at time t. Indeed, if a doublon (〈n̂R(t)〉 = n̄ + 1) or holon (〈n̂R(t)〉 = n̄ − 1)
is present, then 〈ŝR(t)〉 = −1. In the case where no quasiparticle is detected (〈n̂R(t)〉 = n̄),
〈ŝR(t)〉 = 1. In the regime of moderate interaction parameters U/J & (U/J)n̄=1

c , both
characteristic velocities 2V ∗g and 2V ∗ϕ are relatively close explaining that no inner structure
was observed [22]. Nevertheless, in the next chapter at Sec. 4.4 relying on a numerically-exact
tensor-network technique, we will show that a twofold structure, with the expected spreading
velocities, should be present in this case even if both characteristic velocities are relatively close.

To sum up, the space-time pattern of a generic correlation function for short-range
interacting lattice models has been fully characterized via a quasiparticle approach. For
the latter, we unveil a twofold spike-like structure defined by two distinct velocities. These
spreading velocities are completely determined by the post-quench excitation spectrum. More
precisely, we have shown that the correlation edge moves at VCE ' 2V ∗g (twice the maximal
group velocity) whereas the series of local extrema propagate at Vm ' 2V ∗ϕ . However, the
latter can be equal in some specific cases, Vm ' VCE, leading to a space-time pattern where
the two structures are not distinguishable. Furthermore, the previous spreading velocities
do not depend on the observable. It only affects the amplitude of the correlations via the
amplitude function F in our generic form. Indeed, the latter depends on the local observables
in the expression of the correlation function. Finally, considering global quenches confined in a
same gapped or gapless phase, it has been found that the spreading velocities VCE and Vm
are always characterized by 2V ∗g and 2V ∗ϕ as expected. The previous statement was verified
analytically for a specific Hamiltonian ie. the Bose-Hubbard chain by investigating the phase
G1 and density G2 fluctuations in both the gapless SF and gapped MI phases.
However, the previous discussion on the scaling laws, ie spreading velocities, of the twofold
structure for the causality cone is only valid in the context of short-range interacting lattice
models. In the following, we discuss the counterpart for long-range interactions ie. power-law
decaying interactions while still relying on a quasiparticle approach.

3.3 Lattice models with long-range couplings

As previously for short-range interacting lattice models, we start by presenting the scaling laws
for the correlation spreading in long-range interacting lattice models. These scaling laws defining

2Note that this critical point depends on the integer filling n̄ but also on the dimensionality of the lattice.
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the twofold structure of correlations will depend on the presence of a gap in the excitation
spectrum. Therefore, in order to give a theoretical confirmation of the latter, we will investigate
two different long-range interacting s = 1/2 spin lattice models, namely the 1D Long-Range
Transverse Ising (1D LRTI) model in the z polarized phase which displays a gapped excitation
spectrum and the 1D Long-Range XY (1D LRXY) model in the gapless x polarized phase.

3.3.1 Scaling laws

The long-range interactions are represented by a power-law decaying amplitude for the two-site
coupling term in the generic Hamiltonian at Eq. (3.1), ie. J(R,R′) ' J/|R − R′|α with
α ∈ R+∗. This form preserves the translational invariance of the lattice model and one can still
rely on (i) the generic form presented at Eq. (3.6) and (ii) its asymptotic form at Eq. (3.11).
The excitation spectrum Ek is assumed to be regular in the whole first Brillouin zone B, except
for a possible cusp at k = 0. Consequently, it may be written as Ek ' ∆ + ckz in the infrared
limit k → 0. z denotes the α-dependent dynamical exponent and ∆ the possibly vanishing gap.
For a sudden global quench confined in a gapped (gapless) phase, it implies ∆ 6= 0 (∆ = 0).
Depending on the value of α the power-law exponent characterizing the decay of the long-range
interactions, one can enter in three different regimes [27–29] presented below.

• The local regime defined by z ≥ 1. Both the quasiparticle energy Ek and the group
velocity Vg(k) = ∂kEk are bounded within the first Brillouin zone.

• The quasi-local regime defined by 0 ≤ z < 1. While the energy is finite within the first
Brillouin zone, the group velocity diverges at the quasimomentum k = 0.

• The instantaneous regime defined by z < 0. Both the energy Ek and the group velocity
diverge at the quasimomentum k = 0.

In the following, the scaling laws describing the quench dynamics is investigated for the
first two regimes, namely the local and quasi-local regimes. The latter are relevant since
the excitation spectrum Ek is bounded within the first Brillouin zone B. Besides, the long-
range lattice model is put out of equilibrium via sudden global quenches confined in a single
phase, without crossing any critical line.

• We first consider the local regime implying z ≥ 1. As discussed previously, both the
quasiparticle energy Ek and the group velocity Vg are bounded within B. Similarly to
short-range lattice models, one can find a quasimomentum k∗ such that V ∗g = max[Vg(k)],
see Eq. (3.10). Hence, the generic connected correlation function has an asymptotic
behavior given at Eq. (3.11) relying on the stationary phase approximation. Consequently,
the scaling laws of the twofold structure for the space-time quantum correlations are
the same as those for short-range interacting lattice models, ie. ballistic implying t ∼ R,
as well as the spreading velocities. It has been shown previously that both the CE and
the series of local extrema spread ballistically with a velocity VCE ' 2V ∗g and Vm ' 2V ∗ϕ
respectively for short-range interacting lattice models.

• Concerning the quasi-local regime 0 ≤ z < 1, the excitation spectrum Ek can be
written as Ek ' ∆ + c|k|z in the infrared limit k → 0. Assuming c > 0, the group
velocity Vg(k) = cz|k|z−1(|k|/k) diverges3 to +∞ for k → 0+. Relying once again on the

3One can also consider c < 0 implying Vg(k)→ +∞ for k → 0−. Performing a similar analysis as the one
explained in what follows, the scaling laws have been found to not depend on the sign of this prefactor c.
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stationary phase approximation, the equations (3.9) and (3.11) are still valid. Since Vg
is unbounded within B, it exists a quasiparticle with the group velocity 2Vg(k) = R/t
for each combinaison of R and t. The latter is characterized by the corresponding
quasimomentum ksp = (2czt/R)1/1−z. The correlation edge (CE) is thus dominated by
the infrared divergence k → 0 implying to evaluate the asymptotic behavior of G(R, t),
given at Eq. (3.11), around ksp. To do so, it is also necessary to analyze the amplitude
function F in the infrared limit k → 0. Assuming the scaling F(k) ∼ |k|ν with ν ≥ 0,
G(R, t) may be written as follows

G(R, t) ∝ tγ

Rχ
cos

[
Az

(
t

Rz

) 1
1−z
− 2∆t+ σD

π

4

]
, (3.51)

with the following parameters

γ = ν +D/2
1− z , (3.52)

χ = ν +D(2− z)/2
1− z = γ + D

2 , (3.53)

Az = 2c(1− z)(2cz)
z

1−z , (3.54)

σ = sgn
(
−2∂2

kEkspt
)

= sgn
[
2cz(1− z)|ksp|z−2t

]
= 1. (3.55)

Finally, the scaling laws of the correlation spreading for long-range interacting lattice
models are found by analyzing the previous form of G(R, t) at Eq. (3.51).

Motion of the correlation edge The motion of the CE is determined by the
amplitude (prefactor) of the connected correlation function G(R, t) at Eq. (3.51). It is
found by imposing that the prefactor should be constant in the vicinity of the CE. This
leads to tγ ∝ Rχ implying t ∝ Rχ/γ = RβCE . Besides, χ = γ + D/2 and γ > 0 due to
0 ≤ z < 1 and ν ≥ 0. Finally, it leads for βCE to βCE = χ/γ > 1 meaning that the
motion of the CE is always sub-ballistic (βCE > 1) and does not depend on whether the
excitation spectrum Ek is gapped or gapless. However, it depends on the observable
via the exponent ν, on the dimensionality of the lattice with D and on the long-range
interactions with z the α-dependent dynamical exponent (α is the power-law exponent
of the long-range interactions). This contrasts with the short-range case where a ballistic
spreading for the CE is found, independently of the dimension and of the observable.

Motion of the series of local extrema The motion of the series of local maxima
(m) is defined by the maximum of the cosine function. It is now necessary to distinguish
the case where the excitation spectrum Ek is gapless from the gapped case.

– For a gapless excitation spectrum (∆ = 0), the maximum of the cosine function is
determined by the following equation

80



3. Universal scaling laws for correlation spreading in quantum lattice models with . . .

Phase Regime Correlation Edge Maxima
Gapped local ballistic : VCE = 2V ∗g ballistic : Vm = 2V ∗ϕ
Gapless local ballistic : VCE = 2V ∗g ballistic : Vm = 2V ∗ϕ
Gapped quasi-local sub-ballistic : βCE > 1 ballistic : βm = 1
Gapless quasi-local sub-ballistic : βCE > 1 super-ballistic : βm < 1

Table 3.1: Scaling laws and velocities of the twofold structure for the correlation spreading in long-
range interacting spin and particle lattice models for a sudden global quench confined in a single gapped
or gapless phase.

Az

(
t

Rz

) 1
1−z

+ σD
π

4 = 2πn, n ∈ Z. (3.56)

The latter implies t ∝ Rz. Since 0 ≤ z < 1, the motion of the maxima is always
super-ballistic (βm = z < 1).

– For a gapped excitation spectrum (∆ > 0), the motion of the maxima is defined by

Az

(
t

Rz

) 1
1−z
− 2∆t+ σD

π

4 = 2πn, n ∈ Z, (3.57)

which can be brought into the following form

Az

(
tz

Rz

) 1
1−z
− 2∆ + σDπ

4t = 2πn
t
. (3.58)

The latter can be simplified into

Az

(
t

R

) z
1−z
− 2∆→ 0, (3.59)

using the limit where the stationary phase approximation is valid 4 (t → +∞).
Finally, the motion of the series of local maxima is defined by the condition t ∝ R.
In other words, the series of local maxima always propagate ballistically (βm = 1) for
a sudden global quench confined in a gapped quantum phase. Contrary to a gapless
phase, the motion of the maxima does not depend anymore on z the dynamical
exponent, meaning that the quasimomentum dependence of the excitation spectrum
Ek becomes irrelevant. The scaling laws and velocities for the twofold correlation
spreading in long-range lattice models is summarized in Tab. 3.1.

3.3.2 Gapless phase : case study of the long-range XY chain in the x
polarized phase

In what follows, the scaling laws for the twofold correlation spreading in long-range lattice
models, predicted via a quasiparticle approach, are verified for two long-range interacting
spin s = 1/2 models. Since long-range spin lattice models are considered, the operators
Ôj(R), j ∈ {1, 2, 3} at Eq. (3.1) represent spin operators, the parameter J(R,R′) denotes a
long-range spin exchange coupling and h(R) a possible transverse magnetic field. We start
by testing the scaling laws associated to the correlation spreading for sudden global quenches

4One reminds that the stationary phase approximation is valid for R, t→ +∞ along the line R/t→ ct.
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confined in a gapless phase. As an example, the long-range XY (LRXY) model is considered.
It is defined by Ô1(R) ≡ Ŝx(y)

R and Ô2(R′) ≡ Ŝx(y)
R′ in each direction of the xy plane. Besides,

the two-site coupling term has an amplitude characterized by J(R,R′) = (−J/2)/|R −R′|α
and no local interaction (magnetic field) is present implying Ô3(R) = 0. The latter can
be extended to the long-range XXZ (LRXXZ) model by including ε (ε > 0) a long-range
antiferromagnetic exchange coupling in the z direction, which yields the Hamiltonian

Ĥ =
∑

R<R′

J/2
|R −R′|α

[
−
(
ŜxRŜ

x
R′ + ŜyRŜ

y
R′
)

+ εŜzRŜ
z
R′
]
. (3.60)

Gapless excitation spectrum in the x polarized phase

In the following, the 1D LRXY model is considered (D = 1) with a sudden global quench
performed from the ground state of the 1D LRXXZ model (εi 6= 0) to the 1D LRXY model
(εf = 0). The pre-quench antiferromagnetic exchange coupling and the power-law exponent
α are choosen such that the global quench is confined in the x polarized phase, ie. when
long-range order ferromagnetic xy phase is established. The latter implies small-enough
power-law exponent α and −1 < εi < εc(α) where εc(α) is the critical point separating the x
polarized phase from the z Néel phase, see Ref. [145] for the phase diagram of the 1D LRXXZ
model at equilibrium and zero-temperature.
Indeed, when both previous conditions on ε and α are fulfilled, the 1D LRXXZ model displays
two different quantum phases5. For small-enough α and −1 < ε < εc(α), the continuous
rotational symmetry around the z axis is spontaneously broken and the spins are polarized
along the x axis corresponding to an arbitrary choice. Indeed, the spins can align along any
direction of the x− y plane. This defines the twofold-degenerate long-range order x polarized
phase characterized by 〈ŜzR〉 = 0 and 〈ŜxRŜxR+R′〉 > 0. In the opposite case, ie. ε > εc(α), the
antiferromagnetic interaction along the z axis dominates and the 1D LRXXZ model enters the
twofold-degenerate long-range order z Néel phase. The latter is characterized by 〈ŜxR〉 = 0 and
(−1)R′〈ŜzRŜzR+R′〉 > 0.

To find the excitation spectrum in the x polarized phase of the LRXXZ chain, the Hamil-
tonian can be diagonalized using a standard Holstein-Primakoff (HP) transformation [146,147]
given by,

ŜxR = 1
2 − â

†
RâR, ŜyR =' − â

†
R − âR

2i , ŜzR ' −
âR + â†R

2 , (3.61)

where interacting terms beyond second order in the boson operators âR and â†R are neglected.
Inserting the following HP transformations into Eq. (3.60) yields a quadratic bosonic form for
the 1D LRXXZ Hamiltonian in the momentum space. The latter may be written as

Ĥ = e0 + 1
2
∑
k 6=0
Ak
(
â†kâk + â−kâ

†
−k

)
+ Bk

(
â†kâ
†
−k + âkâ−k

)
, (3.62)

5

• In the case of negative values of ε, inducing long-range ferromagnetic interactions along the z axis, an
additional quantum phase appears corresponding to the long-range order ferromagnetic phase along the
z axis for ε < −1, ∀α ∈ R+.

• For high α, fastly decaying long-range interactions, and |ε| < 1, the 1D LRXXZ can enter a gapless
disordered (Luttinger-liquid) phase.
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with e0 a finite constant energy and the momentum-dependent prefactors Ak and Bk defined by

Ak = J

2

[
Pα(0) + Pα(k)ε− 1

2

]
, Bk = JPα(k)

4 (ε+ 1), (3.63)

where Pα(k) =
∫

dR e−ikR/|R|α is the Fourier transform of the long-range term. Then,
the quadratic Hamiltonian at Eq. (3.62) can be diagonalized using a bosonic Bogolyubov
transformation, see for instance Ref. [145] and the previous section devoted to the 1D BH
model in the SF phase. Finally, it leads for the excitation spectrum to Ek =

√
A2
k − B2

k

with the quasimomentum-dependent terms defined previously at Eq. (3.63). By developping
the latter, one obtains the following form for the gapless excitation spectrum Ek of the
LRXXZ chain in the x polarized phase

Ek = JPα(0)
2

√(
1− Pα(k)

Pα(0)

)(
1 + ε

Pα(k)
Pα(0)

)
. (3.64)

Using the previous excitation spectrum, one immediately finds the gapless one for the LRXY
chain (ε = 0), see Fig. 3.11(a),

Ek =
√
A2
k − B2

k = JPα(0)
2

√
1− Pα(k)

Pα(0) . (3.65)

Indeed, for both the LRXY and LRXXZ spin chains in the x polarized phase, the spontaneous
rotational symmetry breaking around the z axis induces low-energy excitations, the so-called
Goldstone modes, corresponding to magnons here and implying ∆ = 0. In the infrared
limit k → 0, the Fourier transform of the long-range term Pα(k) can be written as, see
supplemental material of [145],

Pα(k) ≈ Pα(0) + P ′α|k|α−1, (3.66)

where Pα(0) and P ′α are finite constants. Hence, in the limit of small quasimomenta, the
excitation spectrum Ek for the LRXY chain behaves as Ek ∝ |k|z with z = (α − 1)/2.
Moreover, for 1 ≤ α < 3 (α ≥ 3), the 1D LRXY model is in the quasi-local (local)
regime where the quasiparticle energy Ek is finite and the group velocity Vg diverges (is
also finite), see Fig. 3.11(b).

Spin-spin correlations along the z axis

In order to characterize the out-of-equilibrium dynamics of the LRXY chain in the quasi-local
regime of the x polarized phase, a sudden global quench is considered. It is defined by a pre- and
post-quench antiferromagnetic interaction parameter along the z axis fulfilling −1 < εi < εc(α)
(1D LRXXZ model) and εf = 0 (1D LRXY model) respectively. The power-law exponent
α is fixed during the real time evolution, and confined in the interval α ∈ [1, 3[ so that the
quasi-local regime is considered. Besides, the connected spin-spin correlation function along
the z axis, denoted by Gz, are investigated. The Gz spin-spin correlations can be expressed
in the generic form of Eq. (3.6) where Gz(R, t) = Gz,0(R, t) − Gz,0(R, 0) with

Gz,0(R, t) = 〈ŜzR(t)Ŝz0(t)〉 − 〈ŜzR(t)〉〈Ŝz0(t)〉. (3.67)

The latter can be calculated analytically using the quasiparticle picture relying on the bosonic
Bogolyubov transformation. The general scheme is identical to the one followed to compute the
one-body G1 and density-density G2 correlations of the 1D Bose-Hubbard model in the SF mean
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Figure 3.11: Excitation spectrum properties of the 1D LRXY model in the x polarized phase.
(a) Excitation spectrum rescaled by the spin exchange coupling Ek/J as a function of the quasimomentum
k in the first Brillouin zone B = [−π, π] in the quasi-local regime for α = 2.3 (red solid line) and in the
local regime for α = 3.3 (black dashed line). (b) Dimensionless quantity ~Vg(k)/J , where Vg denotes
the group velocity, as a function of the quasimomentum k for the same power-law exponents α. For
α = 2.3 (red solid line), Vg diverges at k → 0 whereas for α = 3.3 (black dashed line), it is finite over
the first Brillouin zone.

field regime [see Appendix. C and D]. Finally, it turns out that the Gz spin-spin correlations
can be expressed in the generic form presented at Eq. (3.8) with a quasimomentum-dependent
amplitude function F given by [see Appendix. F]

F(k) = εi
8
Pα (k)
Pα (0)

√
Pα(0)− Pα (k)
Pα(0) + εiPα (k) . (3.68)

In the infrared limit k → 0+, it scales as F(k) ∼ kν with ν = z = (α− 1)/2. The linearization
of the Holstein-Primakoff transformation holds for |1/2−〈ŜxR〉| � 1 [147]. For the calculations
corresponding to the 1D LRXY model at Fig. 3.12(a), we find max{|1/2− 〈ŜxR〉|} ' 0.12. It
validates the linear spin-wave approximation and this result agrees with the predictions for the
same model made in Ref. [145] where the validity of the spin wave approach for that model is
extensively studied.

For the 1D LRXY model and the spin-spin correlations along the z axis, we have ν =
z = (α − 1)/2 which yields, according to Eqs. (3.53) and (3.52), to

βCE = χ

γ
= 1 + (3− α) /2α. (3.69)

In the calculations, the CE is found by tracking the points in the R − t plane where the
correlations reach ε = 2% of the maximal value. For instance at α = 2.3, it yields the filled
blue points on Fig. 3.13(a). The latter feature a linear trajectory in the log-log scale, that is a
power law behavior in lin-lin scale. The latter is in excellent agreement with the theoretical
prediction βCE = 1.15 shown as a solid green line on Fig. 3.13(a) [see also Fig. 3.12(a)]. The
activation time t∗ as a function of the distance R is then fitted by a power law, t∗ ∼ Rβfits

CE to
the blue points. It yields βfits

CE ' 1.08± 0.01, see supplemental material of Ref. [32] for more
details. A similar tracking technique for the CE is used for different power-law exponents α as
shown at Fig. 3.12(b) by the green diamonds.
Concerning the spreading of the series of local maxima, the theoretical value of the exponent
βm is given by, see Eq. (3.56),
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Figure 3.12: Spreading of the connected spin-spin correlation function Gz(R, t) = Gz,0(R, t) −
Gz,0(R, 0) with Gz,0(R, t) = 〈ŜzR(t)Ŝz0 (t)〉 − 〈ŜzR(t)〉〈Ŝz0 (t)〉 for the 1D LRXY model. (a) Analytical
result for a global quench confined in the x polarized phase from the ground state of the 1D LRXXZ
model at εi = 0.2 to the 1D LRXY model (εf = 0) and in the quasi-local regime at α = 2.3. The
space-time spin-spin correlations feature a double algebraic structure (straight lines in log-log scale)
with a sub-ballistic correlation edge (solid green line) and super-ballistic spreading of the series of
local maxima (dashed blue lines). The white dotted line indicates ballistic spreading for reference.
(b) Evolution of βfits

CE and its corresponding theoretical value βth
CE characterizing the spreading of the

correlation edge with βfits
m and βth

m for the spreading of the series of local maxima as a function of
the power-law exponent α defining the long-range spin exchange couplings. Figure (a) extracted from
Ref. [32].

βm = z = (α− 1)/2. (3.70)

The spreading of the inner structure of the correlation function is analyzed by tracking the
position of the first local extremum as a function of time. We then fit the corresponding
function by tm = aRβ

fits
m + b. Considering the same example as previously for the numerical

analysis of the CE at Fig. 3.13(a), the result for the spreading of the first local extremum is
plotted on Fig. 3.13(b) and represented by the solid red line together with the fitted power
law corresponding to the dashed blue line [see also dashed blue lines on Fig. 3.12(a)]. The
fit yields βfits

m ' 0.63± 0.01, in excellent agreement with the theoretical value βm = 0.65. A
similar tracking technique for the inner structure (series of local extrema) is used for different
power-law exponents α as shown by the blue disks at Fig. 3.12(b).

On Fig. 3.12(b), the evolution of the theoretical exponents βCE, βm and those fitted βfits
CE,

βfits
m as a function of the power-law exponent α is investigated. α is contained in the interval

[1, 3[ so that the LRXY chain is in the quasi-local regime of the x polarized phase. The results
confirm the theoretical scaling laws for the correlation spreading in long-range lattice models
confined in the quasi-local regime of a gapless phase. More precisely, they show clearly a
sub-ballistic propagation of the CE (βCE > 1) and a super-ballistic propagation of the series
of local maxima (βm < 1).

These analytical results are also consistent with the experimental observation of a super-
ballistic dynamics in the 1D LRXY model realized with trapped ion chains for α > 1 [16]. In
the following, we will interpret this faster-than-ballistic dynamics as the one resulting from the
spreading of the series of local extrema. However, one needs to take a step back from these
experimental results since small distance and time scales are considered. Indeed, the dynamics
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Figure 3.13: Numerical analysis of the correlation edge and the local extrema for the connected
spin-spin correlation function Gz(R, t) for the 1D LRXY model in the x polarized phase at α = 2.3.
(a) Analytical result of Gz(R, t) (same data as in Fig. 3.12(a), log-log scale). The filled blue points
correspond for each distance R to the first time where the correlation reaches 2% of its maximum value.
The solid green line shows the power law predicted theoretically with a fitted multiplicative factor.
(b) Trajectory of the first extremum of Gz(R, t) (lin-lin scale). The figure shows the numerical result
found from Fig. (a) (solid red line) together with a fitted power law (dashed blue line). Figures adapted
from Ref. [32].

of the LRXY chain unveiled experimentally (i) is biased by strong finite-size effects due to small
chain lengths (ii) can not be used to certify our theoretical scaling laws (implying to investigate
the asymptotic behavior of the spin correlations) due to small observation times. To perform a
precise comparison, increasing the chain length is absolutely necessary. Relevant distance scales
(more than 50 ions) are now accessible, see Ref. [148] for instance. The previous theoretical
results are also in rough agreement with the analysis of numerical calculations performed
within the truncated Wigner approximation for the 1D LRXY model [56]. Our theoretical
result about the maxima spreading at Eq. (3.70) was found in Ref. [31]. Nevertheless, we
stress that our analysis shows that this super-ballistic behavior characterizes the spreading of
the inner structure but not the one associated to the outer structure (the correlation edge).

3.3.3 Gapped phase : case study of the long-range Ising chain in the z-
polarized phase

We now wish to confirm the theoretical scaling laws for the correlation spreading in the second
case, ie. for sudden global quenches confined in the quasi-local regime of a gapped phase. To
do so, we rely on the long-range transverse Ising (LRTI) model where the spin operators Ôj(R),
j ∈ {1, 2, 3}, are defined by Ô1(R) ≡ ŜxR, Ô2(R′) ≡ ŜxR′ and Ô3(R) ≡ ŜzR with a constant and
uniform transverse magnetic field h(R) = −2h and an algebraically decaying spin exchange
amplitude J(R,R′) = 2J/|R −R′|α. The Hamiltonian of the LRTI model is thus given by

Ĥ =
∑

R<R′

2J
|R −R′|α Ŝ

x
RŜ

x
R′ − 2h

∑
R
ŜzR. (3.71)

Gapped excitation spectrum in the z polarized phase

The latter has two quantum gapped phases separated by a second-order transition, see Ref. [149]
for its T = 0 phase diagram based on an analysis of the entanglement entropy. When the
transverse magnetic field is dominant (h � J), the spin model is in the non-degenerate
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z polarized phase exhibiting quasi-long-range order and characterized by 〈ŜzR〉 > 0 (due
to the minus sign in front of the transverse magnetic field h > 0), (−1)R′〈ŜxRŜxR+R′〉 = 0.
However, when the long-range antiferromagnetic interaction dominates (h� J), it is confined
in the twofold-degenerate x Néel phase possessing long-range order where 〈ŜzR〉 = 0 and
(−1)R′〈ŜxRŜxR+R′〉 > 0.

To find the excitation spectrum Ek in the z polarized phase, one can perform a Holstein-
Primakoff (HP) transformation defined as follows

ŜxR '
âR + â†R

2 , ŜyR ' −
â†R − âR

2i , ŜzR = 1
2 − â

†
RâR. (3.72)

As previously for the 1D LRXY model, the HP transformation allows to get a quadratic
Bose Hamiltonian in the momentum space. Then, using the bosonic Bogolyubov transforma-
tion, one obtains the same form as that of Eq. (3.62) with different momentum-dependent
prefactors Ak, Bk given by

Ak = 2h+ JPα(k), Bk = JPα(k). (3.73)

One then finds the following theoretical expression for Ek the gapped excitation spectrum
in the z polarized phase, see Fig. 3.14(a),

Ek =
√
A2
k − B2

k = 2
√
h [h+ JPα(k)]. (3.74)

In the infrared limit k → 0 where Eq. (3.66) is valid, Ek can be rewritten as

Ek ' ∆ + c|k|z, (3.75)

where the following parameters ∆ (the gap), c (a prefactor) and z (the dynamical exponent)
read as, see Refs. [29, 32]

∆ = 2
√
h [h+ JPα(0)], c =

√
h

h+ JPα(0)JP
′
α, z = α− 1. (3.76)

According to Eq. (3.75), the quasiparticle energy Ek is finite and the group velocity diverges
for 0 ≤ z < 1 implying 1 ≤ α < 2, see Fig. 3.14(a,b).

Spin-spin correlations along the x axis

As previously, we study the spin-spin correlations perpendicular to the polarization axis of
the quantum phase considered for the sudden global quench. For the 1D LRTI model, global
quenches confined in the quasi-local regime of the z polarized phase are investigated. As a
consequence, the spin fluctuations are studied along the x axis via Gx the connected spin-spin
correlation function defined by Gx(R, t) = Gx,0(R, t) − Gx,0(R, 0) where

Gx,0(R, t) = 〈ŜxR(t)Ŝx0 (t)〉 − 〈ŜxR(t)〉〈Ŝx0 (t)〉. (3.77)

Using again the quasiparticle theory, Gx can be written in the form of Eq. (3.8) with an
amplitude function F defined as follows (see Appendix. G)

F(k) = h (Ji − Jf)Pα(k)
8 [h+ JfPα(k)]

√
h [h+ JiPα(k)]

. (3.78)
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Figure 3.14: Excitation spectrum properties of the 1D LRTI model in the z polarized phase.
(a) Excitation spectrum rescaled by the spin exchange coupling Ek/J as a function of the quasimomentum
k in the first Brillouin zone B = [−π, π] in the quasi-local regime for α = 1.7 (red solid line) and in the
local regime for α = 2.7 (black dashed line) for h = 10J . (b) Dimensionless quantity ~Vg(k)/J , where
Vg is the group velocity, as a function of the quasimomentum k for the same power-law exponents α.
For α = 1.7 (red solid line), Vg diverges at k → 0 whereas for α = 2.7 (black dashed line), it is finite
over the first Brillouin zone.

Figure 3.15: Spreading of the connected spin-spin correlation function Gx(R, t) = Gx,0(R, t) −
Gx,0(R, 0) with Gx,0(R, t) = 〈ŜxR(t)Ŝx0 (t)〉 − 〈ŜxR(t)〉〈Ŝx0 (t)〉 for the 1D LRTI model with α = 1.7.
(a) Analytical result for a sudden global quench confined in the z polarized phase from Ji = 0.02h to
Jf = h. For the 1D LRTI model, at α = 1.7, the critical point separating the z polarized phase from
the x Néel phase is located at J/h ' 3 [149]. The space-time spin-spin correlations feature a double
algebraic structure (straight lines in log-log scale) with a sub-ballistic correlation edge (solid green
line) and ballistic spreading of the series of local maxima (dashed blue lines). The white dotted line
indicates ballistic spreading for reference. (b) Evolution of βfits

CE and its corresponding theoretical value
βth

CE characterizing the spreading of the correlation edge with βfits
m and βth

m for the spreading of the
series of local maxima as a function of the power-law exponent α defining the long-range spin exchange
coupling along the x axis. Figure (a) extracted from Ref. [32].

A sudden global quench on J , where Ji (Jf) refers to the pre-quench (post-quench) spin exchange
coupling along the x axis, is considered while maintaining constant both the transverse magnetic
field h and the power-law exponent α. According to the analytical expression of Pα in the
infrared limit k → 0 given at Eq. (3.66), the amplitude function F at Eq.(3.78) converges to
a finite value. Consequently, F(k) ∼ kν with ν = 0. For the calculations corresponding to
the 1D LRTI model at Fig. 3.15, we find max{|1/2− 〈ŜzR〉|} = 0.11, which also validates the
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spin-wave approximation for this model.

To sum up, concerning the 1D LRTI model, we have z = α − 1, ν = 0 and D = 1.
It yields the theoretical exponent βCE

βCE = χ

γ
= 2− z = 3− α, (3.79)

defining the spreading of the CE for the spin-spin correlations along the x axis. The latter
is completely characterized by the dynamical exponent z (or equivalently by the power-law
exponent α). For α = 1.7, see Fig. 3.15(a), by analyzing the analytical result, one can extract
the CE exponent which is found to be equal to βfits

CE = 1.28 ± 0.02, in excellent agreement
with the theoretical value βCE = 1.3. On Fig. 3.15(b), the fitted correlation edge exponents
are compared to the theoretical predictions of Eq. (3.79) for different power-law exponents
α confined in the quasi-local regime of the z polarized phase. The numerical and theoretical
results are found to be in very good agreement. The latter permits to certify that the CE
propagates sub-ballistically (βCE > 1) with an exponent given by the mean field value 3− α.
Note that the general formula for βCE matches the analytical result of Ref. [28] using the
linear spin-wave theory and confirmed by t-VMC calculations for α = 3/2 (ie. z = 1/2) where
the authors found βCE ' α = 3/2. It is also in fair agreement with the analysis of Ref. [29] for
the same exponent α.
Concerning the spreading of the series of local extrema, we found that the dynamical exponent
z (or equivalently α) in the excitation spectrum Ek of a gapped phase is irrelevant. Indeed,
the series of local maxima spread always ballistically,

t ∝ Rβm with βm = 1. (3.80)

This case applies to the 1D LRTI model in the z polarized case where the transverse magnetic
field will open a finite gap in the excitation spectrum Ek, see Fig. 3.14(a). It is confirmed
in Fig. 3.15(a), where we observe that the local maxima converge to a ballistic propagation
for sufficiently long times. Performing the same analysis as for the LRXY chain, we find
βfits

m ' 1.0045± 0.0003, in excellent agreement with the theoretical prediction. The scaling law
for the maxima spreading is confirmed at Fig. 3.15(b) by scanning the power-law exponent α
where βfits

m remains the same.

In this paragraph, we briefly outline the behavior of both exponents (βCE and βm) when
approaching the local regime. The latter corresponds to large values of α ie. fastly-decaying
long-range interactions. It is reached for α ≥ 2 for the long-range transverse Ising chain in
the z polarized phase and α ≥ 3 for the long-range XY chain in the x polarized phase. On
Figs. 3.15(b) and 3.12(b), the scaling laws governing the spreading of the maxima and the CE
converge towards β = 1. The latter correspond to a ballistic motion of each structure. Indeed,
both long-range interacting spin chains will enter the local regime, where the scaling laws are
expected to be the same as those for short-range interacting quantum systems ie. ballistic
motion for the maxima and the CE characterized by the velocity 2V ∗ϕ and 2V ∗g respectively.

We have shown in this chapter that the correlation spreading has a universal twofold
structure whose scaling laws can be related to different characteristic spectral properties of
the quantum lattice model.
For short-range interacting quantum systems, they are readily associated to the group and
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phase velocities at the quasimomentum where the group velocity reaches its maximum, which
generally differ.
For long-range interacting quantum systems with a diverging group velocity (ie. quasi-local
regime), the spreading of the CE will depend on the observable via the exponent ν but also
on the quasimomentum dependence of the excitation spectrum Ek via the exponent z and is
always sub-ballistic. In the vicinity of the CE, the series of local maxima propagate ballistically
in gapped systems, contrary to the gapless case where the maxima spread super-ballistically
and are fully characterized by the power-law exponent α and the lattice dimensionality D.
As a consequence, these observations can thus be used as an experimental footprint for the
presence of a spectral gap for instance.
This double structure can also be observed experimentally by investigating the spin correlations
in cold ion chains. Typical relevant distance and time scales are Ns = 50 (Ns corresponds to the
number of ions) and T = 30~/J (T denotes the observation time). Our analysis provides just
the first step of an important research problem that aims at unveiling the physical information
encoded in correlation spreading and how this can be extracted in the next generation of
experiments (see also [150] for recent results in this direction). In practice, the dynamics of
the local maxima is easier to observe, and, as discussed above, our predictions are consistent
with the existing observations. Furthermore, our theory shows that in generic experiments,
characterizing the spreading of correlations for both particle and spin lattice models, the
data need to be interpreted carefully. Indeed, the propagation of local extrema does not
characterize the correlation edge at all. Both are independent and rely on different physical
properties of the model. Identifying the latter requires an accurate scaling analysis of the
leaks. Existing experimental data have been collected either in a regime of parameters where
the two structures coincide [22], or on small systems where quantitative analysis is obfuscated
by strong finite-size effects. However the next generation of experiments based on Rydberg
atoms, tampered wave-guides, and larger trapped-ion systems provide the natural setup to
discern between the CE and the local features as our calculations suggest.

In the two last chapters, the correlation spreading is investigated numerically for lattice
models with short- and long-range interactions using tensor network based techniques. For
the short-range (long-range) case, the Bose-Hubbard (long-range transverse Ising) chain is
considered. In a first time, the purpose is to confirm our theoretical predictions for the spreading
velocities (scaling laws) of the twofold causality cone presented in this chapter. In a second
time, the discussion is extended to situations beyond the scope of our quasiparticle theory. For
short-range interactions, the correlation spreading is studied for specific interaction parameters
such that the Bose-Hubbard chain is not exactly-solvable, e.g. sudden global quenches
confined in the superfluid strongly interacting regime or close to critical points. For long-range
interactions, the correlation dynamics for strong sudden global quenches (corresponding to
a pre- and post-quench Hamiltonians in different quantum phases) is investigated. Finally,
the out-of-equilibrium dynamics induced via sudden local quenches is also widely studied.
To give an example, both the correlation and entanglement spreading are investigated for
the long-range transverse Ising chain. The latter allows us to discuss the differences and
similarities between the global and local quench dynamics.
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“If you come from mathematics, as I do, you realize that
there are many problems, even classical problems, which
cannot be solved by computation alone.”

— Roger Penrose

4
Twofold correlation cone in a short-range interacting
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4. Twofold correlation cone in a short-range interacting quantum lattice model

In this chapter, we investigate numerically the correlation spreading in 1D short-range
interacting particle and spin quantum lattice models for sudden global and local quenches. A
special care will be devoted to the 1D short-range Bose-Hubbard model due to the wealth of
its phase diagram. The latter displays two different quantum phases ie. the gapless superfluid
(SF) and gapped Mott-insulating (MI) phases. These two phases are separated by two different
phase transitions, the Mott-δ and Mott-U transitions of mean field and topological type
respectively. Finally, each quantum phase has different regimes e.g. the mean field, strongly
correlated and strongly interacting regimes for the SF phase. More details about these quantum
phases, both phase transitions and the different regimes are provided in the following. The
purpose of the numerical investigation of the correlation spreading in such quantum system is
twofold. Firstly, for the limit regimes (mean field regime and strong-coupling regime for the
SF and MI phase respectively) where the Bose-Hubbard model can be diagonalized in terms
of canonical transformations, we aim at confirming the existence and the spreading velocities
of the twofold linear correlation cone predicted in the previous chapter. The numerical results
will also suggest to extend our quasiparticle theory. Secondly, we turn to a study of the
correlation spreading in quantum regimes where the model is not exactly-solvable e.g. close
to the critical points or in the strongly interacting regime of the SF phase. In such regimes,
where the quasiparticles can not be characterized theoretically, the numerical approach is
essential and permits to go beyond the scope of our quasiparticle theory for the correlation
spreading. The aim is to determine whether a linear twofold structure subsists or not and
to characterize the corresponding spreading velocities.

4.1 The short-range Bose-Hubbard chain

Mott-U and Mott-δ phase transitions

The Hamiltonian of the one-dimensional (1D) Short-Range Bose-Hubbard (SRBH) model reads
as

Ĥ = −J
∑
R

(
â†RâR+1 + h.c.

)
+ U

2
∑
R

n̂R(n̂R − 1), (4.1)

where âR and â†R are the bosonic annihilation and creation operators on site R, n̂R = â†RâR is
the occupation number (filling), J is the hopping amplitude, U > 0 is the repulsive on-site
interaction energy, and the lattice spacing is fixed to unity (R ∈ Z). At equilibrium and
zero-temperature (T = 0), the phase diagram of the 1D SRBH model is well known [116,117],
and sketched on Fig. 4.1. It comprises a superfluid (SF) and a Mott-insulating (MI) phase,
determined by the competition of the hopping, the interactions, and the average filling n̄ or,
equivalently, the chemical potential µ depending if the canonical or grand canonical statistical
ensemble is considered.

This bosonic lattice model hosts two phase transitions of different type. For commensurate
filling, n̄ ∈ N∗ the SF-MI, also called Mott-U , phase transition is of the Berezinskii-Kosterlitz-
Thouless (BKT) type, at the critical value (U/J)c ' 3.3 for unit filling (n̄ = 1) in 1D [118–121].
Indeed, the critical point (U/J)c depends not only on the integer filling n̄ but also on
the dimensionality of the lattice, D. Furthermore, the Bose-Hubbard chain at fixed and
commensurate filling n̄ and T = 0 has the same universality class as the 1D XY model at
T = 0. Therefore, its critical behavior can be mapped onto the one governing the 2D classical
XY model at T 6= 0. The latter displays a BKT topological phase transition between a quasi-
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4. Twofold correlation cone in a short-range interacting quantum lattice model

long-range order phase (algebraic decay for the relevant correlation functions at equilibrium)
at low temperatures (low-T ) and a short-range order phase (exponential decay for the same
correlation functions) at high temperatures (high-T ). For low-T , the long-range order is
prevented due to the Mermin-Wagner theorem stating that a continuous symmetry cannot be
spontaneously broken for short-range interacting lattice models in dimension D ≤ 2 at T 6= 0.
For incommensurate filling (n̄ /∈ N), the Bose gas is a SF for any value of the inter-
action parameter U/J . The commensurate-incommensurate (Mott-δ) transition, of the
mean field type, is then driven by doping when n̄ approaches a positive integer value for
sufficiently strong local interactions.

The superfluid phase

The superfluid phase, characterized by a gapless excitation spectrum, is found for incommen-
surate fillings n̄ /∈ N for any value of the interaction parameter U/J or at commensurate
fillings for sufficiently small two-body repulsive interactions. It corresponds to a delocalization
of the bosonic particles through the lattice. Indeed, in the limit case of U/J → 0 and for
a commensurate or incommensurate filling n̄, the bosonic particles are non-interacting and
are thus fully delocalized over the lattice. Hence, the ground state of the lattice model is
given by the many-body wavefunction |Ψ〉 which may be written as

|Ψ〉 = 1√
N !

(
1√
Ns

Ns∑
R=1

â†R

)N
|0〉 = 1√

N !
(â†k=0)N |0〉 , (4.2)

where |0〉 ≡ |0〉⊗Ns denotes the vacuum state in the Fock space, N the total number of bosons

Figure 4.1: Schematic phase diagram of the 1D SRBH model at equilibrium for T = 0 as a function
of the inverse interaction strength J/U and the rescaled chemical potential µ/J , comprising a MI phase
(pink lobes at integer fillings n̄) and a SF phase (white region). (a) The Mott-U transition at unit
filling n̄ = 1 is indicated by the dashed pink line and the Mott-δ transition by the vertical line. The
arrows indicate various quenches considered in the following sections (b) Graphical representation
of the different regimes in the SF and MI phases. For the SF phase, the mean field regime (MF) is
indicated by red circles, the strongly correlated regime (SC) at unit-filling by a purple circle and the
strongly interacting regime (SI) by a pink one. Concerning the MI phase, the weakly interacting (WI)
and the strong-coupling (SC) regimes at n̄ = 1 are represented by black circles. Figure (a) extracted
from Ref. [33].
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and Ns the number of lattice sites. Indeed, the fact to be completetly delocalized in real
space leads to a full localization in the reciprocal (momentum) space. Consequently, the mode
k = 0 is macroscopically occupied by the bosons. In the limit of large N and Ns, Eq. (4.2)
is well described by a coherent state which can be expressed as

|Ψ〉 =
Ns∏
R=1
|αR〉 , |αR〉 = e−

|α|2
2 eαâ

†
R |0R〉 = e−

|α|2
2

+∞∑
nR=0

αnR√
nR!
|nR〉 , (4.3)

where nR denotes the bosonic occupation number, |0R〉 the vacuum state, on the lattice
site R. The parameter α ∈ C is defined as âR |Ψ〉 = α |Ψ〉 and corresponds to the complex
eigenvalues of the non-hermitian annihiliation operator âR. An important physical quantity
is P (nR) the probability that nR bosons occupy a given lattice site R. For the coherent
ground state at Eq. (4.3) valid in the mean field regime, the occupation probability P (nR)
is nearly Poissonian and given by

P (nR) = |〈nR|Ψ〉|2 ' n̄nR
e−n̄

nR! , (4.4)

where α '
√
n̄. The latter decreases fastly enough to truncate the local Hilbert space to

a specific cutoff denoted by nmax. This permits to perform numerical simulations in the
superfluid mean field regime using for instance the time-dependent Matrix Product State
approach. Note that truncating the local Hilbert space in such regime is subtle and requires
for instance that nmax � n̄ (see Sec. 4.3 for more details).

The superfluid phase has several regimes depending on the value of the Lieb-Liniger
parameter γ = U/2Jn̄ explicitly calculated in Appendix. B. For γ � 1 and large n̄ the Bose
gas is confined in the mean field regime. For γ . 1, it is confined in the so-called strongly
correlated regime. Finally for γ � 1 and an incommensurate n̄, the Bose gas is in the strongly
interacting regime, see Fig. 4.1(b).
As discussed in the previous chapter, the short-range Bose-Hubbard chain in the mean field
regime can be diagonalized using a (bosonic) Bogolyubov transformation where the elementary
excitations correspond to Bogolyubov quasiparticles. Due to the translational invariance
of the model, they are characterized by a well defined quasimomentum k ∈ B = [−π,+π]
where a the lattice spacing is fixed to unity. The associated gapless excitation spectrum
reads as, see Sec. 3.2.2 for more details,

Ek '
√
γk (γk + 2n̄U), (4.5)

where γk = 4J sin2(k/2) is that of the free-particle tight-binding model. In this regime, the
Bose gas possesses quasi-long-range order (at T = 0) due to relatively high long-range phase
fluctuations and corresponding to the low-T phase of the 2D classical XY model. Therefore,
at equilibrium, the latter implies a power-law decay for G1 and G2 the phase and density
fluctuations respectively. Indeed, G1(R) ∼ 1/R1/2K and G2(R) ∼ −K/R2 where K denotes
the Luttinger parameter [117]. K decreases from +∞ to 1 when U/J increases from 0 to +∞.
For the strongly correlated and strongly interacting regimes, the model is not exactly-solvable
in terms of canonical transformations. However, the excitation spectrum Ek valid in the
mean field regime is expected to hold for the strongly correlated regime (small integer
n̄) at sufficiently small γ.
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The Mott-insulating phase

We now turn to the MI phase characterized by a gapped excitation spectrum. It implies a
commensurate filling n̄ ∈ N∗ and sufficiently strong local interactions U . This phase tends
to pin the bosonic particles in the lattice sites by minimizing the fluctuations of the on-site
occupation number, see Fig. 3.4(b). Indeed, in the limit case of U/J →∞ and a commensurate
filling n̄, the hopping term is negligible with respect to the two-body repulsive interaction
strength and the bosons are fully localized and occupy uniformly the lattice sites. Hence,
the ground state of the lattice model may be written as

|Ψ〉 =
Ns∏
R=1

(
â†R

)n̄
√
n̄!
|0〉 = |n̄〉⊗Ns ≡ |n̄〉 , (4.6)

meaning that each lattice site R is occupied by n̄ bosons. This gapped phase has short-range
order and corresponds to the high-T phase of the 2D classical XY model. At equilibrium, the
latter implies that both correlation functions, G1 and G2, decay exponentially with respect to
a correlation length ξ1, ξ2. Hence, both the phase and density fluctuations may be written as
G1,2(R) ∼ e−R/ξ1,2 .

Furthermore, the Mott-insulating phase displays two different regimes, the weakly interact-
ing and strong-coupling regimes depending on the value of the interaction parameter U/J at
fixed n̄ ∈ N∗, see Fig. 4.1(b).
For the strong-coupling regime at U/J � 1, the Bose-Hubbard chain can be diagonalized using
a first-order perturbation theory already discussed at Sec. 3.2.3. In this regime, the low-energy
excitations correspond to doublon-holon pairs where a doublon denotes a lattice site R occupied
by n̄+ 1 bosons whereas a holon corresponds to n̄− 1 bosons on the nearest-neighbor lattice
site R ± 1. The excitation spectrum is then characterized by, see Refs. [25, 122, 123],

2Ek = U − 2J(2n̄+ 1) cos(k) (4.7)

where k is the quasimomentum confined in the first Brillouin zone B = [−π, π]. According to
Eq. (4.7), the excitation spectrum develops a finite gap ∆ = U − 2J(2n̄ + 1) which mainly
depends on the local interaction U (since U � Jn̄ in the strong-coupling regime) and a cosine
profile coming from the hopping amplitude J coupling the nearest-neighbor lattice sites.
Deep enough in the MI phase, U/J & 2(2n̄ + 1), corresponding to the weakly interacting
regime, the bosonic lattice model is exactly-solvable using a fermionization technique. Indeed,
the bosonic particles can be treated as hardcore bosons leading to a effective quadratic
model of interacting fermions. To do so, one doublon-holon excitation pair is allowed such
that the local Hilbert space can be reduced to only three different quantum states which
are |n̄+ 1〉, |n̄〉 and |n̄− 1〉. Then, auxiliary bosons are introduced to switch between the
three previous quantum states. Finally, the new bosonic operators are fermionized using a
Jordan-Wigner transformation where the hardcore constraint is directly encoded. It yields
a effective quadratic Hamiltonian which can be diagonalized using a fermionic Bogolyubov
transformation (see Ref. [25] for a complete discussion about the technique). As a consequence,
the elementary excitations, which still correspond to doublon-holon excitation pairs, can be
seen as fermionic Bogolyubov quasiparticles and are characterized by the following gapped
excitation spectrum [25, 124]

2Ek '
√

[U − 2J(2n̄+ 1) cos(k)]2 + 16J2n̄(n̄+ 1) sin2(k). (4.8)
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Note that Eq. (4.8) is also valid in the strong-coupling regime. By developing the latter and
keeping the first-order terms in U/J , one recovers the excitation spectrum at Eq. (4.7)
valid in the strong-coupling limit.

