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Chapter 1

Introduction

Summary: Computational phenotyping is an emergent set of technologies
for systematically studying the role of the genome in eliciting phenotypes,
the observable characteristics of an organism and its subsystems. In partic-
ular, cell-based assays screen panels of small compound drugs or otherwise
modulations of gene expression, and quantify the effects on phenotypic char-
acteristics ranging from viability to cell morphology. High content screen-
ing extends the methodologies of cell-based screens to a high content read-
out based on images, in particular the multiplexed channels of fluorescence
microscopy. Screens based on multiple cell lines are apt to differentiating
phenotypes across different subtypes of a disease, representing the molecu-
lar heterogeneity concerned in the design of precision medicine therapies.
These richer biological models underpin a more targeted approach for treat-
ing deadly diseases such as cancer. An ongoing challenge for high content
screening is therefore the synthesis of the heterogeneous readouts in multi-
cell-line screens. Concurrently, deep learning is the established state-of-the-
art in image analysis and computer vision applications. However, its role
in high content screening is only beginning to be realised. This dissertation
spans two problem settings in the high content analysis of cancer cell lines.
The contributions are the following: (i) a demonstration of the potential for
deep learning and generative models in high content screening; (ii) a deep
learning-based solution to the problem of heterogeneity in a multi-cell-line
drug screen; and (iii) novel applications of deep image-to-image translation
models as an alternative to the expensive fluorescence microscopy currently
required for high content screening.

Résumé: Le phénotypage computationnel est un ensemble de technologies
émergentes permettant d’étudier systématiquement le rôle du génome dans
l’obtention de phénotypes, les caractéristiques observables d’un organisme
et de ses sous-systèmes. En particulier, les essais cellulaires permettent

17
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de cribler des panels de petites molécules ou de moduler l’expression des
gènes, et de quantifier les effets sur les caractéristiques phénotypiques al-
lant de la viabilité à la morphologie cellulaire. Le criblage à haut contenu
étend les méthodologies des criblages cellulaires à une lecture à haut con-
tenu basée sur des images, en particulier les canaux multiplexés de la micro-
scopie à fluorescence. Les cribles basés sur de multiples lignées cellulaires
sont aptes à différencier les phénotypes de différents sous-types d’une mal-
adie, représentant l’hétérogénéité moléculaire concernée dans la conception
de thérapies médicales de précision. Ces modèles biologiques plus riches sous-
tendent une approche plus ciblée pour le traitement de maladies mortelles
telles que le cancer. Un défi permanent pour le criblage à haut contenu est
donc la synthèse des lectures hétérogènes dans les cribles à multiples lignées
cellulaires. Parallèlement, l’état de l’art établi en matière d’applications
d’analyse d’images et de vision par ordinateur est l’apprentissage profond.
Cependant, son rôle dans le criblage à haut contenu ne fait que commencer
à être réalisé. Cette thèse aborde deux problématiques de l’analyse à haut
contenu des lignées cellulaires cancéreuses. Les contributions sont les suiv-
antes : (i) une démonstration du potentiel d’apprentissage profond et de
modèles générateurs dans le criblage à haut contenu ; (ii) une solution basée
sur l’apprentissage profond au problème de l’hétérogénéité dans un criblage
de médicaments sur plusieurs lignées cellulaires ; et (iii) de nouvelles appli-
cations de modèles de traduction d’image à image comme alternative à la
microscopie à fluorescence coûteuse actuellement nécessaire pour le criblage
à haut contenu.

1.1 Computational phenotyping

The success of the Human Genome Project (Lander et al. [2001]) in mapping
the totality of human genes has inspired similar efforts for the enumeration
of biological phenotypes. One useful relation views a phenotype as, in con-
junction with environmental factors, the manifestation of the genetic code.
Natural selection has been said to operate in the “P-space” of all possible
phenotypes, with selection propagating to the “G-space” of all possible geno-
types. Hence, phenetic information bears directly on important biological
questions regarding disease and mortality (Houle et al. [2010]).

Unlike a genotype, which is constrained to the configuration of a fixed num-
ber of genes, an organism’s phenotype spans the space of its observable
characteristics. This notion is somewhat problematic, as what is observable
has broadened in time with advancements in technology. As a result, an
organism’s phenotype today may span its molecular, cellular, tissular, mor-
phological, and behavioural traits, none of which are moreover necessarily
fixed in time. For this reason, it is often convenient to refer to a tractable
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subset of an organism’s phenotype, for example that pertaining to an or-
ganismal subsystem, such as the properties of its cells. As a result, the term
phenotype and the related phenome are in practice want of semantic hygiene
(Mahner and Kary [1997]).

Phenomics, by analogy to genomics, refers to the study of high-dimensional
readouts across the full spectrum of an organism’s phenotype (Houle et al.
[2010]). The interest in phenomics coincides with the rise of bioimage in-
formatics (Myers [2012]). Bioimages, deriving from the various forms of
microscopy, contain rich information on the morphological aspects of cells,
cell populations in culture or tissue, and complete organisms, that is lost in
other biological readouts. Bioimages in time-lapse can additionally reveal
behaviour and track phenotypic changes in motion. Thus, bioimages are a
favourable medium for phenotypic information.

1.1.1 High content screening

High content screening (HCS) is a methodology for the systematic discovery
of phenotypes from image data in cellular assays (Haney [2008]). HCS may
be viewed as extending the methodology of high throughput screening (HTS)
to the medium of images. HTS is an experimental setup to test many
experimental conditions in a systematic way, typically with a very simple
readout, for example cell viability or a univariate measure of cytotoxicity.
HCS performs such screens with a more complex and informative readout by
leveraging, in particular, multiple channels of fluorescence microscopy. HCS
thus increases the “content” of the readout to a large number of features
(perhaps hundreds), while maintaining the throughput. HCS can be used
for fundamental biological research, where gene expression can be modulated
via techniques such as RNA interference, or otherwise knocked out entirely,
inducing phenotypic effects in cultured cells. HCS has been instrumental in
deciphering the molecular basis of a number of diverse biological processes,
such as cell division (Neumann et al. [2010]), protein secretion (Simpson
et al. [2012]), and endocytosis Collinet et al. [2010]. HCS has also been
used to systematically screen for the localisation of biomolecules inside cells
Boland et al. [1998]).

HCS also plays a role in the early “hit-to-lead” stages of the drug discov-
ery process (Haney et al. [2006], Pepperkok and Ellenberg [2006a]). In this
case, a cell line population is exposed to small molecule drug compounds.
Thus, the cell line is the model for a disease, and the screening process aims
to identify the drugs that are active thereupon. For instance, one may be
interested in identifying drugs that specifically kill cancer cells. HCS comple-
ments other techniques for drug identification such as biochemical assays.
For instance, Swinney and Anthony [2011] differentiate target-based and
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Figure 1.1: The basis of a systematic high content screen. A microplate
from which is registerd a fluorescence (single-channel) microscopy image
highlighting the nuclei of a cell population.

phenotypic screens. The study looks at 257 drugs published between 1999
and 2008. Despite the preeminence of target-based approaches, they find
the most common mode of first-in-class drug discovery is phenotypic screen-
ing. This is most true of infectious and central nervous system diseases.
Cancer treatments are most frequently discovered by biologics1, which also
predominate for diseases of the immune system. Target-based approaches
succeed for the discovery of half of all follower drugs.

1.1.2 The elements of high content screening

In order to perform experiments in high throughput, HCS relies to a signifi-
cant extent on experimental automatisation. Experiments are conducted in
wells arranged in a grid structure on a microtiter plate2 as depicted in Fig-
ure 1.1. The wells are seeded to confluence3 with cells of a chosen cell line.
Within each well, a different perturbation experiment is conducted. In all bi-
ological experiments it is important to rely on proper controls against which
the tested perturbations are compared. Screens compare populations of neg-
ative controls (unperturbed) with others exposed to perturbation. Positive
controls take the form of perturbations with a known effect, such as small
molecule cytotoxicity in a drug screen. Some number of images correspond-
ing to non-overlapping fields of view (henceforth fields) are taken from each
well, typically producing from hundreds to thousands of unique images per
plate. The following briefly describes the key elements of a screen.

1Biologics are genetically-engineered proteins that target the immune system.
2Microtiter plates (hereafter plates) are small (usually polystyrene) trays divided into

a rectangular grid of wells functioning as individual test tubes.
3Such that the well surface is covered with cells.
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Cell lines

The object of analysis of an HCS assay is an immortalised cell line (hereafter
referred to as a cell line), which consists in a population of cells, sustained
by division without senescence. As a result, a cell line continues replicating
indefinitely from a common ancestor. Cell lines are the biological model
acting as a representation of the disease. The first and most well-known
cell line generated is the HeLa cell line (Scherer et al. [1953]). Since HeLa,
many cell lines have been developed. Cell lines are useful biological models
due to their longevity in cell culture, and are used extensively in biomedi-
cal research, for example in assessing the cytotoxicity of a drug treatment.
However, their accuracy as biological models can be compromised by their
inherent mutations, and the effects of repeated passages, cloning, and bio-
chemical contaminants can lead to significant genetic drift from their in
vivo ancestors (Marx [2014]). Despite these limitations, cell lines remain
the most widely used model system in screening, and many scientific and
pharmacological discoveries have been made from screens on cell lines.

Microscopy and fluorescence

In high content screening, imaging data derives from one or another of the
many types of optical microscopy. A broad range of techniques for perform-
ing microscopy exist, each leveraging the principles of optics in different
ways, and the technique will be tailored to the experimental objectives.
Bright-field microscopy passes visible light through a sample, producing a
picture in which light is attenuated according to the varying densities of
the imaged specimen. Phase contrast is a more sophisticated variant of
transmitted light microscopy, measuring the phase shift of the visible light
traveling through the specimen, producing an image with a greater degree
of contrast.

Fundamental to high content screening is fluorescence microscopy, which
uses a laser to excite fluorescent molecules in organic matter. These molecules
are known as fluorophores and emit light at a unique wavelength (think
colour) upon excitation by a laser. As such, localised fluorophores can be
utilised to highlight key cellular regions. The predominant technique used
in HCS is immuno-fluorescence, which relies on fluorescently-labeled anti-
bodies. Other widely used techniques include labeling of live samples, stable
expression, or fluorescence in situ hybridisation. In most screening applica-
tions, the nuclei are stained with one of these techniques, allowing for the
subsequent identification of individual cells. The other fluorescent markers
are selected in accordance with the research questions, for example, mi-
crotubules, Golgi apparatus, or plasma membrane. Thus, the fluorescence
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markers of a screen, responding to distinct wavelengths of light, yield a set
of multiplexed images painting a composite picture of the cell in its key
sub-cellular structures. Image analysis can then be used to extract the high
content readouts of the screen.

Project workflow

A typical HTS project workflow commences with a pilot screen that vali-
dates the pipeline from experimental protocol through to image analysis (see
Terjung et al. [2010]). This is followed by a large scale screen, increasing the
number of perturbations tested. It is here that candidate hits (drug pertur-
bations registering a significant effect) are identified by automatic analysis
(see the following Section 1.1.3). Finally, candidate hits are carried forward
to secondary screens and are studied in greater detail.

1.1.3 High content analysis

With a large image dataset in hand (Section 1.1.2), so begins the automated
image analysis, or high content analysis. Each image depicts a population of
cells subject to perturbation or else representing a control case. The aim is to
attribute a phenotype to the population in terms of a specific measurement
or vector of measurements. Analysis of the pixel values across the various
fluorescent channels yields a set of features or readouts. Cell phenotypes
are compiled through feature extraction of each measured unit of the image.
The distribution of perturbed readouts can be compared to control cases in
a statistical framework so as to establish screen hits. In order of complexity,
the readouts may be categorised according to the following:

I Univariate: In the ideal case, biological functions may be quantita-
tively described by a single feature. For example, the nuclear area
might increase dramatically under certain treatments. Thus, it would
be sufficient to measure the corresponding feature (nuclear size) and
statistically analyse its distribution under the different experimental
conditions. Such a scenario would likely be easier to explain in biolog-
ical terms.

II Multivariate: A more complex case arises when one analyses differ-
ent phenotypic descriptors (biologically meaningful features) and their
interdependencies. Then one would contend with the multi-variate dis-
tribution of these features, and the analysis would be necessarily more
sophisticated.

III Machine learning: In a final case, phenotypes might not be dis-
cernible in such basic terms, and would rather require the tools of
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Σ
Measurement unit Feature representation Dimensionality reduction Aggregation strategy

Figure 1.2: A conventional high content analysis follows four ordered stages.
Each stage may be accomplished by a variety of algorithms, and some stages
may be omitted in certain pipelines, or subsumed to a common framework.

statistical learning to elucidate more subtle patterns in the cell popu-
lation. In this case, one would rather extract a large number of features
without clear biological meaning. Learning can then be supervised or
unsupervised. In the supervised case, the biological meaning could
be injected (by the analyst) through use of biologically meaningful
classes.

These readouts may be taken at various scales. However a logical (and in-
deed, conventional) starting point is at the level of individual cells (Perlman
et al. [2004], Adams et al. [2006]), entailing an initial segmentation of the
image. As a side note, it is for this reason that it is favourable to seed
cells at a density that will minimise cell overlap. The seeding density must
therefore be chosen according to the unique morphological properties of the
cell line (Bray et al. [2016]). However, segmentation-free approaches directly
analysing the full image (Orlov et al. [2008], Uhlmann et al. [2016]), or image
segments, have proven successful, in particular through application of deep
learning (Kraus et al. [2016]). The tradeoff is between a fine-grained anal-
ysis at the cellular level, where careful consideration of cell structure and
fluorescent colocalisation is a focus (Slack et al. [2008]), and a coarse analy-
sis of the cell population, where population densities and dynamics can be
measured. Attempts to benefit from both scales have been made (Godinez
et al. [2017]). After these early stages of image analysis, a screen dataset
is usually subject to a range of quality control procedures, which may use
automatic techniques to detect artifacts such as image blur or saturation,
or else detect outliers among cells that have been under- or over-segmented
(Caicedo et al. [2017]).

After these initial stages, particularly a type III analysis may proceed to-
wards a phenotypic profiling of the cell population. Figure 1.2 encapsulates
a conventional approach to profiling. Dimensionality reduction is used vari-
ously to eliminate redundant features, as well as to compress the data into its
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essential components (for example, the set of principal components derived
over the population of cell feature vectors). Here, the options abound and
the choice of method is determined by the analytical objectives. A simple,
motivating example is the case of counting classes of cells in a population.
Here, a classifier (such as in Neumann et al. [2010]), performs the role of
dimensionality reduction: the classifier maps the feature vector of each cell
to a scalar or one-hot encoding representing cell class,

f : x→ {0, 1}K , (1.1)

for K classes of cells. The population phenotype is then summarised in
p ∈ RK , obtained by aggregation as a simple summation or average, giving
the number or proportion of cells per cell class respectively,

p = 1
N

N∑
i=1

f(xi), (1.2)

for the N cells in the population.

1.2 Challenges for high content analysis

High content analysis offers many interesting research directions. Those
most relevant to this dissertation are described in the following.

1.2.1 Multi-cell-line data

As mentioned before, the use of a single cell line limits HCS as a drug
screening approach. Diseases, in particular, cancer, are often heterogeneous
on a molecular level. This translates therapeutically to scenarios in which a
treatment effective against one molecular subtype is ineffective against (or
even promotes genetic instability in) another subtype. Hence, a single cell
line introduces a bias towards a particular disease subtype. This motivates
the validation of discoveries against multiple cell lines, representing different
subtypes of the same disease. A screen based on multiple cell lines, repre-
senting multiple disease subtypes, can help in formulating hypotheses on,
for example, the mechanism of resistance to disease. This is furthermore a
step in the direction of the emerging paradigm of precision medicine (Ashley
[2016]), where machine learning will play a decisive role (see, for example,
Krittanawong et al. [2017]). Genomics has led the way so far, but other
data sources including images are expected to become increasingly part of
the picture Hulsen et al. [2019]. This has motivated a large consortium of
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(a) MDA231 (b) MDA468

Figure 1.3: Comparison of cells sampled from negative control wells con-
taining (a) TNBC cell line MDA231 and (b) TNBC cell line MDA468. Cell
nuclei appear in blue, cell microtubules appear in red.

research groups to propose multi-cell-line drug screens, and to build models
capable of predicting the efficiency of a drug from the transcriptomic and
genetic data of the cell-line (Costello et al. [2014]). However, the success of
these approaches has been rather modest. One of the reasons for this was
the measurement of drug efficiency, that reduced the drug effect to a single
number. Drug effect similarities cannot be reasonably calculated from such
data. One therefore stands to gain from studying multi-cell-line drug effects
rather in high content phenotypic profiles.

A key use case for HCS in drug screens is the related problem of target
prediction, that is, the prediction of the pathway or protein whose function
is altered by the drug. This invokes a classification task on the image data,
namely to determine what mechanism of action (MOA) is responsible for
inducing the effects visible in the perturbed populations, often judged with
reference to the control populations. Screening several cell lines with dif-
ferent genetic and transcriptomic profiles allows one to test more pathways
(as not all genes are expressed in all cell lines) and, in so doing, to get a
richer description of the MOA of the drug. Quantifying drug effects with re-
spect to multiple cell lines allows to distinguish cell-line-specific drug effects
from unilateral effects. A multi-cell-line screen, in which several cell lines
representative of a common disease are subjected to the same set of per-
turbations, is therefore well motivated. However, such a screen creates the
challenge of a data heterogeneity. For example, TNBC cell lines MDA231
and MDA468 manifest different morphologies in their unperturbed state.
Figure 1.3 shows samples of cells from these two cell lines, taken from mi-
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croplate wells containing negative control substance dimethyl sulfoxide, with
the cells imaged by the same set of fluorescent markers. One observes clear
differences in these archetypal morphologies, with MDA231 cells exhibiting
elongated nuclear and cellular shapes, compared to the isotropic MDA468
cells. This has additional, second-order effects such as the degree of geomet-
ric tessellation between groups of cells. Note that in single-cell-line data,
population phenotypes aggregated from the single cell constituents already
abandon distributional information (Altschuler and Wu [2010]), as multi-
modal populations are often reduced to their unrepresentative centroids.
This problem is potentially exacerbated in multi-cell-line data and remains
a challenge. Combining multi-cell-line image data has so far been unat-
tended, with a handful of exceptions such as Rose et al. [2018] and Warchal
et al. [2016].

1.2.2 The emergent role of deep learning in high content
screening

Deep learning is touted as a panacea for computer vision problems, and high
content data ought not to be an exception. In applications of deep learning,
a neural network may perform several of the HCA stages (Figure 1.2) si-
multaneously, as neural networks naturally incorporate elements of feature
extraction and dimensionality reduction (Sommer et al. [2017] is a good ex-
ample). However, the successful deployment of deep neural networks relies
crucially on vast volumes of data to enable effective generalisation. Large
annotated datasets such as ImageNet (Russakovsky et al. [2015]) were one
of a few key preconditions that fostered the rise of deep learning for object
classification in 2012, and extensions of deep learning to other problem do-
mains were likewise accompanied by the curation of large, special-purpose
datasets, for example Lin et al. [2014] for object detection. However, an-
notated data for supervised training is expensive, requiring manual effort,
often by domain experts. ImageNet leverages online crowdsourcing plat-
forms (quality is ensured by the consensus of multiple annotators). This is
a bottleneck for all deep learning research, and therefore extends to compu-
tational phenotyping. The Broad Institute benchmark collection (BBBC)
datasets (Ljosa et al. [2012] and, specifically, Caie et al. [2010]) have become
a sort of benchmark for developing drug response phenotyping algorithms
(for example, Kraus et al. [2016] or Kandaswamy et al. [2016]). However,
while benchmark data sets are of course useful and have had an enormous
impact on the field, we still face the problem that for new imaging projects,
we do not have enough data to train neural networks. This relates to the fact
that bio-images tend to be extremely variable between different projects: the
visual aspect is heavily influenced by the choice of markers and the mode of
microscopy. Indeed, by selecting different markers, one is effectively look-
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ing at different objects. For this reason, it seems unlikely that large scale
datasets will definitively solve the problem of annotated data, except for the
most widely used markers and imaging modalities.

Nevertheless, in recent years, a significant trend in deep learning research has
been on making better use of available data. After all, even if annotated data
is hard to come by, unlabeled or weakly labeled is available in abundance. For
example, Mahajan et al. [2018] used 3.5 billion social media images “weakly
annotated” with hashtags to pretrain a state-of-the-art system for object
classification. Indeed, notable applications of deep learning in HCS thus far
have relied on weakly supervised learning (Kraus et al. [2016], Godinez et al.
[2017]). Elsewhere, contrastive learning (for example, Chen et al. [2020])
may yet revolutionise the training of deep learning systems, achieving parity
with state-of-the-art systems with the efficient use of only a small fraction
of the data.

A recent trend in bioimage analysis has been the prediction of one mode of
microscopy from another. Microscopes with the capacity of registering mul-
tiple modes of microscopy simultaneously (for example, transmitted light
and fluorescence images) automatically create an image-to-image transla-
tion dataset. Fluorescence labeling as a pixel-wise regression problem has
been successfully demonstrated by Christiansen et al. [2018] and Ounkomol
et al. [2018], where deep multi-task neural networks are furthermore ca-
pable of labeling multiple independent fluorescent channels simultaneously.
Earlier, Sadanandan et al. [2017] used fluorescence to construct cell seg-
mentation datasets automatically. These works have shown how one may
exploit imaging protocols to bypass the manual annotation bottleneck for
deep learning.

Generative models represent another trend in computer vision (Kingma and
Welling [2013], Goodfellow et al. [2014a], Oord et al. [2016]), modeling the
marginal distribution on data, allowing for data synthesis, in particular im-
age synthesis, as well as unsupervised representation learning. Generative
adversarial networks (GANs) (Goodfellow et al. [2014a]) are the most highly
developed of deep generative models, and have already found use in high con-
tent image data, for example in Osokin et al. [2017]. Elsewhere, generative
models such as variational autoencoders (Kingma and Welling [2013]) have
found use in phenotyping drug effects for MOA prediction. Image-to-image
translation (see above) is also addressed by generative models capable of
deep style transfer (Isola et al. [2017], Zhu et al. [2017]). Data synthesis
is additionally a form of data augmentation, which in turn is an attempt
to make more effective use of a scarce data supply. Moreover, it is one
possible route towards the simulation of image data (see Ihle et al. [2019]).
Unlike more standard deep learning models, however, generative models are
more difficult to train, and may require creative and non-standard solutions.
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Therefore, as much as the role of deep learning in high content analysis is
not yet fully defined, the role of generative models is ever more so, and their
application represents a fertile research direction.

1.3 Contributions

This dissertation encompasses work completed on two unique projects in
high content analysis. At is likewise organised into two parts, each con-
taining two chapters. The two parts can be read in any order, but they
internally follow a progression of ideas that are intended to be read in order
of appearance. Each chapter is oriented around a published paper, with
the exception of the final chapter, which describes a work in progress. In
addition, the optional Chapter 2 serves as an introduction to the basics of
deep learning, with an emphasis on the models encountered throughout the
dissertation.

Part I, comprising of Chapters 3 and 4 covers a high content drug screen
of multiple TNBC cell lines. TNBC is a molecularly heterogeneous type
of breast cancer with poor prognosis and limited treatment options. Its
molecular heterogeneity makes finding treatments difficult, and a screen of
multiple cell lines is therefore promising. Chapter 3 is introductory and aims
to describe the workflows of high content screening and its modes of analysis,
while following use cases from the drug screen, including a multivariate
analysis on double strand break detection, published in the proceedings of
ISBI 2018 (Boyd et al. [2018]) (included in Appendix C. It concludes with a
use case of phenotypic profiling as a segue to Chapter 4, which itself serves as
a review of profiling methodologies, and develops a new profiling approach
for multiple cell lines. The approach is to combine heterogeneous data from
different cell lines using domain adaptation. Cells from the divergent cell line
domains are mapped to a domain-invariant feature space by an adversarial
neural network training strategy (Ajakan et al. [2014]). The chapter is an
extended version of a paper published in the journal Bioinformatics (Boyd
et al. [2020a]). The dataset for this project is additionally released publicly
(Boyd et al. [2019a]) (it seems, the first of its kind), alongside an open
source code repository including worked, reproducible workflows4. In spite
of the idealised workflow presented in Section 1.1.2, Part I is restricted to
the pilot phase of a planned larger screen. Nevertheless, ample phenotypes
are observed and on which to develop the new methods.

Part II, comprising of Chapters 5 and 6 covers chimeric antigen receptor
T-cell (CAR-T) therapy experiments, which study the Raji cell line as a
model for lymphoma. Though not strictly based on a screen, Part II uses

4https://github.com/jcboyd/multi-cell-line
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high content analysis and shares many characteristics with Part I. Chapter
5 compares two approaches to utilising fluorescence microscopy as an auto-
matic annotator of paired phase contrast microscopy. The second of the two
approaches, based on a customised object detection system, was published
in the proceedings of ISBI 2020 (Boyd et al. [2020b]). The datasets are
again made public (Boyd et al. [2019b]), as well as source code and scripts
for reproducible experiments5. A modified version of this paper is included
inline in Chapter 5. Finally, the shortcomings of the two approaches are
assessed in Chapter 6, and a creative alternative solution is proposed, based
on data augmentation via images synthesised with generative models. The
final section of the chapter is intended as a prototype for a future publica-
tion.

Not included in this dissertation are minor contributions made as a sec-
ond author to a study on predicting residual cancer burden from TNBC
histopathology images, published in the proceedings of ISBI 2019 (Nay-
lor et al. [2019]), and an as-of-yet unpublished paper on a new structured
dropout algorithm for regularising neural networks Khalfaoui et al. [2019].

5https://github.com/jcboyd/detecting-lymphocytes





Chapter 2

Deep learning
fundamentals

Summary: This dissertation makes extensive use of artificial neural net-
works and deep learning. This chapter explores the basic properties of neural
networks and shows how these ideas extend to the deep convolutional net-
works key to modern image processing. It further briefly traces the history of
the development of deep learning, and its extension into the various problem
domains of computer vision.

Résumé: Cette thèse fait largement appel aux réseaux de neurones arti-
ficiels et à l’apprentissage profond. Ce chapitre explore les propriétés de
base des réseaux de neurones et montre comment ces idées s’étendent à la
variété profonde et convolutionnelle des réseaux, clé du traitement moderne
des images. Il retrace ensuite l’histoire du développement de l’apprentissage
profond et de son extension dans les différents domaines de la vision par
ordinateur.

2.1 The building blocks of artificial neural net-
works

An artificial neural network (henceforth neural network) is a collection of
computational units known as neurons, organised into a sequence of layers.
An input passes forward through a neural network, undergoing a series of
transformations through combination with a set of weights in each layer.
During a training procedure, the neural network is shown examples of input
data paired with target outputs. After each round of training, the neural
network adjusts its (randomly initialised) weights so as to make it a little

31
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more likely to emit the target values given future appearances of the input
data.

A simple neural network invokes one or more hidden layers between input
and output, for example,

h(x) = σ(W(1)x + b(1)) (hidden layer)
f(x) = S(W(2)h + b(2)) (output layer) (2.1)

for input vector x, first layer weights and biases matrix W(1) and vector
b(1), and second layer weights and biases matrix W(2) and vector b(2). The
function σ is a non-linear activation function1 and S is the softmax function
at the output layer. The softmax is optional but often used for classification
problems as it maps its inputs to categorical probabilities. In this case, the
network is normally trained against a cross entropy loss function,

L =
∑
i

− log(pyi), (2.2)

where pyi = f(xi)yi is the network output (probability) for the ith training
input xi, indexed at the (paired) ith target label yi. Equation 2.2 is a simpli-
fication of the cross entropy formula for the case where the yi are “one-hot”,
that is, all the probability mass is allocated to a single, “true” value. Note
that neural networks can be trained for classification, regression, or unsu-
pervised feature extraction, depending on the structure of the dataset. Each
entails a different output layer and loss function for the network. Figure 2.1
depicts an example of the simple neural network architecture in Equation
2.1.

The neural network framework gives freedom over the number of layers and
the number of neurons in each layer. The more neurons, the more expressive
the network, yet the more likely overfitting becomes2. We may extend to a
multi-layer network simply by stacking the desired number of layers,

f(x) = S(W(M)σ(W(M−1)(· · ·σ(W(1)x + b(1)) · · · ) + b(M−1)) + b(M)).
(2.3)

1Historically, this was the logistic function, σ(x) = 1/(1 + exp {−x}), a continuous
approximation to the Heaviside step function (think on/off), however, in recent years, it
has been superseded by the ramp function, more commonly known as the rectified linear
unit, ReLU(x) = max(0, x), which provides various training benefits.

2It is rare to require more than three fully-connected layers, however, and exceeding
this amount will be done specifically to exploit deep hierarchical structures in the data.
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Figure 2.1: Fully-connected neural network with 7 input neurons, a single
hidden layer with 5 neurons, and an output layer with 3 neurons.

Thus, the network layers are linear transformations interspersed with non-
linear functions. When the inputs correlate positively with a vector of
weights, the corresponding hidden layer neuron tends to become active via
the non-linearity. In this way, each neuron of a hidden layer amounts to a
feature detector for the prior layer. The hidden layer activations are then
recombined in the next layer, and so on, allowing for ever more complex
aggregations of features. This is the essence of deep learning. However, this
tends not to work very well without certain inductive biases, (and, indeed,
an amenable dataset) which we will encounter in Section 2.2.

Despite their inherent non-linearity, and non-convexity, neural networks can
be trained with standard gradient descent,

θt+1 ← θt − α · ∇θL, (2.4)

for the full set of model parameters θ and learning rate α. More sophis-
ticated update rules than vanilla gradient descent exist such as RMSprop
(Tieleman and Hinton [2012]), and Adam (Kingma and Ba [2014]). These
methods improve over Equation 2.4 by adapting a learning rate for each
parameter (rather than one-size-fits-all). Whatever the chosen method, the
gradients are always computed using the backpropagation algorithm, which
we examine presently.

2.1.1 Backpropagation

The procedure for computing the gradients at each iteration of gradient de-
scent is called backpropagation. Backpropagation is an application of the
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chain rule to the graphical structure of the neural network. The crucial for-
mula for backpropagation, as presented in Rumelhart et al. [1985] is,

∂L
∂xi

=
∑
j

∂L
∂yij

· ∂yij
∂xi

, (2.5)

that is, the gradient of neuron xi at a given layer l is the sum product of
the gradients of the neurons of the following layer (l + 1) emanating from
it yij and the gradient of the connections between them. From a practical
standpoint, each layer l over which we perform backpropagation requires
three computations:

1. ∂L
∂s(l) , the gradient of the scores, s(l) = W(l)x(l) + b(l). Note this is a
“pseudo-layer” between the linear transformation and the activation.

2. ∂L
∂W(l) , the gradient of the weights. These are recorded to ultimately
make the descent step (Equation 2.4).

3. ∂L
∂x(l) = ∂L

∂σ(l−1) , the gradient of the input (previous activation). This is
the error signal that is passed back to the layer below.

Let us first consider (1), the gradient of the scores. In general, we compute,
∂L
∂s(l) = ∂L

∂σ(l) · ∂σ(l)

∂s(l) where ∂L
∂σ(l) = ∂L

∂x(l+1) , since the activation of the present
layer is the input to the following layer. The activation function σ is applied
element-wise. Consequently, in the pseudo-layer between linear transform
and activation, each neuron has a single connection. Therefore, with re-
spect to Equation 2.5, the sum reduces to a single element per gradient
giving,

∂L
∂s(l) =


∂L
∂σ

(l)
1
· ∂σ

(l)
1

∂s
(l)
1...