4.2 Time-dependent matrix product state approach

The time-dependent matrix product state (t-MPS) is a powerful numerical approach to compute
the static and dynamical physical properties of 1D quantum lattice models based on an analysis
of its entanglement entropy. Moreover, the latter has a graphical representation in terms of
tensor networks providing a local and compact representation of any low-entangled many-body
quantum state without breaking its non-locality. We first present the transposition of the Dirac
formalism of quantum mechanics including kets, bras, overlaps, operators and expectation
values into tensor networks. Then, two iterative algorithms are presented. We first present
the one allowing to compute the static properties and in particular the ground state and
its associated energy. Then, we turn to the algorithm to perform real-time evolution for a
generic 1D short-range interacting lattice model. The reader not interested in the details of
the method can directly jump to Sec. 4.3 where the numerical results for the propagation
of correlations in the 1D SRBH model are discussed.

4.2.1 Tensor-network based formalism

Matrix product states: properties and graphical representation

We discuss now the Matrix Product State (MPS) form of a general quantum state consisting
of a local and compact representation. The corresponding graphical representation in term of
tensor networks and its properties are also presented.

Concerning the MPS form, working along the lines of Refs. [129,130], we first start from
the most general quantum state for a one-dimensional lattice of length L. The latter can be ex-
pressed as

|Ψ〉 =
∑

σ1,σ2,...,σL

Ψσ1σ2 ... σL |σ1σ2 ... σL〉 , (4.9)

with a d-dimensional local Hilbert space HR described by the local basis {|σR〉 , σR =
1, ..., d}. The state vector denoted by Ψ contains dL components which corresponds to
the dimension of the many-body Hilbert space H = ⊗LR=1HR. Relying on the Singular
Value Decomposition (SVD), we obtain the following form for the coefficients of the state
vector Ψσ1σ2 ... σL , see Appendix. H,

Ψσ1,(σ2 ... σL) =
ā1∑
a1=1

ā2∑
a2=1

...

āL−1∑
aL−1=1

Aσ1 [1]a1
Aσ2 [2]a1,a2

... AσL [L]aL−1
. (4.10)

Consequently, a general (non translational invariant) quantum state written under its MPS
form for a one-dimensional lattice has the following expression, see Fig. 4.2,

|Ψ〉 =
∑
σ

Aσ1 [1]Aσ2 [2] ... AσL−1 [L− 1]AσL [L] |σ〉 , σ = σ1σ2 ... σL. (4.11)

In the MPS representation of a quantum state, the first tensor Aσ1 [1] consists of a collection
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of row vectors of dimension ā1 and the last tensor AσL [L] of a collection of column vectors of
dimension āL−1. ā1 (āL−1) corresponds to the rank of the first (L− 1-th) Schmidt matrix, see
Appendix. H. Besides, a tensor AσR [R] of dimension āR−1 × āR is associated to each lattice
site R ∈ [|1, L|] of the one-dimensional lattice model. Hence, the MPS form at Eq. (5.4)
leads to a local representation of the many-body quantum state |Ψ〉 without breaking its
non-locality, ie. its entanglement which is contained in the coefficients of each tensor. The
degree of entanglement of the different tensors of |Ψ〉 are characterized by the so-called MPS
bond dimension χ defined by χ = max(āR). For the specific case χ = 1, the quantum state
|Ψ〉 corresponds to a (not-entangled) product state.

In the following, a translational invariant quantum state will be considered 1. This
assumption simplifies the notations and leads to

...

Figure 4.2: Graphical representation using tensor networks of a general quantum state |Ψ〉. (a) MPS
representation of |Ψ〉 for a one-dimensional lattice of L sites. (b) Graphical representation of the
A-matrices at the ends (left and right panels) and in the bulk (central panel) of the chain. The first
diagram represents the row vector Aσ1 with entries Aσ1

a1
= Aσ1

1,a1
and of dimension 1 × ā1, the last

diagram represents the column vector AσL with entries AσL
aL−1

= AσL
aL−1,1 and of dimension āL−1 × 1.

The second diagram represents the matrix AσR with entries AσR
aR−1,aR

and of dimension āR−1 × āR.
The red (blue) line refers to the non-physical (physical) index which is related to the entanglement
entropy (local Hilbert space) of the quantum state |Ψ〉.

|Ψ〉 =
∑
σ

Aσ1Aσ2 ... AσL−1AσL |σ〉 . (4.12)

The previous MPS form implies that all the different tensors describing the many-body
quantum state have the same dimension, ie. corresponds to a collection of d square matrices of
dimension χ (except for the first and last ones which contains a collection of row and column
vectors respectively). Indeed, the translational invariance of the quantum state |Ψ〉 requires
that Aσ̃ [R] = Aσ̃ [R+ 1], ∀R ∈ [[2, L− 2|] and ∀ |σ̃〉 ∈ HR.
We turn now to an investigation of the number of complex coefficients to store for the MPS form
of the quantum state |Ψ〉. The latter contains dχ2L complex coefficients where L denotes the

1Note that this assumption is fulfilled when studying numerically the the 1D short-range Bose-Hubbard
model.
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number of lattice sites, d the dimension of the local Hilbert space HR and χ refers to the MPS
bond dimension. For any low-entangled many-body quantum state, ie for |Ψ〉 corresponding
to a superposition of few quantum states, χ is relatively small. Besides, one notices that the
number of coefficients depends linearly with L and not exponentially anymore as for the initial
form at Eq. (4.9). Consequently, the two previous conditions lead for the MPS form to a very
compact and local representation of any low-entangled quantum state |Ψ〉.

Gauge degree of freedom and normalization

The local MPS representation is not unique since it is defined up to a gauge degree of
freedom. Indeed, if we consider two adjacent tensors at the lattice site R and R + 1
denoted by MσR and MσR+1 of dimension χ × χ × d. The MPS form of a quantum state
|Ψ〉 given at Eq. (4.12) is invariant for any invertible matrix G of dimension χ × χ since
MσRGG−1MσR+1 = MσRMσR+1 . Fixing this gauge degree of freedom for the tensors allows
to simplify significantly the calculations. There are three common ways to fix this gauge
while enforcing the normalization of the quantum state (i) the left canonical representation
by expressing |Ψ〉 via the left-normalized matrices U [R]. The latter appear when performing
the different singular value decompositions and are cast into left-normalized tensors AσR [see
Eq. (4.12)] (ii) the right canonical normalization by using the right-normalized matrices V †[R]
which are then cast into right-normalized tensors BσR leading to the following MPS form

|Ψ〉 =
∑
σ

Bσ1Bσ2 ... BσL−1BσL |σ〉 where BσR
aR−1,aR = (V †)aR−1,(σR,aR). (4.13)

(iii) the mixed canonical representation using the left-normalized matrices for the first R
lattice sites and the right-normalized ones for the last L − R lattice sites (see Eq. (4.14)
where S is the Rth Schmidt matrix with entries SaR,aR),

|Ψ〉 =
∑
σ

Aσ1 ... AσRSBσR+1 ... BσL |σ〉 . (4.14)

These three representations of the many-body quantum state |Ψ〉, corresponding to three
different ways to fix the MPS gauge degree of freedom, enforce its normalization. The left-
normalized (right-normalized) matrices U [R] (V †[R]) lead to a left- (right-) normalization
condition for the tensors AσR (BσR). For instance, one can write for a left-canonical MPS
|Ψ〉 in terms of A tensors,

δaR,a′R =
∑

aR−1,σR

(U †)aR,(aR−1σR)U(aR−1σR),a′R =
∑

aR−1,σR

(AσR)†aR,aR−1A
σR
aR−1,a′R

, (4.15)

leading finally to the so-called left-normalization of the tensors AσR where the graphical
representation is shown on Fig. 4.3(a),∑

σR

(AσR)†AσR = I. (4.16)

For a right-canonical representation of |Ψ〉, the derivation is similar in order to find the
right-normalization condition of the tensors BσR , see Fig. 4.3(b), given by∑

σR

BσR(BσR)† = I. (4.17)

The left- and right-normalization condition for the tensors AσR and BσR for a left- or
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Figure 4.3: Graphical representation using tensor networks of the (a) left-normalization condition
for the tensors AσR allowing a left-canonical representation of a MPS |Ψ〉 [see Eq. (4.16)] (b) right-
normalization condition for the tensors BσR [see Eq. (4.17)] allowing a right-canonical representation
of a MPS |Ψ〉.

right-canonical representation of the MPS |Ψ〉 enforce its normalization ie. 〈Ψ|Ψ〉 = 1.
Indeed, let us consider a left-canonical representation of |Ψ〉 given at Eq. (4.12), the overlap
〈Ψ|Ψ〉 may be written as

〈Ψ|Ψ〉 =
∑
σ

(Aσ1 ... AσL)†(Aσ1 ... AσL) =
∑
σL

(AσL)† ...
(∑
σ1

(Aσ1)†Aσ1

)
... AσL . (4.18)

Then, according to Eq. (4.16) for the left-normalization condition of the tensors AσR , it
comes directly that 〈Ψ|Ψ〉 = 1 hence |Ψ〉 is well normalized. The previous statement is
also obvious when representing graphically the overlap 〈Ψ|Ψ〉, see Fig. 4.4, and the left-
normalization condition at Fig. 4.3(a).

...

... ...

...

Figure 4.4: Graphical representation using tensor networks of the overlap 〈Ψ|Ψ〉 where |Ψ〉 is a
left-canonical MPS. For simplicity, the red lines on the left side of Aσ1 , (Aσ1)∗ and on the right side of
AσL , (AσL)∗ have been omitted since their dimensions are equal to 1.

Matrix product operators: properties and graphical representation

In order to get a complete transposition of the Dirac formalism in terms of tensor networks
and more precisely to be able to find the ground state (energy) and to perform real time
evolution for 1D short-range interacting lattice models, it requires to find a matrix product
form of operators also called Matrix Product Operators (MPOs), see Refs. [129, 130, 151]. The
most general operator Ô can be expressed under the following form
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Ô =
∑
σ′,σ

Oσ′1σ
′
2 ... σ′L

σ1σ2 ... σL |σ′〉 〈σ| , (4.19)

where O is a 2L-th order tensor containing d2L coefficients. Considering a single coefficient
〈σ|Ψ〉 with |Ψ〉 a left-canonical MPS, it yields the following equation

〈σ|Ψ〉 = 〈σ1 ... σL|
∑
σ′
Aσ
′
1 ... Aσ

′
L |σ′1 ... σ′L〉 = Aσ1 ... AσL . (4.20)

Therefore, it is natural to write the expectation 〈σ′| Ô |σ〉 of an operator Ô as follows

〈σ| Ô |σ′〉 = W σ1σ′1 ... W σLσ
′
L . (4.21)

Consequently, an operator Ô represented under the MPO form can be written as

Ô =
∑
σ′,σ

W σ′1σ1 ... W σ′LσL |σ′〉 〈σ| , (4.22)

where the 4-th order W tensors have two physical indices, one associated to the ket and the
bra in this specific order (contrary to the MPS form having only one physical index) and two
virtual indices (related to the range of the interactions for a Hamiltonian) represented by the
indices aR with R ∈ [|1, L − 1|] where a complete description reads as follows

Ô =
∑
σ′,σ

∑
a

W
σ′1σ1
1,a1 ... W

σ′LσL
aL−1,1 |σ

′〉 〈σ| , a = a1, a2, ..., aL−1. (4.23)

The MPO form presented at Eq. (4.22) can be cast into a more natural form given by

Ô = Ŵ [1]Ŵ [2] ... Ŵ [L], Ŵ [R] =
∑
σ′R,σR

W σ′RσR |σ′R〉 〈σR| (4.24)

where the index R refers to the lattice site, and can be found easily for 1D short-range
interacting particle or spin Hamiltonians. Indeed, one needs to find for each lattice site R
a matrix of operators acting on the local Hilbert space HR. For instance, the MPO form
associated to the 1D Bose-Hubbard model is given by the following matrices

Ŵ [1] =
(
U
2 n̂1 (n̂1 − 1) −Jâ†1 −Jâ1 I

)
(4.25)

Ŵ [L] =
(
I â†L âL

U
2 n̂L (n̂L − 1)

)T
(4.26)

Ŵ [R] =


I 0 0 0
âR 0 0 0
â†R 0 0 0

U
2 n̂R (n̂R − 1) −JâR −Jâ†R I

 ,∀R ∈ [|2, L− 1|] (4.27)

Indeed, when calculating the product Ŵ [1] ...Ŵ [R] ... Ŵ [L], one recovers the 1D short-range
Bose Hubbard model whose Hamiltonian is represented at Eq. (3.2).

The MPO form, represented at Eq. (4.22) and shown on Fig. 4.5 using tensor networks,
consists of a local representation (one tensor per lattice site) of an operator or Hamiltonian
similarly to the MPS form for many-body quantum states. It is characterized by a MPO bond
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dimension χ̃ corresponding to the dimension of the square matrices in its representation 2

ie. χ̃ = dim(Ŵ ). It comes directly that for local operators, χ̃ = 1. For the 1D short-range
Bose-Hubbard model, whose one possible MPO form has been characterized previously, χ̃ = 4.

Figure 4.5: Graphical representation of a Matrix Product Operator (MPO) using Tensor Networks.
Similarly to the MPS form, the blue (red) line refers to the physical (non-physical) indices.

4.2.2 Static properties - Ground state

In the previous paragraphs, we have completely transpose the Dirac formalism including
quantum states and operators in terms of tensor networks. We now turn to the tensor-network-
based algorithm to characterize the static properties of a Hamiltonian and more precisely the
ground state and ground state energy, while still working along the lines of Refs. [129, 130].
These static properties correspond to the first step in order to study the far-from-equilibrium
dynamics of quantum lattice models submitted to sudden global or local quenches. To do so,
several techniques can be used to deduce these characteristics of a Hamiltonian such that the
imaginary time evolution (presented in the next chapter) and the Lagrangian minimization
that we explicit here.

To find the ground state (energy), it requires to get the optimal MPS |Ψ〉 which min-
imizes the energy of a given Hamiltonian Ĥ, containing here only local or short-range
(nearest-neighbor) interactions,

E = 〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉 . (4.28)

To solve this minimization problem, one can rely on the method of Lagrange multipli-
ers. It consists here in introducing a Lagrangian multiplier λ and to minimize the pre-
vious equation leading to

2Non-translational operators can also be cast into a MPO form where the tensors Ŵ do not have the same
dimension. In this case, χ̃ = max

[
dim(Ŵ [R])

]
.
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min
|||Ψ〉||=1

(〈Ψ| Ĥ |Ψ〉 − λ〈Ψ|Ψ〉). (4.29)

The latter is done by updating locally the tensors of the MPS |Ψ〉 in order to decrease the value
of the Lagrangian multiplier λ hence the energy. Indeed, we start by keeping all the tensors
on all sites constant except one on the lattice site R with entries MσR

aR−1,aR as variables. Then,
the Lagrangian minimization condition with respect to the tensor (MσR)∗, corresponding to
an eigenvector problem for MσR , has to be solved. We then repeat this operation on another
site in the aim of finding once again a state lower in energy and moving through all lattice
sites several times until to reach a convergence for the energy. At the end of this iterative
process, the MPS |Ψ〉 corresponds to the ground state of Ĥ and λ the associated ground state
energy within the ensemble of MPS at a given bond dimension (variational space).

To find the analytical expression of the Lagrangian minimization condition for the tensor
MσR , we need to calculate the Lagrangian

L({MσR}, {(MσR)†}) = 〈Ψ| Ĥ |Ψ〉 − λ〈Ψ|Ψ〉, (4.30)

with {MσR} = {Mσ1 , ...,MσL} denotes the set of tensors defining the MPS |Ψ〉. Hence, the
matrix product state |Ψ〉 has the following expression

|Ψ〉 =
∑
σ

Mσ1Mσ2 ... MσL−1MσL |σ〉 , σ = σ1, σ2, ..., σL−1, σL. (4.31)

Note that no assumption has been made on the normalization of the tensors, ie. on how
the gauge degree of freedom of |Ψ〉 has been fixed. We first calculate the overlap 〈Ψ|Ψ〉,
appearing in the expression of the Lagrangian at Eq. (4.30), while showing explicitly the
tensor MσR . It yields for the overlap the following expression

〈Ψ|Ψ〉 =
∑

σ1,...,σR,...,σL

(Mσ1 ... MσR ... MσL)† (Mσ1 ... MσR ... MσL) . (4.32)

Since the overlap is homogeneous to a scalar, one can take the trace of the previous ex-
pression. Then, using its cyclicality property, it immediately comes out that Eq. (4.32)
can be rewritten as follows

〈Ψ|Ψ〉 =
∑
σR

∑
aR−1,aR

∑
a′R−1,a

′
R

(MσR)†aR,aR−1
ΨA
aR−1,a′R−1

MσR
a′R−1,a

′
R

ΨB
a′R,aR

, (4.33)

where the coefficients of the matrices ΨA and ΨB read as

ΨA
aR−1,a′R−1

=
∑

σ1,...,σR−1

[(MσR−1)† ... (Mσ1)†Mσ1 ... MσR−1 ]aR−1,a′R−1
,

ΨB
a′R,aR

=
∑

σR+1,...,σL

[MσR+1 ... MσL (MσL)† ... (MσR+1)†]a′R,aR .

Relying on Fig. 4.4, the matrix ΨA (ΨB) can be seen as the left (right) part of the overlap
〈Ψ|Ψ〉 with respect to both tensors at the lattice site R. We now discuss the first term of
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Eq. (4.30) with Ĥ written in the MPO form. As previously for the overlap 〈Ψ|Ψ〉, we express
the expectation value 〈Ψ| Ĥ |Ψ〉 by showing explicitly the tensors related to the lattice site
R. It yields the following expression for 〈Ψ| Ĥ |Ψ〉

〈Ψ| Ĥ |Ψ〉 =
∑

aR−1,a′R−1

∑
σR,σ

′
R

∑
aR,a

′
R

∑
bR−1,bR

L
aR−1,a

′
R−1

bR−1
W

σRσ
′
R

bR−1,bR
R
aR,a

′
R

bR

(
MσR
aR−1,aR

)∗
M

σ′R
a′R−1,a

′
R
.

(4.34)
where the third-order left (L) and right (R) tensors are given as follows (see Fig. 4.6 for
their graphical representation)

L
aR−1,a

′
R−1

bR−1
=

∑
{aR̃,bR̃,a′R̃;R̃<R−1}

∑
σ1,σ′1

W
σ1σ′1
1,b1 (Mσ1

1,a1)∗Mσ′1
1,a′1

∑
σ2,σ′2

W
σ2σ′2
b1,b2

(Mσ2
a1,a2)∗Mσ′2

a′1,a
′
2



...

 ∑
σR−1,σ′R−1

W
σR−1σ

′
R−1

bR−2,bR−1
(MσR−1

aR−2,aR−1)∗Mσ′R−1
a′R−2,a

′
R−1

 (4.35)

R
aR,a

′
R

bR
=

∑
{aR̃,bR̃,a′R̃;R̃>R}

 ∑
σR+1,σ′R+1

W
σR+1σ

′
R+1

bR,bR+1
(MσR+1

aR,aR+1)∗Mσ′R+1
a′R,a

′
R+1


 ∑
σR+2,σ′R+2

W
σR+2σ

′
R+2

bR+1,bR+2
(MσR+2

aR+1,aR+2)∗Mσ′R+2
a′R+1,a

′
R+2

 ...
 ∑
σL,σ

′
L

W
σLσ

′
L

bL−1,1(MσL
aL−1,1)∗Mσ′L

a′L−1,1


(4.36)

The expectation value 〈Ψ| Ĥ |Ψ〉 at Eq. (4.34) is built from 5 different tensors 3 : the third-order
left (L) and right (R) tensors corresponding to the left and right parts of the expectation value
〈Ψ| Ĥ |Ψ〉 (with respect the tensors related to the lattice site R), the third-order tensorsMσ

R and
(MσR)† coming from the ket |Ψ〉 and the bra 〈Ψ| respectively, and finally the fourth-order tensors
W σR,σ

′
R corresponding to the tensor of the Hamiltonian Ĥ (represented in a MPO form) at the

lattice site R. As a consequence, the Lagrangian defined at Eq. (4.30) takes the following form

L({MσR}, {(MσR)†}) =
∑

aR−1,a′R−1

∑
σR,σ

′
R

∑
aR,a

′
R

∑
bR−1,bR

L
aR−1,a

′
R−1

bR−1
W

σRσ
′
R

bR−1,bR
R
aR,a

′
R

bR(
MσR
aR−1,aR

)∗
M

σ′R
a′R−1,a

′
R
− λ

∑
σR

∑
aR−1,aR

∑
a′R−1,a

′
R

(
MσR
aR−1,aR

)∗
ΨA
aR−1,a′R−1

MσR
a′R−1,a

′
R

ΨB
a′R,aR

,

(4.37)

where the tensors on the lattice site R are explicitly shown. One can notice that Eq. (4.37)
depends linearly on the tensors MσR and (MσR)†. Consequently, the Lagrangian minimization
condition for the tensor MσR is characterized by taking the derivative of the previous
expression with respect to the corresponding hermitian tensor. In other words, the Lagrangian
minimization condition for the tensor MσR is given by ∂L({MσR}, {(MσR)†})/∂(MσR)∗ = 0,

3In what follows, the tensors are described by showing only the physical indices for simplicity.
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which can be expressed as

∑
σ′R

∑
a′R−1,a

′
R

∑
bR−1,bR

L
aR−1,a

′
R−1

bR−1
W

σRσ
′
R

bR−1,bR
R
aR,a

′
R

bR
M

σ′R
a′R−1,a

′
R
− λ

∑
a′R−1,a

′
R

ΨA
aR−1,a′R−1

MσR
a′R−1,a

′
R

ΨB
a′R,aR

= 0

(4.38)

According to the previous equation, the minimization condition for the tensorMσR corresponds
to an eigenvalue problem. Indeed, by introducing H, N and ν defined as follows

H(σR,aR−1,aR),(σ′R,a
′
R−1,a

′
R) =

∑
bR−1,bR

L
aR−1,a

′
R−1

bR−1
W

σRσ
′
R

bR−1,bR
R
aR,a

′
R

bR
, (4.39)

N(σR,aR−1,aR),(σ′R,a
′
R−1,a

′
R) = ΨA

aR−1,a′R−1
ΨB
a′R,aR

δσR,σ′R , (4.40)

ν(σR,aR−1,aR),1 = MσR
aR−1,aR , (4.41)

we obtain a generalized eigenvalue problem Hν−λNν = 0 with dim(H) = dim(N) = dχ2×dχ2

and dim(ν) = dχ2 × 1 where d denotes the dimension of the local Hilbert space and χ is
the MPS bond dimension. Note that the normality of the set of tensors {MσR , R = 1...L}
has not been discussed up to now. Indeed, the previous calculations have been done without
making any assumption on the gauge degree of freedom of the MPS |Ψ〉. However, the latter
can significantly simplify the problem. Indeed, if we consider that the quantum state |Ψ〉 is
left-normalized up to the site R− 1 and right-normalized from the site R+ 1 to the last site of
the chain L, we enforce that ΨA

aR−1,a′R−1
= δaR−1,a′R−1

and ΨB
aR,a

′
R

= δaR,a′R and Eq. (4.38) can
be simplified as, see Fig. 4.6 for the graphical representation in terms of tensor networks,∑

σ′R

∑
a′R−1,a

′
R

∑
bR−1,bR

L
aR−1,a

′
R−1

bR−1
W

σRσ
′
R

bR−1,bR
R
aR,a

′
R

bR
M

σ′R
a′R−1,a

′
R
− λMσR

aR−1,aR = 0 (4.42)

Figure 4.6: Graphical representation using tensor networks of the Lagrangian minimization condition
at (5.57) to find the tensor MσR for a MPS |Ψ〉 in the mixed-canonical form.

This eigenvalue problem is a problem of matrix dimension dχ2×dχ2 and can be very demanding
in terms of numerical resources if the quantum state |Ψ〉 is not cast into a mixed-canonical
form to simplify the expression of the matrix N . Moreover, the speed of convergence ie. the
number of iterations of the local update governed by Eq. 5.57 (also called sweeps where more
details are provided in the following) mainly depends on the initial guess for the quantum state
|Ψ〉. The closer the initial guess is to the ground state, the faster the algorithm is, leading to a
relatively small number of sweeps. The convergence of this algorithm is achieved when there is

104



4. Twofold correlation cone in a short-range interacting quantum lattice model

no modification of the energy ie. λ the Lagrangian multiplier. Nevertheless, the rigorous test
is to compute the energy variance σ2

E(|Ψ〉) associated to the quantum state |Ψ〉 and defined as

σ2
E(|Ψ〉) = 〈Ψ|(Ĥ − 〈Ψ|Ĥ|Ψ〉)2|Ψ〉 = 〈Ψ|Ĥ2|Ψ〉 − (〈Ψ|Ĥ|Ψ〉)2 (4.43)

to make sure that the final quantum state is an eigenvector for the Hamiltonian Ĥ. Hence, if
|Ψ〉 represents an eigenvector for Ĥ then σ2

E should be as close as possible from 0.

In the following, we give more details about the iterative ground state search and more
precisely on the left- and right-sweeps in order to optimize locally the tensors defining |Ψ〉,

• Consider an initial guess for |Ψ〉 in a right-canonical representation. Consequently, the
initial quantum state consists of a product of B-tensors, see Eqs. (4.13) which satisfy
Eq. (4.17).

• Compute the expression of the tensor R iteratively for all sites from 1 to L− 1.

• Right-sweep : Starting from the site R = 1 until to reach the site R = L− 1, solve the
eigenproblem Hν = λNν previously discussed for the tensor MσR . Once the solution
is obtained, MσR needs to be cast into a left-normalized tensor AσR by reshaping the
matrix U [R] when applying the SVD. The previous step allows to maintain the desired
mixed-canonical representation of the quantum state |Ψ〉. Thus, the remaining matrices
of the SVD (the Schmidt matrix S[R] and the right-normalized matrix V †[R]) are
multiplied to the tensorMσR+1 which will be the initial guess for the eigenproblem on the
next lattice site R+ 1. The different steps for the previous local update is summarized
below where the lower index for the tensors and matrices denotes the number of local
updates performed

MσR
0 B

σR+1
0 →

eig
MσR

1 B
σR+1
0 →

SVD
U1[R]S1[R]V †1 [R]BσR+1

0 → AσR1 M
σR+1
0 , (4.44)

with MσR+1
0 = S1[R]V †1 [R]BσR+1

0 .

• Construct the expression of the tensor L iteratively (by adding the tensors related to one
more lattice site). Continue the previous steps in order to reach the lattice site L− 1.

• Left-sweep : Similarly to the right-sweep, we first start from the site R = L until to
reach the site R = 2, solve the eigenproblem for MσR . Once the solution is obtained,
MσR needs to be cast into a right-normalized tensor BσR by reshaping the matrix V †[R]
when applying the SVD. Similarly to the left-sweep, this step allows to maintain the
desired mixed-canonical representation of the quantum state |Ψ〉. Thus, the remaining
matrices of the SVD (the left-normalized matrix U [R] and the Schmidt matrix S[R]
are multiplied by the tensor MσR−1 on the left which will be the initial guess for the
eigenproblem on the next lattice site R− 1

A
σR−1
1 MσR

0 →
eig
A
σR−1
1 MσR

1 →
SVD

A
σR−1
1 U1[R]S1[R]V †1 [R]→M

σR−1
1 BσR

1 , (4.45)

with MσR−1
1 = A

σR−1
1 U1[R]S1[R].

• Construct iteration after iteration the R-expression by adding the tensors related to one
more site. Continue the previous steps in order to reach the lattice site 2.
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4.2.3 Dynamical properties - Real time evolution

Time-discretization problem

We now move to the numerical technique to perform real time evolution for the same class
of quantum lattice models. This algorithm permits to find the time-dependent quantum
state |Ψ(t)〉 evolving via a unitary evolution. Finding the time-evolved quantum state |Ψ(t)〉
corresponds to the second and last step to perform a sudden global or local quench in order to
study the far-from-equilibrium dynamics of quantum lattice models numerically.

Firstly, let us consider an initial quantum state |Ψ0〉 = |Ψ(t = 0)〉. After a time t
and under a unitary evolution, the quantum state |Ψ(t)〉 has the following expression (~
is fixed to unity by convention)

|Ψ(t)〉 = e−iĤt |Ψ0〉 , (4.46)

solution of the time-dependent Schrödinger equation i∂t |Ψ(t)〉 = Ĥ |Ψ(t)〉. In the following,
the Hamiltonian Ĥ represents a 1D short-range interacting lattice model having the form

Ĥ =
L−1∑
R=1

ĥ(R) where ĥ(R) = Ô1(R)Ô2(R+ 1), (4.47)

with ĥ(R) the interacting term acting on two nearest-neighbor lattice sites R and R+ 1 with
dim[ĥ(R)] = d2 × d2 where d denotes the dimension of the local Hilbert space, Ô1,2 are two
local operators. To deduce |Ψ(T )〉 where T is the observation time, one has to discretize
the time evolution operator e−iĤT . This can be done using a Trotterization technique which
consists of dividing the observation time T into infinitesimal time steps dt where T = Ndt
with N and dt satisfying N →∞ and dt→ 0 respectively. Finally, one just needs to apply
the infinitesimal time evolution operator e−iĤdt many times to the initial state |Ψ0〉 and
to deduce the final state |Ψ(T )〉. Then, using a first-order Trotter decomposition, it leads
for the full time evolution operator e−iĤT

e−iĤT =
N∏
n=1

e

−i
L−1∑
R=1

ĥ(R)dt
'

N∏
n=1

[
L−1∏
R=1

e−iĥ(R)dt +O(dt2)
]
, (4.48)

where an error O(dt2) is introduced since the exponential of a sum of operators cannot be
factorized if the commutator [ĥ(R), ĥ(R + 1)] 6= 0 which is the case in general. Indeed,
according to the Baker-Campbell-Hausdorff formula, the product of two infinitesimal time
evolution operators may be written as

e−iĥ(R)dt−iĥ(R+1)dt ' e−iĥ(R)dte−iĥ(R+1)dte
dt2
2 [ĥ(R),ĥ(R+1)] (4.49)

Nevertheless, the error coming from the discretization via the commutator [ĥ(R), ĥ(R+ 1)]
is negligible at first order, since it scales as dt2. It yields

e−iĥ(R)dt−iĥ(R+1)dt ' e−iĥ(R)dte−iĥ(R+1)dt. (4.50)

To apply the infinitesimal time evolution operator e−iĤdt to a MPS, it is convenient to
distinguish the even bonds from the odd bonds for Ĥ in order to decrease the errors coming
from the different commutators. This rearrangement allows us to write
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Ĥ = Ĥodd + Ĥeven, Ĥeven =
L/2−1∑
R=1

ĥ(2R), Ĥodd =
L/2∑
R=1

ĥ(2R− 1). (4.51)

Consequently, the infinitesimal time evolution operator e−iĤdt can be expressed under the follow-
ing form

e−iĤdt ' e−iĤevendte−iĤodddt, e−iĤevendt =
∏
R

e−iĥ(2R)dt, e−iĤodddt =
∏
R

e−iĥ(2R−1)dt.

(4.52)
Its application on a MPS will increase the bond dimension from χ up to d2χ. χ denotes the
MPS bond dimension and d the dimension of the local Hilbert space. Therefore, repeating
this step a high number of times lead to an exponential growth of the coefficients of the
time-evolved quantum state |Ψ(t)〉. As a consequence, the latter has to be truncated to χ
after each time step to avoid such exponential growth and to remain in the same variational
MPS space.

Real time evolution algorithm

We now provide more details about the real time evolution algorithm, see Refs. [129,130] and
references therein. Starting from a MPS |Ψ(t)〉, the following steps need to be performed in
order to get the time-evolved quantum state after one time step ie. |Ψ(t+ dt)〉, see Fig. 4.7
for the graphical representation of the different steps :

• Firstly, apply e−iĤodddt the infinitesimal time evolution operator for odd bonds on |Ψ(t)〉.

• Secondly, apply e−iĤevendt the infinitesimal time evolution operator for even bonds on
the previous quantum state e−iĤodddt |Ψ(t)〉.

• Then, we obtain |Ψ(t+ dt)〉 = e−iĤdt |Ψ(t)〉 ' e−iĤevendte−iĤodddt |Ψ(t)〉.

• Finally, truncate it from dimension d2χ to χ to avoid an exponential growth of the MPS
bond dimension.

• Repeat the previous steps N times to reach the observation time T = Ndt.

One possible improvement of the previous algorithm is to consider a second-order Trotter
decomposition of the infinitesimal time evolution e−iĤdt. It is defined as follows and allows
to decrease the error from O(dt2) to O(dt3) via a symmetrization :

e−iĤdt = e−iĤodd
dt
2 e−iĤevendte−iĤodd

dt
2 +O(dt3). (4.53)

Indeed, the previous expression of the infinitesimal time evolution is symmetrized, ie. fulfills
the property e−iĤdteiĤdt = I, allowing us to cancel the second-order term in dt. From this
second-order approximant, one can build a symmetrized fourth-order Trotter decomposition,
see Ref. [152] for more details about the second-order and fourth-order Trotter decompositions,
which decomposes the infinitesimal time evolution operator e−iĤdt under the following form

e−iĤdt = Û(dt1)Û(dt2)Û(dt3)Û(dt2)Û(dt1) +O(dt5), (4.54)
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where the symmetric operator Û and the three different times dt1,2,3 are defined as

Û(dtn) = e−iĤodd
dtn
2 e−iĤevendtne−iĤodd

dtn
2 and dt1 = dt2 = 1

4− 41/3 dt, dt3 = dt−2dt1−2dt2.
(4.55)

Relying on the open-source package ALPS [153], the latter will be considered to deduce the
time-evolved quantum state. In the following, by using this powerful decomposition, we are
able to describe accurately the real time evolution of the 1D SRBH model in order to study
its out-of-equilibrium dynamics induced by sudden global and local quenches.

Figure 4.7: Representation of an infinitesimal Trotter step using tensor networks. The infinitesimal
time evolution MPO e−iĤodddt for odd bonds is first applied on the MPS |Ψ(t)〉, then the one for even
bonds e−iĤevendt. Finally, the time-evolved quantum state |Ψ(t+ dt)〉 is compressed and truncated to
be able to perform real time evolution on longer times.

MPO form of the infinitesimal time evolution operator

As previously, the Hamiltonian Ĥ is assumed to contain only nearest-neighbor interactions
for a chain with L lattice sites, see Eq. (4.47). Let us consider an infinitesimal Trotter step
dt for all odd lattice bonds applied to a MPS |Ψ〉. It is given by the expression

e−iĤodddt |Ψ〉 '
∏
R

e−iĥ(2R−1)dt |Ψ〉 . (4.56)

All the odd bond evolution operators e−iĥ(2R−1)dt, ∀R ∈ [|1, L/2|] (or equivalently e−iĥ(R)dt

with R ∈ {1, 3, .., L − 1}), coupling two nearest-neighbor lattice sites, take the form

e−iĥ(R)dt ≡
∑

σR,σR+1,σ′R,σ
′
R+1

OσRσR+1σ
′
Rσ
′
R+1 |σRσR+1〉 〈σ′Rσ′R+1| . (4.57)

It is obvious that the previous expression breaks the MPS form since Eq. (4.57) is not a local
representation of the odd bond evolution operator ie. e−iĥ(R)dt is not cast into a MPO form.
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Consequently, it is necessary to express the fourth-order tensor O with entries OσRσR+1σ
′
Rσ
′
R+1

containing d4 coefficients as a product of two second-order tensors to cast Eq. (4.57) in the
MPO form in order to maintain a MPS form when it is applied to a MPS |Ψ〉,

OσRσR+1σ
′
Rσ
′
R+1 = OσRσ′ROσR+1σ

′
R+1 . (4.58)

Let us reshape the fourth-order tensor O into a matrix P of dimension d2 × d2

OσRσR+1σ
′
Rσ
′
R+1 = P(σRσ′R),(σR+1σ′R+1) (4.59)

Then, by applying the SVD, it yields

P(σRσ′R),(σR+1σ′R+1) =
∑
aR

U(σRσ′R),aRSaR,aR(V †)aR,(σR+1σ′R+1) (4.60)

P(σRσ′R),(σR+1σ′R+1) =
∑
aR

U
σRσ

′
R

1,aR Ū
σR+1σ

′
R+1

aR,1 (4.61)

with the fourth-order tensors U and Ū ,

U
σRσ

′
R

1,aR = U(σRσ′R),aR

√
SaR,aR (4.62)

Ū
σR+1σ

′
R+1

aR,1 =
√
SaR,aR(V †)aR,(σR+1σ′R+1) (4.63)

Thus, the fourth-order tensor U matches a collection of d2 line vectors and Ū a collection
of d2 column vectors where the number of coefficients is given by the Schmidt rank of the
S-matrix. Finally, for the infinitesimal time evolution operator for all odd bonds e−iĤodddt =
e−iĥ(1)dte−iĥ(3)dt ... e−iĥ(L−1)dt, it yields

e−iĤodddt =
∑
σ,σ′

Uσ1σ′1Ūσ2σ′2Uσ3σ′3Ūσ4σ′4 ... UσL−1σ
′
L−1ŪσLσ

′
L |σ〉 〈σ′| (4.64)

e−iĤodddt =
L/2−1∏
R=0

Û [2R+ 1] ˆ̄U [2R+ 2] (4.65)

where the operator Û [2R + 1] and ˆ̄U [2R + 2] are given by

Û [2R+ 1] =
∑

σ2R+1,σ′2R+1

Uσ2R+1σ
′
2R+1 |σ2R+1〉 〈σ′2R+1| (4.66)

ˆ̄U [2R+ 2] =
∑

σ2R+2,σ′2R+2

Ūσ2R+2σ
′
2R+2 |σ2R+2〉 〈σ′2R+2| (4.67)

Following the same steps for the infinitesimal time evolution for all the even bonds e−iĤevendt =
e−iĥ(2)dte−iĥ(4)dt ... e−iĥ(L−2)dte−iĥ(L)dt, one obtains

e−iĤevendt =
∑
σ,σ′

Iσ1σ′1Uσ2σ′2Ūσ3σ′3Uσ4σ′4Ūσ5σ′5 ... UσL−2σ
′
L−2ŪσL−1σ

′
L−1IσLσ

′
L |σ〉 〈σ′| (4.68)

e−iĤevendt = ÎÛ [2]

L/2−2∏
R=1

ˆ̄U [2R+ 1]Û [2R+ 2]

 ˆ̄U [L− 1]Î (4.69)

109



4. Twofold correlation cone in a short-range interacting quantum lattice model

where Iσ1σ′1
1,1 = δσ1σ′1

and IσLσ
′
L

1,1 = δσL,σ′L . Indeed, the first and last lattice sites do not contribute
to the even bonds which is symbolized by the identity matrix.

Figure 4.8: Graphical representation of correlators using tensor networks. (a) The equal-time
correlation function g2(R,R′, t) = 〈n̂R(t)n̂R′(t)〉−〈n̂R(t)〉〈n̂R′(t)〉 allowing to characterize the connected
density-density correlation function G2(R, t) = g2(R, t) − g2(R, 0) (for R′ fixed to 0) in order to
investigate the density fluctuations of a 1D particle lattice model. (b) The equal-time correlation
function g1(R,R′, t) = 〈â†R(t)âR′(t)〉 to characterize the connected one-body correlation function
G1(R, t) = g1(R, t)− g1(R, 0) (for R′ fixed to 0) in order to investigate the phase fluctuations of a 1D
particle lattice model.

Finally, a MPO representation for the infinitesimal time evolution operator for the odd
(e−iĤodddt) and even (e−iĤevendt) bonds has been found and hence for the infinitesimal time
evolution operator (e−iĤdt). Consequently, the resulting quantum state |Ψ(t)〉 is still in the
MPS form after each iteration in time. The latter permits to compute spatial- and temporal-
dependent correlation functions, such as the G1 one-body and G2 density-density correlation
functions (see Fig. 4.8(b) and (a) respectively), relying on the formalism of tensor networks.
The previous space-time observables correspond to the central point of the next sections in
order to characterize numerically the out-of-equilibrium dynamics of short-range interacting
lattice models and in particular the 1D short-range Bose-Hubbard (1D SRBH) model.

4.3 Limit regimes in the superfluid and Mott-insulating phases

In the following sections, the out-of-equilibrium dynamics of the one-dimensional short-range
Bose-Hubbard model (SRBH) is investigated numerically using time-dependent matrix product
state approach presented at Sec. 4.2. More precisely, we study the response of the 1D SRBH
model to a variety of sudden global and local quenches [25, 75, 76, 79, 111, 112, 154–156], as
can be realized in ultracold-atom experiments [22, 74, 157,158]. Similarly to the theoretical
results found in the last chapter at Sec. 3.2, we start from the ground state of the 1D SRBH
Hamiltonian for some initial value of the interaction parameter (U/J)i and let the system evolve
with a different value denoted by (U/J)f . A variety of quenches, spanning the phase diagram,

110



4. Twofold correlation cone in a short-range interacting quantum lattice model

see the different arrows on Fig. 4.1(a), is considered. The phase and density fluctuations are
studied via the computation of the equal-time connected correlation functions G1 and G2
respectively defined by G1(R, t) = 〈â†R(t)â0(t)〉 − 〈â†R(0)â0(0)〉 and G2(R, t) = g(R, t)− g(R, 0)
with g(R, t) = 〈n̂R(t)n̂0(t)〉 − 〈n̂R(t)〉〈n̂0(t)〉. Both can be measured in experiments using
time-of-flight and fluorescence microscopy imaging, respectively [21,22,157,158].
In this section, the limit regime of both the superfluid (SF) and Mott-insulating phase (MI)
are investigated where the numerical results can be compared to the analytical predictions
presented in the previous chapter at Sec. 3.2.

4.3.1 Mean field regime of the superfluid phase

In the following sections, the numerical results are all obtained using the time-dependent density-
matrix renormalization group approach (DMRG) with the matrix-product state representation
(t-MPS approach) [129, 130, 153]. It yields numerically-exact results about the equilibrium
and out-of-equilibrium properties of low-dimensional lattice models.

Time-dependent matrix-product state simulations

We recall that this numerical approach is based on a Schmidt expansion of a many-body
quantum state |Ψ〉 and permits to reduce the full Hilbert space to a finite, relevant subset,
provided that its entanglement entropy remains sufficiently small ie. provided that |Ψ〉 can
be efficiently described by a superposition of a small number of states (only few Schmidt
singular values contributes for a precise description of the latter). Owing to the area law
implying 4 [133, 159], it is optimal for 1D lattice models with a finite local Hilbert space
in gapped phases, the entanglement of which remains finite and particularly small in the
thermodynamic limit. For gapless phases, the area law breaks down and the entanglement
entropy follows a volume law 5 implying more stringent numerical parameters including the
high-filling cutoff nmax and the MPS bond dimension χ. A careful analysis of the previous
numerical cut-offs has been systematically performed to certify the convergence of the results
in all the considered phases and regimes of the 1D SRBH model, see Fig. 4.1(b). This is
particularly critical for quenches in the SF phase where the numerical requirements are most
binding. Indeed, the gapless nature of the excitation spectrum requires a relatively high MPS
bond dimension χ and the nearly-Poissonian occupation number probability P (nR) implies
a high-filling cutoff nmax � n̄ (the filling of the lattice chain).

Truncation of the local Hilbert space For the 1D SRBH model, the local Hilbert space
spanned by the Fock basis of number states, |nR〉, where nR ∈ N, is infinite in theory. However,
the probability distribution of the lattice-site occupation P (nR) decays faster than exponentially
in both the SF and MI phases. Accurate results can thus be obtained by cutting off the
local Hilbert space to some maximal value nmax. It is important to note that, in some cases,
the value of nmax needs to be significantly much larger than the average filling n̄ and its
fluctuations. This observation is consistent with analyses of truncated Bose-Hubbard models
via quantum Monte-Carlo simulations [160].

The SF mean field regime, which corresponds to a high filling n̄ and a gapless excitation
spectrum, has the most binding criteria. It turns out that a good estimator for nmax is given

4The area law implies for the entanglement (von Neumann) entropy a scaling with the area of the cuts.
5The volume law denotes a scaling with the subsystem volume for the entanglement entropy when considering

a bipartite quantum system.
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by the condition 1 −∑nmax
nR=0 P (nR) . 10−2, where P (nR) is the probability that nR bosons

occupy the lattice site R. In the SF mean field regime, the probability distribution P (nR) is
nearly Poissonian, see Eq. (4.4). For instance, for the filling n̄ = 5 used for the data of Fig. 4.9,
it yields nmax & 12. For the strongly correlated SF regime at n̄ = 1 considered in the next
section, the density fluctuations are significantly suppressed and using the same condition as
previously leads to nmax = 5. Concerning the strongly interacting SF regime, owing to the low
filling factor n̄ < 1 and the large value of the interaction parameter U/J , the above condition
yields nmax = 2.

For the gapped MI phase at n̄ = 1 and moderate values of the interaction parameter
U/J (15 ≥ U/J ≥ uc), we kept nmax = 5. Finally, for the strong-coupling regime of the MI
phase (U/J ≥ 15) at n̄ = 1 corresponding to the easiest case from a numerical point of view,
truncating the local Hilbert space to nmax = 2 turns out to be sufficient.

In all cases, we have checked that the numerics are converged for these values of nmax.

Bond dimension Within the MPS formalism, the many-body quantum state for a L-site
lattice is represented in the tensor network form as follows

|Ψ〉 =
∑

n1,n2,...,nL

An1 [1]An2 [2] ... AnL [L] |n1, n2, ..., nL〉 , (4.70)

where |nR〉 spans the local Hilbert space basis. For the 1D SRBH model, it corresponds to
a Fock basis truncated at nmax. For each value of nR, the quantity AnR [R] is a χR−1 × χR
matrix, where χR is the rank associated to the Schmidt matrix when applying the R-th singular
value decomposition, see Ref. [130] and Appendix. H. The bond dimension χ is defined as the
maximum rank, χ = maxR (χR) , R ∈ [0, ..., L]. Note that for open-boundary conditions, the
quantities An1 [1] and AnL [L] denote a collection of several row vectors and column vectors
respectively.
In the numerics, the maximum value of χ is chosen sufficiently large so that the truncation
does not affect the results. In practice, the calculations are run for several values of χ up to
convergence of the one-body G1 and density-density G2 correlation functions. The required
value of χ significantly depends on the phase, the regime and on the observable. In the
following, we give the values used for the final results presented in the paper.

For the SF mean field regime, see Figs. 4.9(a) and 4.10, we used the values χ = 300 and
χ = 450 for the G2 and G1 correlation functions, respectively. The bond dimension used for
G1 is higher than the one for G2 due to the long-range phase correlations already present
at equilibrium. For the SF strongly correlated regime at n̄ = 1, we used χ = 300 for both
correlation functions. For the SF strongly interacting regime at U/J = 50 for 1 > n̄ > 0, we
found that the value χ = 100 is enough to capture the dynamical behavior.

Concerning the MI phase at n̄ = 1, χ = 300 was considered for moderate values of U/J .
However, in the strong-coupling regime, the bond dimension can be significantly decreased
and we consider χ = 100, see Figs. 4.12 and 4.11.

The density fluctuations - G2 correlation function

We first consider the limit regime (mean field regime) of the SF phase characterized by a
small Lieb-Liniger parameter, γ = U/2Jn̄� 1. Figure 4.9(a) displays the t-MPS result for
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Figure 4.9: Spreading of correlations in the mean field regime, see red arrow on Fig. 4.1(a). (a) t-MPS
result of G2(R, t) for a quench to (U/J)f = 0.1, together with ballistic fits to the CE (solid, green line)
and minima (dashed, blue lines). (b) Velocities of the CE (VCE, green diamonds) and minima (Vm,
blue disks), found from the fits, versus the interaction strength, and comparison to twice the group
velocity 2V ∗g (solid green line) and twice the phase velocity 2V ∗ϕ (dashed blue line). All the quenches
are performed with n̄ = 5 from (U/J)i = 0.2, except for the points at Un̄/J = 1 where (U/J)f = 0.2
and we use a different initial value, (U/J)i = 0.4 (open points). Figures extracted from Ref. [33].

the G2 correlation function versus distance (R) and time (t) for a quench from (U/J)i = 0.2
to (U/J)f = 0.1 and n̄ = 5, ie. from γi = 0.02 to γf = 0.01, see red arrow on Fig. 4.1(a). It
clearly shows a spike-like structure, characterized by two different velocities. On the one hand,
a series of parallel maxima and minima move along straight lines corresponding to a constant
propagation velocity Vm (the dashed blue lines show fits to two of these minima). On the other
hand, the various local extrema start at different activation times t∗(R). The latter are aligned
along a straight line with a different slope (solid green line), corresponding to a constant velocity
VCE. The latter defines the correlation edge (CE) beyond which the correlations are suppressed.

This twofold structure near the CE is readily interpreted using the quasiparticle picture
developed at Sec. 3.2 which we briefly outline here (for more details, see Ref. [32]) : the G1
and G2 correlation functions are expanded onto the low-energy excitations of the system. In
the mean field regime of the 1D SRBH model, the latter consist of Bogolyubov quasiparticles
with a quasimomentum k ∈ B = [−π,+π] and the excitation spectrum Ek '

√
γk (γk + 2n̄U)

(see Subsec. 3.2.2 for a derivation of the excitation spectrum in the mean field regime). A
correlation at a distance R and a time t is built as a coherent superposition of the contributions
of the various quasiparticles (see generic form of equal-time connected correlation functions
at Eq. (3.8)). In the vicinity of the CE, only the fastest ones implying a quasimomentum k
close to k∗, contribute, see Fig. 3.3(a). It creates a sine-like signal at the spatial frequency
k?, whose extrema move at twice the phase velocity ie. Vm = 2V ∗ϕ [32]. Furthermore, this
sine-like signal is modulated by an envelope moving at the CE velocity VCE = 2V ∗g determined
by the variations of the excitation spectrum Ek around the quasimomentum k∗, see Fig. 3.3(b).
Finally, the motion of this envelope defines the correlation edge.

To test this picture quantitatively, the velocities Vm and VCE are extracted from the t-MPS
results for G2(R, t) by tracking, respectively, the local extrema and the activation times.
More precisely, VCE is determined by identifying the value of t (time) associated to the first
correlation for different distances R. Then, the velocity Vm is characterized by fitting a local
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maxima or minima in the vicinity of the CE. The results, displayed on Fig. 4.9(b), show
excellent agreement with the theory, ie. VCE ' 2V ∗g and Vm ' 2V ∗ϕ within the fitting errorbars,
see also Fig. 3.6. Consequently, the latter support the theoretical predictions for the spreading
velocities found using our quasiparticle approach presented above. It is important to point
out that the t-MPS results are numerically exact and include effects beyond the Bogolyubov
approximation such as quasiparticle collisions which is not capture by our correlation spreading
theory based on the motion of free quasiparticles with an infinite lifetime.

Another important property, predicted by our quasiparticle approach for the correlation
spreading in short-range lattice models, concerns the irrelevance of the observable. Note that
the previous statement is valid as long as the considered correlation function can be cast into the
generic form of Eq. (3.8). Indeed, we found that the spreading velocities associated to the linear
twofold structure of correlations do not depend on the local observables Â and B̂, see Eq. (3.6)
and Sec. 3.2. As a consequence, the G1 one-body correlation function is investigated below.

The phase fluctuations - G1 correlation function

Previously, we focused on the space-time behavior of the two-body (density-density) correlation
function to test the predictions of the quasiparticle approach concerning the spreading velocities
of the linear twofold structure found for Hamiltonians with short-range couplings. To verify
their irrelevance with respect to the local observables defining the equal-time connected
correlation function, we turn to the numerical study of the one-body correlations G1(R, t)
using the t-MPS technique.

Figure 4.10: Spreading of the one-body correlation function G1(R, t) for a global quench in the SF
mean field regime from (U/J)i = 0.2 to (U/J)f = 0.1 and n̄ = 5. The solid-green and dashed-blue lines
are fits to the CE and maxima, respectively. For clarity, the colorbar has been modified from the one
used for G2. Figure extracted from the supplemental material of Ref. [33].

We found that the dynamics of the G1 correlation function shows a spike-like structure,
similar to that found for G2. The values of the correlation edge (VCE) and maxima (Vm)
velocities agree with those found for the G2 function within less than 10%.

Figure 4.10 shows an example, for a sudden global quench from (Un̄/J)i = 1 to (Un̄/J)f =
0.5 while fixing the filling to n̄ = 5. The fits to the correlation edge and to the maxima yield
the velocities VCE = (4.4± 0.3)J/~ and Vm = (3.3± 0.2) J/~, in excellent agreement with the
corresponding values found from the dynamics of the G2 correlation function, see Fig. 4.9(b). It
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is consistent with the theoretical prediction that the spreading velocities are only characteristic
of the excitation spectrum and not on the details of the correlation function [32].

Note, however, that the full space-time dependence of the signal depends on the correlation
function via the amplitude function F , see Eqs. (3.36) and (3.38) for its analytical expression
for the G1 and G2 correlation functions respectively. In general, the signal for G1 is less sharp
than for G2. This may be attributed to the long-range phase correlations present in the initial
state, which blur the space-time pattern, see Ref. [36] and discussion at Sec. 4.1 about the
quasi-long-range order of the SF mean field regime and more precisely the spatial behavior
at equilibrium of G1 with respect to the Luttinger parameter K.

4.3.2 Strong coupling regime of the Mott-insulating phase

The phase fluctuations - G1 correlation function

The twofold structure for the correlation spreading in short-range lattice models displays several
universal features. Indeed, as long as the generic form 6 of Eq. (3.8) is fulfilled, the scaling
laws and more precisely the spreading velocities are always characterized by 2V ∗g and 2V ∗ϕ for
the CE and the series of local maxima respectively, irrespective of the correlation function
(already discussed in the previous paragraph) and the possible gap in the excitation spectrum.
In other words, for sudden global quenches confined in a gapless and gapped excitation spectra,
the spreading velocities are still given by 2V ∗g and 2V ∗ϕ for the CE and extrema. The latter is
verified in the following by considering the limit regime (strong-coupling) of the gapped MI
phase at n̄ = 1 of the 1D SRBH model.

Figure 4.11: Spreading of correlations in the MI strong-coupling regime, see purple arrow on
Fig. 4.1(a). (a) t-MPS result of G1(R, t) for a quench to (U/J)f = 24, together with ballistic fits to the
CE (solid, green line) and minima (dashed, blue lines). (b) Velocities of the CE (VCE, green diamonds)
and minima (Vm, blue disks), found from the fits, versus the interaction strength U/J = (U/J)f , and
comparison to twice the group velocity 2V ∗g (solid lines) and twice the phase velocity 2V ∗ϕ (dashed
lines) obtained from the excitation spectrum Ek using (blue) the first-order perturbation theory at
Eq. (4.7) (purple) using the fermionization technique, see Eq. (4.8). All the quenches are performed
with n̄ = 1 from (U/J)i → +∞ (pure Mott state at unit-filling). Figure (a) extracted from Ref. [33].

6This statement is crucial since it exists some pathological cases where the correlation function can not
be cast into the generic form of Eq. (3.8). However, their space-time patterns can still be explained using
our quasiparticle theory but requires further efforts. An example of such pathological behavior is the G2
density-density correlation function deep in the Mott-insulating phase. The latter is investigated in the present
section.
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Figure 4.11(a) displays the t-MPS result of the G1 correlation function for a quench from
the pure Mott state |Ψi〉 = |1〉⊗Ns (corresponding to the ground state of the 1D SRBH model
for a filling n̄ = 1 and (U/J)i → +∞) to (U/J)f = 24 and n̄ = 1 (the filling is fixed during the
real-time evolution process), see purple arrow on Fig. 4.1(a). As before, the space-time pattern
of the G1 correlations shows a linear twofold structure, characterized by two different velocities.
However, contrary to the SF mean field regime, the series of parallel extrema propagate faster
than the correlation edge ie. Vm > VCE.
The spreading velocities Vm and VCE extracted from the t-MPS results of G1(R, t), by tracking
the maxima and the activation times as previously, as a function of the post-quench interaction
parameter U/J = (U/J)f are reported on Fig. 4.11(b). The numerical results (see green
diamond and blue disks for VCE and Vm respectively) show a very good agreement with the
theoretical velocities calculated from the excitation spectrum Ek at Eq. (4.8) obtained from
the fermionization technique (see solid and dashed purple lines for the velocities 2V ∗g and 2V ∗ϕ
respectively). The maximal relative error (εmax) is around 7− 8% concerning the spreading
velocity of the local extrema. Besides, the numerical velocities have also been compared to
the analytical velocities deduced from the excitation spectrum Ek at Eq. (4.7) valid in the
strong-coupling limit (see solid and dashed blue lines for 2V ∗g and 2V ∗ϕ respectively). Between
these analytical predictions and the numerical results, the maximal relative error is around
εmax = 15%. However, to get a relatively good agreement with the predictions obtained
from the strong-coupling expansion (εmax ≤ 10), sufficiently high values of the post-quench
interaction parameter U/J have to be considered (U/J ≥ 18). The latter is in agreement with
results of Ref. [25] concerning the accuracy of the strong-coupling expansion to characterize
correctly the excitation spectrum of the MI phase.

According to the agreement between the t-MPS and theoretical results on Fig. 4.11(b),
the universal feature of the spreading velocities concerning the irrelevance of the excitation
nature, ie. if the excitation spectrum is gapless or gapped, has been verified. In the next
paragraph, we turn to a study of the G2 density fluctuations while still considering a sudden
global quench in the MI strong-coupling regime.

The density fluctuations - G2 correlation function

The G2 density fluctuations in the MI strong-coupling regime are a pathological case of the
universal linear twofold structure for the correlation spreading. On Fig. 4.12, the density-
density correlations are displayed for a global quench from the pure Mott state ((U/J)i → +∞)
to (U/J)f = 24 at fixed filling n̄ = 1. The space-time pattern displays a single structure where
the CE and the maxima spread with a similar velocity, ie. VCE ' Vm. However, one can still
rely on our quasiparticle theory to explain the single structure.

In contrast to G1, see Eq. (3.49) and (3.50), the G2 function can not be cast into the
generic form given at Eq. (3.8). Instead, combining Jordan-Wigner fermionization and
Fermi-Bogolyubov theory to diagonalize the Hamiltonian of the one-dimensional short-range
Bose-Hubbard model in the strong-coupling limit of the Mott-insulating phase [25], it yields
G2(R, t) ' −2|g2(R, t)|2 with

g2(R, t) ∼ J

U

R

t

∫
B

dk
2π
{
ei(2Ekt+kR) + ei(2Ekt−kR)

}
. (4.71)

with B = [−π, π] the first Brillouin zone. For U � 2(2n̄+1)J , one can rely on the doublon-holon
pair excitation spectrum valid in the strong-coupling limit given by 2Ek ' U−2(2n̄+1)J cos(k).
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Figure 4.12: t-MPS result of the density-density correlation function G2(R, t) in the MI strong-
coupling regime, see purple arrow on Fig. 4.1(a), for a sudden global quench from (U/J)i → +∞ to
(U/J)f = 24, together with a ballistic fit to the CE (solid, green line).

Owing to the square modulus in the formula G2(R, t) ' −|g2(R, t)|2, it turns out that the
Mott gap U becomes irrelevant and we are left with the following effective excitation spectrum
2Ẽk = −2J(2n̄+ 1) cos(k). On the one hand, the group velocity is not affected and we find the
maximum value 2V ∗g = 2(2n̄+ 1)J/~ at k∗ = π/2. The value 2V ∗g = 6J/~ found for n̄ = 1 is
in excellent agreement with VCE fitted from the G2 correlation function deep in the MI phase,
see Fig. 4.12. On the other hand, the corresponding effective phase velocity vanishes, 2Ṽ ∗ϕ = 0.
This is consistent with the disappearance of the twofold structure observed in the t-MPS
calculations for G2 deep in the MI phase. More precisely, we find that in the vicinity of the
CE both the real and imaginary parts of g2 display a series of static local maxima, consistently
with 2Ṽ ∗ϕ = 0, see Figs. 4.13(a,b). These local maxima are shifted by half a period and cancel
each other when combined for constructing G2, see Fig. 4.13(c), see Appendix I for more details.

In this paragraph, by investigating the G2 density fluctuations in the MI strong-coupling
regime of the 1D SRBH, we have shown a pathological case of the expected twofold structure
for the correlation spreading. Indeed, one obtains a single structure where the series of local
extrema and the CE propagate at the same velocity 2V ∗g the expected twofold structure. The
singularity of G2 deep in the Mott-insulating phase lies in its non-generic form presented
at Eq. 3.8. However, relying on the stationary phase approximation and the quasiparticle
approach, the specific space-time pattern of G2 can still be explained, see Appendix. I.

In the following, the phase G1 and density G2 fluctuations are investigated while scanning
both phase transitions (the Mott-U and the Mott-δ transitions) of the 1D SRBH model. The
purpose is to investigate the space-time behavior of the correlations relatively close to the
critical points to know whether a twofold correlation subsists or not.

4.4 Strongly correlated regime at unit-filling : Mott-U transi-
tion

We now turn to the strongly correlated regime γ = U/2Jn̄ ∼ 1, where the G1 and G2
correlation functions cannot be systematically calculated. We first scan the post-quench
interaction parameter (U/J)f from the SF to the MI, along the Mott-U transition at unit filling
ie. n̄ = 1, see magenta arrows on Fig. 4.1(a). Note that each global quench is confined in a
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Figure 4.13: Analysis of the space-time correlation pattern of G2(R, t) via g2(R, t) [see Eq. (4.71)]
at n̄ = 1 for a global quench confined deep into the Mott-insulating phase starting from a pure Mott
state (U/J)0 →∞. Analytical expression, owing to prefactors, of (a) −<2 [g2(R, t)] (b) −=2 [g2(R, t)]
(c) sum of the two contributions shown at Fig. (a) and (b). The solid green line corresponds to the
theoretical CE velocity characterized by 2Ṽ ∗g = 2J(2n̄+ 1). On Fig. (c), the first extremum propagates
with the same velocity as the one associated to the CE.

unique phase : for (U/J)f < uc ' 3.3 (SF regime), the initial interaction parameter (U/J)i = 1
is considered while for (U/J)f > uc (MI regime), (U/J)i = +∞. Figure 4.14 shows typical
numerical results for the spreading of the G1 (first row) and G2 (second row) correlations for
quenches confined in the SF phase [(U/J)f = 0.5, Fig. 4.14(a1,a2)], and to the MI phase and
slightly beyond the critical point uc ' 3.3 [(U/J)f = 8, Fig. 4.14(b1,b2)]. In all cases, we find
a twofold spike-like structure for both correlation functions. The corresponding velocities Vm
and VCE, extracted as before, are plotted on Fig. 4.14(a3,b3) and show similar results for G1
and G2. This is consistent with one of the universal features of the twofold spike-like structure
found for the correlation spreading in short-range lattice models and verified previously in the
limit regime of both phases : the characteristic spreading velocities of the correlation cone are
irrespective of the observable, see Ref. [32].

In the SF regime, (U/J)f < uc, the numerical spreading velocities compare very well with
the predictions 2V ∗ϕ and 2V ∗g as found from the Bogolyubov excitation spectrum at Eq. (4.5)
[see, respectively, the dashed blue and solid green lines on Figs. 4.14(a3) and (b3)]. Quite
surprising, the agreement is fair up to the critical point where γc = uc/2 ' 1.6, far beyond the
validity condition of mean field theory implying γ � 1.

Close to the critical point (U/J)f ≤ uc, the quasimomentum k∗ decreases down to the
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Figure 4.14: Spreading of the G1 (first row) and G2 (second row) correlations in both the SF and
MI phases at n̄ = 1 while scanning the post-quench interaction (U/J)f = U/J along the Mott-U
transition, see pink dashed line and magenta arrows on Fig. 4.1(a) : (a) SF regime with (U/J)f = 0.5.
(b) MI regime near the critical point uc ' 3.3 with (U/J)f = 8. The solid green and dashed blue
lines correspond to fits to the CE and extrema, respectively. Note that on panel (b2), the fits to the
maxima are shown as dashed white lines for clarity. (d) Spreading velocities VCE (green diamonds)
and Vm (blue disks), as extracted from fits to the t-MPS data, and comparison to the characteristic
velocities 2V ∗g (solid green lines) and 2V ∗ϕ (dashed blue lines), as found from the excitation spectrum in
the SF [Eq. (4.5)] and MI [Eq. (4.8)] regimes. All the quenches are performed from the pre-quench
interaction parameter (U/J)i = 1 for the SF regime and (U/J)i = +∞ for the MI regime. Figure
adapted from Ref. [33].

phononic regime, ie. k � π, according to the excitation spectrum Ek obtained from the
Bogolyubov theory. Consequently, the precise k-dependence of Ek beyond this regime becomes
irrelevant. Moreover, the physics being dominated by long wavelength excitations (k small), the
lattice discretization in Eq. (4.1) may be disregarded and the 1D SRBH model maps onto the
continuous 1D Lieb-Liniger model [see Appendix. B for more details]. The latter is integrable
by Bethe ansatz (BA) [161,162]. It yields the sound velocity Vs ' 2n̄√γ

(
1−√γ/4π

)
at lowest

order in the weak-γ expansion. Up to the critical point, the beyond-mean-field correction,√
γ/4π, is less than 10%, which explains the good agreement between the numerics and the

analytic formula. At the critical point, the numerical results for Vm and VCE are consistent
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with the BA value 2Vs ' 4.6 [33].

The spreading velocities Vm and VCE are continuous at the Mott-U transition, and do not
show any critical behavior. Right beyond the critical point, they are still nearly equal and
we can hardly distinguish two features from the numerics up to (U/J)f ' 6. The latter is in
agreement with t-VMC calculations where a single structure was found for the G2 density
correlations in the MI phase at moderate (U/J)f , see Ref. [112].

Nevertheless, further entering the MI phase, we recover two distinct features associated to
two different velocities. Contrary to the SF regime, here we find Vm > VCE, see Fig. 3.9. These
results are readily interpreted from the quasiparticle picture. Deep enough in the MI phase,
(U/J)f & 6, the low-energy excitations are doublon-holon pairs, characterized by the excitation
spectrum given at Eq. (4.8), see also Refs. [25,124]. The comparison between the spreading
velocities Vm and VCE fitted from the t-MPS results and the theoretical predictions 2V ∗ϕ and
2V ∗g found from Eq. (4.8), yields a very good agreement, within less than 5% for G1 and 9% for
G2, see Figs. 4.14(a3) and (b3) respectively. The quantitative agreement between the t-MPS
results and the theoretical predictions for the G1 correlations persists up to arbitrary values of
(U/J)f . This validates the quasiparticle analysis also in the strong-coupling regime.

Yet, the G2 correlations behave differently. For intermediate interactions, 6 . (U/J)f . 9,
we find a twofold structure consistent with that found for G1, see Appendix. I. However,
the latter is relatively hard to distinguish due to a second contribution to the correlations
favouring a single structure. This twofold structure for G2 at moderate U/J has not been
identified experimentally in Ref. [22]. The signal for G2 blurs when entering deeper in the
MI regime, and we are not able to identify two distinct features for U/J & 9, see previous
section and Appendix. I. Indeed, the space-time pattern is reduced to a single structure
where Vm ' VCE and characterized by the velocity 2V ∗g = 2J(2n̄ + 1) independently of the
post-quench interaction parameter U/J = (U/J)f .

4.5 Strongly interacting regime of the superfluid phase

We finally consider the strongly interacting regime of the SF phase, characterized by γ =
U/2Jn̄ � 1 and n̄ /∈ N. More precisely, it implies strong interactions U/J and small non-
integer filling n̄, see Fig. 4.1(b). In the following, by investigating the G2 correlations, the
purpose is twofold. Firstly, we determine numerically if a twofold dynamics subsists for a
global quench confined in this specific regime. Secondly, we are interested in understanding
how the twofold structure (if it exists) evolves when doping the chain (increasing the filling
n̄ /∈ N) until reaching the critical point of the Mott-δ ie. n̄ = 1.

In the strongly interacting regime of the SF phase, the Tomonaga-Luttinger liquid (TLL)
theory accurately describes the low-energy physics of the 1D SRBH model at equilibrium,
including the Mott-δ transition, see for instance Refs. [117,163,164]. The TLL theory considers
an effective harmonic fluid, characterized by a single characteristic velocity, namely the sound
velocity Vs. Indeed, an effective linear and gapless excitation spectrum Ek at low quasimomenta
is assumed to describe the low-energy properties of a model, leading to Vg(k) = Vϕ(k) = Vs.
As a consequence, the TLL theory can only be used to describe the space-time dynamics of
models displaying a single structure for the correlations. In contrast, our t-MPS simulations in
the strongly interacting SF regime clearly show beyond TLL physics since a twofold dynamics
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Figure 4.15: Twofold spreading of the G2 density correlations in the strongly interacting SF regime
for (U/J)f = U/J = 50 and 0 < n̄ < 1. (a) t-MPS result of the connected two-body correlation function
G2(R, t) for a global quench starting from (U/J)i = 1 to U/J = 50 at filling n̄ ' 0.1. The solid green
line and dashed blue lines correspond to ballistic fits to the propagation of the correlation edge (CE)
and several extrema (m) respectively. The resulting spreading velocities (slope of the linear fits) are
displayed on the panel (b). (b) Shown are the spreading velocities VCE (green diamonds) and Vm (blue
disks) fitted from the t-MPS data, together with twice the sound velocity 2Vs of the Bose-Hubbard
model as found from Bose-Fermi mapping (dashed orange line) and from MPS simulations (orange
squares). Filled symbols correspond to the pre-quench interaction parameter (U/J)i = 1 and open
symbols to (U/J)i = 40. The crosses are linear extrapolations of VCE and Vm to the Mott-δ transition
at n̄ = 1.

propagating at different velocities has been found (at least for relatively small n̄).

Indeed, we have computed the spreading of the G2 correlations for a fixed and large value
of the post-quench interaction parameter, ie. (U/J)f = 50, and varying the filling n̄ up to the
Mott-δ transition at n̄ = 1, see pink arrow on Fig. 4.1(a) and Fig. 4.15(a) for a typical t-MPS
result of G2. The spreading velocities VCE (green diamonds) and Vm (blue disks), extracted
from t-MPS data of G2, are shown on Fig. 4.15(b). They show clear deviations from twice the
sound velocity of the 1D short-range Bose-Hubbard model in the strongly interacting limit,
2Vs ' (4J/~) sin(πn̄)

[
1−(8J/U) cos(πn̄)

]
(orange dotted line and squares). The sound velocity

Vs has been computed by mapping the Bose-Hubbard model to an equivalent spinless Fermi
model [165,166] (dotted orange line) and, independently, from the energies of the ground and
first excited states using MPS calculations (see orange squares), showing excellent agreement.
Moreover, the emergence of two different characteristic velocities, VCE 6= Vm, indicates that the
TLL approach is insufficient to describe the spreading of correlations, even upon renormalization
of the effective TLL parameters. Note that the two velocities become nearly equal in the
vicinity of the Mott-δ transition (n̄ ≤ 1) and reach the value VCE ' Vm ' 6J/~. This is
consistent with the disappearance of the twofold structure and the value VCE found for a global
quench deep into the MI phase at n̄ = 1, see Fig. 4.14(b3) and Appendix. I.

4.6 Introduction to the dynamical excitation spectrum

In the previous section, the correlation spreading in the strongly interacting (SI) regime of
the superfluid phase has been characterized via the study of the G2 density fluctuations for a
sudden global quench on the interaction parameter U/J . We unveiled a twofold linear structure
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reducing to a single one close to the critical point, ie. for n̄ . 1, see Fig. 4.15. Nevertheless, the
numerical spreading velocities (Vm, VCE) have not been compared to theoretical predictions.
Indeed, since the Bose-Hubbard chain is not exactly-solvable in the SI regime, the corresponding
excitation spectrum Ek can not be determined analytically. Furthermore, the latter has also
not been characterized numerically in the literature.

However, by considering the problem in the opposite direction, we propose the idea to
determine the excitation spectrum Ek via an analysis of the equal-time connected correlation
functions. According to our quasiparticle theory, the latter can be cast (in general) into
the generic form [see Eq. (3.8)] reading as

G(R, t) = g(R)−
∫
B

dk
(2π)DF(k)

{
ei(k.R+2Ekt) + ei(k.R−2Ekt)

2

}
, (4.72)

where B denotes the first Brillouin zone and Ek = Ek,f corresponds to the excitation spectrum
of the post-quench Hamiltonian Ĥf . The so-called dynamical excitation spectrum (DES)
denoted by S(k, ω) is defined as the D + 1 (space-time) Fourier transform of G(R, t) the
equal-time connected correlation function and reads as [81]

S(k, ω) :=
∫

[0,LD]
dR

∫ T

0
dt G(R, t)e−i(k.R+ωt), (4.73)

where T refers to the observation time, D the dimension of the hypercubic lattice and L
the length (or equivalently the total number of lattice sites, a the lattice spacing is fixed
to unity) of the quantum lattice model along each spatial dimension. Inserting the generic
form of G(R, t) at Eq. (4.72) in the definition of the dynamical excitation spectrum (DES) at
Eq. (4.73), it yields in the infinite distance (L→ +∞) and observation time limit (T → +∞)
the following analytical expression for the DES

S(k, ω) ∼ F(k) [δ(ω + 2Ek) + δ(ω − 2Ek)] . (4.74)

The previous form of the DES allows us to determine the post-quench excitation spectrum Ek
renormalized by the amplitude function F(k) depending not only on the quench parameters
but also on the local observables defining the equal-time correlation function G(R, t). Indeed,
by analyzing Eq. (4.74), it comes immediately that S(k, ω) represents twice the post-quench
excitation spectrum 2Ek. More precisely, the latter is built from the two branches 2Ek and
−2Ek.

On Fig. 4.16, we display several numerical results concerning the dynamical excitation
spectrum of the short-range Bose-Hubbard chain in both the gapless superfluid and gapped
Mott-insulating quantum phases. On Fig. 4.16(a), the DES is deduced by taking the 2D Fourier
transform of the G2(R, t) density fluctuations in the superfluid mean field regime at Uf n̄ = 0.5J ,
see Fig. 4.9(a). On Fig. 4.16(b), S(k, ω) is computed from the G1(R, t) phase fluctuations in
the strong-coupling regime of the Mott-insulating phase at n̄ = 1 and Uf = 18J (see Fig. 4.11(a)
for Uf = 24J). Both of them show a very good agreement with the corresponding theoretical
excitation spectrum Ek (see black dashed lines) defined at Eq. (4.5) for the SF mean field
regime and Eq. (3.45) for the strong-coupling limit of the MI phase. Note that only half of
the branches 2Ek and −2Ek characterized by a positive group velocity are visible at Fig. 4.16.
This is due to the t-MPS numerical results of the connected correlation functions displaying
only positive group velocities since the region R, t > 0 of the space-time plane is considered.
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Figure 4.16: Dynamical excitation spectrum S(k, ω) as a function of the quasimomentum k and the
rescaled (dimensionless) energy ω/J computed from the t-MPS data of the correlation spreading in the
short-range Bose-Hubbard chain. (a) S(k, ω) computed from the G2(R, t) density fluctuations in the
superfluid mean field regime at Uf n̄ = 0.5J , see Fig. 4.9(a). (b) S(k, ω) computed from the G1(R, t)
phase fluctuations in the strong-coupling regime of the Mott-insulating phase at n̄ = 1 and Uf = 18J .
The black dashed lines correspond to twice the theoretical post-quench excitation spectrum Ek and
−Ek (a) in the SF mean field regime given at Eq. (4.5) (b) in the strong-coupling limit of the MI
phase, see Eq. (3.45). Only the branches with a positive group velocity are visible since the region
R, t > 0 of the space-time plane is considered for the correlations. Note that the non-zero amplitudes
of S(k, ω = 0), containing all the time-independent terms of the space-time correlations, are irrelevant
for our study.

Consequently, the dynamical excitation spectrum corresponds to the first proof that it is
possible to investigate the static properties of lattice models via an analysis of their quench
dynamics. We point out that this method to probe the excitation spectrum can be extended
to far-from-equilibrium many-body quantum models in higher dimensions and with long-range
interactions (see Ref. [81] for more details). Furthermore, this technique can be applied to
the experimental measurements 7 of the correlation functions and can thus be seen as an
alternative to the standard experimental techniques to measure excitation spectra such as the
angle-resolved photoemission spectroscopy (ARPES) [167] or Bragg spectroscopy [168].

In summary, working within the case study of the Bose-Hubbard chain and using a
numerically-exact many-body approach, we have presented evidence of a universal twofold
dynamics in the spreading of correlations. The latter is characterized by two distinct velocities,
corresponding to the spreading of local maxima on the one hand and to the CE on the other
hand. This has been found in all the phases and regimes of the model. Exceptions appear
only in a few cases, for instance (i) for specific observables in specific regimes e.g. the G2
correlations deep in the Mott-insulating phase, or (ii) when the two velocities are (almost)
equal, as found at the critical points of the Mott-U and Mott-δ transitions for instance.
These predictions are directly relevant to quench experiments using ultracold Bose gases
loaded in optical lattices, where the dynamics of the phase and density correlations can
be observed on space and time scales comparable to our simulations [21, 22, 62–64]. Most
importantly, while in most experiments and numerics the CE is inferred from the behavior
of the correlation maxima, our results show that the two must be distinguished. This is

7From an experimental point of view, one has to keep in mind the consequences of the shot noise and the
technical noise.
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expected to be a general feature of short-range systems and should be relevant to models
other than the sole Bose-Hubbard model.

In the following, we investigate the correlation spreading in short-range interacting lattice
models for another class of quantum quenches ie. the sudden local quenches. To do so,
space-time local observables are investigated e.g. the local density and local magnetization
for particle and spin lattice models respectively. The purpose of this section is to determine
whether a twofold linear structure, similar to the one unveiled for sudden global quenches,
subsists or not and to characterize the corresponding spreading velocities.

4.7 Local quenches in short-range interacting models

4.7.1 Local density in the Mott-insulating phase

In this section, the correlation spreading is investigated for local quenches within the case
study of a short-range interacting bosonic and spin lattice model ie. the Bose-Hubbard and
s = 1/2 Heisenberg chains. As previously discussed, the purpose is to characterize the causality
cone and to know whether the associated structure is reminiscent of the one unveiled for
global quenches. The local quenches considered in the following for the bosonic and spin
lattice models follow a similar scheme presented below.

1. One starts from a many-body product state. The latter can be obtained by computing
the ground state of a Hamiltonian Ĥ in a limit regime. For the Bose-Hubbard chain,
one can rely on the pure Mott state (Ĥ with U/J → +∞ and n̄ ∈ N∗) and defined
as |Ψ〉 = |n̄〉⊗Ns with Ns the total number of lattice sites and n̄ the filling. On the
contrary, for the s = 1/2 Heisenberg chain, a fully polarized state along an arbitrary
direction can be considered. Hence, one can rely on the following many-body product
state |Ψ〉 = |↑〉⊗Ns .

2. The previous product state |Ψ〉 is then locally perturbed (breaking the translational
invariance of the quantum state) which defines the initial state |Ψ0〉. For the Bose-
Hubbard chain, the local perturbation is performed by creating a doublon-holon excitation
pair leading for the initial state |Ψ0〉 to

|Ψ0〉 = |n̄...n̄, n̄− 1, n̄+ 1, n̄, ..., n̄〉 = 1√
n̄(n̄+ 1)

â†Ns/2âNs/2−1 |Ψ〉 . (4.75)

For the Heisenberg chain, it corresponds to a spin-flip applied on a specific lattice site.
The initial state |Ψ0〉 can thus be written as

|Ψ0〉 = |↑ ... ↑↓↑ ... ↑〉 = Ŝ−Ns/2 |Ψ〉 . (4.76)

3. The initial state |Ψ0〉 is then evolved unitarily in time with respect to Ĥ, the Hamiltonian
considered to deduce the non-perturbed many-body quantum state |Ψ〉. According to
the time-dependent Schrödinger equation (~ fixed to unity), |Ψ(t)〉 the time-evolved
many-body quantum state has the following expression |Ψ(t)〉 = e−iĤt |Ψ0〉.

Similarly to sudden global quenches, the initial state |Ψ0〉 represents a highly-excited state for
the Hamiltonian Ĥ governing the real time evolution. Indeed, due to the local perturbation,
the energy of the initial state |Ψ0〉 is much higher than the one associated to the ground state
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|GS〉 of Ĥ, ie. E0 = 〈Ψ0|Ĥ|Ψ0〉 � EGS = 〈GS|Ĥ|GS〉. Note that the previous scheme to
perform a sudden local quench and thus to drive out of equilibrium a lattice model can be
generalized to many others quantum systems including fermionic lattice models.

In the following, we first investigate the out-of-equilibrium dynamics of the short-range
Bose-Hubbard chain in the strong-coupling regime (U � Jn̄) of the Mott-insulating phase for
n̄ ∈ [|1, 2|]. The perturbed initial state |Ψ0〉 is built from the pure Mott state (U/J → +∞)
at an integer filling n̄ where a doublon-holon excitation pair is created at the center of the
bosonic chain. To characterize the dynamics induced by sudden local quenches of the Bose-
Hubbard chain, we study the space-time pattern of a local (on-site) observable namely the
local density. The corresponding expectation value to compute is 〈Ψ0|n̂R(t)|Ψ0〉 where n̂R
denotes the bosonic occupation number operator acting on the local Hilbert space HR (on
the lattice site R). The latter evolves in time with respect to the Hamiltonian Ĥ leading to
n̂R(t) = eiĤtn̂Re

−iĤt according to the Heisenberg picture. Ĥ denotes a Hamiltonian whose
ground state is very close to the pure Mott state |n̄〉⊗Ns implying for the interaction parameter
to fulfill U/J � 1.

On Fig. 4.17, several t-MPS results of the expectation value 〈Ψ0|n̂R(t)|Ψ0〉 are displayed
for different initial states |Ψ0〉 as a function of the distance R and the dimensionless time
tJ/~. On Fig. 4.17(a), the initial state is defined by |Ψ0〉 = |1, ..., 1, 2, 0, 1, ..., 1〉 for n̄ = 1. On
the panel (b) and (c), |Ψ0〉 = |1, ..., 1, 0, 2, 1, ..., 1〉 and |Ψ0〉 = |2, ..., 2, 3, 1, 2, ..., 2〉 for n̄ = 2
respectively. For each case, one immediately notices that the causality cone displays a single
linear structure, where the spreading velocities are almost equal (VCE ' Vm). However, the
causal region of correlations 8 is asymmetric contrary to those observed for sudden global
quenches. Indeed, the correlation edge has a different velocity depending on the propagation
direction. For instance, on Fig. 4.17(a), the CE velocity is higher for correlations spreading in
the left direction than the one associated to correlations propagating in the right direction.
In the following, relying on a quasiparticle approach, we shed new light about these new and
interesting features of the local quench dynamics for the 1D short-range Bose-Hubbard model
in the Mott-insulating strong-coupling regime.

In the gapped Mott-insulating phase, the elementary excitations are doublon-holon
quasiparticle pairs. A doublon (d) corresponds to an excess of particle (n̄+ 1 bosonic particles
on a lattice site) and a holon (h) to n̄− 1 bosonic particles. In the strong-coupling regime, the
excitation spectrum has already been characterized and is defined as 2Ek = U−2J(2n̄+1) cos(k),
see also the discussion in Appendix E. 2Ek gives the energy of a doublon-holon quasiparticle
pair for a quasimomentum k confined in the first Brillouin zone. More precisely, the latter is
built from the energy of a doublon with a quasimomentum k and the one of a holon with an
opposite quasimomentum −k, ie. 2Ek = Ed,k + Eh,−k where Ed,k = U/2− 2J(n̄+ 1) cos(k)
and Eh,−k = U/2− 2Jn̄ cos(k) [see Ref. [25] for the analytical expressions of Ed,k and Eh,−k
determined using a fermionization technique within a Fermi-Bogolyubov transformation].

Relying on our quasiparticle theory, this asymmetric single structure can be explained.
Let us analyze for instance the t-MPS result at Fig. 4.17(a). The single structure with
local density amplitudes close to the value n̄ + 1 gives us information about the spreading
of the doublons into the bosonic chain. The second one with amplitudes close to the value

8The expectation value 〈Ψ0|n̂R(t)|Ψ0〉 can be seen as a non-equal-time correlation function, see definition of
the locally-perturbed many-body quantum state |Ψ0〉 at Eq. (4.75).
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4. Twofold correlation cone in a short-range interacting quantum lattice model

n̄ − 1 is related to the propagation of the holons (the non-causal region of correlations is
characterized by the constant value n̄, the filling of the bosonic chain). More precisely,
the correlations are here created via the propagation of free doublons (on the left) with
quasimomentum k ≤ 0 (note that k has also to be confined into the first Brillouin zone
B = [−π, π]) at the group velocity Vg,d(k) = ∂kEd,k = 2J(n̄ + 1) sin(k) ≤ 0 and free holons
in the opposite direction (on the right) with a quasimomentum k ≥ 0 at the group velocity
Vg,h(k) = ∂kEh,k = 2Jn̄ sin(k) ≥ 0. Hence, the first correlations on the left (right) are governed
by the doublon (holon) propagating with the lowest (highest) group velocity. The doublon with
the lowest group velocity Vg,d(k∗d) = −2J(n̄+1) has a quasimomentum k∗d = −π/2 whereas the
holon with the highest group velocity Vg,h(k∗h) = 2Jn̄ is characterized by a quasimomentum
k∗h = π/2. In other words, the spreading velocity of the CE on the left is determined by
Vg,d(k∗d) = −2J(n̄ + 1) = −4J and the one associated to the CE on the right is given by
Vg,h(k∗h) = 2Jn̄ = 2J [n̄ = 1 for Fig. 4.17(a)]. The correlation edge velocities have been
determined using linear fits and lead to V l

CE = −(4.0 ± 0.3)J and V r
CE = (2.0 ± 0.2)J . The

index l (r) stands for left (right). The extracted CE velocities are in excellent agreement with
the theoretical predictions.

A similar analysis allows us to easily interpret the results displayed on Fig. 4.17(b) and
(c). For the t-MPS result at Fig. 4.17(b), we considered the same parameters than those
on Fig. 4.17(a). Only the initial state is different between the two simulations where the

Figure 4.17: t-MPS results of the space-time local density 〈Ψ0|n̂R(t)|Ψ0〉 in the strong-coupling
regime (U � Jn̄) of the Mott-insulating phase for different sudden local quenches. The initial state
is defined by (a) |Ψ0〉 = |1, ..., 1, 2, 0, 1, ..., 1〉 for n̄ = 1, (b) |Ψ0〉 = |1, ..., 1, 0, 2, 1, ..., 1〉, at n̄ = 1 and
(c) |Ψ0〉 = |2, ..., 2, 3, 1, 2, ..., 2〉 for n̄ = 2. The dashed and solid green lines represent linear fits to the
motion of the CE on the left (governed by the slowest doublon) and on the right (governed by the
fastest holon) respectively.
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4. Twofold correlation cone in a short-range interacting quantum lattice model

location of the doublon and the holon have been exchanged. As expected, the causality cone
has the same structure except that now the CE on the left (right) is governed by the holon
(doublon) with the lowest (highest) group velocity. Hence, V l

CE ' Vg,h(k∗h) = −2Jn̄ = −2J
with k∗h = −π/2 and V r

CE ' Vg,d(k∗d) = 2J(n̄+1) = 4J with k∗d = π/2. For the numerical result
on Fig. 4.17(c), the spreading velocities of the CE are similar to those found for Fig. 4.17(a).
One just needs to replace the filling by the value n̄ = 2 in the expression of the theoretical CE
velocities. The latter are determined by V l

CE ' Vg,d(k∗d) = −2J(n̄+ 1) = −6J with k∗d = −π/2
and V r

CE ' Vg,h(k∗h) = 2Jn̄ = 4J with k∗h = π/2.

Note that the previous analysis can be extended. Indeed, the space-time local density
displays interesting physical features which can be used for a better characterization of the
local quench dynamics of the Bose-Hubbard chain in the Mott-insulating strong-coupling
regime. Let us consider once again the t-MPS result on Fig. 4.17(a). For the other cases,
the following discussion still holds but requires however to be slightly adapted. Firstly,
since a same lattice site can not be occupied by a doublon and a holon and knowing that
max[Vg,d(k)] > max[Vg,h(k)], the doublon has to propagate to the left. Using the same
arguments, one can directly conclude that the holon can spread in both directions. Both
previous conclusions are clearly visible on Fig. 4.17(a). Another important aspect concerns the
theoretical expression of the space-time local density 〈Ψ0|n̂R(t)|Ψ0〉. In theory, the latter can
be derived analytically since the Hamiltonian of the Bose-Hubbard chain in the Mott-insulating
strong-coupling regime can be diagonalized. Consequently, one could rely on our general scheme
(see for instance Chap.3 and Appendices. C and D) based on the Bogolyubov theory 9 to deduce
the analytical form. However, in practice, the calculation is relatively complex due to the
calculation of several correlators involving six fermionic operators. Nevertheless, one can easily
guess its analytical expression using the analysis presented in both previous paragraphs. The
main properties of the space-time pattern of the local density 〈Ψ0|n̂R(t)|Ψ0〉 are recalled here :

• The space-time local density displays an asymmetric single structure 10. A single linear
structure is associated to the spreading of the holons for all the quasimomenta k in the
first Brillouin zone B = [−π, π]. The second one is associated to the propagation of the
doublons.

• The single linear structure associated to the doublons can only propagate along one
direction contrary to the one for the holons.

• The amplitudes of the non-causal region are characterized by the average density (or
filling) of the bosonic chain denoted by n̄.

Using the analytical expression of G2 valid for a sudden global quench deep in the Mott-
insulating phase (see Appendix. I and Figs. 4.12, 4.13) displaying a single structure, the generic
form for the connected correlation functions at Eq. (3.8) and the previous properties, it yields
the following guess for the theoretical expression of 〈Ψ0|n̂R(t)|Ψ0〉 at Fig. 4.17(a)

9The general scheme has to be slightly adapted by considering for this specific case the fermionic Bogolyubov
theory.

10One can thus think about the analytical expression of the density fluctuations G2 in the Mott-insulating
strong-coupling regime where a single linear structure was found (see Figs. 4.12, 4.13 and Appendix. I).
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〈Ψ0|n̂R(t)|Ψ0〉 = n̄−

∣∣∣∣∣∣
∫
B

dk
2π

ei{k(R−Ns/2)+Ek,ht} + ei{−k(R−Ns/2)+Ek,ht}

2

∣∣∣∣∣∣
2

+ θ1−Ns/2(−R)

∣∣∣∣∣∣
∫
B

dk
2π

ei{k[R−(Ns/2−1)]+Ek,dt} + ei{−k[R−(Ns/2−1)]+Ek,dt}

2

∣∣∣∣∣∣
2

, (4.77)

where θ1−Ns/2(−R) = θ(−R − 1 + Ns/2) with θ the Heaviside function. Ns is the total
number of lattice sites, Ek,d = U/2− 2J(n̄+ 1) cos(k) and Ek,h = U/2− 2Jn̄ cos(k) denote the
quasiparticle dispersion relation associated to the doublons and holons respectively. The first
term n̄ denotes the filling of the chain corresponding to the local density amplitude when no
excitation is present. Hence, the latter characterizes the non-causal region of the space-time
pattern. The second (third) term is responsible for the spreading of free holons (free doublons)
into the lattice chain symbolized by plane waves whose spreading properties are governed
by Ek,h (Ek,d). For the third term, thanks to the Heaviside function, the doublons can only
propagate to the left part of the chain. Note that this term can be mapped onto our generic
form presented at Eq. (3.8) up to a modulus square. The latter is responsible for the single
structure where the maxima and the correlation edge spread into the quantum system with
the same velocity (see Appendix. I for more details). Note that the third term has a shift of
Ns/2 − 1 in the space-dependent part of the plane waves due to the initial position of the
doublon. Concerning the second term, it represents the spreading of holons in both directions.
Once again, the modulus square is responsible for the single structure where its series of local
extrema and its correlation edge propagate at the same velocity. Besides, this second term
has a shift of Ns/2 in the space-dependent part of the plane waves which corresponds to the
initial position of the holon.

We stress that Eq. (4.77) is in excellent (quantitative) agreement with our t-MPS simulations
for any filling n̄ ∈ N∗. The latter is also consistent with theoretical predictions found at Ref. [87],
where the independent propagation of a holon and a doublon have been investigated via a
sudden local quench at the specific filling n̄ = 1.

We now turn to a theoretical and numerical investigation of the space-time local mag-
netization for a short-range interacting s = 1/2 spin lattice model. As previously, the
out-of-equilibrium dynamics is also induced by a local quench but this time the quantum
phase considered is gapless. The purpose of the next section is to know whether a linear
single structure also appears for the gapless case and for another lattice model, before pointing
out the main differences and similarities for the quantum dynamics between global and local
quenches in short-range interacting lattice models.

4.7.2 Local magnetization in the short-range Heisenberg chain

In what follows, the one-dimensional s = 1/2 short-range Heisenberg model (SRHM), also
called s = 1/2 short-range XXX model, is considered. The associated Hamiltonian reads as

Ĥ = −J
∑
R

~̂
SR

~̂
SR+1 = −J

∑
R

ŜxRŜ
x
R+1 + ŜyRŜ

y
R+1 + ŜzRŜ

z
R+1, (4.78)

where ~̂SR = (ŜxR, Ŝ
y
R, Ŝ

z
R) with ŜαR = (~/2)σαR (~ is fixed to unity in the following) is the spin
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4. Twofold correlation cone in a short-range interacting quantum lattice model

operator acting on the lattice site R ∈ [|1, Ns|] along the α ∈ {x, y, z} direction. Ns denotes
the total number of lattice sites and J > 0 the isotropic spin exchange coupling in the three
spatial directions. The 1D SRHM displays a gapless ferromagnetic phase ∀J ∈ R+∗. In this
quantum phase, the spins align along an arbitrary direction which is supposed to be along
the z direction in the following. In the ferromagnetic phase along the z direction, the model
has a twofold degenerate ground state which may be written as

|Ψ〉 = 1√
2

(
|↑〉⊗Ns + |↓〉⊗Ns

)
. (4.79)

Concerning the excitations of the model, the Hamiltonian Ĥ at Eq. (4.78) can be
diagonalized in the ferromagnetic phase along the z direction. To do so, the following
Holstein-Primakoff transformation needs to be considered

ŜxR '
âR + â†R

2 , ŜyR ' −
â†R − âR

2i , ŜzR = 1
2 − â

†
RâR, (4.80)

yielding to a quadratic Bose form for the 1D SRHM model in momentum space presented below

Ĥ = e0 + 1
2
∑
k

Ak
(
â†kâk + â−kâ

†
−k

)
+ Bk

(
â†kâ
†
−k + âkâ−k

)
, (4.81)

where Ak = J [1 − cos(k)] and Bk = 0 ∀k ∈ B = [−π, π] the first Brillouin zone. We stress
that the Hamiltonian at Eq. (4.81) is already diagonalized in terms of the bosonic operators
in momentum space (âk, â†k). As a consequence, there is no need to perform a bosonic
Bogolyubov transformation which would lead to

â†k = ukβ̂
†
k + vkβ̂−k, âk = ukβ̂k + vkβ̂

†
−k, (4.82)

with uk = 1 and vk = 0 implying â(†)
k = β̂

(†)
k , ∀k ∈ B. Finally, up to a constant energy,

one can simplify Eq. (4.81) into

Ĥ =
∑
k

Ekâ
†
kâk, Ek = J [1− cos(k)], (4.83)

where Ek = J [1− cos(k)] corresponds to the gapless excitation spectrum of the short-range
Heisenberg chain in the ferromagnetic phase along the z axis. The latter gives the energy
of a magnon (quantized spin-wave excitation) having a quasimomentum k confined in the
first Brillouin zone B. At low energies, the excitation spectrum at Eq. (4.83) is quadratic and
characterized by Ek ' (J/2)k2. Hence, the spin lattice model exhibits free magnons at low
quasimomenta (k → 0).