∂L
∂σ

(l)
k

· ∂σ
(l)
k

∂s
(l)
k

 , (2.6)

where for sigmoid, ∂σ
(l)
i

∂s
(l)
i

= ∂σ
(l)
i (1−σ(l)

i ), and for ReLU, ∂σ
(l)
i

∂s
(l)
i

= 1{σ(l)
i >0}.

For computation (2), the weights gradient, consider, ∂L

∂w
(l)
kj

= ∂L
∂sj
· ∂sj

∂w
(l)
kj

=
∂L
∂sj
· xj . In vector form this gives us, ∂L

∂s(l) xT , that is, the outer product
of the score gradient and the input vector. Considering that the loss over
a batch is the sum of losses for each sample, in general we have for batch
X ∈ RD×M ,
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∂L
∂W(l) = ∂L

∂s(l) ·X
T . (2.7)

For the bias terms, consider that with the bias trick, the gradients ∂sj

∂b
(l)
k

=
1, ∀k. We can therefore simply sum the score gradients over the size m
batch,

∑
m
∂smj

∂b
(l)
k

.

Finally, for computation (3), simply consider the chain rule, ∂L
∂x(l) = ∂L

∂s(l) ·
∂s(l)

∂x(l) . It is easy to show by forming the Jacobian matrix that ∂s(l)

∂x(l) = W(l).
Hence,

∂L
∂x(l) = ∂L

∂s(l) ·W
T . (2.8)

This final gradient is passed to the previous layer as ∂L
∂σ(l−1) to continue the

backpropagation. Upon traversing the network layers, the weight gradients
are used to update the weights as in Equation 2.4.

2.2 Convolutional neural networks
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Figure 2.2: Convolution operation consisting of (from left to right) an in-
put image, convolutional kernel, and convolved output image. The valid
convolution results in the loss of the border pixels. Notice how the output
represents the gradient image, obtained by setting the kernel to the finite
difference between vertically adjacent pixels.

Convolutional neural networks (CNNs) are a family of neural network ar-
chitectures having at least one convolutional layer. In image processing, a
convolution between an image I and kernel K of size d× d and centered at
a given pixel (x, y) is defined as,



36 CHAPTER 2. DEEP LEARNING FUNDAMENTALS

(I ∗K)(x, y) =
d∑
i=1

d∑
j=1

I(x+ i− d/2, y + j − d/2)×K(i, j), (2.9)

and is illustrated in Figure 2.2. Convolutions are useful for operations such
as feature extraction and edge detection. A CNN is a neural network explic-
itly wired to perform convolutions3. In a convolutional layer, the elements
of kernel K become learnable weights, replacing the large, fully-connected
weight matrices from Section 2.1. In effect, the weights are shared across
the input surface, greatly reducing the model dimensionality.

The earliest recognisable CNN is LeNet (LeCun et al. [1998]), bearing the
name of its principal author, Yann LeCun. The destiny of LeNet is forever
entwined with MNIST, the dataset it was developed to classify. MNIST is
a 10-class image dataset of small (28 × 28px) handwritten digits (0 − 9) in
greyscale, crowd-sourced from US school students. The LeNet architecture
can be written as,

H1 = σ(X ∗K(1)) (first convolutional layer)
P1 = maxpool(H1) (first pooling layer)
H2 = σ(P1 ∗K(2)) (second convolutional layer)
P2 = maxpool(H2) (second pooling layer)
F1 = σ(W(1)P2 + b(1)) (first fully-connected layer)
F2 = σ(W(2)F1 + b(2)) (second fully-connected layer)

f(X) = S(W(3)F2 + b(3)) (output layer) (2.10)

where for MNIST, the X ∈ R28×28 denotes an input image (two-dimensional
array), ∗ denotes the convolution operation, and σ and S denote activation
functions, as described previously.

The first convolutional kernels were originally 6 (5 × 5) kernels. The six
convolutions are performed on the same grayscale input image, producing
six activation maps that are concatenated across the channel dimension.
As a result, the following convolutional layer originally had 16 (5 × 5 × 6)
kernels. Notice the kernels are now three-dimensioanl tensors rather than
arrays, so as to account for the multi-channel inputs. This represents a
generalisation of Equation 2.9 in which each channel is convolved separately
and the outputs are summed channel-wise. A depiction is given in Figure
2.3.

3A convolutional layer can nevertheless be represented as a sparse linear layer.
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convn convn+1

Figure 2.3: Each kernel of a convolutional layer (in red) performs a convo-
lution as a tensor-product at each spatial location of an incoming tensor, to
produce a single activation map (channel) in the output tensor.

The maxpool are pooling layers (in effect max filter operations), replacing
each 2 × 2 grid of pixels with its maximum. The maxpool operations are
usually performed at a stride of 2, resulting in an output halved in each
spatial dimension. This ensures the most salient features are routed to the
proceeding layers.

After the final pooling operation, the input tensor is implicitly flattened and
traverses a series of fully-connected layers. The fully-connected layers were
originally of size 120, 84, and finally 10 neurons, for the 10-way classification
of MNIST digits. Note the numbers are fairly arbitrary and reflect the
computational budget of the day. The architecture can be understood as
having a feature extraction component in the convolutional and pooling
layers, and a classification component in the fully-connected layers, with
all layers trained end-to-end in unison using backpropagation and gradient
descent. At each convolutional layer, activations arise from input features
coinciding with the motifs embedded in the kernels. These are promoted by
the max pooling layers, which simultaneously coarsen the representation.
Thus, salient motifs discovered at lower levels, such as edges and corners,
can be recombined and aggregated into shapes, and, later, semantic objects.
Zeiler and Fergus [2014] confirmed empirically that such feature hierarchies
are learned by deep CNNs.

2.2.1 AlexNet and the ConvNet revolution

The emphatic victory of AlexNet (Krizhevsky et al. [2012]) in the 2012 Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC)4 heralded the
inexorable rise of CNNs. While emulating the same basic design as LeNet,
the AlexNet architecture was deeper (more layers) and wider (more neu-
rons/kernels), and processed larger images (224 × 224 × 3px), sporting in

41000 classes, over 1 million images
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excess of 60 million parameters over 8 learnable layers. The breakthrough
of AlexNet is often attributed to the conjunction of three technological de-
velopments:

1. The rise of graphical processing units (GPUs)

2. The sourcing of large image datasets such as ImageNet

3. The streamlining of neural network training e.g. more stable activation
functions (ReLU), adaptive optimisers, regularisers such as dropout,
and better weight initialisation or pre-training strategies.

With academic and industrial vision research in full swing, VGGNet5 (Si-
monyan and Zisserman [2014]) and GoogLeNet (Szegedy et al. [2015]) fol-
lowed as ILSVRC 2014 frontrunners, pushing the state-of-the-art ever fur-
ther, while achieving lasting fame. The competition winner, GoogLeNet, pi-
oneered a more complex neural network design by engineering the inception
module, a concatenation of differently-sized convolutions. Laying several
inception blocks end-to-end constitutes the 22-learnable-layer GoogLeNet.
VGGNet likewise strived for unprecedented network depth (up to 19 learn-
able layers) while advocating some simple design principles. For example,
(padded) 3×3 convolutions are used everywhere, given that a stack of three
3 × 3 convolutions with C channels has a receptive field of size 7 × 7 on
its inputs, despite having 27C2 weights, fewer than a single 7× 7 kernel at
49C2.

A multitude of network architectures have since been proposed. Among the
most influential is ResNet (He et al. [2016]), which introduced the residual
block: a skip connection bypassing a stack convolutions. The motivation is
to prevent the gradients of deeper layers from overwhelming all others early
during training. The residual block thus facilitated the training of extremely
deep networks of up to 1202 layers6. More recently, EfficientNet (Tan and Le
[2019]) proposed a “compound scaling” design strategy to increase network
depth, width, and resolution in unison to maximise the performance benefit.
As of February 2020, the state-of-the-art in ImageNet is an EfficientNet
variant. Table 2.1 displays results from the history of the ILSVRC challenge
illustrating the advancement of minimisation of test error over time. Note
that AlexNet was evaluated on the ILSVRC 2012 dataset, whereas all others
where evaluated on a similar dataset from the 2014 competition. Also, while
GoogLeNet was the ILSVRC 2014 challenge winner, it prevailed only with
a complex ensemble approach; we provide single-model results only.

5Visual Geometry Group at Oxford University.
6However, the standard depths are 50, 101, and 152 layers.
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Model Year Top-1 Top-5 No. Parameters
AlexNet 2012 40.7% 18.2% 60M

GoogLeNet 2014 - 10.1% 6.8M
VGG-19 2014 25.5% 8.0% 144M

ResNet-152 2015 22.2% 6.2% 60M
EfficientNet 2019 15.6% 2.9% 66M

Table 2.1: Single-model test errors on ImageNet for five groundbreaking
CNNs. Note AlexNet was evaluated on the ILSVRC 2012 dataset, the others
on ILSVRC 2014. Human performance has been estimated to be 5% Top-5
error (Karpathy [2014]).

2.3 Neural object detection

An object detection system f is a model or automated pipeline that both
localises and classifies ontologised objects in images. Localisation is usually
expressed as a bounding box, which the detector emits along with the class
prediction as a tuple,

f : x→
{
(x, y, w, h, c)

}
, (2.11)

for image x, where x, y are the coordinates of the bounding box center, and
w, h are its width and height. The value c denotes the class of the detected
object. Figure 2.4 illustrates a set of object detections made on a custom
image by a state-of-the-art system.

Whereas the ILSVRC datasets came to set the gold standard benchmarks in
image classification, similarly rich datasets predominate for object detection.
The Microsoft Common Objects in COntext (COCO) (Lin et al. [2014])
(80 classes + background) and the PASCAL7 Visual Object Classes (VOC)
challenge (20 classes + background) datasets (Everingham et al. [2010])
are the two leading datasets against which state-of-the-art object detection
systems are tested. Following the explosion of interest in CNNs as image
classifiers in 2012, rapid progress was made virtually in parallel for neural
object detectors. An early example is Overfeat (Sermanet et al. [2013])),
appearing in 2013. The basic architecture of Overfeat was an AlexNet,
refurbished as a fully-convolutional model8.

No family of object detectors is more celebrated, however, than the R-CNN
series, the study of which is to be recommended to the student of deep
learning.

7Pattern Analysis, Statistical Modelling and Computational Learning
8Replacing fully-connected with convolutional layers frees the network from the con-

straint of a fixed input size.
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Figure 2.4: Object detections made by pre-trained R-CNN available in
PyTorch (Paszke et al. [2017]). The image was taken in the Kyoto Gogyo
ramen restaurant in Kyoto.

2.3.1 Regions with CNN features

Regions with CNN features (R-CNN) (Girshick et al. [2014]) began as a
disjoint pipeline consisting of four ordered stages:

(1) region proposal

(2) feature extraction

(3a) object classification

(3b) bounding box correction

In the earliest iterations of R-CNN, the “selective search” algorithm played
the role of stage (1)9. Feature extraction (2) was then performed by a pre-
trained CNN, producing a “CNN code” feature vector for each region. Stage
(3a) consisted of a set of linear models (typically SVMs) that perform one-
vs-the-rest classification for each object class. These models were trained
offline on the outputs of stage (2), “warped” to a standard size. Likewise, in

9A greedy algorithm that progressively merges homogeneous regions of an input image,
from which derive a large number of bounding box proposals.
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stage (3b), a set of per-class (ridge) regression models are trained to correct
the region proposal coordinates (x, y, w, h).

In Fast R-CNN (Girshick [2015]) stages (3a) and (3b) were absorbed into the
CNN “backbone” of stage (2) as appendages to the neural feature extractor
trained end-to-end. Now, entire images were processed in a single forward
pass, with the region proposals cropped from the activation maps. The en-
coded regions were quantised by a generalisation of the max pooling layer,
RoIPool. Faster R-CNN Ren et al. [2015] completed this work by integrating
the region proposal algorithm (1) into the network. To this end, a separate
region proposal network (RPN) was trained to predict both object pres-
ence and bounding box coordinates. A multi-stage training procedure was
used to synchronise the weights between the two networks. Consequently,
at prediction time, the feature extraction can be performed for both net-
works in a single forward pass. Then, the RPN heads produce the region
proposals, which are passed to the heads of the R-CNN for detection. The
overhead of region proposal is therefore negligible, and Faster R-CNN pro-
duces state-of-the-art object detection results more or less at real time. An
even more recent variant, Mask R-CNN (He et al. [2017]) adds another stage
(3c) to Faster R-CNN for segmentation, resulting in a system capable of the
impressive task of instance segmentation.

2.4 Fighting overfitting in deep learning

In machine learning, overfitting is the effect of fitting the noise instead of the
signal. In practice, all data contains noise that obscures the ground signal,
and when a dataset is sufficiently small, a modestly powerful model may
interpolate it perfectly, only to then be useless on independent test data.
Much of machine learning is ultimately concerned with striking a balance
between overfitting and underfitting. In supervised learning, this balance is
evaluated with generalisation error, a measure of the ability of a model to
generalise the data. This is estimated by evaluating a trained model over
a test set of independent, unseen data. The bias-variance decomposition
illustrates the tradeoff between over- and underfitting. Suppose we have
Y = f(x) + ε generating training data with f(x) the true signal for data
point x, and noise, ε = N (0, σ2). Let our model estimate be denoted by f̂(x).
Then, the MSE (here an arbitrary measure of goodness of fit) between an
estimate and the true parameters, averaged over all possible data,
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E[(Y − f̂(x))2] = E[((f(x) + ε− E[f̂(x)]) + (E[f̂(x)]− f̂(x)))2] (2.12)
= σ2 + E[f(x)− E[f̂(x)]]2 + E[(f̂(x)− E[f̂(x)])2] (2.13)
= noise + bias2 + variance (2.14)

where in step (1.2) some terms are eliminated with zero mean. Note the
positive terms means this represents a lower bound on error. The bias term
represents underfitting as a simplified model fails to follow a more complex
trend (for example a linear model undershooting a higher-order function).
This bias will be observed in training error. The variance term represents
overfitting as the model varies around its mean greatly to interpolate noisy
data. This variance will be observed in test error.

Neural networks, being such powerful “universal approximators” (Hornik
et al. [1989]), are especially prone to overfitting. Many strategies to atten-
uate it have therefore been proposed. A common approach used elsewhere
in machine learning is weight regularisation, often called weight decay in the
neural net literature. This usually takes the form of a square error penalty
term in the loss function. Parametric models that overfit usually require
large parameter values (in the extreme, a degree n polynomial with up to
n − 1 turning points can interpolate n + 1 data points), so regularisation
curtails this tendency.

Deep learning succeeds because it embodies a different type of bias. Be-
tween layers of a vanilla fully-connected network, the number of weights is
quadratic in the number of neurons per layer. Deep learning models reduce
this dimensionality by spatial weight sharing, in the case of convolutional
networks, and weight sharing in time, in the case of recurrent neural net-
works. These may be referred to as structural biases.

Other tricks to avoid overfitting include dropout (Srivastava et al. [2014]),
whereby neurons are randomly zeroed-out during training so as to curtail
complex co-dependencies; batch normalisation (Ioffe and Szegedy [2015]),
where a normalisation operation is performed on the inputs of each layer so
as to standardise their variance (and avoid “internal covariate shift”); and
data augmentation, which aims to artificially increase the data supply. It
is data augmentation that has particular relevance to this dissertation, and
which is detail in the following.

2.4.1 Data augmentation

In the long run, as more data is added, a model with sufficient capacity im-
proves its predictive power (generalisation error). In an ideal world, the data
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Figure 2.5: Data augmentation can make modest but useful interpolations
of the space surrounding real images. CIFAR-10 images marked by red
circle; augmented images marked by blue circle; black line represents natural
image manifold. Upper augmentation based on conversion to grayscale (an
element-wise weighted average of the RGB pixels) and rotation; the lower
on colour inversion and horizontal flipping.

is unlimited. However, annotated data for supervised training is expensive,
requiring manual effort, often by domain experts. Data augmentation is a
technique for obtaining new data for fighting overfitting in machine learn-
ing models, thereby improving generalisation (test time) error (Shorten and
Khoshgoftaar [2019]). The idea is to extract additional data gratis from the
available dataset, by means of bootstrapping or interpolation. A classic al-
gorithm is SMOTE (Synthetic Minority Over-sampling TechniquE) (Chawla
et al. [2002]), which interpolates lines between training samples and their
nearest neighbours in feature space, to create synthetic points, and is an
alternative to over-sampling by replacement.

Data augmentation is especially vital in deep learning, where powerful neu-
ral networks require large datasets to train. Due to the geometry of nat-
ural images (pixels are ordered and neighbouring pixels are highly corre-
lated), image data is uniquely receptive to data augmentation, and humans
are well-equipped for the engineering of it. Images support a multitude of
label-preserving transformations, that is, transformations of lower-level im-
age properties that nevertheless maintain the high-level semantic content.
Examples are cropping, flipping, rotating, noise injection, convolution, and
colour space transformations (if colour is available). These may be referred
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to as basic image manipulations (Shorten and Khoshgoftaar [2019]) and
can be “stacked” (combined) endlessly, especially on the fly during training.
Classic examples include image warping (LeCun et al. [1998]), elastic defor-
mations (Simard et al. [2003]), and PCA-based colour space transformation
(Krizhevsky et al. [2012]). However, data augmentation must not be mis-
taken as equivalent to adding authentic data and may reinforce existing bi-
ases in a dataset (Shorten and Khoshgoftaar [2019]). The augmented images
are highly interdependent and will not in general amount to substantially
increasing the coverage of space of all images (see Figure 2.5). Additionally,
certain transformations will be domain-specific. For example, biomedical
imagery can usually be rotated arbitrarily without losing meaning, unlike
images of everyday objects or handwritten digits.

Deep learning itself can be used as a powerful, albeit expensive, mode of
data augmentation. One good example is adversarial training. Goodfellow
et al. [2014a] show how with a precise perturbation to a model input, one
may “fool” a linear model or neural network alike. Consider perturbing
model input x,

x̂ = x + α · η, (2.15)

where η = sign(w) for w are the model weights of a softmax regression
model and α a tuning parameter. Now, the model will predict σ(wT x̂) =
σ(wTx+α · ||w||1). If x is sufficiently high-dimensional (as image data often
is) the perturbations will accumulate even for α << 1 and can change the
decision of the model. This produces a paradox especially apparent for im-
age data: one may, for example, add a small, carefully chosen value to each
pixel of an image, and the model may suddenly predict the wrong object
class with high confidence, even though the perturbation remains impercep-
tible to the human eye. This paradox defies intuitions about how neural
networks represent images and “adversarial attacks” remain problematic for
deep learning. Goodfellow et al. [2014a] nevertheless showed how adversar-
ial attacks could be harnessed during training to strengthen neural networks
against such attacks, in effect a sort of data augmentation.

Generative models, in particular generative adversarial models (GANs) (Good-
fellow et al. [2014b]) (loosely related to the above) are a more recent and
exciting prospect for data augmentation. Generative models are trained to
learn (perhaps implicitly) the data-generating distribution, and thereupon
may be used as a sampling system for synthetic data. Ideally, a genera-
tive model based on deep neural networks will make for a more powerful
interpolation system than any of the above.

One may also consider transfer learning as a form of data augmentation
commuted via pretrained model. The information content of a rich source
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Same source and target
marginal distributions?

Same task on source and
target domains?

Same task on source and
target domains?

Usual learning
setting

Inductive
transfer learning

Transductive
transfer learning

Unsupervised
transfer learning

Yes No

Yes NoNo Yes

Transfer learning

Figure 2.6: Positioning transfer learning with respect to the typ-
ical learning setting. Categories of transfer learning differ ei-
ther with respect to the marginal distribution. Reproduced from
https://en.wikipedia.org/wiki/Domain_adaptation

dataset DS may be distilled by a powerful neural network, and transferred
to augment the available data for learning some task on a target dataset
DT . Indeed, style transfer involving deep, pretrained networks (Gatys et al.
[2016]) is a powerful mode of data augmentation.

2.5 Transfer learning

Transfer learning is a set of solutions for learning problems in which training
and test data differ in their marginal distribution, or else that the learning
tasks differ between model training and testing (Pan and Yang [2009]). As
such, these problems violate the basic assumption for training supervised
models. Transfer learning bridges domains of learning. A domain D consists
of a feature space X and marginal probability distribution on that domain
P (X). A learning task T is performed on a domain, itself consisting of a
label space Y and some (usually unobserved) objective function f(·). In
transfer learning problems one denotes source domain and tasks DS and TS ,
and likewise for target domain, DT and TT . The source is the data on which
the model is initially trained, and the target is that for which it must be
adapted.

Neural networks, with their endless flexibility, are well-equipped for transfer
learning. Shortly after the deep learning revolution of 2012, the potential for
the learning transfer of powerful pretrained neural networks was discovered
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(see Zeiler and Fergus [2014] and Sharif Razavian et al. [2014]). Pretrained
networks are often used in either of two ways:

1. feature extraction: a pretrained network is used to extract features for
a new problem by passing images forward through its hidden layers
and recording a given layer (“CNN code”) as a vector of (obscure)
image features.

2. fine-tuning: a pretrained network recommences training on a new
problem from a saved point of convergence, usually at a significantly
lower learning rate, and often only on the upperermost layers.

The pretraining itself is usually done on a large standard image corpus like
ImageNet. The success of these approaches illustrates the universality of the
filters learned by deep networks, as general feature extractors for images.
Neither approach fits easily into the schema of Figure 2.6. However, if for
example the target images are similar in resolution and content then the
low-level neural activity of earlier layers may be identical as for the source
dataset, placing it near inductive transfer learning.

An interesting way to perform transductive transfer with deep learning is
with domain-adversarial neural networks, which we examine presently.

2.5.1 Domain-adversarial neural networks

The inspiration for domain-adversarial neural networks (DANNs) lies in
work published in Ben-David et al. [2010], which defines theH-divergence,

dH(DX
S , D

X
T ) = 2 sup

h∈H

∣∣∣Px∼DX
S

(
h(x) = 1

)
− Px∼DX

T

(
h(x) = 1

)∣∣∣, (2.16)

that is, given a source domain (distribution), DX
S (marginalised by the input

variable), and a target domain DX
T , and given a hypothesis class10 H, the

divergence between the source and target domains with respect to H is the
classifier (here binary–for simplicity) that, proportionally, most classifies the
domains into separate classes.

To illustrate, suppose we choose our hypothesis class to be a linear SVM.
This class is capable (through choice of the SVM weights) of creating any
linear hyperplane. Suppose the two domains were linearly separate in the
feature space (see Figure 2.7). It would then be possible to train an SVM to
perfectly separate the two, putting one domain fully into the positive class,

10Category of classifiers, e.g. linear SVMs.
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and the other into the negative class. This would maximise the inner expres-
sion of the divergence formula, thus describing a high divergence. Should we
have, on the other hand, two highly overlapping domains, any hyperplane
cut through the middle of the point cloud would give us a divergence close
to 0. Should we cut so as to isolate a few outlier points of a particular
class, these would represent only a small proportion of the data, and the
probability would also be close to 0. Intuitively, the H-divergence captures
the effect nicely.

(a) Low divergence (b) High divergence

Figure 2.7: Overlapping domains (a) and divergent domains separated by a
linear decision boundary (b).

Conveniently, it is possible to compute a consistent estimate of the H-
divergence using finite data with the empirical H-divergence,

d̂H(S, T ) = 2
(

1−min
h∈H

[ 1
n

n∑
i=1

1[h(xi) = 0]+ 1
n′

N∑
i=n+1

1[h(xi) = 1]
])
, (2.17)

for samples, S ∼ DX
S of size n and T ∼ DX

T of size n′. For convenience,
these are indexed from 1→ n and (n+ 1)→ N , where N = n+n′. Though
this may be hard to compute precisely in general, we can approximate this
simply by training a classifier of the class H on the constructed dataset,
U = {(x, 0) : x ∈ S} ∪ {(x, 1) : x ∈ T}, that is, a classifier to differentiate
between the domains. The estimated generalisation error, ε of this classifier
could then be used to approximate the empirical domain divergence as 2(1−
2ε).

Ajakan et al. [2014] first formulate a DANN as a learning model of the
form,
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E(θf , θd, θy) = 1
n

n∑
i=1
Liy(Gy(Gf (x; θf ); θy), yi) + λR(θf , θd), (2.18)

where the Gf component acts as a feature extractor, and Gy is a classifier.
These may have any neural architecture, shallow, deep, or convolutional.
Recalling that the target data is unlabelled, they propose to define the
regulariser of this model as,

R(θf , θd) = − 1
n

n∑
i=1
Lid(θd, di)−

1
n′

N∑
i=n+1

Lid(θd, di), (2.19)

where Lid(θd, di) = L(Gd(Gf (θf ); θd), di), di ∈ {0, 1}. Thus formulated, one
has a loss maximising the negative of the minimisation term in the divergence
formula. Therefore, adding this regulariser to the objective function, and
maximising the objective with respect to its parameters, θd, gives a worse
overall loss. At the same time, however, the feature parameters, θf , which
are trained to minimise the objective, are chosen to minimise this maximi-
sation of the regulariser by the divergence parameters, θd, thus maximising
the minimising component of the divergence, thereby minimising the diver-
gence. The feature parameters therefore play a dual role in both minimising
classification loss, and minimising divergence (equivalently, maximising dis-
crimination error), adversarially to the domain classifier. This promotes
domain invariant features. Formally, we have,

(θf , θy) = arg min
θf ,θy

E(θf , θy, θ̂d)

θd = arg max
θd

E(θ̂f , θ̂y, θd) (2.20)

which can be found as a saddle point of the update steps,

θf ← θf − µ
(
∂Liy
∂θf
− λ∂L

i
d

∂θf

)

θy ← θy − µ
∂Liy
∂θy

θd ← θd − µ
∂Lid
∂θd

(2.21)

Note that θf is updated to minimise the classification loss, but maximise
the domain classification loss. This is called the adversarial step. The main
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G(z) D(x)z ∼ N (0, I)

x ∼ pg(x)

x ∼ pdata(x)

real/fake

Figure 2.8: A GAN trains a generator network G to fool a discriminator
network D in emitting counterfeit images x ∼ pg(x) by transforming noise
input z. In order to do so, G must (implicitly) learn the data-generating
distribution, pdata.

contribution of Ganin and Lempitsky [2014] is to apply this to deeper archi-
tectures (in particular, convolutional), and to introduce a “gradient reversal
layer” to enable a smooth implementation without altering the internal im-
plementations of gradient descent (this still assumes that the local gradients
can be specified arbitrarily) of deep learning frameworks. This is achieved
with the pseudo-function,

Rλ(x) = x, (2.22)

whose gradient is hard-coded as,

∂Rλ
∂x = −λI. (2.23)

This pseudo-layer is inserted between the feature extractor and the domain
classifier in the model formulation. It should be emphasised that this is
not a mathematical trick, but rather an implementation hack. The gradient
reversal layer is easy to implement in all the major deep learning frame-
works.

2.6 Generative adversarial networks

Generative adversarial networks (GANs) (Goodfellow et al. [2014b]) is a
learning framework that trains a generator model to be capable of sampling
new data from a data distribution (in particular, images), learnt (implicitly)
from a training set. GANs compete with variational autoencoders (Kingma
and Welling [2013]) and, more recently, autoregressive models (Oord et al.
[2016]) for image generation. GANs are arguably a more mature and versa-
tile learning paradigm, however.
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The GAN framework (Figure 2.8) is adversarial in that it pits a pair of
neural networks in a two-player minimax game: a generator,

G : Z → X, (2.24)

where in the simplest case z ∼ Z is a vector of (uniform or Gaussian)
noise and x ∼ X is a synthetic data point (in particular, an image); and a
discriminator,

D : X → {0, 1}, (2.25)

that is, a mapping from data point to binary value. D aims to minimise its
rate of failure in discerning true data from “fake” data sampled from the
the generator, which aims to maximise the error made by the discrimina-
tor,

max
G

min
D
LGAN (D,G) = Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))].

(2.26)

The stationary point of Equation 2.26 is a Nash equilibrium (a saddle point)
between the two objectives. Goodfellow et al. [2014b] guarantee that the
distribution implicitly defined11 by G, pg is equal to pdata for G∗ at (global)
optimality and,

D∗(x) = pdata(x)
pdata(x) + pg(x) , (2.27)

where pdata is the data-generating distribution. In practice, GANs are
trained by backpropagation with alternating gradient descent between D
and G. The weights of D are frozen while propagating the errors back
through D to G.

GAN architecture design must strike a balance between a generator expres-
sive enough to approximate the data distribution, and a discriminator pow-
erful enough to hold it to the task. GANs are afflicted with a phenomenon
known as mode collapse. Mode collapse is the condition in which the gener-
ator “collapses” to generating few or even a unique output, regardless of the
noise input z. Metz et al. [2016] differentiate two varieties of mode collapse:
discrete mode collapse, where the generator collapses to a subset of data

11GANs are implicit generative models, in contrast to explicit models such as VAEs,
which model the probabilities directly. GANs serve as an sample-emitting oracle emulating
the true distribution.
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modes (easily detected); and the more insidious manifold collapse, where
the generator collapses to a subspace of the data distribution. They reason
that mode collapse originates from the fact that in each iteration of training,
the generator is impelled towards a delta function at the mode considered
most “real” by the discriminator. The discriminator responds by lowering
the probability of this mode, leading to oscillations in training. The “un-
rolled” GAN training approach that they advocate mitigates this tendency
by informing the generator in advance of the discriminator’s response to its
prospective weight updates.

Another promising attempt to attenuate the mode collapse problem is to
replace the Jensen-Shannon divergence loss function with the Earth Mover
(EM) or Wasserstein-1 distance. Such is the strategy of Wasserstein GANs
(WGANs). Intuitively, the EM distance measures a distance between two
distributions. One can write the EM distance as the quantity Ex∼Pr [fw(x)]−
Ez∼p(z)[fw(gθ(z))] maximised by choice of fw (discriminator). The goal is
then to minimise this distance through optimisation of the generator. The
training algorithm is very similar to GANs. WGANs seem to be more stable,
as the substituted loss function allows the discriminator to be trained to
optimality. This greatly mitigates the mode collapse problem. Nevertheless,
more subtle forms of partial mode collapse remain a recurrent problem for
GANs. As a bonus, the discriminator loss (estimated EM distance) becomes
meaningful during training, interpretable as image sample quality, rendering
the implementation and fine-tuning of WGANs far easier.

2.6.1 Deep convolutional GANs

Radford et al. [2015] first succeeded in training more powerful, high-resolution
GANs, by identifying a set of design principles: replacing pooling layers with
strided convolutions; removing fully-connected layers (apart from the first
layer of the generator); using batch normalisation after all but the last layer;
using a tanh activation at the end of the generator (and ReLU everywhere
else); and using LeakyReLU activations everywhere in the discriminator.
For image data, deep convolutional GANs (DCGANs) represent a vast im-
provement over the original fully-connected GANs.

2.6.2 Conditional GANs

Mirza and Osindero [2014] present a simple extension to GANs allowing for
control over the data generating process. One simply includes an additional
input y ∼ Y (for example, class information), to obtain conditional GANs
(CGANs). That is, now the generator is conditional,
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G : Z × Y → X, (2.28)

as is the discriminator,

G : X × Y → {0, 1}, (2.29)

and the CGAN is trained against the objective,

LCGAN (D,G) = Ex∼p(x)[logD(x|y)] + Ez∼p(z)[log(1−D(G(z|y)))].
(2.30)

Mirza and Osindero [2014] do not offer so much as an intuition as to why
conditional GANs works, but it can be an instructive thing to consider.
As D learns to associate conditional information such as object class with
the ground truth images, it will declare “fake” any image emitted by G
not conforming to the condition, no matter the quality of the image. If
G is to succeed, it will be forced to generate images in adherence to the
condition. The outcome of successful training is therefore a generator that
can, for example, synthesise an authentic-looking image of a desired class
on demand.

The implementation of CGANs is a straightforward modification to GANs.
The conditional information is concatenated to the standard inputs of both
D and G and fed through to their hidden layers. A DCGAN discriminator
may, however, concatenate the conditional information after its convolu-
tional layers.

2.6.3 Assorted GANs

The success of GANs have led to many interesting results in recent years.
Image-to-image translation has been achieved with pix2pix (Isola et al.
[2017]), a GAN conditioned on a full image serving as a blueprint for the
generated image. Such models are capable of an endless variety of appli-
cations, including segmentation and image colourisation. CycleGANs (Zhu
et al. [2017]) achieve unpaired image-to-image translation, learning to map
between image domains in an unsupervised way. Applications include style
transfer. RecycleGANs (Bansal et al. [2018]) achieve the same for video-to-
video retargeting.

Elsewhere, progressive growing of GANs (Karras et al. [2017]) produce daz-
zling high resolution outputs (up to 1024 × 1024 pixels). Here, training is
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done in stages, beginning at low resolutions (4 × 4), and doubling the res-
olution at intervals. This is done by dynamically adding new layers to the
generator and discriminator, which maintain symmetry throughout train-
ing. Thus, the GAN learns global structures first at low resolution and
progressively refining its output.
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Chapter 3

High content analysis in drug
and wild type screens

Summary: This chapter puts the high content analysis pipeline into practice
on two image datasets: a drug screen and a wild type screen of triple nega-
tive breast cancer cell lines. The implementation of a conventional pipeline
for computational phenotyping is described in phases of cell segmentation
and feature extraction. A collection of use cases are then given on each of
the screens, covering the full range of univariate, multivariate, and machine
learning-based analyses identified in previously, with the aim of understand-
ing the morphological properties of the cell lines, and the effects of drug
perturbation thereupon. This lays the groundwork for the phenotypic profil-
ing of the following chapter.

Résumé: Dans ce chapitre, le pipeline d’analyse à haut contenu est mis en
pratique sur deux ensembles de données d’images : un criblage de drogues
et un criblage de type sauvage de lignées cellulaires de cancer du sein triple
négatif. La mise en œuvre d’un pipeline classique pour le phénotypage par or-
dinateur est décrite dans les phases de segmentation cellulaire et d’extraction
de caractéristiques. Un ensemble de cas d’utilisation est ensuite décrit sur
chacun des cribles, couvrant la gamme complète des analyses univariées,
multivariées et basées sur l’apprentissage machine identifiées au chapitre
précédent, dans le but de comprendre les propriétés morphologiques des lignées
cellulaires et les effets de la perturbation par la drogue sur celles-ci. Ceci
pose les bases du chapitre suivant.
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3.1 Overview

Triple-negative breast cancer (TNBC) is a variety of breast cancer whose
cells do not express proteins estrogen receptor (ER), nor progesterone re-
ceptor (PR), nor do they amplify Human epidermal growth factor receptor
2 (HER2/neu). As these genetic markers are common targets for cancer
therapies, TNBC is more difficult to treat than other breast cancers, be-
ing, in particular, unresponsive to hormone therapies (Hudis and Gianni
[2011]). As a result, there are limited treatment options for TNBC, and
chemotherapy remains the main treatment. TNBC is responsible for 10%-
15% of breast cancers (Chavez et al. [2010]) and has a poorer 5-year survival
rate than other forms of breast cancer (Gonçalves Jr et al. [2018]). TNBC
exhibits molecular heterogeneity at the level of multiple subtypes Hatem
et al. [2016].

Two datasets are considered in the following analysis on TNBC cell lines.
The first is a pilot drug screen study on two TNBC cell lines (MDA231 and
MDA468) (Filmus et al. [1985]). The second dataset is a wild type screen
of 12 cell lines (Chavez et al. [2010]) (11 TNBC cell lines and a negative
control), that is, without perturbation. Part I of this dissertation focusses
primarily on the drug screen data, but both datasets feature in the following
analyses.

3.2 Datasets

The drug screen pilot data set (Table 3.1) is an assay of two microplates each
housing a grid of 384 (18×24) wells, labeled A01-P24, (alphabetic character
denoting the row of the well on the plate, numeric denoting the column).
One plate tests TNBC cell line MDA231, the other, MDA468. Wells were
seeded to confluence with a controlled 1000 and 1250 cells for MDA231
and MDA468 cell lines respectively. The drugs are allocated according to
a plate map (given in full in Figure A.2), which is applied for both plates.
36 wells are treated with the neutral agent dimethyl sulfoxide DMSO as a
negative control, 2 with positive controls (Olaparib, Cisplatine), 166 with
test compounds (concentration 10µM), and 184 untreated (denoted empty).
Following hibernation, the cells were fixed, washed, and stained with four
fluorescent markers. A final washing procedure is performed, where ex-
traneous dye content is aspirated from the wells, finally preserving only the
chemically-bound dye compounds excited during the microscopy, and further
evacuating all cells unfastened to the well, as a consequence of perturbation
or otherwise. This step has consequences for the analysis, as it may remove
cells dead prior to fixation, ostensibly leaving an absence of cells as a proxy
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Plate/cell line Well, field Channel Acquisition Mode
MDA231,
MDA468

Plate row (A-P),
column (1-24),
well field (1-4)
e.g. A01_01

DAPI, Cy3,
Cy5, FITC

2D, 2D-Decon,
Adv2D-Decon,
2.5D

Table 3.1: The drug screen pilot data, consisting of two cell lines on separate
384-well plates, with four fields per well. Four fluorescence channels are
captured, under four acquisition modes. The full data set of 49152 images
is the outer product of each of the table fields.

Stain Marker
DAPI A-T regions of DNA
Cyanine 3 (Cy3) DNA double-strand bbreaks
Cyanine 5 (Cy5) β-tubulin of microtubules
FITC Phospholipids in cell membrane

Table 3.2: The stains used in the fluorescence microscopy of the screen and
their corresponding biological markers.

for high levels of apoptosis, indicating a cytotoxic compound. The array of
perturbations show a range of effects on cell mortality, from no apparent
visual effect to a near or complete elimination of cells. The drugs comprise
of a set of panels of kinase, protease and phosphatase inhibitors and can
be categorised into 70 mechanism of action (MOA) classes of varying sizes,
according to their targets.

Fluorescence microscopy (20× magnification widefield with deconvolution
image restoration) was performed at four non-overlapping fields of view
per well, producing two experimental datasets of 1536 multiplexed images
apiece. The stains used in the screen are listed in Table 3.2. DAPI (4’,6-
diamidino-2-phenylindole) is a bright blue stain that permeates a cell’s nu-
clear membrane and binds to regions of DNA rich in A-T base pairs. DAPI is
effective in highlighting the cell nucleus, where the DNA is housed. Cyanine
3 (Cy3) and cyanine 5 (Cy5) are widely used dyes belonging to a common
family. Here, Cy3 is conjugated to a γ-H2AX antibody. γ-H2AX is a pro-
tein that naturally binds to double-strand breaks as a marker for the repair
of DNA damage. Furthermore, Cy5 is conjugated to a β-tubulin antibody,
thus highlighting this sub-component of the tubulin polymer that consti-
tutes microtubules, which are structure-providing components of cells. Fi-
nally, FITC (fluorescein isothiocyanate) highlights phospholipids, molecules
in the lipid cellular membrane. Figure 3.1 shows a composite of DAPI,
Cy5, and Cy3 fluorescence channels for an indicative field from the drug
screen.
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Figure 3.1: Fluorescence image of MDA231 cells. DAPI highlighting the
nuclei in blue, cyanine 5 highlighting the microtubules in red, and cyanine
3 highlighting the double-strand breaks as white spots on the cell nuclei.

The microscopy was performed in various acquisition modes, whereby the
imagery is captured in different ways. These are: 2D (raw camera output),
2D + deconvolution (2D with blur reduction), Advanced 2D + deconvo-
lution (combination of image 3-stack), and 2.5D acquisition and deconvo-
lution (aggregation over 3D image stack). Each mode captured the same
cells at virtually the same time. The 2.5D mode was chosen for all analysis
contained in Part I as it exhibited the sharpest detail from manual visual
inspection.

3.2.1 Wild type screen dataset

In the wild type screen, 12 cell lines were imaged, including 11 TNBC cell
lines (see Table 3.3), distributed evenly over a 96-well plate (8 rows, 12
columns). In contrast to the drug screen, the objective was to monitor cell
wild type morphologies, therefore no chemical compounds were included in
the wells for the screen. The cell line MCF10A is immortalised but non-
tumorigenic, and serves as a negative control. The dataset is significantly
smaller than that of the drug screen, albeit with five fields of view imaged per
well. The same fluorescent markers used in the drug screen are used except
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Cell line Well, field Channel
MDAMB231, MCF10A
(negative), Hs578T,
MDAMB157, HCC1143,
HCC38, MDAMB468,
HCC1937, MDAMB436,
BT20, BT549, HCC70

Plate row (A-H),
column (1-12),
well field (1-5).
Each cell line
occupies one
column.

DAPI, Cy3, Cy5,
FITC rows A-D,
rhodamine rows
E-H

Table 3.3: The wild type screen data, consisting of 12 cell lines evenly
distributed over a 96-well plate (ordered by column). Four fluorescence
channels are captured as in the drug screen, albeit with FITC replaced by
rhodamine in the final four rows.

for the fourth channel, which uses the FITC marker for half the plate, and
rhodanine for the other half to monitor expression of tumour-suppressor
protein p53.

Table 3.4 collates properties of the 12 cell lines, from which one can begin
to appreciate the heterogeneity at play. The MDA family derive from pleu-
ral effusions, that is, from a fluid buildup in the patient, while all others
derive from primary tumours. The molecular classification Basal A charac-
terises cells that are more luminal while Basal B are more basal (Dai et al.
[2017]). These imply different functions of the cells. Not listed are rele-
vant information on common tumour suppressor genes: all cell lines (aside
from the negative) exhibit a p53 mutation; contrarily, most exhibit wild
type BRCA11, aside from cell lines HCC-1937 and MDA-MB-436. For the
curious reader, the cell lines are prefixed generally according to the research
group behind their discovery: BT (Breast Tumour) (Lasfargues and Ozzello
[1958]); HCC (Hamon Center) (Gazdar et al. [1998]); HS (Hackett + Smith)
(Hackett et al. [1977]); MCF (Michigan Cancer Foundation) (Soule et al.
[1990]); MDA (MD Anderson Cancer Center) (Brinkley et al. [1980]).

3.3 Cell measurement pipeline

As mentioned in Section 1.1.3, the basis of high content analysis are the
features measured on individual cells. The conventional path to measuring
cellular features entails an initial segmentation of individual cells. This sec-
tion describes the segmentation strategy as well as the features extracted
for both the drug and wild type screen datasets. These procedures under-
pin standard preliminary analyses of the data (Section 3.4), as well as the
developments described in later chapters.

1Breast cancer type 1 susceptibility protein
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Cell line Site1 Pathology2 Molecular classifi-
cation

BT-20 PT IDC Basal A
BT-549 PT IDC Basal B
HCC-38 PT IDC Basal A
HCC-70 PT IDC Basal A
HCC-1143 PT IDC Basal A
HCC-1937 PT IDC Basal A
HS-578T PT IDC Basal B
MCF-10A NB Fibrocystic Basal B
MDA-MB-157 PE IMC Basal B
MDA-MB-231 PE AC Basal B
MDA-MB-436 PE IDC Basal B
MDA-MB-468 PE AC Basal A

Table 3.4: TNBC cell lines and negative control MCF-10A properties ref-
erenced from Chavez et al. [2010]. Drug screen cell lines indicated in
bold. 1Site: NB, normal breast; PE, pleural effusion; PT, primary tumour.
2Pathology: AC, adenocarcinoma; IDC, infiltrating ductal carcinoma; IMC,
infiltrating medullary carcinoma.

3.3.1 Nuclei segmentation

The cell nucleus is the logical starting point for cell segmentation (see Figure
3.2). Roughly speaking, most nuclei are visible, uniformly-sized, and ellip-
soidal, and, crucially, seldom overlap, as the surrounding cell membrane acts
as a buffer to other cells, and as the cell density has been chosen such that
cells do not grow on top of each other. As a result, they are typically the
easiest thing to accurately segment in the fluorescent stack, and may then
be used as the starting point for segmenting other cytological components.
The segmentation typically follows three stages: pre-filtering, background
subtraction, and refinement.

Pre-filtering

A common approach to pre-filtering is median filtering (Huang et al. [1979]),
which can be very effective in eliminating noise. The approach works as a
sliding window over the image. Thus, for image f : (X × Y ) → V and
window W (x, y) centered on (x, y) of size m × n, one creates a pre-filtered
image p with,

p(x, y) = median{f(x′, y′)|(x′, y′) ∈W (x, y)}. (3.1)
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Figure 3.2: Nuclei segmentation on the DAPI channel, with segmentation
contours indicated by red bands.

Note the median is an appropriate operator to use as it is robust to outliers,
unlike the mean. Note also, however, that the elimination of noise may come
at the cost of linking separated objects as, depending on the size of the filter,
the pixels between nearby objects can be interpreted as outliers.

Background subtraction

In order to detect the contours of the cell nuclei, one takes the pre-filtered
image p and performs a background subtraction. This again works with a
sliding window, W , of size m× n, which calculates the local mean intensity
for a pixel b(x, y), giving,

b(x, y) = 1
mn

+bm/2c∑
i=−bm/2c

+bm/2c∑
j=−bm/2c

p(x+ i, y + j), (3.2)

with which one can perform the subtraction yielding,

r(x, y) = max(0, p(x, y)− b(x, y)). (3.3)

Note that values in r will now be close to zero, with non-zeros corresponding
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to regions of high intensity gradient. One can therefore identify the contours
of the cells, c(x, y) by applying a threshold t giving,

c(x, y) = 1{r(x, y) ≥ t}. (3.4)

The nuclei contours may be filled to produce a final segmentation mask.

Refinement

In the ideal case of well-separated cells, the aforementioned procedures might
be sufficient for perfect nuclei segmentation. However, in practice, some
additional steps are required to segment overlapping cells. One of the most
enduring refinement approaches is the watershed algorithm (Beucher and
Lantuéjoul [1979]) applied to the inverse distance map of the segmentation
result2. Informally, the watershed algorithm simulates a flooding of the
topography of the intensity levels in an image. The meeting points of the
growing regions build the watershed line, which amounts to a separating line
between objects. This method partitions the initially identified object into as
many regions as there are local minima of the inverse distance map. In order
to avoid over-segmentation due to small irregularities in the object boundary
potentially leading to local minima, one selects local minima according to
their morphological dynamic (Grimaud [1992]).

3.3.2 Cell membrane segmentation

With the cell nuclei segmented on the DAPI channel, one may then segment
the cell cytoskeleton, approximated by the microtubules on the Cy5 channel.
Such is the strategy of Jones et al. [2005], who use the cell nuclei as seeds
for the more difficult cell membrane segmentation. The approach consists of
defining a specialised distance metric that accounts for changes in intensity
(high gradients), with the matrix,

G = 1
1 + λ

·
[
( ∂g∂x)2 + λ ∂g

∂y ·
∂g
∂x

∂g
∂x ·

∂g
∂y (∂g∂y )2 + λ

]
, (3.5)

where g(I) is Gaussian blur, whose gradients are simply the finite central
difference of the adjacent pixels (these too can be defined by convolutions)
and λ is a regularisation parameter. Under this metric, infinitesimal dis-
tances are calculated as,

2The distance map is the image formed by the distances of the shortest path to the
background for every foreground pixel in a segmentation mask.
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||dx||2G = dxTGdx. (3.6)

The distance metric is defined for neighbouring pixels. Distances between
non-adjacent pixels are computed as the shortest path, for example with
Dijkstra’s algorithm. Thus, the metric behaves like a Euclidean distance
metric on flat, uniform regions, yet takes intensity into account where nec-
essary. The segmentation is performed by assigning pixels to the nearest
seed, that is, cell nucleus, under the metric. One may see from Equation
3.5 that the metric converges to Euclidean distance as λ → ∞. Hence,
the segmentation becomes a Voronoi tesselation in the limit. The tunable
parameters of the algorithm are: the size (receptive field) of gI; an initial
global thresholding step to eliminate the background, for example with an
Otsu threshold (Otsu [1979]); and the regularisation λ.

3.3.3 Feature extraction

In order to quantify cellular phenotypes, features are extracted from the seg-
mented cells. These features can be interpretable or general shape, intensity
and texture descriptors. In this base line approach, the features used were
provided by standard open-source software tools, here CellCognition3. The
software can export many hundreds of features for each fluorescent channel
at the user’s discretion. These features generally fall into the following cat-
egories: basic intensity features, basic shape features (e.g. RoI size, perime-
ter, circularity), convex hull features, distance map features, granulometry
features, Haralick features, moments, and statistical geometric features (see
Held et al. [2010], Walter et al. [2010a] for a detailed description).

In these experiments, 238 features were extracted for each of the DAPI
and Cy5 channels, and 38 for the Cy3 channel, giving 516 features in total
for each cell. These features are engineered to be plausibly discriminative,
yet rarely have an immediate biological sense. Nevertheless, a minority of
features can inform about some basic biological phenomena: the size of each
segmented object (RoI size) on the DAPI channel directly quantifies nuclear
size, from which one may infer about cell growth and aberrant phenomena
such as chromosome segregation problems and consequent micronucleation;
average DAPI intensity can indicate an interphase cell prior to or after DNA
replication; and spot features directly measure double-strand breaks (DSBs)
on the Cy3 channel (see Section 3.4.3).

3http://cellcognition-project.org
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3.4 Use cases in high content analysis

The following section details a series of use cases of explorative analysis in
the drug and wild type screens. Section 3.4.1 first investigates the possible
presence of spatial biases in the drug screen microplates. Sections 3.4.2 and
3.4.3 in turn describe a univariate and multivariate analysis of the drug
screen. Finally, machine learning techniques are used in Section 3.4.4 to
make morphological comparisons of TNBC cell lines in their wild type.

3.4.1 Controlling for spatial effects in the drug screen dataset

One concern in HCS is the presence of systematic bias in the experimental
setup. Controlling for this bias is the objective of a series of quality control
techniques. In the pilot drug screen dataset, with a single plate per cell
line, the most relevant concern is the presence of spatial bias, that is, a
dependency of the phenotypic readout on the position of the well on the
plate. A common cause of such a bias is a temperature gradient inside the
incubator during hibernation. This can result in an uneven evaporation
of well solvents, in particular around the microplate borders, leading to an
alteration of the drug concentration. Where spatial biases exist, their effects
might be corrected for (Caraus et al., Ljosa and Carpenter). However, the
best solution is without question to reconduct the experiments, as statistical
correction only addresses effect strength, not phenotypic alterations (for
example, if more cells are dead, one cannot infer what would have happened
had the concentration been lower).

Spatial biases are investigated in Figure 3.3. These figures visualise, for
both cell lines, firstly the number of cells in each of the 384 wells of the
plate (indexed first by the alphabetic vertical axis, then by the horizontal
numeric axis). The cell count relates directly to viability, a key readout for
drug potency. Also visualised are, in turn, the first and second principal
components of the matrix formed from the vectors of mean feature read-
outs for the cells of each well. Note that these vectors amount to a simple
phenotypic profile of the well condition (a construct that will be explored in
great detail in Chapter 4). The principal components of the profile matrix
(taken separately) therefore provide a univariate summary of phenotypic
information for each well. Small clusters appear in each heat map reflect-
ing the clustering of similar negative controls, however there is no apparent
border effect or directional tendency that would indicate systematic bias for
any of the three readouts. The validity of the screen data may therefore be
concluded.
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(b) MDA468 cell counts
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(c) MDA231 PCA1
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(d) MDA468 PCA1
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(e) MDA231 PCA2
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(f) MDA468 PCA2

Figure 3.3: Searching for spatial biases: comparison of cell counts (a), (b);
comparison of first principal component of morphological profiles (c), (d);
comparison of second principal component (e), (f), arranged according to
the plate map of the microplate. Left column (a), (c), and (e) pertain to
cell line MDA231; right column (b), (d), (f) to cell line MDA468.
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Figure 3.4: Viability comparison between cell lines for a variety of drugs and
negative controls. The neutral DMSO and untreated wells strongly overlap,
while showing considerable variation in both cell lines. Viability correlates
well between cell lines with Pearson correlation coefficient ρ = 0.6556

3.4.2 Viabilities of TNBC cell lines correlate

One of the initial aims of this TNBC pilot drug screen is simply to quantify
cell viability. In a viability assay, viability is conventionally measured in the
range [0, 1] (Pegg [1989]). Given that cells are seeded at a fixed density, the
change in the number of dead cells with respect to the negative control is
an indication of the viability. The viability,

vd = nd

n−
, (3.7)

of cells in response to a drug d refers to the change in the population size nd
relative to that of the negative control n−. Note that this can in principle
exceed a value of 1. Due to the effects of lysis (cellular breakdown) and
the washing procedure, the cells remaining at the point of imaging are the
“survivors” of the drug perturbation. When cells are segmented, the viabil-
ity of a drug is given by the cell sample size. When cells are not explicitly
segmented, the viability is represented indirectly by the foreground density
of the field. Viability is an important phenotypic characteristic of a drug
effect. In Figure 3.4 we may compare the number of segmented cells (there-
fore a proxy viability) between well populations of cell lines MDA231 and
MDA468 subjected to the same perturbations. The majority of viabilities



3.4. USE CASES IN HIGH CONTENT ANALYSIS 69

0 100 200 300 400 500
mda231_counts

0

100

200

300

400

m
da

46
8_

co
un

ts

(a) Calcineurin inhibitors

0 100 200 300 400 500
mda231_counts

0

100

200

300

400

m
da

46
8_

co
un

ts

(b) DNA damage (positive)

0 100 200 300 400 500
mda231_counts

0

100

200

300

400

m
da

46
8_

co
un

ts

(c) CDK inhibitors

0 100 200 300 400 500
mda231_counts

0

100

200

300

400

m
da

46
8_

co
un

ts

(d) MMP inhibitors

0 100 200 300 400 500
mda231_counts

0

100

200

300

400

m
da

46
8_

co
un

ts

(e) PKC inhibitors

0 100 200 300 400 500
mda231_counts

0

100

200

300

400

m
da

46
8_

co
un

ts

(f) Tyrosine kinase inhibitors

Figure 3.5: Comparison of viability by drug mechanism of action. One may
observe differential effects by cell line: (a), (b) show differential effects on
viability; (c) shows no clear divergence from the control cluster; (d), (e), (f)
show a range of correlated effects.
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belong to a dense cluster of negative controls (DMSO and None) with an
average of 289 cells for cell line MDA231 and 227 cells for MDA468. We
additionally observe a small cluster of highly potent cytotoxic drugs near
the origin. There is a positive correlation of ρ = 0.6556 for the viability of
the two cell lines, suggesting that in many cases, one can actually expect
a similar viability phenotype for both cell lines. However, a closer look at
Figure 3.4 shows that this is by no means true for all drugs. Some drugs act
differentially on both cell lines, demonstrating the heterogeneous effect on
distinct molecular TNBC subtypes discussed in section Section 1.2.1. These
differential drug effects correspond to the “L”-structure traced by the data
points skirting the horizontal and vertical axes of the plotting area.

This comparison furthermore enables a categorisation of drugs as having
no effect, joint effect, or separate effects on the two cell lines. Figure 3.5
visualises the same population data, this time coloured by selected drug
mechanism of action (MOA) categories. We see, in particular, the success
of protein kinase C (PKC) inhibitors in regularly killing most–if not all–cells
in both cell lines, with a small cluster nearby the origin. Note that PKC
inhibitors induce interesting phenotypes under other modes of analysis, as
will be seen in both Section 3.4.3 and Section 4.3.2.

3.4.3 Cell cycle modulates double-strand break rate

This section contains an excerpt from a paper published in the proceedings
of the International Symposium for Biomedical Imaging in 2018. The paper
is reproduced in full in Appendix C.

An example of multivariate analysis in the assay arises in the analysis of dou-
ble strand breaks (DSBs). Dysfunction of the DNA repair mechanisms is a
major hallmark of cancer, also providing therapeutic opportunities. Moni-
toring DNA damage by the fluorescent labeling of DSBs in cells is therefore
an important readout in drug screening of cancer cell lines. DSBs occur
when both strands of the DNA double helix are broken. DSBs have various
causes, for example, cytotoxic radiation, or DNA replication over an exist-
ing single-strand break. Despite the natural DNA repair mechanisms of the
cell, DSBs can be irreparable, leading ultimately to apoptosis, or hazardous
DNA rearrangements. As such, DSBs are an interesting property to assess
when analysing the effects of small compounds upon cancer cells. Three
approaches to quantifying DSBs on the Cy3 fluorescence channel are com-
pared, based on detecting and counting spots, granulometric features, and
average intensity, which are mutually strongly correlated readouts.

Spot density (spot count normalised by nuclear size) is used as the basis
of a DSB comparison between perturbations and negative control. The
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Figure 3.6: Drug perturbations inducing significant changes to DSB distri-
bution (measured by spot density) on cell line MDA231 at p = 0.01 with
multiple testing correction, ordered by median spot density. Sample of cells
perturbed with significant drug PKC-412 (b), DSBs visible as green spots
above nucleus. A bimodal distribution is seen on the DAPI channel reveal-
ing a growth of mean intensity post DNA replication (c). An Otsu threshold
(red vertical line) can be used to stratify the cell population, further reveal-
ing distributional differences in DSB rates.

distribution of spot density from a perturbation is compared with that of
the negative control in a Kolmogorov-Smirnov (KS) test. Hits are declared
at a p-value of 0.01, with multiple testing controlled for with a Benjamini-
Hochberg correction. Significant results are displayed in Figure 3.6a, ranked
by median spot density and a sample of cells from a significant drug PKC-
412 are shown in 3.6b.

Although some drugs have a clear effect on DSBs, they might also cause
intermediate effects, which themselves modulate DSB rates. We see in Fig-
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ure 3.6c a bimodal distribution in fluorescent density on the DAPI channel,
apparently reflecting subpopulations of cells in the G1 and G2 phases of the
cell cycle. The higher frequency of low intensities corresponds to the longer
G1 phase meaning more cells will be fixed in this phase after hibernation.
Because S phase (DNA replication) occurs between the G1 and G2 phases,
there is more DNA available on which DSBs can occur. Controlling for these
phases produces different distributions of DSBs in the G1 and G2 subpop-
ulations. This multivariate analysis thus reveals an effect modifier of cell
cycle phase on DSBs. Stratification is used to establish whether increased
rates of DSBs are a direct effect of perturbation or an indirect effect of a
modified cell cycle. See Appendix C for further detail.

PKC inhibitors are found to feature prominently among the drugs inducing
highest spot densities per cell. However, we know from Section 3.4.2 that
drugs in this MOA category often cause low viability. Populations with low
sample size tend not to meet the significance criteria. It is therefore drugs
such as PKC-412 (Figure 3.6b), which kill fewer cells, that are ultimately
declared as hits. This therefore presents a potential selection bias: DSBs
are a cytotoxic effect that, when induced at a high rate by perturbation,
should increase the rate of cell death. Given the experimental protocol,
dead cells are not fixed and are lost during the fluorescence washing step.
Hence, the more severe the drug effect on DSBs, the fewer the cells available
for measurement. It is concluded in Appendix D that this systematic bias
cannot be resolved from the available data, and can only be avoided in future
assays with an adjusted imaging protocol, and it also points to potential
problems in the interpretation of the derived hit list.

In this section, it has been shown that even in the case that one is interested
only in a single feature (here the number of DSBs or a surrogate feature), it
is still beneficial to use a multivariate readout in order to extract a better
understanding and a cleaner analysis. In addition, the interactions of vari-
ables have been identified, revealing the necessity to correct for confounding
variables. Given that the analysis of DSBs is so widely used in the field of
cancer drug screening, it is important to alert the scientific community to
potential misinterpretations of their screening results.

3.4.4 TNBC cell lines assume distinct wild type morpholo-
gies

At a glance, one can see that TNBC cell lines manifest distinct morphologies,
even in the absence of perturbation. To better understand the degree of
this difference, we turn to the wild type screen on 12 cell lines (11 TNBC +
negative control). The segmentation and feature extraction pipeline detailed
in Section 3.3 is used. With each cell described by a vector of features, one
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may proceed to aggregate the readouts so as to describe the cell population
in a similar way. Such a phenotypic profile can, for example, summarily
characterise the response of the cell population to a given drug perturbation.
Profiles, comprising of vectors of aggregated features, can then serve as
the basis of comparison between drug effects on a cell line. While this
methodology is explored in detail in Chapter 4, let us here consider the
special case where individual cell phenotypes are identifiable by an expert
annotator. The strategy is thus to classify each cell into one of several
meaningful biological classes and to describe the population as a profile of
proportions of cells in each of the phenotypic categories. This strategy is
based on Neumann et al. [2010].

Phenotype Description

Interphase Longest phase, cell nucleus is typically
small and convex

Large interphase Large interphase nucleus, possible replica-
tion defect

Bright interphase DAPI at higher intensity, due to cell cycle
deregulation

Prometaphase Mitotic phase, prior to division (short,
therefore infrequent)

Metaphase Chromosome alignment

Polylobed Abnormal shape–mitosis abberation

Apoptosis Cell death

Table 3.5: Morphological classes manually annotated on wild type screen
data to create a ground truth for training cell classifier.

In order to analyse the morphological landscape of these cell lines, seven nu-
clear morphology classes have been defined. Table 3.5 lists these classes for
the wild type screen: interphase, the longest part of the cell cycle, where the
cell nucleus is typically small and convex; large interphase, corresponding
to an abnormally large interphase nucleus, potentially the result of a defect
in DNA replication or nuclear membrane control; bright interphase, where
DAPI exhibits higher fluorescence, presumably due to cell cycle deregula-
tion; prometaphase, the first observable mitotic state (condensed chromo-
somes, broken nuclear envelope), which is relatively rare due to its short
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duration; metaphase, the mitotic phase in which the cell’s chromosomes are
aligned in the metaphase plate prior to chromosome segregation; apoptosis,
cell death; and polylobed, in which the cell nucleus takes on an abnormal
shape, due to problems in the division process.

Phenotypic profiles are not only informative about drug perturbations, but
also about cell lines themselves. Indeed, a cancer cell line is supposed to have
acquired properties that differentiate them from normal cells. Depending on
the markers used, such differences can be measured by imaging approaches.
One may hypothesise it to be interesting to identify the phenotypic profiles
of the 12 cancer cell lines from the wild type screen (see Section 3.2.1), cor-
responding to different molecular subtypes of TNBC, in order to understand
to what extent the molecular subtypes coincide with phenotypic differences.
This would allow us to infer the biological processes which are perturbed in
these different cell lines.

M
D

A
M

B
46

8

M
D

A
M

B
43

6

M
D

A
M

B
23

1

M
D

A
M

B
15

7

M
C

F
1
0A

H
s5

78
T

H
C

C
70

H
C

C
38

H
C

C
19

3
7

H
C

C
11

4
3

B
T

54
9

B
T

2
0

Cell line

Apoptosis

Bright Interphase

Large

Metaphase

Normal Interphase

Polylobed

Prometaphase

C
la

ss

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 3.7: Morphological profiles of 12 TNBC cell lines with 8 replicates
apiece, based on 7 biologically meaningful classes, derived from manual an-
notation. One observes the phenotypic similarity between cell line families.

926 cells were annotated in the wild type screen dataset4, according to
seven morphological classes specified in Table 3.5, from which were extracted
the 239 DAPI-channel nuclei features. A SVM with RBF kernel was then
trained, with hyperparameters optimised by grid search and 10-fold cross-
validation). The trained SVM was used to classify the remaining cells in the
assay (some 36338 cells in total). The number of cells in each phenotypic
class are counted, and divided by the total to create phenotypic profiles for
each well, that is, a summary of seven proportions for each of the 96 wells.
The profiles were normalised by subtracting the average from the negative
control cell line, MCF10A. The 96 profiles (8 per cell line) are visualised

4Later, a larger set of 6530 cells were annotated and released for pedagogical purposes
at https://github.com/jcboyd/deep-learning-workshop/tree/cell-data
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in Figure 3.7. We can see how families of TNBC cell lines cluster in their
phenotypes. Of note are the cell lines of the drug screen, MDA231 and
MDA468, which manifest predominantly normal interphase cells.