In the following, the out-of-equilibrium dynamics of the short-range Heisenberg chain in the
gapless ferromagnetic phase along the z axis is investigated. The perturbed initial state |Ψ0〉
is built from the ground state |Ψ〉 = |↑〉⊗Ns where a spin flip is applied on the central lattice
site Ns/2 leading to |Ψ0〉 = Ŝ−Ns/2 |Ψ〉 = |↑ ... ↑↓↑ ... ↑〉. This initial state then evolves unitarily
in time with respect to the Hamiltonian Ĥ of the Heisenberg chain at Eq. (4.78). Then, to
characterize the dynamics induced via the previous local quench, the local magnetization along
the z axis is studied. The corresponding expectation value to compute is thus 〈Ψ0|ŜzR(t)|Ψ0〉
where ŜzR denotes the spin operator along the z axis acting on the local Hilbert space HR (on
the lattice site R).
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4. Twofold correlation cone in a short-range interacting quantum lattice model

On Fig. 4.18, a t-MPS result of the local magnetization 1/2−〈Ψ0|ŜzR(t)|Ψ0〉 is displayed as
a function of the distance R and the dimensionless time tJ/~. The considered initial state is
defined as |Ψ〉 = |↑ ... ↑↓↑ ... ↑〉. One immediately notices that the causality cone is symmetric
with respect to the central lattice site Ns/2 and shows a single linear structure. Indeed, the
spreading velocity associated to the series of local extrema and to the correlation edge is
similar, ie. VCE ' Vm. The latter is reminiscent of the behavior found for the local density in
the Mott-insulating strong-coupling regime. Indeed, one single linear structure was associated
to the spreading of doublons and a second one for the spreading of holons. For the Heisenberg
chain, the low-energy excitations consist of a single species of quasiparticles ie. the magnons
or spin-wave excitations which is consistent with the fact to find one single linear structure as
shown on Fig. 4.18. The latter also explains that one recovers a symmetric causal structure.
Indeed, we show below that the spreading of the correlation edge on the right (left) is governed
by the maximal (minimal) group velocity of the spin-wave excitations. Due to the symmetry
k → −k of the excitation spectrum Ek for the 1D Heisenberg model, both velocities are equal
in absolute value and characterized by a quasimomentum k∗ and −k∗ respectively.

Figure 4.18: t-MPS result for the spreading of the local magnetization 1/2− 〈Ψ0|ŜzR(t)|Ψ0〉 in the
ferromagnetic phase along the z axis of the short-range Heisenberg chain. A sudden local quench is
considered where the initial state is defined by |Ψ0〉 = |↑ ... ↑↓↑ ... ↑〉. The solid green line represents a
linear fit to the motion of the correlation edge.

Relying on our quasiparticle theory, this symmetric single structure can be explained in
details. Indeed, using the Bogolyubov theory, the local magnetization 1/2−〈Ψ0|ŜzR(t)|Ψ0〉 can
be derived analytically, see Appendix. J for a full derivation. The analytical expression
of 1/2 − 〈Ψ0|ŜzR(t)|Ψ0〉 reads as

1/2− 〈Ψ0|ŜzR(t)|Ψ0〉 =
∣∣∣∣∣
∫
B

dk
2π

{
ei[k(R−Ns/2)+Ekt] + ei[−k(R−Ns/2)+Ekt]

2

}∣∣∣∣∣
2

, (4.84)

where B = [−π, π] denotes the first Brillouin zone, Ns the total number of lattice sites
and Ek = J [1 − cos(k)] the excitation spectrum of the short-range Heisenberg chain in the
ferromagnetic phase along the z axis. The latter is in very good (quantitative) agreement with
the t-MPS result displayed on Fig. 4.18.
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The theoretical expression of the local magnetization at Eq. (4.84) can be cast into the
generic form at Eq. (3.8) up to a modulus square which is responsible for the single structure
[see Appendix. I and also the analytical expression of the space-time local density in the
Mott-insulating phase at Eq. (4.77)]. Hence, the correlation edge and the series of local maxima
spread into the lattice chain with the same velocity ie. V l

CE ' V l
m and V r

CE ' V r
m (the index l

and r stand for ’left’ and ’right’ respectively). The latter are positive (negative) for a spreading
on the right (left) side of the chain. More precisely and according to Eq. (4.84), the correlations
are created via the propagation of free magnons characterized by the excitation spectrum
Ek = J [1− cos(k)]. On the left, the first correlations are created by the spin-wave excitation
propagating with the minimal group velocity at quasimomentum −k∗ = −π/2 which leads to
Vg(−k∗) = ∂kE−k∗ = −J . On the right, they are created by the magnonic excitation spreading
with the maximal group velocity Vg(k∗) = J at quasimomentum k∗ = π/2. Therefore, the
spreading velocities of the correlation edge are determined by V r(l)

CE = (−)Vg(k∗) = (−)J . Using
linear fits to extract the CE velocities on Fig. 4.18, we find that V r(l)

CE = (−1)× (1.± 0.05)J in
very good agreement with our theoretical predictions. Note that a very similar space-time
pattern has been found for another local observable, namely the spin-spin correlator along the
z axis defined as 〈Ψ0|ŜzR(t)ŜzNs/2(t)|Ψ0〉.

In the two previous studies, we have shed new light on the local quench dynamics for 1D
short-range interacting lattice models. The space-time behavior of different on-site observables
(local density, local magnetization) for sudden local quenches in different quantum phases
(gapped phase : Mott-insulating phase for the 1D SRBH model, gapless phase : ferromagnetic
phase along the z axis for the 1D SRHM) has been investigated. In all cases, we found that
the space-time pattern has a causal and a non-causal region separated by a correlation edge
propagating ballistically. Besides, the causal region is characterized by a series of local extrema
which also spread linearly. At this stage, the previous properties are reminiscent of those for
global quenches. However, the space-time pattern for sudden local quenches only displays
one or several single linear structures depending on the locally-perturbed initial quantum
state, ie. |Ψ0〉, and hence on the associated local perturbation. Contrary to global quenches,
the spreading velocity of the edge is not characterized by twice the maximal group velocity
2V ∗g . Indeed, for global quenches, the correlations are governed by the motion of free and
counterpropagating quasiparticle pairs. However, for local quenches, they are not governed
by the spreading of quasiparticle excitation pairs anymore but by the motion of individual
quasiparticles. Hence, the latter leads to an edge whose spreading is characterized by the
maximal group velocity, ie. V ∗g . We stress that the previous statements concerning the local
quench dynamics in isolated short-range interacting lattice models are not restricted to the
sole Bose-Hubbard or Heisenberg models. Indeed, they also apply to other quantum systems,
such that the short-range Ising model, and observables, such that spin-spin correlations.

Our study concerning the local and global quench dynamics in short-range lattice models
may be extended to the case of long-range systems, such as spin models as realized in
trapped-ion experiments [16, 17]. In such quantum systems, a possible divergence of the group
velocity can be tuned. For global quenches and intermediate-range interactions, our correlation
spreading theory based on a quasiparticle picture still predicts a twofold dynamics whose CE
and extrema do not propagate ballistically anymore but algebraically, as shown theoretically
in Chap. 3. In this case, the twofold algebraic structure is characterized by the coexistence
of a super-ballistic (for a gapless system) or ballistic (gapped case) signal for the series of
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4. Twofold correlation cone in a short-range interacting quantum lattice model

local extrema and a sub-ballistic signal for the CE. Furthermore, our numerical results for
the Bose-Hubbard chain suggest that the twofold structure of the correlation function may
survive in strongly correlated regimes also for long-range systems. The previous statements
are verified numerically in the next chapter relying on the case study of the long-range XY
and long-range transverse Ising chains and shed light on the still debated scaling of the light
cone in long-range interacting quantum systems. For the long-range transverse Ising chain, the
study concerning its global quench dynamics is completed by an investigation of the scaling
laws for the correlation and entanglement spreading for a dynamics induced via local quenches.
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“When two systems, of which we know the states by their
respective representation, enter into a temporary physical
interaction due to known forces between them and when
after a time of mutual influence the systems separate again,
then they can no longer be described as before, viz., by
endowing each of them with a representative of its own. I
would not call that one but rather the characteristic trait
of quantum mechanics.”

— Erwin Schrödinger
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5. Spreading of correlations and entanglement in the s = 1/2 long-range transverse . . .

5.1 Position of the problem

Understanding the out-of-equilibrium dynamics of quantum systems has become a central
subject of the many-body theory. It allows to characterize many phenomena such as the
relaxation, thermalization, transport of matter and of quantum information. The study of
long-range interacting models gained a lot of interest. Indeed, a large class of quantum
systems, where the strength and the range of the interactions can be controlled, has been
realized experimentally, e.g., Rydberg gases [39–42], artificial ion crystals [6, 12–15], polar
molecules [43–45], nonlinear optical media [46], magnetic atoms [47–51], and solid-state
defects [52–54]. Those long-range quantum systems are especially interesting because they
induce rich dynamical behaviors, including dynamical phase transitions. The breakdown
of fundamental concepts such as the equivalence of the thermodynamic ensembles, Lieb-
Robinson propagation bound and the notions of group and phase velocities can also lead to
peculiar behaviors. In the recent years, many long-range interacting lattice models have been
investigated both experimentally and theoretically. However, important open questions are still
debated such as how correlations and information can propagate in a long-range lattice system.
It is quite clear in the local regime ie. when the group velocity of the quasiparticle dispersion
relation is bounded, where a linear cone-structure emerges. Nevertheless, the question is
strongly debated in the quasi-local regime, ie. when the group velocity is unbounded. The
main question is to determine whether the propagation is super-ballistic, ballistic, or sub-
ballistic. For a similar context, at Chap. 3, we unveiled theoretically a twofold algebraic
structure for the causality cone of equal-time connected correlation functions. More precisely,
the correlation edge has been found to display always a sub-ballistic motion independently if
the considered quantum phase is gapped or gapless.
In this chapter, we study theoretically and numerically the spreading of information by
investigating both the spreading of correlations and entanglement for a specific long-range
lattice model in a gapped phase. The latter is the paradigmatic, one-dimensional, transverse
Ising model with a long-range spin exchange of the form 1/Rα in its z polarized phase. Using
a numerically-exact tensor-network approach, we study a variety of quenches and observables,
and determine the corresponding dynamical scaling laws. One of the main purposes of this
final chapter is to verify numerically whether the CE propagates sub-ballistically or not in
the quasi-local regime of a gapped phase for a long-range interacting lattice model. This
specific discussion is also extended to the case of a gapless quantum phase by considering the
quasi-local regime of the x polarized phase for the long-range XY chain.

5.2 Time-Dependent Variational Principle within the matrix
product state approach

To investigate numerically the spreading of correlations and entanglement in both the 1D
long-range s = 1/2 transverse Ising and in the 1D long-range XY models, we rely on the time-
dependent variational principle (TDVP) within the matrix product state approach [27,149,169].
The latter corresponds to a new approach to perform imaginary and real time evolutions and is
particularly powerful for long-range interacting lattice models. Hence, this approach permits to
deduce their static (imaginary time evolution) and dynamical (real time evolution) properties.
In the following, we first show an efficient representation of the long-range interactions of the
form 1/Rα. The previous representation allows us to find an optimal matrix product operator
(MPO) form of Hamiltonians with power-law decaying interactions. Then, we define the matrix
product state manifold and tangent space at the heart of the TDVP approach. Finally, we
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discuss the algorithm based on the TDVP to perform imaginary and real time evolutions.

5.2.1 Matrix product operator representation of long-range s = 1/2 spin lat-
tice chains

To get an optimal MPO representation of Hamiltonians with long-range interactions of the
form 1/Rα ie. power-law decaying interactions, the latter can be expressed as a sum of
decaying exponentials [151] leading to

f(R−R′) = 1
|R−R′ |α

'
M∑
m=1

amb
|R−R′|
m , (5.1)

where R and R′ denotes two different lattice sites of the chain, (R,R′) ∈ Z2 such that |R−R′| 6=
0 (a the lattice spacing is fixed to unity). α refers to the power-law exponent and characterizes
the range of the interactions andM to the number of decaying exponentials. The real coefficients
{am,m = 1...M} and {bm,m = 1...M} correspond to the different weights and exponents
respectively. The latter are determined such that they minimize the following quantity

L∑
R=1

∣∣∣∣∣f(R)−
M∑
m=1

amb
R
m

∣∣∣∣∣ , (5.2)

with L the chain length (or equivalently the number of lattice sites). More details about the
numerical technique to minimize Eq. (5.2), and thus to find the coefficients {am} and {bm}, can
be found at Ref. [151]. The previous decomposition of the power-law decaying interactions in
terms of decaying exponentials is particularly efficient. Indeed, the latter represents accurately
the long-range potential with a relatively small number M of decaying exponentials. An
example of the precision of such decomposition is displayed on Fig. 5.1 for α = 1.7, L = 50 and
M = 6 which are typical values considered in the next sections. The relative error ε(R) between
the analytical function f(R) = 1/Rα and the approximation ∑M

m=1 amb
R
m is represented as a

function of the index (lattice site) R > 0. One finds that the analytical power-law function
f(R) = 1/Rα is accurately reproduced by the approximation ∑M

m=1 amb
R
m where the maximal

relative error is ε(R) = 1% for M = 6.

As discussed previously, the power-law decaying interactions are accurately reproduced by a
sum of decaying exponentials (provided that the number of terms in the sum is large enough).
Most importantly, the approximated form of the long-range interactions allows us to find
the optimal MPO representation of Ĥ the Hamiltonian describing a long-range interacting
model [see Eq. (4.24) for the definition of the MPO representation]. Indeed, the MPO bond
dimension χ̃ can be drastically decreased via the approximated form, compared to the one
where the power-law decaying interactions are naturally implemented. In the following, this
statement is verified for two 1D long-range s = 1/2 spin lattice models, namely the 1D
long-range transverse Ising model and 1D long-range XY models.

One-dimensional long-range s = 1/2 transverse Ising model

The 1D long-range s = 1/2 transverse Ising model with open boundary conditions is
characterized by the following Hamiltonian

Ĥ =
∑
R<R′

2J
|R−R′|α

ŜxRŜ
x
R′ − 2h

L∑
R=1

ŜzR. (5.3)
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Figure 5.1: Relative error ε(R) = |(f(R) −
∑M
m=1 amb

R
m)/f(R)| between the analytical power-law

function f(R) = 1/Rα and the approximation in terms of decaying exponentials
∑M
m=1 amb

R
m as a

function of the index (lattice site) R, for α = 1.7, L = max(R) = 50 and M = 6.

Considering the approximated form of the long-range interactions in terms of decaying exponen-
tials, it yields

Ĥ ' 2J
∑
R<R′

M∑
m=1

amb
|R−R′|
m ŜxRŜ

x
R′ − 2h

L∑
R=1

ŜzR. (5.4)

Its associated matrix product operator (MPO) representation is given by

Ĥ '
L∏

R=1
Ŵ [R], (5.5)

where the matrix Ŵ [R] containing operators acting on the local Hilbert space HR can be defined
as

Ŵ [R] =



I 2Ja1b1Ŝ
x
R 2Ja2b2Ŝ

x
R · · · 2JaMbM ŜxR −2hŜzR

0 b1I 0 · · · 0 ŜxR
0 0 b2I · · · 0 ŜxR
...

...
... . . . ...

...
0 0 0 · · · bMI ŜxR
0 0 0 · · · 0 I


. (5.6)

Note that the bulk matrix Ŵ [R] is valid ∀R ∈ [|2, L− 1|] due to the translational invariance
of the 1D LRTI model. To deduce easily the bulk matrix Ŵ [R] of the MPO form for the 1D
LRTI model, we refer the reader to Fig. 5.2, see also Ref. [170]. Ŵ [1] and Ŵ [L] represent
the edges and correspond to a row and column vector. The latter contain operators acting
on the local Hilbert space H1 and HL respectively. Both vectors are defined as

Ŵ [1] =
(
I 2Ja1b1Ŝ

x
1 2Ja2b2Ŝ

x
1 · · · 2JaMbM Ŝx1 −2hŜz1

)
, (5.7)

Ŵ [L] =
(
−2hŜzL ŜxL ŜxL · · · ŜxL I

)T
. (5.8)
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Figure 5.2: Graphical depiction of the bulk matrix Ŵ [R] [see Eq. (5.6)] of the MPO form for the 1D
LRTI model [see Eq. (5.4)]. The latter, found using a finite automata described in details at Ref. [170],
consists of summarizing all the different terms in the Hamiltonian by following the arrows. More
precisely, the graph consists of arrows (on the top is associated a term of the Hamiltonian acting on a
local Hilbert space) where each of them has a starting point (reaches a circle whose number represents
the line index of the bulk matrix) and an ending point (reaches the same or a different circle whose
number represents the column index of the bulk matrix). Therefore, to construct the bulk matrix Ŵ [R],
it just requires to investigate each arrow, to deduce both indices and to write down the corresponding
term. Finally, the circle with the highest number corresponds to the dimension of the bulk matrix
Ŵ [R], and consequently to the MPO bond dimension (χ̃ = 2 +M).

The bond dimension χ̃ associated to the previous MPO form of Ĥ is given by χ̃ = 2 +M where
M is the total number of decaying exponentials to express the power-law decaying interactions.

One-dimensional long-range s = 1/2 XY model

The 1D long-range s = 1/2 XY model is characterized by the following Hamiltonian

Ĥ =
∑
R<R′

−J/2
|R−R′|α

(
ŜxRŜ

x
R′ + ŜyRŜ

y
R′

)
' −J2

∑
R<R′

M∑
m=1

amb
|R−R′|
m

(
ŜxRŜ

x
R′ + ŜyRŜ

y
R′

)
. (5.9)

Its MPO form is given by

Ĥ '
L∏

R=1
Ŵ [R], (5.10)

where the bulk matrix Ŵ [R] [see Fig. 5.3 for the finite automata to deduce the bulk matrix of
the MPO form for the LRXY chain] and the edge vectors Ŵ [1] and Ŵ [L] are defined by
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Figure 5.3: Graphical depiction of the bulk matrix Ŵ [R] [see Eq. (5.11)] of the MPO form for the 1D
LRXY model [see Eq. (5.9)]. As described in Ref. [170], this finite automata consists of summarizing
all the different terms of the Hamiltonian by following the arrows. Similarly to the one for the 1D
LRTI chain presented at Fig. 5.2, the graph consists of arrows (on the top is associated a term of the
Hamiltonian acting on a local Hilbert space) where each of them has a starting point (reaches a circle
whose number represents the line index of the bulk matrix) and an ending point (reaches the same or a
different circle whose number represents the column index of the bulk matrix). According to the finite
automata, one immediately finds that the MPO bond dimension is χ̃ = 2 + 2M .

Ŵ [R] =



I −J
2 a1b1Ŝ

x
R −J

2 a1b1Ŝ
y
R −J

2 a2b2Ŝ
x
R −J

2 a2b2Ŝ
y
R · · · 0

0 b1I 0 0 0 · · · ŜxR
0 0 b1I 0 0 · · · ŜyR
0 0 0 b2I 0 · · · ŜxR
0 0 0 0 b2I · · · ŜyR
...

...
...

... · · · . . . ...
0 0 0 0 0 · · · I


, (5.11)

Ŵ [1] =
(
I −J

2 a1b1Ŝ
x
1 −J

2 a1b1Ŝ
y
1 −J

2 a2b2Ŝ
x
1 −J

2 a2b2Ŝ
y
1 · · · 0

)
, (5.12)

Ŵ [L] =
(
0 ŜxL ŜyL ŜxL ŜyL · · · I

)T
. (5.13)

Once again, the matrix Ŵ [R] is valid ∀R ∈ [|2, L−1|] due to the translational invariance of the
model. One finds that the MPO bond dimension χ̃ is determined by χ̃ = 2 +M +M . Indeed,
each long-range spin exchange coupling (in the plane x− y) contributes to an increase of the
MPO bond dimension with a factor M . The latter corresponds to the number of decaying
exponentials to express the power-law decaying potential.

Consequently, from both previous examples, it is straightforward to deduce the general
MPO bond dimension for Hamiltonians with power-law decaying interactions represented as a
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sum of decaying exponentials. More precisely, the Hamiltonian Ĥ is considered to display only
long-range two-site coupling terms and possible local interactions (which have no influence
on the MPO bond dimension). In this case, the MPO bond dimension is characterized by
the value χ̃ = 2 +NplM where Npl is the number of long-range two-site couplings and M the
number of decaying exponentials to describe accurately the power-law interactions. The MPO
bond dimension is linear with M and not with L, the number of lattice sites, anymore. Indeed,
without the approximated form of the long-range interactions, the MPO bond dimension is
characterized by χ̃ = 2 +L. In general, NplM � L leading to an optimal MPO representation
of Hamiltonians with power-law interactions.
For all the numerical simulations based on the time-dependent variational principle, whose ap-
proach is presented below, such decomposition of the power-law interactions is considered. Fur-
thermore, the parameterM is choosen such that the maximal relative error εmax = max[ε(R)] =
max

[
|(f(R)−∑M

m=1 amb
R
m)/f(R)|

]
, between the analytical power-law function f(R) = 1/Rα

and the approximation in terms of decaying exponentials ∑M
m=1 amb

R
m, is around 1%.

5.2.2 Matrix product state manifold and tangent space

The matrix product state manifold

The Matrix Product State (MPS) consists of an efficient local representation of a quantum state
living in a many-body Hilbert space. Although general, it is mostly fruitful for low-dimensional
and low-entangled quantum systems. Any quantum state can be represented locally without
losing its quantum non-locality properties.

Considering a lattice chain of L sites within a many-body Hilbert space H = ⊗L
R=1 HR,

the d-dimensional local Hilbert space HR is spaned by the |σR〉R where R ∈ {1, ..., L}
and σR ∈ {1, ..., d}. In this basis, a general quantum state |Ψ〉 living in the full Hilbert
space H may be written as

|Ψ〉 =
∑
σ

Ψσ1σ2...σL |σ〉 , σ = σ1, ..., σL, (5.14)

where Ψσ1σ2...σL ∈ C. By applying the Singular Value Decomposition (SVD) L − 1 times
to the general vector Ψ , one obtains the so-called Matrix Product State representation of
a quantum state, see Appendix. H. It consists of a local form where the state is expressed
as a product of tensors where each of them acts on a different local Hilbert space. In
the following, the many-body quantum state |Ψ〉 can be either translationally invariant or
not, leading to the following MPS form

|Ψ〉 =
∑
σ

Aσ1 [1]Aσ2 [2]... AσL−1 [L− 1]AσL [L] |σ〉 , σ = σ1, ..., σL. (5.15)

Each block A[R], R ∈ [|2, L− 1|], is a third-rank tensor with 2 horizontal legs (virtual legs)
and 1 vertical leg (physical leg). It has a dimension χR × χR+1 × d where χ = maxR(χR) is
the bond dimension of the MPS, see Fig. 5.4. The first A[1] and last A[L] tensors have a
dimension 1× χ2 × d and χL × 1× d respectively.

At fixed bond dimension χ, the ensemble of MPS does not define a Hilbert space. Instead,
it forms a so-called non-linear (curved) MPS manifold calledMχ. This non-linearity of the
manifold is given by the property that the summation of different MPSs implies to increase the
bond dimension. For instance, considering |Ψ〉 and |Φ〉 two MPSs of bond dimension χ leaving
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Figure 5.4: Graphical representation using tensor network of a general many-body quantum state
|Ψ〉 =

∑
σ A

σ1 [1]Aσ2 [2]... AσL−1 [L− 1]AσL [L] |σ〉, σ = σ1, ..., σL living in the full Hilbert space H of a
one-dimensional quantum lattice model of L sites. Each block is a 3rd-rank tensor with 2 horizontal
virtual legs (solid red lines) and 1 vertical physical leg (solid blue lines). Each tensor A[R] has a dimension
χR×χR+1×d except the first and last tensors having a dimension 1×χ2×d and χL×1×d respectively.
The MPS bond dimension χ is given by χ = maxR(χR). For homogeneous (translational invariant) one-
dimensional lattice models, the tensors A[R] of the MPS |Ψ〉 fulfill Aσ [R] = Aσ [R+ 1] ,∀R ∈ [|2, L−2|]
and ∀σ ∈ {1, ..., d}.

in the MPS manifoldMχ, the sum |Ψ〉+ |Φ〉 can be cast into the MPS form at the prize of a
new MPS bond dimension 2χ. Indeed, for |Ψ〉 = ∑

σ A
σ1 [1]Aσ2 [2]... AσL−1 [L − 1]AσL [L] |σ〉

and |Φ〉 = ∑
σ Ã

σ1 [1]Ãσ2 [2]... ÃσL−1 [L− 1]ÃσL [L] |σ〉, the compression of the sum |Ψ〉+ |Φ〉 to
conserve the MPS form is given by |Ψ〉+ |Φ〉 = ∑

σM
σ1 [1]Mσ2 [2]... MσL−1 [L− 1]MσL [L] |σ〉

where MσR [R] = AσR [R] ⊕ ÃσR [R], ∀R ∈ [|1, L|]. Consequently, |Ψ〉 + |Φ〉 ∈ M2χ and thus
does not remain in the MPS manifoldMχ.

The matrix product state tangent space

This non-linearity, or curvature of the MPS manifold, allows to define a tangent plane T|Ψ〉
associated to a reference MPS |Ψ〉 ∈ Mχ. Indeed, for a MPS |Ψ〉 of bond dimension χ and
living in the full Hilbert space H, a tangent vector |T 〉 ∈ T|Ψ〉 is represented as a superposition
of L quantum states where each of them is built from the reference MPS |Ψ〉 where a local
perturbation (from a MPS point of view) B[R], a third-rank tensor of dimension χR×χR+1×d,
has been applied, see Fig. 5.5. For a translational invariant lattice model, the local perturbation
fulfills Bσ[R] = Bσ[R + 1], ∀R ∈ [|2, L− 2|] and ∀σ ∈ {1, ..., d} with d the dimension of the
local Hilbert space HR.

Figure 5.5: Graphical representation using tensor networks of a general tangent vector |T 〉 =∑
RB[R]∂A[R] |Ψ〉 ∈ T|Ψ〉 associated to the MPS |Ψ〉 =

∑
σ A

σ1 [1]... AσL [L] |σ〉 ∈ Mχ. The local
perturbation at the lattice site R is symbolized by the 3rd-rank tensor B[R] (green disk) of dimension
χR × χR+1 × d. The solid blue (red) lines represent the physical (virtual) legs of the different tensors.

Since each tangent vector |T 〉 is defined as a sum of the reference MPS |Ψ〉 where a local
perturbation has been applied, the tangent plane to |Ψ〉 denoted by T|Ψ〉 can be seen as
the low-energy subspace containing the low-energy dynamics. This subspace can be used to
integrate the real or imaginary time-dependent Schrödinger equation in order to perform real or
imaginary time evolution (depending if the purpose is to find the time-evolved quantum state
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or the ground state of a one-dimensional lattice model) respectively. Note that the physical
intuition of low-energy dynamics given in terms of elementary excitations or quasiparticles (for
translational invariant lattice models) is lost when using the standard technique to perform
real or imaginary time evolution. This standard technique, discussed in the previous chapter,
consists of writing the time evolution operator in the Matrix Product Operator (MPO) form
and to apply it as many times as necessary on the initial MPS. After one timestep, the bond
dimension has been modified from χ to dχ where d is the dimension of the local Hilbert
space. As a consequence, the MPS needs to be truncated after each iteration to avoid an
exponential growth of the bond dimension.

Time-Dependent Variational Principle

The Time-Dependent Variational Principle (TDVP) corresponds to a new strategy using
the tangent space to perform real and imaginary time evolutions. One advantage, which
has already been presented previously, is that the low-energy dynamics is given in terms of
low-energy excitations. Besides, another advantage corresponding to the central point of this
method is the fact that the bond dimension of the many-body quantum state does not increase
during the process. Indeed, by using the geometric notion of the tangent plane, the TDVP
permits to optimize locally the MPS by solving a differential equation (the real or imaginary
Schrödinger equation) while remaining confined into a same MPS manifold. Finally, a crucial
advantage is that the algorithm can deal with Hamiltonians containing long-range interactions.
The single requirement is to find the exact MPO form or at least a very good approximation
for the long-range potential. In the following, the previous advantages of the TDVP and the
different algorithms to perform real and imaginary time evolutions are discussed in details.

5.2.3 Static properties - Imaginary time evolution

General scheme

A ground state optimization algorithm is given by solving iteratively the differential Schrödinger
equation in imaginary time (τ → it) reading as

∂τ |Ψ({A(τ)})〉 = −Ĥ |Ψ({A(τ)})〉 . (5.16)

Ĥ is a Hamiltonian describing a one-dimensional lattice model of length L with short- or
long-range interactions. |Ψ({A(τ)})〉 corresponds to a many-body quantum state confined in
the MPS manifoldMχ at imaginary time τ . {A(τ)} denotes the collection of the 3rd-rank
tensors A[R](τ) with R ∈ [|1, ..., L|]. The latter may be written as

|Ψ({A(τ)})〉 =
∑
σ

Aσ1 [1](τ)Aσ2 [2](τ)... AσL−1 [L− 1](τ)AσL [L](τ) |σ〉 (5.17)

where σ = σ1, ..., σL and σR ∈ {1, ..., d} with d the dimension of the local Hilbert space HR. By
considering a random initial state |Ψinit({A})〉 ∈ Mχ, the iterative procedure, in the infinite
imaginary time limit, should give rise to a projection onto the MPS manifoldMχ of the best
approximation of the ground state of the considered Hamiltonian Ĥ. Mathematically, it yields

|GS〉 = lim
τ→+∞

e−τĤ |Ψinit({A})〉
||e−τĤ |Ψinit({A})〉 ||

, (5.18)

where |Ψinit({A})〉 = |Ψ({A(0)})〉 and the factor ||e−τĤ |Ψinit({A})〉 || enforces the normaliza-
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tion of the ground state. As suggested by Eq. (5.18), one possible way to perform the imaginary
time evolution consists of building the infinitesimal imaginary time evolution operator e−τĤ .
Then, this operator has to be applied to the initial state many times as necessary to converge
towards the ground state. However, the latter is non optimal for Hamiltonians containing long-
range interactions due to their relatively large MPO bond dimension χ̃. Indeed, a truncation
step after each imaginary time iteration needs to be performed in order to keep constant the
MPS bond dimension. Another solution corresponds to solve directly the 1st order differential
equation at Eq. (5.16) using an Euler integrator by taking advantage of the MPS tangent space.

In the following, we present the general scheme of an imaginary time evolution relying
on the MPS tangent space. By definition, the left-hand side of (5.16) lives in the tangent
space T|Ψ({A(τ)})〉 so that one can write

∂τ |Ψ({A(τ)})〉 = |Φ({∂τA(τ)}, {A(τ)})〉 =
∑
R

∂τA[R](τ)∂A[R](τ) |Ψ({A(τ)})〉 (5.19)

where ∂τA[R](τ) (∂A[R](τ)) denotes the derivative of the tensor A[R](τ) (the derivation with
respect to A[R](τ)). However, the right-hand side of Eq. (5.16) does not live in the MPS tangent
space T|Ψ({A(τ)})〉 due to the Hamiltonian Ĥ. As a consequence, one has to find the best tangent
vector |T ?(τ)〉 associated to the reference state |Ψ({A(τ)})〉 minimizing the distance with
respect to Ĥ |Ψ({A(τ)})〉. In other words, one has to solve the following minimization problem

|T ?(τ)〉 =
∑
R

B?[R](τ)∂A[R](τ) |Ψ({A(τ)})〉 := argmin
(
|| |T (τ)〉 − Ĥ |Ψ({A(τ)})〉 ||2

)
,

(5.20)
where |T ?(τ)〉 is defined by the collection of the L 3rd-rank tensors B?[R](τ). Then, the
ground state can be found by iteratively integrating the imaginary time Schrödinger equation
with a 1st order Euler scheme. One is doing a steepest-descent optimization using the gradient
method. According to Eq. (5.20), the gradient is defined by − |T ?(τ)〉 and the direction is |D〉 =
− |T ?(τ)〉 /|| |T ?(τ)〉 ||. At the level of quantum states, the 1st order Euler scheme reads as

|Ψ({A(τ + dτ)})〉 = |Ψ({A(τ)})〉+ dτ∂τ |Ψ({A(τ)})〉 (5.21)
|Ψ({A(τ + dτ)})〉 = |Ψ({A(τ)})〉 − dτ |T ?(τ)〉 (5.22)

where dτ corresponds to the fixed imaginary timestep. The previous Euler scheme can
be reformulated under a local version, ie. at the level of the third-rank tensors A[R](τ)
by calculating the following equation

 ∏
R′,R′ 6=R

∂A[R′]

 |Ψ({A(τ + dτ)})〉 =

 ∏
R′,R′ 6=R

∂A[R′]

 (|Ψ({A(τ)})〉 − dτ |T ?(τ)〉) . (5.23)

Consequently, it locally yields

A[R](τ + dτ) = A[R](τ)− dτB?[R](τ). (5.24)
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Note that the imaginary timestep dτ needs to be as small as possible to ensure the convergence
of the iterative algorithm. Using Eq. (5.24), each iteration of the imaginary time evolution
consists of a local procedure where each tensor A[R](τ) is updated. Most importantly, this
method ensures that |Ψ({A(τ + dτ)})〉 remains in the same manifold as |Ψ({A(τ)})〉, ie.
|Ψ({A(τ + dτ)})〉 ∈ Mχ. Indeed, the tensor B?[R](τ), having the same dimensions as A[R](τ),
does not modify the MPS bond dimension χ.

Tensor network formalism

In the following, we provide more details about the tensor network formalism and the
implementation of the imaginary time evolution for one-dimensional lattice models.

Let us start by defining a general MPS |Ψ({A})〉 = ∑
σ A

σ1 [1]... AσL [L] |σ〉 where σ = σ1, ..., σL
and L the number of lattice sites (or equivalently the length of the chain). Each 3rd-rank
tensor AσR [R] has a dimension χR × χR+1 × d and the set of physical states |σ〉 spans the full
Hilbert space H = ⊗LR=1HR. HR denotes the d-dimensional local Hilbert space implying that
σR ∈ {1, ..., d}, ∀R ∈ [|1, L|].

Any MPS is invariant up to a gauge degree of freedom. Indeed, if one considers the
expression of the previous MPS |Ψ({A})〉, it is invariant by the local transformation

ÃσR [R] = Y [R]AσR [R]Y −1[R+ 1], (5.25)

where Y [R] refers to a square matrix of dimension χR × χR and Y −1[R + 1] to the inverse
square matrix of Y [R+1] with dimension χR+1×χR+1. In the following, the MPS gauge degree
of freedom is fixed by considering the isometric gauge. The latter is defined by the left and
right gauge-fixing conditions presented below [149]. The left gauge-fixing condition is given by∑

σR

(AσR [R])† Λ[R]AσR [R] = Λ[R+ 1]. (5.26)

Figure 5.6(a) represents the previous condition in terms of tensor networks. Λ[R] denotes the
reduced density matrix for a bipartition of the quantum system given by Σ = L ∪R with L
the subsystem containing the first R sites (starting from the left side of the chain) whereas
R correspond to the second subsystem containing all the other lattice sites. Concerning
the right gauge-fixing condition, it is defined by∑

σR

AσR [R] (AσR [R])† = I, (5.27)

meaning that the tensors are right-normalized, see Fig. 5.6(b). Note that any MPS cast into
the isometric gauge is normalized, see Fig. 5.7. Using this specific gauge, the overlap is given
by 〈Ψ({A})|Ψ({A})〉 = Tr(Λ[R]) = 1, ∀R ∈ [|1, L|] leading to the normalization of the MPS
|Ψ({A})〉. The relation Tr(Λ[R]) = 1 is one of the properties of the reduced density matrix
which can be easily demonstrated using the Schmidt representation of any many-body quantum
state. We also stress that any entropy measure can be easily computed via this specific gauge.
Indeed, the left-gauge fixing condition gives a direct access to the different reduced density
matrices.

The right gauge-fixing condition of the isometric gauge [see Fig. 5.6(b)] implies that the
tensor AσR [R] coarse grain the block on its right and projects the tensor product Hilbert space
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CχR+1 ⊗HR into the Hilbert space CχR relevant for the description of the state. Consequently,
one can define at each lattice site χR+1d− χR different tangent vectors. The requirement that
those vectors are orthogonal to the original MPS is imposed by defining them through the
projection onto the irrelevant part. Indeed, the isometric gauge corresponds to a unitary part,
given by the right gauge-fixing condition for the MPS, and an orthogonal part, given by the
orthogonality between the tangent vectors and the reference MPS, that we discuss now.

This orthogonal condition between any tangent vector |T 〉 and the reference MPS |Ψ({A})〉
will fix the gauge degree of freedom for the tangent vectors. Indeed, any tangent vector has a
gauge degree of freedom inherited from the reference MPS. More precisely, the local transforma-
tion

B̃[R]σR = B[R]σR −A[R]σRY [R+ 1] + Y [R]A[R]σR , (5.28)

leaves the tangent vector |T 〉 = ∑
RB[R]∂A[R] |Ψ({A})〉 invariant, see Fig. 5.5 for a represen-

tation of |T 〉 in terms of tensor networks. A[R] denotes the R-th tensor of the MPS |Ψ({A})〉
of dimension χR × χR+1 × d and Y [R] a matrix of dimension χR × χR. In order to enforce the
orthogonality, an effective parametrization of the B[R] tensors as the contraction of auxiliary
tensors will be used, see Fig. 5.8. In the following, we adopt the convention

Figure 5.6: Graphical representation using tensor networks of (a) the left gauge-fixing condition given
by
∑
σR

(AσR [R])† Λ[R]AσR [R] = Λ[R+1] (b) the right gauge-fixing condition
∑
σR
AσR [R] (AσR [R])† =

I. Both gauge-fixing conditions fix the MPS gauge degree of freedom.

|T 〉 =
∑
R

B[R]∂A[R] |Ψ({A})〉 with B[R]σR =
√

Λ[R]
−1
X[R]V [R]σR . (5.29)

√
Λ[R]−1 denotes the inverse square root of the reduced density matrix of the subsystem

containing the first R lattice sites (for normalization convenience) and corresponds to a
matrix of dimension χR × χR. X[R] is the single effective parameter consisting of a matrix
of free coefficients of dimension χR × χR+1d − χR. V [R] refers to the projector onto the
irrelevant space, discarded for the description of the reference MPS |Ψ({A})〉, of dimension
χR+1d − χR × χR+1 × d. In other words, the projector V [R] is the one responsible for the
orthogonality condition 〈Ψ({A})|T 〉 = 〈T |Ψ({A})〉 = 0. Consequently, it has to fulfill both
following conditions, see Fig. 5.9 and 5.10,

∑
σR

V [R]σR (A[R]σR)† = 0χR+1d−χR,χR ,
∑
σR

A[R]σR (V [R]σR)† = 0χR,χR+1d−χR . (5.30)
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Figure 5.7: Graphical representation using tensor networks of the overlap 〈Ψ({A})|Ψ({A})〉. The
MPS |Ψ({A})〉 is assumed to be cast into the isometric gauge defined previously at Fig. 5.6. It yields
for the overlap 〈Ψ({A})|Ψ({A})〉 = Tr(Λ[R]) = 1, ∀R ∈ [|1, L|]. As a consequence, the MPS |Ψ({A})〉
is well normalized.

Figure 5.8: Graphical representation using tensor networks of the effective parametrization of the
local perturbation B[R] =

√
Λ[R]−1

X[R]V [R] on the lattice site R and involved in the expression of
the tangent vector |T 〉 =

∑
RB[R]∂A[R] |Ψ({A})〉.

Figure 5.9: Graphical representation using tensor networks of the conditions fulfilled by the
projector V [R] so that the tangent vector |T 〉 is orthogonal with respect to the reference state
|Ψ({A})〉. Representation of the condition (a)

∑
σR
V σR [R] (AσR [R])† = 0χR+1d−χR,χR

permitting
to get 〈Ψ({A})|T 〉 = 0 (b)

∑
σR
AσR [R] (V σR [R])† = 0χR,χR+1d−χR

implying that 〈T |Ψ({A})〉 = 0.

Note that to find that X[R] is the single effective parameter, the projector V [R] has to be
right-normalized, ie. has to fulfill the following condition∑

σR

V σR [R] (V σR [R])† = IχR+1d−χR,χR+1d−χR . (5.31)

The associated graphical representation in terms of tensor networks is displayed on Fig. 5.11. In
the following, we briefly demonstrate the previous statement by computing the overlap 〈T |T 〉
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Figure 5.10: Demonstration using tensor network language of the orthogonality between a reference
quantum state |Ψ({A})〉 and a tangent vector |T 〉 by computing the overlap 〈Ψ({A})|T 〉. To demonstrate
that 〈Ψ({A})|T 〉 = 0, one has to used the following condition

∑
σR
V σR [R] (AσR [R])† = 0χR+1d−χR,χR

fulfilled by the projector V [R].

Figure 5.11: Graphical representation using tensor networks of the second condition fulfilled by the
projector V [R] in order to find that the matrix X[R] corresponds to the single effective parameter of
the tensor B[R]. The latter allows to explore the MPS tangent plane T|Ψ({A})〉 of the reference state
|Ψ({A})〉. The second condition on V [R] is the right normalization defined as

∑
σR
V σR [R] (V σR [R])† =

IχR+1d−χR,χR+1d−χR
.

where |T 〉 is a tangent vector to the reference MPS |Ψ({A})〉. The overlap 〈T |T 〉 reads as

〈T |T 〉 = 〈Ψ({B}, {A})|Ψ({B}, {A})〉 =
∑
R,R′

〈Ψ(B[R], A[R])|Ψ(B[R′], A[R′])〉

〈T |T 〉 =
∑
R

〈Ψ(B[R], A[R])|Ψ(B[R], A[R])〉+
∑
R 6=R′

〈Ψ(B[R], A[R])|Ψ(B[R′], A[R′])〉

〈T |T 〉 =
∑
R

〈Ψ(B[R], A[R])|Ψ(B[R], A[R])〉 (5.32)

The term∑
R 6=R′〈Ψ(B[R], A[R])|Ψ(B[R′], A[R′])〉 vanishes due to the condition of orthogonality

between the reference state |Ψ({A})〉 and the tangent vector |T 〉. More precisely, for the
case R > R′, the condition ∑σR

AσR [R] (V σR [R])† = 0χR,χR+1d−χR permits to cancel the
different terms. For the case R′ > R, the other condition on the projector is used, ie.
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Figure 5.12: Demonstration using tensor networks that the effective parametrization of B[R]
the local perturbation on the lattice site R for the tangent vector |T 〉 contains a single free
parameter corresponding to the matrix X[R] of dimension χR × χR+1d − χR. The overlap 〈T |T 〉 =∑
R〈Ψ(B[R], A[R])|Ψ(B[R], A[R])〉 is found to be equal to 〈T |T 〉 =

∑L
R=1 Tr

(
X[R]X†[R]

)
depending

only on the matrix X[R]. To obtain this result, the right-normalization of the projector V [R] is
assumed, ie.

∑
σR
V σR [R] (V σR [R])† = IχR+1d−χR,χR+1d−χR

. Besides, one finds that the norm of a
tangent vector |T 〉 is nothing more than the Euclidean inner product of the matrix of free coefficients
X[R], ie. || |T 〉 || =

√
〈T |T 〉 =

√∑L
R=1 Tr (X[R]X†[R]).

∑
σR′

V σR′ [R′] (AσR′ [R′])† = 0χR′+1d−χR′ ,χR′ . Equation (5.32) is represented on Fig. 5.12 using
tensor networks. The latter clearly shows that the overlap 〈T |T 〉 depends only on the matrix
X[R]. Hence, for a right-normalized projector V [R], the single effective parameter of the
local perturbation B[R] corresponds to the matrix X[R].

Variational principle within the MPS tangent space

We now turn to the Dirac-Frenkel variational principle within the tangent space. We explicitely
derive the variational dynamical equation for the imaginary time evolution. We also provide
details about the Euler-scheme algorithm to solve the variational equation.

Firstly, we consider a general Hamiltonian Ĥ representing a one-dimensional lattice model
of length L acting on the many-body Hilbert space H = ⊗LR=1HR. HR is assumed to denote
a d-dimensional local Hilbert space. The Hamiltonian Ĥ can be represented into a matrix
product operator (MPO) form, see Fig. 5.13 for the graphical representation using tensor
networks. In other words, Ĥ is assumed to display the following form, where σ′ = σ′1, ..., σ

′
L

and σ = σ1, ..., σL with σ′R, σR ∈ {1, ..., d} ∀R ∈ [|1, L|],

Ĥ =
∑
σ′,σ

W σ′1,σ1 [1]W σ′2,σ2 [2]... W σ′L−1,σL−1 [L− 1]W σ′L,σL [L] |σ′〉 〈σ| , (5.33)

Ĥ = Ŵ [1]Ŵ [2]... Ŵ [L− 1]Ŵ [L] with Ŵ [R] =
∑
σ′R,σR

W σ′R,σR [R] |σ′R〉 〈σR| . (5.34)

Ŵ [R] is a matrix containing operators acting on the d-dimensional local Hilbert space HR.
Each matrix Ŵ [R] has a dimension χ̃Rd× χ̃R+1d. Hence, the bond dimension of Ĥ symbolized
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by χ̃ is defined as χ̃ = maxR(χ̃R). In the case of translationally invariant Hamiltonians, all
the matrices Ŵ [R] are equal and defined by a dimension χ̃d× χ̃d except the first (Ŵ [1]) and
last (Ŵ [L]) matrices having a dimension 1 × χ̃d and χ̃d × 1 respectively.

Figure 5.13: Graphical representation using tensor networks of the MPO form for a general
Hamiltonian Ĥ describing a one-dimensional lattice model of length L. (a) Representation of
Ĥ = Ŵ [1]Ŵ [2]... Ŵ [L − 1]Ŵ [L] under its MPO form where the red (blue) solid lines represent
the virtual (physical) indices. (b) Each matrix Ŵ [R] has a dimension χ̃Rd × χ̃R+1d. The latter is
built from W [R] corresponding to a 4th-rank tensor of dimension χ̃R × χ̃R+1 × d× d. W [R] is defined
by two virtual (horizontal) legs of dimension χ̃R and χ̃R+1 where χ̃ = maxR(χ̃R) corresponds to the
MPO bond dimension associated to the Hamiltonian Ĥ. Besides, the 4th-rank tensor W [R] is also
characterized by two physical (vertical) legs, where each of them has a dimension d corresponding to
the dimension of the local Hilbert space HR.

As discussed previously, the ground state of the general Hamiltonian Ĥ may be found
by integrating the imaginary time Schrödinger equation (~ = 1, τ = it)

∂τ |Ψ({A(τ)})〉 = −Ĥ |Ψ({A(τ)})〉 , (5.35)

with |Ψ({A(0)})〉 as the initial condition. The initial state can be chosen arbitrary provided it
has a non-vanishing overlap with the actual ground state. Within the MPS representation,
the integration may be performed by successively applying the infinitesimal imaginary time
evolution operator e−Ĥdτ to the MPS |Ψ({A(τ)})〉 for vanishingly small imaginary timesteps
dτ . In most cases, this operation will lead to an increase of the bond dimension for the
imaginary-time-evolved MPS |Ψ({A(τ + dτ)})〉. To solve this issue, the usual solution is
to truncate the MPS after each iteration to avoid an exponential growth of the MPS bond
dimension.
An alternative solution, that we consider here, consists of solving iteratively Eq. (5.35). At
each timestep dτ , the right-hand side of the Schrödinger equation is projected onto the tangent
space. Note that the left-hand side is automatically in the tangent space by definition of the
latter. An immediate consequence is the conservation of the bond dimension during the full
imaginary time evolution. Finally, the imaginary-time-evolved quantum state is found using
a first-order Euler scheme. In the following, we provide more details about the variational
dynamical equation for the imaginary time evolution.
To find the ground state and its associated energy, the imaginary time Schrödinger equation
at Eq. (5.35) is integrated using the tangent space. In a first time, it requires to find at
each iteration the best projection |T ?(τ)〉 of Ĥ |Ψ({A(τ)})〉 onto the tangent space T|Ψ({A(τ)})〉.
Mathematically, the previous condition may be formulated as follows (be careful to not
confound ? denoting the best approximation and ∗ representing the complex conjugate)

|T ?(τ)〉 := argmin
(
|| |T (τ)〉 − Ĥ |Ψ({A(τ)})〉 ||2

)
, (5.36)

where |T (τ)〉, corresponding to a tangent vector confined in T|Ψ({A(τ)})〉 (denoting the tangent
space with respect to the reference state |Ψ({A(τ)})〉 ∈ Mχ), is defined by
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|T (τ)〉 =
∑
R

|Ψ(B[R](τ), A[R](τ)〉 =
∑
R

B[R](τ)∂A[R](τ) |Ψ({A(τ)})〉 . (5.37)

The minimization problem formulated at Eq. (5.36) can be reduced to a local problem by
finding the optimal set of tensors {B[R](τ), R = 1, ..., L}. For instance, the best approximation
of the tensor B[R](τ), denoted by B?[R](τ), is determined by solving the following problem

B?[R](τ) := argmin
(
|| |Ψ(B[R](τ), A[R](τ)〉 − Ĥ |Ψ({A(τ)})〉 ||2

)
. (5.38)

The latter is determined using the definition of the tangent vectors, see Eq. (5.37) and Fig. 5.5.
Furthermore, the isometric gauge is considered [see Figs. 5.6, 5.8, 5.9 and 5.11] fixing the
gauge degree of freedom of both |T (τ)〉 and |Ψ({A(τ)})〉. As explained previously, a specific
parametrization of the local perturbations symbolized by the set of tensors {B(τ)} is used
to enforce the orthogonality between the reference state |Ψ({A(τ)})〉 and any of its tangent
vectors {|T (τ)〉}, see Figs. 5.8,5.9 and 5.10. This parametrization leads to effective (free)
parameters given by the matrices {X[R](τ), R = 1, ..., L} of dimension χR × χR+1d− χR. As
a consequence, the minimization problem at Eq. (5.38) is significantly simplified into one on
the free parameters X[R](τ) of dimension χR×χR+1d−χR and not on the tensors B[R](τ) of
dimension χR×χR+1×d. Hence, it yields the following equation for the minimization problem

X?[R](τ) := argmin
(
|| |Ψ(

√
Λ[R](τ)

−1
X[R](τ)V [R](τ), A[R](τ))〉 − Ĥ |Ψ({A(τ)})〉 ||2

)
.

(5.39)

The previous equation is linear in terms of X∗[R](τ) and X[R](τ). Therefore, by taking the
derivative with respect to the tensor X∗[R](τ), one is able to find a condition on the free
parameter X[R](τ). The latter is given by (one still rely on the tensors B[R](τ) instead of
using their effective parametrization involving the tensors X[R](τ) for simplicity)

X?[R](τ) : ∂X∗[R](τ)|| |Ψ(B[R](τ), A[R](τ))〉 − Ĥ |Ψ({A(τ)})〉 ||2 = 0 (5.40)

The two terms 〈Ψ({A(τ)})|Ĥ2 |Ψ({A(τ)})〉 and −〈Ψ({A(τ)})|Ĥ|Ψ(B[R](τ), A[R](τ))〉 van-
ish since they do not involve the tensor X∗[R](τ). Consequently, the minimization prob-
lem at Eq. (5.40) reduces to

X?[R](τ) : ∂X∗[R](τ)[−〈Ψ(B[R](τ), A[R](τ))|Ĥ|Ψ({A(τ)})〉
+ 〈Ψ(B[R](τ), A[R](τ))|Ψ(B[R](τ), A[R](τ))〉] = 0 (5.41)

Note that the second term on the left-hand side of Eq. (5.41), representing the derivative
with respect to X∗[R](τ) of the square norm

|| |Ψ(B[R](τ), A[R](τ))〉 ||2 = Tr
[
X[R](τ)X†[R](τ)

]
, (5.42)

is nothing more than the free parameter X[R](τ). The first and second terms of Eq. (5.41)
are represented on Fig. 5.14 and 5.15 respectively using tensor networks. Finally, it yields
the following equation for the minimization problem
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X?[R](τ) : ∂X∗[R](τ)〈Ψ(B[R](τ), A[R](τ))|Ĥ |Ψ({A(τ)})〉 = X[R](τ) (5.43)

This minimization condition, allowing to deduce the optimal effective tensor X?[R](τ) is
sketched on Fig. 5.16.

Figure 5.14: Graphical representation using tensor networks of the first term on the left-hand side of
Eq. (5.41). Since the isometric gauge is considered, one should add to this graph the left and right
gauge-fixing conditions of the isometric gauge provided at Fig. 5.6.

Figure 5.15: Graphical representation using tensor networks of the second term on the left-hand side
of Eq. (5.41).

As discussed previously, the condition at Eq. (5.43) allows us to find the optimal effective
(free) parameter X?[R](τ) and thus the optimal tangent vector |T ?(τ)〉. The latter is optimal
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Figure 5.16: Graphical representation using tensor networks of the condition at Eq. (5.43). The
latter allows us to find the optimal effective (free) parameter X?[R](τ) and hence the optimal tangent
vector |T ?(τ)〉. This tangent vector represents the best approximation of Ĥ |Ψ({A(τ)})〉 living in the
tangent space of the reference MPS |Ψ({A(τ)})〉 denoted by T|Ψ({A(τ)})〉. It permits to integrate the
imaginary time Schrödinger equation while confining the imaginary-time-evolved quantum state in a
same manifold so that the bond dimension is constant during the evolution process.

in the sense that it represents the best approximation of Ĥ |Ψ({A(τ)})〉 living in the tangent
space of the reference MPS |Ψ({A(τ)})〉 denoted by T|Ψ({A(τ)})〉. It permits to integrate the
imaginary time Schrödinger equation while confining the imaginary-time-evolved quantum
state in a same manifold. In other words, during the full evolution process, the bond dimension
of the previous many-body quantum state remains constant. In order to perform the integration
of the imaginary time Schrödinger equation defined at Eq. (5.35), we rely on the first-order
Euler scheme. The latter allows us to deduce the many-body quantum state in imaginary
time after one timestep dτ , ie. |Ψ({A(τ + dτ)})〉 when starting from |Ψ({A(τ)})〉. The
first-order Euler scheme is defined as follows

|Ψ({A(τ + dτ)})〉 = |Ψ({A(τ)})〉 − dτ |T ?(τ)〉 . (5.44)

By differentiating the previous equation with respect to the tensors A[R′],∀R′ ∈ {1, ..., R−1, R+
1, ..., L}, it yields a local condition on the tensors {A[R](τ + dτ), R = 1, ..., L}. This local
update of the tensors permits to deduce the MPS |Ψ({A(τ + dτ)})〉 and is characterized
by the following equation

A[R]σR(τ + dτ) = A[R]σR(τ)− dτB[R]σR,?(τ), ∀σR ∈ {1, ..., d}, ∀R ∈ [|1, L|], (5.45)

or equivalently,

A[R](τ + dτ) = A[R](τ)− dτB?[R](τ), ∀R ∈ [|1, L|]. (5.46)

However, it has to be stressed that dτ needs to be as small as possible to minimize the error on
the norm of the imaginary-time-evolved quantum state |Ψ({A(τ + dτ)})〉. Indeed, the norm is
not conserved during the imaginary time evolution. The latter is due to the non-normalization
of the tangent vectors where || |T (τ)〉 ||2 = ∑L

R=1 Tr
[
X[R](τ)X†[R](τ)

]
6= 1, see Fig. 5.12.

Considering a single iteration in imaginary time, one gets

|Ψ({A(τ + dτ)})〉 = |Ψ({A(τ)})〉 − dτ |T ?(τ)〉 . (5.47)

The error on the norm can be estimated by computing the overlap 〈Ψ({A(τ + dτ)})|Ψ({A(τ +
dτ)})〉. Using the orthogonality between the optimal tangent vector |T ?(τ)〉 and the imaginary-
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time-evolved quantum state |Ψ({A(τ)})〉, the error ε after a single imaginary timestep is given
by

ε = dτ2
L∑

R=1
Tr
[
X?[R](τ)X?,†[R](τ)

]
= dτ2|| |T ?(τ)〉 ||2. (5.48)

This non-conservation of the norm requires to bring back the MPS |Ψ({A(τ + dτ)})〉 into
the isometric gauge after each infinitesimal iteration. Finally, the local procedure for the
imaginary-time evolution is iterated up to convergence. The convergence is reached for
δE = Ei − Ei+1 ' 10−13. The index i denotes the number of imaginary timesteps dτ applied
on the (random) initial state |Ψ({A(0)})〉 and Ei = 〈Ψ({A(i× dτ)})|Ĥ|Ψ({A(i× dτ)})〉 refers
to the energy of the quantum system for an imaginary time i× dτ . The previous condition
on the energy characterizing the convergence of the algorithm implies that the norm of the
gradient || − |T ∗(i× dτ)〉 || has to be very small.

5.2.4 Dynamical properties - Real time evolution through a local update

General scheme

We now turn to the real time evolution process where the variational dynamical equations are
explicitely derived. Besides, several details about the considered integrator scheme to solve
the variational equations are provided.

The real-time evolution of a quantum state is found by integrating the (real-time)
Schödinger equation (~ = 1)

i∂t |Ψ({A(t)})〉 = Ĥ |Ψ({A(t)})〉 , (5.49)

and the time-evolved many-body quantum state |Ψ({A(t)})〉 reads as

|Ψ({A(t)})〉 = e−iĤt |Ψ({A(0)})〉 . (5.50)

|Ψ({A(0)})〉 denotes the initial state and Û(t) = e−iĤt the unitary time evolution operator
(Û(t)Û †(t) = I,∀t ∈ R). Similarly to the imaginary-time evolution, instead of directly
constructing the evolution operator Û(t), the time-dependent variational principle is considered
to perform the real-time evolution so that the time-evolved quantum state |Ψ({A(t)})〉 is
confined in a MPS manifold, ie. has a fixed bond dimension. The general scheme is significantly
similar to the one used for the imaginary-time evolution. However, a main difference appears
for the real-time evolution process. Indeed, a special care has to be taken to ensure that the
algorithm does not violate the time-reversal symmetry of the real-time Schrödinger equation at
Eq. (5.49) (Û †(t) = Û(−t), ∀t ∈ R). A first-order Euler scheme does not fulfill such symmetry
and we thus have to consider at least a middle-point integrator scheme that is discussed in the
following, see Ref. [27].

For the real-time evolution, the minimization problem needs to be adapted. The best
projection of −Ĥ |Ψ({A(t)})〉 onto the tangent space T|Ψ({A(t)})〉 is defined by

|T ?(t)〉 =
∑
R

|Ψ(B?[R](t), A[R](t))〉 := argmin
(
|| |T (t)〉+ Ĥ |Ψ({A(t)})〉 ||2

)
. (5.51)
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Consequently, using the same reasoning as before for the imaginary-time evolution, it yields
the following condition on the tensors {A[R](t + dt), R = 1, ..., L},

A[R](t+ dt) = A[R](t) + idtB?[R](t). (5.52)

The tensors {B?[R](t)} are determined through the free matrices {X?[R](t)} when using the
isometric gauge, see Figs. 5.6 and 5.9. Note that the convention adopted at Eq.(5.51) for the
minimization problem implies to slightly modify Fig. 5.16. The latter represents graphically
using tensor networks the optimal matrix X?[R](τ) found from the minimization problem for
the imaginary-time evolution. Indeed, one has to replace the imaginary times by real times
and to add a minus sign on the left- or right-hand side of the equation. Indeed, according to
Eq. (5.51), the minimization problem for real times reduces to the following condition

X?[R](t) : ∂X∗[R](t)〈Ψ(B[R](t), A[R](t))|Ĥ |Ψ({A(t)})〉 = −X[R](t). (5.53)

Contrary to the imaginary time evolution, a first-order Euler scheme (as displayed on Eq. (5.52))
is not precise enough to perform real-time evolution due to the time-reversal symmetry of
the real-time Schrödinger equation. One needs to consider at least a middle-point integrator
characterized by both following equations,

A[R] (t+ dt/2) = A[R] (t) + i(dt/2)B?[R](t), (5.54)
A[R] (t+ dt/2) = A[R] (t+ dt)− i(dt/2)B?[R](t+ dt). (5.55)

From Eqs. (5.54) and (5.55), it immediately comes out that the time-reversal symmetry is well
enforced. Indeed, starting from the tensors {A[R](t+dt)} or {A[R](t)}, one obtains the same set
of tensors {A[R]} at the middle-point t+dt/2. To complete the infinitesimal step, ie. to deduce
|Ψ(t+ dt)〉, one has to integrate |Ψ({A(t+ dt/2)})〉 for another dt/2 using the condition below

A[R] (t+ dt) = A[R] (t+ dt/2) + i(dt/2)B?[R](t+ dt/2), (5.56)

equivalent to the following condition at the level of quantum states

|Ψ({A(t+ dt)})〉 = |Ψ({A(t+ dt/2)})〉+ i(dt/2) |T ?(t+ dt/2)〉 . (5.57)

Unitary evolution - norm and energy conservation

As previously discussed, the real-time evolution requires to enforce the time-reversal sym-
metry. This problem was solved by relying on the so-called middle-point integrator scheme.
Furthermore, it is also necessary to verify that the norm and the energy of the time-evolved
many-body quantum state |Ψ({A(t)})〉 are conserved quantities during the real-time evolution
process. Indeed, according to Eq. (5.50), the real-time evolution process corresponds to a
unitary transformation in time. In the following, we briefly discuss whether these conditions
are fulfilled or not when using the TDVP approach.

Concerning the norm of the time-evolved quantum state |Ψ({A(t)})〉, the latter is not
conserved. Similarly to the imaginary-time evolution, an error is introduced at each timestep
when updating locally the tensors using the middle-point integrator scheme due to the
non-normalized tangent vector |T ?(t)〉. Note that the tangent vectors |T (t)〉 can not be
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normalized since their norm depends on free parameters, the matrices {X[R](t)}, whose values
are determined such that they optimize the projection of −Ĥ |Ψ({A(t)})〉 on the tangent
plane T|Ψ({A(t)})〉. The global error ε on the norm for a timestep starting from t + dt/2
and ending to t + dt is characterized by

ε = (dt/2)2
L∑

R=1
Tr
[
X?[R](t+ dt/2)X?,†[R](t+ dt/2)

]
= (dt/2)2|| |T ?(t+ dt/2)〉 ||2. (5.58)

The latter is found by calculating the overlap 〈Ψ({A(t+ dt)})|Ψ({A(t+ dt)})〉 using Eq. (5.57).
This non-conservation of the norm requires to bring back the MPS |Ψ({A(t+ dt)})〉 into the
isometric gauge after each infinitesimal iteration in real time, see Figs. 5.6, 5.9 and 5.11.

To test whether the energy is a conserved quantity or not during the real time evolution,
one can calculate the energy at time t + dt given by

E(t+ dt) = 〈Ψ({A(t+ dt)})|Ĥ|Ψ({A(t+ dt)})〉
〈Ψ({A(t+ dt)})|Ψ({A(t+ dt)})〉 . (5.59)

The many-body quantum state |Ψ({A(t+ dt)})〉 is assumed to be normalized (〈Ψ({A(t +
dt)})|Ψ({A(t + dt)})〉 = 1), ie. has been brought back into the isometric gauge. Relying
on Eq. (5.57), the energy E(t + dt) may be written as

E(t+ dt) = E(t+ dt/2) + (dt/2)2〈T ?(t+ dt/2)|Ĥ|T ?(t+ dt/2)〉

+ i(dt/2)
(
〈Ψ({A(t+ dt/2)})|Ĥ|T ?(t+ dt/2)〉 − 〈T ?(t+ dt/2)|Ĥ|Ψ({A(t+ dt/2)})〉

)
,

(5.60)

where E(t + dt/2) = 〈Ψ({A(t + dt/2)})|Ĥ|Ψ({A(t + dt/2)})〉 (|Ψ({A(t+ dt/2)})〉 is also
assumed to be normalized). The tangent vector |T ?(t+ dt/2)〉 denotes the best projection of
−Ĥ |Ψ({A(t+ dt/2)})〉 on the tangent plane T|Ψ({A(t+dt/2)})〉, hence their overlap is assumed
to be real and relatively large. Considering the previous statement and using the hermiticity
of the Hamiltonian Ĥ, it yields for the energy E(t + dt) the simplified form

E(t+ dt) = E(t+ dt/2) + (dt/2)2〈T ?(t+ dt/2)|Ĥ|T ?(t+ dt/2)〉. (5.61)

According to Eq. (5.61), the energy is not strictly conserved due to an additional term
(dt/2)2〈T ?(t + dt/2)|Ĥ|T ?(t + dt/2)〉. However, the real timestep dt is assumed to be
infinitesimal, ie. very small compared to the observation time. Finally, one finds that
E(t + dt) = E(t + dt/2) + O(dt2).

Local procedure for the middle-point tensors {A(t + dt/2)}

In the following, we briefly outline the procedure in order to deduce the so-called middle-point
tensors {A(t+ dt/2)}, while working along the lines of Ref. [27] (see also references therein).
The latter are computed in such a way that the time-reversal symmetry is conserved during
the real-time evolution process. The different steps consist of

1. Obtaining a trial A(0)[R](t+ dt/2) from the initial state locally described by A[R](t) using
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A(0)[R](t+ dt/2) = A[R](t) + i(dt/2)B[R](t). (5.62)

|T (t)〉, built from the set of tensors {B[R](t), R = 1, ..., L}, represents the best projection of
−Ĥ |Ψ({A(t)})〉 on the tangent plane T|Ψ({A(t)})〉. The ? denoting ’the best approximation’
has been removed for simplicity.

2. Obtaining a trial B(0)[R](t+ dt/2) by finding the best tangent vector for the projection of
−Ĥ |Ψ({A(0)(t+ dt/2)})〉 on the tangent plane T|Ψ({A(0)(t+dt/2)})〉.

3. Evolving back A(0)[R](t+ dt/2) to Ã(0)[R](t) using

Ã(0)[R](t) = A(0)[R](t+ dt/2)− i(dt/2)B(0)[R](t+ dt/2). (5.63)

Initially, each tensor Ã(0)[R](t) will differ from A[R](t).

4. Computing the difference dA(0)[R](t) = A[R](t) − Ã(0)[R](t) between the initial tensor
A[R](t) and the first-time-evolved-back tensor Ã(0)[R](t). Then project dA(0)[R](t) onto the
tangent space defined at A(0)[R](t+ dt/2). The latter defines the tensor B̃(0)[R](t+ dt/2) =
P{TA(0)[R](t+dt/2)}[dA(0)[R](t)].

5. Computing the inversion error ε(0)
R defined by

ε
(0)
R = || |Ψ(dA(0)[R](t), A[R](t))〉 || = ||dA(0)[R](t)∂A[R](t) |Ψ({A(t)})〉 ||. (5.64)

The lower is ε(0)
R , the better is the approximation Ã(0)[R](t) of A[R](t).

6. The improved estimation of the middle-point tensor A(1)[R](t + dt/2) is obtained by
computing

A(1)[R](t+ dt/2) = A(0)[R](t+ dt/2) + B̃(0)[R](t+ dt/2). (5.65)

7. Repeating the procedure from (2) to (5) by updating the index for the number of loops
in order to converge towards the best approximation (next loop : 0→ 1 and 1→ 2) and
iterate until getting an inversion error ε(j)R below the required precision (typically around
10−12).

8. When the set of tensors {A(j)[R](t+dt/2), R = 1, ..., L} is obtained, the elementary evolution
step dt is completed by integrating the many-body quantum state |Ψ({A(j)(t+ dt/2)})〉 by
another dt/2 using the following equation

A[R](t+ dt) = A(j)[R](t+ dt/2) + i(dt/2)B(j)[R](t+ dt/2). (5.66)

Procedure to compute the tensor B̃(0)[R](t + dt/2) In the following, we briefly
discuss how to determine the tensor B̃(0)[R](t + dt/2), defined previously (see step 4.)
as B̃(0)[R](t + dt/2) = P{TA(0)[R](t+dt/2)}[dA(0)[R](t)]. The latter represents the optimal
projection on TA(0)[R](t+dt/2), the tangent space with respect to A(0)[R](t + dt/2), of the
tensor dA(0)[R](t). It permits to obtain a better estimation of the middle-point tensor
denoted by A(1)[R](t + dt/2) and characterized by the following analytical expression
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A(1)[R](t+ dt/2) = A(0)[R](t+ dt/2) + B̃(0)[R](t+ dt/2).

First of all, to construct the minimization problem while avoiding any misunderstanding,
the previous tensor B̃(0)[R](t + dt/2) is denoted by B̃(0),?[R](t + dt/2) in the following.
To deduce the tensor B̃(0),?[R](t + dt/2), we first need to construct the tangent vector
|Ψ(B̃(0)[R](t+ dt/2), A(0)[R](t+ dt/2))〉 defined as

|Ψ(B̃(0)[R](t+ dt/2), A(0)[R](t+ dt/2))〉 = B̃(0)[R](t+ dt/2)∂A(0)[R](t+dt/2)

|Ψ({A(0)(t+ dt/2)})〉 . (5.67)

The tensor B̃(0)[R](t+ dt/2) displays the effective parametrization presented at Fig. 5.8
whose associated projector Ṽ (0)[R](t + dt/2) fulfills the relations represented in terms
of tensor networks at Figs. 5.11 and 5.9. Here, the orthogonality condition presented
at Fig. 5.9 involves the tensor A(0)[R](t + dt/2) of the MPS |Ψ({A(0)(t+ dt/2)})〉 cast
into the isometric gauge, see Fig. 5.6. In a second time, the many-body quantum state
|Ψ(dA(0)[R](t), A(0)[R](t+ dt/2))〉, depending on the tensor dA(0)[R](t), has also to be
constructed from |Ψ({A(0)(t+ dt/2)})〉. The latter may be written as

|Ψ(dA(0)[R](t), A(0)[R](t+ dt/2))〉 = dA(0)[R](t)∂A(0)[R](t+dt/2)

|Ψ({A(0)(t+ dt/2)})〉 . (5.68)

Finally, to deduce B̃(0),?[R](t+ dt/2), we solve the following minimization problem

B̃(0),?[R](t+ dt/2) := argmin(|| |Ψ(B̃(0)[R](t+ dt/2), A(0)[R](t+ dt/2))〉
− |Ψ(dA(0)[R](t), A(0)[R](t+ dt/2))〉 ||2). (5.69)

Since the matrix X̃(0)[R](t+dt/2) corresponds to the free parameter of the tensor B̃(0)[R](t+
dt/2), this minimization problem is reduced to find the matrix X̃(0),?[R](t+ dt/2), ie. the
best approximation for X̃(0)[R](t+ dt/2). According to Eq. (5.69), X̃(0),?[R](t+ dt/2) is
characterized by the following equation

∂X̃(0),∗[R](t+dt/2)〈Ψ(B̃(0)[R](t+ dt/2), A(0)[R](t+ dt/2))|Ψ(dA(0)[R](t), A(0)[R](t+ dt/2))〉

= X̃(0)[R](t+ dt/2). (5.70)

Equation. (5.70) is represented in terms of tensor networks on Fig. 5.17.

5.3 Correlation spreading in the z polarized phase
The purpose of the following sections is to shed new light on the spreading of information in
long-range lattice models. To do so, we study theoretically and numerically the spreading of
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Figure 5.17: Graphical representation using tensor networks of the condition at Eq. (5.70). The
latter allows us to find the optimal matrix X̃(0),?[R](t+ dt/2) in order to fully characterize the tensor
B̃(0),?[R](t+ dt/2).

correlations and entanglement while focusing on a specific long-range lattice model. The latter
is the paradigmatic, one-dimensional, transverse Ising model with a long-range spin exchange
of the form 1/Rα. Its main properties are recalled in the following. The numerical calculations
to deduce both the static (ground state, ground state energy) and dynamical properties (time-
evolved quantum state) are performed using the time-dependent matrix product state (t-MPS)
approach within the time-dependent variational principle (TDVP) presented at Sec. 5.2. The
long-range interactions in the Hamiltonian of the transverse Ising model are implemented as
a sum of decaying exponentials following the method discussed in Ref. [151] and in Sec. 5.2.
Concerning the theoretical calculations, they rely on the Holstein-Primakoff transformation
and the bosonic Bogolyubov theory defining the linear spin wave theory. Note that the s = 1/2
long-range transverse Ising (LRTI) chain has already been considered in Chap. 3. The latter
has been studied theoretically to provide a proof of the scaling laws (deduced from the generic
form at Eq. (3.8)) for the correlation spreading induced by sudden global quenches confined in
the quasi-local regime of gapped quantum phases.

In the following, we first investigate the same problem but from a numerical point of
view using the t-MPS + TDVP approach. The last section of this chapter is devoted to the
counterpart, ie. to a numerical study of the correlation spreading induced by sudden global
quenches confined in the quasi-local regime of gapless quantum phases. To do so, we consider
the exact same example than the one presented at Chap. 3 in Subsec. 3.3.2 for the theoretical
study. The discussion on the correlation spreading in the 1D LRTI model is extended to
the case of sudden global quenches confined in the local regime of the z polarized gapped
quantum phase. Then, while still considering the local regime of the z polarized phase, we
turn to an investigation of the spreading of both the local spin (ie. the local magnetization)
and entanglement (via an investigation of several Rényi entropies corresponding to different
entropy measures) for sudden local quenches.

The s = 1/2 long-range transverse Ising (LRTI) chain is governed by the following Hamilto-
nian (~ = 1)

Ĥ =
∑
R<R′

2J
|R−R′|α

ŜxRŜ
x
R′ − 2h

∑
R

ŜzR, (5.71)

where ŜjR (j ∈ {x, y, z}) refers to the s = 1/2 spin operator acting on the lattice site R ∈ Z,
J > 0 corresponds to the exchange energy (antiferromagnetic interaction along the x axis of
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Figure 5.18: Schematic phase diagram of the LRTI chain versus the exchange-to-field ratio J/h and
the power-law exponent α. The critical line separating the two gapped quantum phases, namely the
z polarized and x Néel phases, is represented by the solid purple line. The arrows indicate various
sudden global quenches considered in this chapter. The blue arrows represent sudden global quenches
confined in the local regime of the z polarized phase [requiring α ≥ 2 and (J/h)i, (J/h)f < (J/h)c(α)]
whereas the red arrows correspond to sudden global quenches confined in the quasi-local regime of the
z polarized phase [1 ≤ α < 2 and (J/h)i, (J/h)f < (J/h)c(α)].

the Bloch sphere), and h > 0 denotes the constant and homogeneous transverse field along
the z axis. It is the long-range counterpart of the celebrated quantum transverse Ising model,
which has been extensively studied in quantum field theory [116]. Note that the LRTI model
can be simulated on a variety of plateforms, including cold Rydberg gases [42,171,172] and
artificial ion crystals, where the power-law exponent α can be controlled via light-mediated
interactions, see Refs. [6, 12,14–17].

Its equilibrium phase diagram is depicted on Fig. 5.18, see also Ref. [149]. It comprises
two gapped phases separated by a second order quantum phase transition along some critical
line (J/h)c(α). For large transverse fields h, the spin-field interaction dominates and a z-
polarized phase is formed, where all the spins predominantly point in the z direction. The
ground state of such gapped phase is characterized by |Ψgs〉 ' |↑ ... ↑〉. For low values of
h, the long-range antiferromagnetic couplings dominate and the system forms a staggered
Néel-ordered phase aligned in the x direction. The corresponding ground state is thus
given by |Ψgs〉 '

√
2−1(|←→ ...←→〉 + |→← ...→←〉). The local quantum states |←〉R

and |→〉R are defined by ŜxR |→〉R = (1/2) |→〉R and ŜxR |←〉R = (−1/2) |←〉R. Hence,
|→〉R =

√
2−1(|↑〉R + |↓〉R) and |←〉R =

√
2−1(|↑〉R − |↓〉R).

Note that the critical point (J/h)c for the short-range transverse Ising chain [implying
α→ +∞ for the Hamiltonian Ĥ at Eq. (5.71)] is always smaller than the one for the long-range
version. Indeed, the long-range antiferromagnetic interactions along the x axis (α finite) lead
to a frustration of the 1D LRTI model along the x axis. More precisely, the smaller the
long-range interactions decay (smaller α), the more the spin model is frustrated along the x
axis. Hence, it requires smaller transverse fields h for the LRTI chain to enter its z polarized
phase. The previous statement explains that (J/h)c increases when α decreases, see Fig. 5.18.
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In the z-polarized phase, the Hamiltonian of the LRTI chain at Eq. (5.71) can be
diagonalized using a Holstein-Primakoff transformation and the bosonic Bogolyubov theory (see
Chap. 3 and Appendix. G). The low-energy quasiparticles consists of spin-flips characterized
by the following gapped excitation spectrum Ek = 2

√
h[h+ JPα(k)]. Pα(k) corresponds to

the Fourier transform of the long-range potential 1/Rα and k the quasimomentum confined
in the first Brillouin zone [−π, π] (a the lattice spacing is fixed to unity). The linear spin
wave theory (LSWT) predicts three dynamical regimes, see Refs. [27–29] and Eq. (3.75). For
α ≥ 2, the quasiparticle dispersion relation is regular in the first Brillouin zone with bounded
energies Ek and group velocities Vg(k) = ∂kEk (~ = 1). The previous properties define the
local regime of the z polarized phase. This case belongs to the same universal class as the
short-range transverse Ising model and the dynamics is characterized by the emergence of a
linear causality cone [35, 37]. This expected linear causality cone will be fully characterized in
the next section. For α < 1, both the excitation spectrum Ek and the group velocity Vg(k)
feature an algebraic, infrared divergence defining the instantaneous regime. Indeed, for this
specific quantum regime, there is no characteristic time and the spreading is instantaneous.
Finally, for 1 ≤ α < 2, the quasiparticle energy Ek is bounded, however, the group velocity
Vg(k) diverges as Vg(k) ∼ |k|z−1 with z = α− 1, see Eq. (3.75). The latter case corresponds to
the quasi-local regime. Whether some form of causality emerges in this specific regime remains
strongly debated [16,17,27–30,173]. In Chap. 3, relying on the generic form for the equal-time
connected correlation functions at Eq. (3.8), we have shown that an algebraic twofold causality
cone should emerge. More precisely, for sudden global quenches confined in a gapped quantum
phase, the correlation edge (CE) should spread sub-ballistically and the series of local extrema
ballistically. In the following, we start by focusing numerically on this case before investigating
the local regime.

All the numerical results presented below are obtained using matrix-product state (t-MPS)
simulations within the time-dependent variational principle (TDVP), see Refs. [129,130,138,149].
A careful analysis of the bond dimension has been systematically performed to certify the
convergence of the t-MPS results in all cases. Note that contrary to the short-range Bose-
Hubbard chain, fixing the dimension of the local Hilbert space is straightforward for the LRTI
chain. Indeed, since s = 1/2 spins are considered dim(HR) = 2 ∀R ∈ [|1, L|] where HR refers
to the local Hilbert space for the lattice site R (R-th spin). The associated local basis is
given by {|↑〉 , |↓〉}. Besides, in the following sections, we study the dynamical behaviour of
several observables that are all experimentally accessible.

5.3.1 The quasi-local regime

In this section, we consider the spreading of spin correlations in the gapped z polarized
phase. We first investigate the quasi-local regime implying 1 ≤ α < 2, see the red solid lines
at Fig. 3.14 for the shape of the excitation spectrum Ek and the group velocity Vg(k) as
a function of the quasimomentum k in the first Brillouin zone in the quasi-local regime of
the z polarized phase at α = 1.7 and J/h = 0.1. Similarly to the theoretical investigation
presented in Chap. 3, we study the spin-spin correlations perpendicular to the polarization
axis of the gapped quantum phase considered for the sudden global quench. In other words,
the spin fluctuations are studied along the x axis via Gx the connected spin-spin correlation
function defined by Gx(R, t) = Gx,0(R, t) − Gx,0(R, 0) where

Gx,0(R, t) = 〈ŜxR(t)Ŝx0 (t)〉 − 〈ŜxR(t)〉〈Ŝx0 (t)〉. (5.72)
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Figure 5.19: Spreading of the equal-time connected spin-spin correlation function Gx(R, t) =
Gx,0(R, t) − Gx,0(R, 0) with Gx,0(R, t) = 〈ŜxR(t)Ŝx0 (t)〉 − 〈ŜxR(t)〉〈Ŝx0 (t)〉 for the LRTI chain in the
quasi-local regime of the z polarized phase. (a) t-MPS calculation of Gx for a sudden global quench
from (J/h)i = 2× 10−2 to (J/h)f = 1 at α = 1.7 (log-log scale for both axis). For the 1D LRTI model,
at α = 1.7, the critical point separating the z polarized phase from the x Néel phase is located at
J/h ' 3 [149]. The space-time spin-spin correlations feature a twofold algebraic structure (twofold
linear structure in log-log scale) with a sub-ballistic correlation edge (βnum

CE > 1, see solid green line) and
ballistic local extrema (βnum

m ' 1, see dashed blue lines). (b) Evolution of βnum
CE and its corresponding

theoretical value βth
CE = 3−α characterizing the spreading of the correlation edge with βnum

m and βth
m = 1

for the spreading of the series of local extrema as a function of the power-law exponent α defining the
decay of the long-range spin exchange couplings along the x axis. Figures extracted from Ref. [34].

In the following, sudden global quenches on the exchange-to-field ratio J/h such that one-
dimensional long-range transverse Ising model is confined in the z polarized phase are considered.
The exchange-to-field ratios (J/h)i and (J/h)f will refer to the pre- and post-quench interaction
parameters respectively.

Figure 5.19(a) shows a typical result of a t-MPS calculation for the connected correlation
function Gx for a quench in the quasi-local regime of the z polarized phase. The sudden global
quench is defined by α = 1.7 from (J/h)i = 2 × 10−2 to (J/h)f = 1. Hence, the pre- and
post-quench Hamiltonians are well confined in the quasi-local regime of the z polarized phase,
see red arrows on Fig. 5.18. As expected from the theoretical results discussed in Chap. 3,
the correlation pattern is characterized by an algebraic causality cone. More precisely, this
causality cone displays two different algebraic structures.
(i) A correlation edge (CE) separating the causal region from the non-causal one for the spin
correlations and spreading sub-ballistically with the scaling law t ∼ RβCE , βCE > 1. On
Fig. 5.19(a), the motion of the CE has been determined by tracking the activation time t∗
for different spin separation distances R where the correlations reach a same fraction ε of the
maximal amplitude of the spin fluctuations (see solid green line). Then, by computing the
slope of the solid green line, one can extract the numerical CE exponent βnum

CE . For α = 1.7,
we find βnum

CE = 1.28 ± 0.08. This numerical exponent is in very good agreement with the
theoretical value βth

CE = 3− α = 1.3 > 1 found using the LSWT, see Chap. 3 and Ref. [32] for
more details.
(ii) A series of local extrema in the vicinity of the CE spreading ballistically, and thus
implying the scaling law t ∼ Rβm with βm ' 1 (see Ref. [32] and Chap. 3). In the long-time
and long-distance limit, several local extrema have been tracked [see dashed blue lines on
Fig. 5.19(a); notice the log-log scale]. We find βnum

m = 1.01 ± 0.04 in very good agreement
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Figure 5.20: Spreading of the equal-time connected spin-spin correlation function Gz(R, t) =
Gz,0(R, t) − Gz,0(R, 0) with Gz,0(R, t) = 〈ŜzR(t)Ŝz0 (t)〉 − 〈ŜzR(t)〉〈Ŝz0 (t)〉 for the LRTI chain in the
quasi-local regime of the z polarized phase. t-MPS calculation of Gz for a sudden global quench from
(J/h)i = 2× 10−2 to (J/h)f = 1 at α = 1.7 (log-log scale for both axis). Similar to Gx, the space-time
spin-spin correlations along the z axis feature a twofold algebraic structure (twofold linear structure in
log-log scale) with a sub-ballistic correlation edge (βnum

CE = 1.23± 0.04 ' 3−α, see solid green line) and
ballistic local extrema (βnum

m = 0.98± 0.02 ' 1, see dashed blue lines). Figure extracted from Ref. [34].

with the theoretical exponent βth
m = 1. As pointed out in Refs. [32,33], the motion of the local

extrema is significantly different from the one of the CE. In other words, the scaling law for
the spreading of the extrema does not characterize at all the one associated to the correlation
edge (CE).

On Fig. 5.19(b), different sudden global quenches confined in the quasi-local regime of the
z polarized phase have been considered. They are defined by a same pre- [(J/h)i = 2× 10−2]
and post-quench [(J/h)f = 1] interaction parameter while the power-law exponent α scans the
interval [1, 2[. The latter corresponds to the condition to remain in the quasi-local regime of
the z polarized phase. The exponents βnum

CE and βnum
m are extracted using the same techniques

as previously. We find that while the maxima spread ballistically (βnum
m ' βth

m = 1), the
CE is sub-ballistic (βnum

CE ' βth
CE = 3 − α > 1 for 1 ≤ α < 2). Note that for each algebraic

structure defining the causality cone, the maximal relative error between the theoretical
and numerical exponents β is around 5%. The previous results confirm the emergence of a
slower-than-ballistic form of causality and an inner structure characterized by local extrema in
the vicinity of the CE spreading ballistically. A similar behavior of the causality structure 1

has been found for another observable, namely the Gz spin-spin correlation function along
the z axis, ie. along the polarization axis of the gapped quantum phase considered here, see
Fig. 5.20 for a numerical example of the space-time pattern of Gz. However, this observable is
not discussed in details here, see Ref. [34] for more information. Nevertheless, the derivation
of the analytical expression of Gz for a sudden global quench confined in the z polarized phase
(valid both in the local and quasi-local regimes) is provided at Appendix. L.

1By similar behavior, we mean that the causality structure is defined by a sub-ballistic motion of the CE
and a ballistic spreading of the local extrema characterized by the spreading exponent βCE = 3− α and βm = 1
respectively.
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5.3.2 The local regime

We now turn to the local regime of the z polarized phase. The latter is characterized by a
finite excitation spectrum Ek and group velocity Vg(k) in the first Brillouin zone (k ∈ [−π, π]
with a the lattice spacing fixed to unity). Hence, the power-law exponent α has to fulfill
the following condition α ≥ 2 (see the black dashed lines at Fig. 3.14 for the shape of the
excitation spectrum Ek and the group velocity Vg(k) as a function of the quasimomentum k in
the first Brillouin zone in the local regime of the z polarized phase at α = 2.7 and J/h = 0.1).
As previously, we study the space-time spin fluctuations along the x axis via the equal-time
connected correlation function Gx(R, t) and the sudden global quenches, confined in the local
regime of the z polarized phase, are performed on the interaction parameter J/h while the
power-law exponent α ≥ 2 is fixed.

In the following, we recall the main theoretical results concerning the correlation spreading
for sudden global quenches confined in the local regime of a gapless or gapped quantum phase
of long-range interacting lattice models. In Chap. 3, by relying on the generic form for the
equal-time connected correlation functions presented at Eq. (3.8), we unveiled a twofold linear
causality cone. Once again, the latter is characterized by a CE and a series of local extrema
whose spreading velocities (VCE and Vm) are reminiscent of those for the case of short-range
interacting lattice models, see Ref. [34]. Indeed, similarly to short-range lattice models, one
can find a quasimomentum k∗ such that V ∗g = Vg(k∗) = max[Vg(k)], see Eq. (3.10). Hence,
the generic equal-time connected correlation function at Eq. (3.8) has an asymptotic behavior
defined at Eq. (3.11). Consequently, the scaling laws and the spreading velocities of the twofold
causality cone of correlations are the same as those for short-range interacting lattice models.
Both the CE and the series of local extrema spread ballistically (βCE = βm = 1) with a velocity
VCE = 2V ∗g and Vm = 2V ∗ϕ respectively. In general V ∗g 6= V ∗ϕ , leading to VCE 6= Vm. The
latter is expected for quantum lattice models having a non-phononic quasiparticle dispersion
relation [32,33].

Figure 5.21(a) shows a t-MPS result for the equal-time connected correlation function
Gx for a sudden global quench in the local regime of the z polarized phase. The spin-spin
correlations are plotted as a function of the dimensionless time tJ (~ = 1) and the distance
R. The quench is defined by α = 3 > 2 from (J/h)i = 1.1 to (J/h)f = 1. Hence, the pre-
and post-quench Hamiltonians are well confined in the z polarized phase, see blue arrows
on Fig. 5.18. As expected from the theoretical results presented at Chap. 3 and recalled
above, the space-time pattern for the Gx spin fluctuations is characterized by a twofold linear
causality cone, ie. a CE and a series of local maxima spreading ballistically [note the lin-lin
scale on Fig. 5.21(a)]. The latter implies the scaling law t ∼ Rβ with β = βCE = βm = 1.
On Fig. 5.21(a), the CE separating the causal region from the non-causal one for the spin
correlations propagates at the velocity V num

CE = (1.8 ± 0.2)J in good agreement with the
theoretical prediction VCE = 2V ∗g ' 2J (see solid green line). Besides, in the vicinity of
the CE, a series of local extrema having also a ballistic scaling law spread at the velocity
V num

m = (−1.7± 0.2)J (see dashed blue lines). This numerical spreading velocity for the local
extrema is in good agreement with the theoretical velocity 2V ∗ϕ ' −1.57J .

On Fig. 5.21(b), different sudden global quenches confined in the local regime of the z
polarized phase have been considered. They are defined by a same pre- [(J/h)i = 1.1] and post-
quench [(J/h)f = 1] interaction parameter while the power-law exponent α scans the interval
[2, 3]. The spreading velocities V num

CE and V num
m are extracted using the same techniques as
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Figure 5.21: Spreading of the equal-time connected spin-spin correlation function Gx(R, t) =
Gx,0(R, t) − Gx,0(R, 0) with Gx,0(R, t) = 〈ŜxR(t)Ŝx0 (t)〉 − 〈ŜxR(t)〉〈Ŝx0 (t)〉 for the LRTI chain in the
local regime of the z polarized phase. (a) t-MPS calculation of Gx for a sudden global quench from
(J/h)i = 1.1 to (J/h)f = 1 at α = 3 (linear scale for both axis). The space-time spin fluctuations along
the x axis feature a twofold causality cone. Both the correlation edge (see solid green line) and the
series of local extrema (see dashed blue lines) propagate ballistically (βnum

CE = βnum
m = 1) with different

velocities. The correlation edge is characterized by the spreading velocity V num
CE > 0 and the local

extrema by V num
m < 0. (b) Evolution of V num

CE and the corresponding theoretical value V th
CE = 2V ∗g

(twice the maximal group velocity) characterizing the spreading of the correlation edge together with
V num

m and V th
m = 2V ∗ϕ (twice the phase velocity at the quasimomentum k∗ where the group velocity is

maximal) for the spreading of the series of local extrema as a function of the power-law exponent α ≥ 2
(since the local regime of the z polarized phase is considered) defining the decay of the long-range spin
exchange couplings along the x axis. Figures extracted from Ref. [34].

previously. For the CE, one tracks the different activation times t∗, and for the inner structure,
one tracks several local extrema in the vicinity of the CE. By comparing the numerical and
theoretical velocities on Fig. 5.21(b), one can certify that both the CE and the series of local
extrema propagate ballistically at the velocity VCE ' 2V ∗g and Vm ' 2V ∗ϕ respectively. Indeed,
the maximal relative error between the numerical and theoretical velocities is around 10%.

We stress that this twofold linear causality cone for the correlation spreading in the local
regime of a quantum phase for a long-range interacting lattice model is reminiscent of the
one found for short-range interacting lattice models. Indeed, the local regime corresponds to
relatively high power-law exponents α so that the long-range interactions have a sufficiently
fast decay to be seen as relatively short-range interactions. Note that the discussion above
can be extended to other long-range lattice models and observables 2 with the assumption
that they can be cast into the generic form of Eq. (3.8). Their space-time pattern will display
a twofold linear causality cone where each structure will propagate into the lattice with the
velocity 2V ∗g and 2V ∗ϕ for the CE and the local extrema respectively. Besides, the twofold
linear causality cone characterized previously is expected to hold in the case of sudden global
quenches confined in the local regime of a gapless quantum phase for long-range lattice models.

2More precisely, the discussion can be extended to other equal-time connected correlation functions. Due to
the translational invariance of the pre- and post-quench Hamiltonians, one can not consider on-site observables
for which the spatial dependence will vanish.
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Figure 5.22: Spreading of the local magnetization for sudden local quenches in the local regime
of the z polarized phase. (a) t-MPS result of 1/2 − 〈ŜzR(t)〉 (lin-lin scale) for J/h = 2 × 10−2 and
α = 2.1 > 2 with a ballistic fit of the spin edge (SE) motion (solid green line). The spin-flip has been
applied on the central lattice site resulting in a locally perturbed initial state |Ψ0〉 ' |↑ ... ↑↓↑ ... ↑〉.
Note that the time-dependent expectation value 1/2− 〈ŜzR(t)〉 has been represented instead of 〈ŜzR(t)〉.
The latter allows us to get not only positive values confined in the interval [0, 1] but also zero values
in the non-causal region. (b) Spreading velocity VSE = V num

SE (green diamonds) extracted from the
numerical data by computing the slope associated to the ballistic fit to the SE motion, and comparison
to the theoretical prediction V th

SE = V ∗g (solid green line) as a function of the power-law exponent α > 2
at fixed exchange-to-field ratio J/h = 2× 10−2. Both velocities are given in units of the spin exchange
coupling J > 0 (~ = 1). Figure (b) extracted from Ref. [34].

5.4 Local magnetization in the z polarized phase

The local regime

In the following, while the local regime of the z polarized phase (α ≥ 2) is still considered,
we move to a numerical investigation of the far-from-equilibrium dynamics of the long-range
s = 1/2 transverse Ising chain induced by sudden local quenches. Firstly, the local spin (or
local magnetization) is studied before turning to an analysis of the entanglement spreading via
the computation of several entropy measures (Rényi entropies) in the next subsection.

For the different sudden local quenches considered here, the initial state preparation is
reminiscent of the one used in Chap. 4 at Subsec. 4.7.2. In this paragraph, we recall the
main steps of both the initial state preparation and the local quench protocol. We first
consider the Hamiltonian of the 1D LRTI model (deep in the z polarized phase) with a
small exchange-to-field ratio, J/h� 1. The initial state |Ψ0〉 for the sudden local quench is
built from the ground state |Ψgs〉 of Ĥ = Ĥ(J/h� 1), |Ψgs〉 ' |↑ ... ↑〉. Then, the previous
many-body quantum state is locally perturbed by flipping the central spin of the lattice
chain, |Ψ0〉 = Ŝ−Ns/2 |Ψgs〉 ' |↑ ... ↑↓↑ ... ↑〉 with Ns the number of lattice sites. This locally
perturbed initial state |Ψ0〉 evolves unitarily in time with respect to the same Hamiltonian, ie.
|Ψ(t)〉 = e−iĤt |Ψ0〉. Finally, the local quench dynamics of the lattice model is characterized
by computing the time-dependent expectation values of some relevant local observables, for
instance the local magnetization along the z axis (polarization axis of the quantum phase
considered here) represented mathematically by 〈Ψ(t)|ŜzR|Ψ(t)〉 = 〈Ψ0|ŜzR(t)|Ψ0〉.

Figure 5.22(a) shows a typical t-MPS result for the space-time local magnetization
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1/2−〈ŜzR(t)〉 for a sudden local quench in the local regime of the z polarized phase [α = 2.1 > 2
and J/h = 2×10−2]. The expectation values are represented as a function of the dimensionless
time tJ (~ = 1) and the distance R. As expected from its theoretical expression, the local
magnetization along the z axis displays a single linear structure fully characterized by a spin
edge (SE) spreading at the velocity VSE ' V ∗g (see discussion below 3). Indeed, by fitting
the motion of the SE using a ballistic (linear) ansatz [see solid green line on Fig. 5.22(a)]
in order to extract the corresponding velocity, we find V num

SE = (1.3 ± 0.1)J in very good
agreement with the theoretical velocity V ∗g ' 1.29J [see Fig. 5.22(b)]. We recall that V ∗g
corresponds to the maximal group velocity reached for a quasimomentum k∗ [hence defined
as V ∗g = Vg(k∗) = maxk[Vg(k)] = maxk(∂kEk)] and calculated from the excitation spectrum
Ek = 2

√
h[h+ JPα(k)] valid in the z polarized phase of the s = 1/2 LRTI chain.