Figure 3.8 plots a (two-dimensional) UMAP dimensionality reduction (McInnes
and Healy [2018]) of a balanced sample of 150 cells from 4 of the 12 cell lines.
We see a clear separation of cell lines in the UMAP embedding, mirroring
their distinctive appearance in the microscopy. Note that a subset of cell
lines was chosen to avoid visual clutter, but the similar degrees of separation
were observed across the 12. The negative control cell line (MCF10A) is in-
cluded, as is one of the cell lines studied in the drug screen (MDA231).
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Figure 3.8: UMAP projection from feature space of sample cells from four
TNBC cell lines (selected among 12) in a wild type screen. On the right we
show a fixed-size (128×128px) crop centered on an indicative cell from each
cell line.

A random forest classifier with 500 trees is also trained to classify cell lines
in the feature space. The data set is built from a balanced sampling of
150 cells per cell line, totaling 1800 cells, with 25% of the data reserved
for testing. The random forest achieves in excess of 70% accuracy on the
450 test samples. A confusion matrix is provided in Appendix A. Repeated
experiments reveal that the greatest confusion occurs between two cell lines
of the same family: MDA231 and MDA436. Thus, even with a small fraction
of the total data available for training (and little to no tuning), an off-
the-shelf classifier achieves high accuracy in discerning cells of different cell
lines. This demonstrates that the cells of distinct cell lines occupy different
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regions of the feature space and that their basic wild type morphologies are
different.

3.5 Discussion

This chapter has presented the HCA analysis pipeline and applied it to a
set of use cases, providing first results on TNBC cell lines. In particular in
Section 3.4.4, two levels of phenotypic distinction between TNBC cell line
wild types have been demonstrated. The first concerns the regulation of cell
states, as in Figure 3.7, where we saw how cell populations over different cell
lines could be differentiated in a morphological profile, which appeared to
cluster by pathology. Through annotation (first manual, then by classifier),
these morphological classes abstracted away from the second distinction,
that of the morphology of individual cells within each cell line, as in Figure
3.8. It is overcoming this second distinction that will motivate the methods
of Chapter 4, albeit in an unsupervised setting where manual annotation is
no longer feasible.



Chapter 4

Domain-invariant features
for mechanism of action
prediction in a multi-cell-line
drug screen

This chapter consists of an extended version of a paper published in the jour-
nal Bioinformatics in 2019. Modifications have been made where appropriate
to cohere with this dissertation.

Summary: We saw previously that high content screening is an important
tool for the discovery and characterisation of drugs. Often, high content drug
screens are performed on a single cell line. Yet, a single cell line cannot be
thought of as a perfect disease model. Many diseases feature an important
molecular heterogeneity. Consequently, a drug may be effective against one
molecular subtype of a disease, but less so against another. To characterise
drugs with respect to their effect not only on one cell line but on a panel of
cell lines is therefore a promising strategy to streamline the drug discovery
process. The contribution of this chapter is twofold. First, we investigate
whether we can predict drug mechanism of action (MOA) at the molecular
level without optimisation of the MOA classes to the screen specificities. To
this end, we benchmark a set of algorithms within a conventional pipeline,
and evaluate their MOA prediction performance according to a statistically
rigorous framework. Second, we extend this conventional pipeline to the
simultaneous analysis of multiple cell lines, each manifesting potentially dif-
ferent morphological baselines. For this, we propose multitask autoencoders,
including a domain-adaptive model used to construct domain-invariant fea-
ture representations across cell lines. We apply these methods to a pilot
screen of two triple negative breast cancer cell lines as models for two dif-
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ferent molecular subtypes of the disease.

Résumé: Nous avons vu précédemment que le criblage à haut contenu est
un outil important pour la découverte et la caractérisation des médicaments.
Souvent, les criblages de médicaments à haute contenu sont effectués sur
une seule lignée cellulaire. Pourtant, une seule lignée cellulaire ne peut être
considérée comme un modèle de maladie parfait. De nombreuses maladies se
caractérisent par une importante hétérogénéité moléculaire. Par conséquent,
un médicament peut être efficace contre un sous-type moléculaire d’une mal-
adie, mais moins contre un autre. La caractérisation des médicaments en
fonction de leur effet non seulement sur une lignée cellulaire mais aussi sur
un ensemble de lignées cellulaires est donc une stratégie prometteuse pour ra-
tionaliser le processus de découverte de médicaments. La contribution de ce
chapitre est double. Premièrement, nous cherchons à savoir si nous pouvons
prédire le mécanisme d’action des médicaments (MOA) au niveau molécu-
laire sans optimiser les classes de MOA en fonction des spécificités du crible.
À cette fin, nous comparons un ensemble d’algorithmes dans un pipeline con-
ventionnel et évaluons leurs performances de prédiction du MOA selon un
cadre statistiquement rigoureux. Ensuite, nous étendons ce pipeline con-
ventionnel à l’analyse simultanée de plusieurs lignées cellulaires, chacune
manifestant des lignes de base morphologiques potentiellement différentes.
Pour cela, nous proposons des auto-encodeurs multitâches, y compris un
modèle adaptatif au domaine utilisé pour construire des représentations de
caractéristiques invariantes au domaine sur les lignées cellulaires. Nous ap-
pliquons ces méthodes à un écran pilote de deux lignées cellulaires triple
négatif de cancer du sein comme modèles pour deux sous-types moléculaires
différents de la maladie.

4.1 Overview

As discussed in Chapters 1 and 3 high content screening (HCS) is a power-
ful tool for identifying potential drugs effective against a particular disease.
The idea is to expose a cell line representative of the disease to a large
panel of drugs. For each drug, one obtains a set of images informative of
its phenotypic effect and hence on the biological pathways undergoing per-
turbation. Various advances in microscopy automation and image analysis
have pushed HCS to the early hit-to-lead stages of the drug discovery process
(Haney et al. [2006]).

The discovery of new drugs may be guided by a reference set of drugs of
known mechanism of action (MOA). The MOA of a drug is the particular
cellular pathway it perturbs to achieve its effect. Through application of
image analysis, one may attempt to infer the MOA of an unknown drug from
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HCS image data. Note that MOA can be defined at different levels and with
different degrees of specificity: MOA might concern the exact protein that is
targeted (e.g. AURKA inhibition), or a specific effect on cellular components
(e.g. stabilisation of microtubuli) or perturbation of a more general cellular
pathway (e.g. DNA repair). HCS is usually optimised with respect to
particular pathways by the choice of the fluorescent markers and readouts
(Pepperkok and Ellenberg [2006b]). Consequently, MOA prediction might
be reasonably straightforward if MOA classes are chosen in accordance with
the phenotypic readout (Ljosa et al. [2013]), but it is challenging in general,
in particular if we aim at predicting specific MOAs the assay has not been
optimised for.

A second difficulty concerns the cellular model that is used. As a proxy for
diseased cells, a cell line cannot be thought of as a perfect model. Many
diseases feature a significant molecular heterogeneity. Consequently, a drug
may be effective against one molecular subtype of a disease, but less so
against another. Furthermore, immortalised cell lines may diverge over time
due to genetic drift. For example, HeLa, the quintessential cell line, is fa-
mously the cause of great scientific confusion due to difficulties in cell line
identification (Horbach and Halffman [2017]) and significant molecular and
phenotypic variability (Liu et al. [2019]). To characterise drugs with re-
spect to their effect not only on one cell line but on a consensus of several
is therefore a promising strategy to streamline the drug discovery process.
Nevertheless, this is not an easy task in morphological screening, as different
cell lines usually have distinct archetypal morphologies even prior to pertur-
bation, as shown in Section 3.4.4. It is therefore conceptually difficult to
characterise and compare drug effects across cell lines.

In this chapter, we investigate whether we can predict MOA at the molecular
level without optimisation of the MOA classes to the screen specificities. To
this end, we benchmark a set of algorithms within a conventional pipeline,
and evaluate their MOA prediction performance according to a statistically
rigorous framework.

Second, we extend this conventional pipeline to the simultaneous analysis of
multiple cell lines, each with potentially different morphological baselines.
For this, we propose multitask autoencoders, including an adaptive model
used to construct domain-invariant feature representations across cell lines.
We apply these methods to a pilot screen of two triple negative breast cancer
(TNBC) cell lines as models for two different molecular subtypes of the
disease.

In Section 4.2 we formalise a range of profiling approaches from the literature
according to four key properties, and extend this to a multi-cell-line analysis.
In Section 4.3 we illustrate the benefit of multi-task models for our dataset
through extensive cross-validation and provide an exploratory analysis of
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Σ
Measurement unit Feature representation Dimensionality reduction Aggregation strategy

Input image Phenotypic profile MOA prediction

Figure 4.1: MOA prediction is performed on an image via a phenotypic
profile. The development of such a profile spans four ordered stages. Each
stage may be accomplished by a variety of algorithms, the combination of
which define a unique pipeline. Some stages may be omitted in certain
pipelines, or subsumed to a common framework.

differential drug effects between the two cell lines. In Section 4.4 we discuss
our methods and the obtained results.

4.2 Phenotypic profiling for mechanism of action
prediction

This section describes the approaches for phenotypic profiling we have bench-
marked. We embed these descriptions in a formalised overview of phenotypic
profiling strategies to motivate the different setups. In Section 4.2.3 we de-
scribe methods for a joint analysis of multiple cell lines.

4.2.1 MOA prediction

Drugs are assigned a class based on their mechanism of action (MOA), the
cellular pathway perturbed by the drug, as depicted in Figure 4.1. Given
a set of drug profiles annotated with MOA classes, we can simulate refer-
ence and discovery drug sets in a leave-one-compound-out cross-validation
(LOCOCV) scheme. At each fold of the cross-validation, we hold out a
drug and predict its MOA class using a classifier trained on the remaining
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“reference” drugs. The prediction is made as the nearest neighbour (1-NN)
in cosine distance between drug profiles, d(p,p′) = 1 − cos θp,p′ . This was
proposed in Ljosa et al. [2013] as an equitable way of comparing profiling
algorithms. We settle for this lightweight approach as our focus here is on
the discriminative power of the profiles.
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Figure 4.2: Example of how phenotypic profiles may cluster with a hier-
archical model and Ward linkage for 40 drugs in 8 mechanism of action
classes (including negative control)s from our drug screen data set. Heat
map colour indicates distance between profiles, and dendrogram leaf colours
indicate mechanism of action class.

In our drug screen, the drugs comprise of a set of panels of kinase, pro-
tease and phosphatase inhibitors and can be categorised into 70 mechanism
of action (MOA) classes of varying sizes, according to their targets. For
our experiments, we take the 8 MOA classes having at least five member
drugs. These are CDK inhibitors, cysteine protease inhibitors, EGF re-
ceptor kinase inhibitors, MMP inhibitors, DMSO (negative control), PKC
inhibitors, protein tyrosine phosphatase inhibitors, and tyrosine kinase in-
hibitors. In comparison with other datasets, Adams et al. [2006] used 51
drugs in 13 MOA categories, Slack et al. [2008] used 35 drugs in six MOA
categories, and the widely studied Broad Institute Benchmark Collection 21
(BBBC21v2, Ljosa et al. [2012]) – used, for example, in Kandaswamy et al.
[2016] and Godinez et al. [2017] – consists of 39 drugs in 13 categories. The
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key difference is that our own MOA classes were not selected a posteriori to
reflect visually different phenotypes, mounting a greater bioinformatic chal-
lenge than the standard benchmark datasets, where even a simple model
can be extremely effective. For example, Singh et al. [2014] achieved 90%
accuracy with element-wise averaging of hand-crafted features after a simple
luminosity correction.

4.2.2 Phenotypic profiling

As stated in Section 1.1.3, the conventional approach to HCS analysis is
a multi-stage pipeline, consisting of a sequence of modules of image and
statistical analysis, including cell segmentation and hand-crafted feature ex-
traction (Caicedo et al. [2017]). The aim is to ascribe a phenotypic profile
to each cell population to serve as the basis of comparison between drugs.
Each profile will take the form of a vector p ∈ RD of some dimensional-
ity D and is constructed according to four ordered methodological stages:
measurement unit, feature representation, dimensionality reduction, and ag-
gregation strategy (Figure 4.1). Certain properties may be omitted by some
approaches, or subsumed to a common framework, such as a neural network,
that may perform each task simultaneously (Kraus et al. [2016], Godinez
et al. [2017]). In the following sections we detail each property in turn, pro-
viding references to the relevant literature and describing the concrete setup
that was retained for the benchmarking.

Measurement unit

The most common measurement unit is the cell itself, constituting a per-
cell analysis. This entails an initial segmentation of the cells (their nuclei
and other organelles). We segmented cell nuclei on the DAPI channel by
subtracting a background image formed with a mean filter, before clipping
to zero. Touching nuclei were further separated by applying the watershed
transform on the inverse distance map of the foreground image. The cyto-
plasm was segmented from the microtubule channel (Cy5) following Jones
et al. [2005].

Alternatively, one might analyse the image field directly in a per-image anal-
ysis, such as in Orlov et al. [2008], Uhlmann et al. [2016], or Godinez et al.
[2017]. Such approaches are referred to as segmentation-free, as they obvi-
ate the segmentation phase of the conventional pipeline. In this chapter, we
choose to focus on the cell as unit of measurement.
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Feature representation

For a given choice of measurement unit, one further chooses a feature rep-
resentation. This yields a matrix X ∈ RN×D for each well where N is
the number of samples for that well and D is the number of features mea-
sured. For each segmented cell we extracted a previously published set
of features (Walter et al. [2010b]) across the three fluorescent channels, as
well as spot features informative on DNA double-strand breaks (Boyd et al.
[2018]). These features, hereafter referred to as handcrafted features, thus
retain a degree of biological interpretability. In contrast, in Orlov et al.
[2008] and Uhlmann et al. [2016] a large number of handcrafted features are
extracted over each image as a whole.

More recently, features are extracted within the layers of a convolutional
neural network (CNN) trained directly on image pixels. We benchmarked
a convolutional autoencoder (CAE) following the design of Sommer et al.
[2017], trained on 40×40×3 inputs, formed by extracting 100×100px padded
bounding boxes of segmented cells, rescaling, and stacking the fluorescent
channels. The central hidden layer of the trained CAE is then used as a
feature representation.

Dimensionality reduction

Dimensionality reduction requires some function enc : X → Z where Z ∈
RN×M , with reduced dimensionality M < D. The objective is to capture
the essential information in lower dimension or to cast the high-dimensional
feature vector to an interpretable representation. Supervised classification
of individual cells is one way of achieving this (Neumann et al. [2010]), as
each cell is represented either by a one-hot binary vector zi ∈ {0, 1}M or
by a vector of probabilities zi ∈ [0, 1]M where

∑
j zij = 1 and M is the

number of classes, in effect, the new dimensionality. With multiple-instance
learning (MIL) (Kraus et al. [2016]) one can circumvent the manual effort
involved in creating a phenotypic ontology and a manually curated training
set. Here, one labels each cell with the MOA of the drug of the population,
thus creating a weakly supervised ground truth. As individual cells may re-
spond differentially to perturbation, not all regions of an image will bear the
hallmarks of a particular drug, but the cellular landscape can be viewed as a
multiple instance bag of objects. Godinez et al. [2017] make this assumption
implicitly. We benchmarked a random forest tuned to 500 trees, trained on
cells weakly labeled by MOA class of their well (M = 8). Necessarily, we
partition wells into separate train and test sets, where the test data alone is
used to build profiles for the MOA prediction downstream.

Another popular option is to use unsupervised learning. We benchmarked
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hard clustering methods k-means and hierarchical clustering in Euclidean
space with Ward linkage. These were tuned toM = 80 andM = 100 clusters
respectively (by cross-validation, on the training set). K-means is fast to fit
approximately, in particular using mini-batch training. On the other hand,
even using optimised software (Müllner et al. [2013]), hierarchical clustering
is not scalable. We also performed soft clustering with Gaussian mixture
models (GMM) (Slack et al. [2008]), tuned to M = 100 Gaussians.

Feature selection and principal components analysis (PCA) are other pop-
ular options (Loo et al. [2007]). Here, we applied PCA on the handcrafted
features, selecting 40 of the 516 components, retaining ∼ 90% of the energy
on average. We further whitened the latent features.

Autoencoders, as used by Kandaswamy et al. [2016], formulate a function
f(x) = dec(enc(x)), where enc(·) and dec(·) correspond to the encoder and
decoder parts of the neural network. This model can be trained with a mean
square error (MSE) loss function,

L(X; θ) = 1
N

N∑
i=1
||xi − f(xi)||22 + λ||θ||2F , (4.1)

for the N samples in the dataset and where λ is a tunable hyperparameter
for the regulariser. The hidden representation corresponds to the output of
the encoder, the central layer of the neural network, i.e. our reduced sample
is zi = enc(xi). We train shallow affine autoencoders–with a single hidden
layer (tuned to M = 100 neurons)–on handcrafted features. We also train
deep convolutional autoencoders directly on image pixels, as described in
Section 4.2.2. Note that such models perform both feature extraction and
dimensionality reduction simultaneously. Here, the encoder consists of 5×5
and 3×3 convolutional layers, with 16 and 8 kernels respectively, and a fully
connected layer (M = 128), each alternating with max pooling layers. The
decoder mirrors this, albeit replacing pooling with upsampling.

Aggregation strategy

Once all cells are endowed with a representation, one needs some means of
reducing the population to a single profile, p. A variable number of cells per
well requires an aggregation strategy yielding a profile of fixed size. The most
straightforward approach is an element-wise averaging as in Adams et al.
[2006] where p = 1

N

∑N
i=1 zi. This amounts to replacing the cell population

cluster with its own centroid, and for classification or clustering approaches
(Section 4.2.2), this simply corresponds to the percentage of cells that fall
into each category.
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Alternatively, Perlman et al. [2004] apply an element-wise Kolmogorov-
Smirnov test and Loo et al. [2007] use the vector normal to the SVM decision
boundary between perturbed and control populations. As we are modeling
the negative control as one of our ground truth classes, we aggregate exclu-
sively with element-wise averaging in our analysis.

4.2.3 Multi-cell-line analysis

One can extend the above MOA prediction framework for multiple cell lines
either by pooling data or by ensembling models. In a pooling analysis such as
Warchal et al. [2016], the cells of the respective cell lines are first normalised
and then grouped across drugs to increase the amount of available data.
An ensemble approach such as in Rose et al. [2018] creates models for each
cell line and aggregates their individual predictions. This approach has the
additional advantage of allowing different imaging modalities of fluorescent
markers.

We adopted a pooling approach to predict MOA from multiple cell lines. The
challenge of this approach is to reconcile the inherent differences between
the cell lines in feature space, which derives from the fundamental morpho-
logical differences of the cell lines. For this purpose, we tested multi-task
autoencoders (Figure 4.3), extensions of both our affine and convolutional
autoencoders.

Multitask autoencoders for multi-cell-line analysis

Multi-task models learn to predict multiple targets simultaneously and mul-
titask neural nets often build more generalised internal representations (Caru-
ana [1997]). We propose multitask autoencoders as an approach to reconcile
the divergent nature of our multi-cell-line data.

One obvious design is to have separate decoders for each cell line with a
shared encoder. During training, minibatches can be split after the shared
layers with samples routed to the decoder corresponding to their cell line.
We thus minimise,

LMTA(X; θ) =
∑
i:di=0

||xi − decs(enc(xi))||22+ (4.2)

∑
i:di=1

||xi − dect(enc(xi))||22,

where di identifies the cell line of xi. We test multitask variants of both our
affine and convolutional autoencoders described in Section 4.2.2.
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The fundamental morphological differences between the cell lines can be
quantified in feature space by a H-divergence, first proposed by Ben-David
et al. [2010], where H is some hypothesis class (such as the space of linear
classifiers). This is expressed as dH(DX

S , D
X
T ) = 2 suph∈H

∣∣∣Px∼DX
S

(
h(x) =

1
)
−Px∼DX

T

(
h(x) = 1

)∣∣∣, where the domains DX
S and DX

T are marginal proba-
bility distributions on x. That is, given source and target domains, and given
a hypothesis class H, the divergence between the source and target domains
is the best performance among that class of classifiers trained to distinguish
them. In practice, we can approximate this by training a classifier of the
class H on the constructed dataset, U = {(x, 0) : x ∈ S} ∪ {(x, 1) : x ∈ T},
that is, a classifier trained to distinguish between the domains. Ajakan
et al. [2014] proposed multi-task classifiers involving a domain discrimina-
tor trained against a classifier adversarially. As the classifier was trained
to minimise one loss, the competing domain discriminator was trained to
maximise another loss, such that data from either domain could not be dis-
tinguished, promoting domain-invariant features in the earlier, shared layers
of the network.

Thus, we propose domain-adversarial autoencoders (DAA), to promote domain-
invariant representations between the cell lines. This consists of attaching
a domain discriminator g(x) to the encoding layer. This can be thought
of as a dynamic regularisation function. In a bias-variance tradeoff, we ex-
pect this to on average increase the reconstruction error of the autoencoder.
However, we hypothesise that the domain-invariant features learned will be
more useful to the downstream MOA prediction when combining hetero-
geneous cell line data. For example, with a single additional affine layer,
g(x) = S(Wdenc(x) + bd), where Wd and bd are the weights and biases of
the layer, and S is the softmax function producing posterior probabilities
p(d = 0|x) and p(d = 1|x). The loss function then becomes,

LDAA(X,d; θ) = 1
N

N∑
i=1
||xi − f(xi)||22− (4.3)

ω

N

N∑
i=1

dig(xi)− log[1 + exp(g(xi))],

that is, the difference of a mean square error (MSE) loss and a log loss,
where f(x) is defined as before, and ω is a modulating hyperparameter.
However, now the parameters of g(x) are updated to maximise LDAA, so
as to improve domain discrimination. At the same time, the parameters of
f(x) are updated to minimise LDAA. This has the dual effect of minimising
the MSE (as usual) but also maximising the log loss. This is known as an
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adversarial step, and aims at converging to a saddle point between the two
objectives. In practice, this is implemented with a gradient reversal pseudo-
layer (Ganin et al. [2016]), which is readily programmable in standard deep
learning frameworks.

We test multitask versions of both our affine and convolutional autoencoders,
and compare them directly in Section 4.3.2. The domain discriminator of our
DAAs are linear in terms of the encoding (domain invariant features) and the
weight of the log loss was tuned to ω = 1.5. For each affine model we tried
the same range of hidden units in a grid searchM ∈ {100, 125, 150, 175, 200},
and trained for 20 epochs using the RMSprop gradient descent algorithm
(Tieleman and Hinton [2012]). For the convolutional autoencoders we kept
the architecture defined in Section 4.2.2. We further used weight decay
(λ = 10−3) for all models as well as batch normalisation (Ioffe and Szegedy
[2015]), which we found stabilised the training, in particular the adversarial
training.

x enc(x) dec(enc(x))︸ ︷︷ ︸
f(x)

decs(enc(x))

dect(enc(x))

− ∂f

∂W︸ ︷︷ ︸
Gradient reversal

dec(enc(x))

p(d = 0 | x)

p(d = 1 | x)︸ ︷︷ ︸
g(x)

Figure 4.3: Multitask autoencoders used for dimensionality reduction over
multi-cell-line data. Clockwise from top left: vanilla autoencoder, multitask
autoencoder, and domain-adversarial autoencoder. Colouring indicates sep-
arate treatment of each domain (cell line).
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4.2.4 Model evaluation

We compared different profiling settings by evaluating performance on a
MOA prediction task. For this, we balanced our datasets by randomly
sampling five drugs from each of the 8 classes specified in Section 4.2.1,
analysing 40 drugs at a time. Applying the LOCOCV scheme described
in Section 4.2.1, we note that random accuracy is 12.5%. To account for
random variability, we repeated LOCOCV 60 times with different sets of
randomly sampled drugs and in Section 4.3 report average top-1 accuracy
and standard deviation as the percentage of MOAs correctly predicted by
the 1-NN classifier. We consider this to be a more rigorous approach in a
comparative study, as while a given method often fit one drug set well, it was
harder to find hyperparameter choices that worked well across all sets. We
used a Wilcoxon signed-rank test to establish significance against baselines
over the 60 rounds.

4.2.5 Software

We use Cell Cognition (Held et al. [2010]) to perform the first stages of the
classical analysis pipeline, namely, image preprocessing, cell segmentation
and feature extraction.

All models were coded using the scikit-learn (Pedregosa et al. [2011])
and Keras (Chollet et al. [2015]) frameworks for Python, unless otherwise
noted1. Basic image processing was performed with scikit-image (van der
Walt et al. [2014]).

4.3 Results

In Section 4.3.1 we evaluate a range of approaches to dimensionality reduction–
as described in Section 4.2.2–on their utility in creating cell representations
that aggregate into discriminative phenotypic profiles for MOA prediction.
This we do in separate single-cell-line experiments. In Section 4.3.2 we show
how our best performing model on single-cell-line data–the autoencoder–
may be extended for multi-cell-line analysis, providing comparisons for learn-
ing on handcrafted features, as well as raw pixels. We then illustrate how
our optimised phenotypic profile design can be used to identify differential
drug effects between cell lines across our entire drug panel in Section 4.3.2.
In Section 4.3.2 we explore how the effect of adding cell lines to an analysis
effects MOA predictability.

1Worked examples of code and feature data available at
https://github.com/jcboyd/multi-cell-line
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Approach MDA231 accuracy (µ, σ) MDA468 accuracy (µ, σ)
Handcrafted features 18.58, 5.62 20.08, 4.49
PCA + whitening 21.33, 6.54∗ 19.58, 6.43
Hierarchical clustering 17.83, 6.46 20.13, 6.46
K-means 19.38, 7.56 19.50, 5.86
GMM 20.21, 6.88 21.29, 7.37
Autoencoder 22.13,6.48∗∗ 23.92,6.23∗∗
Random forest (MIL) 19.51, 9.95 16.81, 8.16
Conv. autoencoder 19.96, 6.23 13.79, 5.51

Table 4.1: Comparison of dimensionality reduction approaches against unre-
duced baseline for cell lines treated separately. We show mean and standard
deviation of accuracies over 60 runs with (∗) indicating significant results at
the p = 0.05 level; (∗∗) at the p = 0.01 level.

4.3.1 Single cell line analysis

In Table 4.1 we evaluate a range of approaches to dimensionality reduc-
tion on cell lines taken separately. The baseline for this comparison are the
hand-crafted features averaged element-wise from segmented cells in each
well. Note that even such a simple baseline proved to be highly competi-
tive in earlier comparative studies such as Ljosa et al. [2013]. The models
are used to create a reduced representation of cells prior to aggregation by
element-wise averaging (Section 4.2.2). The one exception is the convolu-
tional autoencoder, which learns cell representations directly from image
pixels.

We observe dimensionality reduction techniques register broad improvement
over the baseline, with PCA (W = 385.0, p < 0.05) and autoencoders (W =
281.5, p < 0.01) significant for the MDA231 cell line. Autoencoders also
registered significant improvement (W = 356.0, p < 0.01) for the MDA468
cell line. This further motivates autoencoders as the benchmark in our
multi-cell-line analysis (Section 4.3.2).

The deep convolutional autoencoder fails to stand out from the group. How-
ever, this may rather testify to the effectiveness of handcrafted features on
cell line data–at least at this resolution–over learning representations from
scratch.

The sole weakly supervised method, multiple instance learning (MIL) with
random forests, shows promise on cell line MDA321, but falls short on
MDA468. This may stem from the necessary splitting of data into train
and test sets prior to LOCOCV, reducing the available training data. Ap-
proaches based on weakly supervised MIL are popular, particularly for
deep learning approaches, but we do not see any benefit for them on our
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Approach Pooled cell line accuracy (µ, σ)
Autoencoder 31.67, 6.43
Multitask autoencoder 32.04, 6.88
Domain-adversarial autoencoder 35.67,6.94∗∗

Table 4.2: MOA prediction on multiple cell lines (pooled) with autoencoders
trained on handcrafted features. From top to bottom: vanilla autoencoders
(baseline), multitask autoencoders and domain-adversarial autoencoders.
We compare with the vanilla autoencoder (top row) ((∗∗) : p < 0.01)

dataset.

4.3.2 Analysis on multiple cell lines

So far, we have considered the analysis of several cell lines as independent
problems to inform model selection. We now turn to a joint analysis on
multiple cell lines.

Prediction of MOA from multiple cell lines

With their different transcriptional programs multiple cell lines potentially
bear complementary information on the mechanism of action of a drug. We
pool cells in corresponding wells across our two cell lines, thus enlarging
the available data for each drug. In each case, the data from each cell line
were standardised separately to have zero mean and unit variance for all
features. Our multitask autoencoders are compared with their single-task
counterparts, the best performing models from Section 4.3.1.

We observe in both Tables 4.2 and 4.3 that we obtain a higher degree of accu-
racy in MOA prediction for our multitask autoencoders compared with their
baselines, particularly the domain-adversarial autoencoders, which achieve
a statistically superior average accuracy (W = 283.5, p < 0.01) for the shal-
low variant, based on handcrafted features, as well as for the deep learning
variant (W = 438.5, p < 0.01). The former constitutes our best overall accu-
racy in MOA prediction on this dataset. This supports our hypothesis that
promoting domain invariant features facilitates the mixing of heterogeneous
data from multiple cell lines. As anticipated in Section 4.2.3, adversarial
training did not improve the reconstruction error of our autoencoders, but
the resultant features performed better downstream in the MOA prediction
pipeline.

Inspired by Ganin et al. [2016], we use t-SNE (Maaten and Hinton [2008])
to project a sample of learned cell features into two dimensions. We typi-
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Approach Pooled cell line accuracy (µ, σ)
Conv. autoencoder 19.58, 6.98
Multitask conv. autoencoder 20.42, 6.14
Domain-adversarial conv. autoencoder 22.38,5.91∗∗

Table 4.3: MOA prediction on multiple cell lines (pooled) with convolutional
autoencoders. From top to bottom: vanilla convolutional autoencoders
(baseline), multitask convolutional autoencoders and domain-adversarial
convolutional autoencoders. We compare with the vanilla convolutional au-
toencoder (top row) ((∗∗) : p < 0.01).

cally observe a higher degree of alignment between the feature distributions
of the two domains as produced by the domain-adversarial model, as il-
lustrated in Figure 4.4. To quantitatively confirm this domain overlap, we
compute the mean silhouette score over all points where the cluster identity
of each point is simply its domain class. The scores given in Figure 4.4 of
0.11 (lower overlap) and 0.01 (higher overlap) for unadapted and adapted
features respectively are typical. Altschuler and Wu [2010] wrote that mul-
tiple modalities render aggregation over a cell population problematic, as a
centroid may be a bad representative of the overall population. Comput-
ing domain invariant features appears to be a partial remedy to this when
pooling heterogeneous data in a multi-cell-line analysis.

Figure 4.4: t-SNE embeddings of encodings from autoencoder (left) and
domain-adversarial autoencoder (right), with cell lines distinguished by
colour, and mean silhouette scores of 0.11 and 0.01 respectively.
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Figure 4.5: MDS embedding of drug effect profiles for MDA231 and MDA468
cell lines with DMSO centroid centered on origin. Detection of differen-
tial drug effects between cell lines with examples for each category below
(MDA231 top, MDA468 bottom). From left to right: no drug effect in either
cell line (negative control); drug effect in MDA231 cell line only; drug effect
in MDA468 cell line only; similar drug effects in both cell lines; differenti-
ated drug effects in both cell lines. Shown are example images, blue: DAPI,
red: microtubules, green: DSB.