On Fig. 5.22(b), different sudden local quenches confined in the local regime of the z
polarized phase are considered. They are defined by a same interaction parameter J/h =
2×10−2 while the power-law exponent α scans the interval [2, 3]. The spreading velocity V num

SE ,
extracted using the same technique as previously, is compared to the theoretical maximal group
velocity V ∗g . Both velocities, given in units of J , are in good agreement within the errorbars
coming from the ballistic fits. As a consequence, one can certify that the SE propagates
ballistically at the specific velocity VSE ' V ∗g . Similar results were found at Chap. 4 for
the same local observable in the case of the short-range s = 1/2 Heisenberg chain in the
ferromagnetic phase along the z axis.
Note that for large power-law exponents α in the local regime of the z polarized phase (α ≥ 3),
the SE velocity (as well as V ∗g ) converges toward the value J , see Fig. 5.22(b). The latter can
be understood from the excitation spectrum Ek of the short-range s = 1/2 transverse Ising
chain, ie. Ek = 2

√
h[h+ J cos(k)]. Indeed, by performing a Taylor expansion of Ek since

J/h� 1, one finds Ek ' 2h[1 + (J/2h) cos(k)]. Hence, the group velocity Vg(k) = ∂kEk can
be written as Vg(k) ' −J sin(k). Consequently, the maximal group velocity V ∗g is reached for
k∗ = −π/2 and it yields the value V ∗g ' J .

We now turn to an analysis of the analytical expression of the local magnetization along
the z axis. The aim is to explain its space-time pattern displaying a single structure [see
Fig. 5.22(a)] fully characterized by a SE (spin edge) propagating into the lattice with the velocity
V ∗g [see Fig. 5.22(b)]. According to the LSWT, the theoretical expression of 1/2 − 〈ŜzR(t)〉
may be written as (see Appendix. J for a complete derivation)

1/2− 〈ŜzR(t)〉 '
∣∣∣∣∣
∫
B

dk
2πF1(k)

{
ei[k(R−Ns/2)+Ekt] + e−i[k(R−Ns/2)−Ekt]

2

}∣∣∣∣∣
2

+
∣∣∣∣∣
∫
B

dk
2πF2(k)

{
ei[k(R−Ns/2)+Ekt] + e−i[k(R−Ns/2)−Ekt]

2

}∣∣∣∣∣
2

. (5.73)

Ns denotes the total number of lattice sites for the spin chain, F1(k) and F2(k) correspond
to two different quasimomentum-dependent amplitude functions,

3We point out that the theoretical expression of 1/2− 〈ŜzR(t)〉 deduced from the linear spin-wave theory
(see Appendix. J for more details) is in very good qualitative agreement with the numerical result displayed on
Fig. 5.22(a).
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F1(k) = 1
2

(Ak
Ek

+ 1
)

= 1
2

(
2h+ JPα(k)

2
√
h[h+ JPα(k)]

+ 1
)
, (5.74)

F2(k) = − Bk2Ek
= − JPα(k)

4
√
h[h+ JPα(k)]

, (5.75)

where Ek = 2
√
h[h+ JPα(k)] =

√
A2
k − B2

k with Ak = 2h + JPα(k) and Bk = JPα(k). The
quasimomentum k is confined in the first Brillouin zone B = [−π, π]. Equation (5.73) is
valid for a sudden local quench in the z polarized phase (both for the quasi-local and local
regimes) starting from the initial state |Ψ0〉 ' |↑ ... ↑↓↑ ... ↑〉. To characterize the SE and
its corresponding velocity, one has to investigate the asymptotic behavior of Eq. (5.73) by
considering the stationary phase approximation. In the following, we recall the main steps
of such approximation (see Appendix. A for more details). Considering the phase function
Φ(k) = −kR̃+ Ekt (R̃ = R−Ns/2) of the complex exponential at Eq. (5.73) with a positive
group velocity, the stationary-phase quasimomentum ksp has to fulfill the condition

Vg(ksp) = R̃/t > 0. (5.76)

Then, by performing an evaluation of Eq. (5.73) around this stationary point, it yields the
following asymptotic form for the local magnetization

1/2− 〈Ŝz
R̃

(t)〉 ∼
∣∣∣∣∣ F1(ksp)
(|∂2

kEksp |t)1/2

[
cos(kspR̃− Ekspt+ φ)− i sin(kspR̃− Ekspt+ φ)

]∣∣∣∣∣
2

+
∣∣∣∣∣ F2(ksp)
(|∂2

kEksp |t)1/2

[
cos(kspR̃− Ekspt+ φ)− i sin(kspR̃− Ekspt+ φ)

]∣∣∣∣∣
2

, (5.77)

where R̃ = R−Ns/2 and φ = −(π/4) sgn(∂2
kEkspt) is a constant phase term irrelevant for our

study. The local regime of the z polarized phase (α ≥ 2) implies both a finite quasiparticle
energy Ek and group velocity Vg(k) over the whole Brillouin zone B. Therefore, it exists a
quasimomentum k∗ such that the group velocity is maximal, ie. Vg(k∗) = maxk[Vg(k)]. As a
consequence, one can deduce that the SE is governed by the velocity V ∗g = Vg(k∗) according
to Eq. (5.76) for ksp = k∗. Besides, the inner structure of the causality cone in the vicinity
of the SE is determined by Eq. (5.77) for ksp = k∗. More precisely, considering the first
term of Eq. (5.77) with ksp = k∗, both the square of the real and imaginary parts have a SE
propagating ballistically with a velocity VSE = V ∗g . In the vicinity of the SE, the series of local
maxima spread at the velocity Vm = V ∗ϕ = Ek∗/k

∗ � 0, ie. at the phase velocity evaluated at
the quasimomentum k∗. Note that V ∗ϕ � 0 is due to the negative quasimomentum k∗ and the
large gap in the excitation spectrum Ek of the z polarized phase for a small exchange-to-field
ratio J/h. However, the space-time pattern of 〈ŜzR(t)〉 near the SE does not display the
expected twofold linear structure. Indeed, this is because the first term of Eq. (5.77) is the sum
of two contributions (square of the real and imaginary parts) which are shifted by half a period
and cancel each other 4. Consequently, we end up with a SE propagating at the same velocity
as the one associated to the local maxima when combining both contributions. In other words,
it yields for the space-time local magnetization a linear single structure characterized by the
sole SE velocity V ∗g .

4This statement is also valid for the second term of Eq. (5.77).
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To sum up, relying both on the LSWT and numerical calculations using the t-MPS +
TDVP technique, a linear single structure has been unveiled for the spreading of the local
magnetization in the local regime of the z polarized phase. This single structure is characterized
by a SE (spin edge) and local maxima propagating at the maximal group velocity, ie. V ∗g . For
large power-law exponents α in the local regime, this velocity converges towards the maximal
group velocity calculated from the excitation spectrum Ek of the short-range transverse Ising
(SRTI) model in the z polarized phase, ie. Ek = 2

√
h[h+ J cos(k)]. Since the space-time local

magnetization depends only on the maximal group velocity V ∗g , one should recover a similar
pattern between the LRTI chain with a large α in the local regime and the SRTI chain where
both quantum lattice models are characterized by a same and small exchange-to-field ratio J/h.
To verify such hypothesis, we have compared for an interaction parameter J/h = 2× 10−2 the
space-time pattern of the local magnetization using (i) Eq. (5.73) and the excitation spectrum
Ek = 2

√
h[h+ JPα(k)] of the 1D LRTI model in the z polarized phase at α = 3 (ii) the t-MPS

+ TDVP technique to simulate the previous long-range interacting quantum model for α = 3
and (iii) Eq. (5.73) and the excitation spectrum of the 1D SRTI model in the z polarized
phase. Knowing that the SRTI chain is considered for the case (iii), both amplitude functions
F1(k) and F2(k) have to be adapted since the quasimomentum-dependent functions Ak and
Bk are different from those valid for the LRTI chain. For the 1D SRTI model in the z polarized
phase, Ak = 2h+ J cos(k) and Bk = J cos(k) ∀k ∈ B, see Appendix. J for additional details.
As shown on Fig. 5.23, a qualitative agreement has been found between the three different
space-time patterns.

Note that the previous statements are not restricted to the sole local magnetization
〈ŜzR(t)〉 and still apply for other space-time local observables. Indeed, by performing the
same analysis as the one presented on Fig. 5.22(b) for the spin correlations along the z
axis (defined by the space-time expectation value 〈ŜzR(t)ŜzNs/2(t)〉), we have reached similar
conclusions. More precisely, the latter has been found to display a single linear structure fully
characterized by a CE (correlation edge) propagating at V ∗g for any power-law exponent α
such that the LRTI chain is confined in the local regime of the z polarized phase (see Fig. 5.24
for an example of the space-time pattern for the spin-spin correlation function 〈ŜzR(t)ŜzNs/2(t)〉).

By considering the local regime of the z polarized phase and according to the previous
discussion, the space-time pattern of local observables for sudden local quenches [see Fig. 5.22]
displays different features from the case of sudden global quenches [see Fig. 5.21]. Indeed,
for the sudden global quenches, a linear twofold structure has been unveiled where a CE
(correlation edge) and a series of local maxima spread linearly with the velocity 2V ∗g and 2V ∗ϕ
respectively. Note that another difference between both behaviors corresponds to the factor
two in the characteristic spreading velocities 5. The latter can be explained easily in terms
of quasiparticles propagating into the lattice. For sudden global quenches, the space-time
correlations are governed by free counter-propagating quasiparticle pairs [see Fig. 3.3]. However,
in the case of sudden local quenches, the causality cone associated to the space-time pattern
of local observables is governed by individual quasiparticles emitted from the reference lattice
site 6. Note that this factor 2 for the characteristic spreading velocities between global and
local quantum quenches was expected. Indeed, the generic form of the correlation functions

5Concerning the single structure of the local magnetization (already explained previously), we have shown
that it corresponds to the sum of two contributions having a twofold linear structure where the SE and the
local maxima propagate at the velocity V ∗g and V ∗ϕ respectively.

6The reference lattice site refers to the one where the local perturbation has been applied.
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Figure 5.23: Spreading of the local magnetization 1/2−〈ŜzR(t)〉 for a sudden local quench defined by
the locally-perturbed initial state |Ψ0〉 ' |↑ ... ↑↓↑ ... ↑〉 evolving unitarily in time with the Hamiltonian
Ĥ of the LRTI or SRTI chain (lin-lin scale). Both spin lattice models are confined in the z polarized
phase and characterized by a same exchange-to-field ratio J/h = 2× 10−2. (a) t-MPS + TDVP result
for the long-range transverse Ising chain deep in the local regime of the z polarized phase for α = 3
with a ballistic fit of the spin edge motion (see solid green line and Fig. 5.22(b) for the corresponding
velocity). (b) Analytical result for the previous long-range interacting lattice model with α = 3 deduced
from the linear spin-wave theory, see Eq. (5.73). (c) Analytical result for the short-range transverse
Ising chain in the z polarized phase, see Eq. (5.73) with Ek = 2

√
h[h+ J cos(k)] =

√
A2
k − B2

k where
Ak = 2h + J cos(k) and Bk = J cos(k). A perfect agreement between the three different space-time
patterns is found. Figures extracted from Ref. [34].

for sudden global quenches [see Eq. (3.8)] depends only on the quasiparticle pair energy 2Ek,
contrary to the one of the expectation value of space-time dependent on-site observables for
sudden local quenches where only the individual-quasiparticle energy Ek is relevant [see for
instance Eq. (5.73) and Eq. (4.84)].

The quasi-local regime

To conclude the analysis of the space-time local magnetization for sudden local quenches in the
z polarized phase of the 1D LRTI model, we point out that the quasi-local regime 7 implying a
finite quasiparticle energy Ek and a divergence of the group velocity Vg(k) in the first Brillouin
zone has also been investigated. To do so, a same initial state preparation as the one considered

7The latter requires for the power-law exponent α to fulfill the condition 1 ≤ α < 2 for the 1D LRTI model
confined in the gapped z polarized phase.
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Figure 5.24: Spreading of the spin correlations along the z axis 〈ŜzR(t)ŜzNs/2(t)〉 for a sudden local
quench in the local regime of the z polarized phase (lin-lin scale). The space-time spin correlations
have been computed using the t-MPS + TDVP technique for J/h = 2× 10−2 and α = 2.1 > 2 for a
locally perturbed initial state |Ψ0〉 ' |↑ ... ↑↓↑ ... ↑〉. The solid green line represents a ballistic fit to
the motion of the CE (correlation edge). The associated slope V num

CE has been found to be in excellent
agreement both with the numerical spin edge velocity V num

SE and the theoretical maximal group velocity
V ∗g (see Fig. 5.22(b) for the values of V num

SE and V ∗g ). Note that contrary to the local magnetization the
spin correlations display another time-dependent term irrelevant for our study, see Fig. 5.22(a).

previously for the characterization of the local magnetization in the local regime has been
considered. One recalls that the latter leads to the locally perturbed many-body quantum
state |Ψ0〉 ' |↑ ... ↑↓↑ ... ↑〉. The main result of this study is that similarly to the correlation
spreading for sudden global quenches confined in the quasi-local regime of the z polarized
phase, the SE associated to the space-time pattern of the local magnetization propagates sub-
ballistically ie. t ∼ RβSE with βSE > 1. More precisely, we found that βSE = βCE = 3− α > 1
for 1 ≤ α < 2, see Ref. [34] for more details. While still considering sudden local quenches
confined in the quasi-local regime of the z polarized phase for the 1D LRTI model, the previous
statements have been found to be valid for another local observable, namely the equal-time
spin correlator along the z axis defined as 〈ŜzR(t)ŜzNs/2(t)〉. The latter confirms the existence of
a sub-ballistic motion of the edge for the spreading of space-time dependent local observables
for both sudden global and local quantum quenches confined in the gapped phase of long-range
interacting lattice models.

5.5 Entanglement spreading in the z polarized phase

The local regime

In the following, the local regime of the z polarized phase for the long-range transverse
Ising chain is still considered. Besides, we rely on a same initial state preparation as the
one presented at Sec. 5.4 leading to the many-body quantum state |Ψ0〉 ' |↑ ... ↑↓↑ ... ↑〉.
However, we turn to an analysis of the propagation of entanglement via a study of the
n-order (n ∈ R+\{1}) Rényi entropy defined as

Sn(R, t) = 1
1− n log {Tr [ρ̂n(R, t)]} . (5.78)
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ρ̂(R, t) = TrR̄ [ρ̂(t)] = TrR̄ (|Ψ(t)〉 〈Ψ(t)|) denotes the reduced density matrix at time t of
the subsystem built from the first R lattice sites. The latter is found by tracing out all the
degrees of freedom of the complementary subsystem R̄ = {R+ 1, ..., Ns}. In the following, the
space-time behavior of three Rényi entropies are characterized ie. Sn=1/2(R, t), Sn=2(R, t) and
Sn→1(R, t). The latter corresponds to the von Neumann entropy which may be written as

Sn→1(R, t) = −Tr {ρ̂(R, t)log [ρ̂(R, t)]} . (5.79)

These three different entropy measures correspond to three different possibilities to characterize
the amount of entanglement between two subsystems of a bipartite quantum model. We refer
the reader to the Appendix. K for more details about the definition and properties of the von
Neumann and Rényi entropies. The main purpose of the following discussion is to compare
the entanglement spreading with the correlation spreading for sudden local quenches.

Figures 5.25(a,b,c) show typical t-MPS results 8 for the three considered Rényi entropies
for a sudden local quench in the local regime of the z polarized phase (α = 2.1 > 2 and
J/h = 2× 10−2). The space-time patterns are represented as a function of the dimensionless
time tJ (~ = 1) and the distance R (in a lin-lin scale). Each of them displays a linear causality
cone, starting from the reference site Ns/2 where the local perturbation has been applied, as
expected from the Lieb-Robinson bound. Note that the latter do not show a series of local
maxima for their inner structure contrary to the local magnetization, see Fig. 5.22(a). Hence,
the causality cones are fully characterized by an entropy edge (EE) whose ballistic motion has
been fitted [see solid green line on Fig. 5.25(a,b,c)]. For the three considered Rényi entropies,
the corresponding velocity V num

EE,n is found to be in good agreement with the theoretical maximal
group velocity V ∗g . Indeed, for α = 2.1, we find V num

EE,n = (1.25± 0.1)J for n = 1/2, 2 and n→ 1
close to the velocity V ∗g ' 1.29J .

On Fig. 5.25(d), several sudden local quenches confined in the local regime of the z polarized
phase are considered. They are defined by a same small exchange-to-field ratio J/h = 2× 10−2

while the power-law exponent α scans the interval [2, 3]. The spreading velocities V num
EE,n/J

are represented as a function of the power-law exponent α and compared to the theoretical
maximal group velocity V ∗g calculated from the excitation spectrum Ek of the LRTI chain
in the z polarized phase, ie. Ek = 2

√
h[h+ JPα(k)]. The numerical velocities V num

EE,n are
extracted from the t-MPS data using the same technique as previously (by considering a
ballistic fit to track the motion of the EE). According to the results reported on Fig. 5.25(d),
these velocities are in good agreement with the theoretical maximal group velocity V ∗g . As a
consequence, one can claim that the EE propagates linearly with a velocity VEE,n ' V ∗g , at
least for n ∈ {1/2, 2} and n→ 1. Hence, one can stress that the entropy edge (EE) behavior is
similar to the one for the spin (SE) [see Fig. 5.22(b)] and correlation (CE) edges [see Fig. 5.24
and discussion at Sec. 5.4]. This important result can be interpreted in the following manner :
just after the sudden local quench, all the quasiparticles (for any quasimomentum k in the
first Brillouin zone) are emitted and spread into the lattice. For the local regime, only the
quasiparticle with the highest group velocity (V ∗g ) is relevant to describe the edge separating
the causal and non-causal regions. This allows us to explain the motion of both the SE and
CE. Besides, these quasiparticles spreading into the lattice are also expected to carry the
entanglement. Consequently, the entanglement spreading properties should be similar to those
for the correlation spreading, at least concerning the edge.

8Note that according to the isometric gauge considered in the t-MPS + TDVP simulations, the reduced
density matrix is directly given by the left gauge-fixing condition, see Fig. 5.6(a).
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Figure 5.25: Spreading of several Rényi entropies for sudden local quenches in the local regime of
the z polarized phase (α ≥ 2). (a) t-MPS result of the n = 1/2 order Rényi entropy Sn=1/2(R, t)
(b) von Neumann entropy Sn→1(R, t) (c) the n = 2 order Rényi entropy Sn=2(R, t) (lin-lin scale) for
J/h = 2 × 10−2 and α = 2.1 > 2. The sudden local quench is characterized by a local perturbation
(a spin-flip) applied on the central lattice site resulting in an initial state |Ψ0〉 ' |↑ ... ↑↓↑ ... ↑〉. On
Figs. (a,b,c), the solid green lines correspond to a ballistic fit of the motion of the EE (entropy edge)
whose corresponding velocities are reported on Fig. (d). (d) Spreading velocities VEE of the entropy
edge for the Rényi entropies of order n = 1/2 (grey rectangles), n = 2 (purple triangles) and for the von
Neumann entropy (n→ 1, red dots) extracted from the t-MPS data, and comparison to the theoretical
maximal group velocity V ∗g = maxk(∂kEk) (solid green line). Ek refers to the excitation spectrum of
the LRTI chain in the gapped z polarized phase. Figures extracted from Ref. [34].

5.6 Correlation spreading in the long-range XY chain

The quasi-local regime of the x polarized phase

In the following, the purpose is to verify numerically the theoretical scaling laws of the
correlation spreading for a long-range interacting lattice model in the quasi-local regime of a
gapless quantum phase. For this context and considering any space-time correlation function
fulfilling the generic form presented at Eq. (3.8), we unveiled a twofold algebraic structure
displaying (i) a correlation edge (CE), separating both the causal and non-causal region of
correlations and spreading sub-ballistically (t ∼ RβCE , βCE > 1) (ii) but also a series of local
extrema in the vicinity of the CE propagating super-ballistically (t ∼ Rβm , βm < 1), see
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Sec. 3.3 for a detailed discussion and Tab. 3.1 for a summary of the scaling laws. To verify the
previous scaling laws, using the MPS + TDVP technique presented at Sec. 5.2, we turn to a
numerical investigation of the correlation spreading in the quasi-local regime of the gapless x
polarized phase for the long-range s = 1/2 XY chain, see also the finite automata at Fig. 5.3
in order to construct the MPO form of the corresponding Hamiltonian.

In order to characterize the far-from-equilibrium dynamics of the LRXY chain in the
quasi-local regime of the x polarized phase, a sudden global quench is considered. It is
defined by a pre- and post-quench antiferromagnetic interaction parameter along the z axis
fulfilling −1 < εi < εc(α) (1D LRXXZ model) and εf = 0 (1D LRXY model) respectively,
see Eq. (3.60) for the Hamiltonian of the 1D LRXXZ model. The power-law exponent α is
fixed and confined in the interval α ∈ [1, 3[ so that the quasi-local regime of the x polarized
phase (for the LRTI chain) is considered to perform the real time evolution. Besides, the
connected spin-spin correlation function along the z axis, denoted by Gz, are investigated.
The latter reads as Gz(R, t) = Gz,0(R, t) − Gz,0(R, 0) with

Gz,0(R, t) = 〈ŜzR(t)Ŝz0(t)〉 − 〈ŜzR(t)〉〈Ŝz0(t)〉. (5.80)

We already have shown that the Gz spin-spin correlations can be expressed in the generic form
of Eq. (3.8), with a quasimomentum-dependent amplitude function F defined at Eq. (3.68)
[see also Appendix. F]. Then, to extract both exponents βCE and βm associated to the scaling
law for the CE and the series of local extrema respectively, it requires to evaluate both the
amplitude function F and the excitation spectrum Ek [see Eq. (3.65)] in the infrared limit
k → 0+ to deduce the coefficients ν and z respectively (see Sec. 3.3 for more details). Indeed,
for the quasi-local regime of gapped or gapless quantum phases, the space-time pattern of the
equal-time connected correlation functions is governed by all the quasiparticles spreading with
a positive 9 and divergent group velocity in the vicinity of the CE. In other words, only the
quasiparticles with a quasimomentum in the infrared limit k → 0+ (according to the shape of
the excitation spectrum Ek of the gapless x polarized phase, see for instance Fig. 3.11) are
relevant to describe the space-time behavior of the correlations close to the CE. We found that
the amplitude function scales as F(k) ∼ kν with ν = z = (α− 1)/2. Finally, concerning the
spin-spin correlations along the z axis for the LRXY chain in the quasi-local regime of the x
polarized phase, we obtain ν = z = (α− 1)/2 which yields according to Eqs. (3.53) and (3.52)

βCE = χ

γ
= 1 + (3− α) /2α > 1, βm = z = (α− 1)/2 < 1, ∀α ∈ [1, 3[. (5.81)

On Fig. 5.26(a), we display a typical t-MPS result for Gz(R, t), the space-time spin-spin
correlations along the z axis, as a function of the distance R and the dimensionless time tJ
(~ = 1). The space-time spin-spin correlations feature a double algebraic structure (straight
lines in log-log scale) with a sub-ballistic correlation edge (see solid green line for a linear fit
to the CE motion) and a super-ballistic spreading of the series of local extrema (see dashed
blue lines for linear fits to the motion of one local maxima and minima). The exponents βnum

CE
and βnum

m are deduced by computing the slope of the linear fit to the CE and the minima

9Indeed, only the quasiparticles with a positive group velocity are relevant since the region R, t > 0 of the
space-time plane is considered in the following. Straightforwardly, the space-time pattern in the region R < 0
and t > 0 can be deduced from the symmetry R→ −R (note the symmetry k → −k of the excitation spectrum
Ek meaning that a quasiparticle at quasimomentum k and −k have a similar energy and an opposite group
velocity). For the latter, only the quasiparticles with a negative group velocity are relevant.
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Figure 5.26: Spreading of the connected spin-spin correlation function Gz(R, t) = Gz,0(R, t) −
Gz,0(R, 0) with Gz,0(R, t) = 〈ŜzR(t)Ŝz0 (t)〉 − 〈ŜzR(t)〉〈Ŝz0 (t)〉 for the 1D LRXY model. (a) t-MPS
result for a sudden global quench confined in the x polarized phase from the ground state of the 1D
LRXXZ model at εi = 0.2 to the 1D LRXY model (εf = 0) in the quasi-local regime at α = 2.3. The
space-time spin-spin correlations feature a double algebraic structure (straight lines in log-log scale)
with a sub-ballistic correlation edge (see solid green line for a linear fit to the CE motion) and a
super-ballistic spreading of the series of local extrema (see dashed blue lines for linear fits to the motion
of one local maxima and minima). The exponents βnum

CE and βnum
m are deduced by computing the slope

of the linear fit to the CE and the minima and/or maxima motions respectively. (b) Evolution of
βnum

CE and its corresponding theoretical value βth
CE [see Eq. (5.81)] characterizing the spreading of the

correlation edge with βnum
m and βth

m [see also Eq. (5.81)] determining the spreading of the series of local
extrema as a function of the power-law exponent α ∈ [1, 3[ (quasi-local regime of the x polarized phase
for the LRXY chain).

and/or maxima motions respectively. In the following, we discuss in more details the twofold
algebraic structure for the Gz space-time spin fluctuations along the z axis.

In practice, the motion of the CE is deduced by tracking the points in the R − t plane
where the correlations reach several percents of the maximal value. Then, these points are
fitted via a ballistic (linear) fit whose slope gives access to βnum

CE . For instance at α = 2.3, it
yields the solid green line on Fig. 5.26(a). The latter features a linear trajectory in the log-log
scale corresponding to a power law behavior in the lin-lin scale. By computing the slope of
the solid green line, we find βnum

CE = 1.25± 0.1 in very good agreement with the theoretical
prediction βth

CE ' 1.15.

Concerning the inner structure of Gz in the vicinity of the CE, the spreading of the series of
local extrema is analyzed by fitting them using an ansatz of the form tm = aRβ

num
m +b. It yields

the dashed blue lines on Fig. 5.26(a). Once again, the latter feature a linear trajectory in the
log-log scale corresponding to a power-law behavior in the lin-lin scale. As previously for the
CE, by computing their slope, one has access to the spreading exponent βnum

m characterizing
numerically the scaling law of the inner structure (the series of local extrema). For the example
displayed on Fig. 5.26(a), we find βnum

m = 0.60± 0.06 which is also in very good agreement
with the theoretical exponent βth

m = 0.65.

On Fig. 5.26(b), the evolution of the theoretical exponents (βth
CE, βth

m ) and those extracted
from the t-MPS data (βnum

CE , βnum
m ) as a function of the power-law exponent α is investigated.

The power-law exponent α is contained in the interval [1, 3[ so that the LRXY chain is in the
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quasi-local regime of the x polarized phase. Besides, the pre- and post-quench antiferromagnetic
interaction parameters are fixed and characterized by the value εi = 0.2 and εf = 0 respectively.
As shown on Fig. 5.26(b), the numerical exponents confirm the theoretical scaling laws for
the correlation spreading in long-range lattice models confined in the quasi-local regime of
a gapless phase. More precisely, they show clearly a sub-ballistic propagation of the CE
(βCE > 1) and a super-ballistic propagation of the series of local extrema (βm < 1). Note that
for large α in the quasi-local regime of the x polarized phase (α . 3), both the numerical
and theoretical spreading exponents converge towards β = 1. For these typical values of α,
the LRXY chain is close to the local regime of the x polarized phase where a twofold linear
structure is expected for the space-time spin-spin correlation function. The latter is expected
to be defined by a CE propagating at the velocity 2V ∗g (twice the maximal group velocity) and
a series of local extrema, in the vicinity of this CE, spreading at 2V ∗ϕ (twice the phase velocity
at k∗, quasimomentum for which the group velocity is maximal). According to the shape of
Ek the gapless excitation spectrum of the LRXY chain in the local regime of the x polarized
phase [see Fig. 3.11(a)], the quasiparticles having a small quasimomentum k (k → 0+) are
those spreading with the highest group velocity [see Fig. 3.11(b)]. Since Ek is gapless and
displays a phononic-like (quasi-linear) behavior in the limit k → 0+, both the group and
phase velocities are almost equal (V ∗g ' V ∗ϕ ). As a consequence, the space-time pattern of the
spin-spin correlations along the z axis should display a single linear structure where both the
CE and the series of local extrema propagate with a similar velocity. These statements have
been verified analytically by investigating the causality cone of the spin fluctuations Gz for a
sudden global quench where the post-quench Hamiltonian (Hamiltonian of the LRXY chain)
is confined in the local regime of the x polarized phase (see Appendix. F for the theoretical
expression of Gz).

To sum up, relying on both the t-MPS + TDVP numerical technique and our quasiparticle
approach, we have shed new light on the quench dynamics for long-range interacting lattice
models.
Working within the case study of the long-range transverse Ising chain, we first verified
numerically, for sudden global quenches, the theoretical predictions concerning the scaling laws
of the twofold algebraic structure displayed by the space-time correlations in the quasi-local
regime of a gapped phase. We confirmed the existence of a sub-ballistic motion for the CE
(correlation edge), t ∼ RβCE with βCE > 1, and a ballistic spreading of the series of local
maxima, t ∼ Rβm , βm = 1.
The previous discussion on the correlation spreading has also been extended to the local regime
where a twofold linear structure was expected. This theoretical prediction has been verified as
well as the associated spreading velocities. Indeed, we found that the CE spreads ballistically
with the velocity VCE ' 2V ∗g and the series of local maxima with Vm ' 2V ∗ϕ . This behavior of
the causality cone is reminiscent of the one found (theoretically at Chap. 3 and numerically
at Chap. 4) for short-range interacting lattice models in a gapped or gapless quantum phase.
The latter is due to the suppression of the divergence for the group velocity allowing us to
define a maximal group velocity.
Then, we turned to a numerical analysis of several relevant physical quantities for sudden
local quenches, while still considering the LRTI chain in the local regime of the gapped z
polarized phase. We first investigated the space-time local magnetization where a single
ballistic structure has been unveiled. It is characterized by a SE (spin edge) and a series of
local extrema propagating at the maximal group velocity, ie. VSE ' Vm ' V ∗g . Then, we
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analyzed the entanglement spreading via the study of several space-time Rényi entropies in
the local regime of the z polarized phase. For each of them, we found a similar causality cone
fully characterized by an EE (entropy edge) spreading ballistically with the same velocity as
previously, ie. VEE ' V ∗g .
Finally, we moved on another long-range interacting lattice model, namely the long-range XY
chain where the quasi-local regime of the gapless x polarized phase has been considered. The
purpose was to verify the theoretical scaling laws of the twofold algebraic structure for the
correlation spreading for the quasi-local regime of gapless quantum phases. Relying on the
t-MPS + TDVP numerical approach, we have confirmed both the existence of a sub-ballistic
motion of the CE and a super-ballistic spreading of the local maxima.

Note that there are several interesting extensions to this research work regarding the
correlation spreading in isolated lattice models. For instance, a first possibility is to investigate
numerically the correlation spreading in short- and long-range interacting lattice models in
higher dimensions. The main purpose would be to verify our theoretical predictions concerning
the scaling laws (and more precisely the spreading velocities for the short-range case) of the
twofold structure for the causality cone. A second extension would be to consider open lattice
models (interacting with their environment) and to know whether our theoretical scaling
laws for the correlation spreading are modified or not.
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“Ends are not bad things, they just mean that something
else is about to begin. And there are many things that
don’t really end, anyway, they just begin again in a new
way. Ends are not bad and many ends aren’t really an
ending; some things are never-ending.”

— C. JoyBell C.

6
Conclusion

In this thesis, we have investigated theoretically and numerically the spreading of quantum
correlations in isolated lattice models with short- or long-range interactions. The latter are
driven far from equilibrium via sudden global or local quenches. Such research topic is at the
center of many fundamental phenomena occuring in the framework of the far-from-equilibrium
dynamics in quantum mechanics, including the propagation of information and entanglement,
the relaxation and thermalization processes. Furthermore, a main motivation for this specific
study is due to the conflicting results in the literature concerning the scaling laws of the
correlation edge (CE) also called light-cone edge, its lack of universality and the incompleteness
of the existing physical pictures to fully characterize the propagation of quantum correlations.

In order to give a general and complete description of the correlation spreading induced by
sudden global quenches, we have introduced a quasiparticle approach relying both on a mean
field approximation and the bosonic Bogolyubov theory, which is applicable to short-range
and long-range interacting bosonic and spin lattice models on a hypercubic lattice. The latter
has permitted to unveil a generic form of the equal-time connected correlation functions whose
space-time pattern has been analyzed within stationary phase arguments. We have revealed a
universal twofold structure for the causality cone of the quantum correlations, ie. an outer
and inner structure determining the CE and the propagation of local extrema respectively.
For short-range interacting quantum lattice models, they are readily associated to the group
and phase velocities at k∗, the quasimomentum where the group velocity reaches its maximum.
More precisely, while the CE propagates ballistically at twice the maximal group velocity
(2V ∗g ), the series of local extrema located in its vicinity will spread linearly with twice the
phase velocity at the quasimomentum where the group velocity is maximal (2V ∗ϕ ). Since these
characteristic velocities generally differ, the correlation spreading in short-range lattice models
is fully characterized by a twofold linear structure.
For long-range quantum systems with fast decaying long-range interactions, defining the
so-called the local regime, the correlation spreading is identical to the case of short-range
interactions. The causality cone is characterized by a twofold linear structure, a CE and a
series of local extrema in its vicinity spreading ballistically with twice the maximal group
velocity and twice the phase velocity at k∗ respectively. However, for long-range quantum
systems with intermediate-range interactions, defining the so-called quasi-local regime, the
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correlation spreading and more precisely the scaling laws of its associated twofold structure
are drastically different. By relying on our quasiparticle approach together with the stationary
phase approximation, the spreading of the CE is found to depend not only on the observable
but also on the decay of the long-range interactions and on the dimensionality of the lattice.
Nevertheless, a general feature concerning the propagation of the CE has been unveiled. Indeed,
independently of whether the excitation spectrum is gapped or gapless, the CE spreads always
sub-ballistically, ie. slower than ballistically. However, in the vicinity of the CE, the series of
local extrema propagate ballistically in gapped systems contrary to the gapless case where the
extrema spread super-ballistically, ie. faster than ballistically. For the latter, the motion of the
extrema is fully determined by the quasimomentum-dependence of the excitation spectrum
depending on the decay of the power-law interactions and on the lattice dimensionality.
For the case of short-range interactions, the theoretical predictions are confirmed by a detailed
study of the one-dimensional (1D) Bose-Hubbard model in both the gapped Mott-insulating
and gapless superfluid phases. To do so, the equal-time connected one-body (G1) and density-
density (G2) correlation functions have been derived analytically. For long-range interactions,
the scaling laws predicted by our quasiparticle approach are verified for two different one-
dimensional long-range interacting s = 1/2 spin lattice models, namely the XY chain in the x
polarized phase and the transverse Ising chain in the z polarized phase corresponding to a
gapless and a gapped quantum system respectively. For these long-range quantum systems,
the analytical expression of equal-time connected spin-spin correlation functions have been
calculated.

Another important research work presented in this manuscript has been devoted to a
numerical investigation of the correlation spreading induced by sudden global quenches in the
short-range interacting lattice model considered previously, the Bose-Hubbard chain. The
purpose of this study is twofold. On the one hand, we aim at testing the theoretical predictions
of our quasiparticle approach against a numerically exact approach, beyond the mean field
approximation. On the other hand, we aim at extending the general picture to quantum
regimes that are not amenable to analytic treatments.
Relying on the time-dependent matrix product state (t-MPS) approach, our numerical
results fully confirm the analytical predictions provided by our quasiparticle approach in
their respective regimes of validity, namely in the superfluid mean field regime and deep in the
Mott-insulating phase. More generally, we have presented evidence of a universal twofold linear
dynamics in the spreading of correlations for this bosonic lattice model. Indeed, this twofold
linear structure for the causality cone of the quantum correlations has been found in all the
phases and regimes of the bosonic model and for different relevant observables, namely the G1
and G2 correlation functions characterizing the phase and density fluctuations respectively.
Exceptions appear only in a few cases, for instance (i) for specific observables in specific
regimes, e.g. the G2 correlations in the strongly interacting regime of the Mott-insulating
phase, or (ii) when the two velocities are (almost) equal, as found at the critical points of the
Mott-U and Mott-δ transitions for instance.

We also have extended the study to sudden local quenches. This investigation has been
performed both theoretically and numerically by relying on the same methods as above
(quasiparticle theory and t-MPS numerical approach) for two distinct one-dimensional short-
range interacting lattice models. The latter are the Bose-Hubbard chain confined deep in the
Mott-insulating phase and the s = 1/2 Heisenberg chain in the ferromagnetic phase along the
z axis to treat the case of a gapped and a gapless quantum system respectively. Furthermore,
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to characterize the local quench dynamics, on-site observables have been investigated, e.g. the
local density for the bosonic lattice chain and the local magnetization for the s = 1/2 spin
chain.
For both cases, the space-time pattern has been found to display not only a causal and a
non-causal region separated by an edge propagating ballistically but also a series of local
extrema in the vicinity of this edge which also spread linearly. At this stage, the previous
properties are reminiscent of those for sudden global quenches. However, for sudden local
quenches, the space-time pattern displays a single linear structure implying that the edge and
the series of local extrema propagate with the same velocity. Besides, the spreading velocity
of the edge, and thus the one for the extrema, is not characterized anymore by twice the
maximal group velocity 2V ∗g but by V ∗g . Indeed, while for sudden global quenches, the causality
cone is governed by free and counterpropagating quasiparticle excitation pairs, for sudden
local quenches, it is governed by the spreading of individual quasiparticles. Consequently, the
motion associated to the edge is governed by the fastest individual quasiparticle leading to the
spreading velocity V ∗g . The previous statements also apply to other quantum lattice models such
as the short-range Ising model and for different local observables, e.g. the spin-spin correlations.

Our investigations related to the local and global quench dynamics in short-range lattice
models have been extended to the case of long-range quantum systems, where the long-range
interactions are characterized by a decaying power-law function of the form 1/|R|α, such as
s = 1/2 spin lattice models realized in trapped-ion experiments. In such quantum systems, a
possible divergence of the group velocity can be generated by tuning the power-law exponent
α defining the decay of the long-range interactions. Such divergence defining the so-called
quasi-local regime 1 requires intermediate-range interactions, ie. a relatively small value of α.
For this regime and for sudden global quenches, our quasiparticle approach still predicts a
twofold dynamics whose CE and local maxima do not propagate ballistically anymore but
algebraically. In this case, it is characterized by the coexistence of a super-ballistic (for gapless
systems) or ballistic (gapped case) signal for the series of local extrema and a sub-ballistic
one for the CE. These statements have been verified numerically by considering two distinct
long-range interacting s = 1/2 spin lattice models, namely the long-range XY chain in the x
polarized phase and the long-range transverse Ising chain in the z polarized phase to treat the
case of a gapless and gapped model respectively.
Using the t-MPS approach within the time-dependent variational principle (TDVP), we have
not only shed new light on the still debated scaling of the light-cone boundary but also on the
presence of a second structure consisting of a series of local extrema. Besides, our numerical
results have confirmed the analytical predictions provided by our quasiparticle approach
concerning the scaling laws of the twofold algebraic structure. For both long-range spin lattice
models, we also have shown that the motion of the CE and the local extrema converge towards
a ballistic propagation when increasing α.

Furthermore, this numerical investigation has been extended to the local regime. The
latter requires fast decaying long-range interactions, ie. a relatively large value of α, and is
characterized by a well-defined maximal group velocity. Within the case study of the 1D LRTI
model in the gapped z polarized phase, the numerical results have confirmed the presence of a
twofold linear structure for the correlation spreading predicted by our generic quasiparticle
approach and suggested by the previous numerical study in the quasi-local regime. The latter

1In the present discussion and in the following ones, the quasiparticle energy is assumed to be always
bounded within the first Brillouin zone.
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consists of a CE and a series of local extrema propagating ballistically with the velocity 2V ∗g
and 2V ∗ϕ respectively. This specific behavior of the causality cone for the correlation spreading
is reminiscent of the one for short-range interacting lattice models and can be explained by
the divergence suppression of the group velocity in the local regime.

While still considering the one-dimensional long-range transverse Ising model in the local
regime of the z polarized phase, we also have performed a numerical investigation of the
correlation and entanglement spreading for a dynamics induced via sudden local quenches.
We first investigated the space-time local magnetization and spin-spin correlations where a
single ballistic structure has been found. Both the SE (spin edge) for the local magnetization
or the CE for the spin correlations and the associated series of local extrema propagate at the
maximal group velocity V ∗g .
Then, we analyzed the information spreading via the study of several space-time Rényi entropies.
For each of them, we found a similar causality cone fully characterized by an EE (entropy
edge) spreading ballistically with the same velocity as previously, ie. V ∗g . Such causality cone
is also reminiscent of the one for the spreading of entanglement in short-range interacting
lattice models and is thus consistent with the Lieb-Robinson bound.

After completion of this manuscript, we have extended this numerical study to the quasi-
local regime. The main message is that, for the spreading of correlations and entanglement, we
find a sub-ballistic motion of the CE and EE respectively. Note that such sub-ballistic motion
is also valid for the SE associated to the space-time pattern of the local magnetization. To
conclude, this slower-than-ballistic propagation of the CE and EE for sudden local quenches is
similar to the one for the correlation spreading induced via sudden global quenches and
thus can be considered as a generic property of the quench dynamics in isolated long-
range interacting lattice models.

Outlook and perspectives

This research work devoted to a better understanding of the quench dynamics in isolated
quantum lattice models can be extended towards several directions.

An important extension would be to verify experimentally the theoretical predictions of our
quasiparticle approach for the correlation spreading in one-dimensional short- and long-range
interacting quantum lattice models.
For short-range interacting models, the purpose would be to confirm the presence of a twofold
linear structure and the associated spreading velocities. Indeed, while in most experiments and
numerics the CE is inferred from the behavior of the correlation maxima, our results stress that
the two must be distinguished. This is expected to be a general feature of short-range systems.
Such experimental study can be performed on the Bose-Hubbard chain using ultracold Bose
gases loaded in optical lattices, where the dynamics of the phase and density correlations
can be observed on relevant space and time scales comparable to those considered in our
simulations.
For long-range interacting models with intermediate-range interactions, the twofold algebraic
structure for the propagation of quantum correlations can also be observed experimentally by
investigating for instance the spin correlations in cold ion chains. Our analysis provides the
first step of an important research problem that aims at unveiling the physical information
encoded in correlation spreading and how this can be extracted in the next generation of
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experiments. Besides, our theory shows that in generic experiments, characterizing the
spreading of correlations for both particle and spin lattice models, the data need to be
interpreted carefully. As discussed previously, the propagation of local extrema does not
characterize the correlation edge at all. Both are independent and rely on different physical
properties of the isolated lattice model. For instance, identifying the latter requires an accurate
scaling analysis of the leaks and to consider relatively large length chains, ie. having several
decades of sites.

Furthermore, since our quasiparticle approach is very general and is expected to hold to
describe the correlation spreading in a large class of isolated quantum lattice models, there are
different research works to perform in order to test and to possibly extend its validity.
For instance, a possible extension would be to investigate the correlation spreading in isolated
interacting quantum models for a dimensionality of the lattice higher than one. The main
purpose would consist of verifying our theoretical predictions concerning the scaling laws and
spreading velocities for the propagation of quantum correlations in long-range and short-range
interacting lattice models respectively on a square or cubic lattice. This study can be performed
not only numerically using tensor network techniques or the time-dependent variational Monte-
Carlo approach, at least for the two-dimensional case, but also experimentally using for example
ultracold Bose gases loaded in a two-dimensional or three-dimensional optical lattice.
A second extension would concern the generic form of the equal-time correlation functions and
more precisely to know if the latter holds to describe accurately the correlation spreading in
both short- and long-range fermionic lattice models driven far from equilibrium via sudden
global quenches. The generic approach to deal with this problem will be substantially similar
to the one used for bosonic lattice models. The main difference is to replace the quadratic
Bose form for the generic Hamiltonian by a quadratic Fermi form and to rely on the fermionic
Bogolyubov theory.
And last but not least, another extension would be to consider open lattice models which are
coupled to their environment and to know whether the theoretical scaling laws provided by
our quasiparticle approach for the correlation spreading are modified or not.

As pointed out previously, another research direction consists of unveiling the physical
information encoded in correlation spreading and how this can be extracted in the next
generation of experiments. More precisely, the latter aims at extracting equilibrium properties
of a quantum system via the study of its quench dynamics.
For instance, we have shown in this manuscript that the structure of the quantum correlations
in the vicinity of the causal edge can be related to basic properties of the elementary excitations
of the quench Hamiltonian. This includes characteristic velocities (2V ∗g , 2V ∗ϕ ) for short-range
lattice models and long-range lattice models with fastly-decaying interactions or again the
quasimomentum dependence of the excitation spectrum 2 and the presence of a gap 3 for
long-range lattice models with intermediate-range interactions.
Finally, we also have shown analytically and numerically that the excitation spectrum of the
quench Hamiltonian can be fully determined by a two-dimensional Fourier transform of the
equal-time correlation functions, also called quench spectral function (QSF) in Ref. [81]. From
an experimental point of view, such approach may considerably simplify the determination

2The quasimomentum dependence of the excitation spectrum is provided by the scaling law of the local
maxima for gapless quench Hamiltonians.

3The presence of a gap in the excitation spectrum of the quench Hamiltonian is determined by the scaling
law of the local maxima. If the latter is ballistic then a gap is present. However, if the spreading of the local
maxima is characterized by a super-ballistic motion then the post-quench Hamiltonian is gapless.
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6. Conclusion

of excitation spectra in correlated systems compared to standard pump-probe spectroscopy
techniques, such as ARPES (angle-resolved photoemission spectroscopy) or Bragg spectroscopy.
The latter consist of exciting the system at a well-defined frequency and wavevector, and
observing the response of the system after some interaction time. In practice, it requires
to control the probe and systematically scan both the frequency and the wavevector. In
QSF spectroscopy, the sudden global quench ie. the sudden modification of a parameter of
the Hamiltonian replaces the pump. Indeed, it generates a complete set of excitations that
propagate throughout the lattice. At a given time t after the quantum quench, the spatial
dependence of the correlation function is measured by a direct imaging of the full system, as
now commonly done in atomic, molecular and optical physics. For instance, in bosonic lattice
models, the one-body correlations can be deduced from standard time-of-flight techniques. For
the density-density correlations, the bosonic atoms can be detected via a fluorescence technique
and it also requires a series of images to measure the density fluctuations. The space-time
pattern of the correlations is then reconstructed by scanning the time t from 0, time where the
sudden global quench is applied, to T the observation time. An extension of the QSF approach
would be for instance to determine if the latter can be generalized to sudden local quenches.
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A
Asymptotic behavior of the generic connected

correlation function

In this appendix, one presents the derivation of the asymptotic behavior, ie. long-time
and long-distance behavior along a constant line R/t, of G(R, t) the equal-time connected
correlation function having the following generic form

G(R, t) ∼
∫
B

dk
(2π)DF(k)

{
ei(k.R+2Ekt) + ei(k.R−2Ekt)

2

}
. (A.1)

According to the stationary phase approximation, the previous D-dimensional integral is domi-
nated by the quasimomentum contributions with a stationary phase (sp) corresponding to the
condition

ksp : ∂k (k.R ∓ 2Ekt) = 0 equivalent to 2Vg(ksp) = ±R/t. (A.2)

Using a second order Taylor expansion around ksp, the stationary-phase quasimomentum
fulfilling the previous condition, of the phase function Φ(k) = k.R − 2Ekt, it yields

Φ(k) = Φ(ksp) + 1
2∂

2
kΦ(ksp)(k− ksp)2 +O

[
(k− ksp)3

]
, (A.3)

since the first derivative of the phase function Φ(k) with respect to the quasimomentum
k and evaluated at ksp is equal to zero, ∂kΦ(ksp) = 0. Hence, by inserting Eq. (A.3) into
Eq. (A.1), one obtains the following expression for G(R, t),

G(R, t) ∼ F(ksp)<
{
eiΦ(ksp)

∫
B

dk ei
1
2∂

2
kΦ(ksp)(k−ksp)2

}
. (A.4)

Using the following formula for imaginary gaussian integrals,

∫
B

dk ei
1
2∂

2
kΦ(ksp)(k−ksp)2 =

(
2π

|∂2
kΦ(ksp)|

)D
2

eiσD
π
4 , σ = sgn

[
∂2

kΦ(ksp)
]
, (A.5)
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A. Asymptotic behavior of the generic connected correlation function

the asymptotic behavior of the equal-time connected correlation function G(R, t) is given by

G(R, t) ∼ F(ksp)
(

2π
|∂2

kΦ(ksp)|

)D
2

<
{
ei[Φ(ksp)+σD π

4 ]
}
. (A.6)

Then, using that ∂2
kΦ(ksp) = −2∂2

kEkspt, the final form of G(R, t) in the asymptotic limit 1 may
be written as

G(R, t) ∼ F(ksp)(
|2∂2

kEksp |t
)D

2
cos

(
ksp.R − 2Ekspt+ σD

π

4

)
, σ = sgn

(
−2∂2

kEkspt
)
. (A.7)

Finally, by analyzing Eq. (A.7), the scaling laws for the correlation spreading in short- or long-
range interacting quantum lattice systems can be deduced. The outer structure, characterized
by a correlation edge, is determined by the prefactor whereas the inner structure, composed
of a series of local extrema, is determined by the argument of the cosine function.

1For simplicity, we assumed a single solution ksp. If Eq. (A.2) has several solutions, one has to sum over the
different contributions where each of them corresponds to a specific solution ki,sp [28].
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B
Mean field regime of the superfluid phase in the 1D

short-range Bose-Hubbard model

In this appendix, one presents a derivation of the mean field condition for the one-dimensional
short-range Bose-Hubbard (1D SRBH) model. To do so, the starting point is to find the one
associated to the 1D Lieb-Liniger (LL) model and then to rely on the correspondence between
the parameters of the 1D SRBH and 1D LL models by discretizing the 1D LL model on the
length scale defined by the lattice spacing.

The 1D continuous-space LL model can be expressed as follows

Ĥ = ~2

2m

− N∑
i=1

∂2

∂x2
i

+ c
∑
i 6=j

δ(xi − xj)

 . (B.1)

It represents a one-dimensional gas of N bosons of mass m interacting via a two-body potential
and more precisely with a contact interaction 1, characterized by the repulsive interaction
strength c > 0.

We start by providing a derivation of the dimensionless interaction parameter γ = Eint/Ekin
with Eint denoting the typical interaction energy and Ekin the typical kinetic energy. The
previous energies Eint and Ekin can be written as follows

Eint = ~2cρN

2m , Ekin = ~2N

2ma2 , (B.2)

with a the typical length scale and ρ = N/L the density of the one-dimensional gas. Then,
the dimensionless interaction parameter γ can be rewritten as

γ = Eint
Ekin

= ~2cρN

2m
2ma2

~2N
= cρa2, (B.3)

and considering that aρ = 1, thus a2 = ρ−2, it yields the following expression for γ

1via the regularized Dirac distribution where δ(xi − xj) = 1 if xi = xj and 0 otherwise.
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B. Mean field regime of the superfluid phase in the 1D short-range Bose-Hubbard model

γ = c

ρ
. (B.4)

According to Eq. (B.4), the 1D LL model possesses a crossover between a mean field regime at
large density and small interactions (γ � 1) and a strongly interacting regime at small density
and large interactions (γ � 1).

Finally, the correspondence between the parameters of the BH and LL models is found
by discretizing the LL model, see Eq. (B.1), on the length scale defined by the lattice
spacing a. It yields both equations

J = ~2

2ma2 , U = ~2c

ma
, (B.5)

where J denotes the hopping amplitude and U the repulsive two-body interaction of the 1D
SRBH model. Replacing both expressions at Eq. (B.5) in the theoretical expression of γ leads to

γ = U

2Jρa = U

2Jn̄ , n̄ = ρa = N

L
a = N

Ns
, (B.6)

with Ns the number of lattice sites. The dimensionless interaction parameter γ at Eq. (B.6) for
the 1D SRBH model allows us to characterize the different quantum regimes of the superfluid
(SF) phase. Indeed, similarly to the 1D LL model, the 1D SRBH model in the SF phase is
confined in the strongly interacting regime for γ � 1 and in the mean field regime for γ � 1.
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C
G1 phase fluctuations in the superfluid mean field

regime of the Bose-Hubbard chain

In this section, we give a brief outline of the derivation of the G1 phase fluctuations for the
Bose-Hubbard chain in the SF mean field regime. To drive the bosonic lattice model far
from equilibrium, a sudden global quench confined in the SF mean field regime is considered.
While the hopping amplitude J and the filling n̄ are fixed, a sudden modification of the
repulsive two-body interaction U is performed such that Ui/2Jn̄, Uf/2Jn̄� 1. The calculation
is based on a quasiparticle picture using the bosonic Bogoliubov theory. In the following, the
Bose-Hubbard is assumed to contain Ns lattice sites. Besides, ~ and a the lattice spacing are
fixed to unity by convention.

One recalls that the G1 connected one-body correlation function may be written as follows

G1(R, t) = 〈â†R(t)â0(t)〉 − 〈â†R(0)â0(0)〉. (C.1)

Expressing the latter into the Fourier (momentum) space and using the momentum conservation
coming from the translational invariance of the model leads to

G1(R, t) = 1
Ns

∑
k

e−ikR (〈n̂k,f(t)〉 − 〈n̂k,f(0)〉) , (C.2)

where n̂k,f(t) = â†k,f(t)âk,f(t) denotes the post-quench bosonic occupation number for a
momentum k at time t. At this stage, G1 depends only on the post-quench bosonic operators
in the momentum space ie. âk,f and â†k,f . Then, relying on the Bogolyubov transformation
for the post-quench operators given as follows,

âk,f(t) = uk,f β̂k,f(t) + v−k,f β̂
†
−k,f(t), â†k,f(t) = uk,f β̂

†
k,f(t) + v−k,f β̂−k,f(t). (C.3)

One can express âk,f(t) and â†k,f(t) as a function of the post-quench Bogolyubov quasiparticle
operators β̂k,f(t) and β̂†k,f(t). Note that the post-quench Bogolyubov operators diagonalize
the post-quench Hamiltonian Ĥf = Ĥ (Uf/J). Hence, their time-dependent version takes a
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C. G1 phase fluctuations in the superfluid mean field regime of the Bose-Hubbard chain

simple expression. Indeed, relying on the equation of motion

− i∂tβ̂(†)
k,f (t) =

[
Ĥ, β̂

(†)
k,f

]
t
, (C.4)

it can be shown that

β̂k,f(t) = e−iEk,ftβ̂k,f(0), β̂†k,f(t) = eiEk,ftβ̂†k,f(0). (C.5)

Then, the continuity at t = 0 between the post-quench and pre-quench bosonic operators,
ie. â

(†)
k,f(0) = â

(†)
k,i , permits to find a relation between the post-quench Bogolyubov opera-

tors at t = 0 (β̂k,f(0), β̂†k,f(0)) and the pre-quench Bogolyubov operators (β̂k,i, β̂†k,i). The
continuity condition is given by

âk,f(0) = uk,f β̂k,f(0) + v−k,f β̂
†
−k,f(0) = uk,iβ̂k,i + v−k,iβ̂

†
−k,i (C.6)

â†k,f(0) = uk,f β̂
†
k,f(0) + v−k,f β̂−k,f(0) = uk,iβ̂

†
k,i + v−k,iβ̂−k,i (C.7)

leading for the post-quench Bogolyubov operators at t = 0 to

β̂k,f(0) = (uk,iuk,f − v−k,iv−k,f) β̂k,i − (uk,iv−k,f − v−k,iuk,f) β̂†−k,i (C.8)

β̂†k,f(0) = (uk,iuk,f − v−k,iv−k,f) β̂†k,i − (uk,iv−k,f − v−k,iuk,f) β̂−k,i (C.9)

By following the previous steps, the G1 phase fluctuations involve only the pre-quench
Bogolyubov operators β̂k,i, β̂†k,i. Finally, using the condition β̂k,i |GSi〉 = 0, where |GSi〉
denotes the ground state of the pre-quench Hamiltonian Ĥi = Ĥ (Ui/J), one finds the
following analytical expression for G1

G1(R, t) = 4
Ns

∑
k

e−ikRξ
(1)
i,f (k) sin2(Ek,ft), (C.10)

where ξ(1)
i,f (k) is a quantity depending on the quasimomentum k and on the pre- (post-) quench

parameters via the coefficients uk,i(f) and vk,i(f),

ξ
(1)
i,f (k) = uk,fvk,f (uk,iuk,f − vk,ivk,f) (uk,ivk,f − vk,iuk,f) . (C.11)

We then have to replace uk,i(f) and vk,i(f) by their expression

uk,i(f), vk,i(f) = ±
[

1
2

(
Ak,i(f)
Ek,i(f)

± 1
)]1/2

, (C.12)

where Ek,i(f) =
√
A2
k,i(f) − B

2
k,i(f) with Bk,i(f) = γk + Ui(f)n̄ and Ak,i(f) = Ui(f)n̄. Besides,

γk = 4J sin2(k/2) represents the dispersion relation of the free tight-binding model. One obtains

ξ
(1)
i,f (k) = (Ak,iBk,f −Ak,fBk,i)Bk,f

4Ek,iE2
k,f

= n̄2Ufγk(Uf − Ui)
4Ek,iE2

k,f
. (C.13)

Considering the thermodynamic limit for the one-dimensional Bose-Hubbard model (Ns →
+∞), the discrete sum over the quasimomentum can be expressed in a continuous form leading to
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1
Ns

∑
k

→
Ns→+∞

∫
B

dk
2π , (C.14)

where B = [−π, π] denotes the first Brillouin zone. Considering also that

e−ikR sin2(Ek,ft) = 1
2

(
e−ikR − e−i(kR−2Ek,ft) + e−i(kR+2Ek,ft)

2

)
, (C.15)

the G1 connected correlation function can be written as follows

G1(R, t) = 2
∫
B

dk
2πξ

(1)
i,f (k)

(
e−ikR − e−i(kR−2Ek,ft) + e−i(kR+2Ek,ft)

2

)
. (C.16)

Finally, one considers only the relevant (time-dependent) part of the latter to describe the
far-from-equilibrium dynamics of the phase fluctuations and by fixing F1(k) = 2ξ(1)

i,f (k), G1
is expressed under the generic form presented at Eq. (3.8) and reads as

G1(R, t) ∼ −
∫
B

dk
2πF1(k)

{
ei(kR+2Ek,ft) + ei(kR−2Ek,ft)

2

}
, (C.17)

with the quasimomentum-dependent amplitude function F1 defined as

F1(k) = (Ak,iBk,f −Ak,fBk,i)Bk,f
2Ek,iE2

k,f
= n̄2Ufγk(Uf − Ui)

2Ek,iE2
k,f

. (C.18)

The previous form of the G1 phase fluctuations valid in the SF mean field regime is represented
on Fig. 3.6(a) for a specific global quench. As expected, it displays a linear twofold spike-
like structure in the vicinity of the correlation edge where the spreading velocities are
characterized on Fig. 3.6(b).
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D
G2 density fluctuations in the superfluid mean field

regime of the Bose-Hubbard chain

In this section, we give a brief outline of the derivation of the G2 density fluctuations for the
Bose-Hubbard chain in the SF mean field regime. Similarly to the study of the G1 phase
fluctuation, a sudden global quench confined in the SF mean field regime is considered to drive
the 1D Bose-Hubbard model far from equilibrium. During the real time evolution, the hopping
amplitude J and the filling n̄ are fixed and the quench is performed on the repulsive two-body
interaction U > 0. The calculation, based on a quasiparticle theory, follows the same steps
used in Appendix. C to deduce the analytical form of the G1 connected one-body correlation
function. Note that in the following, the Bose-Hubbard chain is assumed to contain Ns lattice
sites and ~ and a the lattice spacing are fixed to unity by convention.

The G2 connected density-density correlation function may be written as follows

G2(R, t) = 〈n̂R(t)n̂0(t)〉 − 〈n̂R(t)〉〈n̂0(t)〉 − 〈n̂R(0)n̂0(0)〉+ 〈n̂R(0)〉〈n̂0(0)〉. (D.1)

We first investigate the space-time behavior of the correlator 〈n̂R(t)n̂0(t)〉 before treating the
second correlator 〈n̂R(t)〉〈n̂0(t)〉. For the two last terms, one just needs to evaluate both
previous expressions at the time t = 0. Concerning the first correlator in the expression of
G2, 〈n̂R(t)n̂0(t)〉 can be expressed in the Fourier space and then simplified relying on the
bosonic Wick theorem. It yields the following form

〈n̂R(t)n̂0(t)〉 = 1
N2
s

∑
k1,k2,k3,k4

ei(k2−k1)R{〈â†k1,f(t)â
†
k3,f(t)〉〈âk2,f(t)âk4,f(t)〉

+ 〈â†k1,f(t)âk4,f(t)〉〈âk2,f(t)â
†
k3,f(t)〉+ 〈â†k1,f(t)âk2,f(t)〉〈â

†
k3,f(t)âk4,f(t)〉}. (D.2)

Then, using the second-order approximation (by keeping only the terms proportional to N2
0

and N0 with N0 the number of bosons in the mode k = 0) and the momentum conservation
(due to the translational invariance of the BH model), the correlator 〈n̂R(t)n̂0(t)〉 can be
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approximated by the following form

〈n̂R(t)n̂0(t)〉 ' 3N2
0

N2
s

+ N0
N2
s

∑
k

e−ikR〈â†k,f(t)â
†
−k,f(t) + â−k,f(t)âk,f(t) + â†k,f(t)âk,f(t)

+ â−k,f(t)â†−k,f(t)〉+ 2〈â†k,f(t)âk,f(t)〉. (D.3)

For the second correlator 〈n̂R(t)〉〈n̂0(t)〉, the same steps are considered. It yields the analytical
expression

〈n̂R(t)〉〈n̂0(t)〉 = 1
N2
s

∑
k1,k2,k3,k4

ei(k2−k1)R〈â†k1,f(t)âk2,f(t)〉〈â
†
k3,f(t)âk4,f(t)〉, (D.4)

which simplifies into the following form when considering once again a second-order approx-
imation and the momentum conservation

〈n̂R(t)〉〈n̂0(t)〉 ' N2
0

N2
s

+ 2N0
N2
s

∑
k

〈â†k,f(t)âk,f(t)〉. (D.5)

For the two last terms of Eq. (D.1), one just needs to evaluate the previous expressions at
t = 0 (see Eqs. (D.5) and (D.3)). The third term leads to

〈n̂R(0)n̂0(0)〉 ' 3N2
0

N2
s

+ N0
N2
s

∑
k

e−ikR〈â†k,f(0)â†−k,f(0) + â−k,f(0)âk,f(0) + â†k,f(0)âk,f(0)

+ â−k,f(0)â†−k,f(0)〉+ 2〈â†k,f(0)âk,f(0)〉, (D.6)

and the last one to

〈n̂R(0)〉〈n̂0(0)〉 ' N2
0

N2
s

+ 2N0
N2
s

∑
k

〈â†k,f(0)âk,f(0)〉. (D.7)

Consequently, the G2 density-density correlation function can be approximated in momentum
space by

G2(R, t) ' N0
N2
s

∑
k

e−ikR{〈(â†k,f(t)â
†
−k,f(t) + â−k,f(t)âk,f(t) + â†k,f(t)âk,f(t)

+ â−k,f(t)â†−k,f(t))〉 − 〈(â
†
k,f(0)â†−k,f(0) + â−k,f(0)âk,f(0) + â†k,f(0)âk,f(0)

+ â−k,f(0)â†−k,f(0))〉}. (D.8)

Then, by following the same scheme used to calculate the G1 phase fluctuations and based on
a quasiparticle theory, see Appendix. C, one obtains for G2 the density fluctuations

G2(R, t) ' 4N0
N2
s

∑
k

ξ
(2)
i,f (k)e−ikR sin2(Ek,ft), (D.9)

where ξ(2)
i,f (k) denotes a quantity depending on the quasimomentum k and on the pre- (post-)
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quench parameters via the coefficients uk,i(f) and vk,i(f),

ξ
(2)
i,f (k) = (uk,f + vk,f)2 (uk,iuk,f − vk,ivk,f) (uk,ivk,f − vk,iuk,f) . (D.10)

Then, we replace uk,i(f) and vk,i(f) by their respective expression given by

uk,i(f), vk,i(f) = ±
[

1
2

(
Ak,i(f)
Ek,i(f)

± 1
)]1/2

, (D.11)

coming from the bosonic Bogolyubov transformation in order to diagonalize the BH chain in
the SF mean field regime. Ek,i(f) =

√
A2
k,i(f) − B

2
k,i(f) denotes the excitation spectrum in this

regime for the pre- (post-) quench Hamiltonian with Bk,i(f) = γk + Ui(f)n̄ and Ak,i(f) = Ui(f)n̄.
Besides, γk = 4J sin2(k/2) represents the dispersion relation of the free tight-binding model.
It yields the following expression for the quantity ξ

(2)
i,f (k)

ξ
(2)
i,f (k) = Ak,fBk,i −Ak,iBk,f2 (Ak,f + Bk,f)Ek,i

= n̄γk(Ui − Uf)
2Ek,i(γk + 2n̄Uf)

. (D.12)

Then, by considering the thermodynamic limit for the one-dimensional Bose-Hubbard model
(Ns → +∞), the discrete sum over the quasimomentum can be expressed in a continuous form
leading to

1
Ns

∑
k

→
Ns→+∞

∫
B

dk
2π , (D.13)

where B = [−π, π] denotes the first Brillouin zone. Considering also that

e−ikR sin2(Ek,ft) = 1
2

(
e−ikR − e−i(kR−2Ek,ft) + e−i(kR+2Ek,ft)

2

)
, (D.14)

the G2 connected correlation function can be written as follows

G2(R, t) ' 2N0
Ns

∫
B

dk
2πξ

(2)
i,f (k)

(
e−ikR − e−i(kR−2Ek,ft) + e−i(kR+2Ek,ft)

2

)
(D.15)

Finally, one considers only the relevant (time-dependent) part of the latter to describe the far-
from-equilibrium dynamics of the density fluctuations and by fixing F2(k) = 2(N0/Ns)ξ(2)

i,f (k) '
2n̄ξ(2)

i,f (k), G2 is expressed under the generic form presented at Eq. (3.8) and reads as

G2(R, t) ∼ −
∫
B

dk
2πF2(k)

{
ei(kR+2Ek,ft) + ei(kR−2Ek,ft)

2

}
, (D.16)

with the quasimomentum-dependent amplitude function F2 defined as

F2(k) ' n̄2γk(Ui − Uf)
Ek,i(γk + 2n̄Uf)

. (D.17)

The previous form of the G2 density fluctuations valid in the SF mean field regime is represented
on Fig. 3.7(a) for a specific global quench. As expected and similarly to G1, it displays a
linear twofold spike-like structure in the vicinity of the correlation edge where the spreading

192



D. G2 density fluctuations in the superfluid mean field regime of the Bose-Hubbard chain

velocities are characterized on Fig. 3.7(b).
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E
G1 phase fluctuations in the Mott-insulating

strong-coupling regime of the Bose-Hubbard chain

In this section, we provide the derivation of the G1 phase fluctuations for the Bose-Hubbard
(BH) chain in the Mott-insulating phase. More precisely, the strong-coupling regime of the MI
phase is considered implying U � Jn̄ where n̄ ∈ N∗ denotes the integer filling of the bosonic
chain. To investigate the far-from-equilibrium dynamics of the BH model in this regime, we
analyze the G1 phase fluctuations for a sudden global quench defined as follows. At t = 0, the
initial state |Ψ0〉 corresponds to a pure Mott state (Ui → +∞). Then, the latter evolves in
time with a post-quench Hamiltonian Ĥf characterized by a large on-site interaction Uf � Jn̄.
During the real time evolution process, both the hopping amplitude J and the filling n̄ are
fixed. Besides, the 1D BH model is assumed to contain Ns lattice and both ~ (~ = h/2π and
h denotes the Planck constant) and a (lattice spacing) are fixed to unity.

The G1 correlation function, which may be written as

G1(R, t) = 〈â†R(t)â0(t)〉 − 〈â†R(0)â0(0)〉, (E.1)

is calculated analytically using the time-dependent perturbation theory while working along
the lines of Ref. [25]. To do so, we first need to determine the expression of the time-dependent
many-body quantum state |Ψ(t)〉. The latter can be expressed as follows

|Ψ(t)〉 = e−iĤft |Ψ0〉 = αGSfe
−iEGSf t |GS(1)

f 〉+
∑
k

αk,fe
−iEk,ft |φ(1)

k,f 〉 , (E.2)

where |Ψ0〉 ≡ |n̄〉 corresponds to the ground state of the pre-quench Bose-Hubbard Hamiltonian
Ĥi = Ĥ(Ui → +∞). The overlaps are defined by αGSf = 〈GS(1)

f |n̄〉 and αk,f = 〈φ(1)
k,f |n̄〉. |GS(1)

f 〉
is the first-order (correction in J/Uf) perturbed ground state of Ĥf = Ĥ(Uf � Jn̄) given
by [calculated in the main text, see Eq. (3.42)]

|GS(1)
f 〉 ' |n̄〉+ J

Uf

√
n̄(n̄+ 1)

∑
R

(
|φ(0)
R,1,f〉+ |φ(0)

R,−1,f〉
)
. (E.3)
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Besides, {|φ(1)
k,f 〉} denotes the collection of the first-order (correction in J/Uf) perturbed

eigenstates of Ĥhop,f = Ĥhop due to a coupling with the non-perturbed ground state |GS(0)
f 〉 ≡

|n̄〉. The perturbed state at first order in J/Uf is given as follows

|φ(1)
k,f 〉 ' |φ

(0)
k,f 〉+

〈n̄|Ĥhop,f |φ
(0)
k,f 〉

Ek,f − E0
|n̄〉 , (E.4)

with E0 = 0 and Ek,f ' Uf . The post-quench hopping Hamiltonian Ĥhop,f is diagonal in
the basis

{
|φ(0)
k,f 〉
}

where the eigenstate |φ(0)
k,f 〉 is defined as

|φ(0)
k,f 〉 =

√
2

Ns

∑
R,R′

sin
(
kR′

)
|φ(0)
R,R′,f〉 . (E.5)

Finally, the perturbed state |φ(1)
k,f 〉 can be written as

|φ(1)
k,f 〉 ' |φ

(0)
k,f 〉 −

J

Uf

√
2n̄(n̄+ 1)ηk sin(k) |n̄〉 , ηk = 1− cos(kNs). (E.6)

with k = nπ/Ns and n ∈ [0, Ns − 1]. From now, |Ψ(t)〉 can be explicitly calculated. The
characteristic energies present at Eq. (E.2) are EGSf = 0 and Ek,f = Uf − 2J(2n̄+ 1) cos(k).
We now turn to the calculation of the two different overlaps αGSf = 〈GS(1)

f |GS(0)
i 〉 = 〈GS(1)

f |n̄〉
and αk,f = 〈φ(1)

k,f |GS(0)
i 〉 = 〈φ(1)

k,f |n̄〉. The first overlap αGSf can be expressed as

αGSf =
[
〈n̄|+ J

Uf

√
n̄(n̄+ 1)

∑
R

(
〈φ(0)
R,1,f |+ 〈φ

(0)
R,−1,f |

)]
|n̄〉 = 1, (E.7)

and the second one denoted by αk,f as

αk,f = 〈φ(1)
k,f |n̄〉 '

[
〈φ(0)
k,f | −

J

Uf

√
2n̄(n̄+ 1)ηk sin(k) 〈n̄|

]
|n̄〉 (E.8)

αk,f ' −
J

Uf

√
2n̄(n̄+ 1)ηk sin(k). (E.9)

Finally, the time-dependent many-body quantum state |Ψ(t)〉 for a global quench confined
in the MI strong-coupling regime from Ui → +∞ to Uf � Jn̄ can be written as

|Ψ(t)〉 ' |n̄〉+ J

Uf

√
n̄(n̄+ 1)

∑
R

(
|φ(0)
R,1,f〉+ |φ(0)

R,−1,f〉
)

− J

Uf

√
2n̄(n̄+ 1)

∑
k

ηk sin(k)e−iEk,ft |φ(0)
k,f 〉 . (E.10)

Note that the previous calculations can be easily extended to the case of a sudden global quench
in the MI strong-coupling regime with a finite pre-quench two-body interaction Ui � Jn̄. It
just requires to consider the first-order perturbed ground state |GS(1)

i 〉 instead of |GS(0)
i 〉 = |n̄〉

for the many-body initial state |Ψ0〉.

We now turn to the calculation of the G1 phase fluctuations defined at Eq. (E.1) where the
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factor βf = J
√
n̄(n̄+ 1)/Uf is introduced. The index ’f’ for the different many-body quantum

states at Eq. (E.10) is removed for simplicity.

The second correlator is straighforward and given by

〈â†R(0)â0(0)〉 = 〈n̄|â†Râ0|n̄〉 = δR,0. (E.11)

For the first correlator 〈â†R(t)â0(t)〉 = 〈Ψ(t)|â†Râ0|Ψ(t)〉, it yields

〈â†R(t)â0(t)〉 ' 〈n̄|â†Râ0|n̄〉+ βf
∑
R′

{〈n̄|â†Râ0|φ(0)
R′,1〉+ 〈φ(0)

R,1|â
†
Râ0|n̄〉+ 〈n̄|â†Râ0|φ(0)

R′,−1〉

+ 〈φ(0)
R′,−1|â

†
Râ0|n̄〉} −

√
2βf

∑
k

e−iEk,ftηk sin(k)〈n̄|â†Râ0|φ(0)
k 〉

−
√

2βf
∑
k

eiEk,ftηk sin(k)〈φ(0)
k |â

†
Râ0|n̄〉 (E.12)

〈â†R(t)â0(t)〉 ' −
√

2βf
∑
k

ηk sin(k)
(
e−iEk,ft〈n̄|â†Râ0|φ(0)

k 〉+ eiEk,ft〈φ(0)
k |â

†
Râ0|n̄〉

)
+ δR,0 + 2J

Uf
n̄(n̄+ 1)δR,1. (E.13)

Finally, the first correlator may be written as

〈â†R(t)â0(t)〉 ' −2Jn̄(n̄+ 1)
UfNs

∑
k

ηk sin(k)e−iEk,ft sin(kR) + δR,0 + 2Jn̄(n̄+ 1)
Uf

δR,1. (E.14)

Hence, the expression of the G1 one-body correlation function has the following form

G1(R, t) ' 2Jn̄(n̄+ 1)
Uf

(
δR,1 −

1
Ns

∑
k

ηk sin(k) sin(kR)e−iEk,ft
)
. (E.15)

Considering that the term δR,1 is irrelevant for the dynamics (constant term for R = 1)
and by doing some calculations, it can be shown that the latter form of the G1 phase
fluctuations is equivalent to

G1(R, t) ' −4Jn̄(n̄+ 1)
iUfNs

∑
k

sin(k)eikR cos(Ek,ft), (E.16)

with k ∈ B = [−π, π[.

We now stipulate that 2Ek,f = Uf − 2J(2n̄ + 1) cos(k) corresponding to the convention
adopted in the main text. The factor 2 is added to clarify how the correlations are created in
the Mott-insulating strong-coupling regime of the BH chain. In fact, the excitation spectrum
2Ek,f correspond to the energy of a quasiparticle pair at the quasimomentum k with respect
to the interaction parameters of the post-quench Hamiltonian Ĥf . Indeed, one already knows
that the low-energy excitations of the MI phase are made of doublon-holon quasiparticle
pairs. Hence, the previous excitation spectrum contains the energy associated to a doublon
(d) of quasimomentum k and a holon (h) of quasimomentum −k, ie. 2Ek,f = Ed,k,f +Eh,−k,f ,
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where Ed,k,f = Uf/2− 2J(n̄+ 1) cos(k) and Eh,−k,f = Uf/2− 2Jn̄ cos(k) [see Ref. [25] for the
analytical expressions determined using a fermionization technique with a Fermi-Bogolyubov
transformation]. Finally, the correlations in the MI phase are thus created via the propagation of
a doublon with quasimomentum k at the group velocity Vg,d,f(k) = ∂kEd,k,f = 2J(n̄+ 1) sin(k)
and a holon in the opposite direction with a quasimomentum −k at the group velocity
Vg,h,f(−k) = (∂kEh,k,f)|−k = −2Jn̄ sin(k). The latter lead finally to the effective group velocity

|Vg,d,f(k)− Vg,h,f(−k)| = 2J(2n̄+ 1) sin(k) = 2Vg,f(k) = ∂k2Ek,f . (E.17)

The previous statements concerning the individual spreading of doublons and holons will
be supported by numerical calculations presented at Chap. 4 where the space-time local
density 〈n̂R(t)〉 is investigated for sudden local quenches confined in the Mott-insulating
strong-coupling regime.

Finally, according to Eq. (E.16) and the new convention for the post-quench excitation
spectrum, G1 can be easily cast into the generic form presented at Eq. (3.8) and reads as

G1(R, t) ' −
∫
B

dk
2πF1(k)

{
ei(kR+2Ek,ft) + ei(kR−2Ek,ft)

2

}
(E.18)

with the quasimomentum-dependent amplitude function F1 given by

F1(k) = 4J
iUf

n̄(n̄+ 1) sin(k). (E.19)

The G1 phase fluctuations in the MI strong-coupling regime are represented on Fig. 3.10(a)
for a specific global quench on the two-body interaction parameter. As expected, the space-
time pattern displays a linear twofold structure where the velocity of each structure (the
one associated to the correlation edge and the series of local extrema) are characterized on
Fig. 3.10(b) as a function of the post-quench interaction parameter Uf/J = U/J .
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F
Gz spin-spin correlations in the x polarized phase of

the long-range XY chain

In this section, we provide more details about the derivation of the Gz spin-spin correlations
along the z axis in the x polarized phase of the long-range XY (LRXY) chain. A sudden global
quench on ε the antiferromagnetic interaction parameter along the z axis is considered. More
precisely, one starts from the ground state of the long-range XXZ chain with −1 < εi < εc(α)
(x polarized phase). The latter evolves in time with the 1D LRXY Hamiltonian where εf = 0.
The power-law exponent α is fixed during the real time evolution. Besides, it is confined in
the interval α ∈ [1, 3[ in order to consider the quasi-local regime of the x polarized phase for
the LRXY chain. In the following, the LRXY and LRXXZ spin chains are assumed to contain
Ns lattice sites and ~, a the lattice spacing, are fixed to unity by convention.

The connected spin-spin correlation function along the z axis, denoted by Gz, are
investigated where Gz(R, t) = Gz,0(R, t) − Gz,0(R, 0) with

Gz,0(R, t) = 〈ŜzR(t)Ŝz0(t)〉 − 〈ŜzR(t)〉〈Ŝz0(t)〉. (F.1)

In order to use the general scheme (presented in the previous appendices) relying on a bosonic
Bogolyubov transformation, we need to express Gz in terms of the post-quench bosonic
operators in momentum space âk,f and â†k,f . The first step consists of injecting the Holstein-
Primakoff transformation, defined below and valid for the long-range XY and long-range
XXZ chains in the x polarized phase, in the expression of Gz.

ŜxR = 1
2 − â

†
RâR, ŜyR =' − â

†
R − âR

2i , ŜzR ' −
âR + â†R

2 . (F.2)

This transformation leads for Gz in terms of the post-quench bosonic operators in real space (âR,
â†R) to
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Gz(R, t) '
1
4
{
〈âR(t)â0(t)〉+ 〈âR(t)â†0(t)〉+ 〈â†R(t)â0(t)〉+ 〈â†R(t)â†0(t)〉

− 〈âR(0)â0(0)〉0 − 〈âR(0)â†0(0)〉 − 〈â†R(0)â0(0)〉 − 〈â†R(0)â†0(0)〉
}
. (F.3)

Finally, Eq. (F.3) is expressed into the momentum space via a Fourier transform of the
bosonic operators. The latter may be written as follows

Gz(R, t) '
1

4Ns

∑
k

e−ikR
{
〈âk,f(t)â−k,f(t)〉+ 〈âk,f(t)â†k,f(t)〉+ 〈â†−k,f(t)â−k,f(t)〉

+ 〈â†−k,f(t)â
†
k,f(t)〉 − 〈âk,f(0)â−k,f(0)〉 − 〈âk,f(0)â†k,f(0)〉 − 〈â†−k,f(0)â−k,f(0)〉

− 〈â†−k,f(0)â†k,f(0)〉
}
. (F.4)

From now, Gz is expressed in terms of the post-quench bosonic operators in momentum space.
Hence, the general scheme considered previously [see for instance Appendices. C and D] can be
used to deduce the final form of the spin correlations. However, one can notice that Eq. (F.4)
has the same expression than the one at Eq. (D.8) up to a prefactor. Therefore, one can directly
consider Eqs. (D.9) and (D.10) resulting from the general scheme based on the properties of
the bosonic Bogolyubov transformation. By updating the prefactor, Gz can be written as

Gz(R, t) '
1
Ns

∑
k

ξ
(z)
i,f (k)e−ikR sin2(Ek,ft). (F.5)

The quantity ξ
(z)
i,f (k) depends on the quasimomentum k and on the pre- (post-) quench

parameters via the coefficients uk,i(f) and vk,i(f) as follows

ξ
(z)
i,f (k) = (uk,f + vk,f)2 (uk,iuk,f − vk,ivk,f) (uk,ivk,f − vk,iuk,f) . (F.6)

Then, by replacing uk,i(f) and vk,i(f) by their respective expression given by

uk,i(f), vk,i(f) = ±
[

1
2

(
Ak,i(f)
Ek,i(f)

± 1
)]1/2

, (F.7)

coming from the bosonic Bogolyubov transformation in order to diagonalize the long-range
XXZ (long-range XY) chain in the x polarized phase. Ek,i(f) =

√
A2
k,i(f) − B

2
k,i(f) denotes the

excitation spectrum in the x polarized phase of the LRXXZ (LRXY) chain. For a global
quench on ε the antiferromagnetic interaction along z and maintaining constant both the
power-law exponent α and the spin-exchange coupling J in the xy plane, the pre- (post-)
quench coefficients Bk,i(f) and Ak,i(f) are given by

Ak,i(f) = J

2

[
Pα(0) + Pα(k)

εi(f) − 1
2

]
, Bk,i(f) = JPα(k)

4 (εi(f) + 1), (F.8)

Note that for the post-quench parameters (referring to the LRXY chain), one just needs to
replace εf by zero. Finally, it yields the following expression for the quantity ξ(z)

i,f (k)
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ξ
(z)
i,f (k) = Ak,fBk,i −Ak,iBk,f2(Ak,f + Bk,f)Ek,i

= εi
4
Pα (k)
Pα (0)

√
Pα(0)− Pα (k)
Pα(0) + εiPα (k) . (F.9)

Then, by considering the thermodynamic limit (Ns → +∞) and the useful relation,

e−ikR sin2(Ek,ft) = 1
2

(
e−ikR − e−i(kR−2Ek,ft) + e−i(kR+2Ek,ft)

2

)
, (F.10)

the Gz connected spin-spin correlation function fulfills the generic form presented at Eq. (3.8)
and may be written as

Gz(R, t) ∼ −
∫
B

dk
2πF(k)

{
ei(kR+2Ek,ft) + ei(kR−2Ek,ft)

2

}
, (F.11)

with an amplitude function F(k) given by

F(k) =
ξ

(z)
i,f (k)

2 = εi
8
Pα (k)
Pα (0)

√
Pα(0)− Pα (k)
Pα(0) + εiPα (k) . (F.12)

The Gz spin-spin correlations along the z axis are represented on Fig. 3.12(a) for a global
quench on the antiferromagnetic interaction ε and in the quasi-local regime of the x polarized
phase for the LRXY chain (α ∈ [1, 3[). As expected, the associated space-time pattern displays
an algebraic (linear in log-log scale) twofold spike-like structure (t ∼ Rβ) whose exponent β
for the CE and the series of local extrema are characterized on Fig. 3.12(b).
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G
Gx spin-spin correlations in the z polarized phase of

the long-range transverse Ising chain

In this section, the derivation of the Gx spin-spin correlations along the x axis in the z polarized
phase of the long-range transverse Ising (LRTI) chain is provided. A sudden global quench
on the spin exchange coupling J in the x direction is considered while remaining deep in
the z polarized phase. The latter implies that Ji, Jf � h. Besides, the transverse magnetic
field h and the power-law exponent α are fixed during the real time evolution process. The
calculation, based on a quasiparticle theory, follows the same steps used in Appendices. C, D.
In the following, the long-range Ising chain is assumed to contain Ns lattice sites and ~ and a
the lattice spacing are fixed to unity by convention.

The Gx connected spin-spin correlation function along the x axis may be written as
Gx(R, t) = Gx,0(R, t) − Gx,0(R, 0) where

Gx,0(R, t) = 〈ŜxR(t)Ŝx0 (t)〉 − 〈ŜxR(t)〉〈Ŝx0 (t)〉. (G.1)

In order to use the general scheme (presented in the previous appendices) relying on a
bosonic Bogolyubov transformation, we need to express Gx in terms of the post-quench
bosonic operators in momentum space âk,f and â†k,f . The first step consists of injecting
the Holstein-Primakoff transformation defined below, and valid for the Ising chain in the
z polarized phase, in the expression of Gx.

ŜxR '
âR + â†R

2 , ŜyR ' −
â†R − âR

2i , ŜzR = 1
2 − â

†
RâR. (G.2)

This transformation leads for Gx, in terms of the post-quench bosonic operators in real space, to

Gx(R, t) ' 1
4
{
〈âR(t)â0(t)〉+ 〈âR(t)â†0(t)〉+ 〈â†R(t)â0(t)〉+ 〈â†R(t)â†0(t)〉

− 〈âR(0)â0(0)〉 − 〈âR(0)â†0(0)〉 − 〈â†R(0)â0(0)〉 − 〈â†R(0)â†0(0)〉
}
. (G.3)

Finally, Eq. (G.3) is expressed into the momentum space via a Fourier transform of the
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bosonic operators in real space and can read as

Gx(R, t) ' 1
4Ns

∑
k

e−ikR
{
〈âk,f(t)â−k,f(t)〉+ 〈âk,f(t)â†k,f(t)〉+ 〈â†−k,f(t)â−k,f(t)〉

+ 〈â†−k,f(t)â
†
k,f(t)〉 − 〈âk,f(0)â−k,f(0)〉 − 〈âk,f(0)â†k,f(0)〉 − 〈â†−k,f(0)â−k,f(0)〉

− 〈â†−k,f(0)â†k,f(0)〉
}
. (G.4)

From now, Gx is expressed in terms of the post-quench bosonic operators in momentum space.
Hence, one can rely on the general scheme used in the previous appendices to deduce the final
form of the correlations. However, one can notice that Eq. (G.4) has the same expression than
the one at Eq. (D.8) up to a prefactor. Therefore, one can directly consider Eqs. (D.9) and
(D.10) resulting from the general scheme based on the properties of the bosonic Bogolyubov
transformation. By updating the prefactor, Gx can be written as

Gx(R, t) ' 1
Ns

∑
k

ξ
(x)
i,f (k)e−ikR sin2(Ek,ft). (G.5)

The quantity ξ
(x)
i,f (k) depends on the quasimomentum k and on the pre- (post-) quench

parameters via the coefficients uk,i(f) and vk,i(f) as follows

ξ
(x)
i,f (k) = (uk,f + vk,f)2 (uk,iuk,f − vk,ivk,f) (uk,ivk,f − vk,iuk,f) . (G.6)

Then, by replacing uk,i(f) and vk,i(f) by their respective expression given by

uk,i(f), vk,i(f) = ±
[

1
2

(
Ak,i(f)
Ek,i(f)

± 1
)]1/2

, (G.7)

coming from the bosonic Bogolyubov transformation in order to diagonalize the long-range
Ising chain in the z polarized phase. Ek,i(f) =

√
A2
k,i(f) − B

2
k,i(f) denotes the excitation spectrum

in the polarized phase for the pre- (post-) quench Hamiltonian. For a global quench on the
spin exchange coupling J in the direction x and maintaining constant both the magnetic
field h and the power-law exponent α, the pre- (post-) quench coefficients Bk,i(f) and Ak,i(f)
are given by Bk,i(f) = Ji(f)Pα(k), Ak,i(f) = 2h + Ji(f)Pα(k). Finally, it yields the following
expression for the quantity ξ

(x)
i,f (k)

ξ
(x)
i,f (k) = Ak,fBk,i −Ak,iBk,f2 (Ak,f + Bk,f)Ek,i

= h (Ji − Jf)Pα(k)
4 [h+ JfPα(k)]

√
h [h+ JiPα(k)]

. (G.8)

Then, by considering the thermodynamic limit (Ns → +∞) and the useful relation,

e−ikR sin2(Ek,ft) = 1
2

(
e−ikR − e−i(kR−2Ek,ft) + e−i(kR+2Ek,ft)

2

)
, (G.9)

the Gx connected spin-spin correlation function fulfills the generic form presented at Eq. (3.8)
and may be written as

202



G. Gx spin-spin correlations in the z polarized phase of the long-range transverse . . .

Gx(R, t) ∼ −
∫
B

dk
2πF(k)

{
ei(kR+2Ek,ft) + ei(kR−2Ek,ft)

2

}
, (G.10)

with an amplitude function F(k) given by

F(k) =
ξ

(x)
i,f (k)

2 = h (Ji − Jf)Pα(k)
8 [h+ JfPα(k)]

√
h [h+ JiPα(k)]

. (G.11)

The Gx spin-spin correlations along the x axis in the z polarized phase are represented on
Fig. 3.15(a) for a specific global quench on the spin exchange coupling J and in the quasi-local
regime (α ∈ [1, 2[). As expected, the associated space-time pattern displays an algebraic
twofold spike-like structure (t ∼ Rβ) whose exponent β for the CE and the series of local
extrema are characterized on Fig. 3.15(b).
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H
Matrix product state form of a general quantum state

We provide here more details on the derivation of a general quantum state under its matrix
product state (MPS) form by working along the lines of Refs. [129,130]. First, we consider the
most general quantum state for a one-dimensional lattice of length L = Nsa, withNs the number
of lattice sites and a the lattice spacing fixed to unity by convention, which can be expressed as

|Ψ〉 =
∑

σ1,σ2,..,σL

Ψσ1σ2...σL |σ1σ2...σL〉 , (H.1)

with a d-dimensional local Hilbert space described by the local basis {|σR〉 , σR = 1, ..., d}. The
first step consists of reshaping the vector Ψ containing dL components, ie. living in the many-
body Hilbert space, into a matrix of dimension d× dL−1 where the coefficients are related as

Ψσ1σ2...σL = Ψσ1,(σ2...σL). (H.2)

As a second step, the singular value decomposition (SVD) applied to the rectangular matrix Ψ
leads to

Ψσ1,(σ2...σL) =
ā1∑
a1=1

U [1]σ1,a1
S [1]a1,a1

(V † [1])a1,(σ2...σL), (H.3)

where U [1] is a left-normalized matrix (U †[1]U [1] = I) of dimension d× ā1 with ā1 ≤ d the
rank associated to the diagonal and square Schmidt matrix S [1] of dimension ā1× ā1 where ā1
corresponds to the number of non-zero positive singular values and V † [1] is a right-normalized
rectangular matrix (V [1]V †[1] = I) of dimension ā1 × dL−1. Then, we express the matrix U as
a collection of d row vectors of dimension 1× ā1 denoted by Aσ1 [1] where the coefficients are
Aσ1 [1]a1

with a1 ∈ [|1, ā1|]. Finally, by reshaping the matrix S [1]V † [1] of dimension ā1×dL−1

in a matrix Ψ̃ of dimension ā1d× dL−2 with entries Ψ̃(a1σ2),(σ3...σL) =
(
S [1]V † [1]

)
a1,(σ2...σL)

,
the previous equation can be rewritten as

Ψσ1,(σ2...σL) =
ā1∑
a1=1

Aσ1 [1]a1
Ψ̃(a1σ2),(σ3...σL). (H.4)
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H. Matrix product state form of a general quantum state

As a third step, we factorize Ψ̃ the matrix of dimension ā1d× dL−2 using once again the SVD
which leads to

Ψ̃(a1σ2),(σ3...σL) =
ā2∑
a2=1

U [2](a1σ2),a2
S [2]a2,a2

(V † [2])a2,(σ3...σL), (H.5)

where U [2] is a matrix of dimension ā1d× ā2 with ā2 ≤ d2 the rank associated to the Schmidt
matrix S [2] of dimension ā2 × ā2 and V † [2] is a matrix of dimension ā2 × dL−2. Then,
the matrix U [2] is decomposed as a collection of d rectangular matrices A[2] of dimension
ā1 × ā2. Finally, S [2]V † [2] is reshaped in a matrix ˜̃Ψ of dimension ā2d× dL−3 with entries
˜̃Ψ(a2σ3),(σ4...σL) =

(
S [2]V † [2]

)
a2,(σ3...σL)

. Consequently, Ψ̃ reads as

Ψ̃(a1σ2),(σ3...σL) =
ā2∑
a2=1

Aσ2 [2]a1,a2
˜̃Ψ(a2σ3),(σ4...σL). (H.6)

Few points must be underlined. ˜̃Ψ is a matrix of dimension ā2d× dL−3 with ā2 the rank of
the Schmidt matrix S [2] of dimension ā2 × ā2. The number of singular values on the diagonal
of the Schmidt matrix S [2] is defined as ā2 ≤ min

(
ā1d, d

L−2
)

= ā1d ≤ d2. Therefore, the
maximal dimension of the ˜̃Ψ matrix is obtained for ā2 = d2 implying ā1 = d and is equal to
d2d× dL−3. Hence, ˜̃Ψ contains dL coefficients as expected.

Finally, in order to get the MPS form of Eq. (H.1), we replace the expression of Ψ̃ in
Eq. (H.4) which yields to

Ψσ1,(σ2...σL) =
ā1∑
a1=1

ā2∑
a2=1

Aσ1 [1]a1
Aσ2 [2]a1,a2

˜̃Ψ(a2σ3),(σ4...σL). (H.7)

We have to reproduce the previous steps for each lattice site R to build the corresponding
tensor AσR [R]. Thus, upon further SVDs, we obtain the following form for the coefficients
of the initial matrix Ψσ1,(σ2...σL)

Ψσ1,(σ2...σL) =
ā1∑
a1=1

ā2∑
a2=1

...

āL−1∑
aL−1=1

Aσ1 [1]a1
Aσ2 [2]a1,a2

... AσL [L]aL−1
. (H.8)

Consequently, a general (non translational invariant) quantum state written under its MPS
form for a one-dimensional lattice has the following expression, see also Fig. 4.2,

|Ψ〉 =
∑
σ

Aσ1 [1]Aσ2 [2] ... AσL−1 [L− 1]AσL [L] |σ〉 , σ = σ1σ2... σL. (H.9)

The latter consists of a local and compact representation of a general many-body quantum
state. The tensor Aσ1 [1] consists of a collection of d row vectors of dimension ā1 and the last
one AσL [L] in a collection of d column vectors of dimension āL−1. Besides, a tensor AσR [R] of
dimension āR−1 × āR × d is associated to each lattice site R of the chain leading to a local
representation of the quantum state without breaking its non-locality, ie. its entanglement,
which is contained in the coefficients of each tensor and characterized by the so-called MPS
bond dimension χ defined as χ = max(āR). The MPS form is also a compact representation
since the latter depends linearly on the length of the chain, ie. the number of lattice sites,
and not exponentially as for the general form presented at Eq. (H.1).
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I
Single structure of the G2 density fluctuations deep

in the Mott-insulating phase

In order to explain the suppression of the twofold structure for the G2 density fluctuations
for a sudden global quench deep in the Mott-insulating phase (requiring U � J and n̄ ∈ N∗,
here n̄ = 1), we compute the function G2(R, t) while working along the lines of Ref. [25].
Considering the manifold of doublon-holon pairs and mapping the resulting Hamiltonian of
the 1D SRBH model into a quadratic fermionic one, the latter can be diagonalized via a
Fermi-Bogolyubov transformation. Finally, it yields for the density-density correlation function

G2(R, t) ' −2
[
|g2(R, t)|2 + |ḡ2(R, t)|2

]
, (I.1)

with g2(R, t) and ḡ2(R, t) which can be expressed as follows

g2(R, t) ∼ J

U

R

t

∫
B

dk
2π
{
ei(2Ekt+kR) + ei(2Ekt−kR)

}
, (I.2)

ḡ2(R, t) ∼
(
J

U

)2 ∫
B

dk
2π sin2(k)

{
ei(2Ekt−kR) + e−i(2Ekt+kR)

}
, (I.3)

where B = [−π, π] denotes the first Brillouin zone and the excitation spectrum is 2Ek '√
[U − 2J(2n̄+ 1) cos(k)]2 + 16J2n̄(n̄+ 1) sin2(k), see Eq. (4.8).