Differential drug effects across cell lines

Our DAA approach provides us with a representation that is optimised with
respect to both MOA prediction accuracy and domain invariance between
the cell two lines. This can assist us in producing profiles for all drugs in our
pilot screen and investigate the differential effects of drugs across cell lines.
For this, we trained our network on all data, producing phenotypic profiles
for all drugs in the screen. We zero-centered each cell line by subtraction
of their respective DMSO centroids and compared distances of drug profiles
both from the DMSO centroid and between cell lines. By ranking these
distances, we can identify four drug effect cases:

• no drug effect in either cell line;

• drug effect in one cell line only;

• differentiated drug effects in both cell lines;

• similar drug effects in both cell lines.
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We visualise the relative distances between drug profiles using multi-dimensional
scaling (MDS) on Euclidean distance in Figure 4.5 and identify examples of
each of these cases. We include a comparison of DMSO populations that
illustrate the unperturbed morphological differences between the two cell
lines. We first show an indicative sample of DMSO cells from each cell line.
Among the drugs, Endothall has a phenotypic effect on MDA231, but no
visible effect on MDA468 (MDA231 cells are rounded up and smaller than
in DMSO). Conversely, CL-82198 has an effect on MDA468 cells (cells are
smaller and display cytoskeletal changes) and no visual effect on MDA231
cells. Cyclosporin A has a similar effect on both cell lines; the cell lines
actually preserve many of their morphological baseline differences, but have
a higher fraction of binucleated cells. PKC-412 has a differential effect on
both cell lines. While the cell size is increased, the morphological proper-
ties as well as the number of DSBs seem to be very different between cell
lines.

Effects of accumulating cell lines

Rose et al. [2018] demonstrated an increasing accuracy in MOA prediction
as data from cell lines are added to create a growing ensemble of predictive
models. This illustrates the value of drawing upon several biological sources
to guide a drug discovery process. Nevertheless, predictive models will tend
to perform better when supplied with greater volumes of data anyway. Any
attribution of a model’s success to a richer biological foundation must first
correct for the confounding effect of an increasing sample size.

We ran a separate experiment controlling for the aforementioned bias to
attempt to measure the effective power of heterogeneous cell line data. To do
this we created equally sized samples: 10000 randomly subsampled cells from
the MDA231 cell line; 10000 randomly subsampled cells from the MDA468
cell line; and 5000 cells sampled from each cell line and pooled into a multi-
cell-line dataset. We did this for the handcrafted features of segmented cells,
averaged element-wise, again repeated over the 60 experimental folds. We
found the pooled samples yielded an average accuracy of 20.89, significantly
improving over the pure MDA231 sample at 14.94 (W = 240.0, p < 0.01)
and the pure MDA468 sample at 19.42 (W = 516.0, p < 0.1). This therefore
supports the hypothesis that a multi-cell-line analysis can be advantageous
in and of itself, even before accounting for any increased sample size.

Generalising to further cell lines

To test how our model behaves with increasing numbers of cell lines, we
acquired image data without drug perturbation of a third TNBC cell line
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(MDA-MB-157) under the same protocol as the pilot screen. In order to
apply domain adaptation to K cell lines with K > 2, the log loss in equation
4.3 was replaced with a cross entropy loss,

LDAA(X,d; θ) = 1
N

N∑
i=1
||xi − f(xi)||22 + ω

N

N∑
i=1

log pdi
, (4.4)

where pdi
is the softmax probability produced by the domain discriminator,

indexed by the domain of ith sample, and all other terms are defined as
before. We found that this simple modification sufficed to train effectively
on the new dataset, provided ω was reduced as the number of cell lines
increased. We produce a t-SNE plot in Figure 4.6 and observe a similar
tendency of distributional overlap for three cell lines. Interestingly, there
is only a moderate number of additional parameters when we add a new
cell line, which contrasts to the multi-task autoencoders where a whole new
decoder is required for each new cell line.

MDAMB231
MDAMB468
MDAMB157

Figure 4.6: t-SNE embeddings of encodings from handcrafted features (left),
autoencoder (center) and domain-adversarial autoencoder (right), with cell
lines distinguished by colour. Respective silhouette scores of 0.22 and 0.14
and −0.02 confirm the reduced divergence in the adapted domains.

As stated above, this new dataset was not a drug screen and therefore we
could not evaluate our model in the same way as before. We were, however,
able to pretrain our model on this morphological screen and transfer it to
our drug screen to be used as a feature encoder directly. Compared with an
equivalent vanilla autoencoder our model performed marginally better for
three cell lines (32.08 compared with 31.17) (W = 366, p < 0.1), following
our evaluation strategy. Though not the exact intended application of our
model, we again see an improvement over baselines, suggesting an aptitude
of our method for analysing multi-cell-line data. It will be the subject of
future work to test our method on a full drug screen in greater numbers of
cell lines.
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4.4 Discussion

In this chapter we address prediction of mechanism of action (MOA) at a
molecular level. Importantly, we have not optimised the MOA classes with
respect to the readout of the screen, as is common in many benchmark-
ing studies. We have studied a number of different approaches, including
traditional approaches based on hand-crafted features, and deep learning
approaches, allowing us to learn suitable representations.

A major gain can be achieved by using multiple cell lines, but the choice
of algorithm is important to most benefit from the data heterogeneity. We
investigated several approaches, and obtained the best results for an autoen-
coder with a domain discriminative component to promote domain-invariant
features across multiple cell lines. This approach requires the same set of
markers to be used and ideally the same set of drugs to be tested.

In addition of improving MOA prediction accuracy, this method further pro-
duces a representation that allows us to compare effects of drugs on different
cell lines. We use the representation in order to make comparisons between
(drug, cell line) pairs. This is one of the most important use cases if the
cell lines represent different molecular subtypes of a disease. Importantly, it
allows one to identify highly specific drugs that only act on one particular
subtype–the paradigm of precision medicine–and to distinguish them from
drugs that are generally effective across different subtypes, as well as from
drugs that lead to different phenotypic effects, which in turn suggest a target
of different pathways depending on the transcriptional program.

While these approaches have only been applied to a small-scale pilot study,
they provide an interesting starting point for larger multi-cell-line screens. A
larger screen would, of course, provide greater opportunities to explore the
strengths and weaknesses of our proposed method. It may be, for example,
that our method is again advantageous for higher numbers of cell lines, yet
it may happen that in the limit, performance converges to that of simpler
methods, such as the vanilla autoencoders, as the variety of cell lines forces
the autoencoder to learn domain-invariant features as a matter of course. In
this case, our method will have provided a useful regularisation in the use
case of lower numbers of cell lines.

With the exception of batch normalisation, we have neglected to borrow
tricks of the trade from the GAN literature on adversarial learning. It is
possible that our reported results underestimate the quality of our method
as result. A future study could include an assessment of the effects of varying
activation function (for example, LeakyReLU), alternating gradient descent
steps, and learning rate scheduling, to name a few.

Finally, the domain-invariant features themselves remain mysterious. It
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would be fitting to analyse the properties of those arising from our experi-
ments and understand how they could be improved. Consider Information
Maximising GANs (InfoGANs) (Chen et al. [2016]), a GAN with an infor-
mation maximising regularisation function. InfoGANs allocate a subset c
of the generator input noise vector z to act as a latent code, which is op-
timised to have maximum mutual information with the generator output.
That is, one maximises I(c;G(z, c)). In practice, the discriminator predicts
the distribution on c used in generation, given the generated image. If the
discriminator is easily able to discern c given generated image x, then the
mutual information is high, and the content of c has been preserved during
generation. The only way to maximise the mutual information is, for each
latent variable ci, for the generator and discriminator to “agree” on a salient
and independently-varying property of image objects (such as size and rota-
tion), such that the auxiliary network can infer the original, independently-
varying latent variable. In principle, the outcome is a generator that will
generate images that are to some extent controllable by semantically mean-
ingful properties. Information maximising is therefore a powerful prior for
learning disentangled representations. Some similar mechanism could be
attempted in our autoencoders to address the interpretability of the latent
codes.
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Chapter 5

Experimentally-generated
ground truth for detecting
cell types in phase contrast
time-lapes microscopy

Summary: One of the major obstacles in the use of deep learning for com-
putational phenotyping is the need for extensive image annotation, which in
many biological projects is infeasible. This chapter proposes strategies for the
experimental generation of ground truth, allowing the design of a full cell de-
tection and classification workflow without a single manually annotated cell.
These strategies are applied to the analysis of image-based immunotherapy
assays. In particular, chimeric antigen receptor (CAR) is an immunother-
apy whereby T lymphocytes are engineered to selectively attack cancer cells.
Image-based screens of CAR-T cells, combining phase contrast and fluores-
cence microscopy, suffer from the gradual quenching of the fluorescent signal,
making the reliable tracking of cell populations across time-lapse movies dif-
ficult. In this chapter, the available fluorescent markers are leveraged as an
experimentally-generated ground truth for phenotyping the cell population in
time. It then compares two learning strategies. The first, based on predicting
fluorescent markers directly from phase contrast microscopy is, in the first
instance, a powerful visualisation system. The second, an object detection
system, learns from an automatically annotated training set, acquired with
some simple image processing of the image set. Depending on the experi-
mental objectives, either approach has scope for potentially eliminating the
need for the cumbersome fluorescent markers. This approach will underpin
the development of cheap and robust microscope-based protocols to quantify
CAR-T activity against tumor cell in vitro.

99
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Résumé: L’un des principaux obstacles à l’utilisation de l’apprentissage
profond pour le phénotypage informatique est la nécessité d’une annota-
tion extensive des images, ce qui est impossible dans de nombreux projets
biologiques. Ce chapitre propose des stratégies pour la annotation expéri-
mentale des données d’entraînement, permettant la conception d’un flux de
travail complet de détection et de classification de cellules sans une seule
cellule annotée manuellement. Ces stratégies sont appliquées à l’analyse
des essais d’immunothérapie basés sur des images. En particulier, e récep-
teur antigénique chimérique (CAR) est une immunothérapie dans laquelle
les lymphocytes T sont conçus pour attaquer sélectivement les cellules can-
céreuses. Les criblages des cellules CAR-T à base d’image, combinant le
contraste de phase et la microscopie à fluorescence, souffrent de l’extinction
progressive du signal fluorescent, ce qui rend difficile le suivi fiable des pop-
ulations cellulaires à travers les films en temps réel. Dans ce chapitre, les
marqueurs fluorescents disponibles sont utilisés comme annotation générée
expérimentalement pour phénotyper la population cellulaire dans le temps.
Deux stratégies d’apprentissage sont comparées. La première, basée sur la
prédiction des marqueurs fluorescents directement à partir de la microscopie
à contraste de phase, est, dans un premier temps, un puissant système de
visualisation. La seconde, un système de détection d’objets, apprend à par-
tir d’un ensemble d’apprentissage automatiquement annoté, acquis avec un
simple traitement de l’image de l’ensemble d’images. En fonction des ob-
jectifs expérimentaux, l’une ou l’autre de ces approches peut potentiellement
éliminer le besoin de marqueurs fluorescents encombrants. Cette approche
soutiendra le développement de protocoles peu coûteux et robustes basés sur
le microscope pour quantifier l’activité CAR-T contre les cellules tumorales
in vitro.

5.1 Overview

5.1.1 Biological context

Chimeric antigen receptor T-cell (CAR-T) therapy is an immunotherapy
whereby T lymphocytes (a subtype of white blood cells) are engineered to
selectively attack cancer cells. Generally speaking, CARs are engineered
or recombinant receptors designed to target a specific protein, in practice a
tumour antigen. When a CAR allows the CAR-T cell to latch onto a cancer-
specific antigen, and deliver cytotoxic chemicals to induce lysis (membrane
breakdown) of the target cell (Benmebarek et al. [2019]). CAR technol-
ogy has 30 years of development encompassing several design generations
(Maude et al. [2015]). As a therapy, T cells are extracted from a patient
or healthy donor, modified (such as with viral transduction) to express the
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CAR in culture, and infused back into the patient. The in vivo CAR-T cells
then target tumours as a “living drug” treatment. The main engineering
challenge is ensuring safety and efficacy, in particular the target specificity
of the T cells (Sadelain et al. [2013]).

In particular, CAR-T therapy can be applied to almost all B-cell cancers,
such as acute lymphoblastic leukemia, one of the most common and fatal
forms (primarily from relapse) of pediatric cancer worldwide (Hunger and
Mullighan [2015]). In the latter disease, CAR-T has achieved up to 90%
complete remission rates in clinical studies such as Maude et al. [2014]. The
used antigen is CD19, a B-cell surface protein. Ideally, this antigen will
be cancer-cell-specific, however CD19 CAR-T leads to B-cell aplasia, that
is, the depletion of B cells both cancerous and normal. While there are
studies showing that side effects can be managed, the pursuit of new and
more specific forms of CAR is the subject of rapid and enthusiastic research
(Wang et al. [2017]).

Microscopy-based assays are an excellent tool to study the effects of CAR-
T therapy in vitro. B-cell populations are exposed to engineered T-cells,
and the effects can be recorded by live cell imaging. For these assays, it
is important to observe the long-term effects of the T-cells on the B-cell
population, ideally over several days and for a large cell population. Even
at low resolution, specific markers allow for a quick assessment of how many
cells died and thus how effective the CAR-T cells were in attacking cancer
cells. Quantitative analysis of these movies thus allow to compare different
constructs, which is an important asset in the research for the most effective
therapies.

5.1.2 Computational phenotyping for phase contrast images

Phase contrast microscopy is an optical, label-free microscopy technique,
invented in the 1930s. It works by converting phase shifts of light passing
through a transparent specimen to image contrast. Due to the selective am-
plification of scattered light and the suppression of background illumination,
phase contrast microscopy significantly increases the contrast of the imaged
objects. Phase contrast microscopy revolutionised microscopy in and has
remained a standard technique used in the labs.

Fluorescence microscopy was invented in the 1980s. As described in Section
1.1.2, it relies on the fluorescent labeling of biomolecules. The resulting im-
age shows the spatial distribution of the labeled molecule with high contrast
and virtually no background illumination. The advantage of this imaging
technique is that one may choose which biomolecule to highlight. In so do-
ing, one can gather information such as the presence of a certain signaling
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protein or the sub-cellular structure the protein localises to (for example,
microtubules, nuclear or plasma membrane, Golgi). The downside is that
fluorescence microscopy does not provide a full picture of the cell, rather only
information on the selected marker proteins. The choice of the fluorescent
labels is therefore a key parameter for this type of microscopy.

Despite its power, fluorescence microscopy has various drawbacks, with sev-
eral experimental complications, in particular when imaging assays are per-
formed over several days. For live cell imaging by fluorescence microscopy,
there are essentially two main labeling options: either one genetically en-
codes the fluorescent label as a fluorescent tag or one uses live dyes. The
first strategy requires genetic modification of the cell lines, a lengthy process
that leads the cell line astray from a physiologically relevant model, while
the live dyes have the problem that they fade as the cell population grows,
as the total amount is constant (and therefore divided among more and
more cells). In addition, the fluorescent marking of cells is expensive and
time-consuming, which is a problem for large-scale imaging assays.

In a microscope setting where both transmitted light and fluorescence mi-
croscopy can be taken for the same cells simultaneously, interesting oppor-
tunities arise. Recently, successful attempts have been made (Christiansen
et al. [2018], Ounkomol et al. [2018]) to predict fluorescent signals from trans-
mitted light images, demonstrating that for certain biological experiments,
the relevant information is wholly contained in the phase contrast signal.
This is an attractive prospect because it means that one can in principle
benefit from the ease and non-invasiveness of phase contrast microscopy,
yet still benefit from the advantages and the specificity of fluorescence mi-
croscopy, whose reconstruction is learned in a calibration step prior to the
imaging experiments. In this Chapter, fluorescent markers are leveraged to
quantify the phenotype of cultured cells from the phase contrast alone. Two
approaches to this quantification are studied: the first, based on fluorescent
labeling, is described in Section 5.3; the second, an object detection sys-
tem, in Section 5.4. In the last part of the Chapter, the two approaches are
compared.

5.2 CAR-T dataset

The data behind this study consists in live-cell imaging experiments per-
formed on an IncuCyte machine. In these experiments, the disease is mod-
eled by Raji, an immortalised cell line of B lymphocytes from a 1963 Burkitt’s
lymphoma patient. Raji cell populations are studied in isolation, as well as
cocultured with CAR-T cells. The setup is detailed in Table 5.1. The row A
wells study isolated Raji cells; the row B wells study the coculture. Each well
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is imaged at 5× magnification in four fields of view of size 1408× 1040 pix-
els. Images were taken every two hours over a 220 hour period (110 frames
apiece) producing 32 time lapse movies. Each row of the microplate studied
consists of two groups of two replicates, where each group has uses different
seeding densities. In this analysis, however, the groups are considered to be
interchangeable and, where convenient, the data is pooled within each plate
row. Each frame of each time lapse movie pairs a phase contrast image with
green fluorescent protein (GFP) and mCherry fluorescent images, depicting
the same scene. A sample is given in Figure 5.1. The mCherry fluorescence
is present in all Raji cells while the GFP only appears in dead cells. The
T cells (only active in the row B experiments) are only visible on the phase
contrast channel. Thus, fluorescent markers combine for a quasi-annotation
of the cells, which may be expressed with the (fuzzy) logic,

IF ¬object THEN class IS background (5.1)
IF object ∧GFP THEN class IS dead Raji (5.2)
IF object ∧mCherry ∧ ¬GFP THEN class IS Raji (5.3)
IF object ∧ ¬mCherry ∧ ¬GFP THEN class IS CAR-T (5.4)

1 2 5 6
A raji-target cells (1) 30K

cells / well
raji-target cells (1) 30K
cells / well

B CAR June 1:2 (1) 30K
cells / well raji-target
cells (1) 30K cells / well

CAR June 1:2 (1) 15K
cells / well raji-target
cells (1) 30K cells / well

Table 5.1: Characteristics of CAR-T experiments studied. Row A studies
RAJI cells in isolation; row B studies cocultured Raji and CAR-T cells.

Note the high volume of data: the cells are seeded to a total of up to 60000
per well, with four wells per experiment type, each with four fields and 110
time lapse frames. Coupled with the fluorescence annotations, this is, in
principle, a veritable treasure trove of data for deep learning. Annotation
by experiment is a promising strategy: a large ground truth can easily be
collected and, in addition, the “experimental ground truth” is much more
objective than a manual one. A similar strategy has already been applied to
image segmentation (Sadanandan et al. [2017]). This potentially overcomes
the main bottleneck in leveraging deep learning models in such experiments.
On the other hand, most cells fit inside a 14×14 pixel window (contrast this
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Figure 5.1: Aligned image channel crops (200× 200px) marking living Raji
cells in mCherry (left), dead cells in GFP (center), and phase contrast
(right).

with the much higher resolutions of cells imaged in Part I). This low resolu-
tion proves to be a constraint in the analyses to come, and an engineering
challenge for the models.

5.2.1 Observations on the dataset

Even at the best of times it is highly advisable to perform an exploratory
analysis of a dataset. This principle was put to get use in Chapter 3, as
important insights were obtained that were carried through to Chapter 4.
With the temporal dimension now thrown in, the CAR-T dataset proves to
be highly dynamic, and becomes increasingly chaotic in time, in particular
as the Raji B-cells undergo mitosis. Some notable phenomena observed in
the experimental data are detailed presently. These prove to be influential
factors in the methodological designs.

Apoptotic cells acquire GFP

Figure A.5 traces the death of a Raji cell in full fluorescence. One may ob-
serve some subtle morphological changes such as a reduction in size, as well
as a change of texture, which remain visible on the phase contrast channel.
The fluorescence, however, shows a clear accumulation of GFP fluorophores.
Here, the average intensity of each fluorescent channel is measured in the
cell region of interest and plotted over time in Figure 5.2. The GFP sig-
nal rises for at least 10 frames, corresponding to a 20 hour period. The
mCherry signal declines in time, seemingly in accordance with the quench-
ing effect.
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Figure 5.2: Tracking apoptosis of a Raji cell. GFP signal accumulates as a
cell undergoes morphological changes (a)-(f).

Proliferation of Raji cells leads to cell clumps

Proliferation greatly complicates the task of counting cells, and influences
the methods in the current chapter as well as the next. It is well known that
Raji cells group to form clusters or “clumps” (Epstein et al. [1966]). Figure
5.3 shows a sequence of cropped frames centered on a proliferation of cells.
From a handful of dispersed cells in the initial frame (t = 50), cell division
occurs in time (t = 70), (t = 80), (t = 90), creating clusters of closely
touching (or even overlapping) cells. Whatever methodological approach
is taken, cell proliferation complexifies the detection and segmentation of
individual cells as the image background can no longer be utilised to these
ends. Whereas at first the cell contours are well-defined, the more the cells
multiply, the less clear their separation, as cells begin to overlap.

CAR-T cells create clusters of lysed target cells

With the inclusion of T cells, the picture becomes even more complicated.
Figure 5.4 shows a series of crops taken at 30 hour intervals from well B6. T
cells can here be seen as non-fluorescent objects with an elongated morphol-
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(a) t = 50 (b) t = 70 (c) t = 80 (d) t = 90

Figure 5.3: Raji cell population over time. Proliferation generates cell clus-
ters.

ogy. Their activities involve the killing of B cells, the lysed (fragmented)
remains of which are shepherded into tight clusters of cellular matter. The
formation and ultimate merging of several such clusters is observable in Fig-
ure 5.4. An example of a CAR-T cell latching onto a Raji antigen is also
given, with the subsequent death of the Raji cell in Appendix A.4. From
a modeling perspective, individual cells are impossible to discern from such
entropic clusters, as the membrane that provides each cell with its identity
has been lost. Perspectives for handling these cases are offered in Section
5.5.

(a) t = 0 (b) t = 30 (c) t = 60 (d) t = 90

Figure 5.4: CAR-T cells (devoid of fluorescence) attack Raji B cells by
latching onto Raji cell surface antigens and delivering cytotoxic chemicals.
The induced lysis of the target Raji cells yields growing clusters of cellular
matter.

5.2.2 Coping with fluorescent quenching

Image-based screens of CAR-T cells, combining phase contrast and fluores-
cence microscopy, suffer from the gradual quenching of the fluorescent signal,
making the reliable tracking of cell populations across time-lapse imagery
difficult. We saw across Figures 5.2, 5.3, and 5.4 evidence of the diminished
mCherry (red) fluorescent signal in the later frames of the time lapse movies.
In Figure 5.5 we see how the distribution of total image fluorescence dimin-
ishes across time, regardless of well. Already, the quenching effect obfuscates
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Figure 5.5: Comparison of average GFP (left) and mCherry (right) fluores-
cence measured across different fields of view at 24 hour intervals. One may
observe the quenching effect of fluorescence over time, which occurs most
rapidly in the first increment.

the interpretation of the experiments by lab technicians. It is furthermore a
complication for learning algorithms, as fluorescence becomes inversely cor-
related with the various cellular phenomena occurring in the latter stages of
the experiment, for example: the dissemination of certain large cells due to
cell growth, and the appearance of cell clusters due to cell proliferation and
clustering, as illustrated above. Learning only on earlier frames, where the
fluorescence is strongest, is unlikely to suffice. To mitigate the quenching
effect, each pixel x of image x is normalised to,

x′ = min(1, x̄0
x̄ ·

x−min(x)
perc99(x)−min(x)), (5.5)

where x̄0 and x̄ are the means of the initial image and the image to be nor-
malised, and perc99 returns the 99th percentile intensity. Intensities below
some small threshold τ are set to zero to remove background noise. Note
that the potentially naive assumption is made that the loss of fluorescence
is entirely due to quenching, and not the phenotypic changes in the popula-
tion.

5.3 Fluorescence prediction

In biological experiments pairing transmitted light and fluorescent signals,
the fluorescence may often be largely inferred from the transmitted light
image alone, as in Christiansen et al. [2018], Ounkomol et al. [2018], and
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Lee et al. [2018]. That is, given a pair x,y of images from the transmitted
light X and fluorescence Y image domains, the fluorescent labeler F learns
a mapping such that,

F (x) ≈ y. (5.6)

Note that the prospects for predicting fluorescent will always depend on,
among other things, the available image resolution. While Ounkomol et al.
[2018] predicted fluorescent images of nucleoli, nuclear envelope, and micro-
tubules from transmitted light images with a median Pearson correlation co-
efficient r ≥ 0.8, “painting” other organelles such as desmosomes and Golgi
apparatus worked far less well r ≤ 0.2. In the experiments of this chapter,
the relatively low resolution of cells must therefore be compensated by high-
level morphological cues associating phenotype with fluorescence.

In the following, a family of models for performing fluorescence prediction of
phase contrast images automatically are presented. The motivations of the
system are twofold: firstly, it can be used as a visualisation tool; secondly,
it may serve as an intermediate step in a cell counting system. Naturally,
the quality of the latter function depends on that of the former.

5.3.1 Image-to-image translation models

Though not the only fluorescence labeler in the literature, the “F-Net”, pro-
posed by Ounkomol et al. [2018], is a suitable baseline for the problem at
hand, on the grounds that it is essentially a repurposed U-Net (Ronneberger
et al. [2015]), a widely studied architecture. This architecture has a deep
encoder-decoder structure, such as the autoencoders studied in Section 4.2.2,
albeit fully convolutional, and with skip connections concatenating each up-
sampling layer with its opposite downsampling layers. The full architecture
specification is provided in Figure B.3. The network is trained against the
objective function,

min
F
LL2(F ) = Ex,y[||y− F (x)||22], (5.7)

that is, to minimise the expectation of mean square error over the distribu-
tion of input images x and target images y, where F : x→ y is the labeler
network parameterised by a set of weights. The model is thus trained as
a pixel-wise regressor. In the use cases to come, the input images are the
phase contrast images, and the target images are the fluorescent channels.
By default, the network is trained to predict a single fluorescent channel (as
in Ounkomol et al. [2018]), producing one model per channel. Evidently, one
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could train a multi-task labeler to predict a multiplexed fluorescent output.
Experiments with this approach did not yield a significant improvement in
this setting, however.

Roughly speaking, the F-Net model is a special case of the image-to-image
translation models proposed in Isola et al. [2017]. This family of pix2pix
models may be formulated,

min
G

max
D
LPIX(Dpatch, G) = LCGAN (Dpatch, G) + λL1(G), (5.8)

where L1(G) = E[||G(x) − y||1] is mean absolute error with tuning hyper-
parameter λ and LCGAN is the conditional GAN (CGAN) objective (see
Section 2.6.2),

LCGAN (D,G) = Ex∼p(x)[logD(x|y)] + Ez∼p(z)[log(1−D(G(z|y)))], (5.9)

where D is the discriminator and G is the generator, equivalent to F in
all respects aside from it using a hyperbolic tangent (tanh) function in the
output layer (as is conventional for DCGANs, see Section 2.6.1) rather than a
linear one. The variable z refers to the generator’s noise input. In the image-
to-image setting, the discriminator network is a fully-convolutional network
denoted “PatchGAN” (see Appendix B.4 for an implementation),

dpatch : X,Y → [0, 1]h×w, (5.10)

producing an h × w grid of outputs rather than a single neuron, with each
grid element critiquing an overlapping region of the input image. The grid
of outputs are then averaged to give the discriminator,

Dpatch(x,y) = 1
hw

h∑
i=0

w∑
j=0

dpatch(x,y)ij . (5.11)

In practice, the conditioning is implemented as a channel-wise concatenation
of condition image x and the target y. Isola et al. [2017] make the insightful
observation, however, that a GAN learns its own loss function via the dis-
criminator, which penalises “unrealistic” images. As such, it is an infinitely
flexible methodology and the discriminatorD can be understood to act as an
adaptive loss function, analagous to the way features are learned and opti-
mised for the task of classification within the layers of a deep classifier. The
choice of L1 over an L2 auxiliary loss is based on the empirical observation
that L2 leads to blurry results, something observe presently. The pix2pix
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system has been demonstrated to be effective on a wide range of image-to-
image translation problems. Just as with U-Net, they can achieve impressive
results, while trained on a relatively small number of images.

In addition to the above, the F-Net F is also trained against a mean absolute
error loss,

min
F
LL1(F ) = λL1(F ). (5.12)

All models (Equations 5.7, 5.8, and 5.12) were trained on 1120 non-overlapping
256×256px phase contrast crops paired with fluorescence crops selected from
the first 14 fields of view from each experimental setting separately (rows
A and B of the plate). Recall each fluorescent channel is trained on sepa-
rately, producing separate models. The cropping strategy sampled from the
first frame of each 24-hour window, for the first 96 hours of each time lapse
movie. This strategy was adopted to maximise the available variation in the
training data, without losing too much to the fluorescent quenching effect
of later frames, while at the same time retaining the convenience of keeping
all images in memory. Validation and testing was performed according to
the same strategy on independent fields A06_03 and A06_04. Batches of
a single image were sampled randomly and all models were trained with
the Adam optimiser with (β0, β1) = (0.5, 0.999) and maximum learning rate
2× 10−4.

5.3.2 Results

In practice, a fluorescence prediction ought to be considered good if the
placement of its predictions are accurate, even if it does not match the
ground truth intensities accurately. For this reason Ounkomol et al. [2018]
propose an evaluation based on the Pearson correlation coefficient (PCC),

r =
∑

(x− x̄)(y − ȳ)√∑
(x− x̄)2∑(y − ȳ)2 , (5.13)

over all pixels x in the prediction and y in the test image. Figure 5.6 com-
pares the average PCC correlation across all test images for each of the three
models and each mode (GFP, mCherry) on the Raji-only experiments. The
best overall performance comes from the L2 model with mean 0.7617 and
standard deviation 0.1049 for mCherry labeling, and mean 0.6163 and stan-
dard deviation 0.0931 for GFP. The pix2pix system performs at mean 0.7573
and standard deviation 0.0814 for mCherry, and mean 0.5848 and standard
deviation 0.0972 for GFP. Finally, the L1 model performs at mean 0.7720
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and standard deviation 0.0727 for mCherry, and 0.5115 and standard devi-
ation 0.1099 for GFP. Paradoxically, the L2 model appears, by inspection,
to generate worse results, with a significant amount of fluorescent “spillage”
and blur effects. However, this noise can be removed with a simple thresh-
olding operation. The pix2pix outputs look initially sharper, but ultimately
fail more often to apply fluorescence where it counts, leading to a greater
number of false negatives. On the other hand, it is also clear that the L2 and
L1 models exhibit a greater degree of mode collapse than the pix2pix model,
which necessarily varies its fluorescent prediction to continuously fool the
discriminator.

pix2pix L2 L1
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Figure 5.6: Pearson correlation coefficients for outputs of three fluorescent
labelers, for both mCherry and GFP fluorescence prediction, measured over
80 test images.

Visualising full fluorescence outputs

An important qualitative test is to visualise the joint model outputs in full
fluorescent colour, as well as in time lapse. To produce an appealing output,
a “camera shake” effect of the plate moving inside the microscope must be
corrected. Between successive frames, this is usually no more than 10µm,
corresponding to about 7px, in any direction. The necessary correction
(δx, δy) is found frame by frame by brute force over a suitable range of
offsets. Fortunately, the Raji cells do not move much over time, and therefore
the right offset can be found as the one that minimises the squared error
between the frames. The images are each cropped slightly to account for
the extents of the cumulative displacements in each direction caused by
the shake. This tends to be a small amount, apparently with the camera
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displacements occurring around a fixed center of mass. Lastly, the frames
of the fluorescent channels are corrected by the same offsets discovered in
the phase contrast.

The RGB pixel at position (i, j) of each full fluorescence image I is set
as,

Iij = [Mij + Pij , Gij + Pij , Pij ], (5.14)

whereM is the mCherry channel, G is the GFP channel, and P is the phase
contrast image. The values are further clipped to the range [0, 1]. Figures 5.7
and 5.8 compare synthesised images combined from the respective pix2pix
fluorescent labelers to the corresponding ground truth fluorescence. The
errors are manifest, yet the models do a fine job of discerning cell types,
implicit in their application of GFP over dead Raji cells in the Raji-only
experiment (Figure 5.7) and its leaving T cells unlabelled in the full CAR-T
experiment (Figure 5.8), as per the logic of Equation 5.1. The predicted
fluorescence intensity levels also closely approximate those of the ground
truth. Nevertheless, it should be noted that the the mutual information be-
tween fluorescence intensity and phase contrast morphology may ultimately
be too small to always guarantee an accurate prediction of intensity. For
this reason, one must accept, for example, that certain dead cells appear
more yellow than green, and vice versa. One possible extension of this work
could be to incorporate time information into the prediction, which might
alleviate this effect. Ultimately, however, it may be confirmed in the broader
picture, that the fluorescent prediction is a success as a visualisation tool, at
least for the earlier frames of the time lapse, and it ought now be considered
how to incorporate it into a practicable tool for experimental use.

Full 110-frame time lapse movies comparing prediction (left) and ground
truth full fluorescence (right) may be found online: Raji-only (256×256px)1,
Raji-only (512×512px)2, full CAR-T (256×256px)3, and full CAR-T (512×
512px)4.

5.3.3 Bridging the gap to cell detection

In the present problem context, it is of interest to derive a quantitative
profile from live cell imaging data. While effective as a visualisation tool,
fluorescent prediction only goes partway towards a full quantification of the
phase contrast contents. Consider sample outputs for densely clustering

1https://jcboyd.github.io/assets/car-t-videos/raji_target/256.mp4
2https://jcboyd.github.io/assets/car-t-videos/raji_target/512.mp4
3https://jcboyd.github.io/assets/car-t-videos/CAR_June/256.mp4
4https://jcboyd.github.io/assets/car-t-videos/CAR_June/512.mp4
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(a) Prediction (t = 0) (b) Ground truth (t = 0)

(c) Prediction (t = 48) (d) Ground truth (t = 48)

Figure 5.7: Full fluorescence for indicative (512× 512px) crop from an Raji-
only experiment. Columns distinguish fluorescent labeler predictions (left)
and ground truth (right); rows distinguish times an early frame (t = 0) (top)
and a later one (t = 48) (bottom).
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(a) Prediction (t = 0) (b) Ground truth (t = 0)

(c) Prediction (t = 40) (d) Ground truth (t = 40)

Figure 5.8: Full fluorescence for indicative (512×512px) crop from a CAR-T
experiment. Columns distinguish fluorescent labeler predictions (left) and
ground truth (right); rows distinguish times an early frame (t = 0) (top)
and a later one (t = 40) (bottom).
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cells, given in Figure 5.9. Here we can see how the task of counting cells is
far from complete following fluorescence prediction, with dense “clouds” of
fluorescence corresponding to masses of cells. One can imagine all sorts of
post hoc solutions for disambiguating these fluorescent clouds.

Blob detection for disambiguating fluorescent labels

As Raji cells have a consistent size and simply, circular geometry, one ap-
proach to counting individual cells from the fluorescence prediction outputs
is with blob detection. A simple approach to blob detection is with a Lapla-
cian of Gaussian (LoG) filter. That is,

∆Gσ(x, y) ∗ I(x, y) = [∇xxGσ(x, y) +∇yyGσ(x, y)] ∗ I(x, y), (5.15)

where ∆ is the Laplacian operator (sum of second partial derivatives), Gσ is a
Gaussian filter with standard deviation σ and I is an image. Blobs distribute
intensities in a Gaussian-like way, and the Gaussian pre-filter smooths the
image. The second derivative of a Gaussian has a minimum in the center of
the bell curve, thus marking the center of the blob. The maxima detected in
the resultant image are the detected blobs. Usually the filter is performed
over a range of scales, from which are chosen the maxima.

In practice, the tunable parameters for LoG blob detection are the range
of standard deviations {σi} to test for (corresponding to the anticipated
size range) and a threshold θ on the minimum permissible intensity. These
were tuned by hand in an example of this approach to blob detection of
fluorescent outputs provided in Figure A.6.

This simple approach to blob detection, however, is found to not suffice for
cases such as in in Figure 5.9. While some system could surely be devised
to infer the number of cells from a mass of flouroscence, in the following
section we will see an alternative approach based on the fundamentally dis-
tinct methodology of object detection, which makes counting cells a primary
objective.

5.4 Object detection system

This section contains an extended version of a paper published in the proceed-
ings of the International Symposium for Biomedical Imaging in 2020.

We found in the previous section a limitation on the scope of fluorescent
prediction for counting cells. This brings us back to a more conventional
high content analysis (HCA). In Chapter 4 the concern was with generating
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(a) Phase contrast input (b) mCherry fluorescent output

(c) Phase contrast input (d) mCherry fluorescent output

Figure 5.9: Fluorescent labeler outputs produce dense clouds of mCherry
fluorescence for two manually selected phase contrast inputs. These outputs
may be difficult to disambiguate.
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a phenotypic profile that characterised a drug effect, potentially with unin-
terpretable intermediate features. In the present context, we are concerned
with the more comprehensible task of counting cell types in time. Note that
this task conforms to the conventional pipeline (see Section 1.1.3). In par-
ticular, the dimensionality reduction step will be fulfilled by the attribution
of a cell type,

z = f(x), (5.16)

where z ∈ {0, 1}K and
∑K
k=0 zk = 1 for K the number of cell classes, that

is, z is one-hot, for extracted cell features x, and cell classifier f . The cell
population is then summarised by aggregation as a simple summation or
average, giving the number or proportion of cells per cell class respectively
in the phenotypic profile,

p = 1
N

N∑
i=1

f(xi). (5.17)

As we shall see, in this section the first three stages of the HCA pipeline are
achieved by a single neural network.

A phenotypic profile of this nature summarises a single image frame. How-
ever, we are interested in summarising a full time lapse movie. Therefore,
our aim is to create a set of such count profiles,

P = {pi}Ti=0, (5.18)

where pi ∈ RK for K classes is the ith profile in a series of T frames. This
ordered set amounts to a set of K time series, one per class, of length T ,
and is the final output in Section 5.4.3.

Section 5.4.1 describes an acquisition and preprocessing pipeline for an
experimentally-generated ground truth with which to train the detection
system. Section 5.4.2 specifies this system, and Section 5.4.3 we describe
our evaluation methodology and report model performance on two manually
annotated datasets. This section considers only the Raji-only experimental
setting. Note, however, that the methodology should naturally extend to
the full CAR-T setting also.

5.4.1 Experimentally-generated ground truth

Our pipeline (see Figure 5.10) begins by applying a Gaussian filter (tuned to
σ = 2) to the phase contrast image. We then segment cells by subtracting
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subtractionPrefilter Extract

features
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Figure 5.10: Pipeline for automatic construction of ground truth for training
object detection system. Basic image processing steps indicated in blue,
image inputs indicated in red.

a background image formed with a mean filter of diameter 19px, before
clipping to zero as in Walter et al. [2010a]. We fill object holes with a
morphological reconstruction by erosion and use a morphological opening
to remove small details. An example of this pipeline depicted in Figure
A.7. We further filter objects outside a reasonable size range (< 6 × 6px
≈ 50µm2, determined by ranking cell areas), as these tend to be dust and
other non-cellular particles on the well surface. An Otsu threshold on the
distribution of averaged GFP signal per cell is then used to allocate a class
(living/dead) for each connected component (see Figure 5.11). To train our
object detector (Section 5.4.2), we also randomly sample background crops
from the images, allowing for partial overlaps with cells.

5.4.2 Object detection system

In order to track cell phenotype populations over time, we require a robust
object detection system to identify individual cells. The core of our system
is a convolutional neural network and is detailed below.

Training as a classifier

Our preprocessing pipeline is imperfect and does not give a complete an-
notation of the cell populations as would be required by state-of-the-art
detection systems such as Redmon et al. [2016]. We therefore opt for crop-
wise training, where the bounding boxes of successfully segmented cells are
padded, to create 24 × 24px crops, centered on the cells. Due to the low
image resolution, we found this sizing provided sufficient contextual infor-
mation to the network. Combined with background crops, this amounts to
approximately 100,000 training examples in three classes. Samples are given
in Figure 5.12.
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Figure 5.11: Living and dead Raji cells revealed as distinct modes of a bi-
modal distribution on mean GFP fluorescence intensity per connected com-
ponent of cell segmentation output.

Our network architecture is detailed in Table 5.2. All weighted layers have a
ReLU activation, except Outputo and Outputc, which have softmax activa-
tions, and Outputb, which remains linear. The convolutions are all valid, and
a 24× 24px input image is reduced to 1× 1px by the final layer. We imple-
ment this network in the Keras deep learning frameworkChollet et al. [2015]
and all code for our system is publicly available5. We train the network with
stochastic gradient descent with learning rate 5 × 10−3 and Nesterov mo-
mentum (µ = 0.9). Mini-batches of size 128 are sampled stochastically and
simple data augmentation (horizontal and vertical flipping) is performed
on the fly. We regularise the network with batch normalisation Ioffe and
Szegedy [2015] and weight decay (λ = 3× 10−5).

Inspired by Redmon et al. [2016], we formulate a multi-task prediction in
which we predict Pr(o), where o indicates the presence of an object in the
center of the receptive field and, separately, Pr(c|o), that is, the probability
of cell phenotype class c given the presence of an object. These probabilities
are combined at inference time (Section 5.4.2). In addition, our network
performs regression on the height h and width w of the bounding box of
the cell, measured as a fraction of the crop size from the crop centre. This
information is readily available when generating the training set. Note that

5https://github.com/jcboyd/detecting-lymphocytes
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Figure 5.12: Samples of living Raji cells (top), dead cells (middle), back-
ground (bottom) annotated with bounding boxes. Fluorescence is included
for clarity only and is not used in training.

Layer Connection Size Output (w × h× d)
Input - - 24× 24× 1
Conv1 Input 3× 3 22× 22× 16
Conv2 Conv1 3× 3 20× 20× 16

MaxPool1 Conv2 2× 2 10× 10× 16
Conv3 MaxPool1 3× 3 8× 8× 64
Conv4 Conv3 3× 3 6× 6× 64

MaxPool2 Conv4 2× 2 3× 3× 64
Conv5 MaxPool2 1× 1 1× 1× 128
Conv6 Conv5 1× 1 1× 1× 128
Outputo Conv6 1× 1 1× 1× 1
Outputc Conv6 1× 1 1× 1× 1
Outputb Conv6 1× 1 1× 1× 2

Table 5.2: Specification of the network architecture. We distinguish three
multitask outputs: Outputo, the probability of object presence; Outputc,
the probability of class c given an object; and Outputb, the tuple of object
width and height.

we make the assumption that our chosen crop size represents a hard max-
imum on the size of a cell’s bounding box, a reasonable simplification for
our dataset. Our network is therefore trained to minimise the loss func-
tion,

L(xi, oi, ci, wi, hi; θ) = lo(ôi, oi) + 1
i
o

[
lc(ĉi, ci)

]
+ 1

i
o

[
lb(ŵi, wi, ĥi, hi)

]
,

(5.19)

with respect to model parameters θ, where lo and lc are each a standard
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Figure 5.13: Pipeline for training a deployment of a fully convolutional clas-
sifier. Training may occur on fixed-sized input (24×24)px, but convolutions
permit variable-sized inference.

cross entropy and lb(ŵi, wi, ĥi, hi) = (ŵi − wi)2 + (ĥi − hi)2. The estimates
ôi, ĉi ŵi, and ĥi are the network outputs for object presence, object class,
and bounding box width and height. The indicator function 1

i
o = 1 when

training example xi contains an object and 1
i
o = 0 otherwise.

We benchmarked our network as a classifier of cropped cells against a logistic
regression trained on features extracted from a pre-trained 50-layer ResNet
He et al. [2016], a standard CNN approach in bioimage analysis. In order
to do this, we resized our cropped cells to 32× 32px and recorded the final
convolutional layer of the ResNet, a vector of dimension 2048. This baseline
achieved an accuracy of 0.83 on balanced test data, whereas our own network
achieved 0.96. Though deep pre-trained networks are known to be powerful
general-purpose feature extractors Sharif Razavian et al. [2014], they may
also be over-parameterised for many problems Raghu et al. [2019].

Inference as a detector

Following Sermanet et al. [2013] we designed our network to be fully con-
volutional (FCN). A FCN is capable of performing inference on any size of
input, and is extended naturally to object detection. The workflow is speci-
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Figure 5.14: The processing of a test image: phase contrast input image (a);
raw model bounding box predictions (b); non-maximum suppression post-
processing (c); finally, for comparison, the corresponding full fluorescence
image (d).
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fied in Figure 5.13. Thus, once trained on cell crops as a classifier, inference
may be performed on an entire image in a single forward pass, producing a
map of softmax probabilities at every location in the image. Note that even
on CPU, a full 1408 × 1040px image is processed by the network in about
1s. Fully-convolutional whole-image inference emulates sliding-window de-
tection, albeit without the tremendous inefficiency of executing the model
separately at every spatial position. Note that the resolution of the output
will depend on the number of pooling layers in the network. For example,
our network includes two max pooling layers, hence we make detections at
a stride of 4 across the input image domain.

At inference time, the object and conditional class probabilities are combined
to give the marginal class probabilities Pr(c) = Pr(c|o) · Pr(o). Note that
Pr(c|¬o) = 0. These probabilities are thresholded and pruned with non-
maximum suppression (NMS), providing a final detection mask for each
class. For the NMS algorithm, we use an intersection over union threshold
of 0.35. An example of this procedure is shown in Figure 5.14.

Smoothing probabilities in time

Because the cells are relatively stationary, we can improve the prediction of
our system by leveraging information across time. We find a simple weighted
average of prediction probabilities from consecutive frames, computed prior
to NMS, improves overall performance. We thus define the smoothed prob-
ability p

(t)
ij ← 1/4 · p(t−1)

ij + 1/2 · p(t)
ij + 1/4 · p(t+1)

ij for the probability at
image position (i, j) at time t. The weights were tuned manually for both
performance and parsimony.

5.4.3 Results

Evaluation strategy

To evaluate our system, we manually annotated three days worth of frames
of size 256 × 256px from each of two independent experimental replicates,
totaling 72 images and approximately 7,000 test object detections. The
replicates were chosen to represent different population dynamics: the first
exhibits higher levels of cell proliferation; the second exhibits higher levels of
apoptosis. We henceforth refer to these two datasets as A and B respectively.
The annotations consist of manually annotated bounding boxes around the
cells. We make this dataset publicly available along with the images used to
train the network6. Note that despite this manually annotated evaluation

6https://zenodo.org/record/3515446
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dataset, our model is still trained on a ground truth that is automatically
generated from the experiment.

We score our detections in terms of the distance of the bounding box cen-
ters to the ground truth bounding box centers. We define the following
metrics:

• True positive (TP) - a cell is detected in the vicinity of a ground truth
cell.

• False positive (FP) - a cell is detected outside the vicinity of any ground
truth cell.

• False negative (FN) - no cell is detected within the vicinity of a ground
truth cell.

Here we define vicinity to be ≤ 10px, the maximum distance a predicted
cell center may fall from a ground true center while still falling within the
typical cell bounding box (14× 14px). These metrics are computed per cell
class, from which we calculate precision, recall, and F1 scores. Note the
F1 score prevails over the commonly used Matthews correlation coefficient
as it does not require us to define true negatives (a meaningless quantity
in our framework). These are displayed in Tables 5.3 and 5.4 for test sets
A and B. We see the effect of smoothing is globally positive, significantly
improving the precision of the dead cell class, and giving the highest average
F1 scores of 83.86 for A and 81.19 for B. Note that the results on the dead
cell class are markedly worse. We postulate this is due to the class imbalance
at test time, as well as the difficulty of discerning individual cells from cell
clusters.

Method Class Precision Recall F1
Without
smoothing

Living 0.8534 0.8636 0.8585
Dead 0.7179 0.8693 0.7864

With
smoothing

Living 0.8466 0.8883 0.8669
Dead 0.7702 0.8549 0.8103

Table 5.3: Detection performance test set A, stratified by object class. Best
results in bold.

Tracking population numbers over time

Our detection system is ultimately used to enumerate cell phenotypes over
the course of CAR-T experiments. In Figure 5.15 we plot ground truth
population numbers against the numbers inferred by our system. One can
see the increasing number of living cells in Figure 5.15(a), corresponding to
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Method Class Precision Recall F1
Without
smoothing

Living 0.9451 0.7778 0.8533
Dead 0.6253 0.8935 0.7357

With
smoothing

Living 0.9447 0.7957 0.8638
Dead 0.6628 0.8904 0.7600

Table 5.4: Detection performance on test set B, stratified by object class.
Best results in bold.

increasing amounts of cell division, whereas in Figure 5.15(b), one can see
increasing amounts of apoptosis. In the former, our system achieves a mean
relative error percentage of 5.95% and 5.56% (resp. living and dead cells)
and 5.81% and 5.37% in the latter.

5.5 Discussion

This chapter has shown how fluorescence may be used to generate a robust
ground truth for machine learning. It has presented two strategies for quan-
tifying cells from phase contrast images, by leveraging paired fluorescence
images. Section 5.3 showed how image-to-image translation models (includ-
ing a generative adversarial variant) could be used as fluorescent predictors,
and could successfully synthesise the fluorescent channels corresponding to
a phase contrast microscopy input. Section 5.4 described the training of
a neural object detection system and tested it on two manually annotated
datasets. An example of how time information can be incorporated into the
prediction task was also given. The system can likely be further improved
with a more precise and expanded dataset.

Figure 5.16 compares the time series derived from applying each method
for the complete frames of the first 72 hours of each time lapse movie in
the Raji-only setting. The fields are pooled to obtain a total count for
each of the four replicate wells of the Raji-only experiments at each time
point. The time series for the detection system are obtained simply by
counting bounding boxes as in Section 5.4.3. By contrast, the fluorescence
predictor requires a more ad hoc approach. The central 1024 × 1024px of
each frame was cropped and passed through the labeler networks to generate
the fluorescent images. A background subtraction was then performed using
a mean filter to normalise the intensity levels, before thresholding to obtain
a binary mask. The number of non-zero pixels is counted to obtain an index
acting as proxy to the total number of cells. Figure 5.16 shows a strong
correlation between the outputs of the two systems. This is corroborated in
Table 5.5. Note that this represents roughly two orders of magnitude more
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Figure 5.15: Population curves for manually-annotated test set A (a) and
test set B (b), compared with detection system outputs.
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data than the datasets A and B visualised in Figure 5.15.

Well Alive Dead
A01 0.9751 0.8935
A02 0.9851 0.8657
A05 0.9888 0.8230
A06 0.9734 0.8840

Table 5.5: Correlations between object detection and fluorescence prediction
time series for alive and dead Raji cells in four experimental replicates.

We therefore see that the approaches are probably on par. The advantage
of the labeling approach is that it does not require a handcrafted workflow
to generate the ground truth from the experimental data: the ground truth
is given by the image pairs themselves. In contrast, the object detection
approach requires an ad hoc procedure to derive the cell class label from the
fluorescence images. This workflow is particularly easy and can be designed
with very basic image analysis methods in the present setting, but for other
markers and imaging conditions it would require some re-tuning of param-
eters. On the upside, the object detection approach directly provides a cell
by cell quantification, a level of information which is not directly available
in the fluorescence predictions. Indeed, it is less satisfying from the per-
spective of a biologist to just have a general index that would not allow the
assignment of interpretable phenotypic classes to each cell.
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Chapter 6

Deep style transfer for
synthesis of images of
CAR-T cell populations

Summary: The previous chapter illustrated the limitations of an automatically-
generated training set for phenotyping cells in CAR-T experiments, whose
accuracy degrades over time with fluorescent quenching. This final chap-
ter formalises and tests novel ideas for circumventing these limitations. An
approach based in style transfer is proposed for synthesising cell line popula-
tions according to user-defined content by leveraging unsupervised generative
models. This succeeds in generating realistic phase contrast images with a
complete ground truth sufficient to train a state-of-the-art object detection
system.

Résumé: Le chapitre précédent a illustré les limites des données d’entraînement
générées automatiquement pour le phénotypage des cellules dans les essais
CAR-T, dont la précision se dégrade avec le temps. Ce dernier chapitre
formalise et teste de nouvelles idées pour contourner ces limites. Une ap-
proche basée sur le transfert de style est proposée pour synthétiser des pop-
ulations de lignées cellulaires selon une spécification de contenu définie par
l’utilisateur en s’appuyant sur des modèles génératifs non supervisés. Cela
permet de générer des images réalistes à contraste de phase avec une anno-
tation complète suffisante pour entraîner un système de détection d’objets
de pointe.

129
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6.1 Overview

Chapter 5 compared approaches for detecting and classifying cell types from
phase contrast images: directly using an object detection system; and indi-
rectly using a fluorescence predictor (which doubles as a visualisation tool).
Each approach had its shortcomings: highly clustered cells prevent the har-
vesting of training data for object detection, and fluorescent quenching in
later experimental frames caused problems for both. In this chapter we ex-
plore an entirely different approach that aims to circumvent these problems.
This approach is based on generative models.

The desired end result is an endless supply of perfectly annotated synthetic
images, on which we can train a state-of-the-art object detector. The in-
tention is that such a detector will transfer seamlessly to the true data and
outperform the Chapter 5 approaches. In that chapter, a custom object
detection system was designed to be trainable without a full annotation of
the data. With a full annotation, the options for detector are broadened
considerably.

6.2 Feasibility study: synthesising cell crops

To assess the feasibility of using generative models for cell population gener-
ation, let us attack a simpler problem: generating crops of individual cells.
There are grounds for optimism, given the low target resolution, coupled
with the abundance of training data. Osokin et al. [2017] earlier achieved
impressive results synthesising fluorescence readouts of cell crops. Using the
automatic cropping strategy detailed in Chapter 5, a training set of 42241
24× 24px cell crops were assembled from four days of frames from the well
A01, field 1 (a Raji-only experiment). The natural imbalance of cell states
produced a class imbalance of 32507 living to 9734 dead cells. Samples from
the training set are given in Figure 6.1.

Figure 6.1: Example cell-centered 24 × 24px crops from the ground truth
training set.

Fully-connected and deep convolutional GANs were trained, along with con-
ditional versions of each (see Section 2.6 for an overview of GANs and see Ap-
pendix B.1, B.2 for network specifications). In training the conditional mod-
els, the number of living and dead Raji cells sampled were balanced in each
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mini-batch. Otherwise, the training settings were held constant across the
experiments: 50 epochs; batch sizes of 120 samples; 100-dimensional Gaus-
sian noise input. All models were trained with the Adam optimiser (Kingma
and Ba [2014]) with maximum learning rate 2e4), (β0, β1) = (0.5, 0.999), and
learning rate decay 1e−6, with the Jensen-Shannon objective function.

6.2.1 Generative adversarial networks

The simplest practicable variant of GANs incorporates D and G as fully-
connected networks. Such models, show (perhaps cherry-picked) success in
generating MNIST digits in Goodfellow et al. [2014b], which likewise are of
low resolution. Figure 6.2 shows, however, underwhelming results sampled
from the trained fully-connected generator, with only rudimentary intensity
levels and cellular structure of the ground truth captured. Furthermore,
difficulties with mode collapse were encountered more frequently than when
dealing with the convolutional variants below. This lends support to the
presumption that there is little to recommend fully-connected GANs for
computer vision applications.

Figure 6.2: Sample 24× 24px crops from a fully-connected GAN.

6.2.2 Deep convolutional GANs

Deep convolutional GANs (DCGANs) represent a vast improvement over the
MLP-based GANs trained above. Figure 6.3 provides samples from the con-
volutional generator that are qualitatively close to ground truth samples1,
with recognisable cellular characteristics, as well as convincing neighbouring
cells in the crop periphery.

To establish the uniqueness of these samples,a k-nearest neighbour classifier
(k-NN) (k = 9) was trained to retrieve the closest samples (in Euclidean
distance) within the training data. Such a test is important, as one does
not wish the network merely to memorise ground truth samples. A set
of comparisons are made in Figure 6.4, illustrating the absence of sample

1Indeed, when swapped with true samples, they succeeded in fooling a room full of
experts as to their authenticity.
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Figure 6.3: Sample 24 × 24px crops from a DCGAN. One may notice the
generator has learned to synthesise convincing peripheral cells.

“memorisation”. Note, however, that this is neither an altogether reliable
nor conclusive test: a Euclidean k-NN could easily be fooled by a “parrot”
GAN that simply emitted memorised samples with intensities scaled, but
this does not appear to be the case here.

Sample 1NN 2NN 3NN 4NN 5NN 6NN 7NN 8NN 9NN

Figure 6.4: Comparison of cells generated with DCGAN (left-most column)
against 9 nearest neighbours from training set.

6.2.3 Conditional GANs

Fully-connected and deep convolutional variants of CGANs are tried, where
conditioning is made on class information for living and dead Raji cells.
This is encoded as a two-dimensional one-hot vector. Note that this rep-
resents a first attempt to control the data generation process. As with the
previous results with GANs, the results with fully-connected networks are
underwhelming, and they are omitted from the discussion. Figure 6.5, how-
ever, displays samples from a conditional DCGAN, which are qualitatively
both as convincing as our DCGAN samples, and also obey the conditional
class signal, enabling on-demand generation of 10 samples apiece for the two
classes.
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Figure 6.5: Sample 24 × 24px crops from a conditional DCGAN. The top
row are crops produced by conditioning for living Raji cells; the bottom are
crops produced by conditioning for dead Raji cells.

6.3 Style transfer for simulating populations of Raji
cells

Gatys et al. [2016] proposed a “neural algorithm of artistic style”, an al-
gorithm to perform style transfer using neural networks, the synthesis of
an image combining textures of one style image and another content im-
age. Note that this involved neither the architecting nor the training of a
new purpose-built neural network, rather the clever utilisation of (any) pre-
trained CNN. The work combined two related ideas: content reconstruc-
tion and texture reconstruction using CNNs. Content reconstruction
with deep networks has been explored since the very first wave of CNNs
assumed their primacy. Zeiler and Fergus [2014] showed how their earlier
“deconvolutional network” (Zeiler et al. [2010]) could be used to reconstruct
input images from the activations inside CNNs2. Simonyan et al. [2013]
proposed a gradient-based method for visualising learned features of a pre-
trained network. Thus, a randomly initialised image was transformed into
a structured image by incrementally adding its (regularised) gradient with
respect to a chosen neuron from the network, so as to maximise the activa-
tion of that neuron. The deepest neurons, those corresponding to semantic
object classes, led to the synthesis of recognisable yet ethereal impressions of
those class objects. The authors argued their technique roughly generalised
that of Zeiler and Fergus [2014]. Mahendran and Vedaldi [2015] took the
idea of using neuron-to-image gradients to full image construction. This is
the idea that later inspired neural style transfer: a target image is fed into
a pre-trained CNN and the tensor of its activations recorded; a randomly
initialised synthesis image is then fed into the network, producing its own
activation; the synthesis image is updated using gradient descent so as to
minimise the mean square error of its activation to that of the target. The
outcome may be a near-perfect reconstruction of the image. Texture re-

2The work is best remembered for proposing “ZF-Net”, a very modest modification of
AlexNet, as well as using pre-trained CNNs as feature extractors for other models.). In
so doing, the paper did a lot to demystify the feature hierarchies learned by deep CNNs.
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construction with CNNs was achieved by the same authors of style transfer
in Gatys et al. [2015], in a prelude to that later work. The principle is the
same as Mahendran and Vedaldi [2015], yet rather than to reconstruct an
image from its activations directly, one reconstructs for statisical properties
derived from those features, namely their Gram matrix. The principle is that
two images sharing such features are identical from a textural perspective.
The authors write,

Textures are per definition stationary, so a texture model
needs to be agnostic to spatial information. A summary statistic
that discards the spatial information in the feature maps is given
by the correlations between the responses of different features.
These feature correlations are, up to a constant of proportional-
ity, given by the Gram matrix.

In Gatys et al. [2016], the ideas of style and content reconstruction were
combined. Thus, one elects style s and content c reference images, and
simultaneously reconstructs gradient-based reconstructions of a randomly
initialised image x,

L(s, c,x) = α · Lcontent(c,x) + β · Lstyle(s,x), (6.1)

for tunable weights α and β and where the content loss,

Lcontent(c,x) = 1
2 ||F

(c)(c)− F (c)(x)||2F , (6.2)

for the vectorised cth layer (chosen by the programmer) of the pretrained
network F (c) ∈ R(NcMc×Kc) with Nc, Mc, Kc its dimensions, and the style
loss,

Lstyle(s,x) =
∑
s∈S

1
4N2

sM
2
s

||G(s)(c)−G(s)(x)||2F , (6.3)

where G(s) = F (s)(F (s))T ∈ RK×K is the Gram matrix of the matrix of
vectorised feature maps F (s) of layer s. Note that the content reconstruction
is usually performed on a single, deeper layer of the pretrained CNN, which
is more invariant to style, while the style reconstruction can be performed
at several shallower layers at once, to capture style at different scales. The
result is a fusion of content and style in a synthesised image. An example
is given in Figure 6.6.
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(a) Style (b) Content

(c) Synthesis

Figure 6.6: A neural algorithm of artistic style uses a pretrained CNN to
combine properties from a style source image (a) and a content source image
(b) to synthesise a new image combining their characteristics (c). Example
taken from https://github.com/jcboyd/vgg-fun
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6.3.1 Conditional dilation for tessellating cell contours

Our objective is an application of style transfer to synthesise images of cells
in phase contrast images from our CAR-T dataset. This is motivated from
the shortcomings of the automatic training set extraction presented in Chap-
ter 5, which provides an incomplete annotation of the data, and fails, cru-
cially, in scenarios where cells cluster profusely, as in the case of strong pro-
liferation. It was moreover found that this translated into the degradation of
performance in time for both the fluorescence predictor and object detector.
In principle, a perfectly annotated ground truth could be constructed using
a style transfer procedure:

1. specify a desired content image by “drawing” content

2. manually crop a region of a phase contrast image with similar content

3. run the style transfer algorithm on the above

Hypothetically, the outcome is a realistic-looking image of cells for which one
has complete knowledge of its content, including cell position and size, thus
the majority of information required for a fully-annotated object detection
dataset (let us set aside the issue of class information for now), and indeed
relates to the concept of data simulation. The idea of using style transfer
for data augmentation has been shown to work in for example Zheng et al.
[2019].

Given the simple geometric structure of cells, a good first approximation to
a drawn cell is a circle. Therefore, in a space image plane X, the mask of
an isolated cell k can be modeled as the set of points within distance rk to
a non-empty set or “site” Pk,

Rk = {x ∈ X|d(x, Pk) ≤ rk}, (6.4)

where the distance d(x, Pk) = inf{d(x, p)|p ∈ Pk}, that is, the shortest
distance to any point in the site. When Pk is a singleton set, the region
becomes a circle. Otherwise, one may define the site Pk in any way desired
(for example, a line or eroded mask) to model random, anisotropic variations
in cell shape. The radius,

rk ∼ N (µi, σi), (6.5)

can be sampled from an estimation of the radius distribution for class i.
Once again, let us avoid the complication of prescribing classes to cells for
the present.
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(a) (b) (c)

Figure 6.7: Example of Voronoi tessellation with six sites (blue points) and
corresponding regions (yellow lines) (generated in scipy (Virtanen et al.
[2020]) (a). Neighbouring cells exhibit a tessellating effect at the border
(b). A conditional dilation algorithm can model this bordering effect when
it comes to synthesising content images for style transfer.