Quench deep into the Mott-insulating phase For a global quench deep in the MI
phase (U � J), the second right-hand-side term (which scales as (J/U)2) in Eq. (I.1) is
much smaller than the first one (scales as J/U) and the former can be neglected. Using
Eq. (I.2), it yields explicitly for G2(R, t) ' −2|g2(R, t)|2,

G2(R, t) ∼ −2
(
J

U

)2 (R
t

)2 ∣∣∣∣∫
B

dk
2π
{
ei(2Ekt+kR) + ei(2Ekt−kR)

}∣∣∣∣2 . (I.4)

Moreover, the excitation spectrum may be expanded in powers of J/U . Up to first-order,
it yields 2Ek ' U − 2J(2n̄ + 1) cos(k) the excitation spectrum valid in the strong-coupling
regime (U � J). The gap term eiUt can then be factorized in the two terms under the integral
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I. Single structure of the G2 density fluctuations deep in the Mott-insulating phase

in Eq. (I.4) and disappears due to the square modulus. Introducing the effective excitation
spectrum 2Ẽk = −2J(2n̄ + 1) cos(k), we then find G2 ' −2|g2(R, t)|2 with

g2(R, t) ∼ J

U

R

t

∫
B

dk
2π
{
ei(2Ẽkt+kR) + ei(2Ẽkt−kR)} . (I.5)

To determine the asymptotic behavior, the previous integral may be evaluated using the
stationary phase approximation (see also Appendix. A). In the infinite time and distance limit
along the line R/t = cst, the integral in Eq. (I.5) is dominated by the momentum contributions
with a stationary phase (sp), ie. ∂k(2Ẽkt ± kR) = 0 or, equivalently, 2Ṽg(ksp) = ±R/t
where Ṽg(k) = ∂kẼk is the group velocity of the effective excitation spectrum. Since the
latter is upper bounded by the value Ṽ ∗g = max(Ṽg) = J(2n̄ + 1), it has a solution only
for R/t < 2Ṽ ∗g . We then find

g2(R, t) ∼ J

U

Ṽg(ksp)(
|∂2
kẼksp |t

)1/2

[
cos

(
2Ẽkspt− kspR+ σ

π

4

)
+ i sin

(
2Ẽkspt− kspR+ σ

π

4

)]
,

(I.6)
with σ = sgn

(
∂2
kẼksp

)
. For both the real and imaginary parts of g2(R, t), the correlations are

activated ballistically at the time t = R/2Ṽ ∗g . It defines a linear correlation edge (CE) with
velocity VCE = 2Ṽ ∗g . In addition, Eq. (I.6) also yields a series of local maxima, defined by the
equation 2Ẽkspt− kspR = cst. In the vicinity of the CE cone, these maxima (m) propagate
at the velocity Vm = 2Ṽ ∗ϕ = 2Ẽk∗/k∗, ie. twice the phase velocity at the maximum of the
group velocity, k∗. Hence, the real and imaginary parts of g2(R, t) both display a twofold
structure with a CE velocity 2Ṽ ∗g = 2J(2n̄ + 1) and a velocity of the maxima 2Ṽ ∗ϕ = 0, as
shown on Figs. 4.13(a) and (b). In contrast, G2(R, t), does not display the twofold structure.
This is because it is the sum of the squares of the two latter contributions [see Eq. (I.6)],
which are shifted by half a period and cancel each other. It thus gives a single cone structure,
characterized by the sole CE velocity 2Ṽ ∗g , as shown on Fig. 4.13(c).

Quench into the Mott-insulating phase for moderate U/J For moderate values
of U/J , the second term in the right-hand-side of Eq. (I.1), |ḡ2(R, t)|2, becomes relevant.
Relying again on the stationary phase approximation to characterize the asymptotic be-
havior of ḡ2(R, t), it yields

ḡ2(R, t) ∼
(
J

U

)2 sin2(ksp)(
|∂2
kEksp |t

)1/2 cos
(

2Ekspt− kspR+ σ′
π

4

)
, (I.7)

with σ′ = sgn
(
∂2
kEksp

)
and Ek the excitation spectrum given at Eq. (4.8). Using the same

argument as above, we find that ḡ2(R, t) shows a twofold structure defined by, now, the CE
velocity 2V ∗g = 2max (∂kEk) and the maxima velocity 2V ∗ϕ = 2Ek∗/k∗ 6= 0. Since there is a
single contribution here, the quantity |ḡ2(R, t)|2 displays a twofold structure with the same
characteristic velocities. More precisely, both the length and time scales of the oscillations are
divided by two but the velocities are not affected.
For a global quench into the MI phase at a moderate value of U/J , both |g2(R, t)|2 and |ḡ2(R, t)|2
contribute to the density-density correlation function G2(R, t). While the |g2(R, t)|2 contri-
bution is characterized by the sole CE velocity 2V ∗g , the |ḡ2(R, t)|2 contribution provides the
double structure observed on G2 for 6 < U/J < 10 in the t-MPS calculations, see Fig. 4.14(b3).
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J
Local quench dynamics of the local magnetization for

1D s = 1/2 spin lattice models

In this section, we derive the general expression of the space-time local magnetization
〈Ψ0|ŜzR(t)|Ψ0〉 for a sudden local quench in a polarized phase along the z axis. In the
following, the Hamiltonian Ĥ is assumed to describe a one-dimensional s = 1/2 spin lattice
model with short- or long-range interactions in a polarized phase along the z axis. The
perturbed initial state |Ψ0〉 is built from the ground state (one of the ground states) of Ĥ
corresponding to a fully polarized state along the z with a positive total magnetization. The
latter describes the following many-body quantum state |Ψ〉 = |↑〉⊗Ns where Ns refers to the
total number of lattice sites. To drive the quantum system far from equilibrium via a sudden
local quench, a local perturbation (a spin-flip) is applied on the central spin for the state |Ψ〉
using the spin operator Ŝ−Ns/2. This leads to the perturbed initial state |Ψ0〉 = |↑ ... ↑↓↑ ... ↑〉
which corresponds to a highly-excited state with respect to the ground state energy of the
Hamiltonian Ĥ, ie. to the energy of the many-body quantum state |Ψ〉.

The Hamiltonian Ĥ is assumed to display a quadratic Bose form in momentum space given
by

Ĥ = e0 + 1
2
∑
k

Ak
(
â†kâk + â−kâ

†
−k

)
+ Bk

(
â†kâ
†
−k + âkâ−k

)
, (J.1)

where âk (â†k) refers to the annihilation (creation) of a bosonic particle in the mode k and
e0 to a constant energy. Since the Hamiltonian Ĥ is supposed to be in a polarized phase
along the z axis, the previous quadratic Bose form at Eq. (J.1) is found using the following
Holstein-Primakoff transformation

ŜxR = 1
2
(
â†R + âR

)
, ŜyR = −1

2i
(
â†R − âR

)
, ŜzR = 1

2 − â
†
RâR. (J.2)

For this Holstein-Primakoff transformation and using the relations Ŝ±R = ŜxR± iŜ
y
R, one obtains

Ŝ−R = â†R, Ŝ+
R = âR, |↑〉R = |0〉R , |↓〉R = |1〉R , (J.3)
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meaning that the vacuum state of bosonic particles on the lattice site R denoted by |0〉R
corresponds to a spin up state |↑〉R and a spin down state |↓〉R to the presence of one bosonic
particle, ie. |1〉R. Indeed, |↓〉R = Ŝ−R |↑〉R = â†R |0〉R = |1〉R and similarly |↑〉R = Ŝ+

R |↓〉R =
âR |1〉R = |0〉R. Besides, to get the same dimension of the local Hilbert space for the s = 1/2
spin lattice model (dim(HR) = 2), the occupation number of bosonic particles on lattice site
R is restricted to two possibilities ie. nR ∈ {0, 1} where n̂R |nR〉 = nR |nR〉. Consequently,
the expectation value 〈Ψ0|ŜzR(t)|Ψ0〉 may be written as

〈Ψ0|ŜzR(t)|Ψ0〉 = 〈Ψ|Ŝ+
Ns/2Ŝ

z
R(t)Ŝ−Ns/2|Ψ〉 = 〈Ψ|âNs/2

[1
2 − â

†
R(t)âR(t)

]
â†Ns/2|Ψ〉, (J.4)

where |Ψ〉 = |↑〉⊗Ns . Then, since Ĥ is quadratic in terms of the bosonic operators, the Wick
theorem can be used to simplify Eq. (J.4). It yields for the local magnetization

〈Ψ0|ŜzR(t)|Ψ0〉 = 1
2 − 〈n̂R(t)〉 − 〈âNs/2â

†
R(t)〉〈âR(t)â†Ns/2〉 − 〈âNs/2âR(t)〉〈â†R(t)â†Ns/2〉,

〈Ψ0|ŜzR(t)|Ψ0〉 = 1
2 − 〈n̂R(t)〉 − |〈âNs/2â

†
R(t)〉|2 − |〈âNs/2âR(t)〉|2, (J.5)

where 〈..〉 represents the expectation value with respect to the quantum state |Ψ〉 = |↑〉⊗Ns .
In order to compute Eq. (J.5), the latter is expressed in terms of the bosonic operators in
momentum space (âk, â†k). Then, one can rely on the following properties of the bosonic
Bogolyubov transformation

â†k(t) = ukβ̂
†
k(t) + vkβ̂−k(t), âk(t) = ukβ̂k(t) + vkβ̂

†
−k(t), (J.6)

β̂k(t) = e−iEktβ̂k(0), β̂†k(t) = eiEktβ̂†k(0), (J.7)

β̂k |Ψ〉 = 0, 〈Ψ| β̂†k = 0, (J.8)

where β̂k (β̂†k) denotes the annihilation (creation) of a Bogolyubov quasiparticle at quasimo-
mentum k, Ek denotes the excitation spectrum of Ĥ in the polarized phase along the z axis
and has the symmetry k → −k. Note that uk and vk are real coefficients satisfying uk = u−k
and vk = v−k, ∀k ∈ B = [−π, π]. Equation (J.6) represents the canonical transformation of the
bosonic operators into (bosonic) Bogolyubov operators. The time evolution of the Bogolyubov
operators are given at Eq. (J.7). Finally, equation (J.8) represents mathematically the fact
that the non-perturbed many-body quantum state |Ψ〉 does not support any quasiparticle
excitation (such as spin-wave excitations for instance since 1D s = 1/2 spin lattice models are
considered here). This Bogolyubov transformation allows us to diagonalize the quadratic Bose
form of Ĥ at Eq. (J.1). Hence, the Hamiltonian Ĥ can be expressed as Ĥ = ∑

k Ekβ̂
†
kβ̂k up to

a constant term, ie. an energy shift, with an excitation spectrum Ek defined as Ek =
√
A2
k − B2

k.

Expressing the bosonic operators in momentum space and relying on the properties of the
bosonic Bogolyubov transformation, it yields for 〈n̂R(t)〉 to
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〈n̂R(t)〉 = 1
Ns

∑
k1,k2

ei(k1−k2)R〈â†k1
(t)âk2(t)〉 = 1

Ns

∑
k

v2
k. (J.9)

For the correlator |〈âNs/2â
†
R(t)〉|2, it yields the following expression

|〈âNs/2â
†
R(t)〉|2 =

∣∣∣∣∣∣ 1
Ns

∑
k1,k2

e−ik1(Ns/2)eik2R〈âk1 â
†
k2

(t)〉

∣∣∣∣∣∣
2

=
∣∣∣∣∣ 1
Ns

∑
k

u2
ke
i[k(R−Ns/2)+Ekt]

∣∣∣∣∣
2

,

(J.10)

and for the second term |〈âNs/2âR(t)〉|2 in the theoretical expression of 〈Ψ0|ŜzR(t)|Ψ0〉, we find

|〈âNs/2âR(t)〉|2 =

∣∣∣∣∣∣ 1
Ns

∑
k1,k2

e−ik1(Ns/2)e−ik2R〈âk1 âk2(t)〉

∣∣∣∣∣∣
2

=
∣∣∣∣∣ 1
Ns

∑
k

ukvke
i[k(R−Ns/2)+Ekt]

∣∣∣∣∣
2

.

(J.11)

Finally, the analytical expression of 〈Ψ0|ŜzR(t)|Ψ0〉 may be written as

〈Ψ0|ŜzR(t)|Ψ0〉 =
(

1
2 −

1
Ns

∑
k

v2
k

)
−
∣∣∣∣∣ 1
Ns

∑
k

u2
ke
i[k(R−Ns/2)+Ekt]

∣∣∣∣∣
2

−
∣∣∣∣∣ 1
Ns

∑
k

ukvke
i[k(R−Ns/2)+Ekt]

∣∣∣∣∣
2

.

(J.12)

Using the formula ∑k = (1/2)
(∑

k +∑−k) and considering the thermodynamic limit for
one-dimensional lattice models given by (1/Ns)

∑
k ≡

∫
B dk/2π, it yields for the local

magnetization the following form

〈Ψ0|ŜzR(t)|Ψ0〉 =
(1

2 −
∫
B

dk
2πv

2
k

)
−
∣∣∣∣∣
∫
B

dk
2πu

2
k

{
ei[k(R−Ns/2)+Ekt] + ei[−k(R−Ns/2)+Ekt]

2

}∣∣∣∣∣
2

−
∣∣∣∣∣
∫
B

dk
2πukvk

{
ei[k(R−Ns/2)+Ekt] + ei[−k(R−Ns/2)+Ekt]

2

}∣∣∣∣∣
2

. (J.13)

In the main text, we have plotted the following observable 1/2− 〈Ψ0|ŜzR(t)|Ψ0〉 leading to

1
2 − 〈Ψ0|ŜzR(t)|Ψ0〉 =

∫
B

dk
2πv

2
k +

∣∣∣∣∣
∫
B

dk
2πu

2
k

{
ei[k(R−Ns/2)+Ekt] + ei[−k(R−Ns/2)+Ekt]

2

}∣∣∣∣∣
2

+
∣∣∣∣∣
∫
B

dk
2πukvk

{
ei[k(R−Ns/2)+Ekt] + ei[−k(R−Ns/2)+Ekt]

2

}∣∣∣∣∣
2

, (J.14)

where the coefficients uk, vk are defined by
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uk, vk = ±
√

1
2

(Ak
Ek
± 1

)
. (J.15)

Both forms at Eq. (J.13) and (J.14) are valid for one-dimensional s = 1/2 spin lattice
models displaying a polarized phase along the z axis. In the following, several examples
of such lattice model are provided :

• The 1D short-range s = 1/2 Heisenberg model [see Eq. (4.78)] in the quasi-long-range
gapless ferromagnetic phase along the z axis, characterized by Ak = Ek = J [1− cos(k)]
and Bk = 0, ∀k ∈ B = [−π, π]. Hence, uk = 1 and vk = 0, ∀k ∈ B = [−π, π]. Therefore,
equation (J.14) can be simplified and it yields for the local magnetization the following
form

1
2 − 〈Ψ0|ŜzR(t)|Ψ0〉 =

∣∣∣∣∣
∫
B

dk
2π

{
ei[k(R−Ns/2)+Ekt] + ei[−k(R−Ns/2)+Ekt]

2

}∣∣∣∣∣
2

. (J.16)

• The 1D short-range s = 1/2 transverse Ising model in the z-polarized phase (h � J)
whose Hamiltonian is represented at Eq. (3.3). The latter is characterized by Ak =
J cos(k) + 2h and Bk = J cos(k), ∀k ∈ B = [−π, π] the first Brillouin zone. The gapped
excitation spectrum Ek is thus determined by Ek =

√
A2
k − B2

k = 2
√
h[h+ J cos(k)].

• The 1D long-range s = 1/2 transverse Ising model (see Eq. 3.71) in the z-polarized phase
where Ak = JPα(k) + 2h, Bk = JPα(k), ∀k ∈ B (Pα represents the Fourier transform
of the power-law function |R|−α). Hence, the gapped excitation spectrum Ek reads as
Ek =

√
A2
k − B2

k = 2
√
h[h+ JPα(k)].

• The 1D long-range s = 1/2 XXZ (LRXXZ) model (see Eq. 3.60) in the long-range-order
gapped ferromagnetic phase along the z axis requiring ε < −1, ∀α ∈ R+∗. The anisotropy
along the z axis opens a finite gap in the excitation spectrum. The latter is characterized
by Ek = Ak = (J/2) [−Pα(k)− εPα(0)], Bk = 0 meaning that uk = 1 and vk = 0,
∀k ∈ B.

• The 1D long-range s = 1/2 Heisenberg model (see Eq. 3.60 for ε = −1) in the long-range-
order gapless ferromagnetic phase along the z axis. Its excitation spectrum Ek is directly
given by the one of the 1D LRXXZ model in the long-range-order gapped ferromagnetic
phase along the z axis by replacing ε by −1. Thus, the gapless excitation spectrum of
the 1D long-range s = 1/2 Heisenberg model reads as Ek = Ak = (J/2) [Pα(0)− Pα(k)]
knowing that Bk = 0, and implies that uk = 1 and vk = 0 ∀k ∈ B.
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K
The von Neumann and Rényi entropies

In this appendix, we provide additional details about the definition and properties of the von
Neumann and Rényi entropies. The latter correspond to entropy measures, and not physical
observables 1, allowing us to characterize the amount of entanglement for any many-body
quantum state |Ψ〉.

Let us first fix the notation. In the following, a bipartite quantum system Ω = A + B
is considered. Ω refers to the full quantum system whereas A corresponds to a quantum
subsystem of Ω and B = Ā the complementary subsystem. ρ̂ = ρ̂AB = |Ψ〉 〈Ψ| denotes the
density matrix associated to the many-body quantum state |Ψ〉 living in the full Hilbert
space H = HΩ = HA ⊗HB. From the density matrix ρ̂, one can define the so-called reduced
density matrix ρ̂A (ρ̂B) of the subsystem A (B) by tracing out all the degrees of freedom of
the complementary subsystem B (A). As a consequence, it yields,

ρ̂A = TrB (ρ̂) and ρ̂B = TrA (ρ̂) . (K.1)

In order to characterize the amount of entanglement for the many-body quantum state
|Ψ〉 living in the bipartite system Ω = A + B, it is particularly helpful to rely on its
Schmidt decomposition given by

|Ψ〉 =
min[dim(HA),dim(HB)]∑

j=1
Ψj |φj〉A ⊗ |φj〉B , (K.2)

where the collection of states {|φ〉A} and {|φ〉B} forms an orthonormal basis of the subsystem
A and B respectively. The latter can be easily found by considering the general many-body
quantum state |Ψ〉 = ∑

l,m Ψl,m |ϕl〉A⊗|ϕm〉B and by applying the singular value decomposition
on the state matrix Ψ of dimension dim(HA)× dim(HB). The normalization of the quantum
state |Ψ〉 leads to the following condition ∑j |Ψj |2 = ∑

j Πj = 1. Straightforwardly, it implies
Tr (ρ̂) = Tr (ρ̂A) = Tr (ρ̂B) = 1.

1Indeed, the von Neumann and Rényi entropies are not physical observables since they do not depend linearly
on the reduced density matrix, see definitions later.
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K. The von Neumann and Rényi entropies

The Rényi entropy of order n denoted by Sn, and the von Neumann entropy S, associated
to the subsystem A are defined respectively by

Sn(ρ̂A) = 1
1− n log [Tr (ρ̂nA)] , ∀n ∈ R+\{1}, (K.3)

S(ρ̂A) = lim
n→1
Sn(ρ̂A) = −Tr [ρ̂Alog(ρ̂A)] . (K.4)

Note that the previous expressions are exactly the same for the subsystemB (modify the reduced
density matrix ρ̂A by ρ̂B). It is important to point out that Sn(ρ̂A) = Sn(ρ̂B) ∀n ∈ R+\{1}
and S(ρ̂A) = S(ρ̂B) according to the Schmidt decomposition of |Ψ〉 presented at Eq. (K.2).
Indeed, the entropy measures characterize the amount of entanglement between the two
subsystems A and B which corresponds to a boundary property of the quantum model.
Hence, for any bipartition, the value of the entropies does not depend on the choice of
the subsystem to perform the calculation.

von Neumann entropy : special case of the Rényi entropy In what follows, we provide
the proof that the von Neumann entropy (also called entanglement entropy) corresponds
to the Rényi entropy in the limit n → 1, ie. S(ρ̂A) = limn→1 Sn(ρ̂A),∀ρ̂A. The many-
body quantum state |Ψ〉 fulfills the form presented at Eq. (K.2) and is assumed to be well
normalized. We first investigate the term Tr (ρ̂nA) in the expression of the Rényi entropy
of order n, see Eq. (K.3). It yields

Tr (ρ̂nA) =
∑
j

(
|Ψj|2

)n
=
∑
j

Πn
j = 1−

∑
j

(
Πj −Πn

j

)
, (K.5)

Tr (ρ̂nA) = 1−
∑
j

Πj

(
1−Πn−1

j

)
= 1−

∑
j

Πj

[
1− e(n−1)log(Πj)

]
. (K.6)

Then, by considering the limit n→ 1 and using a Taylor expansion of the exponential, we obtain

lim
n→1

Tr (ρ̂nA) = 1− (1− n)
∑
j

Πj log(Πj). (K.7)

Then, it yields for the Rényi entropy in the limit n → 1 the following expression

lim
n→1
Sn(ρ̂A) = 1

1− n log[1− (1− n)
∑
j

Πj log(Πj)], (K.8)

lim
n→1
Sn(ρ̂A) = − 1

1− n(1− n)
∑
j

Πj log(Πj) = −
∑
j

Πj log(Πj). (K.9)

Finally, we have shown that

lim
n→1
Sn(ρ̂A) = −Tr [ρ̂Alog(ρ̂A)] = S(ρ̂A), ∀ρ̂A. (K.10)

Extrema of the Rényi entropies Sn In the following, we investigate the behavior of the
Rényi entropies and more precisely their extrema. To do so, one considers a many-body
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K. The von Neumann and Rényi entropies

quantum state |Ψ〉 in a superposition of two different states having the form

|Ψ〉 = αeiΦ1 |φ1〉A ⊗ |φ1〉B + βeiΦ2 |φ2〉A ⊗ |φ2〉B , (K.11)

where (Φ1,Φ2, α, β) ∈ R4. The normalization of the quantum state implies the condition
α2 + β2 = 1. The probability p (p′) that |Ψ〉 is projected on the first (second) quantum state
is characterized by p = |(〈φ1|A ⊗ 〈φ1|B) |Ψ〉 |2 = α2 ∈ [0, 1] (p′ = β2 = 1 − α2 = 1 − p). For
the specific form of |Ψ〉 at Eq. (K.11), the Rényi entropy Sn(ρ̂A) = Sn(ρ̂B) can be written as

Sn(ρ̂A) = 1
1− n log [Tr (ρ̂nA)] = 1

1− n log
[
Tr
(
p 0
0 1− p

)n]
= 1

1− n log [pn + (1− p)n] .

(K.12)

Finally, the derivative with respect to the probability p may be written as follows

∂Sn(ρ̂A)
∂p

= ∂Sn(p)
∂p

= n

1− n
pn−1 − (1− p)n−1

pn + (1− p)n . (K.13)

Using Eq. (K.12) and (K.13), one immediately finds that the Rényi entropies 2 are minimal
(equal to zero) for p ∈ {0, 1} ∀n ∈ R+\{1} and maximal for p = 1/2, ∀n ∈ R+\{1}, see
Fig. K.1 (note that the previous discussion is also valid for the von Neumann entropy). The
last statement corresponds to the equiprobability condition where |Ψ〉 consists of a superposition
of two quantum states with the same probability and for which the Rényi entropies are maximal
and characterized by the maximal value maxp(Sn(p)) = Sn(p = 1/2) = log(2).

Figure K.1: Evolution of the Rényi entropy Sn(p) as a function of the probability p and the index
n (denoting the order of the Rényi entropy) for a many-body quantum state |Ψ〉 fulfilling the form
presented at Eq. (K.11).

The generalization to N quantum states fulfilling the equiprobability condition for |Ψ〉 is
straightforward. Indeed, it yields for the maximal value of the Rényi entropies max(Sn) =
log(N). In the following, we give the proof that the Rényi entropies reach their maximum
for a same set of coefficients {Πj}, ie. the diagonal coefficients of the reduced density matrix
ρ̂A, which can be determined using the equiprobability condition. To do so, one relies on
the Lagrangian multiplier method where λ is the Lagrangian multiplier, the constraint is

2One can add that the Rényi entropy at n = 0 is constant and thus irrelevant to characterize the entanglement.
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∑
j Πj − 1 = 0 (one recall that the normalization of the quantum state |Ψ〉 implies the

normalization of the reduced density matrix ρ̂A) and the physical quantity to maximize
is Sn(ρ̂A). The Lagrangian is defined by

L(Πj , λ) = Sn(ρ̂A)− λ
(

1−
∑
l

Πl

)
. (K.14)

To solve this problem, one needs to investigate the different derivatives of the Lagrangian
with respect to each variable :

∂L(Πj , λ)
∂λ

= 0⇒
∑
l

Πl = 1. (K.15)

The previous condition corresponds to the constraint of the problem, ie. to the normal-
ization of the many-body quantum state |Ψ〉. We then investigate the derivative with
respect to each coefficient Πj ,

∂L(Πj , λ)
∂Πj

= ∂

∂Πj

{
1

1− n log [Tr(ρ̂nA)]− λ
(

1−
∑
l

Πl

)}
= 0, (K.16)

∂L(Πj , λ)
∂Πj

= ∂

∂Πj

{
1

1− n log
(∑

l

Πn
l

)
− λ

(
1−

∑
l

Πl

)}
= 0, (K.17)

∂L(Πj , λ)
∂Πj

= n

1− n
Πn−1
j∑
l Πn

l

+ λ = 0, ∀Πj . (K.18)

Therefore, one has the two following conditions

Πj =
(
n− 1
n

λ
∑
l

Πn
l

) 1
n−1

∀Πj ,
∑
l

Πl = 1. (K.19)

Then, by multiplying the first one by ∑j , one obtains

∑
j

(
n− 1
n

λ
∑
l

Πn
l

) 1
n−1

= 1 ⇒ λ = dim(ρ̂A)1−n
(
n− 1
n

∑
l

Πn
l

)−1

. (K.20)

Finally, by injecting the latter in the first condition of Eq. (K.19), it yields for the coefficients
{Πj} of the reduced density matrix ρ̂A,

Πj =
(
n− 1
n

∑
l

Πn
l

) 1
n−1 1

dim(ρ̂A)

(
n− 1
n

∑
l

Πn
l

) −1
n−1

, (K.21)

Πj = 1
dim(ρ̂A) = 1

N
. (K.22)

Finally, using a Lagrangian method, we have shown that the Rényi entropies reach their
maximum for a same set of coefficients {Πj} determined by the equiprobability condition. For
a many-body quantum state |Ψ〉 in a superposition ofN states, it yields Πj = 1/N, ∀j ∈ [|1, N |].
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Properties of the Rényi entropies We now turn to several properties of the Rényi en-
tropies. In what follows, (ρ̂A, ρ̂′A) ∈MN (R)2 denotes two normalized reduced density matrices.

• Continuity : Sn(ρ̂A) continuous in ρ̂A.

• Normalization : Sn(ρ̂A) = log(N) for ρ̂A = diag(1/N).

• Unitary invariance : U ∈MN (C) corresponds to a unitary matrix.

Sn(Uρ̂AU †) = 1
1− n log

{
Tr[(Uρ̂AU †)n]

}
. (K.23)

Then, using the following equation

(Uρ̂AU †)n = (Uρ̂AU †)(Uρ̂AU †)...(Uρ̂AU †) = Uρ̂nAU
†, (K.24)

one obtains for Sn(Uρ̂AU †),

Sn(Uρ̂AU †) = 1
1− n log

[
Tr
(
Uρ̂nAU

†
)]
, (K.25)

Sn(Uρ̂AU †) = 1
1− n log

[
Tr
(
U †Uρ̂nA

)]
, (K.26)

Sn(Uρ̂AU †) = 1
1− n log [Tr (ρ̂nA)] = Sn(ρ̂A). (K.27)

• Additivity :
Sn(ρ̂A ⊗ ρ̂′A) = 1

1− n log{Tr
[
(ρ̂A ⊗ ρ̂′A)n

]
}. (K.28)

Then, using the following equation,

(ρ̂A ⊗ ρ̂′A)n = (ρ̂A ⊗ ρ̂′A)(ρ̂A ⊗ ρ̂′A)...(ρ̂A ⊗ ρ̂′A) = ρ̂nA ⊗ (ρ̂′A)n, (K.29)

one finds for Sn(ρ̂A ⊗ ρ̂′A)

Sn(ρ̂A ⊗ ρ̂′A) = 1
1− n log

[
Tr
(
ρ̂nA ⊗ (ρ̂′A)n

)]
, (K.30)

Sn(ρ̂A ⊗ ρ̂′A) = 1
1− n log

{
Tr(ρ̂nA)Tr[(ρ̂′A)n]

}
, (K.31)

Sn(ρ̂A ⊗ ρ̂′A) = 1
1− n{log [Tr(ρ̂nA)] + log

[
Tr((ρ̂′A)n)

]
}, (K.32)

Sn(ρ̂A ⊗ ρ̂′A) = Sn(ρ̂A) + Sn(ρ̂′A). (K.33)
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• No arithmetic mean :

Sn(ρ̂A ⊕ ρ̂′A) = 1
1− n log{Tr

[
(ρ̂A ⊕ ρ̂′A)n

]
}, (K.34)

Sn(ρ̂A ⊕ ρ̂′A) = 1
1− n log

{
Tr(ρ̂nA) + Tr[(ρ̂′A)n]

}
, (K.35)

Sn(ρ̂A ⊕ ρ̂′A) 6= Tr(ρ̂A)
Tr(ρ̂A + ρ̂′A)Sn(ρ̂A) + Tr(ρ̂′A)

Tr(ρ̂A + ρ̂′A)Sn(ρ̂′A), (K.36)

Sn(ρ̂A ⊕ ρ̂′A) 6= 1
2
[
Sn(ρ̂A) + Sn(ρ̂′A)

]
. (K.37)
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L
Gz spin-spin correlations in the z polarized phase of

the long-range transverse Ising chain

In this section, we derive the expression of the Gz equal-time connected spin-spin correlation
function along the z axis in the z polarized phase of the long-range transverse Ising (LRTI)
chain. To drive the spin chain far from equilibrium, a sudden global quench on the spin
exchange energy J > 0 along the x direction of the Bloch sphere is considered while both the
power-law exponent α and the transverse field h are fixed. The latter implies that Ji, Jf � h
in order to remain in the z polarized phase, see Eq. (5.71) and Fig. 5.18. The calculation,
based on the linear spin wave theory, follows the same steps used at Appendix. G. In the
following, the long-range Ising chain is assumed to contain Ns lattice sites and ~ and a the
lattice spacing are fixed to unity by convention.

TheGz spin fluctuations along the z axis may be written asGz(R, t) = Gz,0(R, t)−Gz,0(R, 0)
where

Gz,0(R, t) = 〈ŜzR(t)Ŝz0(t)〉 − 〈ŜzR(t)〉〈Ŝz0(t)〉. (L.1)

The calculation is mainly based on the properties of the bosonic Bogolyubov theory. As
a consequence, we first need to express Gz in terms of the post-quench bosonic operators
in momentum space âk,f = âk and â†k,f = â†k. To do so, the following Holstein-Primakoff
transformation, valid in the z polarized phase, is considered

ŜzR = 1
2 − â

†
RâR, ŜxR = 1

2(â†R + âR), ŜyR = −1
2i (â†R − âR). (L.2)

By injecting this transformation in the previous expression of Gz and relying on the bosonic
version of the Wick theorem, we obtain

Gz(R, t) = 〈â†Râ
†
0〉t〈âRâ0〉t + 〈â†Râ0〉t〈âRâ†0〉t − 〈â

†
Râ
†
0〉0〈âRâ0〉0 − 〈â†Râ0〉0〈âRâ†0〉0,

Gz(R, t) = |〈â†Râ
†
0〉t|

2 + |〈â†Râ0〉t|2 − |〈â†Râ
†
0〉0|

2 − |〈â†Râ0〉0|2. (L.3)

To find the previous expression, we assume R 6= 0 and use the notation 〈...〉t ≡ 〈Ψ(t)|...|Ψ(t)〉
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with |Ψ(t)〉 = e−iĤft |Ψ0〉 (|Ψ0〉 = |Ψgs,i〉 denotes the ground state of the pre-quench Hamilto-
nian Ĥi defined by the pre-quench interaction parameter Ji/h). We now express the latter
in the reciprocal space via a Fourier transform of the post-quench bosonic operators in real
space. It yields for Gz the following formula

Gz(R, t) = 1
N2
s


∣∣∣∣∣∑
k

eikR〈â†kâ
†
−k〉t

∣∣∣∣∣
2

−
∣∣∣∣∣∑
k

eikR〈â†kâ
†
−k〉0

∣∣∣∣∣
2

+
∣∣∣∣∣∑
k

eikR〈â†kâk〉t

∣∣∣∣∣
2

−
∣∣∣∣∣∑
k

eikR〈â†kâk〉0

∣∣∣∣∣
2
 .

(L.4)

In what follows, we present the different properties of the bosonic Bogolyubov theory which
are used to deduce the final theoretical expression of the Gz spin fluctuations.

1. The Bogolyubov transformation, allowing us to express the post-quench bosonic operators
in terms of the post-quench (bosonic) Bogolyubov operators, is given by

â†k,f(t) = â†k(t) = uf
kβ̂
†
k,f(t) + vf

kβ̂−k,f(t), âk,f(t) = âk(t) = uf
kβ̂k,f(t) + vf

kβ̂
†
−k,f(t), (L.5)

where the coefficients uf
k and vf

k are defined at Appendix. G for the LRTI chain in the z
polarized phase.

2. Since the post-quench Bogolyubov operators diagonalize the post-quench Hamiltonian Ĥf
of the LRTI chain, their real time evolution in the Heisenberg picture takes a simple form
given as

β̂†k,f(t) = eiE
f
ktβ̂†k,f(0), β̂k,f(t) = e−iE

f
ktβ̂k,f(0), (L.6)

where Ef
k refers to the post-quench excitation spectrum of the LRTI chain in the z polarized

phase (see Appendix. G).

3. The pre- and post-quench Bogolyubov operators are linked using the continuity of the
bosonic operators in momentum space. In other words, using both following relations
âk,f(0) = âk,i and â†k,f(0) = â†k,i, one obtains 1

β̂k,f(0) = M i,f
k β̂k,i −N

i,f
k β̂
†
−k,i, β̂†k,f(0) = M i,f

k β̂
†
k,i −N

i,f
k β̂−k,i, (L.7)

with M i,f
k = ui

ku
f
k − vi

kv
f
k and N i,f

k = ui
kv

f
k − uf

kv
i
k.

4. By definition, the initial state |Ψ0〉 corresponding to the ground state of Ĥi does not support
any quasiparticle leading to both relations

β̂k,i |Ψ0〉 = 0, 〈Ψ0| β̂†k,i = 0. (L.8)

From now, one has to calculate each correlator of Eq. (L.4). We first start to investigate the
correlators 〈â†kâ

†
−k〉t = 〈â†k(t)â†−k(t)〉 and 〈â†kâ

†
−k〉0 = 〈â†k(0)â†−k(0)〉. One obtains the following

expressions using the previous properties of the bosonic Bogolyubov theory
1Note that the indices i and f for the scalars are now written as exponents for clarity. Indeed, this notation

avoids to have, with the quasimomentum k, three aligned indices.
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〈â†kâ
†
−k〉t = −N i,f

k M
i,f
k

[(
uf
k

)2
ei2E

f
kt +

(
vf
k

)2
e−i2E

f
kt
]

+ uf
kv

f
k

[(
N i,f
k

)2
+
(
M i,f
k

)2
]
, (L.9)

〈â†kâ
†
−k〉0 = −N i,f

k M
i,f
k

[(
uf
k

)2
+
(
vf
k

)2
]

+ uf
kv

f
k

[(
N i,f
k

)2
+
(
M i,f
k

)2
]
. (L.10)

We now turn to the two last correlators of Eq. (L.4) corresponding to 〈â†kâk〉t = 〈â†k(t)âk(t)〉
and 〈â†kâk〉0 = 〈â†k(0)âk(0)〉.

〈â†kâk〉t =
(
uf
kN

i,f
k

)2
+
(
vf
kM

i,f
k

)2
− 2uf

kv
f
kM

i,f
k N

i,f
k cos(2Ef

kt), (L.11)

〈â†kâk〉0 =
(
uf
kN

i,f
k

)2
+
(
vf
kM

i,f
k

)2
− 2uf

kv
f
kM

i,f
k N

i,f
k . (L.12)

We now express the previous correlators in terms of the pre- and post-quench quasimomentum-
dependent functions A(i,f)

k and B(i,f)
k defined at Appendix. G. Both functions appear when

expressing the pre- and post-quench Hamiltonians of the LRTI chain in the z polarized phase
under the general quadratic Bose form [see Eq. (3.17) for instance]. In what follows, we provide
preliminary results simplifying the calculation of the different correlators

uf
kv

f
k = − B

f
k

2Ef
k

, (L.13)(
M i,f
k

)2
= 1

2Ei
kE

f
k

(
Ai
kAf

k + Ei
kE

f
k − Bi

kBf
k

)
, (L.14)(

N i,f
k

)2
= 1

2Ei
kE

f
k

(
Ai
kAf

k − Ei
kE

f
k − Bi

kBf
k

)
, (L.15)

M i,f
k N

i,f
k = 1

2Ei
kE

f
k

(
Bi
kAf

k − Bf
kAi

k

)
. (L.16)

Finally, we find that the correlators 〈â†kâk〉t and 〈â
†
kâk〉0 have the following form

〈â†kâk〉t = 1
2Ei

k

(
Ef
k

)2 {Ai
k

(
Af
k

)2
− Bi

kBf
kAf

k − Ei
k

(
Ef
k

)2
+
[
Bi
kAf

kBf
k −Ai

k

(
Bf
k

)2
]

cos(2Ef
kt)
}

(L.17)

〈â†kâk〉0 = 1
2Ei

k

(
Ef
k

)2 [Ai
k

(
Af
k

)2
− Bi

kBf
kAf

k − Ei
k

(
Ef
k

)2
+ Bi

kAf
kBf

k −Ai
k

(
Bf
k

)2
]

〈â†kâk〉0 = 1
2Ei

k

(
Ai
k − Ei

k

)
=
(
vi
k

)2
(L.18)

For the two last correlators 〈â†kâ
†
−k〉t and 〈â

†
kâ
†
−k〉0, one obtains
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〈â†kâ
†
−k〉t = 1

2Ei
k

(
Ef
k

)2 {(Bf
kAi

k − Bi
kAf

k

) [
Af
k cos(2Ef

kt) + iEf
k sin(2Ef

kt)
]

+
[
Bi
k

(
Bf
k

)2
− Bf

kAi
kAf

k

]}
(L.19)

〈â†kâ
†
−k〉0 = 1

2Ei
k

(
Ef
k

)2 [(Bf
kAi

k − Bi
kAf

k

)
Af
k + Bi

k

(
Bf
k

)2
− Bf

kAi
kAf

k

]
= − B

i
k

2Ei
k

= ui
kv

i
k (L.20)

Note that it is consistent to find 〈â†kâk〉0 =
(
vi
k

)2 and 〈â†kâ
†
−k〉0 = ui

kv
i
k. Indeed, both

previous correlators can be directly computed via the properties of the bosonic Bogolyubov
transformation related to the pre-quench Hamiltonian Ĥi. More precisely, using the continuity
of the bosonic operators at time t = 0 and the Bogolyubov transformation for the pre-quench
Hamiltonian Ĥi defined by â†k,i = ui

kβ̂
†
k,i + vi

kβ̂−k,i and âk,i = ui
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†
−k,i, one can easily

verify the previous expressions.

Finally, for a sudden global quench confined in the z polarized phase of the 1D long-range
transverse Ising model, the space-time spin fluctuations Gz(R, t) have the following analytical
form in the thermodynamic limit
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∣∣∣∣2 , (L.21)

where B refers to the first Brillouin zone, ie. B = [−π, π].
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Résumé en français

Dans cette thèse, nous nous sommes intéressés à la propagation hors équilibre de corrélations
dans des modèles quantiques sur réseau isolés de leur environnement. Afin d’être mis hors
équilibre, ces derniers sont initialement préparés dans l’état fondamental de leur Hamiltonien
pour une certaine valeur du paramètre d’interaction et évoluent en temps avec le même
Hamiltonien mais ayant une valeur différente du paramètre d’interaction. Ce protocole de mise
hors équilibre d’un système quantique est communément appelé ’quench global et soudain’.
L’objectif principal a été de comprendre comment l’information se propage dans un système
quantique corrélé et d’expliquer notamment des résultats a priori contradictoires dans la
littérature. Pour ce faire, nous avons employé une approche combinant à la fois des études
analytiques mais aussi numériques.

En ce qui concerne l’approche analytique, celle-ci repose sur une approximation de type
’champ-moyen’ ainsi que sur une théorie de quasiparticules de type ’Bogolyubov’. Elle a
notamment permis de dévoiler une expression générique des fonctions de corrélation pour
des systèmes quantiques de particules ou de spins interagissant à courte ou longue portée
sur un réseau hypercubique. Cette forme générique consiste en une superposition cohérente
d’ondes planes, représentant des paires de quasiparticles libres, se propageant dans l’espace
et le temps et pondérées par une fonction d’amplitude dépendant du quasimoment et de
l’observable considérée. En utilisant la méthode de phase stationnaire, nous avons montré que
la région causale de ces corrélations présente une structure double universelle. Cette dernière est
composée non seulement d’une borne, appelée ’borne de corrélation’ mais également d’extrema
locaux dans son voisinage définissant la partie externe et interne des corrélations résolues en
temps et distance respectivement.
Dans le cas d’interactions de courte portée, nous avons prouvé que les deux structures se
propagent ballistiquement avec des vitesses généralement différentes et reliées à la vitesse de
groupe et de phase du spectre d’excitation du Hamiltonien après quench. Plus précisément,
la borne de corrélation est caractérisée par une vitesse égale à deux fois la vitesse de groupe
maximale tandis que les extrema se propagent avec une vitesse correspondant à deux fois la
vitesse de phase au quasimoment où la vitesse de groupe est maximale.
Pour des interactions de longue portée de type loi de puissance, les lois d’échelle peuvent
être sensiblement modifiées à cause de la possible divergence de la vitesse de groupe. Pour
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ce cas spécifique correspondant au régime dit quasi-local, une double structure aux lois
d’échelle algébriques a été présentée. Bien que la borne des corrélations se propage toujours
moins rapidement que ballistiquement, les extrema locaux se propagent plus rapidement
que ballistiquement et ballistiquement pour des systèmes quantiques non gappés et gappés
respectivement. Cependant pour le régime local caractérisé par une valeur maximale bien
définie de la vitesse de groupe et impliquant une décroissance rapide des interactions de longue
portée, nous avons retrouvé un comportement similaire au cas d’interactions de courte portée
pour la propagation des corrélations. En effet, celles-ci présentent une structure double linéaire
caractérisée par les mêmes vitesses de propagation qu’énoncées précédemment pour la borne
de corrélation et les extrema locaux.

Concernant l’approche numérique, des simulations ont été effectuées en utilisant des
techniques de réseaux de tenseurs. Ces techniques, basées sur une analyse de l’intrication
au sein des systèmes quantiques, fournissent des données quasi-exactes dans le cas de
réseaux unidimensionnels. Par conséquent, ces approches numériques permettent d’étudier la
propagation de corrélations au-delà de l’approximation de champ moyen et ainsi attester de
la validité de nos prédictions théoriques. Par ailleurs, elles offrent la possibilité d’étudier la
propagation hors équilibre de corrélations dans des régimes où il n’existe pas (à ce jour) de
solutions théoriques. Pour conclure, ces simulations ont été effectuées pour différents systèmes
quantiques unidimensionnels et sur réseau, à savoir le modèle de Bose-Hubbard dans la phase
superfluide et isolante de Mott ainsi que les modèles de spins XY et d’Ising transverse.
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Titre : Propagation de Corrélations dans des Modèles Quantiques sur Réseau pour des Interactions à Portée
Variable

Mots clés : dynamique de quench, théorie de quasiparticules, interactions de longue portée, réseaux de tenseurs

Résumé : Dans cette thèse, nous nous sommes
intéressés à la propagation hors équilibre de
corrélations dans des modèles quantiques sur réseau.
L’objectif principal a été de comprendre comment
se propage l’information dans un système quantique
corrélé et d’expliquer notamment des résultats a priori
contradictoires dans la littérature. Pour ce faire, nous
avons employé une approche combinant des études
analytiques et numériques. En ce qui concerne l’ap-
proche analytique, celle-ci est basée sur une théorie
de quasiparticules et a permis de dévoiler une ex-
pression générique des fonctions de corrélation pour
des systèmes quantiques de particules ou de spins in-
teragissant à courte ou longue portée sur un réseau
hypercubique. En utilisant la méthode de phase sta-
tionnaire, nous avons montré que la région causale
de ces corrélations présente une structure double uni-
verselle. Cette dernière est composée non seulement
d’une borne mais également d’extrema locaux dans
son voisinage définissant la partie externe et interne
des corrélations résolues en temps et distance respec-
tivement. Dans le cas d’interactions de courte portée,
nous avons prouvé que les deux structures se pro-
pagent ballistiquement avec des vitesses généralement

différentes et reliées à la vitesse de groupe et de phase
du spectre d’excitation du Hamiltonien après quench.
Pour des interactions de longue portée de type loi
de puissance, les lois d’échelle peuvent être sensible-
ment modifiées dues à une possible divergence de la
vitesse de groupe. Pour ce cas spécifique correspon-
dant au régime dit quasi-local, une double structure
aux lois d’échelle algébriques a été présentée. Bien que
la borne des corrélations se propage toujours moins
rapidement que ballistiquement, les extrema locaux se
propagent plus rapidement que ballistiquement et bal-
listiquement pour des systèmes quantiques non gappés
et gappés respectivement. Cependant pour le régime
local caractérisé par une valeur maximale bien définie
de la vitesse de groupe et impliquant une décroissance
rapide des interactions de longue portée, nous avons re-
trouvé un comportement similaire au cas d’interactions
de courte portée pour la propagation des corrélations.
Afin de vérifier nos prédictions théoriques, des simula-
tions numériques basées sur des techniques de réseaux
de tenseurs ont été effectuées pour différents systèmes
quantiques à savoir le modèle de Bose-Hubbard ainsi
que les modèles de spins XY et d’Ising transverse.

Title : Correlation Spreading in Quantum Lattice Models with Variable-Range Interactions

Keywords : quench dynamics, quasiparticle theory, long-range interactions, tensor networks

Abstract : In this thesis, we have investigated the
spreading of quantum correlations in isolated lattice
models with short- or long-range interactions driven
far from equilibrium via sudden global quenches. A
main motivation for this research topic was to shed new
light on the conflicting results in the literature concer-
ning the scaling law of the correlation edge, its lack
of universality and the incompleteness of the existing
physical pictures to fully characterize the propagation
of quantum correlations. To do so, we have presen-
ted a general theoretical approach relying on a quasi-
particle theory. The latter has permitted to unveil a
generic expression for the equal-time connected corre-
lation functions valid both for short-range and long-
range interacting particle and spin lattice models on a
hypercubic lattice. Relying on stationary phase argu-
ments, we have shown that its causality cone displays
a universal twofold structure consisting of a correlation
edge and a series of local extrema defining the outer
and inner structure of the space-time correlations. For
short-range interactions, the motion of each structure

is ballistic and the associated spreading velocities are
related to the group and phase velocites of the quasi-
particle dispersion relation of the post-quench Hamil-
tonian. For long-range interactions of the form 1/|R|α,
the correlation spreading is substantially different due
to a possible divergence of group velocity when tu-
ning the power-law exponent α. For a divergent group
velocity, ie. the quasi-local regime, we have presen-
ted evidence of a universal algebraic structure for the
causality cone. While, the correlation edge motion has
been found to be always slower than ballistic, the local
extrema propagate faster than ballistically and ballis-
tically for gapless and gapped quantum systems res-
pectively. For the local regime implying a well-defined
group velocity, we have recovered similar scaling laws
and spreading velocities than the short-range case for
the causality cone of correlations. The previous theore-
tical predictions have been verified numerically using
tensor network techniques within the case study of the
short-range Bose-Hubbard chain and the long-range
s = 1/2 XY and transverse Ising chains.
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