Though isolated cells are highly circular, closely neighbouring cells manifest
a shared, flattened contour (see Figure 6.7b). Previously, Bock et al. [2010]
have modeled the border forces of neighbouring cells as Voronoi-tessellating
circles. A Voronoi tessellation can be defined asK regions of the form,

Sk =
{
x ∈ X|d(x, Pk) ≤ d(x, Pj)∀j 6= k

}
. (6.6)

The K regions constitute a partition of the space X, where points are as-
signed to the nearest site. An example is shown in Figure 6.7a where a
Euclidean distance is invoked for a set of six singleton sites. The borders
between regions are lines perpendicular to the line joining the site centers. It
is therefore proposed to model cells as the intersection of 6.4 and 6.6,

Tk =
{
x ∈ X|d(x, Pk) ≤ rk ∧ d(x, Pk) ≤ d(x, Pj) ∀j 6= k

}
. (6.7)

To compute the Tk, an algorithm for conditional dilation is designed and
shown in Algorithm 1. The principle is to select the sites (cell centres)
and to grow outwards until either a maximum distance from the source is
reached, or an object border is encountered. This resembles an implementa-
tion of the watershed algorithm, albeit with all seeds flooded from the same
height (implemented as a priority of 0). The dilation of sites is scheduled
according to a priority queue, for which priority is assigned as the distance
from the source3. Thus, dilation propagates from the sites synchronously.
The priority queue is implemented as a heap, as it can push and pop in
O(logN) time.

3The Dist function for calculating minimum distances to the site sets implements a
lookup table based on a pre-computed distance map.
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Algorithm 1 Dilates labeled image SiteImage until distance from source
exceeds Radii.
1: procedure ConditionalDilation(SiteImage, Radii)
2: PriorityQueue ← Heap()
3: for marker in SiteImage do
4: Elem ← HeapElement()
5: Elem.value ← 0 . Top priority
6: Elem.source ← marker . Record origin
7: PriorityQueue.Push(Elem)
8: end for
9: while ¬ PriorityQueue.IsEmpty() do

10: Elem ← PriorityQueue.Pop()
11: for Neighbour in Elem.GetNeighbours() do
12: if SiteImage[Neighbour] > 0 then
13: continue . Neighbour already visited
14: end if
15: NewElem ← HeapElement()
16: NewElem.value ← Dist(Neighbour, Elem.source)
17: if NewElem.value > Radii[Elem.source] then
18: continue . Cell border reached
19: end if
20: NewElem.source ← Elem.source
21: PriorityQueue.Push(NewElem)
22: SiteImage[Neighbour] = SiteImage[Elem.source]
23: end for
24: end while
25: return SiteImage
26: end procedure
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Applying this for the purpose of drawing cell population content images,
the space X becomes an image “canvas”, that is, a two-dimensional array
of numbers initialised to zero to indicate background. Sites are allocated as
connected components (perhaps just points) of non-zero, foreground pixels.
The canvas with its allocated sites and corresponding dilation radii are in-
puts to the ConditionalDilation algorithm. This works well in practice
as long as the sites are carefully selected. For the time being, sites are chosen
uniformly at random (without replacement)4, however sites must be chosen
outside all other regions. Provided the canvas is large enough relative to
the cells and the cell number, there is a large space of feasible allocations of
sites. For efficiency, a record is kept of the vacant coordinates in the drawing
canvas, from which is subtracted the coordinates of the anticipated region of
each allocated site on-the-fly. If sites are naively allocated in arbitrary order,
there is the risk of the scenario in which a larger cell is allocated in the vicin-
ity of a smaller one, placing the center of the smaller cell within the region
of the larger. A neat solution is to simply allocate the sites in descending
order of radius. This procedure is described in Algorithm 2.

Algorithm 2 Allocates sites for input to ConditionalDilation algo-
rithm. VacantCoords are a list of (x, y) coordinates available for allocation
(initially a full image), and Radii are the presampled radii for drawing cells.
1: procedure AllocateSites(VacantCoords, Radii)
2: Sites ← []
3: Radii ← Sort(Radii, descending=TRUE)
4: for radius in radii do
5: Site ← Sample(VacantCoords)
6: Sites ← Sites ∪ Site
7: Region ← {Coord ∈ VacantCoords | ||Coord - Site||2 < radius}
8: VacantCoords ← VacantCoords \ Region
9: end for

10: return Sites
11: end procedure

The outcome of the ConditionalDilation algorithm is a content image
in the form of a labeled mask. While masks are a natural choice for cell
content markers, an alternative that is found to be more useful is the cell
contour defined as,

Ck = Tk − Tk ⊕BD, (6.8)

where ⊕ represents a morphological dilation or maximum filter, Tk is the
4One could imagine using a dynamically-updated distribution to simulate cell cluster-

ing.
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(a) Points (b) Regions (c) Contours

Figure 6.8: An example of generating a cell content image by first allocat-
ing sites with AllocateSites (a) (site intensity represents radius, dilated
for visibility), with radii drawn from Equation 6.5; running the Condi-
tionalDilation algorithm to obtain labeled regions as in Equation 6.7
(b); and extracting the contours with Equation 6.8 (c).

object mask, and BD is a (for example, disk-shaped) structuring element.
The full procedure for generating content images is illustrated in Figure
6.8.

Results

(a) Style (b) Content (c) Synthesis

Figure 6.9: An application of a neural algorithm of artistic style to phase
contrast images of CAR-T cells (a) and a style source image (b) to synthesise
a new image combining their characteristics in a “simulated” image (c).

Figure 6.9 shows a first result with style transfer. The contours of cells
are generated according to Equation 6.5, which can be estimated from a
library of pre-cropped cells from Chapter 5. The number of cells is chosen
to match the chosen style image, and cells are placed uniformly randomly
on the zeroed background plane. Here we see that the transfer succeeds–the
background and foreground textures have been suitably apportioned to the
objects prescribed by the content image. Various artifacts exist, of course,
but individual cells appear correctly rendered, and the main fault is the
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(a) Style (b) Content (c) Synthesis

Figure 6.10: More cells, more problems. The style transfer algorithm fails
when the content image does not offer adequate “scaffolding” for the target
texture patterns.

global arrangement of the cell population lacking sense (recall objects have
been placed uniformly randomly).

Note that the low-resolution and simple geometric structure of the cells are
naturally advantageous. Of course, if more complicated objects were to be
modeled, the contour simulator need likewise be more sophisticated. There
are, nevertheless, limitations to this approach. We see in Figure 6.10 a larger
population of cells with a greater degree of failure. In general, a tension is
observed between the content specification and the chosen style crop. Note
that Equation 6.3 aims to ensure the same co-occurring neural activations
invoked by the style target are invoked by the synthetic image also, albeit
the global arrangement is arbitrary due to stationarity of the Gram matrix.
The algorithm preferences applying these textures in the vicinity of recog-
nisable contours, which is why one can steer the synthesis reasonably well.
Furthermore, it is found that the cell geometry is flexible: when the disk
contours are replaced with diamonds, for example, the algorithm still per-
forms well. Yet, it is crucial to approximately match the size and number of
cells between the style and content images to obtain a good distribution of
texture. Indeed, the style image appears to provide a certain “budget” that
if underspent will be apportioned arbitrarily (such as to the background),
and if overspent will mean some objects end up untextured.

Though as a proof of concept this approach is successful and yields various
insights, the pre-trained network, with all its particularities, does not offer
the necessary control for bootstrapping a robust ground truth. In addition,
the approach entails the manual curation of a suitable style reference image.
What is more, the generation is slow: one must backprop a large neural
network (although Johnson et al. [2016] find ways of greatly improving the
run time). To overcome these difficulties, in Section 6.4 let us reformulate
the problem as a learning problem of unsupervised image translation.
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6.4 CycleGANs for cell population synthesis

CycleGANs (Isola et al. [2017]) extend the pix2pix framework (see Section
5.3.1) to the unpaired image-to-image translation setting, that is, translat-
ing between two (necessarily similar) image domains in a fully unsupervised
way. Though the underlying neural network architectures remain virtually
unchanged, the framework is quite different. CycleGANs introduce an ad-
ditional pair of generator and discriminator. Now, one generator learns the
mapping G : X → Y while the other learns F : Y → X. The respective dis-
criminators train these generators adversarially in the usual way. However,
at the same time, there are cycle consistency losses ensuring F (G(X)) ≈ X
(forward cycle consistency) and G(F (Y )) ≈ Y (backward cycle consistency).
The cycle consistency loss,

LCY C(G,F ) = Ex∼pdata(x)[||F (G(x))− x||1] + Ey∼pdata(y)[||G(F (y))− y||1],
(6.9)

that is, the expected l1 error upon reconstructing real images via the stacked
generators. Equation 6.9 is combined with the usual GAN losses for each
direction of translation to give the CycleGAN objective,

max
G,F

min
DX ,DY

LCG = LGAN (DY , G,X, Y )+LGAN (DX , F, Y,X)+λLCY C(G,F ).

(6.10)

Thus, it must be that such a consistent translation can be discovered be-
tween the domains. If the domains are similar, this works surprisingly well in
practice. Note that unlike pix2pix (paired image translation) CycleGANs
are no longer conditional in that the discriminators no longer have access to
the source image. The generators are still conditioned on their input image,
however, instead of the noise vector of a vanilla GAN. A successfully trained
CycleGAN can learn to perform a (bidirectional) style transfer between, for
example, photographs and paintings, and maps to satellite imagery. In con-
trast with “a neural algorithm of artistic style” (Section 6.3), however, it
requires a full training corpus to learn from. At test time, the style transfer
is performed in a single forward pass of the generator. Moreover, empirical
results suggest the outcomes are superior (Isola et al. [2017]). This is un-
surprising, as the CycleGAN is optimised to perform style transfer directly,
rather than by a clever utilisation of a pretrained network. The results on
paired image translation are usually not as impressive as pix2pix, which
they assert to be an upper bound on performance. However, CycleGANs
are still trained on a surprisingly small number of images, despite being
very deep architectures. Even more recently, RecycleGANs (Bansal et al.
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[2018]) achieve the astonishing feat of unpaired video-to-video retargeting.
These build on the CycleGAN framework, introducing “recurrent temporal
predictor” networks, and replace the cycle consistency losses, with a simi-
larly defined “recycle loss”. Although the CAR-T dataset are indeed a form
of video data, Recycle-GANs seem excessive for the problem at hand and
CycleGANs should be sufficient.

6.4.1 First results with CycleGANs

CycleGANs are therefore proposed as an improvement for the style transfer
algorithm in Section 6.3. The domain X is modeled as the content domain,
where while training the CycleGAN, the content specifications are randomly
generated according to Section 6.3.1. The domain Y is again the style do-
main of phase contrast images, however now the style image patches may be
freely sampled at random, that is, without the manual discretion involved
in Section 6.3. The idea of synthesising a training set with image-to-image
translation models has some very recent precedents including with pix2pix
for object segmentation (Hollandi et al. [2019]) and CycleGANs for segmen-
tation (Fu et al. [2018].

CycleGANs are therefore trained to map between synthetic cell drawings
and authentic phase contrast crops. The alternating fashion of GAN train-
ing is followed: the two discriminators are trained on a single batch, then the
two generators. The batch size is limited to a single image as in the related
networks of Section 5.3.1, and, as in Section 6.2, the Adam optimiser is used
with maximium learning rate 2e4) and (β0, β1) = (0.5, 0.999). The genera-
tor and discriminator closely resemble the FNet and PatchGAN of Section
5.3.1. However, to decrease training time and avoid memory concerns, in
practice the number of filters are halved in each generator and their depth
is decreased. In addition, the batch normalisation layers are replaced by
the instance normalisation layers advocated by Isola et al. [2017] (and first
proposed by Krizhevsky et al. [2012]).

First results with this setup are given in Figure 6.11. The results come
from feeding a synthesised content image to content-to-style generator G
and reconstructing with the style-to-content generator F . We may deem
these results to be highly satisfactory, with the system adhering closely to
the specification given in our content drawings, while producing realistic
textures for the cells over a broad range of cell population sizes.
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(a) content (b) synthesised (c) reconstructed

(d) content (e) synthesised (f) reconstructed

(g) content (h) synthesised (i) reconstructed

(j) content (k) synthesised (l) reconstructed

Figure 6.11: Examples of CycleGAN generated images. Columns organised
with content specification input image X (left), G(X) generated image (cen-
ter) and reconstruction F (G(X)) (right). The number of cells are increased
over the rows: 25, 50, 100, and 150.
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6.5 Fine-tuning a state-of-the art object detection
system

With the content-to-style generator from Section 6.4.1 acting as an “oracle”
for perfectly-annotated training data, a state-of-the-art object detection sys-
tem may be trained, such as that which remained elusive in Chapter 5. The
Faster R-CNN model (Girshick [2015]) is chosen for this task. A full discus-
sion of the RCNN series of object detectors is available in Section 2.3.1. The
Faster RCNN implementation available in the PyTorch framework (Paszke
et al. [2017]) is used. This has been pretrained on the COCO object detec-
tion dataset Lin et al. [2014]. A simple fine-tuning procedure is to replace
the classification and bounding box regression “heads” of the network, that
is, leaving the backbone and region proposal network untouched, and to con-
tinue gradient descent on the new data with a lowered learning rate. This
is done, with a learning rate of 10−4, training with SGD with momentum.
Mini-batches are formed for training with 8 synthetic images. The (per-
fect) bounding box annotation (and, in principle, object class information)
is determined by the drawing procedure of the synthetic image.
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(a) Weakly supervised training set
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(b) Synthetic training set

Figure 6.12: Comparison of outcomes of Faster R-CNN on a test image when
a) fine-tuned on a weakly supervised dataset and b) fine-tuned on synthetic
images.

The outcome of this fine-tuning is a detection system capable of detecting
cells (but not classification, for now). A comparison is made between Faster
R-CNN trained on the CycleGAN synthetic images against the incomplete
annotations arising from the automatic pipeline proposed in Section 5.4.1.
Recall, the argument for pursuing a custom detector in Chapter 5 was that
such a weakly supervised dataset would be insufficient for training a state-of-
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the-art system like Faster R-CNN. We see in Figure 6.12 evidence to support
this intuition, in which are compared the outcomes of the fine-tuned R-CNN
on an authentic test image, when fine-tuned first on a weakly supervised
dataset, then on the CycleGAN-generated images.

6.6 Perspectives on synthesising a full object de-
tection dataset

In Section 6.5 the viability of training a state-of-the art object detection
system on fully-annotated synthetic images has been shown. The missing
component is to incorporate classification into the framework. In princi-
ple, the R-CNN detector is designed to learn this task simultaneously with
the object detection, however, the CycleGANs, being a fully unsupervised
model have no means for injecting this information into the data-generating
process. Clearly, one could use the R-CNN as a region proposal algorithm
and classify regions with a separately trained classifier (such as in Section
5.4.2). Preliminary results with this approach demonstrate this is a viable
approach. However, the R-CNN system should be altogether more powerful
if trained on a full annotation of object class and location. One could, al-
ternatively, attempt to incorporate the weakly annotated ground truth (as
utilised in Section 6.5) into the R-CNN fine-tuning in an attempt to teach
it about Raji cell classes.

In the following, however, an extension to the CycleGAN system above
is conceptualised that would be theoretically capable of providing both a
complete annotation of synthesised images, encompassing both object lo-
calisation and class annotations. This extension takes the form of an addi-
tional discriminator for the content-to-style generator, that, in contrast to
the PatchGAN discriminator, discriminates on regions of interest. Such a
region of interest discriminator, Droi compares fake cells localised by bound-
ing boxes inside generated images with a pre-cropped “library” of real cells.
The library can include class information for the individual crops, which can
be combined in the fashion of a conditional GAN. The content image would
also have to encode class information in some way (for example, by inten-
sity or a one-hot encoding). Thus, the Droi discriminator could provide a
mechanism to enforce class information at the resolution of specific regions
of interest. For a preliminary implementation of this idea, see Appendix
D.2.

6.6.1 Region of interest discrimination

Let us define an auxiliary discriminator for image-to-image GANs,
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droi : X ×B → {0, 1}, (6.11)

for image domainX and bounding box domainB, with droi(x, b) = d(ρ(f(x), b)),
for input image x ∼ X, bounding box b ∼ B, and where we conceive of a
neural network comprising of feature extraction layers f , classification lay-
ers d, and separated by RoIPool layer ρ. A RoIPool layer5 (Girshick [2015])
generalises the MaxPooling layer and quantises regions of interest (RoIs)
into a fixed size,

ρ : X ×B → y, (6.12)

for input tensor x ∈ R1×W×H×C , set ofK bounding box tuples B, and tensor
output y ∈ RK×w×h×C with quantised dimensions w < W and h < H. To
clarify, the incoming tensor x is transformed into a “pseudo-batch” of K
tensors for the K bounding boxes of B. Akin to the PatchGAN (see Section
5.3.1), the full discriminator output averages over the individual bounding
boxes,

Droi = 1
|B(x)|

∑
b∈B(x)

droi(x, b), (6.13)

where the operator B returns the set of bounding boxes of image x. Of
course, in the present case, the bounding boxes are decided in advance
by virtue of drawing the content images. This is trained in the loss func-
tion,

max
G,F

min
DX ,DY ,Droi

LCG + LGAN (Droi, G,X, Y ), (6.14)

where LCG is the CycleGAN loss function defined in Equation 6.10. The
setup is illustrated in Figure 6.13. Just like the contour generation, the
problem of obtaining a crop library will vary from problem to problem.
In this instance, however, direct access to such a library comes from the
automatic procedure described in Section 5.4.1. Some basic proofs of concept
of using the RoIPool for classification and GAN discrimination are given in
Appendix D.2.

5See also RoIAlign layer (He et al. [2017])
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Content image

Real image

Fake image

Real/fake

Real/fake

(Conditional)

G Dpatch

Droi

Crop library

· · ·

Figure 6.13: Conceptualisation of an extension to adversarial image-to-
image translation networks with a region of interest discriminator Droi. The
Droi relies on a library of real crops to compare to cells synthesised by G in
the prescribed regions of the content image.

6.7 Discussion

This chapter illustrated the viability for the synthesis of images of cells based
on phase contrast images of CAR-T experiments. This was shown both at
the level of single cells with convolutional and conditional GANs in Sec-
tion 6.2, and at the population level through applications of style transfer
both classical (Section 6.3) and with CycleGANs (Section 6.4). Generat-
ing populations of cells according to a content image “blueprint” proves to
be a powerful way of generating complete annotations in an entirely unsu-
pervised way, sufficient to train a state-of-the-art object detection system
(Section 6.5). The blueprint (Section 6.3.1) models various characteristics of
individual cells and groups of cells in order to facilitate the style transfer. A
means for incorporating class information was also conceptualised in Section
6.6 as a full realisation of the concept of unsupervised training data creation
for the phenotyping of CAR-T experiments.



6.7. DISCUSSION 149

At least two aspects of the current pipeline can be improved. The first is the
blueprint content image, which, as of yet, does not account for the tendency
of Raji cells to cluster. As mentioned previously, this is a matter of changing
the distribution of cell placement in the blueprint from uniform random
placement. The second is to finalise the inclusion of class information in
the training set synthesis. A concept was proposed in Section 6.6, with a
number of alternatives also outlined.





Chapter 7

Conclusions

Computational phenotyping is an ascendant methodology for the study of
phenotypes. This thesis has explored a range of solutions for two problems
in computational phenotyping. Despite the manifest overlap, these prob-
lems ultimately sit on different axes of development. Part I explored ways
of performing a joint study of multiple disease subtypes. The molecular het-
erogeneity of multiple cell lines led ultimately to a computational problem
that was resolved with domain adaptation. Part II compared approaches to
fluorescence-free phenotyping by leveraging a dataset pairing phase contrast
and fluorescence microscopy images. Part I can be considered a stepping
stone for computational phenotyping in the long road to precision medicine,
and as such remains an open-ended study. On the other hand, Part II be-
longs to a recent trend in biomedical imaging, for which a more immediate
outcome is likely, namely, that deep learning may soon revolutionise the
microscopy tool set for conducting biological experiments. The following
provides first a summary of the chapters and then speculation about the
future of high content screening.

7.1 Chapter summaries

Chapter 3 introduced the high content analysis pipeline and applied it to
drug and wild type screen datasets for multiple triple-negative breast cancer
(TNBC) cell lines. A series of use cases were presented spanning each of the
univariate-, multivariate-, and machine learning-based analyses formalised
in Section 1.1.3. While these were included as motivating examples, we saw
in particular an analysis of double strand breaks that highlighted a system-
atic bias in a standard piece of analysis using causal inference formalisms.
Elsewhere we observed a first instance of the differential effects of drugs on
cell lines in the form of viability, which were additionally categorised by

151
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drug mechanism of action. We also saw how TNBC cell lines could be anal-
ysed in unison, and explored their phenotypic differences across two axes of
measurement: firstly at the population level, as different molecular subtypes
manifested distinct patterns of cell cycle and aberrant morphologies; then
at the cellular level, with the fundamental wild type morphologies easily
distinguishable by a simple classifier. The sum of these insights was carried
forward to the following chapter.

Chapter 4 explored in great detail the construction of phenotypic profiles
for charactersing drug effects. It reviewed and tested the most relevant ex-
isting approaches in a comparative study of mechanism of action (MOA)
prediction. It then extended the methodology to a multi-cell-line setting,
where it was shown that an autoencoder based on unsupervised domain
adaptation could succeed in building domain-invariant features that outper-
form baseline models in MOA prediction. We additionally found evidence
to suggest that pooled multi-cell-line data provides more powerful repre-
sentations for predicting the MOA of hold-out drugs than single-cell line
datasets of the same size. In contrast with previous studies, this use case for
phenotypic profiling was framed without tailoring the prediction problem
to those MOAs with the most striking visual effects, yet confirmed MOA
classification could be performed at well above a rate of random chance.
This dataset has since been released in full to the scientific community. In
sum, this chapter validated a novel solution for managing the heterogeneity
of multi-cell-line screens using deep and adversarial learning.

Chapter 5 compared two deep learning methodologies for quantifying CAR-
T and Raji cell line cells in time lapse movies. With a setup providing
a paired image dataset of transmitted light and fluorescent channels, the
key barrier for training deep phenotypers is toppled. Each methodology ex-
plored a different use of fluorescence for automatically training deep neural
networks. In doing so, the trained models progressed towards supplanting
fluorescence altogether. The first approach, based on image-to-image trans-
lation networks, including a conditional GAN, showed excellent results in
the fluorescent labeling of cell populations for mCherry and GFP markers.
Though the path to full quantification of cells remains uncertain, this al-
ready works well as a visualisation tool. The second showed how a training
set for object detection could be built, and that this is a viable alternative
to fluorescence labeling, that moreover gets to the heart of the problem of
counting cell phenotypes in time series. In a final result, we were able to rec-
oncile the two methodologies and demonstrate a high degree of correlation
across a set of experimental replicates.

Chapter 6 sought a way to transcend the limitations of automatic ground
truth assemblage encountered in Chapter 5. Here it was shown that gener-
ative adversarial networks produce excellent results in the synthesis of indi-
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vidual cells, including when conditioned on a class indicator variable. This
inspired the synthesis of full populations of cells, formulated as a problem of
style transfer, where style was grafted from a curated ground truth image to
a chosen content image. The content image was constructed to emulate the
geometric characteristics of cells and cell populations. A feasibility study in
classical style transfer demonstrated the validity of this concept. This was
superseded by a learning approach to unpaired image-to-image translation,
the CycleGAN, which conditioned one of its generators on the content im-
age. Using this generator as an oracle for training data, a state-of-the-art
object detection system was trained, which was shown to outperform a base-
line of weakly annotated ground truth data. In a final section, an extension
to the CycleGAN was conceptualised, so as to be able to inject cell class
information in the content specification as well.

7.2 The future of high content screening

The future of high content screening lies plausibly in the data-driven domain
of deep learning, to which so many areas of computer vision have yielded in
recent years. After decades spent dormant, the power of deep learning was
finally unleashed by large, annotated datasets of natural images like Ima-
geNet (Russakovsky et al. [2015]). In high content screening, the enthusiasm
generated by the stunning results provided by deep learning were attenu-
ated by two factors: first, the results obtained by other machine learning
learning methods were already very good, and often sufficient to answer the
biological questions studied. Second, the amount of annotations to provide
was prohibitory.

7.2.1 Overcoming massive image annotation

Most chapters in this thesis were about making intelligent use of a relatively
limited data supply: first by domain adaptation in Chapter 4; then by lever-
aging fluorescence as annotation in 5; and finally augmenting the available
data with style transfer and generative models in Chapter 6. In more gen-
eral terms, there are several ways to overcoming the bottleneck imposed by
annotation:

• In image segmentation, the size of annotated data sets required to
train deep neural networks is not excruciatingly large. If the imag-
ing conditions are coherent (which is normally the case in HCS), a
few fully annotated images are actually often sufficient (Ronneberger
et al. [2015]). Secondly, for common segmentation tasks, such as nu-
clear segmentation, the community felt that it would be worth going
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to the trouble of annotating large image datasets, as was the case for
the “Data Science Bowl 2018”1, with 37333 manually annotated nu-
clei in 841 images of different modalities. In this case, the objective
was to train a general neural network capable of segmenting nuclei
irrespective of the imaging modality. This sparked the development
of a number of deep networks that are indeed useful for nuclei seg-
mentation (Hollandi et al. [2019]). However, it must be noted that
this large community effort is so far unique for segmentation problems
in light microscopy, which reflects the central importance of nuclear
segmentation. It may be summarised that deep learning has become
the state of the art in bioimage segmentation and has largely replaced
other techniques.

• An invaluable discovery in deep learning was that upon training a deep
classifier once, it could be redeployed to exceed the state-of-the-art of
yesteryear on virtually any vision problem. This is the power of trans-
fer learning and fine-tuning. High content screens become different
very quickly, however. For one, the number and kind of fluorescent
channels varies from screen to screen, as they are chosen for different
sub-cellular regions of interest. As a result, intensity colocalisation
across fluorescent channels generally have a very different meaning
from screen to screen. Furthermore, this fine-tuning approach has been
criticised as being badly adapted to the specific properties of biomed-
ical images and heavily over-parametrised (Raghu et al. [2019]). This
is due to fact that the relevant information for classifying biomedical
images is often highly localised, as is the case for microcalcifications in
mammogram classification (see, for example, Wang and Yang [2018]).

• Another strategy is for generating large annotated datasets for cell
classification, namely the classification of subcellular protein locali-
sation patterns, is crowd sourcing and gamification (Sullivan et al.
[2018]). While this strategy has proven successful, it is also limited to
large and prestigious projects with generous funding and is therefore
not good solution for routine screens.

• Yet another technique that has been used specifically in screening is
weak supervision, where instead of training classifiers for single cell
phenotypes, representations are learned by predicting drug identity.
Researchers such as Kraus et al. [2016], Kandaswamy et al. [2016],
Godinez et al. [2017], and Sommer et al. [2017] have shown how the
conventional pipeline can be partially or fully subsumed to a neural
network optimised end-to-end using this approach. This is an inter-
esting approach with high potential in drug screening, because it effi-
ciently removes the burden of massive annotation. However, their im-

1https://www.kaggle.com/c/data-science-bowl-2018/overview/about
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pact has so far been rather superficial, primarily improving MOA pre-
diction accuracy on a benchmark dataset by a few percentage points.
Furthermore, deep learning ought to allow us to somehow transcend
the conventional pipeline altogether. A further problem is that one no
longer has a strong interpretability of intermediate steps, as it does not
involve the classification of individual cells into biologically meaningful
classes.

7.2.2 The renaissance of label-free microscopy

The use of deep learning is not limited to improving classification or seg-
mentation accuracies. The advent of image-to-image translation models
has opened new avenues for the use of label-free microscopy. Fluorescence
microscopy has many significant advantages, as one can specifically high-
light particular biomolecules and subcellular structures. It turns out, how-
ever, that many subcellular structures leave a fingerprint in completely non-
invasive label-free microscopy techniques, such as phase contrast or bright-
field microscopy. Whereas several years ago it was still very challenging to
quantitatively analyse these label-free microscopy datasets, the tools to do
so are now available.

It is therefore possible that we will witness a renaissance of non-invasive
label-free microscopy techniques in high content screening, where fluores-
cence microscopy is used for: (i) calibration, that is for the training of neural
networks to reconstruct the fluorescence microscopy images from label-free
microscopy or else to recognise marked structures; and (ii) visualisation of
the biomolecules that do not leave a fingerprint in the images. While fluo-
rescence microscopy will remain an indispensable tool for studying cells, the
augmented label-free microscopy may become a means of obtaining “more
from less” from transmitted light microscopies such as phase contrast. Chap-
ter 5 in particular showed how seamlessly deep convolutional networks can
be assimilated into the screening process as fluorescent predictors or cell
classifiers trained by cross-modality.

These approaches may turn out to be controversial. Is it still science if we
predict measurements instead of taking them? How valid are the conclusions
that can be drawn from predicted data? To what extent would a different
training set influence the final conclusions? One toolset that can help in
overcoming these justified criticisms is a proper statistical treatment of pre-
dicted measurements, as recently proposed in Whitehill and Ramakrishnan
[2018]. Indeed, if statistical tests are performed on experimental conditions
where one actually works on predictions rather than direct measurements,
one needs ensure also that the uncertainty of the prediction into account.
Here there are many methodological developments still to be made.
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7.2.3 Towards toxicogenetics

Besides the technical improvements and extensions that are brought by new
learning techniques, another important evolution concerns the biological
models (in the case of this thesis, the cell lines). Indeed, the screening
of entire cell line panels has created the opportunity to develop predictive
models that would allow for predicting the phenotype resulting from a drug
treatment on a cell line given the chemical features describing the drug,
alongside genomic and transcriptomic features describing the cell line. Such
datasets mimic a precision medicine use case (Eduati et al. [2015], Costello
et al. [2014]), where we wish to predict a targeted treatment instead of hav-
ing a one-size-fits-all solution, which might work in a statistical sense at the
population level, but not necessarily at the level of an individual patient.
Despite this being a promising strategy, and in spite of the efforts of numer-
ous teams working in the field, the success has been relatively modest so far.
One of the reasons for this is certainly the representation of a complex drug
effect by a single number (IC50, as in Eduati et al. [2015]). The approach
developed in Chapter 4 would allow for the analysis of such screens, and in
particular for making meaningful comparisons of morphological phenotypes
across cell lines with different morphological baselines. This is a corner-
stone of the most powerful algorithms in the field, such as kernel methods
in multi-task setting (Playe et al. [2018]).
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(a) Endothall takes effect in cell line MDA231 only.
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(b) CL-82198 takes effect in cell line MDA468 only.
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(c) Cyclosporin A takes a similar in both cell lines.
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(d) PKC-412 takes differential effects in the two cell lines.

Figure A.3: MDS plots of each category of drug effect. The distances be-
tween the profiles are plotted as a line, as well as the respective distances to
the centroid (origin).
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(a) t = 42 (b) t = 44 (c) t = 92

Figure A.4: A living Raji cell (a) is attacked by a CAR-T cell (b) and later
dies (c).

(a) t = 0 (b) t = 2 (c) t = 4

(d) t = 6 (e) t = 8 (f) t = 10

Figure A.5: Tracking the apoptosis of a Raji cell. Counterpart to Figure
5.2.
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Figure A.6: Blob detection results. Left column shows ground truth, right
column shows pix2pix prediction. With respect to the ground truth: true
positives: 31; false positives: 9; and false negatives: 11.
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(a) mCherry (b) GFP (c) Phase contrast

(d) Background image (e) Segmentation (f) Fill holes

(g) Threshold (h) Opening (i) Labeling

Figure A.7: An illustration of the automatic ground truth generation image
processing pipeline. The first row are the image inputs.



Appendix B

Glossary of neural network
architectures

B.1 Fully-connected GAN

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_42 (Dense) (None, 256) 25856
_________________________________________________________________
batch_normalization_17 (Batc (None, 256) 1024
_________________________________________________________________
activation_17 (Activation) (None, 256) 0
_________________________________________________________________
dense_43 (Dense) (None, 784) 201488
_________________________________________________________________
batch_normalization_18 (Batc (None, 784) 3136
_________________________________________________________________
activation_18 (Activation) (None, 784) 0
_________________________________________________________________
dense_44 (Dense) (None, 576) 452160
_________________________________________________________________
reshape_9 (Reshape) (None, 24, 24, 1) 0
=================================================================
Total params: 683,664
Trainable params: 681,584
Non-trainable params: 2,080
_________________________________________________________________

_________________________________________________________________
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Layer (type) Output Shape Param #
=================================================================
dense_45 (Dense) (None, 512) 295424
_________________________________________________________________
leaky_re_lu_26 (LeakyReLU) (None, 512) 0
_________________________________________________________________
dense_46 (Dense) (None, 256) 131328
_________________________________________________________________
leaky_re_lu_27 (LeakyReLU) (None, 256) 0
_________________________________________________________________
dense_47 (Dense) (None, 1) 257
=================================================================
Total params: 427,009
Trainable params: 427,009
Non-trainable params: 0
_________________________________________________________________

B.2 Deep convolutional GAN

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_16 (Dense) (None, 4608) 465408
_________________________________________________________________
batch_normalization_7 (Batch (None, 4608) 18432
_________________________________________________________________
activation_7 (Activation) (None, 4608) 0
_________________________________________________________________
reshape_4 (Reshape) (None, 6, 6, 128) 0
_________________________________________________________________
up_sampling2d_7 (UpSampling2 (None, 12, 12, 128) 0
_________________________________________________________________
conv2d_13 (Conv2D) (None, 12, 12, 64) 204864
_________________________________________________________________
batch_normalization_8 (Batch (None, 12, 12, 64) 256
_________________________________________________________________
activation_8 (Activation) (None, 12, 12, 64) 0
_________________________________________________________________
up_sampling2d_8 (UpSampling2 (None, 24, 24, 64) 0
_________________________________________________________________
conv2d_14 (Conv2D) (None, 24, 24, 1) 1601
=================================================================
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Total params: 690,561
Trainable params: 681,217
Non-trainable params: 9,344
_________________________________________________________________

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_18 (Dense) (None, 256) 25856
_________________________________________________________________
batch_normalization_9 (Batch (None, 256) 1024
_________________________________________________________________
activation_9 (Activation) (None, 256) 0
_________________________________________________________________
dense_19 (Dense) (None, 784) 201488
_________________________________________________________________
batch_normalization_10 (Batc (None, 784) 3136
_________________________________________________________________
activation_10 (Activation) (None, 784) 0
_________________________________________________________________
dense_20 (Dense) (None, 576) 452160
_________________________________________________________________
reshape_5 (Reshape) (None, 24, 24, 1) 0
=================================================================
Total params: 683,664
Trainable params: 681,584
Non-trainable params: 2,080
_________________________________________________________________

B.3 F-Net

_____________________________________________________________________
Layer (type) Output Shape Param # Connected to
=====================================================================
input_2 (None, 256, 256, 1) 0
_____________________________________________________________________
conv2d_15 (None, 128, 128, 64) 1088 input_2
_____________________________________________________________________
leaky_re_lu_8 (None, 128, 128, 64) 0 conv2d_15
_____________________________________________________________________
conv2d_16 (None, 64, 64, 128) 131200 leaky_re_lu_8
_____________________________________________________________________
leaky_re_lu_9 (None, 64, 64, 128) 0 conv2d_16
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_____________________________________________________________________
batch_norma_13 (None, 64, 64, 128) 512 leaky_re_lu_9
_____________________________________________________________________
conv2d_17 (None, 32, 32, 256) 524544 batch_norma_13
_____________________________________________________________________
leaky_re_lu_10 (None, 32, 32, 256) 0 conv2d_17
_____________________________________________________________________
batch_norma_14 (None, 32, 32, 256) 1024 leaky_re_lu_10
_____________________________________________________________________
conv2d_18 (None, 16, 16, 512) 2097664 batch_norma_14
_____________________________________________________________________
leaky_re_lu_11 (None, 16, 16, 512) 0 conv2d_18
_____________________________________________________________________
batch_norma_15 (None, 16, 16, 512) 2048 leaky_re_lu_11
_____________________________________________________________________
conv2d_19 (None, 8, 8, 512) 4194816 batch_norma_15
_____________________________________________________________________
leaky_re_lu_12 (None, 8, 8, 512) 0 conv2d_19
_____________________________________________________________________
batch_norma_16 (None, 8, 8, 512) 2048 leaky_re_lu_12
_____________________________________________________________________
conv2d_20 (None, 4, 4, 512) 4194816 batch_norma_16
_____________________________________________________________________
leaky_re_lu_13 (None, 4, 4, 512) 0 conv2d_20
_____________________________________________________________________
batch_norma_17 (None, 4, 4, 512) 2048 leaky_re_lu_13
_____________________________________________________________________
conv2d_21 (None, 2, 2, 512) 4194816 batch_norma_17
_____________________________________________________________________
leaky_re_lu_14 (None, 2, 2, 512) 0 conv2d_21
_____________________________________________________________________
batch_norma_18 (None, 2, 2, 512) 2048 leaky_re_lu_14
_____________________________________________________________________
up_sampling2d_8 (None, 4, 4, 512) 0 batch_norma_18
_____________________________________________________________________
conv2d_22 (None, 4, 4, 512) 4194816 up_sampling2d_8
_____________________________________________________________________
batch_norma_19 (None, 4, 4, 512) 2048 conv2d_22
_____________________________________________________________________
concatenate_7 (None, 4, 4, 1024) 0 batch_norma_19

batch_norma_17
_____________________________________________________________________
up_sampling2d_9 (None, 8, 8, 1024) 0 concatenate_7
_____________________________________________________________________
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conv2d_23 (None, 8, 8, 512) 8389120 up_sampling2d_9
_____________________________________________________________________
batch_norma_20 (None, 8, 8, 512) 2048 conv2d_23
_____________________________________________________________________
concatenate_8 (None, 8, 8, 1024) 0 batch_norma_20

batch_norma_16
_____________________________________________________________________
up_sampling2d_10 (None, 16, 16, 1024) 0 concatenate_8
_____________________________________________________________________
conv2d_24 (None, 16, 16, 512) 8389120 up_sampling2d_10
_____________________________________________________________________
batch_norma_21 (None, 16, 16, 512) 2048 conv2d_24
_____________________________________________________________________
concatenate_9 (None, 16, 16, 1024) 0 batch_norma_21

batch_norma_15
_____________________________________________________________________
up_sampling2d_11 (None, 32, 32, 1024) 0 concatenate_9
_____________________________________________________________________
conv2d_25 (None, 32, 32, 256) 4194560 up_sampling2d_11
_____________________________________________________________________
batch_norma_22 (None, 32, 32, 256) 1024 conv2d_25
_____________________________________________________________________
concatenate_10 (None, 32, 32, 512) 0 batch_norma_22

batch_norma_14
_____________________________________________________________________
up_sampling2d_12 (None, 64, 64, 512) 0 concatenate_10
_____________________________________________________________________
conv2d_26 (None, 64, 64, 128) 1048704 up_sampling2d_12
_____________________________________________________________________
batch_norma_23 (None, 64, 64, 128) 512 conv2d_26
_____________________________________________________________________
concatenate_11 (None, 64, 64, 256) 0 batch_norma_23

batch_norma_13
_____________________________________________________________________
up_sampling2d_13 (None, 128, 128, 256 0 concatenate_11
_____________________________________________________________________
conv2d_27 (None, 128, 128, 64) 262208 up_sampling2d_13
_____________________________________________________________________
batch_norma_24 (None, 128, 128, 64) 256 conv2d_27
_____________________________________________________________________
concatenate_12 (None, 128, 128, 128 0 batch_norma_24

leaky_re_lu_8
_____________________________________________________________________
up_sampling2d_14 (None, 256, 256, 128 0 concatenate_12



168APPENDIX B. GLOSSARY OF NEURAL NETWORK ARCHITECTURES

_____________________________________________________________________
conv2d_28 (None, 256, 256, 1) 2049 up_sampling2d_14
=====================================================================
Total params: 41,837,185
Trainable params: 41,828,353
Non-trainable params: 8,832
_____________________________________________________________________

B.4 PatchGAN

_________________________________________________________________
Layer (type) Output Shape Param # Connected to
=================================================================
input_7 (None, 256, 256, 1) 0
_________________________________________________________________
input_8 (None, 256, 256, 1) 0
_________________________________________________________________
concatenate_15 (None, 256, 256, 2) 0 input_7

input_8
_________________________________________________________________
conv2d_39 (None, 128, 128, 64) 2112 concatenate_15
_________________________________________________________________
leaky_re_lu_23 (None, 128, 128, 64) 0 conv2d_39
_________________________________________________________________
conv2d_40 (None, 64, 64, 128) 131200 leaky_re_lu_23
_________________________________________________________________
leaky_re_lu_24 (None, 64, 64, 128) 0 conv2d_40
_________________________________________________________________
batch_norm_31 (None, 64, 64, 128) 512 leaky_re_lu_24
_________________________________________________________________
conv2d_41 (None, 32, 32, 256) 524544 batch_norm_31
_________________________________________________________________
leaky_re_lu_25 (None, 32, 32, 256) 0 conv2d_41
_________________________________________________________________
batch_norm_32 (None, 32, 32, 256) 1024 leaky_re_lu_25
_________________________________________________________________
conv2d_42 (None, 16, 16, 512) 2097664 batch_norm_32
_________________________________________________________________
leaky_re_lu_26 (None, 16, 16, 512) 0 conv2d_42
_________________________________________________________________
batch_norm_33 (None, 16, 16, 512) 2048 leaky_re_lu_26
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_________________________________________________________________
conv2d_43 (None, 16, 16, 1) 8193 batch_norm_33
=================================================================
Total params: 2,767,297
Trainable params: 2,765,505
Non-trainable params: 1,792
_________________________________________________________________





Appendix C

Analysing double-strand
breaks in cultured cells for
drug screening applications
by causual inference

The contents of this appendix were published in the Proceedings of the 14th
IEEE International Symposium on Biomedical Imaging (ISBI). Washington
D.C., United State of America. April, 2018.

Double strand breaks (DSB) are a hallmark of DNA damage and genetic
instability, which are important features of cancer cells. In addition, repair
of DSBs provide interesting therapeutic targets. Fluorescence microscopy
allows us to visualise DSBs in cells using a dedicated fluorescent marker,
which is therefore an informative readout for drug screening applications.
We therefore need robust methods in image analysis and statistical analy-
sis to quantify DSBs in single cells and thereby to assess the drug effect
with respect to the related pathways. The contribution of this paper is two-
fold: first, we compare different DSB quantification schemes; and second
we provide a sound statistical framework based on causal inference in order
to detect drugs acting directly on DSBs. In particular this second aspect is
so far notoriously neglected in the field, even though it is essential for the
specific assignment of the drug effect.

171
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C.1 Introduction

Dysfunction of the DNA repair mechanisms is a major hallmark of cancer.
Monitoring DNA damage by fluorescently labeling double strand breaks
(DSB) in cells is therefore an important readout in drug screening of cancer
cell lines. DSBs occur when both strands of the DNA double helix are
broken. DSBs have various causes, for example, cytotoxic radiation, or DNA
replication over an existing single-strand break. Despite the natural DNA
repair mechanisms of the cell, DSBs can be irreparable, leading ultimately
to apoptosis, or hazardous DNA rearrangements. As such, DSBs are an
interesting property to assess when analysing the effects of small compounds
upon cancer cells.

The context of this research is a drug screen in triple-negative breast cancer
(TNBC), a type of cancer that is characterised by the absence of genetic
markers that are common targets for cancer therapies. The difficulty of
treatment of TNBCmake the search for effective new treatments particularly
important. It must be noted however that DSB quantification is not limited
to this application; it is a general marker often used in cancer research, and
in particular in screening applications.

In Section C.2 we describe the experimental setup of the drug screen. In
Section C.3 we compare three approaches to quantifying DSBs over the im-
aged cell populations. Then, we show that analysis of DSB numbers can
be misleading for two reasons: first, the number of DSBs may depend on
the cell cycle and drugs assigned to affect DSBs might actually only affect
the cell cycle. Second, in drug screening, severely perturbed cells–such as
mitotic or dead cells–are typically washed away prior to image acquisition.
Such a loss to followup introduces a potential selection bias when perform-
ing significance tests. Both aspects have been neglected so far in the drug
screening literature (Avondoglio et al. [2009], Garcia-Canton et al. [2013]).
We use the tools of causal inference to probe for such systematic bias in our
analysis in Section C.4. A comparison of the DSB quantifiers used and the
analytic corrections are presented in Section C.5. Closing remarks are given
in Section C.6.

C.2 Experimental setup

In a pilot study on multiple TNBC cell lines, we assembled 168 drugs, includ-
ing two positive controls, for a drug screen at high concentration (10µM),
alongside replicated negative controls of neutral agent dimethyl sulfoxide
(DMSO) and untreated cells. The wells were seeded with a controlled 1000
and 1250 cells for MDA231 and MDA468 cell lines respectively, on sepa-
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rate 384-well microplates. The drugs were administered identically on both
plates. Following hibernation, the cells were fixed, washed, and stained with
four fluorescent markers. Fluorescence microscopy (20× widefield with de-
convolution image restoration) taken at four fields in each well produced two
experimental datasets of 1536 multiplexed images apiece.

Four fluorescent stains were used for our microscopy: DAPI, Cyanine 3
(Cy3), Cyanine 5 (Cy5), and FITC. Of interest to our analysis are DAPI
and Cy3, fluorescent markers for DNA and DSBs, respectively.

The final, washing step evacuates all unfastened cells from the well, such as
mitotic or dead cells, as a consequence of perturbation or otherwise. The
array of perturbations show a range of effects on cell mortality, from no
apparent effect to a near or complete elimination of cells.

C.3 Approaches to measuring double-strand breaks

While biochemical techniques exist for DSB quantification (Chailleux et al.
[2014]), obtaining faithful counts of DSBs directly from bioimages is prob-
lematic as the correspondence between DSBs and the recorded signal is un-
clear. Our strategy is therefore to extract a feature that has a high chance
of being proportional to the amount of DSBs. The Cy3 signal typically
manifests as a nebulous cloud, with intermittent peaks or spots of higher
intensity. Samples are given in Figure C.1. DSBs may be underrepresented
by a simple spot count, as high intensity spots may correspond with mul-
tiple, localised breaks. On the other hand, DSBs may be overrepresented
by a noisy Cy3 channel. We here compare three approaches to quantifying
double-strand breaks. The approaches give correlated readouts, in particu-
lar between spot count and granulometry (Figure C.2) with ρ = 0.84 over
the entire plate, and it seems that any will serve as a reasonable proxy to
the true number of DSBs. Granulometry and spot density correlate with
average intensity at ρ = 0.44 and ρ = 0.42 respectively.

In general, the features differ most in the rare cases when the marker is
saturated and nothing stands out to be counted as a spot, yet the average
intensity is artificially high (staining artifacts). We therefore give preference
to spot-related features. The computation was performed by Cell Cognition
(Held et al. [2010]), an open-source tool for the visualisation and analysis of
HCS assays. As part of a standard computational pipeline, individual cell
nuclei were first segmented by a combination of filtering and local thresh-
olding (Held et al. [2010]). Touching nuclei are split as described in Naylor
et al. [2017], using morphological local contrast dynamics (morphological
dynamics) giving superior results to the traditional approach of filtering the
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Euclidean distance map (data not shown). DSB analysis was then performed
for each individual nucleus.

C.3.1 Counting spots with diameter openings

One approach to measuring DSBs is to count individual spots. For this, we
used diameter openings (Walter et al. [2007]), a technique based on a similar
flooding technique to the watershed algorithm, with the notable difference
that no separation of regions is built and that the flooding stops as soon
as the maximal extension of the region exceeds a user-defined diameter λ.
Mathematically, the operator can be written as:

[γ◦λ(f)] (x) = sup
{
s ≤ f(x) | α

(
Cx
[
X+
s (f)

])
≥ λ

}
=

⋃
{γB(f) | α(B) ≥ λ}, (C.1)

where X+
s (f) is the set of all pixels with with f(x) ≥ s, Cx[A] is the con-

nected component of set A containing point x and α(Cx) its maximal ex-
tension. Equation C.1 shows that this can also be written as the supremum
of all morphological openings γBi(f) with structuring elements Bi whose
diameter greater or equal to λ.

Figure C.1: Examples of spots (red) on cell nuclei detected with diameter
openings on the Cy3 channel (grey).
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Figure C.2: Granulometry and spot density readouts show high correlation
on average over all wells.

Building the difference to the original image f−γ◦λ(f) and a simple threshold
operation thus allows one to extract all bright details with a maximal exten-
sion smaller than a certain value. The tunable parameters of the algorithm
are the diameter of the structuring element and the value of the intensity
threshold1. Nuclei happen to have different sizes and we thus normalise the
spot count into spot density by dividing by the nuclear area.

C.3.2 Granulometry-based features

An alternative strategy to get a proxy of DSB numbers without relying on
hard segmentation, is to use morphological granulometries, i.e. the sum of
the difference between opened versions of the initial image.∑

x∈Sk

γBif(x)− γBi+1f(x), (C.2)

where the structuring elements Bi fulfill the condition Bi ⊂ Bi+1 and Sk is
the k-th cell.

C.3.3 Average intensity

We also hypothesised that an accumulation of γ-H2AX can be seen as an
indicator of DNA breaks without a detectable organisation into spots, in

1These were manually tuned to a diameter of 5 pixels, and threshold of 8.
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(a) mCherry and GFP fluorescence (left
and center) and phase contrast signals
(right) at t = 0
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Figure C.3: Distribution of cell total intensities on the DAPI channel for
MDA231 cell line (a). The bimodal distribution is a consequence of the
growth sustained between the G1 (black) and G2 (red) phases of the cell
cycle. A suitable threshold of DAPI intensity significant divergence in the
DSB distributions of the respective groups on the Cy3 channel (b).

particular in the case of very high densities. We therefore added the average
intensity over the region of interest as a feature.

1
#Sk

∑
x∈Sk

f(x). (C.3)

C.4 Analysis

The aim of our analysis is to compare DSB levels from drug perturbations
to levels in the negative control, DMSO. We used the Kolmogorov-Smirnov
(K-S) test as the basis of comparison with significance declared at the 0.01
level.

As can be seen in Figure C.3a, there is a bimodal distribution in DAPI in-
tensity considered over all cells, corresponding to cell cycle phases (pre- and
post-DNA synthesis). The higher frequency of low intensities corresponds
to the longer G1 phase and more cells will be fixed in this phase. Secondly,
the DNA content in this phase is constant, whereas the DNA content in
S-phase is somewhere between G1 and G2. Third, there are many aberrant
morphologies, for which the DNA content is larger than the one of normal
G1 cells, but the exact value is not clearly determined. All of these elements
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lead to a wide distribution of DAPI intensities for all nuclei that are not in
G1. We can roughly estimate a suitable threshold between the two classes
to create high and low intensity groups. Visualising the respective spot
densities for these groups (Figure C.3b) reveals a shift in DSB distribution
between the groups.

C.4.1 Causal considerations

Causal inference (Pearl et al. [2009]) is a framework for conducting statisti-
cal analysis that enables reasoning about causal factors in an experimental
setting, so as to determine a relationship between a potential cause or treat-
ment and a potential effect or outcome. Such an analysis is necessarily
first endowed with a directed, acyclic causal graph, such as Figure C.4, by
a domain expert. The causal graph postulates a feasible causal relation,
respecting the otherwise impossible task of establishing causations from sta-
tistical data alone (Pearl et al. [2009]). In particular, causal models help to
identify biases and necessary adjustments in analysis.

One aspect we looked into was the simultaneous effect of perturbations on
cell death and DSBs, themselves potentially a cause of cell death. Due to the
washing step in the experimental protocol, our observations are confined to
those cells surviving the cytotoxic effect, that is, not undergoing apoptosis A.
This is an example of selection bias, whereby the phenomenon of apoptosis
determines those cells available for measurement. The bias is illustrated
in Figure C.4, which traces a path from perturbation P to apoptosis A,
both via DSBs levels D, as well as directly, in a path representing other,
unmeasured, cytotoxic causes.

In certain scenarios, a selection bias may be corrected for by standardisation
or IP-weighting, giving an unbiased estimate of the causal effect. However,
the particular causal structure we observe here defies correction, as the levels
of A (cell death or not) are not exchangeable with respect to D, a neces-
sary condition for corrective techniques. This clearly indicates the need for
experimental techniques where apoptotic cells remain observable. Despite

P D A

Figure C.4: Causal diagram including selection bias: P is the perturbation;
D is the distribution of double-strand breaks and; A is the frequency of
apoptosis. Conditioning (represented as a square) on the common effect of
treatment P and outcome D creates a selection bias.
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P G D

Figure C.5: Causal diagram showing effect modification of cell cycle phase:
G is cell cycle phase; P is the perturbation, and D is the DNA damage.

this bias, independent analyses showed little difference in the distributions
of DSBs within sparse (therefore highly apoptotic) and dense cell popula-
tions.

Another use case is in the effect of the cell cycle phase: given that some
perturbations P affect the cell cycle phase G, and that DSBs levels D are
influenced by both P and G, cell cycle variability acts as an effect modi-
fier on D. These relations are expressed in the causal graph in Figure C.5.
Though they are not a source of systematic bias, identifying effect modi-
fiers can lead to an insightful stratified analysis. Through stratification, we
were able to determine whether increased DSBs levels were a direct effect
of perturbation, or an indirect effect of a modified cell cycle. In a stratified
analysis, we compared the pooled cells of DMSO wells, as untreated sub-
jects, with the cells of each perturbed well in turn. As we assessed 168 small
compound perturbations, a multiple testing correction is due in our analy-
sis. We compensate with the Benjamini-Hochberg correction for controlling
the false discovery rate. We compare the effect of stratification in Section
C.5.

C.5 Results

Despite the strong correlation between the three DSB measuring techniques,
the number of perturbations exhibiting significance (hits) under each varies
greatly. We reject the coarse approach of average intensity as being too
sensitive to the ambient Cy3 signal and to staining artifacts. This shows
in Table C.1 with unrealistically high hit rates for mean intensity. The
most conservative are the granulometric features. The table presents the
number of significant deviations from the negative control with and without
stratification for the MDA231 cell line. The effects were seen for MDA468
also.

When we stratify, we report the number of hits without adjustment (all),
for the G1 and G2 sub-populations of the wells separately, and the number
of times these agree (joint). Taken apart, the subpopulations see fewer hits.
This is a sign the perturbation influence on cell cycle is crucial.
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Double strand break quantifiers
Modifier Spot density Granulometry Mean intensity

All 45 34 87
G1 40 10 62
G2 15 14 34
Joint 9 4 18

Table C.1: Number of hits (out of 168) for each DSB quantifier on the
MDA231 cell line. Significance at the 0.01 level with the Benjamini-
Hochberg correction.

C.6 Conclusions

In this study, we have examined three viable approaches to measuring dou-
ble strand breaks in fluorescence microscopy images. The more nuanced ap-
proaches of diameter openings and granulometry were found to give favourable
outcomes. We have also introduced consideration of causal inference into a
standard piece of analysis. We believe this framework can impact the sta-
tistical precision of other analyses in high content screening. An awareness
of causal relationships and potential systematic biases has the potential to
greatly improve experimental design and the precision of hit predictions in
drug screening.





Appendix D

Supplementary analysis

D.1 Discovering phenotypic classes with unsuper-
vised learning

Whereas in the wild type screen most cells fall neatly into recognisable
classes (Section 3.4.4), the drug screen phenotypes are more obscure. By
inspection, the cell populations are dramatically less rich phenotypically
than the morphological screen. There are many aberrant morphologies (ex-
amples in Figure D.1) among the perturbed cell populations, but mitotic
cells are scarce, and apoptotic cells are non-existent due to the washing of
fluorescent dyes (and along with them, unfastened cells) prior to imaging.
Machine learning is therefore an appropriate tool for wheedling out more
subtle phenotypes.

Clustering algorithms are used on the respective cell line datasets in an
attempt to discover cell classes. PCA is applied to reduce dimensionality and
to select between features with high mutual correlation between some of the
extracted features1. The large dataset remains restrictive in size to applying
certain clustering algorithms. The data is therefore subsampled. However,
rather than uniform random sampling, the following is done: first, k-means
clustering is applied to the dataset, choosing a potentially excessive number
of clusters (K = 30). It is expected that this will identify small isolated
clusters that may be lost by random sampling alone, as it is anticipated
that interesting phenotypes will be scarce. Then, a subsample of the dataset
is created by sampling 50 cells (where available) from each cluster. With
this new, smaller dataset, clustering algorithms robust to anisotropic data
are applied, including: DBSCAN (Ester et al. [1996]), spectral clustering

1For example, many shape features extracted by Cell Cognition, such as area, perime-
ter, convex hull, will increase together.
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Figure D.1: Examples of spots (red) on cell nuclei detected with diameter
openings on the Cy3 channel (grey).
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(Von Luxburg [2007]), and hierarchical clustering (Ward Jr [1963]).

The clusters may be explored visually, by cropping examples of cells corre-
sponding to each cluster. In Figure D.1 we see some subtle patterns emerge.
The first cluster, the largest, appears to contain normal interphase cells. A
second shows a mixture of normal and large interphase nuclei. Note that
given the approach, it is anticipated that the predominant class, normal
interphase, leaks into other clusters. Elsewhere, we see a smaller cluster
comprising of many micro-nucleated cells, and another containing cells with
high levels of DNA damage.

The ultimate specification of morphological classes should be determined
by domain experts, with unsupervised learning merely providing a start-
ing point. After this, one could pursue an analysis such as in Section
3.4.4. While this is an interesting approach, fully unsupervised methods
are rather turned to in Chapter 3 to address the motivating questions of the
assay.

D.2 Training a RoI classifier

A training set is designed based on randomly placing 16 randomly chosen
28× 28px digits from the MNIST digits dataset on a 256× 256 background
“canvas” image as shown in Figure D.2 (left).
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Figure D.2: From left to right: canvas input, activation map after MaxPool-
ing layer, activation map after RoIAlign layer (reduced to single bounding
box).

A region of interest (RoI) classifier is implemented as a convolutional neural
network Conv1,8 → ReLU → MaxPool → Conv8,16 → ReLU → RoIAlign →
FC784,10, that is, a series of convolutional layers with ReLU activations fol-
lowed by a RoIPool layer, and finally a fully-connected classification layer.
The classifier is trained by a forward pass of such a canvas image, with the
bounding box coordinates (x0, y0, x1, y1) for each of the digits. According to
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the bounding boxes, the RoIAlign layer separates the image into a pseudo-
batch of RoIs, which are subsequently classified into one of the 10 digit
classes by a softmax function. Note that in this case, an RoIAlign layer is
chosen to quantise the incoming 14×14 tensors to 7×7 tensors. The stages
of the forward pass are shown in Figure D.2.
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Figure D.3: Prediction of 16 digits over canvas, performed in a single forward
pass.

Trained in this manner, the classifier achieves 97% accuracy as a classifier
of MNIST digits, thus a small percentage shy of the accuracy of a typical
MNIST classifier. In a single forward pass, the classifier can make predictions
for the whole canvas, as illustrated in Figure D.4.

The RoI classifier can also be incorporated as a discriminator (that is, as a
binary real/fake classifier) in a conditional image-to-image GAN(pix2pix)
framework. Now, in addition to an input canvas of MNIST digits, condi-
tioning images are created for each class (here ‘0’ or ‘1’ digits). An example
is given in Figure D.4. A pix2pix system with a region of interest dis-
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Figure D.4: Encodings of class and localisation specificiation (left and cen-
ter) and corresponding train image for training a conditional GAN with RoI
discriminator.

criminator is successfully trained. We see in Figure D.5 that the pix2pix
generator has thus learned to synthesise images according to programmed
localisation and classification information. This is compared (using the same
specification of object localisation and class) to a ground truth image and
the prediction of a plain pix2pix system. We see a far greater degree of
mode collapse in this baseline compared with our proposed model.

(a) Ground truth (b) pix2pix (c) pix2pix + Droi

Figure D.5: With the same specification of object localisation and class, a
ground truth image (a), a synthetic image from a plain pix2pix system (b)
and synthetic image from our pix2pix with RoI discrimination.
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RÉSUMÉ

Le phénotypage computationnel est un ensemble de technologies émergentes permettant d’étudier systématiquement
le rôle du génome dans l’obtention de phénotypes, les caractéristiques observables d’un organisme et de ses sous-
systèmes. En particulier, les essais cellulaires permettent de cribler des panels de petites molécules ou de moduler
l’expression des gènes, et de quantifier les effets sur les caractéristiques phénotypiques allant de la viabilité à la mor-
phologie cellulaire. Le criblage à haut contenu étend les méthodologies des criblages cellulaires à une lecture à haut
contenu basée sur des images, en particulier les canaux multiplexés de la microscopie à fluorescence. Les cribles
basés sur de multiples lignées cellulaires sont aptes à différencier les phénotypes de différents sous-types d’une mal-
adie, représentant l’hétérogénéité moléculaire concernée dans la conception de thérapies médicales de précision. Ces
modèles biologiques plus riches sous-tendent une approche plus ciblée pour le traitement de maladies mortelles telles
que le cancer. Un défi permanent pour le criblage à haut contenu est donc la synthèse des lectures hétérogènes dans
les cribles à multiples lignées cellulaires. Parallèlement, l’état de l’art établi en matière d’applications d’analyse d’images
et de vision par ordinateur est l’apprentissage profond. Cependant, son rôle dans le criblage à haut contenu ne fait que
commencer à être réalisé. Cette thèse aborde deux problématiques de l’analyse à haut contenu des lignées cellulaires
cancéreuses. Les contributions sont les suivantes : (i) une démonstration du potentiel d’apprentissage profond et de
modèles générateurs dans le criblage à haut contenu ; (ii) une solution basée sur l’apprentissage profond au problème
de l’hétérogénéité dans un criblage de médicaments sur plusieurs lignées cellulaires ; et (iii) de nouvelles applications
de modèles de traduction d’image à image comme alternative à la microscopie à fluorescence coûteuse actuellement
nécessaire pour le criblage à haut contenu.

MOTS CLÉS

Apprentissage profond, criblage à haut contenu, lignées cellulaires, phénotypage computationnel.

ABSTRACT

Computational phenotyping is an emergent set of technologies for systematically studying the role of the genome in elicit-
ing phenotypes, the observable characteristics of an organism and its subsystems. In particular, cell-based assays screen
panels of small compound drugs or otherwise modulations of gene expression, and quantify the effects on phenotypic
characteristics ranging from viability to cell morphology. High content screening extends the methodologies of cell-based
screens to a high content readout based on images, in particular the multiplexed channels of fluorescence microscopy.
Screens based on multiple cell lines are apt to differentiating phenotypes across different subtypes of a disease, rep-
resenting the molecular heterogeneity concerned in the design of precision medicine therapies. These richer biological
models underpin a more targeted approach for treating deadly diseases such as cancer. An ongoing challenge for high
content screening is therefore the synthesis of the heterogeneous readouts in multi-cell-line screens. Concurrently, deep
learning is the established state-of-the-art image analysis and computer vision applications. However, its role in high
content screening is only beginning to be realised. This dissertation spans two problem settings in the high content
analysis of cancer cell lines. The contributions are the following: (i) a demonstration of the potential for deep learning
and generative models in high content screening; (ii) a deep learning-based solution to the problem of heterogeneity in
a multi-cell-line drug screen; and (iii) novel applications of image-to-image translation models as an alternative to the
expensive fluorescence microscopy currently required for high content screening.

KEYWORDS

Deep learning, high content screening, cell lines, computational phenotyping.
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